
Running head: AUDIOVISUAL SEMANTIC RELATEDNESS DATABASE 

 1 

Title:  How much is a cow like a meow? A novel database of human judgements of 2 
audiovisual semantic relatedness  3 

 4 

Authors:   Kira Wegner-Clemens1, George L. Malcolm2, Sarah Shomstein1   5 

 6 

Author affiliation: 1 George Washington University, Psychological and Brain Sciences 7 

2 University of East Anglia, School of Psychology 8 

 9 

Keywords: semantics, multisensory, audiovisual, naturalistic stimulus set 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

Corresponding author: 20 

Kira Wegner-Clemens 21 
Department of Psychological and Brain Sciences 22 
George Washington University 23 
E-mail: kira@gwu.edu 24 
  25 



Running head: AUDIOVISUAL SEMANTIC RELATEDNESS DATABASE 

Abstract 26 

Semantic information about objects, events, and scenes influences how humans perceive, interact 27 
with, and navigate the world. The semantic information about any object or event can be highly 28 
complex and frequently draws on multiple sensory modalities, which makes it difficult to 29 
quantify. Past studies have primarily relied on either a simplified binary classification of 30 
semantic relatedness based on category or on algorithmic values based on text corpora rather 31 
than human perceptual experience and judgement. With the aim to further accelerate research 32 
into multisensory semantics, we created a constrained audiovisual stimulus set and derived 33 
similarity ratings between items within three categories (animals, instruments, household items). 34 
A set of 140 participants provided similarity judgments between sounds and images. Participants 35 
either heard a sound (e.g., a meow) and judged which of two pictures of objects (e.g., a picture of 36 
a dog and a duck) it was more similar to, or saw a picture (e.g., a picture of a duck) and selected 37 
which of two sounds it was more similar to (e.g., a bark or a meow). Judgements were then used 38 
to calculate similarity values of any given cross-modal pair.  The derived and reported similarity 39 
judgements reflect a range of semantic similarities across three categories and items, and 40 
highlight similarities and differences among similarity judgments between modalities. We make 41 
the derived similarity values available in a database format to the research community to be used 42 
as a measure of semantic relatedness in cognitive psychology experiments, enabling more robust 43 
studies of semantics in audiovisual environments.  44 
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Introduction 45 

Semantic information is crucial to daily life. How we understand scenes, interact with 46 

objects, and navigate through environments is shaped by the meaning, or semantics, of these 47 

very scenes, objects, and environments. Despite the importance of semantics, its role on behavior 48 

has been less extensively studied than other features of sensory signals, such as loudness, 49 

brightness, or color. A major barrier to studying semantics has been the difficulty in quantifying 50 

how multiple objects are semantically related, especially across sensory systems. For a study 51 

investigating loudness, any two auditory stimuli can be directly compared by measuring the 52 

decibels of each, while for a study investigating semantic relatedness, any two signals could 53 

potentially be related in a number of different ways. Two signals might share a category (e.g., 54 

foods), be associated with the same event or object (e.g., a dog and its bark), or occur in the same 55 

location (e.g., kitchen items). Each of these possible relationships corresponds to a different 56 

aspect of semantic meaning that overlaps with and is available simultaneously with other aspects.  57 

To compare stimuli in studies, researchers often select one aspect and define semantic 58 

relatedness in reference to that aspect. For example, a study might define semantic relatedness as 59 

whether two items belong to the same category. Under this definition (semantics-as-category), 60 

two items of clothing (a t-shirt, a pair of pants) would be defined as semantically related, while 61 

an item of clothing and a kitchen utensil would be defined as semantically unrelated (a t-shirt, a 62 

spoon). This category based definition has been widely used, in studies finding that same-63 

category distractors disrupt visual search to a greater extent (Moores, Laiti, and Chelazzi 2003), 64 

same-category words are remembered better (Buchanan et al. 2006), and category guides 65 

attention between visual objects even when task-irrelevant (Malcolm, Rattinger, and Shomstein 66 

2016). Categories themselves can be defined in various ways, with a major distinction between 67 
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thematic relationships based on co-occurrence and taxonomic relationships based on feature 68 

similarity (Lin and Murphy 2001; Estes, Golonka, and Jones 2011; Wisniewski, E. J., & Bassok, 69 

M 1999) 70 

However, category is not the only way semantics has been defined in studies of memory 71 

and attention. An alternative option is to define semantic relatedness by whether two signals 72 

have the same source. Under this definition (semantics-as-source), a visual image of a piano and 73 

an auditory sound of piano note would be considered semantically related, while a visual image 74 

of a piano and an auditory sound of a violin would not be considered semantically related. In an 75 

auditory context, two speech recordings might be considered semantically related if each was 76 

spoken by the same speaker. The source based definition has also been widely used, especially in 77 

multisensory contexts, with studies finding that sounds speed search for shared-source images  78 

(Iordanescu et al. 2008) and videos (Kvasova, Garcia-Vernet, and Soto-Faraco 2019) and 79 

improve memory for shared-source objects (Heikkilä et al. 2015), even when task irrelevant 80 

(Duarte, Ghetti, and Geng 2021; Mastroberardino, Santangelo, and Macaluso 2015), and images 81 

improve memory for shared-source sounds (Moran et al. 2013). Ostensibly, these studies and the 82 

studies described above using the semantics-as-category definition investigate the same aspect of 83 

sensory events, semantics, and depend on shared mechanisms of semantic processing. However, 84 

depending on what definition is used, the same pairing of stimuli could be considered either 85 

semantically related or not semantically related. Under a semantics-as-category definition, an 86 

image of violin and the sound of a piano would be considered related, but would not be 87 

considered related under the semantics-as-causality definition. These differences in definition 88 

have an impact on perception, with thematically related pairs being grouped together more 89 

quickly than taxonomic related pairs (Nah and Geng 2021). Each definition has provided key 90 
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insights into how the corresponding aspect of semantics influences attention and memory, but 91 

taken together, leave a number of open questions about semantics.   92 

A fundamental barrier to a more comprehensive understanding of semantic influence is 93 

that prior measures of semantic relatedness have most been relying on a binary classification 94 

(either semantically related or not semantically related), while human observers have more 95 

nuanced and continuous understandings of semantic relatedness. In the example of a shared-96 

cause definition of semantic relatedness above, an image of a piano was defined as related to the 97 

sound of a piano note, but not related to the sound of a violin note. However, under a categorical 98 

definition of semantic relatedness, a piano and a violin would be defined as semantically related 99 

because both are musical instruments. A human observer would likely place these into a 100 

continuum of relatedness with the image of the piano more related to the sound piano note and 101 

less related to the violin note. Any differences in behavior that rely on this continuous 102 

understanding of semantic relatedness would be missed with either the categorical or causality-103 

based definition of semantic relatedness.  104 

 Several studies have sought to tackle this issue by using machine learning algorithms to 105 

extract semantic relatedness values from massive text corpora. The algorithms produce models 106 

of semantic meaning, known as distributional semantics models, that use the context that a word 107 

appears in large language databases such as Wikipedia and news archives to define how that 108 

word relates to other words (Lenci 2018). In a distributional semantics model, any pair of words 109 

that appear in the database has a corresponding relatedness value, which provides a measure of 110 

relative strength of relatedness (a piano would be more related to violin than to a spoon). By 111 

using a continuous measure, studies based on distributional semantics models can more 112 

effectively represent the continuum of relatedness as human observers understand it and how that 113 
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more complex representations of semantics influences human behavior. In one application of this 114 

definition, values from distributional semantic models have been shown to predict eye 115 

movements (Hwang, Wang, and Pomplun 2011; Hayes and Henderson 2021), suggesting that 116 

values derived from corpora do reflect human behavior.  117 

However, despite the shown relationship between the corpora and behavior, the derived 118 

relationships extracted from how words describing that stimuli are used in writing might not be 119 

the most sensitive measure. The model is based on words representing sensory experiences, 120 

rather than human judgements about the sensory experience of the stimuli. Particularly in 121 

multisensory studies, it is possible that the judgement of semantic similarity for two items will 122 

depend on what sensory modality each item is being experienced through. Mixed results in direct 123 

comparisons of corpora-based semantic relatedness value and human ratings provide further 124 

evidence for the possibility sensory experience shapes semantic similarity. Algorithm judgments 125 

and human judgments are correlated (Richie, Zou, and Bhatia 2019), but distributional semantic 126 

models systematically fail to capture certain elements of how human raters understand semantics 127 

(Nematzadeh, Meylan, and Griffiths 2017; Bhatia, Richie, and Zou 2019). For example, human 128 

raters produce systematic asymmetric judgements, so object A will be judged as similar to object 129 

B, but object B will not be judged as similar to object A (Nematzadeh, Meylan, and Griffiths 130 

2017). Distributional semantics models are incapable of providing different relatedness 131 

depending on the directionality; the relatedness values are always symmetrical. Additionally, 132 

distributional semantic models are also largely constrained to similarity relationships in nouns 133 

and struggle with position in a hierarchy (hypernyms), opposites (antonyms), and verbs. The 134 

models also cannot account for any differences between stimuli of different sensory modalities. 135 

Some models have incorporated visual information (Bruni, Tran, and Baroni 2014; Lazaridou, 136 
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Nghia The Pham, and Baroni 2015) or auditory information (Lopopolo and van Miltenburg 137 

2015), but even sensory-grounded models are limited to a single sensory modality rather than the 138 

multisensory world humans experience.   139 

To better understand the role of semantics in multisensory contexts, we identified the 140 

need for constructing a database of visual pictures and sounds along with a set of corresponding 141 

semantic relatedness values that are recorded from human observers. Audiovisual stimulus sets 142 

already exist, such as the Multimodal Stimulus Set (Schneider, Engel, and Debener 2008), but do 143 

not include corresponding semantic relatedness values. Similarly, semantic ratings databases 144 

exist, but they rely exclusively on image pairs (as in Jiang, Sanders, and Cowell 2022) or word 145 

pairs (as in Landrigan and Mirman 2016). Here, we developed such a database for a naturalistic 146 

audiovisual stimulus set, providing a measure of semantic relatedness derived from human 147 

judgements for every possible item pairing within each of three categories. The values reflect the 148 

continuum of semantic relatedness human observers understand by providing a quantified value 149 

for each pairing, rather than a binary decision of related or not related. We share this database of 150 

pictures and images, along with corresponding semantic relatedness values, statistics, and larger 151 

versions of the figures in an Open Science Framework (available at osf.io/v9rgy/). 152 

 153 

Methods 154 

Participants: In Experiment 1 (audiovisual judgments), we analyzed judgments from 140 155 

participants. An additional 19 were excluded due to low accuracy (<70% on catch matched 156 

trials). Forty-three were recruited from Amazon’s Mechanical Turk service and 97 were 157 

recruited from the George Washington University participant pool. In Experiment 2 (word 158 

judgments), we analyzed judgments from a separate group of 140 participants. An additional 37 159 
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were excluded due to low accuracy (<70% on matched trials). Eleven were recruited from 160 

Amazon’s Mechanical Turk service, and 129 were recruited from the George Washington 161 

University participant pool. The Amazon Mechanical Turk participants were US-based adults, 162 

expected to have similar demographics to previous studies of US mTurk workers (55% female; 163 

50% under 33) (Difallah, Filatova, and Ipeirotis 2018). George Washington University 164 

participant pool is a typical sample of American undergraduate students, with similar 165 

demographics to the overall George Washington undergraduate population (62% female; 50% 166 

under 20). All participants were compensated financially or with course credit. All participants 167 

gave informed consent and the study was approved by the Institutional Review Board of George 168 

Washington University.  169 

Power analysis: A traditional power analysis to determine sample size is not possible 170 

because the goal is to characterize the perceived relationship between stimuli, rather than test a 171 

hypothesis. In order to determine sample size, we calculated how many raters would be 172 

necessary in order to obtain the 43200 total ratings (20 ratings for each of 2160 stimuli trios) 173 

without fatiguing raters with an overly long experimental time.   174 

Selection of stimuli: A total of 30 images and 30 corresponding sounds were selected for 175 

the stimulus set, split evenly between three stimulus categories (animals, instruments, and 176 

household items) with 10 images and 10 corresponding sounds in each category. The categories 177 

were selected to be fairly broad and allow for a wide range of semantic relatedness. The items 178 

were selected to be recognizable both as an image and a sound. Since audiovisual matching 179 

performance has been shown to depend on exemplars (Edmiston and Lupyan 2015), exemplars 180 

for each item were selected to correspond between the sound and image. Since a recording from 181 

an acoustic guitar was selected as the guitar sound, a picture of an acoustic guitar was selected as 182 
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the guitar image.  However, all images were shown in a “static” position to avoid showing hands 183 

for items operated by people (e.g., there was not a hand shown strumming the guitar). Items and 184 

exemplars were selected to be as familiar to as broad an audience as possible. For example, we 185 

avoided items like a seagull, that may be much more familiar to a participant that grew up on a 186 

coast, or an ambulance, where the sound of a siren differs from city to city.   187 

Images were selected from the THINGS Database, a set of naturalistic images (Hebart et 188 

al. 2019). Among the exemplars for each item, images were selected to be clearly visible, 189 

recognizable, and did not have other objects in view or people interacting with the object. 190 

Sounds were collected from online databases of freely available sounds and were trimmed to 1 191 

second and normalized for loudness in Audacity (Audacity Team, 2021). To ensure the sounds 192 

were readily recognizable, pilot testing was conducted. Sixteen participants listened to all 193 

exemplars of the sound items on the initial list, provided a description of it, and only sounds 194 

where the pilot participants provided the same description (e.g., “cat”, “doorbell”) were selected 195 

for the main experiment.  196 

Task design: In Experiment 1 (audiovisual), participants completed a two-alternative 197 

forced choice task determining how similar visual images and auditory sounds were to one 198 

another (Fig.  1a). A forced choice task was selected over a direct rating task because of concerns 199 

participants would not use the entire rating scale and simply classify pairs as related or unrelated, 200 

as we had observed in pilots of other experiments in the lab.  Before the trials started, 201 

participants completed a familiarization phase in which each image was presented with a 202 

simultaneously presented corresponding sound. The familiarization phase ensured that 203 

participants recognized each sound and each image. Participants were instructed to always select 204 

the matched pairs shown in the familiarization stage when they appeared as a stimulus and 205 
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option (e.g., a dog and a bark). Matched trials served as catch trials, ensuring that participants 206 

were paying attention and making actual judgments about the stimuli they were hearing and 207 

seeing. Catch trials were included given that it was not possible to calculate a “correct” answer 208 

and evaluate accuracy for the unmatched semantic judgment trials.  Participants with low 209 

accuracy (<70%) on match trials were excluded from further analyses. 210 

 211 

Fig 1. (a). Sample trials for audiovisual judgement task. Participants pressed gray play buttons to play auditory 212 
stimuli. After playing each sound option, responses were made by choosing either the left or right arrow associated 213 
with the corresponding sound. (b). Sample trial for word judgement task. Either left or right arrow associated with 214 
the corresponding word was chosen as a response. 215 

 216 

On a “visual” trial, a prompt image was shown (e.g., an image of a cat) along with two 217 

placeholders for sounds. Participants clicked on each of the two sounds, and after listening to 218 

both, selected which of two sounds was most similar to the prompt image. On an “auditory” trial, 219 

a prompt sound was played and the participants selected which of two images was most similar 220 

a. Audiovisual semantic judgment task

<- left right -> 

PLAY PROMPT

Which option is most similar to the prompt?

<- left right -> 

PLAY OPTION 1

Which option is most similar to the prompt?

PLAY OPTION 2

<- left right -> 

PLAY PROMPT

Which option is most similar to the prompt?

Time

b. Word semantic judgment task

<- left right -> 

Which option is most similar to the prompt?

xylophone

piano drums

Time

<- left right -> 

Which option is most similar to the prompt?

cat

frog dog

<- left right -> 

Which option is most similar to the prompt?

phone

basketball camera

. . .

. . .



Running head: AUDIOVISUAL SEMANTIC RELATEDNESS DATABASE 

to the prompt sound.  Within a trial, the prompt and both options were selected from the same 221 

category (animals, instruments, household items). Categories were not presented in separate 222 

blocks of trials, but rather trials from different categories were presented randomly within the 223 

session. The trials were self-paced. Participants clicked a button to start the sound and could 224 

listen to the sounds multiple times if they chose to, but could not progress if they did not listen to 225 

each sound at least once. The next trial started once participants selected one of the options via a 226 

key press. In Experiment 2, a similar two-alternative forced choice task was used, with the 227 

difference that the images and sounds were replaced with written words (Fig. 2b). On each trial, 228 

a prompt word was presented and the participants selected which of two option words were most 229 

similar to the prompt word.  230 

Randomization and counterbalancing: Due to the large number of comparisons, it was 231 

not possible for a single participant to provide a judgement for every possible trio combination of 232 

prompt and two options. There were 1080 trio combinations and every trio combination was 233 

judged 20 times with a visual prompt and 20 times for an auditory prompt, for a total of 43200 234 

judgements on the audiovisual task. In the word task, each trio of words was judged 20 times for 235 

a total of 21600 trials. There are half as many trials in the word task because each trio was only 236 

presented in one modality (word) rather than two (auditory, visual). Every participant provided 237 

judgments for approximately 1/7th of the trio combinations and saw every pair of prompt and 238 

option at least once. Including match trials, participants in the audiovisual task completed either 239 

317 or 318 trials in audiovisual and participants in the word task completed 158 or 159 trials.  240 

Data analysis: The likelihood of picking an option for a given prompt was calculated for 241 

each pairing for each participant. The likelihood is the percent of trials that option was picked 242 

given a specific prompt, independent of what the second option on that particular trial. To 243 
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understand the variation between trials where the prompt was visual and trials where the prompt 244 

was auditory, we conducted a series of independent t-tests where individual participant 245 

likelihood values for visual prompt trials and auditory prompt trials was compared (bottom 246 

panels in Fig. 3-5). Semantic relatedness values that were averaged over modality, but not over 247 

prompt direction, were calculated in order to get to compute semantic relatedness for each 248 

possible prompt and option combination (Fig. 3a, 4a, 5a).  249 

To understand whether a specific modality pairing (auditory prompt/visual option or 250 

visual prompt/auditory option) yielded more closely related relationships, we subtracted the raw 251 

values between the trials (visual – auditory) to identify the pairs where relatedness differed by 252 

modality as well as the directionality of that difference, (Fig. 3b, 4b, 5b). Positive values indicate 253 

that the pair was judged more similar when the prompt (on the y-axis) was visual and the option 254 

(on the x-axis) was auditory. To understand any variation based on whether the stimulus was a 255 

prompt or an option, we again conducted a series of independent t-tests where individual 256 

participant likelihood values for each prompt direction were compared. The values for each 257 

prompt direction were then subtracted to create the difference by prompt direction (Fig. 6b, 7b, 258 

8b). The initial values for each option and pair were ultimately averaged over participant, 259 

modality, and prompt direction to get the final semantic relatedness values (Fig. 6a, 7a, 8a). A 260 

similar analysis pipeline was used to derive likelihood values for the word task (Fig. 9b, 9e, 9h), 261 

with the exception that there were no differences by modality since all words were presented in 262 

the same modality, as text.  263 

Text corpora values: The text corpora values were extracted using the Gensim library for 264 

Python and a pre-trained model, “fasttext-wiki-news-subwords-300” (details of model available 265 

in (Mikolov et al. 2017). This model was trained on a total of 650 billion words including 266 
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Wikipedia from June 2017, two news corpuses (statmt.org news, UMBC news), and corpuses 267 

derived from a wide range of websites (Gigagword, Common Crawl). The words were identical 268 

to those used in the word task, with the exception of “cuckoo clock” which was substituted for 269 

clock because cuckoo clock as not available. 270 

 271 

Results and Discussion 272 

 273 

Fig 2 Measure of semantic relatedness based on human ratings of similarity between images and sounds for (a) 274 
animals, (b) instruments, and (c) audiovisual items. Values are derived from the likelihood a participant would 275 
judge that pair as more closely related. Higher values and darker colors indicate more relatedness (e.g., an exact 276 
match like a cat and a meow would have a value of 1). 277 

We observed a wide range in semantic relatedness for both the audiovisual task (Experiment 1) 278 

and word task (Experiment 2), which reflects that some item pairs were judged to be more 279 

closely related to one another than other item pairs. Since this database is intended to be used for 280 

studies of differences in semantic relatedness, it is essential to have pairs with a low level of 281 

relatedness and pairs with a high level of relatedness. The wide range in semantic relatedness 282 

values also suggests that participants were making judgements based on a shared understanding 283 

of semantic relatedness. If each individual’s semantic judgements were highly idiosyncratic or 284 

participants were answering randomly, each pairing would have a value around 0.5 because 285 

neither option would be more likely to be selected than any other option. Instead, in the 286 

audiovisual task, semantic relatedness values ranged from 0.18 to 0.81 for animals (Fig.  3a), 287 
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0.16 to 0.83 for instruments (Fig. 4a), and 0.29 to 0.88 for household items (Fig. 5a). In the word 288 

task, semantic relatedness ranged from 0.18 to 0.94 for animals (Fig. 9b), 0.23 to 0.82 for 289 

instruments (Fig. 9e), and 0.21 to 0.89 for household items (Fig. 9h). The range of the values 290 

indicates that some items were considered more closely related to one another than other items 291 

and that there was at least some amount of consensus between participants about which those 292 

were. In an analysis of how many participants made the same choice for each stimulus trio, we 293 

found there was a high level of consensus for some trios and a lower level for others, as would be 294 

expected for stimuli that vary considerably in semantic relatedness. On average, 70% of 295 

participants made the same choice for a given trio, ranging between 97% agreement on some trio 296 

and 50% agreement on other trios (participants were as likely to pick one trio as another). 297 

Examining the most strongly and most weakly related items can also provide some insight into 298 

what factors participants used to make semantic judgements. Items likely to occur in the same 299 

location (e.g., cows and pigs both often are on farms; audiovisual relatedness = 0.81) seem to be 300 

more strongly related than items likely to occur in different locations (e.g., pigs are on farms 301 

while songbirds are in forests, audiovisual relatedness=0.18). Similarly, items with shared 302 

materials or components (guitars and harps both have strings; audiovisual relatedness=0.82) 303 

seem to be more strongly related than items without similar materials (basketballs and phones, 304 

audiovisual relatedness=0.27). However, since these observations are post-hoc interpretations, 305 

future studies would be necessary to determine the relative contribution of different components 306 

of semantics to the overall semantic understanding.  307 

Differences due to modality and prompt direction: In Experiment 1, pairs were presented 308 

with the prompt as either a visual image or an auditory sound. We calculated differences between 309 

averages when item A was shown as a prompt compared to when item B was shown as a prompt 310 
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(Fig 3b, 4b, 5b).  Our results show that while for most pairs the relatedness values did not differ 311 

as a function of prompt modality, for other pairs, the relatedness values were significantly 312 

different for visual prompt and auditory prompt. The modality differences provide a cautionary 313 

observation pointing to an important asymmetry that exists for some types of relatedness that is 314 

dependent on the modality of the primary source. For example, when hearing a guitar, 315 

participants might be more likely to think of other string instruments that create a similar sound, 316 

but when seeing a guitar, participants might think of other instruments made of wood. This 317 

interpretation, of course, is of a post hoc type but is an example of one possible explanation for 318 

the modality asymmetry.  319 

 320 

Fig 3. (a). Semantic relatedness value for animal items averaged across visual prompt and auditory prompt trials. 321 
Values are derived from the likelihood a participant would judge that pair as more closely related. Higher values 322 
and darker colors indicate more relatedness, such that an exact match would have a value of 1 if shown. Prompts 323 
are shown in the column and options are shown in the rows. (b). Difference in semantic relatedness (auditory 324 
prompt subtracted from visual prompt). Positive numbers and red shading indicate the pair was judged more 325 
related when the image was the prompt. Negative numbers and blue shading indicate that the pair was judged more 326 
related when the sound was the prompt. Prompts are shown in the column and options are shown in the rows 327 

 328 
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 329 

Fig 4. (a). Semantic relatedness value for instrument items averaged across visual prompt and auditory prompt 330 
trials. Values are derived from the likelihood a participant would judge that pair as more closely related. Higher 331 
values and darker colors indicate more relatedness, such that an exact match would have a value of 1 if shown. 332 
Prompts are shown in the column and options are shown in the rows. (b). Difference in semantic relatedness 333 
(auditory prompt subtracted from visual prompt). Positive numbers and red shading indicate the pair was judged 334 
more related when the image was the prompt. Negative numbers and blue shading indicate that the pair was judged 335 
more related when the sound was the prompt. Prompts are shown in the column and options are shown in the rows 336 

 337 

Fig 5 (a). Semantic relatedness value for household items averaged across visual prompt and auditory prompt 338 
trials. Values are derived from the likelihood a participant would judge that pair as more closely related. Higher 339 
values and darker colors indicate more relatedness, such that an exact match would have a value of 1 if shown. 340 
Prompts are shown in the column and options are shown in the rows. (b). Difference in semantic relatedness 341 
(auditory prompt subtracted from visual prompt). Positive numbers and red shading indicate the pair was judged 342 
more related when the image was the prompt. Negative numbers and blue shading indicate that the pair was judged 343 
more related when the sound was the prompt. Prompts are shown in the column and options are shown in the rows 344 

Independent of modality, pairs could be presented with either item as the prompt (cat as a 345 

prompt with dog as an option vs. dog as a prompt with cat as an option). We calculated 346 

differences between averages when item A was shown as a prompt compared to when item B 347 
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was shown as a prompt (Fig 6b, 7b, 8b). We again found that for certain pairs, there is a 348 

difference that depends on which item is the prompt and which is the option. For example, a flute 349 

and a harp are more related when a flute is the prompt (0.69) than when a harp is the prompt 350 

(0.52; Fig. 7b). These asymmetries depending on prompt directions could reflect differences in 351 

what features of the item is prioritized. For example, one possible interpretation is that when 352 

flute is the prompt, participants are more likely to focus on the feature “makes a high-pitched 353 

sound” which would make it more similar to a harp, while when harp is the prompt, participants 354 

are more likely to focus on the feature “has strings” which would make it less related to the flute.  355 

 356 

Figure 6. (a). Semantic relatedness values for animal items averaged across visual prompt and auditory prompt 357 
trials. Values are derived from the likelihood a participant would judge that pair as more closely related. Higher 358 
values and darker colors indicate more relatedness. (b). Difference in semantic relatedness by prompt direction.  359 
Positive numbers and red shading indicate the pair was judged more related when the item in the column was the 360 
prompt. Negative numbers and blue shading indicate that the pair was judged more related when the item in the row 361 
was the prompt. 362 

 363 

a. Semantic relatedness, 
averaged by modality & prompt direction

b. Di!erence in semantic relatedness,
between prompt directions

Se
m

an
tic

 re
la

te
dn

es
s

D
i!

er
en

ce
,

 b
y 

pr
om

pt
 d

ire
ct

io
n



Running head: AUDIOVISUAL SEMANTIC RELATEDNESS DATABASE 

 364 

Figure 7. (a). Semantic relatedness values for instrument items averaged across visual prompt and auditory prompt 365 
trials. Values are derived from the likelihood a participant would judge that pair as more closely related. Higher 366 
values and darker colors indicate more relatedness. (b). Difference in semantic relatedness by prompt direction.  367 
Positive numbers and red shading indicate the pair was judged more related when the item in the column was the 368 
prompt. Negative numbers and blue shading indicate that the pair was judged more related when the item in the row 369 
was the prompt.370 

 371 

Figure 8. (a). Semantic relatedness values for household items averaged across visual prompt and auditory prompt 372 
trials. Values are derived from the likelihood a participant would judge that pair as more closely related. Higher 373 
values and darker colors indicate more relatedness. (b). Difference in semantic relatedness by prompt direction.  374 
Positive numbers and red shading indicate the pair was judged more related when the item in the column was the 375 
prompt. Negative numbers and blue shading indicate that the pair was judged more related when the item in the row 376 
was the prompt. 377 

Regardless of the underlying reason for asymmetries in semantic judgement by prompt 378 

modality and direction, which cannot be conclusively interpreted without further studies, the 379 
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differences by prompt modality and prompt direction suggests that researchers will need to 380 

carefully consider experimental design and determine whether their question of interest involves 381 

an explicit prompt and option where prompt modality and direction needs to be considered. If 382 

there is not a clear prompt directionality, the averaged value should be an effective estimate of 383 

semantic relatedness for items.  384 

Comparison between audiovisual, word, and text corpora: 385 

 386 

Figure 9. Semantic relatedness values averaged over prompt modality and direction for animal items on audiovisual 387 
task (a), animal items on words task (b), animal items in text corpora analysis (c); instrument items on audiovisual 388 
task (d), instrument items on words task I, instrument items on text corpora analysis (f); household items on 389 
audiovisual task (g), household items on words task (h), household items in text corpora analysis (i). Darker colors 390 
indicate a greater degree of relatedness.    391 

The overall patterns for audiovisual, word, and text corpora were similar. Items that were 392 

related during the audiovisual task were also generally related for the word task and text corpora 393 
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(Fig. 9). The overall similarity between our tasks and the broader word corpus confirms that the 394 

similarity ratings derived from our tasks are broadly consistent with previous studies that have 395 

used text corpora. However, there was a much higher degree of variability in similarity ratings in 396 

the audiovisual and word tasks than in the text corpora. For the animals category, the values on 397 

the audiovisual task ranged 0.18-0.81, word task ranged 0.18-0.94, and the text corpora ranged 398 

0.3-0.75. For the instruments category, the values on the audiovisual task ranged 0.16-0.83, word 399 

task ranged 0.23-0.82, and text corpora 0.3-0.8. For the household items category, the values on 400 

the audiovisual task ranged 0.27-0.88, word task ranged 0.21-0.89, and text corpora 0.2-0.57. 401 

The smaller amount of variance for the text corpora is notable because it differs from both of the 402 

human judgements tasks, suggesting that the text corpora may not effectively capture real human 403 

understanding of semantic relationships. Alternatively, the low variance in text corpora might be 404 

a result of the much larger semantic model that the pairings are embedded in. A pair might be the 405 

most similar to items in the stimulus set, but each item is likely more closely related to other 406 

items in the larger text corpora but not in the stimulus set, reducing the semantic relatedness 407 

value relative to the more constrain stimulus set. Since the purpose of this database is to 408 

characterize differences in responses to the stimulus set that depend on semantic relatedness, the 409 

higher amount of variance in the audiovisual and word tasks allows for a better characterization 410 

of the range within the actual stimulus set participants are viewing. Ultimately, the measure of 411 

semantic relatedness derived from the audiovisual task provides the most useful measure of 412 

semantic relatedness for studies based on this stimulus set. 413 

Semantic information is important to understanding human behavior in real world 414 

environments, but studies of the influence of semantic information on behavior have been 415 

stymied by the difficulty of quantifying semantic relatedness. Past studies have used a binary 416 
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classification, defining semantics as category (Moores, Laiti, and Chelazzi 2003; Buchanan et al. 417 

2006; Malcolm, Rattinger, and Shomstein 2016) or semantics as source (Iordanescu et al. 2008; 418 

Kvasova, Garcia-Vernet, and Soto-Faraco 2019; Heikkilä et al. 2015; Duarte, Ghetti, and Geng 419 

2021; Moran et al. 2013), or use algorithms to derive values based on text corpora rather than 420 

human judgments (Hayes and Henderson 2021). Human raters make more nuanced continuous 421 

judgments about semantic relatedness that have been shown to vary in key ways from both the 422 

categorical definitions and the continuous values produced by algorithms. Assuming that human 423 

behavior is based on the more subtle judgments human raters produce, the current methods 424 

present an issue for fine-grained questions of semantic relatedness and for multisensory studies 425 

in particular. A definition of semantic relatedness derived without actual judging sensory 426 

information may lose key information related to how that item is processed by a specific sensory 427 

system. Similarly, classifications of semantic related or not semantically related lose fine-grained 428 

information about human perception by simplifying the semantic relationship.  The algorithmic 429 

methods fail to fully capture human judgments, as previously shown in the literature (Bhatia, 430 

Richie, and Zou 2019) and replicated here in our analyses comparing algorithm derived values to 431 

the values derived from the participant judgment data we collected (Fig. 9). Our semantic 432 

relatedness database, made available for research used, avoids these problems by providing 433 

semantic relatedness values based on human judgements for every possible pair in an audiovisual 434 

stimulus set. While it would be ideal to further validate these results by replicating an existing 435 

study showing a continuous relationship based on audiovisual semantics, it is not possible since 436 

the question of the role of continuous audiovisual understandings of semantics still needs to be 437 

explored in future studies.  438 
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Potential applications. This database is intended to be broadly useful for researchers in a 439 

number of fields interested in semantic information processing in audiovisual contexts. 440 

Psychologists can use the provided database to investigate more fine-grained differences in 441 

semantic relatedness across sensory modalities. Previously observed effects of semantics on 442 

attention can be studied in further detail to understand if they rely on category or causality 443 

specifically or a more generalized judgement of similarity that may be informed by multiple 444 

factors. It additionally could serve as a better baseline for researchers developing distributed 445 

semantics models and algorithms, particularly for those tied to perceptual experience. Comparing 446 

performance to real human judgments will better test how well they represent actual human 447 

experience of semantics.  448 

Generalizability and future directions. While the database of related sounds and images 449 

provided here offers the needed quantification of semantic relationships between sounds and 450 

images, quantifications are derived on a finite set of images and sounds. The database that we 451 

provide here is based on relatively small number of stimuli. This stimulus set is large enough to 452 

allow for conclusions about the relative influence of semantic relatedness. Semantic information 453 

is highly dependent on context, with studies showing out-of-context items are less well 454 

remembered (Almadori et al. 2021; Santangelo et al. 2015).   Due to contextual influences, two 455 

objects within a category may seem closely related when compared to objects from another 456 

category, but more distantly related when compared within a category), meaning it is impossible 457 

to provide an absolute relationship of similarity between two given stimuli.  458 

Similarly, different exemplars may differ slightly in semantic relatedness, with perhaps a 459 

small dog being seen as more similar to a cat than a large dog. It is important to carefully 460 

consider the relevant experimental paradigm when using this database. Certain questions and 461 
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experimental designs may require a larger stimulus set with more categories or more exemplars 462 

for each item, but for many questions about the role of semantics in attention, memory, and 463 

perception, the relative relatedness between two pairs of objects will be sufficient. For example, 464 

it is possible to make conclusions about the role of semantics if a more semantically related 465 

distractor has a different behavior effect on the target than a less semantically related distractor, 466 

even if the exact semantic relatedness values are not meaningful beyond the stimulus set. In the 467 

future, the methods described here could be used to expand the database further by measuring 468 

semantic relatedness within modality (visual-visual and auditory-auditory) and between items in 469 

different categories. Certain household items may be semantically related to certain animals or 470 

instruments based on the purpose of the object or the scenes that object is likely to occur in. 471 

Cross-category values would allow researchers to tease out the role of semantics in general from 472 

the contribution of category or shared location.  473 

The database could additionally be expanded in the future by examining differences in 474 

semantic relatedness judgements by demographic group. We sought to select items that would be 475 

familiar to many people, but the degree of familiarity or particular associations may differ if used 476 

in an older population or from outside of the United States. This generalizability is a problem 477 

universal to studies of semantics: since semantic understanding is shaped by culture, it is 478 

impossible to create a universal stimulus set and semantic relatedness values fully generalizable 479 

across all participant populations. Additionally, all of our participants were US based because we 480 

specifically sample from US-based mTurk workers and an US university, who could all share 481 

semantic understandings that the participants in other countries do not. However, since prior 482 

studies have relied on researchers’ intuition about category or text corpora that have no explicit 483 

semantic judgements, even a database that is not fully generalizable like this can provide a more 484 
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robust semantic measure than existing methods. In the future, the same methodology could easily 485 

be used to collect semantic judgements specific to a given demographic group or in cross-486 

cultural comparison studies.  487 

Ultimately, we hope that this database will allow for more robust studies and a better 488 

understanding of the role of semantics in human behavior.  489 
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