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Structure and function of the soil microbiome
underlying N2O emissions from global wetlands
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Wetland soils are the greatest source of nitrous oxide (N2O), a critical greenhouse gas and

ozone depleter released by microbes. Yet, microbial players and processes underlying the

N2O emissions from wetland soils are poorly understood. Using in situ N2O measurements

and by determining the structure and potential functional of microbial communities in 645

wetland soil samples globally, we examined the potential role of archaea, bacteria, and fungi

in nitrogen (N) cycling and N2O emissions. We show that N2O emissions are higher in

drained and warm wetland soils, and are correlated with functional diversity of microbes. We

further provide evidence that despite their much lower abundance compared to bacteria,

nitrifying archaeal abundance is a key factor explaining N2O emissions from wetland soils

globally. Our data suggest that ongoing global warming and intensifying environmental

change may boost archaeal nitrifiers, collectively transforming wetland soils to a greater

source of N2O.
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Despite covering only 8% of the terrestrial Earth surface,
wetland soils (including gley and peat soils) store one of the
largest organic carbon (C) stocks. Microbial degradation of

C and nitrogen (N) stocks can lead to substantial releases of
greenhouse gases (GHGs), including nitrous oxide (N2O). N2O is a
potent GHG with a global warming potential 265 times that of
CO2. N2O is the most important ozone-depleting substance1. This
is particularly alarming as microbial sources of N2O may shift with
environmental changes. Wetland soils are increasingly subject to
land-use changes such as afforestation and transformation to
agricultural land, both preceded by drainage, with long-term con-
sequences for N2O emissions2. To reduce N2O emissions from
wetland soils, we need a thorough understanding of biogeochemical
pathways and critical environmental parameters, which shape the
microbial activities underpinning the N cycle and N2O dynamics.

Microbial processes such as classical denitrification, nitrifier
denitrification, and dissimilatory nitrate reduction to ammonia
(DNRA) all contribute to N2O production mainly in anoxic
conditions3. By contrast, ammonia oxidation, which is the first
step in nitrification, is an aerobic process performed by three
groups of ammonia oxidizing microorganisms: canonical
ammonia oxidizing bacteria (AOB), ammonia oxidizing archaea
(AOA), and complete ammonia oxidizers (comammox Nitros-
pira). AOA not only directly produce N2O, but also provide
substrate for denitrification4. Yet, little is known about the
environmental conditions that favor each process and thereby
N2O production and consumption. AOA may play a pivotal,
underexplored role in fueling denitrification and facilitating ter-
restrial N2O emissions5 in many soil environments.

Here we analyzed 645 wetland soils (Fig. 1a; Supplementary
Data 1) to determine how the structure and function of microbial
communities contribute to N2O emissions. Our unique dataset
integrated global-scale analysis of functional metagenomes (to
estimate relative abundance of N-cycle genes independently of
PCR biases), multi-group metabarcoding (bacterial 16S, archaeal
16S, fungal 18S-ITS rRNA genes), absolute quantification of
N-cycle gene abundances, as well as in situ N2O flux and ex situ
potential N2 production analyses. We further leveraged available
genomics data to understand genetic mechanisms underlying
N2O production. We hypothesized that the high N2O production
in global wetland soils is mainly related to the diversity and
abundance of nitrifying microbes, and that archaeal nitrifiers,
both in terms of absolute and relative abundance to denitrifiers,
are the most robust and accurate explanatory factor of N2O
emissions from wetland soils globally.

Results and discussion
Global patterns of N2O fluxes. Our analysis indicated that war-
mer soils and more intensive land use progressively may enhance
N2O release from wetland soils. N2O emissions showed exponen-
tially increasing relationships with temperature of the warmest
month (Supplementary Fig. 1). In addition, the N2O emissions
were strongly explained by land-use type (r2adj= 0.364, p < 0.001),
with greatest values in the bare soils and lowest in the forest soils
(Supplementary Fig. 2). Assessment of environmental determinants
of N2O fluxes revealed that N2O emissions decline towards higher
latitudes (Fig. 1, Supplementary Fig. 1). Contrary to the N2O
emissions, potential N2 production peaked in the temperate climate
in negative correlation with land-use intensity (Supplementary
Fig. 3). In agreement with our findings, a recent local warming
experiment6 and global models2 predict an increase in N2O pro-
duction in response to warming across various ecosystems.

Relationships of global N2O fluxes to microbial diversity and
taxa. Our analyses of microbial communities of wetland soils

revealed that, like the increasing N2O emissions towards the
equator (Fig. 1b), archaeal diversity significantly increased towards
low latitudes (Supplementary Fig. 4a). By contrast, mid-latitude
wetland soils harbored the highest bacterial diversity, whereas
fungal diversity showed no significant relationships with latitude
but peaked at mean annual temperature of 10–15 °C (Supple-
mentary Fig. 4). Across all associations among archaea, bacteria,
and fungi of the wetland soils, climate and soil variables had the
greatest impact on microbial diversity (Supplementary Fig. 5).
General linear models combined with machine learning techniques
indicated that archaeal diversity was best explained by soil C/N
ratio, which agrees with a previous study on mineral soils7. Soil pH
was the primary determinant of bacterial diversity (Supplementary
Fig. 5) and relative abundance of the most common bacterial phyla
(Fig. 2; Supplementary Fig. 6), whereas fungal diversity showed a
weak relationship with environmental factors (Supplementary
Fig. 5). These results corroborate those from mineral soils, where
bacteria show stronger environmental associations than fungi and
warm temperate regions harbor the highest bacterial diversity8. In
addition, soil pH constitutes the main determinant of bacterial
diversity in the mineral soil microbiome8,9.

To determine the main microbial groups associated with N2O
emission in global wetland soils, we related N2O fluxes with the
relative abundance of various microbial lineages based on 16S and
18S rRNA gene metabarcoding. The microbial phyla Proteobac-
teria, Acidobacteriota, and Chloroflexi are the most abundant
globally (Fig. 2). However, these groups were not significantly
associated with N2O fluxes (p > 0.05), whereas the relative
abundance of AOA from the phylum Thaumarchaeota emerged
as the most strongly correlated group with N2O emission (Fig. 3).
This is in agreement with a previous study on arctic peat soils,
where the contribution of ammonia oxidizing archaea to N2O flux
was confirmed by group-specific ammonia oxidation inhibitors as
well as molecular approaches10. A previous study also reports a
strong association between the thaumarchaeal 16S rRNA and
amoA genes in environmental samples11. We also found that
among all prokaryotic and eukaryotes genera uncovered in
metagenomics data, the Soil Crenarchaeotic Group (SCG) showed
the strongest positive correlation with N2O emissions (Supple-
mentary Data 2). Furthermore, of the total 620 archaeal OTUs
uncovered by a long-read sequencing technology (PacBio)
occurring in >5 sites, 11 OTUs (including 5 in the order
Nitrososphaerales, which are confirmed ammonia oxidizers;
Supplementary Data 3) showed positive correlations (r > 0.35,
q < 0.2) with N2O emission. Of these, N2O fluxes showed the
strongest correlation with the relative abundance of OTUs most
closely associated with ‘Candidatus Nitrosotenuis chungbukensis
MY2’ (r= 0.488, p < 0.001) and ‘Candidatus Nitrosocosmicus
oleophilus MY3’ (Spearman’s rank‐correlation r= 0.477,
p < 0.001). Both taxa produce N2O in pure culture12. In agreement
with our study, a previous study found that in arctic peatlands
N2O emission was driven by only two OTUs of Thaumarchaeota,
one of which was closely affiliated to ‘Ca. N. oleophilus MY3’10.
Ammonia oxidizing archaea play a key role in nitrification in
unfertilized soils and soils with low ammonia concentrations13. In
addition, in unfertilized soils, nitrite and nitrate may be
predominantly made available for denitrifiers through nitrifica-
tion, making nitrification a limiting factor for denitrification.

Metagenomic analysis of pathways underlying global N2O
fluxes. To investigate functional pathways contributing to N2O
emission, we examined clusters of orthologous gene groups (OGs)
using metagenomes (see the “Methods” section). Among all
potential key genes involved in N2O emission from archaea, the
relative abundance of the archaeal amoA (ENOG411114F) showed
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the strongest correlation with N2O (r= 0.625, p < 0.001; Fig. 3),
followed by an OG with unknown functions (Supplementary
Data 4). To further evaluate the genetic basis facilitating N2O
emission, we compared the nucleotide sequences of the archaeal
OTUs correlating with N2O emission with those showing no such
correlation. Using BlastN searches of 16S rRNA gene reads against
complete archaeal genomes, we located the closest genome-
sequenced relatives and obtained the corresponding genomic
functional profiles. Based on these, we found that the aerobic
ammonia oxidation pathway was restricted to four archaeal genera
belonging to Thaumarchaeota—Nitrososphaera, Nitrosocosmicus,
Nitrosotenuis, and Nitrosarchaeum (Supplementary Data 5). A
strong association between the archaeal amoA gene abundance
and N2O emission occurred across both natural and disturbed
sites. Soil nitrate (NO3

−) content was also strongly correlated with
the relative abundance of archaeal amoA (r= 0.551, p < 0.001).
Comparative genomics analysis further revealed that archaea were
more enriched in aerobic ammonia-oxidizing pathways compared

with bacteria (5.3% vs 0.3%; Supplementary Data 6–8). Overall,
our results support the potential key role of Thaumarchaeota in
N2O emissions from wetland soils globally.

While the pathways and enzymes involved in thaumarchaeal
N2O production are not fully understood, it has been suggested
that AOA can produce N2O through both nitrosating hybrid
formation and enzymatic denitrification12,14. Jung and colleagues
proposed that ‘Ca. N. oleophilus MY3’ has a denitrification
capacity using the putative cytochrome P450 NO reductase,
homologs of which are present in other representatives of the
genus Nitrosocosmicus12. However, ammonia oxidizing archaea
lacking these homologs are also able to produce N2O12,14. Further
studies are needed to establish the mechanisms behind thau-
marchaeal N2O production.

Functional genes driving global N2O fluxes. To validate the
observations from the metagenomic analysis and determine
specific microbial genes involved in N2O dynamics, we related
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Fig. 1 Global hotspots of N2O fluxes in relation to archaeal nitrifiers across various land use types. a Distribution of the study sites and their measured
N2O emissions as well as the archaeal-nitrifier/denitrifier ratio (archaeal amoA/(nirK+ nirS)). Typographical symbols (+, ×, or ✱) denote average N2O
fluxes per site, the filled/open round, square, and triangle shapes represent different land-use types, and shape color shows the archaeal-nitrifier/denitrifier
ratio based on the absolute abundance of gene copies determined by qPCR (n= 72 independent sites). b–d Latitudinal gradient of N2O emissions, archaeal
amoA and nir (nirK+ nirS). Error bars represent the standard error (SE) of the means (n= 74 independent sites). The statistical test used was two-sided.
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N2O emissions to the absolute abundance of main genes involved
in the N cycle using quantitative polymerase chain reaction
(qPCR). The abundance of archaeal ammonia monooxygenase
(archaeal amoA; r= 0.458, p < 0.001) and bacterial amoA (bac-
terial amoA; r= 0.313, p < 0.001) had strongest positive correla-
tions with N2O emission (Fig. 4, Supplementary Fig. 7). The
relative increase in archaeal nitrifiers compared to denitrifiers in
lower latitudes coincided with the greater N2O emissions in these
regions (Fig. 1). The absolute archaeal amoA abundance was
slightly higher than the bacterial amoA abundance (qPCR:
F= 6.00, p= 0.015), substantiating the importance of archaea in
nitrification across wetland soils (Supplementary Fig. 8), as pre-
viously reported for grassland and agricultural soils15. Our results
also corroborate a local-scale metatranscriptomics study in
mineral soils16, suggesting that archaea predominate over bacteria
for ammonia oxidation in soils.

Other major genes involved in the N cycle, including those
known to be involved in N2O production, were surprisingly of

limited importance in explaining N2O emission (Fig. 3, Supple-
mentary Fig. 7). The correlation between comammox amoA and
N2O emission was expectedly weak, which may be related to
the apparent adaptation of comammox Nitrospira to low
ammonia or because comammox Nitrospira produce relatively
small quantities of N2O17,18. Furthermore, the absolute abun-
dance of comammox amoA was lower than that of archaeal amoA
(Supplementary Fig. 7). In addition, the abundance of reads
related to anaerobic ammonium oxidation (anammox) and the
nitrite/nitrate-dependent anaerobic methane oxidation (n-damo)
did not correlate with the N2O fluxes. The abundance of nosZ
genes, which encode the nitrous oxide reductase enzyme that
consumes N2O, was positively correlated with N2O emission
(Supplementary Fig. 7). The denitrification genes responsible for
N2O production (nirK and nirS) showed weak or no correlation
with N2O emission (Supplementary Fig. 7). The abundance of nir
genes was strongly correlated with that of nosZ genes (Fig. 4a)
that reduce N2O into inert N2. This consumption may explain

Fig. 2 Environmental predictors of major archaeal, bacterial and fungal phyla (class for Proteobacteria) across the global wetland soils. The relative
abundance data are based on the relative abundance of SSU rRNA genes (normalized by total SSU rRNA abundances per sample) as revealed by shotgun
metagenomics (n= 74 independent sites). Boxes represent 25th–75th percentile of the data distribution with whiskers at 1.5 × the interquartile range and
the middle line representing median. The size of circles corresponds to the partial importance based on Random Forest models (variability% of mean
decrease in accuracy estimated based on out-of-bag-CV); blue and red depict negative and positive Spearman correlations, respectively (n= 74
independent sites). Archaeal and fungal phyla names are indicated in blue and red colour, respectively. The abbreviations are organic matter (OrM), pH
(soil pH), C/N (carbon to nitrogen ratio), Ca (calcium), K(potassium), P (phosphorous), Mg (magnesium), and Von Post grade of decomposition (VPG).
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low N2O emissions from the soils enriched with nir genes.
Potential N2 production, however, was not significantly correlated
with nosZ abundance (Fig. 4a). In addition, the set of genes
associated with denitrification may vary in different species, and
not all denitrifiers possess all genes related to this process19,20.
Soil pH and organic carbon concentration may also affect the
amount of N2O produced from denitrification (Supplementary
Fig. 5). Nevertheless, denitrifiers may be more metabolically
versatile than nitrifiers and use a range of compounds for both

energy and respiration, which is reflected in their weaker
environmental associations (Supplementary Figs. 2, 5, 9). There
have been many previous attempts to correlate denitrification
genes with soil N2O fluxes; whilst some studies have found a good
correlation21, others have not22–25.

Next, we related N2O emissions with the diversity of all major
genes involved in the N cycle (based on their absolute abundances
quantified by qPCR) and found higher N2O emissions with
increasing diversity of N cycle functional genes (Fig. 4c). The

Fig. 3 Archaea and archaeal amoA strongly correlate with N2O across global wetland soils. a Schematic view of nitrogen cycle in soils and the key genes
involved. b Relationship between site mean relative abundance of archaeal amoA and N2O emission (n= 74 independent sites). The relative abundance of
archaeal amoA was determined based on the relative abundance of metagenomics reads assigned to ENOG411114F (extracted from Hellinger transformed
abundance matrix of archaeal OGs). The inset numbers represent a Spearman rank correlation coefficient (r) and corrected p-value for multiple testing
using Benjamini–Hochberg method (q). Error bars represent the standard errors (SE) of the site means. c Partial least-squares regression (PLS regression)
plot showing the relationships among the relative abundances of prokaryotic taxonomic groups (as determined by 16S metabarcoding) and N2O emission
(n= 74 independent sites). Blue lines represent archaeal phyla. The statistical test used was two-sided.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29161-3 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1430 | https://doi.org/10.1038/s41467-022-29161-3 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


greater N2O emissions with increased functional gene diversity
can be related to the functional complementarity of different
N-related processes, in particular denitrification and nitrification,
in producing N2O. This can occur in drained wetland soils with
a variety of anoxic and oxic conditions26, where nitrifiers
may contribute to the generation of nitrate required for
denitrification27. Variability of environmental conditions gov-
erned by water level dynamics has been shown to determine the
diversity of microbes that affect N2O fluxes in wetland soils28,29.
However, we found that the effect of soil factors (C/N ratio and
pH) and temperature on functional gene diversity in our dataset
(collectively explaining 57% of the variation; Supplementary
Figs. 5, 9, 10) exceeded that of soil water content. Among the
studied functional genes, the abundance of archaeal amoA
correlated the best to temperature and C/N ratio (Supplementary
Fig. 5), similarly to the N-cycle gene diversity. Contrary to our
expectation, taxonomic diversity of microbes showed no correla-
tion with N2O emissions (p > 0.05). Previous studies have shown
conflicting results on the relationship between microbial diversity
and N2O emissions, as reviewed in ref. 30. The decoupling of
taxonomic and functional diversities may be due to functional
redundancy in microbial taxa active in the N cycle31.

Environmental determinants of N2O related microbial com-
munities. We explored the environmental conditions favoring
microbial taxa and genes driving N2O emission. The archaeal
amoA displayed a unimodal relationship with mean annual air
temperature peaking around 20 °C (r2adj= 0.255, p < 0.001; Sup-
plementary Fig. 9). This supports earlier findings of greater AOA
activities in warmer seasons32. The strong positive correlations of
the AOA/AOB ratio, mean annual air temperature and soil
temperature (Supplementary Fig. 11) is in line with the relatively
high temperature optimum of AOA33. This finding suggests that
elevated (>15 °C) soil temperature in combination with optimal
soil moisture31 may promote N2O emissions from soils due to an
increased AOA abundance. Nevertheless, how this may be offset
by their altered balance with AOB remains to be determined.

Implications for predicting global N2O fluxes. Our analyses
indicate that both the structure and function of wetland soil
microbiome and climatic conditions determine N2O fluxes
globally. Considering the combined effect of optimal soil moisture
and temperature, archaea are important contributors to N cycling
in drained wetland soils34. Furthermore, we provide evidence that

Fig. 4 Nitrogen-cycle genes as the main factors explaining N2O emissions across the global wetland soils. a Correlations between environmental
variables, the abundance of nir, nosZ and amoA genes (quantified by qPCR) and N2O emission (n= 74). The abbreviations are archaeal amoA (arch-amoA),
bacterial amoA (bac-amoA), organic matter (OrM), pH (soil pH), C/N (soil carbon to nitrogen ratio), Von Post grade of decomposition (VPG). b Structural
equation modeling (SEM) showing niche differentiation between bacterial and archaeal amoA (n= 74 independent sites). The model fitness was
acceptable (Fisher’s C= 8.4, p= 0.08). Line thickness corresponds to standardized regression coefficients as indicated in the legend. Dash lines indicate
negative relationships. The statistical test used was two-sided. The abbreviations are mean annual temperature (MAT), pH (soil pH). c Relationship
between N2O emissions and the diversity of N cycle functional genes that are directly involved in N2O dynamics, including archaeal amoA, bacterial amoA,
comammox amoA, nirK, nirS, nrfA, nosZI, and nosZII. The inset numbers represent an adjusted r2 and p-value from a GAM model. Error bars represent the
standard error (SE) of the means (n= 74 independent sites). The statistical test used was two-sided.
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archaeal abundance is a key factor associated with ammonia
oxidation pathway that underlies N2O emission in wetland soils
globally. Our results complement previous findings on the major
role of archaea in N2O emission in alpine soils35 and oceans36. In
particular, the global distribution of AOA and their adaptation to
low oxygen and ammonia concentrations may be suggestive of
the substantial role of this microbial group in N cycling of
wetland soils.

Taken together, our results suggest that nitrifying microbes
may contribute more strongly to N2O emission than previously
thought, and that the diversity of microbes involved in the N
cycle may be the integral predictor of N2O emissions. To
determine the mechanisms underlying global N2O emissions, we
need to understand the relative role of nitrification and
denitrification across a broad variety of habitat types as well as
the effects of climate, vegetation, and land use. We predict that
future drainage and warming of wetland soils will have negative
consequences for regulating ecosystem services of wetlands
through accelerating archaeal nitrification that increases substrate
availability for denitrification, which collectively promote N2O
emission. Although we could not distinguish cause and effect, our
study generates insights into nitrogen cycling and microbial
drivers of N2O emission in wetlands.

Methods
Study sites and sampling. We sampled gas and soil in 29 regions throughout the
A (rainy tropical), C (temperate), and D (boreal) climate types of the Köppen
classification from six continents during the vegetation period between August
2011 and June 2018, following a standard protocol26. According to the protocol,
the gas and soil samples were collected from locations in public domain or in
previous agreement with the local community and/or property owner. The samples
were exported from the origin countries and imported to Estonia, EU in coop-
eration with customs officers of the respective states, following the legal provisions
of soil export and import, specifically exemptions for scientific purposes. To cap-
ture the full range of environmental conditions in each region, we established 76
wetland soil sites under different vegetation (mosses, sedges, grasses, herbs, trees,
and bare soil) and land-use types (natural—raised bog, fen, and forest; agricultural
—arable, hay field and pasture; and a peat extraction area) (Fig. 1a; Supplementary
Data 1). We used a four-grade land-use intensity index to quantify the effect of
land conversion: 0, no agricultural land use (natural mire, swamp, or bog forest); 1,
moderate grazing or mowing (once a year or less); 2, intensive grazing or mowing
(more than once a year); and 3, arable land (directly fertilized or unfertilized). The
vegetation and land-use intensity types and the land-use intensity index were
estimated from observations and contacts with site managers and local researchers.

Within the sites, we established 1–4 stations 15–500 m apart to maximize the
captured environmental variation. Each of the 196 stations were equipped with 3–5
opaque PVC 65 L truncated conical chambers 1.5–5 m apart and an observation
well (perforated, 50 mm diameter PP-HT pipe wrapped in geotextile; 1 m in
length). From each of the 645 chambers, N2O fluxes were measured following the
static chamber method37 using PVC collars (0.5 m diameter, installed to 0.1 m
depth in soil). Stabilization of 3–12 h was allowed before gas sampling to reduce the
disturbance effect of inserting the collars on fluxes. The chambers were placed into
water-filled rings on top of the collars. Gases were sampled from the chamber
headspace into a 50 mL glass vial every 20 min during a 1-h session. The vials had
been evacuated in the laboratory 2–6 days before the sampling. At least three
sampling sessions per location were run within 3 days. Water-table height was
recorded from the observation wells during the gas sampling at least 8 h after
placement. Soil temperature was measured at the 10 and 20 cm depth.

Soil samples of 150–200 g were collected from the chambers at 0–10 cm depth
after the final gas sampling, and transported to laboratories in Tartu, Estonia. The
homogenized samples were divided into subsamples for physical–chemical analyses
and DNA extraction. The samples for chemical analyses were stored at 4 °C and
microbiological samples were stored at –20 °C. DNA extraction was provided at the
Tartu University environmental microbiology laboratory (see details below). Using
a PP-HT plastic cylinder, intact soil cores (diameter 6.8 cm, height 6 cm) for the N2

analysis with the He–O2 method38 were collected from the topsoil (0−10 cm)
inside 252 chambers at 26 sites, starting from 2014. Samples from different climates
were run at respective temperatures. During transport, the soil samples were kept
below the ambient soil temperature from which they were collected.

Gas flux analyses. The gas samples were analyzed for N2O concentration within
2 weeks using two Shimadzu GC-2014 gas chromatographs equipped with ECD,
TCD, and a Loftfield-type autosampler. The N2O fluxes were determined on linear
regressions obtained from consecutive N2O concentrations taken when the
chamber was closed, using p < 0.05 for the goodness of fit as a quality threshold for

the linear regression. During the quality control, in cases of insignificant regression
(p > 0.05 we removed one outlier. If the regression remained insignificant but the
flux value fell below the gas-chromatography measuring accuracy (regression
change of N2O concentration δv < 10 ppb), we included it in the subsequent
analyses as a zero value.

The helium atmosphere soil incubation technique30 was used to measure
potential N2 fluxes from soil cores. The cylinders with intact soil cores were placed
into special gas-tight incubation vessels located in a climate chamber. Gases were
removed by flushing with an artificial gas mixture (21.0% O2, 358 ppm CO2,
0.313 ppm N2O, 1.67 ppm CH4, 5.97 ppm N2, and He). The new atmosphere
equilibrium was established after 12–24 h by continuously flushing the vessel
headspace with the artificial gas mixture at 20 mL/min. The flushing time depended
on the soil moisture. Incubation temperature was kept similar with the field
conditions. The gas-chromatograph (Shimadzu GC-2014) equipped with a thermal
conductivity detector was used to measure N2 concentration in the mixture of
emitted gases accumulated in the headspace (start value, 40, 80, and 120 min as
final value) of the cylinder after 2 h of closure. The gas concentration in the
chambers increased in a near-linear fashion and linear regression was applied for
calculation of the fluxes. The flux measurements with r2 of 0.81 (p < 0.1) or greater
were used.

Soil physico-chemical analysis. Plant-available phosphorus (P, NH4-lactate
extractable) was determined on a FiaStar5000 flow-injection analyzer. Plant-
available potassium (K) was determined from the same solution by the flame-
photometric method and plant-available magnesium (Mg) was determined from a
100 mL NH4-acetate solution with a titanium-yellow reagent on the flow-injection
analyzer. Plant-available calcium (Ca) was analyzed using the same solution by a
flame-photometrical method. Soil pH was determined using a 1 N KCl solution;
soil NH4−N and NO3−N were determined on a 2M KCl extract of soil by flow-
injection analysis (APHA-AWWA-WEF, 2005). Total nitrogen and carbon con-
tents of oven-dry samples were determined by a dry-combustion method on a
varioMAX CNS elemental analyzer (Elementar Analysensysteme GmbH, Ger-
many). Organic matter content of dry matter was determined by loss on ignition.
We determined soil water content (SWC) from dry matter content and empirically
established bulk densities of mineral and organic matter fractions.

DNA extraction, DNA library preparation, and sequencing. DNA extraction
was performed from 0.2 g of frozen soil samples (homogenized) using the Qiagen
DNeasy PowerSoil Kit (12888-100), following the manufacturer’s recommenda-
tions. DNA concentrations were measured with Qubit™ 1X dsDNA HS Assay Kit
using Qubit 3 fluorometer (Invitrogen). Altogether 645 individual soil samples
were selected for metabarcoding of bacteria, archaea, and eukaryotes. For bacteria,
we used the primers 515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and 806RB (5′-
GGACTACNVGGGTWTCTAAT-3′) to amplify the variable V4 region of the 16S
rRNA gene39. Although these primers co-amplify archaea to some extent, we
sought to specifically amplify a longer portion of their 16S rRNA gene to capture
their full diversity, using the primers SSU1ArF (5′-TCCGGTTGATCCYGCBRG-
3′) and SSU1000ArR (5′-GGCCATGCAMYWCCTCTC-3′)40. To amplify a broad
range of eukaryotes, we used the primers ITS9mun (5′-GTACACACCGCCCG
TCG-3′) and ITS4ngsUni (5′-CGCCTSCSCTTANTDATATGC-3′) that cover the
V9 variable region of the 18S rRNA gene and the full internal transcribed spacer
(ITS) region41. Both the forward and reverse primers were tagged with a 12-base
multiplex identifier (MID), except in the case of archaea where only the forward
primer was tagged with MID. All PCRs were performed in two replicates using 5 ×
HOT FIREPol® Blend Master Mix (Solis BioDyne, Tartu, Estonia) in 25 μl volume.
By default, the bacteria, archaea, and eukaryotes were amplified using 25, 35, and
30 cycles, respectively. In case of no amplification, two or five extra cycles were
added, or DNA was re-extracted and re-purified. Thermal cycling included an
initial denaturation at 95 °C for 15 min; 25–40 cycles of denaturation for 30 s at
95 °C, annealing for 30 s at 55 °C, elongation for 1 min at 72 °C; final elongation at
72 °C for 10 min; and storage at 4 °C. The two replicates of each reaction were
pooled and visualized on TBE 1% agarose gel.

The bacterial amplicons were sequenced using the Illumina NovaSeq platform
at 2 × 250 bp paired-end mode. Illumina amplicon libraries were generated using
TruSeq DNA PCR-Free High Throughput Library Prep Kit with TruSeq DNA CD
Indexes (Illumina). To increase identification accuracy and coverage, the archaeal
and eukaryote amplicons were sequenced using a long-read sequencing technology
on PacBio Sequel II platform40,41. SMRTbell library preparation followed the
Pacific Biosciences Amplicon library preparation protocol. Metabarcoding analysis
was repeated for samples yielding <5000 prokaryotic reads (Illumina), <500
archaeal reads (PacBio), or <1000 eukaryote reads (PacBio).

For the functional metagenome analysis, three replicate soil samples per station
were pooled based on equimolar amount of DNA. Library preparation and
indexing of each 196 pooled samples was performed using Nextera XT DNA
Library Prep Kit in combination with Nextera XT Index kits v2 (Illumina).
Metagenomes were sequenced based on the shotgun approach to an expected depth
of 5,000,000 reads using Illumina NovaSeq with 2 × 150 bp paired-end mode. The
samples with <1,000,000 reads were subjected to resequencing.
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Quantitative PCR. We used qPCR to quantity the absolute abundance of bacterial
and archaeal 16S rRNA genes as well as the key genes involved in N cycle pathways,
including denitrification (nirS, nirK, nosZ clade I, and nosZ clade II), N fixation
(nifH), dissimilatory nitrate reduction to ammonia (DNRA; nrfA), ammonia oxi-
dation (bacterial amoA, archaeal amoA, comammox amoA), and anammox- and n-
damo-specific 16S rRNA genes (Supplementary Fig. 7). The qPCR assays were
performed using RotorGene® Q equipment (Qiagen, Valencia, CA, USA). The
qPCR method was performed following ref. 34. Briefly, the qPCR reactions were
performed in 10 μL volume containing 5 μL Maxima SYBR Green Master Mix
(Thermo Fisher Scientific Inc., Waltham, MA, USA), an optimized concentration of
forward and reverse primers, 1 μL of template DNA and sterile distilled water. The
gene-specific primer sets, optimized primer concentrations and thermal cycling
conditions for each target gene are shown in Supplementary Data 8. The quanti-
fication data were analyzed with RotorGene Series Software (version 2.0.2; Qiagen,
Hilden, Germany) and LinRegPCR program (version 2020.0)42. The gene abun-
dances were calculated as a mean of fold differences between a sample and each 10-
fold standard dilution in respective standard as recommended by ref. 42; gene
abundances were reported as gene copy numbers per gram of dry soil.

Bioinformatics
Metabarcoding. Illumina MiSeq sequences were analyzed using LotuS software43

following ref. 44. Briefly, the reads were demultiplexed and quality-filtered by
trimming individual reads to 170 bp and removing reads with an accumulated
error >2 or an estimated accumulated error >2.5 at a probability of ≥0.01. To pass
to the next step, each unique read (reads preclustered at 100% identity) was
required to be present at least eight times in at least one sample, four or more times
in at least two samples, or three or more times in at least three samples. Chimeric
OTUs were removed based on both reference-based and de novo chimera checking
algorithms as implemented in uchime45. The resulting OTUs were taxonomically
annotated by aligning their sequences with Lambda46 to SILVA v135 database47

and the LotuS least common ancestor (LCA) algorithm (options: -p miSeq
derepMin 8:1,4:2,3:3 –simBasedTaxo 2 –refDB SLV -thr 8). For processing PacBio
sequencing data, PipeCraft48 was used as follows. Raw sequencing data was
demultiplexed via mothur (version 1.36.1)49 module in PipeCraft by allowing one
mismatch to tag region (i.e. to index sequence that was used for multiplexing);
quality filtering was performed using vsearch (version 1.11.1)50 module with
maximum expected error threshold of 1 (--fastq_maxee= 1) and discarding
sequences with ambiguous bases (--fastq_maxns= 0); putative chimeric reads were
discarded using vsearch uchime_denovo algorithm; prior clustering, full length ITS
reads without conservative regions (18S and 28S rRNA genes; i.e. primer-binding
sites) were extracted using ITSx software (version 1.0.11)51; using UPARSE (ver-
sion 8.1.1861), sequences were clustered to OTUs at 98% sequence similarity where
singletons (clusters with only one sequence) were removed during the process
(minsize= 2). Representative sequences of OTUs were taxonomically annotated
based on the best blast hit against UNITE database (version 8)52 followed by the
LCA algorithm. For statistical analyses, we retained 645, 440, and 638 samples that
yielded sufficient sequencing depth for Illumina 16S data (bacteria and archaea),
PacBio 16S data (archaea) and PacBio ITS (fungi), respectively.

Metagenomics. Analysis of metagenomic reads was done using MATAFILER
pipeline53. Briefly, reads obtained from the shotgun metagenomic sequencing of
peat samples were quality-filtered by removing reads shorter than 70% of the
maximum expected read length (150 bp), with an observed accumulated error >2
or an estimated accumulated error >2.5 with a probability of ≥0.01, or >1
ambiguous position. Using sdm software (version 1.46)43, reads were trimmed if
base quality dropped below 20 in a window of 15 bases at the 3′ end, or if the
accumulated error exceeded 2. Altogether 196 samples produced sufficient quantity
of reads and were retained for statistical analyses. To estimate the functional
composition of each sample, we implemented a similarity search approach using
DIAMOND (version 2.0.5; options -k 5 -e 1e-4 –sensitive) in blastx mode54. Prior
to that, the quality-filtered read pairs were merged using FLASH (version 1.2.10)55.
The mapping scores of two unmerged query reads that mapped to the same target
were combined to avoid double counting. In these cases, the hit scores were
combined by averaging the percent identity of both hits. The best hit for a given
query was based on the highest bit score and highest percent identity to the subject
sequence. Using this method, we calculated the relative abundance of (clusters of)
orthologous gene groups (OG) by mapping quality-filtered reads against the egg-
nog database (version 4)56. We also calculated metagenomic relative abundances
(i.e. miTag57) of different taxonomic groups based on small subunit (SSU) rRNA
genes. For this, SortMeRNA (version 2.0)58 was used to extract and blast search
rRNA genes against the SILVA SSU database (v128). Reads approximately
matching this database with e < 10−4 were further filtered with custom Perl and
C++ scripts, and merged using FLASH. In case read pairs could not be merged,
the reads were interleaved such that the second read pair was reverse com-
plemented and then sequentially added to the first read. Of these preselected reads,
50,000 reads were fine-matched the Silva SSU database using Lambda and the
lowest common ancestor (LCA) algorithm adapted from LotuS.

Genomic analysis. The taxonomic analysis revealed that a few microbial lineages
may disproportionally outperform the community functional diversity of microbes

in affecting ecosystem biogeochemistry. Thus, we followed a trait-based approach
to confirm our findings. We downloaded 385 complete archaeal genomes from
NCBI as of 10/7/2020 (search terms: archaea[Organism] AND “complete gen-
ome”). These were used to build a reference database for a BlastN search to identify
corresponding genomes and functional annotations of our archaeal OTUs. In
addition, to better understand the potential functions of different archaeal lineages
in N cycling, the functional annotation of all available archaeal genomes was
retrieved from the Integrated Microbial Genomes and Microbiomes database
(img.jgi.doe.gov) as of 15/7/2020.

Data analysis. To account for differences in sequencing depth across samples,
diversity indices (Shannon diversity index) were calculated based on rarefied
abundance matrices (metabarcoding datasets) in vegan package59 of R (version 2.5-
6). Multivariate analyses were performed using Bray-Curtis dissimilarity on nor-
malized taxa abundance matrices in vegan. All raw P-values of multiple tests were
corrected using Benjamini–Hochberg method. Taxonomic abundance data were
normalized using Hellinger transformation as implemented in vegan.

To test the effect of biotic variables on N2O emissions, we used Spearman
correlation analysis components to identify the bacterial and archaeal taxonomic
lineages and fungal OTUs most strongly associated with N2O emissions. Functional
gene (OG) composition and taxonomic community matrices were normalized by
library size using Hellinger transformation. We subsequently used partial least squares
(PLS) analysis to predict N2O emissions based on taxonomic groups, which allows the
dimensionality of multivariate data to be reduced into PLS components using plsdepot
package60 of R (version 0.1.17). Prior to this, we performed a backward variable
elimination procedure to remove variables with low explanatory power (VIP
threshold < 1), as implemented in plsVarSel package61 of R (version 0.9.6).

For univariate analysis, the best predictors of the diversity and relative
abundances of taxonomic and functional groups were identified using a machine
learning approach implemented in randomForest package62 of R (version 4.6-14).
To further test direct and indirect effects of variables in the best model, structural
equation modeling (SEM) was used as implemented in piecewiseSEM package63 of
R (version 2.1.0). The prior model was constructed based on our hypothesis (see
the section “Introduction”). The optimal model fit was achieved by subsequent
iterative revision based on modification indices. For linear relationships,
Spearman’s rank‐correlation coefficient was calculated in R. For fitting non-linear
relationships between soil water content and N2O emissions, generalized additive
model (GAM) were constructed using smoothing parameter estimated by marginal
likelihood (REML) maximization, as implemented in mgcv package64 of R (version
1.8-33). We also compared the goodness of fit estimates between first and second
order polynomial models for certain analyses. The best polynomial fit was
determined on the basis of Akaike Information Criterion (AIC) scores using “AIC”
and “poly” functions of R.

Data availability
All metabarcoding sequences and associated metadata have been deposited in the
European Bioinformatics Institute Sequence Read Archive database: https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA718418; metagenomics sequences and
associated metadata have been deposited at The European Nucleotide Archive under
accession number https://www.ebi.ac.uk/ena/browser/view/PRJEB44414. Additional data
generated in this study are provided in the Supplementary Information/Source Data file.
SILVA database is available at https://www.arb-silva.de; UNITE database is available at
https://unite.ut.ee/repository.php; Integrated Microbial Genomes is available at https://
img.jgi.doe.gov; eggnog database is available at http://eggnog5.embl.de/download/
eggnog_4.0/ Source data are provided with this paper.

Code availability
The pipeline to process metabarcoding samples is available under https://
psbweb05.psb.ugent.be/lotus/downloads.html and https://doi.org/10.15156/bio/587450.
The pipeline to process shotgun metagenomic samples is available under https://
github.com/hildebra/MATAFILER (https://doi.org/10.5281/zenodo.5831723).
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