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Abstract

The seasonal cycle of sea surface water characteristics is important for the global climate

system. Seasonal extrema of sea surface temperature (SST) and sea surface salinity

(SSS) determine water mass properties below the surface. Evaluation of climate models

typically focuses on annual or long-term mean state, not on seasonal extrema. In this

thesis, the seasonal cycles of SST and SSS in HiGEM and SST seasonal extrema in 20

CMIP6 models are assessed globally.

Sparse sampling leads to large differences between observational climatologies in both

SST and SSS in polar regions. There are also large SST differences in regions with

strong SST horizontal gradient, likely because gridding on coarse resolution can smooth

the gradient. To exclude regions with large differences between climatologies, masks

are proposed for global model assessments.

The results demonstrate the importance of evaluating model performance not simply

against annual mean properties. Although the biases in SST and SSS seasonal

extrema are largely consistent with their annual means, the amplitude of SST and

SSS biases has large seasonal variations in specific regions. Large seasonal variations

of SST bias in CMIP6 models occur in eastern boundary upwelling regions, polar

regions, the North Pacific and eastern equatorial Atlantic. Large seasonal variations

of SSS bias in HiGEM occur in equatorial and polar regions. SST biases in some

CMIP6 models have seasonal spatial patterns. Models with greater vertical resolution

in the ocean typically demonstrate better representation of SST extrema, particularly

seasonal maximum SST. However, no significant relationship is found with ocean

model horizontal resolution.
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1

Introduction

1.1 Climate and climate modelling

Climate has a profound influence on human and it is important for water, agriculture,

energy, human health and ecosystems. However, since the beginning of the Industrial

Revolution, human activities, particular those producing greenhouse gases, have

begun to have a large impact on global climate. Excessive amounts of greenhouse

gases are released into the atmosphere and the heat from the warming atmosphere

can be transferred into the ocean. Ocean warming can cause extreme weather which

impacts people living in coastal areas. As sea surface temperature (SST) is related to

ocean heat content, it is an essential variable for quantifying climate change.

Climate modelling is a key tool for understanding and predicting the response of climate

system to human-induced forcing. Many climate system models (CSMs) have been

extended into earth system models. Earth system models include physical processes

in other climate models, but also include the biogeochemical processes. Representing

the interaction of biogeochemical processes and physical climate alters the response

of physical climate to forcing such as that associated with anthropogenic emissions of

greenhouse gases (Flato, 2011).

As running the most comprehensive and highest resolution models requires high

computational costs, model family, which contains a range of models, is developed for

different applications (Pope et al., 2007). A model family shares a common physical

framework, but has different complexity and resolution. For example, as models in

the HadGEM family, HadGEM3-GC31-MM was running at higher resolution
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(Andrews et al., 2020); E3SM-1-0 (an earth system model) was running at lower

resolution with increased complexity (Golaz et al., 2019).

The quality of model simulations is assessed by comparing simulated climate with

observations, and then analyse the differences. If climate models are able to simulate

past climate variables, they are more likely to provide good forecasts of the future.

Historical runs from around 1850 to near-present allow scientists to compare model

predictions of the past climate to recorded observations (Eyring et al., 2016). Therefore,

it is crucial to evaluate the performance of climate models using historical runs.

1.2 Sea surface water characteristics

The ocean and atmosphere interact at the sea surface. Sea surface water

characteristics reflect the coupling of ocean-atmosphere and they are important

variables to better understand interactions between the ocean and atmosphere. SST

and sea surface salinity (SSS) are two important physical characteristics of sea surface

water.

SST exerts a major influence on the exchange of energy between ocean and

atmosphere. Longwave radiation, sensible and latent heat fluxes all depend on SST.

Air-sea heat fluxes are important components of the climate system, which enable

energy exchange between ocean and atmosphere. Much of the small-scale variability

of the wind is attributable to SST: cool SST stabilizes marine atmospheric boundary

layer and decouples the surface winds from winds aloft, thus decreases the wind

speed; warm SST destabilizes the boundary layer and decrease the vertical shear of

the wind, thus increases the wind speed (Chelton et al., 2004). SST gradient therefore

influences the wind stress divergence and curl (Chelton et al., 2004). In the tropical

oceans, when SST increases, atmospheric deep convection tends to occur more

frequently and with larger intensity (Bjerknes, 1966). This influences the development

of tropical cyclones (hurricanes and typhoons), which draw energy from warm ocean

waters to the atmosphere. SST seasonal maximum in the tropical region determines

formation and intensity of tropical cyclones (Evans, 1993; Tory and Dare, 2015).
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There exists a SST threshold, below which tropical cyclones do not form. Palmen

(1948) suggested that a SST threshold of about 26◦-27◦C may be necessary for

tropical cyclone formation, while Dare and McBride (2011) concluded that the SST

threshold was 25.5◦C.

SST has strong controls on precipitation. Warmer SST increases atmospheric moisture,

which favours precipitation. Roxy (2014) quantified the SST-precipitation relationship

in the tropical oceans and indicated that precipitation increases at 2 mm/day for an

1◦C increase of SST. SST can be used to monitor the tropical Pacific. Niño SST indices

are commonly used to define El Niño and La El Niña events (Trenberth and Stepaniak,

2001). SST along the equator in the Pacific Ocean gets warmer during El Niño, which

has global impact. When El Niño occurs, there are heavy rainfall in the southern

United States and severe drought in Australia, Indonesia and Southern Asia. Changes

in SST can shift storm tracks, contributing to precipitation in some areas. Brayshaw

et al. (2011) found that SST fronts related to Gulf Stream and North Atlantic Drift

impact the midlatitude storm track and enhance precipitation on the warm side of SST

front.

SST is also important in chemical and biological oceanography. The variation of SST

can threaten sensitive ocean life such as coral. Temperature is fundamental to

determining coral health and survival, and temperature anomalies can cause coral

bleaching. SST seasonal maximum coincides with coral bleaching event both in onset

and duration (Brown et al., 1996). Therefore, SST is used to predict coral bleaching

and it also has important application for reef restoration (Liu et al., 2006; Foo and

Asner, 2020). Above average SST caused large-scale coral bleaching in nearly every

major coral reef ecosystem (Maynard et al., 2008). SST also changes the frequency

and intensity of harmful algal bloom such as ”red tide”. Higher SST under climate

warming will be a favourable condition for algal blooms and probably lead to an

intensification of algal blooms (Lürling et al., 2013).

Both atmospheric and oceanic processes govern SST. On the atmospheric side, wind

speed, air temperature, cloudiness and humidity are influencing factors of the energy

exchange at sea surface; on the oceanic side, currents, vertical mixing and mixed layer
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depth influence heat transport and thus SST. Following Deser et al. (2010), the equation

for the mixed layer layer temperature (equal to SST) is written as

∂T/∂t = Qnet/(ρCpH) + (~Vgeo + ~Vek) · ~OT + (We +Wek)(T − Tb)/H, (1.1)

where T is mixed layer temperature or SST, Qnet is net surface energy flux, ρ is density

of seawater, Cp is specific heat of seawater, Vgeo is geostrophic current velocity, Vek

is Ekman current velocity, We is vertical entrainment rate, Wek is Ekman pumping

velocity, and Tb is the temperature of the water at depth that is entrained into the

mixed layer. Qnet is defined as

Qnet = Qsw +Qlw +Qsh +Qlh, (1.2)

where Qsw is downward solar radiative flux, Qlw is longwave radiative flux, Qsh is

sensible heat flux, Qlh is latent heat flux. The radiative fluxes (Qsw+Qlw) are functions

of air, temperature, humidity and cloudiness; the turbulent energy flux (Qsh + Qlh)

is linearly proportional to the wind speed and difference of air-sea temperature or

humidity.

Solar radiation passes through atmosphere and clouds, reaching the ocean surface. The

incoming solar radiation is partially absorbed and reflected by clouds and water vapor,

and thus only part of the solar radiation reaches the ocean and is converted into heat

energy (Qsw). Qsw is the largest term in the four heat flux terms. The path of the

sunlight through the atmosphere and the length of daylight combined determines the

seasonality of solar radiation. Therefore, Qsw is largest in summer and smallest in

winter; the higher the latitude, the larger the seasonal variation in Qsw. Qlw is the

electromagnetic energy that is radiated outward by the ocean. Qlw mainly depends on

SST (the warmer the SST, the larger the Qlw). Qsh is the heat conduction between

the sea surface and atmosphere due to the air-sea temperature difference. When air

is cooler than sea surface, heat will be conducted away from the sea, resulting in a

negative Qsh; when air is warmer than sea surface, heat will be conducted into the sea,
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resulting in a positive Qsh. Qlh is usually the second largest of the four heat flux terms

and it is associated with evaporation. Wind speed, SST and the humidity in the air

determine evaporation rate and thus Qlh (Talley, 2011).

Sea surface salinity (SSS) plays an important role in ocean stratification and influences

the processes controlling mixed layer temperature through changes in mixed layer depth

(MLD). Near-surface freshening in the tropics contributes to the formation of barrier

layer, and barrier layers limit the mixing of cold thermocline waters into the near surface

layer as the mixed layer is shallower than isothermal layer (Sprintall and Tomczak,

1992; Scannell and McPhaden, 2018). By modulating SST, SSS indirectly affects air-

sea interaction.

At low-mid latitudes, SSS can be a proxy for the impact of the hydrologic cycle, or the

flux of freshwater across the air-sea interface (Bingham et al., 2012). At high latitudes,

SSS can be a proxy for the sea ice melting-freezing cycle (Garcia-Eidell et al., 2019).

High SSS indicates strong evaporation or brine rejection process, while low SSS is linked

to strong precipitation or sea ice melt.

SSS is governed by evaporation, precipitation, sea-ice melting and formation, and

salinity transport by currents, vertical mixing and mixed layer depth. Similar to the

heat budget equation 1.1, the equation for the mixed layer salinity (equal to SSS) can

be written as

∂S/∂t = S(E + F − P −M)/H + (~Vgeo + ~Vek) · ~OS + (We +Wek)(S − Sb)/H, (1.3)

where S is mixed layer salinity or SSS, E is evaporation, F is sea ice formation, P

is precipitation, M is sea ice melting, Sb is the salinity of the water at depth that is

entrained into the mixed layer.

Evaporation and precipitation are the two main components of hydrological cycle.

Water moves from the ocean surface to the atmosphere in form of evaporation and

back in form of precipitation. Evaporation rate depends on wind speed, SST and the
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humidity in the air. Subtropical regions are dominated by high evaporation and have

a high SSS. Evaporation is lower over the equator than the subtropical regions

because of the combination of higher moisture and lower wind speed, even though the

SST is warmer. Precipitation occurs when the air becomes saturated with water

vapor, and the heaviest precipitation occurs within the tropical regions, especially

along ITCZ and SPCZ.

Sea ice formation and melting are the main processes controlling the SSS seasonal

cycle in the polar regions. Moreover, the exchange of salt between sea ice and ocean

can lead to changes of sea water density. When sea ice forms, brine rejection occurs

and SSS increases, and therefore density of surface water increases and the water sinks.

When sea ice melts, freshwater enters the sea and SSS decreases. Sévellec et al. (2017)

connected the Arctic sea-ice decline with AMOC slow-down, as the freshwater fluxes

due to sea ice melting can result in less dense water and weaken the circulation.

Sea water properties within the mixed layer is well mixed vertically. Temperature and

salinity are vertically uniform within the mixed layer. MLD varies seasonally. It can

be less than 20 m in the summer hemisphere, while reaching over 500 m in the winter

hemisphere in the subpolar regions (de Boyer Montégut et al., 2004). Vertical mixing

can deepen the mixed layer and entrain water with different temperature/salinity

from below. Vertical mixing occurs due to buoyancy loss and/or wind. Cooling or

evaporation at the sea surface can deepen the mixed layer to over several hundred

meters, or even over 1000 m in deep convection locations in winter (Talley, 2011).

However, wind-stirred mixing cannot extend that deep. It cannot be deeper than 100

or 150 m and it can only reach this depth in winter (Talley, 2011). Other than the

vertical entrainment, horizontal advection associated with geostrophic current and

Ekman transport can also cause SST/SSS change by bringing waters with different

temperature/salinity from other regions.

As temperature and salinity determine density, seasonal extrema of SST and SSS are

important for water mass formation and have a direct effect on ocean circulation.

Fresh and warm waters with low density will remain at the surface. Salty and cold

surface waters with large density can lead to strong vertical mixing, creating dense deep
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and intermediate waters (Fig. 1.1). Therefore, seasonal minimum SST and seasonal

maximum SSS are especially important in areas where dense water forms, such as the

Arctic. The Gulf Stream brings high-salinity waters northwards into the high latitudes,

where they cool and sink, forming dense water masses and push the thermohaline ocean

circulation. The evolution of surface water masses to intermediate or deep water masses

is important for the global redistribution of heat and salt. It also provides a pathway

for the transport of anthropogenic carbon dioxide to greater depths and slows down

climate warming (Bopp et al., 2015).

Figure 1.1: Schematic of intermediate water and deep water formation, adapted from
Talley (2011).

Realistic model simulation of seasonal extrema of SST and SSS is important for

prediction of intermediate and deep waters and hence large scale ocean circulation.

Seasonal maximum SST is also important for model prediction of tropical cyclones

and coral bleaching. Therefore, a good representation of seasonal extrema of SST and

SSS is an essential aspect of model skill for future climate projections.
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1.3 The Coupled Model Intercomparison Project

The Coupled Model Intercomparison Project (CMIP) is an international collaboration

providing a multi-model context for climate simulations. The objective of CMIP is

to better understand past, present and future climate changes arising from natural,

unforced variability or as a response to changes in radiative forcing. CMIP promotes

a standard set of model simulations in order to evaluate how realistic the models are

in simulating the recent past and provide projections of future climate change on near

term (out to about 2035) and long term (out to 2100 and beyond). The results of

CMIP model runs are used extensively in the Intergovernmental Panel on Climate

Change (IPCC) reports (Solomon et al., 2007; Stocker, 2014), which provides policy

makers with scientific assessments of climate change.

U.K.’s High-Resolution Global Environmental Model (HiGEM) was developed by the

Natural Environment Research Council, the Met Office and the academic community

in UK. HiGEM is based on HadGEM1 and it is a CMIP5 model (Shaffrey et al., 2009).

The horizontal resolution is 0.83◦ latitude × 1.25◦ longitude for the atmosphere, and

1/3◦ × 1/3◦ globally for the ocean and sea ice. In the vertical, the atmosphere model

has 38 levels with a top at 39 km; the ocean model has 40 unevenly spaced levels, which

is about 10 m resolution close to the surface, and increases gradually to about 300 m

at depth. The ocean component is formulated on a spherical latitude-longitude grid,

with a singularity at the North Pole.

CMIP6 (CMIP Phase 6) is the most current of the CMIPs. CMIP6 models with

different characteristics allow investigation of the factors related to differences in

model performance. Models used in this thesis vary in ocean grid type, ocean vertical

coordinate, ocean horizontal and vertical resolution, atmosphere horizontal and

vertical resolution, Earth system or not (more details can be seen in table. 4.2).

The desire for better climate modelling motivated an increase of model resolution.

Higher model resolution generally leads to mathematically more accurate models

(Flato et al., 2013). In any model, processes which occur over too small a scale to be

resolved must be parameterised. For example, the CMIP6 models with higher
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horizontal resolution (1/3◦ or 1/4◦) are eddy permitting, whereas in the lower

resolution models (1◦) eddies are parameterised (Flato et al., 2013). Previous studies

have mostly emphasised the benefits of increasing the horizontal resolution. The

representation of boundary currents, ocean fronts, eddies and air-sea fluxes can be

significantly improved as resolution increases (Hewitt et al., 2017; Kirtman et al.,

2012; Roberts et al., 2016). Therefore, as horizontal resolution is increased,

pronounced SST bias reduction occurs in the Southern Ocean, in the Agulhas

retroflection region, and along the Gulf Stream extension in the North Atlantic

(Skákala et al., 2019; de la Vara et al., 2020; Chassignet et al., 2020). However, higher

model resolution does not necessarily lead to more reliable simulations (Flato et al.,

2013). Richter and Tokinaga (2020) showed that the CMIP6 models with the smallest

SST bias in the tropical Atlantic all have relatively high horizontal resolution, but

there are also models with low-resolution that perform well. Chassignet et al. (2020)

used four pairs of matched low-resolution and high-resolution ocean simulations from

global ocean-sea-ice models to isolate the effect of ocean horizontal resolution. They

found that increased horizontal resolution does not improve SST bias unambiguous in

all regions for all models.

The models used here have four different horizontal grid type: regular

latitude-longitude, tripolar, displaced pole and unstructured meshes. Regular

latitude-longitude grid lines converging towards the pole can be a source of numerical

difficulties in ocean modelling. To leave a smooth, singularity-free grid in the Arctic,

a displaced pole grid (Jones et al., 2005) has the North Pole displaced over

Greenland, and a tripolar horizontal grid (Murray, 1996) has poles over Eurasia,

North America and Antarctica. By using an unstructured-mesh, it is possible to put a

focus on dynamically active regions such as the North Atlantic Current (NAC), the

Southern Ocean and the tropics while using relatively coarse resolution elsewhere

(Semmler et al., 2020).

Compared with ocean horizontal resolution, ocean vertical resolution has drawn much

less attention. Xavier et al. (2008) revealed that coarse vertical resolution of oceanic

general circulation models limits their ability to represent intraseasonal processes,

such as the formation of diurnal warm layer. Ge et al. (2017) conducted numerical
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experiments using an oceanic general circulation model with 1 m and 10 m vertical

resolution for the upper ocean and found that 1 m vertical resolution had a more

realistic representation of the vertical temperature structure in the upper ocean.

For ocean vertical coordinate, most of the models considered here use z-level or some

variation of it (z∗-level), but there are also z-isopycnal and sigma level. All layers of

traditional z-level models have fixed thickness, and layers of z∗-level models are

rescaled for more accurate representation of free-surface variations. Z-level models are

prone to high spurious diapycnal mixing, which is related to spurious heat uptake and

modified water masses (Griffies et al., 2000; Willebrand et al., 2001; Legg et al.,

2006). Isopycnal models have no diapycnal mixing and produce no spurious mixing,

but they can suffer from insufficient resolution in the mixed layer (Bleck, 1978).

Hybrid coordinate (e.g. z-isopycnal coordinate) combine the advantages of z-level in

the upper ocean for higher resolution and isopycnal coordinate in the deep ocean to

reduce diapycnal mixing (Bleck, 2002; Chassignet et al., 2003; Legg et al., 2009).

Sigma coordinate (σ) models have all layers contract to follow bottom bathymetry

and are particularly useful for coastal modeling, but errors exist in the pressure

gradient when layers have large slopes along steep topography (Shchepetkin and

McWilliams, 2005).

1.4 Representation of sea surface water in climate models

1.4.1 Annual mean

Previous model evaluation mainly focuses on the simulation of ocean mean state (annual

or longer-term mean SST). Flato et al. (2013) analysed the long-term mean differences

of zonal SST distribution between Coupled Model Intercomparison Project Phase 5

(CMIP5) models and observations, indicating larger biases at mid to high latitudes

than at other latitudes. Wang et al. (2014) showed long-term mean SST biases in

CMIP5 multi-model mean (Fig. 1.2), and stated that SST biases in specific regions

(e.g. the cold biases in the North Atlantic and North Pacific, and the warm bias in the

Southern Ocean) are commonly linked to a too weak Atlantic meridional overturning
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circulation (AMOC).

Figure 1.2: The annual mean SST bias averaged in 22 CMIP5 models. The dots denote
where at least 18 of 22 models have the same sign in the SST bias. Adapted from Wang
et al. (2014).

Models show a common cold bias in the North Atlantic SST and a warm bias near

the North American coast, due to the poor representation of Gulf Stream and NAC in

the models (Willebrand et al., 2001; Eden et al., 2004; Keeley et al., 2012). The poor

representation of the NAC, which is too zonal in lower-resolution models, leads to a

significant SST cold bias (up to 6◦) in the northwest Atlantic (Kuhlbrodt et al., 2018),

and this is common in 1◦ ocean models (Danabasoglu et al., 2014). This SST cold

bias can be dependent on the ocean resolution, as there are significant improvements

in the NAC with ocean-only simulations at higher resolutions (Storkey et al., 2018;

Marzocchi et al., 2015). A finer horizontal ocean resolution has been shown to enable a

more realistic SST over the North Atlantic in CMIP6 models via a better representation

of the Atlantic Ocean heat transport (Docquier et al., 2019; Roberts et al., 2020).

Most coupled climate models have substantial SST warm biases in the Southern

Ocean (Sallée et al., 2013; Hyder et al., 2018). These warm biases have been linked to

insufficient cloud which causes excessive downward surface short-wave radiation

(Bodas-Salcedo et al., 2012). Analysing CMIP5 and Atmospheric Model

Intercomparison Project Phase 5 (AMIP5) in combination enabled Hyder et al. (2018)

to separate the influences of atmospheric model errors and coupled feedbacks, and

they were therefore able to demonstrate that in the Southern Ocean the variations of

SST biases across the CMIP5 ensemble are primarily caused by the variations of net

surface flux bias in AMIP5.
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A pronounced SST cold bias exists in the subtropical North Pacific (Griffies et al.,

2009; Burls et al., 2017; Zhu et al., 2020). Griffies et al. (2009) used ocean-only models

driven by prescribed-atmospheric forcing and produced a cold bias over the subtropical

regions, which indicates that ocean model processes may be significant for this cold

bias. Using CMIP5 models, Burls et al. (2017) suggested that the cold SST bias is

linked to cloud albedo errors, which leads to insufficient surface short-wave fluxes.

Models suffer biases in the annual mean equatorial SST (Davey et al., 2002). In the

tropics, the SST biases could be classified into two types: one exhibiting broad

meridional structures that are due to cloud bias, and one associated with Pacific and

Atlantic cold tongue bias that are due to thermocline depth bias (Li and Xie, 2012).

Models have a diversity in representing thermocline depth. A shallower thermocline

facilitates the equatorial cold tongue, contributing to a cold bias (Richter and Xie,

2008; Li and Xie, 2012). Harlaß et al. (2018) showed that models with high horizontal

and vertical atmospheric resolution have better simulation of the equatorial cold

tongue, as these models can improve the wind structure which is associated with the

thermocline depth.

From the fouth assessment report of IPCC, warm biases exist in the upwelling zones off

the Peruvian, Namibian and Californian coasts in most coupled models, as the prevalent

subtropical stratocumulus cloud decks are poorly represented in models (Solomon et al.,

2007). Most CMIP5 models still show substantial SST warm biases in the eastern

boundary upwelling systems, especially in the southeast Atlantic region (Wang et al.,

2014; Richter, 2015). Richter (2015) attributed the warm SST bias of the eastern

boundary upwelling regions to underestimated cloud and insufficient upwelling due to

overly weak winds. The SST bias in the eastern boundary upwelling region has been

shown to be sensitive to ocean horizontal resolution (de la Vara et al., 2020; Small

et al., 2015).

There are only few studies that evaluate climate models in representing SSS. SSS has

a fresh bias in the subpolar North Atlantic and the Arctic in the CMIP5 multi-model

mean (Flato et al., 2013), which can increase stratification, hamper convection and lead

to excessive sea ice. The fresh bias also has the potential to weaken AMOC through
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reducing density in the sinking regions (Park et al., 2016). Sallée et al. (2013) found

a fresh bias of SSS in the Southern Ocean in CMIP5 models, which may constrain the

transport of anthropogenic carbon from surface to subsurface (Terhaar et al., 2021).

Volodin et al. (2017) showed that INM-CM5 (a CMIP5 model) has an overall fresh bias

in the global ocean except the Arctic, which has a saline bias up to 1-5. However, the

considerable saline bias in the Arctic might be from the uncertainty of observational

climatology they used, which will be discussed in this thesis. Fathrio et al. (2017)

found that the CMIP5 multi-model mean has a saline SSS bias of 1.5 in the Bay of

Bengal and a fresh SSS bias of 0.4 in the western Indian Ocean and southeastern Indian

Ocean. They attributed the biases in the Bay of Bengal and western Indian Ocean to

precipitation bias, while the fresh bias in southeastern Indian Ocean was attributed to

salt advection bias.

1.4.2 Seasonal cycle

Another important aspect of model skill is how well it can simulate SST and SSS

seasonal extrema. Accurate mean does not guarantee accurate seasonal extrema or

annual cycles. Identifying the errors in simulating seasonality of water masses and

their sources are important to improve our understanding of the physical processes

related to SST and SSS seasonal extrema and thus improve the simulation of SST and

SSS in climate models.

Only a few previous studies have assessed the performance of models in simulating the

annual cycle of SST. Wang et al. (2014) concluded that the spatial patterns of SST

biases are largely independent of season, but the amplitudes of SST biases vary with

season in some locations (Fig. 1.3). For example, there is a warm SST bias in the

Southern Ocean throughout the year, but the amplitude of the warm bias is much

larger in summer and autumn than in winter and spring.

In the equatorial Pacific, 23 coupled general circulation models (CGCMs) (many are in

CMIP) were evaluated by Davey et al. (2002), while only few models have a seasonal

cycle of upper ocean temperature similar to that observed in real ocean. Braconnot

et al. (2007) used a CGCM with various different convection and cloud schemes to
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Figure 1.3: The seasonal variation of SST biases in 22 CMIP5 models, adapted from
Wang et al. (2014). SST bias during (a) spring (March-April-May), (b) summer (June-
July-August), (c) autumn (September-October-November) and (d) winter (December-
January-February). The dots denote where at least 18 of 22 models have the same sign
in the SST bias.
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demonstrate that clouds and convection can affect the seasonal variations of equatorial

SST. Mechoso et al. (1995) examined the seasonal cycle of SST over the equatorial

Pacific and stated that the seasonal equatorial SST biases in CGCMs resulted from

Intertropical Convergence Zone (ITCZ) errors, and these biases can be alleviated by

improved simulation of the seasonal cycle of meridional wind (De Szoeke and Xie,

2008). AchutaRao and Sperber (2002) indicated that in 17 CMIP models, flux-corrected

models tend to have a better representation of SST annual cycle in the equatorial

Pacific. All the factors mentioned before could play a part in SST seasonal cycle in the

equatorial Pacific.

SST warm biases in the eastern tropical Atlantic vary seasonally in CGCMs and reach

a maximum during June-July-August (Prodhomme et al., 2019; Richter and Xie, 2008;

Richter et al., 2014). Richter et al. (2012) used the GFDL coupled GCM to investigate

those SST biases in the tropical Atlantic and concluded that a large portion of that

biases is due to too weak easterlies during boreal spring. Due to the weak easterlies,

the thermocline of the eastern equatorial Atlantic deepens, which prevents cold tongue

formation. In the equatorial Atlantic Ocean, a CGCM: CFS (climate forecast system)

can capture the annual cycle of zonal SST gradients, although with warm biases and

too little variability of SST over the southeastern ocean (Hu et al., 2008).

Over the northeastern Pacific ITCZ, CMIP5 models have seasonally dependent SST

biases: warm bias in summer and cold bias in winter (Song and Zhang, 2020). Song

and Zhang (2020) suggested this bias is caused by the poor simulation of the North

American monsoon in models. In the CMIP5 models they considered, an easterly wind

bias exists all year around. When the easterly wind dominates in winter, the too

strong wind in the models enhances surface evaporation and leads to a cold SST bias,

while in summer, the wind becomes westerly and the easterly wind bias manifests as

weaker westerly winds, with the consequent reduced evaporation leading to a warm

SST bias. The easterly wind bias can be improved by increasing the atmospheric

horizontal resolution Song and Zhang (2020). Based on coupled ocean-atmosphere

model simulations, Liang and Wu (2013) indicated that the seasonal cycle of SST in the

extratropical North Pacific models can be better represented with the help of improved

representatin of solar penetration into the ocean. In summer, the SST warm bias
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in models can be partly reduced when shortwave radiation penetrates further into the

thermocline, while in winter, MLD deepens and the subsurface warm water is entrained

into the surface, reducing the SST cold bias in model (Liang and Wu, 2013). Zhu et al.

(2020) showed that SST cold biases of the North Pacific subtropics vary seasonally in

CMIP6 models, and the seasonality of the upper ocean cold bias is linked to vertical

diffusivity. As discussed above, better representation of the monsoon, solar penetration

and vertical diffusion could improve SST simulation in the subtropical North Pacific.

In the southwestern Indian Ocean, seasonal SST forecasts are better in ocean models

with upwelling and Rossby wave dynamics than ones using a slab ocean mixed layer

(Xie et al., 2002). Yokoi et al. (2009) suggested that CMIP3 models underestimated

the magnitude of semiannual variability in the southern tropical Indian Ocean, which

was related to the overestimation of the magnitude of annual variability in thermocline

depth. CMIP5 models still perform poorly in simulating the shallow climatological

thermocline in the southwestern Indian Ocean, which is essential for successful seasonal

predictions in the Indian Ocean (Nagura et al., 2013).

Fathrio et al. (2017) illustrated that in CMIP5 multi-model mean the seasonal variation

of SSS in the tropical Indian Ocean is poorly simulated. Using fixed depth salt budget

analysis, they found that the seasonal biases of precipitation and horizontal advection

are mainly responsible for the seasonal SSS bias in the tropical Indian Ocean. Parekh

et al. (2016) attributed the seasonal SSS bias over Bay of Bengal in CFSv1 model to

poorly simulated precipitation and river runoff during summer and autumn, and the

seasonal SSS bias in Arabian Sea to poorly simulated East Indian coastal current in

winter and Somali jet in summer.

1.5 Overview of this thesis

It is important that climate models give accurate projections of seasonal extrema of

sea surface water characteristics, because of their impact on the world’s climate

system through heat and freshwater fluxes at the ocean surface, and through water

mass formation and subsequent impact on ocean circulation. Previous model
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evaluations have mainly focused on the simulation of annual mean, not on seasonal

cycle. Although there have been a few studies assessing the performance of models in

simulating SST seasonal cycle, they commonly used specific months to represent

different seasons or focused on specific regions. As will be discussed in chapter 2, this

study uses the local maximum and minimum SSTs regardless of the month in which

they occur. To our knowledge, there has been no assessment of biases in seasonal SST

extrema on a global scale for the CMIP6 models.

The questions addressed in this thesis are as follows: (1) How well do the climate

models simulate the seasonal extrema of sea surface water characteristics? (2) Is there

any systematic dependence of model performance on the basic model characteristics

(e.g. model resolution)?

Chapter 2 introduces the definition of seasonal extrema and compares different

observational climatologies. Some regions of the ocean are found to display

considerable differences between different climatologies, and these regions are

excluded from the model evaluations in later chapters. Chapter 3 assesses the

seasonal cycle of sea surface water characteristics in HiGEM. The significant bias of

SST seasonal cycle in HiGEM leads us to the study of SST seasonal extrema in the

latest state-of-the-art climate models, CMIP6. Chapter 4 focuses on the

representation of SST seasonal cycle in 20 CMIP6 models and discusses the impact of

various model characteristics. Chapter 5 contains the conclusions, and also discusses

the limitations of this work and provides suggestions for future work.



2

Observational climatologies and

methodology

2.1 Introduction

Observational reference is the basis for model evaluation. Model evaluation work

assesses the performance of models by comparison against observations and hence the

quality of model evaluation relies on the underlying observations. Uncertainties in the

observational reference can cause uncertainties of model evaluation results (Kotlarski

et al., 2019). Observational uncertainties can be from instrumental error and quality

control. Since climate model evaluation of the global ocean relies on gridded reference

data sets, problems can also arise from spatial interpolation of measurements

especially in regions with sparse sampling or high spatial variability (Wagner et al.,

2007). To address observational uncertainties, previous works employed multiple

reference data sources for model evaluation (Kotlarski et al., 2005; Cheneka et al.,

2016; Haslinger et al., 2013).

In this chapter, we will assess five observational climatologies to investigate the

uncertainty of observational SST and SSS. By comparing the climatologies, we will

indicate the regions with large SST differences between climatologies and discuss the

possible reasons for these differences. To avoid the regions with high observational

uncertainties, we will suggest an uncertainty mask and the grid points under the

uncertainty mask will be excluded from the following model evaluation in Chapters 3

and 4.
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2.2 Observational climatologies

2.2.1 Climatologies

The observational monthly climatologies used in this thesis are the World Ocean

Atlas 2013 (WOA13), the World Ocean Atlas 2018 (WOA18), the Monthly Isopycnal

and Mixed-layer Ocean Climatology (MIMOC), the WOCE/Argo Global

Hydrographic Climatology (WAGHC) and the Hadley Centre sea ice and SST data

(HadISST) (Table 2.1). To make the time frames of the 5 climatologies consistent, the

time period we picked in each climatology is 1981-2010 or most close to 1981-2010, as

a climatological standard normal.

Monthly Climatology Name

WOA13 WOA18 MIMOC WAGHC HadISST

Horizontal
resolution

0.25◦ × 0.25◦ 0.25◦ × 0.25◦ 0.5◦ × 0.5◦ 0.25◦ × 0.25◦ 1◦ × 1◦

Vertical levels 57 57 81 38

Max. depth 1500 m 1500 m 1950 dbar 1900 m surface

Spatial
interpolation

isobaric isobaric isopycnal isopycnal

Time span 1955-2012 1981-2010 mainly 2007-
2011

mainly 1985-
2016

1981-2010

Variables T and S T and S θ and S T and S SST

References Locarnini
et al. (2013)

Locarnini
et al. (2018)

Schmidtko
et al. (2013)

Gouretski
(2018)

Rayner et al.
(2003)

Table 2.1: Parameters of the monthly climatologies we used in this chapter. T, S, and
θ refer to temperature, salinity and potential temperature respectively.

SSTs in WOA13, WOA18, MIMOC and WAGHC are bulk temperatures, characterising

the water of top few meters and measured with in-situ instruments. HadISST includes

in-situ measurements and satellite-based SST adjusted from skin temperature. Wentz

et al. (2000) compared SSTs from satellite and ocean buoys. The bulk temperature

is measured by buoys at 1 to 1.5 m depth, while the skin temperature measured by

infrared sensor represents the upper few microns of the ocean. Their root mean square

difference is about 0.6 ◦C in the equatorial regions (Wentz et al., 2000).

Despite the differences in time-period, analysis method, ingested datasets, analysis
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resolution in space (see the details in descriptions of each climatology below), the main

data source for the climatologies used in this chapter (except for HadISST) is the World

Ocean Database (WOD). WOD is the world’s largest collection of ocean profile data

that are publicly available, uniformly formatted and quality controlled (Boyer et al.,

2013). A list of datasets in WOD13 (World Ocean Database 2013) is shown in Table

2.2. WOD13 includes temperature and salinity fields at observed depth levels as well

as interpolated to a set of 138 standard depth levels.

Table 2.2: Instrument types in WOD13, from Boyer et al. (2013).

The standard depth levels for the climatologies are shown in Fig. 2.1. The output

of WAGHC and MIMOC climatologies we used is on isobaric surfaces, although their

spatial interpolation is done on isopycnal surfaces. WOA13, WOA18, WAGHC and

MIMOC have the same standard depth levels in the upper 50 m, with 5 m vertical

resolution nearest to the surface. WAGHC begins to deviate from the others at 50 m,

indicating it has larger depth intervals. MIMOC has the highest vertical resolution and

WAGHC has the lowest vertical resolution.

The Argo profiling float project since 2003 provides continuous global observations of

temperature and salinity and highly improved the data quality and global coverage

(Gould et al., 2004). In historically data poor areas like the Southern Ocean (Fan

et al., 2014), if each observation was given equal weight, the data distribution can

be biased toward the Argo period. To address this issue, climatologies (e.g. WOA13

and WOA18) are averaged for every decade, and then equally contribute to the final

climatological mean fields for all the decades (Boyer et al., 2014).
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Figure 2.1: Depths against number of levels for WOA13, WOA18, MIMOC and
WAGHC. X-axis is the number of levels above the certain depth.

The monthly climatologies we use in this chapter are all gridded products. However,

the primary limitation of gridded climatologies based on in-situ observation is data

coverage in space and time (Locarnini et al., 2013; Zweng et al., 2013). Fields are

based on limited data in some regions such as the Southern Ocean and at deeper levels

(Locarnini et al., 2013; Zweng et al., 2013). Or data may exist for only one season,

for example, in the Southern Ocean (Fig. 2.2), thus precluding any annual analysis

(Locarnini et al., 2013; Zweng et al., 2013).

Figure 2.2: Data coverage of HadSST3 over the Southern Ocean (50◦-70◦S), expressed
as a percentage of 5◦ × 5◦ grid boxes with at least one observation per season.
Continuous data coverage > 50% is shaded. Adapted from Fan et al. (2014).

The spatial interpolations of the climatologies are usually performed on isobaric or



Chapter 2: Observational climatologies and methodology 40

isopycnal surfaces. Sea water density has a nonlinear dependency on temperature and

salinity, thus averaging of temperature or salinity on isobaric surfaces results in the

production of water masses different from those of the observed data (Lozier et al.,

1994). Large gradients of temperature and salinity can also be smoothed when

averaging on isobaric surfaces. Isopycnal maps better follow water parcels both

laterally and vertically. Since mixing in the ocean interior takes place predominantly

along isopycnal surfaces, the interpolation performed on isopycnals can minimize

production of artificial water masses (Gouretski, 2018). However, isopycnal maps can

be biased near their surface outcrops where data are only available on one side of the

mapped grid point, which may result in small temperature inversions or other

discontinuities when matching mixed layer and isopycnal properties at outcrop

locations, especially in regions of large surface density gradients and sparse data

distributions (Schmidtko et al., 2013).

For WAGHC, the largest difference between the isopycnally and isobarically averaged

climatologies occurs in regions of strong spatial temperature and salinity gradients,

for example, the Gulf Stream, Kuroshio, and ACC (Fig. 2.3), because averaging on

isobars can smooth water properties (temperature and salinity) at frontal regions. In

those regions, the absolute difference in temperature can exceed 1◦C. The differences

peak at about 150 m and then start to diminish with increasing depth.

2.2.2 WOA13 and WOA18

The World Ocean Atlas 2013 (WOA13) provides a long-term set of analysed monthly

climatologies for temperature and salinity (Locarnini et al., 2013; Zweng et al., 2013). It

is the gridded objective analysis of WOD13. Generally, the observational data diminish

in number with increasing depth. In the upper ocean, it is reasonable to illustrate large-

scale ocean features. However in some deep ocean areas, the distribution of observations

can be inadequate for describing characteristics of ocean properties (Locarnini et al.,

2013; Zweng et al., 2013). For temperature and salinity, WOA13 includes analysis

with quarter-degree horizontal resolution. The quarter degree monthly climatologies

for temperature and salinity are available for 1955-2012 and the 2005-2012. Depths for
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Figure 2.3: Differences between the isopycnally averaged and isobarically averaged
WAGHC climatologies of (a-c) temperature and (d-f) salinity in January at (a,d) 150
m, (b,e) 518 m, (c,f) 1050 m. Adapted from Gouretski (2018).

the monthly climatology we used is 0-1500 m with 57 levels, decreasing resolution with

depth. The gridded products have been used widely for climate studies, ocean model

initialization and validation. For example, Seidov et al. (2017) analysed the decadal

variability of ocean heat content and temperature trends in the North Atlantic Ocean

using WOA13. Graham et al. (2016) used WOA13 as lateral boundaries for a regional

model to study on-shelf heat transport along the West Antarctic Peninsula. WOA13

was also used for model evaluation in CMIP5 (Flato et al., 2013).

The World Ocean Atlas 2018 (WOA18) release updates previous versions of WOA13 to

include approximately three million new oceanographic casts added to the WOD since

previous release as well as renewed and updated quality control (Locarnini et al., 2018;

Zweng et al., 2018). However, even with additional data, WOA18 is still hampered by

a lack of data like WOA13 (Locarnini et al., 2018; Zweng et al., 2018). For example,
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there is limited sampling in the Southern Ocean in winter (Fig. 2.4), even though

animal mounted temperature profiles have been added in WOA18 and improved the

data coverage in some high latitude areas (Locarnini et al., 2018).

Figure 2.4: Data distribution of SST in July (austral winter) from (a) WOA13 and (b)
WOA18.

In WOA18, the standard error of the statistical mean of SST in a quarter-degree grid

box (Locarnini et al., 2018) was calculated using

s =

√∑N
n=1(xn − x̄)2

(N − 1) ·N
, (2.1)

where xn is the nth SST value in the gridbox, x̄ is mean of all SST values in the gridbox,

and N is the total number of SST values in the gridbox.

For 1981-2010 decadal average, the standard error of the mean SST in each month over

most of the world ocean is below 0.1◦C, while in some coastal regions the standard

error is over 0.5◦C (Fig. 2.5). The errors estimated in WOA18 contain errors from

sampling and measurement, but not from the creation of the gridded data sets (e.g.

area-averages from sparsely distributed observations).
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Figure 2.5: Standard error (unit:◦C) of the mean for 1981-2010 averaged January
SST for quarter-degree grid in WOA18, adapted from WOA 2018 Figures
(https://www.ncei.noaa.gov/access/world-ocean-atlas-2018f/bin/woa18f.pl).

2.2.3 Monthly Isopycnal & Mixed-layer Ocean Climatology

(MIMOC)

MIMOC is a global monthly, isopycnal and mixed layer ocean climatology (Schmidtko

et al., 2013). MIMOC provides three products: (1) mapped mixed layer properties,

(2) mapped water properties on isopycnal surfaces, and (3) water properties from the

first two products merged onto a regular pressure grid, from 0 to 1950 dbar. MIMOC

includes conductivity-temperature-depth (CTD) profiles from Argo floats, shipboard

data from the World Ocean Database 2009 (WOD2009) and Ice-Tethered Profile (ITP)

data (Fig. 2.6). Argo CTD data are the main data contributor in the open ocean, and

ITPs provide data under Arctic sea ice. MIMOC mostly reflects the 2007-2011 modern

ocean state, although old data as early as the 1970s are used when no data during

2007-2011 are available. Compared with other climatologies in widespread use at the

time, MIMOC is better or as good as at preserving features observed in a synoptic

survey and minimizing the influences of eddies, planetary waves, internal waves and

tides, and other transient phenomena (Schmidtko et al., 2013).

In MIMOC, Argo (Argo, 2000) data are the main data contributor in the open ocean

(Schmidtko et al., 2013). But since Argo just covered the open ocean but not continental

shelves, some marginal seas and most ice-covered regions, shipboard data are used in

these regions (Schmidtko et al., 2013). The sampling periods of shipboard, Argo and
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Figure 2.6: MIMOC data distribution (a) Temporal distribution of CTD profiles from
WOD2009 (white), Argo and ITP profiles (red). Spatial distribution for each grid box
of (b) Argo and ITP profiles, (c) WOD2009 profiles and (d) Argo, ITP and WOD2009
profiles combined. Adapted from Schmidtko et al. (2013).

ITP are very different. Argo provides a large amount of data for the open ocean during

2007-2011, while ITP data in shelf regions and high-latitudes are limited during 2007-

2011 and more representative of the ocean state before 2000 (Schmidtko et al., 2013).

2.2.4 World Ocean Circulation Experiment-Argo Global

Hydrographic climatology (WAGHC)

WAGHC is a climatology with a 1/4◦ spatial resolution resolving the annual cycle of

temperature and salinity on a monthly basis (Gouretski, 2018). The nominal

climatological period is 1985-2016, although they relax back to the older data when

no data from 1985-2016 window (mostly in high latitudess and several marginal seas)

are available (Gouretski, 2018). WAGHC is an update of the WGHC climatology

(WOCE Global Hydrographic Climatology) (Gouretski and Koltermann, 2004), using

the improved data from the Argo programme. It has two versions of the climatology,

with spatial interpolation performed on isobaric and isopycnal surface respectively.

As the mixing of water mass in the real ocean takes place along isopycnals, averaging

along isobaric surface does not reflect the process and can produce artificial water
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Number of profiles % all

Instrumentation type

OSD 2098823 44.452

CTD 971222 20.570

PFL 1368880 28.992

APB 282593 5.985

Data source

WOD13 4665330 98.810

AWI, Bremerhaven, Germany 50848 1.077

Canadian institutions 5340 0.113

Table 2.3: Instrumentation types and data sources of the WAGHC climatology.
Adapted from Gouretski (2018), their table.1.

masses. We compared SST and SSS in isobarically and isopycnally averaged versions

and found that different version does not make any difference to the sea surface water

characteristics. In this Chapter we use the isopycnal version of WAGHC.

WOD13 and its update in January 2017 serve as the main data source for WAGHC

(Fig. 2.3). OSD, CTD, PFL and APB were used. The APB data were only used in

the Southern Hemisphere where data coverage is poor. XBT and MBT were not used

as temperature and salinity are required for the spatial interpolation on isopycnal

surfaces (Gouretski, 2018). WAGHC added 50848 profiles from Alfred Wegener

Institute (AWI), Bremerhaven and 5340 profiles from Canadian institutions to the

profiles from WOD13 (Boyer et al., 2013), which improves the database for northern

polar regions significantly.

The WAGHC differs from WOA13 in the interpolation method (isopycnal versus

isobaric averaging) and database (WAGHC includes additional 4 years new Argo

profile and hydrographic data from the North Polar regions). The WAGHC

climatology has better representation of the thermohaline structure both in the data

poor polar region and some data abundant regions (e.g. Baltic sea, Caspian sea, Gulf

of California, Caribbean Sea and the Weddell sea) compared with WOA13, which

produces unrealistic salinity and temperature in these regions (Gouretski, 2018).
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2.2.5 Hadley Centre sea ice and SST data (HadISST)

The Hadley Centre sea ice and SST data set version 1 (HadISST1) is a combination of

monthly global fields of SST and sea ice concentration on a 1◦ latitude-longitude grid

from 1870 to date (Rayner et al., 2003). HadISST1 was developed at the Met Office

Hadley Centre and improves upon previous global sea ice and SST (GISST) dataset.

The SST fields in HadISST1 have more uniform variance through time and better

month-to-month persistence than those in GISST (Rayner et al., 2003). HadISST

includes both in situ SSTs and satellite-based SSTs. In situ data are taken from

individual ship observations from the Met Office Marine Data Bank (MDB) and the

Comprehensive Ocean-Atmosphere Data Set (COADS). Satellite based SSTs are from

the advanced very high resolution radiometer (AVHRR) (Rayner et al., 2003). Satellite

SST data are based on measuring electromagnetic radiation that left the ocean surface

and transmitted through the atmosphere. Such data have to be calibrated using in situ

observations. The primary purpose of HadISST1 is to force atmospheric models in the

simulation of recent climate and to evaluate coupled atmosphere-ocean models (Rayner

et al., 2003). The spatial resolution of HadISST1 is not high enough to resolve very

localized SST features or the meanderings of the Gulf Stream (Rayner et al., 2003).

2.3 How to define seasonal extrema?

This thesis is concerned with the seasonal cycle of water properties. This section will

introduce two methods to describe the seasonal cycle. One is using a sinusoidal annual

cycle, and the other is using maximum and minimum values. Here, using SST in

WOA13 data as an example, we will compare the two methods and explain why we

choose the monthly maximum and minimum values to define seasonal extrema.

2.3.1 The sinusoidal annual cycle

The annual cycle can be assessed by fitting the monthly properties to a sine curve. The

equation is written as:
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E(i) = Acos(ω(i−∅)) + β, (2.2)

where E is the expected value of the monthly property, i is the month, β is the

annual mean value, ω is the wave frequency (here, ω = 2π/12), and A and ∅ are the

amplitude and phase of the fitted sinusoid. Phase indicates the month when value

reaches maximum.

To see how well the monthly time series can be fitted to a sinusoidal annual cycle, here

we also calculated the goodness of fit (GOF) χ2:

χ2 = 1 −
∑N

i=1(Oi − Ei)
2∑N

i=1(Oi − Ōi)2
, (2.3)

where Oi is an observed value in month i, and N is the sample size. Ōi is the mean

value of Oi. The value of GOF ranges from 0 to 1. A large value of GOF means the

observation fits the estimation well, while a small value means a poor fit.

The monthly time series is fitted into a sinusoidal annual cycle by using harmonic

analysis (Bloomfield, 2004). Harmonic analysis decomposes the time series into a sum

of sinusoidal components, and the sinusoidal annual cycle obtained here is the sinusoidal

component with a 12 months length period. The original 12 months time series might

be not long enough to obtain a component with 12 months period. To obtain a better

fitting, we repeated the monthly climatological time series (N=12) 10 times to get a

longer time series (N=120) for harmonic analysis. It shows the difference between time

series with different lengths in Fig. 2.7. After repeating the SST time series 10 times,

the fitting of the sine curve in Fig. 2.7b (GOF=0.64) is better than that in Fig 2.7a

(GOF=0.60).

Examples of sine fitting for the monthly climatological SSTs at different locations are

shown in Fig. 2.8. In Figs. 2.8a-b, two SST time series at two points in the North

Pacific both have good fit to sine curves. SST has a larger amplitude of annual cycle

in the subtropical zone (at 153◦E, 36◦N) than in the tropical zone (at 166◦E, 22◦N)

(Figs. 2.8a-b). The maximum observed SST in Figs. 2.8a-b occurs in September, very
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Figure 2.7: Monthly climatological SSTs (circles) and their fitted sine curves (lines) for
(a) the original time series (length=12) and (b) the time series repeating the original
time series 10 times (length=120) at point 60◦S, 90◦E from WOA13

close to the phase of their fitted sine curves (the beginning of October). The timings

of observed minimum SST in Fig. 2.8a-b are April and March respectively. Here the

GOF in Fig. 2.8b (0.86) is about the same as in Fig. 2.8a (0.85) even though the

monthly SST in Fig. 2.8b seems better fitted to the sinusoidal annual cycle. That is

because larger standard deviation makes smaller GOF according to Equation 2.3.

The sea water at 179◦E, 79◦N in the Arctic is almost frozen throughout the year except

in April when the SST peaks at -0.4 ◦C (Fig. 2.8c). The SST time series at 62◦E, 16◦N

in the Arabian Sea has a semi-annual cycle, resulting in the poor fit for the one-year

period sine curve (Fig. 2.8d). In Figs. 2.8c-d, the months of maximum observational

SST are April and June respectively, while their phases are both about one month

later. The coldest month in Figs. 2.8c-d is March. For Fig. 2.8c in the Arctic, the

coldest timing is just one month ahead of the warmest month. Figs. 2.8c-d indicates

that when time series do not have an obvious annual cycle, the one-year period sine

fitting will be poor and the phase which is expected to represent the month of maximum

observational SST can be incorrect.

It should be noticed that in some cases the observational uncertainty can lead to errors

in finding Tmax and Tmin. When the standard error is large at or near the timing of
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Figure 2.8: Monthly climatological SSTs (circles) and their fitted sine curves (lines) at
(a) 153◦E, 36◦N, (b) 166◦E, 22◦N, (c) 179◦E, 79◦N (d) 62◦E, 16◦N (star points in Fig.
2.10b). Bars on the circles are standard errors of SSTs, as described in Section 2.2.2
(circles without bars indicate no observation in the grid box of the point). Colors here
match colors of stars in Fig. 2.10. Ticks on X-axes represent the middle of each month.
Four time series have the same range for their Y-axes. The value of GOF, amplitude
and phase for each sinusoid are shown at the left upper corner. The circles with star
and cross represent maximum and minimum observed SST in 12 months respectively,
while the dashed lines are the maxima of the sinusoidal annual cycles.
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Tmax/Tmin, there can be errors in finding the timing of Tmax/Tmin, and hence errors

in Tmax/Tmin. For example, in Figs. 2.8a-b Tmin occurs in March, however, as the

SST in April has a large standard error, the timing of Tmin will be April if the SST

in April reaches its lowest value within the error bar. Consequently, the Tmin can

be smaller. When the standard error is small compared to the difference between

Tmax/Tmin and the second maximum/minimum SST, it is very unlikely to have errors

in finding Tmax/Tmin (Figs. 2.9a,b,d,e,f,i).

To define a threshold for GOF, we randomly picked 9 examples with GOF value

varying from 0.1 (very bad fitting) to 0.9 (very good fitting): GOF=0.1 at 150.125◦E,

0.125◦S; GOF=0.2 at 150.125◦E, 1.125◦N; GOF=0.3 at 147.875◦E, 5.125◦N;

GOF=0.4 at 155.875◦E, 5.125◦S; GOF=0.5 at 155.875◦E, 7.375◦N; GOF=0.6 at

156.375◦E, 10.125◦N; GOF=0.7 at 65.125◦E, 1.125◦N; GOF=0.8 at 150.125◦E,

10.125◦S; GOF=0.9 at 150.125◦E, 29.125◦N (Fig. 2.9). Here, we choose the GOF=0.5

as the threshold. The areas with GOF larger than 0.5 have well fitted annual cycle of

SST, and their amplitudes and phases can be trusted to study seasonal extrema. In

areas where GOF<0.5, the difference between the timings of observed maximum SST

and fitted sinusoid is larger than one month, and therefore sinusoidal annual cycle is

not applicable to be used for detecting the SST seasonal extrema and their timings.

The maps for amplitude and phase of the fitted sinusoids, and its GOF in SST are

shown in Fig. 2.10. The amplitude of SST sinusoids is largest in the western North

Pacific and Atlantic, which can be over 10◦C near the western boundary (Fig. 2.10a).

Compared with the northern hemisphere, the amplitude in the southern hemisphere is

much smaller (generally less than 5◦C), due to less land in the southern hemisphere.

SST of the northern hemisphere mainly reaches maximum in September and SST of

the southern hemisphere mainly reaches maximum in March (Fig. 2.10b).

SST seasonal variabilities in global ocean do not all comply with sinusoidal annual

cycles. It has been illustrated that the mid latitudes is dominated by sinusoidal annual

cycle, while in equatorial and polar region sinusoidal annual cycle can only explain a

low percentage to the total SST seasonal variance (Trenberth, 1983; Yashayaev and

Zveryaev, 2001). Here we investigate how well observed monthly SST time series can
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Figure 2.9: Monthly climatological SSTs (circles) and their fitted sine curves (lines)
with different GOF value. (a) GOF=0.1, at 150.125◦E, 0.125◦S, (b) GOF=0.2, at
150.125◦E, 1.125◦N, (c) GOF=0.3, at 147.875◦E, 5.125◦N, (d) GOF=0.4, at 155.875◦E,
5.125◦S, (e) GOF=0.5, at 155.875◦E, 7.375◦N, (f) GOF=0.6, at 156.375◦E, 10.125◦N,
(g) GOF=0.7, at 65.125◦E, 1.125◦N, (h) GOF=0.8, at 150.125◦E, 10.125◦S and (i)
GOF=0.9, at 150.125◦E, 29.125◦N. Bars on the circles are standard errors of SSTs, as
described in Section 2.2.2 (circles without bars indicate no observation in the grid box
of the point). Ticks on X-axes represent the middle of each month. Time series (a-h)
have the same range for their Y-axes. The value of GOF, amplitude and phase for
each fitted sinusoid are shown on each panel. The circles with star and cross represent
maximum and minimum observed SST in 12 months respectively. The dashed lines
indicate the maxima of the sinusoids.
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Figure 2.10: (a) Amplitude, (b) Phase, and (c) GOF of fitted sinusoids for monthly
climatological SST from WOA13. The stars are the points for SST time series in Fig.
2.8.

be fitted to a sinusoidal annual cycle and calculated the GOF. It is found that the

locations with bad fit (Fig. 2.10c) are roughly consistent with locations of Yashayaev

and Zveryaev (2001) with low contribution of the sinusoidal annual cycle to the total

variance of SST (Fig. 2.11). The examples of bad fitting can be seen in Figs. 2.8c-d.

In the polar regions, North Indian Ocean and areas near the equator the value of GOF

is poor (less than 0.5) (Fig. 2.10c).
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Figure 2.11: Contribution of the annual cycle to the total variance of SST, in percent.
Adapted from Yashayaev and Zveryaev (2001).

Examples of sine fitting for the monthly climatological SSSs at different locations are

shown in Fig. 2.12. In Fig. 2.12a, the SSS time series at 143.375◦E, 31.875◦N in the

North Pacific have good fit to a sine curve. The timing of SSS maximum is close to

the phase of the fitted sine curve, with a difference less than one month. At the other

point (166.125◦E, 22.125◦N) in the North Pacific, the SSS time series (Fig. 2.12b) does

not have an annual cycle similar to the one in Fig. 2.12a. It looks more random and

has a bad fit to the one-year period sine curve. At 65.125◦E, 14.125◦N in the Arabian

Sea, SSS has semi-annual cycle, which leads to a poor fit for the one-year period sine

curve (Fig. 2.12c). The phase is about 2 months earlier than the timing of maximum.

At 179◦E, 79◦N in the Arctic, SSS in August is only about 24, much less than the

SSS (about 30) in other months. That may indicate large uncertainty of SSS in the

Arctic, although the standard error is unavailable at that point. The phase there is

three months earlier than the timing of SSS maximum.

2.3.2 Maximum and minimum values

Since not everywhere in the world ocean can fit a yearly-period sine curve very well,

we used another method to define seasonal extrema: finding the maximum or

minimum value in the climatological monthly time series, and then the month of

maximum or minimum value is the timing of seasonal extrema. This method can be

applied everywhere in the world ocean even in areas with bad fitting for sinusoidal
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Figure 2.12: Monthly climatological SSSs (circles) at (a) 143.375◦E, 31.875◦N, (b)
143.375◦E, 25.625◦N, (c) 65.125◦E, 14.125◦N (d) 179◦E, 79◦N. Bars on the circles are
standard errors of SSSs.
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annual cycles.

Hereafter, Tmax refers to maximum temperature from the climatological monthly

temperature, Tmin refers to the minimum temperature. The timings of Tmax and Tmin

represent summer and winter respectively. Similarly, Smax and Smin refer to

maximum and minimum salinity. The timing of Smax is the saltiest season, while the

timing of Smin is the freshest season.

The peak-to-peak annual amplitude is calculated by Tmax minus Tmin, hereafter Tcycle.

Fig. 2.13 shows Tcycle at the surface, 100 m and 700 m. Here 100 m represents the

subsurface and 700 m below the thermocline. Tcycle decreases with depth. At surface,

SST has the largest Tcycle in the subtropical area and the smallest seasonal cycle in polar

areas and equatorial area. Tcycle in the western-central Pacific and western Atlantic can

be larger than 10◦C (see Fig. 2.13a), while the range there decreases to less than 5◦C

at 100 m (Fig. 2.13b). At 100 m, the equatorial areas in Indian Ocean, eastern Pacific

and western Atlantic have larger Tcycle than higher latitudes (Fig. 2.13b). That may

be related to the seasonal cycle of MLD. The mixed layer in these areas is deeper than

100 m in winter (Kara et al., 2003), which allows the surface heat to penetrate to more

than 100 m. In summer, the global mixed layer is shallower than 100 m (Kara et al.,

2003), the water at 100 m is below the mixed layer thus it is hard to be reached by the

surface heating. At 700 m, Tcycle becomes much smaller and most of the world ocean

has Tcycle less than 1 ◦C (Fig. 2.13c). This is due to the fact that sea water below

thermocline can hardly be influenced by seasonal atmospheric processes. In this thesis,

we will focus on the sea surface water which has the most significant seasonal cycle.

The global spatial pattern is similar for Tcycle (Fig. 2.13a) and for the amplitude of

the fitted sinusoidal annual cycles (Fig. 2.10). If the annual cycle can be well fitted

to a sinusoid, Tcycle is twice as large as the amplitude of the sinusoidal annual cycle.

Therefore, to make the figures comparable, the range of color bar in Fig. 2.13 is twice

as large as that in Fig. 2.10a. It can be seen that in the polar regions and equatorial

regions where GOF is poor (Fig. 2.10c), the amplitude based on sinusoidal annual

cycle (Fig. 2.10a) is underestimated compared with the real amplitude: 1/2*(Tmax-

Tmin) (Fig. 2.13a).
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Figure 2.13: Tcycle of monthly climatological sea water temperature from WOA18 (a)
at surface, (b) at 100 m, and (c) at 700 m. The range of the color bar is twice as large
as that in Fig. 2.10a.
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The peak-to-peak annual amplitude of SSS is calculated by Smax-Smin, hereafter Scycle.

Large Scycle can be seen in the polar regions, the tropical regions under the ITCZ and

SPCZ, and near coastal regions affected by river runoff (Fig. 2.14). Sea ice formation

and melting can be responsible for the large Scycle in the polar regions. Freshwater

sources from rainfall and river runoff are the main causes of the seasonal variation of

SSS in the tropical and coastal regions (Yu et al., 2021).

Figure 2.14: Scycle of monthly climatological sea surface water in WOA18.

Compared with using the sinusoidal annual cycle to describe seasonal cycle, using the

seasonal maximum and minimum values does not show limitations in regions where an

annual sinusoid explains little of the total seasonal variance. The seasonal maximum

and minimum can be found whenever they occur. Therefore this thesis will use seasonal

maximum and minimum values to study seasonal cycle, and the range of seasonal cycle

will be represented by Tcycle and Scycle.

2.4 Seasonal extrema

2.4.1 Time periods to choose for WOA13 and WOA18

WOA13 provides monthly climatologies with 1/4◦ spatial resolution for time periods

1955-2012 and 2005-2012. Tmax from the 2005-2012 climatology is generally warmer

than that in the 1955-2012 climatology around the world, but the warming is not

uniform (Fig. 2.15). The warming trend of Tmax in the Atlantic Ocean is most obvious,
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compared with the Pacific Ocean and Indian Ocean. The warm difference for Tmax

larger than 1 ◦C can be seen in most subpolar North Atlantic and the western subpolar

North Pacific, while at lower latitudes it is much smaller. Using Hydrostation data,

Hallam et al. (2021) compared August-September-October SSTs (summer SSTs) over

the North Pacific in the periods of 2000-2019 and 1980-1999 and showed the largest

warm trend in the western subpolar North Pacific, which is consistent with our results

in Fig. 2.15c. It can also be noticed that at high latitudes regions in the southern

hemisphere and in the eastern North Pacific and eastern equatorial Pacific, Tmax for

2005-2012 climatology is colder than that for 1955-2012 climatology (a cooling trend).

Similarly, Turkington et al. (2019) also revealed a cooling SST trend between 1962 and

2011 in these regions. Solomon and Newman (2012) indicated a warming trend for the

1900-2010 period in the equatorial Pacific warm pool and a weak cooling in the cold

tongue, which is consistent with our analyses (Fig. 2.15c). The eastern Pacific cooling

associated with intensification of the atmospheric Walker circulation can be driven by

the warming trend in Atlantic SST (McGregor et al., 2014).

Central-eastern Pacific SST vary with the phase of the El Niño - Southern Oscillation

(ENSO). Thus climatology based on recent short period 2005-2012 can be sensitive

to the global warming trend or strong El Niño and therefore do not in general reflect

long-term climate. To let the WOA13 climatology we use better represent the ”climate

normal” instead of global warming, the time period for WOA13 was chosen to be

1955-2012. It can also make the time frames of the 5 climatologies more consistent.

WOA18 provides monthly climatologies for 1955-2017, 1981-2010 and 2005-2017. The

Tmax for climatologies of 2005-2017 and 1955-2017 (Fig. 2.16a) show a similar global

warming trend to that for climatologies of 2005-2012 and 1955-2012 in WOA13 (Fig.

2.15c), except that the warming trend in the Pacific is larger in the former. The reason

might be that time periods used for calculation of Tmax difference are different. The

warming trend dominates the central-eastern Pacific in Fig. 2.16a but not in Fig. 2.15c,

which might be related to the El Niño events in 2014-2016. As 2005-2012 climatology

from WOA13 and 2005-2017 climatology from WOA18 are based on short records, they

can be largely influenced by natural variability like El Niño and lead to different trends.

Therefore Tmax in those climatologies is sensitive to natural variability because of their
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Figure 2.15: (a) Tmax at sea surface from the WOA13 climatology for 2005-2012 (b)
Tmax at sea surface from the WOA13 climatology for 1955-2012 (c) Difference between
Tmax for 2005-2012 and 1955-2012, which is (a) minus (b).

short time periods.

The difference between Tmax for climatologies of 1981-2010 and 1955-2017 (Fig. 2.16b)

is generally less than 0.2◦C, which means their different time periods do not make a big

difference in Tmax. That might due to less significant warming in 1981-2010 compared

to 2005-2017. Considering both the time consistent with other observations and the

representation of ”climate normal”, 1981-2010 was chosen for WOA18.
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Figure 2.16: (a) Difference between Tmax at sea surface from the WOA18 climatology
for 2005-2017 and 1955-2017, (b) Difference between Tmax for 1981-2010 and 1955-2017.

2.4.2 Seasonal extrema of 5 observational climatologies

Sea surface temperature

Fig. 2.17 shows Tmax maps at the sea surface from the five climatologies and the

corresponding month of Tmax. High Tmax in the tropics is due to net heating, and low

Tmax at high latitudess is due to net cooling. The Tmax at surface on the western side

is generally warmer than the Tmax on the eastern side because of the boundary

currents. The western boundary current carries warm water from lower latitudes to

higher latitudes, while the eastern boundary current carries cold water from higher

latitudes to lower latitudes. Upwelling in the eastern boundary current regions can

also contribute to the lower temperature there. The cold tongue in the eastern

equatorial Pacific can be explained by upwelling due to the divergence of Ekman

transport associated with trade winds.



Chapter 2: Observational climatologies and methodology 61

Figure 2.17: (a-e) Tmax and (f-k) timing of Tmax at sea surface in 5 observational
climatologies: (a, f) WOA13, (b, g) WOA18, (c, h) MIMOC, (d, j) WAGHC and (e, k)
HadISST.
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Tmax at the surface occurs at the end of the warming season. SST mainly peaks in

August or September in the northern hemisphere, while in the southern hemisphere

it mainly peaks in February or March (Fig. 2.17). In areas where SST cannot be

well represented by a sinusoidal annual cycle (poor GOF) (Fig. 2.10c), the timing of

Tmax is more varied (Fig. 2.17). In the equatorial region and northern Indian Ocean,

timing of Tmax varies from March to July. In the north of Australia, Tmax occurs in

November, December and January. In the Indian Ocean, the timing of Tmax changes

from February to June further north until the Arabian Sea.

As seen in Figs. 2.17g, 2.10b, the timing of Tmax is one month earlier than the phase

of SST annual cycle in many regions at mid-high latitudes. However, the real timing

difference between the max-min method and the sinusoid method should be half a

month instead of one month, and this half a month systematic difference might be due

to the limited temporal resolution of SST data. Taking two SST monthly time series in

those regions (Figs. 2.8a-b) as examples, we found that the phase of SST annual cycle

is early October while the timing of Tmax is mid-September (ticks on X-axes represent

the middle of each month). Because of the one-month interval of the color bar, the

one-month difference exists in Figs. 2.17g, 2.10b. If the temporal resolution of SST

data can be improved from one-month to half a month, there will be no systematic

timing differences between the two methods, because the phase of SST annual cycle

and the timing of Tmax will both be early October in Figs. 2.8a-b.

Fig. 2.18 shows the maps of Tmin. The equatorial cold tongue is obvious in the Pacific,

extending westward from the eastern boundary. There are sharp fronts with Antarctic

Circumpolar Current (ACC) and western boundary currents (Gulf Stream, Kuroshio

current and Brazil current). In most of the northern hemisphere, Tmin at surface occurs

in February or March. In the tropical Pacific and Indian Ocean, the timing of Tmin can

be as early as January and December. In the southern hemisphere, Tmin occurs mainly

in August or September. At the cold tongue in the equatorial Pacific, timing of Tmin

is different from the surrounding regions due to the upwelling. That is because below

the surface the timing of seasonal extrema are delayed as much as two months relative

to the surface (Talley, 2011).
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Figure 2.18: (a-e) Tmin and (f-k) timing of Tmin at sea surface in 5 observational
climatologies (WOA13, WOA18, MIMOC, WAGHC and HadISST).
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The time series of SST can be unrealistic from the climatologies in the polar regions,

here two points were taken in the Weddell Sea as examples. At the point near the tip

of Antarctic Peninsula (Fig. 2.19a), SST from WOA18 and WOA13 peaks in July (the

austral winter) and SST in July from WOA18 and WOA13 is over 2 ◦C warmer than

its adjacent months (June and August) (Fig. 2.19b), both of which are very unlikely

to occur in reality. From the map of data distribution from WOA18, there are no data

in the coastal Weddell Sea in July (Fig. 2.19a). The areas marked in white contain no

sampling data to construct the SST field, and thus the values there can be unrealistic.

At the more southern point (Fig. 2.19a), some climatologies do not have complete 12

month data which may be related to the existence of sea ice. HadISST only has SST in

December-March, while SST in July-December is missing from WAGHC (Fig. 2.19c).

The SST time series in the Weddell Sea (Fig. 2.19b-c) remind us that extra attention

should be paid when using data in polar areas from observational climatologies.

Therefore, when calculating seasonal extrema of SST and their timings, points

without complete 12 months data are eliminated. Because HadISST does not have

winter SST data in the polar regions (Fig. 2.20), there is blank space in the maps of

Tmax and Tmin (Figs. 2.17e, 2.18e).

Sea surface salinity

The spatial distribution of Smax (Figs. 2.21a-d) is influenced by precipitation,

evaporation, runoff and ice freezing and melting. The salinity of the surface water is

at a maximum in subtropical latitudes, where evaporation exceeds precipitation. Due

to the difference of evaporation minus precipitation, the North Atlantic is the most

saline ocean at the surface, and the North Pacific is the least saline, which explains

why deep water formation occurs in the North Atlantic rather than in the North

Pacific (Craig et al., 2017). Smax in the western Indian Ocean is larger than that in

the eastern Indian Ocean, which results from strong evaporation in the Arabian Sea

and considerable river run-off in the Bay of Bengal (Talley, 2011). In most areas of

the northern hemisphere, SSS peaks in March or April, and in the southern

hemisphere peaks in September or October (Figs. 2.21e-h). In the Antarctic Smax
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Figure 2.19: (a) WOA18 data distribution of SST in July in the Weddell Sea. The time
series of SST from 5 observational climatologies (WOA13, WOA18, MIMOC, WAGHC
and HadISST) at (b) the red asterisk and (c) the red square.
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Figure 2.20: Tmin at sea surface in HadISST in the Antarctic.

occurs during August-November, in the Arctic Smax occurs during April-June. In the

equatorial Pacific and Atlantic, timing of Smax is dominated by April-July when

evaporation minus precipitation peaks.

Smin has the same global pattern with Smax (Figs. 2.21, 2.22), and they are both

consistent with the pattern of annual mean evaporation minus precipitation (Trenberth

et al., 2007). Smin is lower at the ITCZ, which is due to the high precipitation. Like

SST, SSS has strong gradient across the ACC and western boundary currents (Gulf

Stream, Kuroshio current and Brazil current). Smin in the Southern Ocean mainly

occurs in January-February when sea ice melts in the austral summer. The timing

distribution of Smax and Smin is not as zonal as Tmax and Tmin. It varies in the Pacific

and Atlantic Ocean from west to east.

There are differences between climatologies for Tmax, Tmin, Smax, Smin and their

timings. The spatial patterns and amplitudes are similar but not identical between

climatologies. The data coverage is not complete in some climatologies, for example,

there are no data from WAGHC in Hudson Bay and no data from HadISST in

Hudson Bay and the polar regions.



Chapter 2: Observational climatologies and methodology 67

Figure 2.21: (a-d) Smax and (e-h) timing of Smax at sea surface in (a,e) WOA13, (b,f)
WOA18, (c,g) MIMOC and (d,h) WAGHC.

2.4.3 Difference of the seasonal extrema between observational

climatologies

Sea surface temperature

The maximum difference between any two of the five observational climatologies

(WOA13, WOA18, MIMOC, HadISST and WAGHC) for Tmax and Tmin is typically
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Figure 2.22: (a-d) Smin and (e-h) timing of Smin at sea surface in (a,e) WOA13, (b,f)
WOA18, (c,g) MIMOC and (d,h) WAGHC.

about 1◦C (Fig. 2.23). The maximum difference in Tmax is larger in the northern

hemisphere than in the southern hemisphere, and the difference of more than 2◦C

occurs in the Arctic, North Pacific and North Atlantic. One possible reason for these

differences is the different time periods between climatologies. Consistent with the

larger Tmax difference between climatologies in the northern hemisphere, the warming

trend of Tmax in WOA13 is also stronger in the northern hemisphere than in the

southern hemisphere (Fig. 2.15). The large Tmax difference in the Arctic may be due
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to limited observations there (Fig. 2.19). The maximum difference between

climatologies in the Arctic (except for the Russia coast) is smaller in Tmin than in

Tmax (Fig. 2.23a-b), which may be explained that Tmin there in all the climatologies

is close to the freezing point (Fig. 2.18). The five observational climatologies have

larger differences in Tcycle than in Tmax and Tmin (Fig. 2.23), because the differences

in Tcycle can be the sum of the differences in Tmax and Tmin.

In regions with strong temperature gradient, both coarse horizontal resolution and

averaging on isobars can smooth the gradient. The areas with large differences between

climatologies (e.g. Gulf Stream, Brazil Current and ACC) (Fig. 2.23) are consistent

with the areas with strong SST gradient (Fig. 2.24), which may indicate that the

differences between 5 observational climatologies are caused by the different horizontal

resolutions.

To avoid the differences from different time periods, we chose the three climatologies:

WOA18, HadISST and WAGHC and calculated their differences for Tmax, Tmin and

Tcycle (Fig. 2.25). These climatologies have time periods of 1981-2010 or close to 1981-

2010 (table. 2.1), whereas MIMOC only reflects the 2007-2011 modern ocean state and

WOA13 is an old version of WOA18 with a time period of 1955-2012. Therefore, we

decided to use only WOA18, HadISST and WAGHC to study the uncertainty of SST

in observational climatologies.

The maximum differences between the three climatologies (WOA18, HadISST and

WAGHC) (Fig. 2.25) are smaller than between the 5 climatologies (Fig. 2.23), but

there are still large differences in the coastal regions, Weddell Sea, Hudson Bay, ACC,

Gulf stream and Humboldt Current. Here, we set two requirements to find regions

with high uncertainty. The first requirement is that the maximum difference in Tmax

or Tmin between the three climatologies is larger than 2◦C (2◦C contribute to about

0.5 kg/m3 density); the second requirement is that the values for all 12 months are

not complete. Grid points meet either of the two requirements are considered

uncertain (Figs. 2.25a-b). All the uncertain grid points for Tmax and Tmin are masked

by red dots in Fig. 2.25a-b. For Tcycle, the grid points are considered uncertain when

they are uncertain in either Tmax or Tmin, and hence the mask for Tcycle is the
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Figure 2.23: The maximum difference between any two of the five observational
climatologies (WOA13, WOA18, MIMOC, HadISST and WAGHC) for (a) Tmax, (b)
Tmin and (c) Tcycle at surface.

.
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Figure 2.24: Maximum of the annual mean maximum spatial gradient of SST. Red
circles indicate areas with large SST gradient. Adapted from González-Haro et al.
(2019).

.

combination of masks in Tmax and Tmin (Fig. 2.25). All these grid points with large

uncertainty will be excluded from the following model assessment. 4%, 3% and 4% of

the ocean’s surface area is excluded for Tmax, Tmin, and Tcycle respectively.

The observational climatologies with the maximum and minimum SST values are shown

in Fig. 2.26. It can be seen that in most of the world ocean WOA18 has the coldest

Tmax and Tmin. HadISST has the warmest Tmax and Tmin.

Sea surface salinity

The amplitude of salinity difference between WOA18 and WAGHC is shown in Fig.

2.27. The color bar for salinity is comparable to the color bar for temperature in

Figs. 2.23, 2.25, considering their contributions to density of sea water. Here we only

compare salinity in WOA18 and WAGHC but not in MIMOC and WOA13, because

the time periods of MIMOC and WOA13 are inconsistent with other climatologies. In

most of the ocean, the maximum salinity difference is below 0.5, while in some areas

of the Arctic it is larger than 0.5. Similar to the masks for Tmax and Tmin, there

are also masks for Smax and Smin. Grid points where the maximum differences in

Smax or Smin between the two climatologies (WOA18 and WAGHC) is larger than 0.5,

and grid points which do not have values for all 12 months in both climatologies are

excluded for the following model assessment. Here, 0.5 is used as the threshold because

the contribution of 0.5 salinity to density is comparable to that of 2◦C temperature,
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Figure 2.25: The maximum difference between any two of WOA18, HadISST and
WAGHC for (a) Tmax, (b) Tmin and (c) Tcycle at surface. Red dots indicate where the
maximum differences are larger than 2◦C. Black dots indicate where there is no values
for all 12 months for at least two climatologies.

.
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Figure 2.26: The observation product among WOA18, HadISST and WAGHC with (a)
maximum value for Tmax, (b) minimum value for Tmax (c) maximum value for Tmin

and (d) minimum value for Tmin at surface.
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which was used as the threshold for the SST uncertainty mask. The difference for Smin

between the two observational climatologies is larger than that for Smax, especially in

some coastal areas, such as the Maritime Continent, Caribbean, Bay of Bengal and

Gulf of Guinea.

Figure 2.27: The amplitude of differences between WOA18 and WAGHC for (a) Smax

and (b) Smin. Red dots indicate where the maximum differences are larger than 0.5.
Black dots indicate where there are no values for all 12 months for the two climatologies.
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In the Arctic, the difference of SSS between WOA18 and WAGHC is more than 5 in

some areas (Fig. 2.28). The difference is much larger in Smin than in Smax. The

large salinity difference between the two climatologies in the Arctic is likely to due to

the unrealistic salinity in WOA18. As an old version of WOA18, WOA13 produced

unrealistically high salinities exceeding 36 and much lower salinities compared with

WAGHC in the Arctic Ocean (Gouretski, 2018). Gouretski (2018) attributed part of

the salinity difference between WOA13 and WAGHC to the much poorer WOA13 data

base in the Arctic compared with WAGHC.

Figure 2.28: The difference between WOA18 and WAGHC (WOA18-WAGHC) for (a)
Smax and (b) Smin.

Similar to Fig. 2.26, Fig. 2.29 shows the climatologies with maximum or minimum

values for Smax and Smin. For most of the Atlantic Ocean and equatorial Pacific,
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SSS is saltier in WAGHC than in WOA18 for both Smax and Smin. For most of the

North Pacific, SSS is saltier in WOA18 than in WAGHC for both Smax and Smin. One

possible reason is that WAGHC and WOA18 cover different time periods (see table.

2.1), and there is SSS changes in response to global change (Durack et al., 2012). Based

on WOA01, Durack et al. (2012) revealed Smean change for 1950-2000 (Fig. 2.30). The

regions where WAGHC has saltier Smax and Smin (Fig. 2.29) are consistent with the

regions with intensifying SSS over 1950-2000 (Fig. 2.30).

Figure 2.29: The climatologies between WOA18 and WAGHC with (a) maximum value
for Smax, (b) maximum value for Smin.

2.4.4 Difference in the timing of seasonal extrema between

observational climatologies

The timings for Tmax and Tmin are different in the five observational climatologies. The

maximum timing differences are less than one month in most of the world ocean, except

for the polar regions and the equatorial regions, where the phase differences can be as

large as 6 months (Fig. 2.31). The grid points are considered as uncertain (masked in
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Figure 2.30: Observed Smean change over 1950-2000, adapted from Durack et al. (2012).

Fig. 2.31) when their timing difference is larger than 2 months or the values for all 12

months are not complete for at least two climatologies.

In the polar regions, the large timing differences may be due to data scarcity there.

Lack of observations means differences in gridding and/or interpolation method may

produce disproportionately large changes in calculated values compared with regions

which are better observed. In addition, Tmin is approximately constant for several

months, thus any small change in calculated Tmin (due to differences in gridding,

interpolation method, or inclusion of different datasets) may lead to large changes in

the month of Tmin. In the equatorial regions, there is no strong driver of seasonality

and thus little difference between Tmax and Tmin. Any small changes (due to

differences in gridding, interpolation method, or inclusion of different datasets) may

alter the timing considerably, which may explain the large timing differences in the

equatorial regions.

The timing differences for Smax and Smin between the climatologies are much larger

than those for Tmax and Tmin, and the patterns of the timing differences for SSS (Fig.

2.32) are much more complicated than for SST (Fig. 2.31). Most of the world ocean

is covered by the uncertainty mask, which indicates that the timing of the seasonal

cycle of SSS from climatologies is highly uncertain. The few regions not covered by

uncertainty mask are mostly consistent with regions where there is a large standard

deviation (more than 0.4) of monthly mean SSS in Yu et al. (2021), suggesting that

the climatologies are likely unable to capture the small seasonal variability of SSS.
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Figure 2.31: The maximum difference between any two of WOA18, HadISST and
WAGHC for (a) timing of Tmax and (b) timing of Tmin. The dots indicate area where
the maximum differences are larger than 2 months.

2.5 Conclusion

This chapter is a preparation for the model evaluation in the following two chapters.

In this chapter, we compared two different methods to define seasonal extrema: fitting

a sinusoidal annual cycle and finding the monthly maximum and minimum values.

Fitting a sinusoidal annual cycle cannot be applied everywhere in the world ocean, as

some regions are not dominated by an annual sinusoid (for example, the polar regions

and monsoon regions). However, the monthly maximum and minimum values can

always be defined in the world ocean, even in regions with non-sinusiodal annual cycle.

Therefore, in this thesis seasonal extrema were defined as the maximum and minimum
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Figure 2.32: The maximum difference between WOA18 and WAGHC for (a) timing of
Smax and (b) timing of Smin. The dots indicate area where the maximum differences
are larger than 2 months.

values from the monthly climatology, whichever months they occur in.

Five observational climatologies (WOA13, WOA18, MIMOC, WAGHC and HadISST)

were compared in this chapter. By calculating the maximum differences between the

climatologies, the regions with large differences were found. For those regions, extra

attention should be paid when choosing a climatology for model evaluation. The

uncertainty of the climatological data can affect the model evaluation when a

climatology is chosen as a reference to assess model output. In these areas with large

difference between climatologies, it is hard to say whether the difference between

model and climatology represents a real bias in the model, or it is just from the

uncertainty of the climatology.
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For Tmax and Tmin, there are more than 2◦C differences between climatologies in

regions with strong SST horizontal gradient (e.g. Gulf Stream, Kuroshio Extension,

Brazil Current, ACC and coastal upwelling regions), which may be due to different

horizontal resolution in climatologies. Large differences also exist in the polar regions,

most likely because of limited observation in ice-covered regions. In the Antarctic,

some climatologies do not have values for all 12 months or have unrealistic SST values

in austral winter.

To exclude the regions with high uncertainty, masks of high uncertainty were suggested,

which cover regions with large differences (more than 2◦C for SST and 0.5 for SSS)

between climatologies or do not have values for all 12 months. The masks will be used

to exclude grid points with high uncertainty for model assessment in the following two

chapters.

In this thesis, we choose WOA18 with high uncertainty regions excluded as a standard

for the following model evaluations. World Ocean Atlas is a widely used observation

dataset. WOA13 was used for climate studies, ocean model initialization and model

evaluation in CMIP5. As the newest version of World Ocean Atlas, WOA18 has a fine

horizontal resolution (0.25◦×0.25◦) and a time period of 1981-2010 which represents the

”climate normal” well. WOA18 is also the latest released product and with the largest

number of profiles, among the five climatologies. In the next chapter, the seasonal

cycle of sea surface water characteristics in HiGEM will be assessed against the WOA18

climatology, and the masks will be used to exclude regions of high uncertainty.



3

Seasonal cycle of sea surface water

characteristics in HiGEM

3.1 Introduction

SST and SSS set the water mass properties below the surface when subduction brings

surface water into the ocean interior in winter. To have accurate projection of

intermediate and deep water, it is necessary for climate models to deliver accurate

projections of seasonal cycle of SST and SSS. This chapter will discuss SST, SSS, sea

surface density (SSD) and MLD together, as SST and SSS together determine SSD,

and then SSD together with vertical stratification determine MLD (that is the depth

to which surface water will sink).

When starting the model evaluation work, the CMIP6 model output was not available,

and hence here we start by comparing WOA18 to a CMIP5 model - HiGEM. HiGEM has

a horizontal resolution of 0.83◦ latitude × 1.25◦ longitude in the atmosphere, and 1/3◦×

1/3◦ in the ocean (Shaffrey et al., 2009). The high horizontal resolution in the ocean

means that eddies can be represented (at least partially). The Gent and McWilliams

parameterization (Gent and Mcwilliams, 1990) is not used in HiGEM because it could

cause low eddy variability and front erosion in the model. The ocean model has 40

unevenly spaced levels in the vertical with enhanced resolution near the surface, which

enables the mixed layer and air-sea interaction processes to be better resolved. The

evaluation of HiGEM in Shaffrey et al. (2009) is about its control run. The ocean

initial conditions used the potential temperature and salinity in September from the

1/4◦ World Ocean Atlas 2001 (WOA2001). In Shaffrey et al. (2009), HiGEM were
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run for 70 years from the initial conditions and the spin-up took 20 years. In this

chapter, we will use the HiGEM historical run over 1981-2010 and do the evaluation

by comparing with WOA18 observational climatology averaged over 1981-2010.

In this chapter, HiGEM will be used as an example to develop techniques for further

evaluation of CMIP6 models. The evaluation of HiGEM in this chapter is a feasibility

study before we start assessing SST seasonal extrema in CMIP6 models in Chapter

4. Here, we choose HiGEM because it is a high resolution model and it was readily

available and well documented (Shaffrey et al. (2009) had assessed the mean state of

SST and SSS in HiGEM). We will evaluate the seasonal extrema of SST and SSS, and

their timings in HiGEM, from a global perspective.

We will then focus on specific regions and investigate monthly time series of SST, SSS,

SSD and MLD for individual points which are chosen as representative of the specific

regions. The points A-N include the regions where there are significant SST or SSS

biases and some of them are related to water mass formation. The point A is linked to

NPIW formation; the point I is linked to Subantarctic Mode Water; the points L-M are

linked to Antarctic Bottom Water (AABW); the point K is linked to North Atlantic

Deep Water (NADW); the point N is linked to Antarctic Intermediate Water (AAIW).

There are some water mass formation regions missing from points A-M, but there

are no significant SST or SSS biases in those regions (e.g. Labrador Sea where NADW

forms, Mediterranean Sea where Mediterranean Deep water forms). Except performing

analysis for individual points, we also did monthly time series for 10◦× 10◦ boxes. The

time series for individual points and 10◦ × 10◦ boxes are similar, which indicates that

the individual points are representative of larger regions and the monthly time series

is not dominated by specific local effects.

3.2 Seasonality of sea surface water - a global perspective

3.2.1 SST and SSS seasonal extrema

Seasonal extrema of SST and SSS are obtained from WOA18 monthly climatology for

the time period 1981-2010 as described in chapter 2. Tmax and Tmin in HiGEM range
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from more than 30◦C in the tropics to freezing temperature (about -1.8◦C) in the polar

regions where ice forms (Figs. 3.1a, 3.1b). The seasonal variability of SST is obvious

at mid-high latitudes, especially in the Northern Hemisphere (e.g. Kuroshio and Gulf

Stream) where the SST annual range can be larger than 11◦C (Fig. 3.1c). Tcycle rises

from 0-1◦C at the equator to over 10◦C at mid-high latitudes, then decreases toward

the polar regions (Fig. 3.1c).

Figure 3.1: (a) Tmax (b) Tmin and (c) Tcycle in HiGEM.

By comparing Tmax, Tmin and Tcycle in HiGEM and in WOA18, we obtained their
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biases in HiGEM (Fig. 3.2). We noticed that those biases are significant compared to

the uncertainty in observation (Fig. 3.2). Specifically, most of the SST bias larger than

0.5◦C is robust, not arising from the uncertainty in WOA18.

The spatial patterns of biases are similar in Tmax and Tmin (Figs. 3.2a, 3.2b) in some

regions, which means some of the bias is seasonally independent, and can therefore be

seen as biases in Tmean (Fig. 3.3). For the North Pacific, South Atlantic, Arabian Sea

and Greenland Sea, although they have obvious bias in Tmax and Tmin, this is largely

because of biases in Tmean (Fig. 3.3); HiGEM is simulating the seasonality reasonably

well.

Even in locations where Tmax and Tmin biases have broadly similar spatial patterns,

the magnitude of biases in Tmax and Tmin can be different, so there is still a seasonal

component to the bias. For example, the warm bias in the Southern Ocean is up to

4◦C larger in Tmax than in Tmin, which may be due to biases in cloud cover (Shaffrey

et al., 2009). Underestimated cloud can lead to overestimated Qsw in equation 1.2

and thus cause an SST warm bias. In winter, cloud biases make little difference to

SST since there is little incoming solar heat flux. In summer, reduced cloud cover over

the Southern Ocean leads to enhanced incoming solar heat flux, and thus considerably

warmer SSTs.

Different magnitudes of Tmax and Tmin biases lead to biases in Tcycle (Fig. 3.2c). Tcycle

is typically 1-2◦C larger in HiGEM than in WOA18 over most of the world ocean. One

contributing factor is likely to be the overly shallow summer MLD in HiGEM (Fig.

3.4a), which will tend to intensify the increase in SST due to the summer surface heat

flux. As indicated by equation 1.1, overly small H will cause too much SST increase.

Although biases exist in winter MLD as well (Fig. 3.4b), the overall greater depth of

the mixed layer (too large H in equation 1.1) in winter will diffuse the effect of surface

heat fluxes (Qnet in equation 1.1) over a much greater volume of water, reducing the

contribution to any winter SST biases.

The spatial patterns of SSS bias are broadly similar in Smax and Smin (Figs. 3.5a, 3.5b),

and thus are mostly associated with bias in Smean rather than seasonal bias (Fig. 3.6).

This SSS bias pattern at low latitudes corresponds well with the precipitation bias in
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Figure 3.2: The differences between HiGEM and WOA18 (HiGEM minus WOA18),
for (a) Tmax (b) Tmin and (c) Tcycle. Black dots mark grid points excluded from this
analysis, as described in Chapter 2. Grey contours show where the bias is equal to
the uncertainty in WOA18 (the maximum difference between WOA18, WAGHC and
HadISST). Letters indicate the points for time series shown below.
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Figure 3.3: The differences between HiGEM and WOA2001 for Tmean (unit: ◦C).
Adapted from Shaffrey et al. (2009).

HiGEM (Shaffrey et al., 2009). As indicated by equation 1.3, excessive precipitation will

cause too large SSS decrease. Specifically, the fresh biases over Northern Hemisphere

ITCZ, South Pacific Convergence Zone (SPCZ), Maritime Continent and equatorial

Indian Ocean may be linked to excessive precipitation in these regions, while the saline

bias over the equatorial Pacific (Fig. 3.5) is likely related to the insufficient precipitation

here.

As seen above for SST, the magnitude of the bias can be different for Smax and Smin,

leading to biases in Scycle (Fig. 3.5c). However, the difference between Smax and

Smin biases is relatively small, considering their contributions to density of sea water

(Figs. 3.2, 3.5). Large seasonal variations of SSS biases are mostly found in the

tropics (perhaps due to seasonal biases in the quantity and/or geographical extent

of the tropical precipitation, and the Weddell and Ross Seas (perhaps due to poor

simulation of sea ice formation and melting).

Here the seasonal bias of MLD in HiGEM was studied. To define MLD, we followed

the method of (De Boyer Montégut et al., 2004), using 10 m as the reference depth and

use a density threshold of 0.03 kg/m3. SSD was calculated from SST and SSS using
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Figure 3.4: MLD difference between HiGEM and WOA18 (HiGEM minus WOA18) at
the time of (a) Tmax and (b) Tmin.

TEOS-10 (McDougall and Barker, 2011). It is shown that seasonality of bias is also

significant in MLD, with an overall too shallow MLD in summer and an overall too

deep MLD in winter (Fig. 3.4). The too deep winter MLD suggests intermediate and

deep waters being too deep. SST and SSS is easy to be influenced by surface fluxes of

heat and freshwater when MLD is shallow. Therefore seasonal MLD bias contributes

to the seasonal biases in SST and SSS.

3.2.2 Timing of seasonal extrema

The timing of Tmax and Tmin is well simulated in HiGEM. In most of the world ocean,

the month biases are within 1 month (Fig. 3.7). Although the timing differences

between HiGEM and WOA18 exist in the polar and equatorial regions, it is hard to
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Figure 3.5: Differences between HiGEM and WOA18 for (a) Smax, (b) Smin and (c)
Scycle. Black dots mask grid points excluded from this analysis, as described in Chapter
2.

say whether these differences are from model biases or from the observation as these

regions are mostly covered by the masks (Fig. 3.7).

Most of the world ocean is covered by the SSS uncertainty masks (Fig. 3.8), which

means the bias in the timing of Smax and Smin in these regions may origin from the
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Figure 3.6: The differences between HiGEM and WOA2001 for Smean. Adapted from
Shaffrey et al. (2009).

SSS observation uncertainty. There are only a few regions which are not masked and

show large biases, for example, tropical Indian Ocean and tropical Atlantic, with their

timing biases up to 6 months. Using a lower-order mixed layer salinity model with

satellite-derived data sets and World Ocean Atlas 2005, Yu (2011) stated that E-P

controls seasonal SSS variability in the tropical convergence zones featuring heavy

rainfall. Therefore, poor simulation of seasonal precipitation in HiGEM may cause

poor simulated SSS seasonality and thus bias in the timing of Smax and Smin.

3.3 Seasonality of sea surface water in various regions

3.3.1 North Pacific

In North Pacific, HiGEM has a SST cold bias throughout the year and there is no large

difference between Tmax bias and Tmin bias (Figs. 3.2a, 3.2b, 3.9a). Consistent with

our analysis, the cold bias can also be seen in CMIP5 and CMIP6 multi-model means

for the annual mean SST (Wang et al., 2014; Zhu et al., 2020). Burls et al. (2017) linked
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Figure 3.7: Biases in the timing of (a)Tmax and (b)Tmin in HiGEM. Black dots mask
grid points excluded from this analysis, as described in Chapter 2.

the cold bias in CMIP5 models to too small shortwave fluxes related to a positive cloud

albedo bias. Wang et al. (2014) linked the cold SST bias in CMIP5 models to intensified

westerly winds over the North Pacific, which cools the SST through enhanced latent

heat flux and southward ocean advection associated with Ekman transport. However,

this cannot explain the cold bias in HiGEM because the wind over the North Pacific

Ocean is too weak in summer (Fig. 3.10).

HiGEM has a fresh SSS bias over the North Pacific throughout the year (Figs. 3.5a,

3.5b, 3.9b). That fresh bias may be linked to the wind bias suggested by Shaffrey et al.

(2009). The easterly wind bias (too weak westerly winds in HiGEM) leads to too weak

southward ocean advection associated with Ekman transport. Too weak transport of
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Figure 3.8: Biases in the timing of (a) Smax and (b) Smin in HiGEM. Black dots mask
grid points excluded from this analysis, as described in Chapter 2.

saline water from higher latitudes contributes to a SSS fresh bias (too weak Vek leads to

too small SSS increase in equation 1.3). In addition, too weak wind over North Pacific

in HiGEM results in insufficient evaporation, which also contributes to the too fresh

SSS (too small E leads to too small SSS increase in equation 1.3).

The seasonal cycle of SST is well simulated in HiGEM (Fig. 3.9a). However, there are

biases in the seasonal cycle of SSS in HiGEM (Fig. 3.9b). The range of SSS seasonal

cycle is too large in HiGEM and the saltiest surface water occurs in March rather

than May in WOA18 (Fig. 3.9b). The bias of SSS seasonality may be caused by the

seasonality of biases in precipitation and evaporation related to wind.
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Figure 3.9: Time series for HiGEM and WOA18 at Point A in Fig. 3.2a (the North
Pacific) for (a) SST, (b) SSS, (c) SSD and (d) MLD. Blue lines and blue dashed lines
indicate the contribution of SST difference (HiGEM minus WOA18) and SSS difference
to the density difference respectively.

Figure 3.10: The June-July-August 850 hPa wind vector and wind speed differences
(m/s) for HiGEM minus ERA-40. Adapted from Shaffrey et al. (2009).
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Variations in SSD at Point A are dominated by variations in SST. The contribution of

SST bias to SSD bias is around 0.6-1.0 kg·m−3, while the contribution of SSS bias

ranges from -0.4 to -0.2 kg·m−3. The combination of cold bias and fresh bias results

in too large surface density in HiGEM over the North Pacific and the density bias is

around 0.5 kg·m−3 during December-January-February (Fig. 3.9c). The North Pacific

Intermediate Water (NPIW) originates at the sea surface in the northwest Pacific

(Talley, 2011). As the vertical movement of water masses based on density, too dense

surface water in winter may lead to too deep NPIW in HiGEM. Consistent with the

too dense surface water, MLD in February is over 40 m deeper in HiGEM than in

WOA18 (Fig. 3.9d).

3.3.2 Equatorial Pacific

HiGEM has an over-extensive and too-strong equatorial Pacific cold tongue (Figs. 3.2a,

3.2b, 3.11a), which is common in CGCMs (Mechoso et al., 1995; Latif et al., 2001; Davey

et al., 2002; Meehl et al., 2005). A saline bias also exists over the equatorial Pacific (Figs.

3.2b, 3.11b). In HiGEM, the excessively strong easterly wind stresses induce too much

upwelling of cold and salty water (Shaffrey et al., 2009), which is associated with the cold

bias and saline bias in equatorial Pacific (too large Vek leads to too large SST decrease

in equation 1.1 and too large SSS decrease in equation 1.3). The cold bias of equatorial

Pacific is slightly larger in summer than in winter (Figs. 3.2a, 3.2b, 3.11a), which may

be due to the stronger cooling effect of upwelling in summer. The too strong upwelling

leads to more steeply tilted thermocline, with the west equatorial Pacific becoming

deeper and eastern equatorial Pacific getting shallower. This might be the reason

for too shallow MLD (Fig. 3.11d). The saline bias over the equatorial Pacific (Fig.

3.5) also coincides with precipitation low bias in HiGEM (Fig. 3.12). The equatorial

precipitation bias could be a response to double-ITCZ problem in CGCMs, which is

characterized by excessive precipitation over Northern Hemisphere ITCZ, South Pacific

convergence zone, Maritime Continent and equatorial Indian Ocean (Lin, 2007). The

cold bias (Fig. 3.11a) and saline bias (Fig. 3.11b) of surface water both lead to too

dense surface water (Fig. 3.11c).
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Figure 3.11: As Figure 3.9, but for Point B in the equatorial Pacific.

Figure 3.12: The annual mean precipitation difference for HiGEM minus CMAP.
Adapted from Shaffrey et al. (2009).

The saline bias over the equatorial Pacific can be related to the cold bias (Fig. 3.2),

as the precipitation response is closely tied to the SST (Xie et al., 2010; Keeley et al.,

2012). Xie et al. (2010) indicated that tropical precipitation is positively correlated with

SST as the moist instability dominated by surface humidity follows SST change. On

the other hand, the too saline SSS over equatorial Pacific (Figs. 3.5a, 3.5b) contributes

to a weaker stratification and a deeper mixed layer, which makes the SST harder to be
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heated by the solar radiation and hence leads to a cold bias.

The seasonal cycle of SST is poorly simulated at Point B, where a semi-annual cycle

of SST exists in HiGEM but not in WOA18 (Fig. 3.11a). Although both SST and SSS

contribute to the surface density, the seasonal cycle of surface density is dominated

by the seasonal cycle of SST, as can be seen from the strong anti-correlation of SST

and density. The seasonal dense bias is mainly attributed to the seasonal cold bias

(Fig. 3.11c). The poor simulation of the SST seasonal cycle may be caused by bias

in seasonal surface radiation or seasonal easterly winds over the equatorial Pacific.

The poorly simulated SSS seasonal cycle may be attributed to the bias of seasonal

precipitation and evaporation due to the easterly wind.

3.3.3 South Pacific

In SPCZ, HiGEM has a large SSS bias (about 1) throughout the year (Figs. 3.2a,

3.2b, 3.13b). This fresh bias can be linked to the overestimated precipitation in

HiGEM (Shaffrey et al., 2009), which might be related to the bias of SPCZ. Most

CMIP3 and CMIP4 models simulate an overly zonal band of precipitation, rather

than a diagonal band extending into the southeast Pacific (Brown et al., 2011, 2012).

When HiGEM simulates a too zonal SPCZ, precipitation at Point C will be

overestimated. The fresh SSS bias at Point C shows a seasonal cycle, with larger bias

in December-January-February (Fig. 3.13b), which may be attributable to the

seasonality of SPCZ intensity. As indicated by Brown et al. (2012), SPCZ is most

intense in December-January-February, which is consistent with the larger SSS bias

during December-January-February in HiGEM (Figs. 3.13b). The too fresh SSS (Fig.

3.13b) leads to too light surface water (Fig. 3.13c).

At point C there is a cold SST bias in winter and a slight warm SST bias in summer,

which leads to too large seasonal cycle (Figs. 3.2a, 3.2b, 3.13a). Too strong

precipitation can be associated with overestimated cloud, which blocks too much

shortwave radiation, contributing to a cold bias. This is consistent with the cold SST

bias during June-November (Fig. 3.13a). In HiGEM, too shallow MLD at Point C

(Fig. 3.13d) makes upper ocean easier to be heated by summer solar radiation, which
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Figure 3.13: As Figure 3.9, but for Point C in the South Pacific.

can be linked to the too warm SST during February-March (Fig. 3.13a). Too shallow

MLD in HiGEM turns into too deep MLD in June (Fig. 3.13d), which is consistent

with the timing when SST cold bias begins (Fig. 3.13a).

3.3.4 North Atlantic

The largest cold bias in the North Atlantic SST is seen to be over 5◦C in HiGEM,

and it is accompanied by a fresh SSS bias. The contribution to density bias of cold

bias is larger than that of salinity bias, leading to a dense bias in SSD (Fig. 3.2c,

3.14c). The cold/fresh bias is attributed to the poor performance in simulating NAC

in models (Willebrand et al., 2001; Eden et al., 2004; Keeley et al., 2012). NAC has

warm/salty water of subtropical origin to the right/south and cold/fresh subpolar water

to the left/north. In models, the NAC is too zonal, turning northward near the mid-

Atlantic ridge region in model instead of the Grand Banks in reality, which leads to

the cold/fresh bias east of the Grand Banks (Figs. 3.2a, 3.2b).

There is also a warm bias close to the North American coast, owing to the poor

performance in simulating the Gulf Stream in models (Willebrand et al., 2001; Eden

et al., 2004; Keeley et al., 2012). The Gulf Stream separation in models is too far

north from the coast of the US, which causes the warm bias near the coast (Figs.

3.2a, 3.2b).
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Figure 3.14: As Figure 3.9, but for Point D in the North Atlantic.

The cold SST bias associated with NAC and the warm SST bias associated with the

Gulf Stream are both larger in winter than in summer (Figs. 3.2a, 3.2b, 3.14a), which

can be explained by the asymmetric effect of ocean heat advection on SST between

winter and summer (Liu et al., 2005). The poorly simulated paths of Gulf Stream and

NAC can cause larger bias in winter than in summer, because the ocean heat advection

of western boundary currents (Gulf Stream and NAC) in winter is more important to

balance the heat flux to the atmosphere (Liu et al., 2005).

3.3.5 Benguela upwelling region

In the Benguela upwelling region, SST warm biases exist in HiGEM and vary seasonally

(Figs. 3.2a, 3.2b). The year-round warm bias is related to the under-representation of

the stratocumulus cloud and coastal upwelling (Shaffrey et al., 2009), which is common

in CGCMs (Solomon et al., 2007; Huang et al., 2007). The lack of stratocumulus

cloud causes a warm SST bias through excessive shortwave radiation (too large Qsw in

equation 1.2), and less cooling from insufficient upwelling (too small Vek in equation

1.1) also contributes to a warm SST bias.

In the Benguela upwelling region, HiGEM has too small SST seasonal variance (Figs.

3.2a, 3.2c), and this may be linked to the too deep mixed layer (Fig. 3.4). Too deep

MLD makes SST harder to be cooled by surface heat loss and warmed by surface heat
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Figure 3.15: As Figure 3.9, but for Point E in the Benguela upwelling region.

gain, which leads to too small seasonal amplitude.

The warm SST biases in the Benguela upwelling region is smaller in summer than in

winter, with the difference being 1-2◦C (Fig. 3.2c). The warm bias in CGCM is

suggested to be caused by underestimated cloud and insufficient upwelling (Richter,

2015). The warm bias due to underestimation of stratocumulus can be amplified by

shallow mixed layer in summer (smaller H will cause larger SST increase in equation

1.1). Using satellite data, (Letelier et al., 2009) found that upwelling has the strongest

cooling effect on SST in summer, which is relevant to the peak of upwelling-favorable

wind in December and January. SSS has a seasonal saline bias, with the largest bias

occurring in August (Fig. 3.15b). The seasonal density bias is dominated by the

seasonal saline bias (Fig. 3.15c). The saline bias may be attributed to the

underestimated cloud, which leads to excessive shortwave radiation and strengthens

evaporation. Any bias in seasonal processes related to cloud (which impacts Qsw in

equation 1.1 and E in equation 1.3), upwelling (Vek in equations 1.1 and 1.3) and

MLD (H in equations 1.1 and 1.3) will contribute to the seasonal SST and SSS biases.

3.3.6 South Atlantic

The South Atlantic is dominated by fresh SSS bias in HiGEM (Fig. 3.5). The fresh SSS

bias in the tropical South Atlantic is due to the precipitation bias in HiGEM (Shaffrey
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et al., 2009). This fresh bias located in the tropical South Atlantic is common in coupled

models and it is caused by the southward shift of the Atlantic ITCZ (Harrison et al.,

2014; Liu et al., 2014). The maximum fresh SSS bias (more than 1.5) in the South

Atlantic exists in midlatitudes (Fig. 3.5). (Sato and Polito, 2014) showed that South

Atlantic subtropical mode water forms in the Brazil Current recirculation gyre on the

western side of the basin, using Argo profiles, and hence the fresh SSS bias in HiGEM

may spread into the mode water.

The SSS bias may be related to the Agulhas leakage. Using drifting buoy and float data,

Richardson (2007) demonstrated that Agulhas leakage brings saltier water from the

Indian Ocean into the Atlantic. In CCSM4 model, there is a good correlation between

upper ocean salinity in the south Atlantic and salt transport of Agulhas leakage (Weijer

and Van Sebille, 2014). When the salt transport associated with Agulhas leakage is

much weaker in models than in observations, there will exist a significant salinity bias

in midlatitudes of the South Atlantic. Holton et al. (2017) diagnosed the variability of

Agulhas leakage in 6 ocean model simulations of varying resolution, and found that high

resolution (< 1/10◦) models can capture the spatio-temporal characteristics of Agulhas

leakage, while coarser resolution models (> 1/4◦) have difficulties in representing the

Agulhas rings properties. With its 1/3◦ resolution, HiGEM may also have problems

simulating the Agulhas leakage, which may lead to the fresh bias in the South Atlantic.

Due to the large fresh bias, surface water is too light in HiGEM (Fig. 3.16c), which

contributes to a more stratified upper ocean and thus causes a too shallow mixed layer

(Fig. 3.16d).

In the South Atlantic, there is a cold SST bias of about 2◦C during July-August-

September (Fig. 3.16a), which may be related to too shallow MLD (Fig. 3.16d), as

a shallower mixed layer is easier to be cooled in winter (smaller H can lead to larger

SST decrease in equation 1.1). Eddies shed from the Agulhas Retroflection carry warm

water in Indian Ocean and move northwest-ward into the Atlantic (Richardson, 2007).

Sea surface height variability in the South Atlantic is too small in HiGEM (Shaffrey

et al., 2009), which may indicate insufficient Agulhas eddies, contributing to the cold

SST bias.
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Figure 3.16: As Figure 3.9, but for Point F in the South Atlantic.

3.3.7 North Indian Ocean

A semi-annual cycle of SST in the Arabian Sea and Bay of Bengal is due to the effects

of the monsoon (Figs. 3.17a, 3.18a). During summer monsoon, the southwest wind

brings humid maritime air into the sea; during winter monsoon, the northeast wind

brings cold continental air into the sea; during spring and fall intermonsoons the wind

is weak. Wind cools the Arabian Sea and Bay of Bengal through enhanced latent heat

flux (Qlh in equation 1.2), resulting in a SST semi-annual cycle. SST seasonality in the

north Indian Ocean is linked to the seasonal cycle of tropical cyclone intensity (Gilford

et al., 2017). SSTs in Arabian Sea and Bay of Bengal are important components that

cause surface moisture convergence, which is closely related to the onset of summer

monsoon (Sijikumar and Rajeev, 2012; Jiang and Li, 2011). Since the Indian summer

monsoon onset date is crucial for agriculture, accurate representation of the SST annual

cycle of Arabian Sea and Bay of Bengal in models has significant societal applications

(Prodhomme et al., 2015).

A cold SST bias exists in the Arabian Sea in both Tmax and Tmin, and it is larger in

Tmin than in Tmax (Figs. 3.2a, 3.2b, 3.17a). The cold bias largely contributes to the

dense bias (Fig. 3.17c). Winter cold biases are known to be detrimental to rainfall

simulation in CGCMs (Marathayil et al., 2013). Marathayil et al. (2013) suggested

that during December-January-February, excessive north-easterly monsoon winds in
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Figure 3.17: As Figure 3.9, but for Point G in the Arabian Sea.

HiGEM lead to the cold SST bias in the Arabian Sea. That also explains why there

is a larger cold bias in Tmin than in Tmax (Fig. 3.2) (strong wind leads to large loss

of Qsh and Qlh in equation 1.2). The excessive north-easterly monsoon winds (could

cause excessive E in equation 1.3) may also contribute to the large bias of SSS and MLD

during December-January-February (Fig. 3.17b, 3.17d). The poor simulated monsoon

in model may also cause a phase bias in the northwest Indian Ocean. The month of

Tmax in HiGEM is up to 6 months later than in WOA18 (Fig. 3.7a), depending on

whether the first or second peak of the semi-annual signal reaches higher temperatures.

In the Arabian Sea and Bay of Bengal, the lack of precipitation in the summer Indian

monsoon leads to too saline surface water in HiGEM (Figs. 3.5a, 3.5b) (Shaffrey et al.,

2009). These saline biases in HiGEM are consistent with that in the multi-model mean

of CMIP5 models, which is also mainly attributed to precipitation bias (Fathrio et al.,

2017). The Bay of Bengal receives high fresh water flux through river runoff, while this

feature cannot be captured in CFSv1 and CFSv2 models (Parekh et al., 2016). If it is

the same case in HiGEM, poorly simulated river runoff could be another reason for the

too saline surface water in the Bay of Bengal.

The salinity bias over the Bay of Bengal has a seasonal cycle, with a larger bias in Smin

than in Smax (Figs. 3.5, 3.17b). The saline bias reaches 3 and leads to a dense bias

which reaches 2.5 kg·m−3 (Fig. 3.17c). Specifically, the saline bias is largest during
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Figure 3.18: As Figure 3.9, but for Point H in the Bay of Bengal.

January-February (Fig. 3.17b). As shown by Parekh et al. (2016), CFSv1 and CFSv2

models also show a saline bias with seasonal cycle over the Bay of Bengal. Parekh

et al. (2016) attributed this saline bias to weaker model precipitation and improper

river runoff, especially during summer and fall (Parekh et al., 2016). However, the

saline bias in CFSv1 and CFSv2 models is largest during October-November-December,

different from the result in HiGEM (January-February).

3.3.8 South Indian Ocean

The magnitude of the SST bias in the Indian Ocean is smaller than in other basins. In

the South Indian Ocean, there is only a slight SST cold bias in HiGEM (Figs. 3.2a,

3.2b, 3.19a). A similar cold bias in the South Indian Ocean can be seen in the CMIP5

multi-model mean (Wang et al., 2014). The cold SST bias and saline SSS bias cause

too dense surface water in the South Indian Ocean (Fig. 3.19c).

Winter MLD in HiGEM is too deep (Figs. 3.4b, 3.19d). Soares et al. (2019) revealed

that in both model and observation the seasonal cycle of MLD across the tropical

southern Indian Ocean is largely influenced by the monsoon winds in the eastern Indian

Ocean, and hence too strong winds during June-July-August in HiGEM (Fig. 3.10)

might be the reason for the too deep MLD.
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Figure 3.19: As Figure 3.9, but for Point I in the south Indian Ocean.

Lee et al. (2011) found that in HiGEM the rate of subduction of Subantarctic Mode

Water in the Indian Ocean is set by the winter MLD. Therefore, the too deep winter

MLD (Fig. 3.4) may contribute to overestimated subduction in the Southern Indian

Ocean, which can lead to biases of the Subantarctic Mode Water.

3.3.9 Polar regions

The summer warm SST bias in the Southern Ocean (Figs. 3.2a, 3.2b, 3.20a, 3.21a),

because there is too much shortwave radiation due to insufficient cloud (Shaffrey et al.,

2009). The warm bias of the Southern Ocean is associated with smaller amounts of

sea ice in HiGEM (Shaffrey et al., 2009), which in turn may contribute to warm Tmax

biases, as regions which are ice free in model in summer, but ice covered in reality,

will absorb more solar radiation. The Southern Ocean warm bias has a seasonal cycle,

with larger Tmax bias than Tmin bias (Fig. 3.2). In sea ice formation regions such as

the Weddell Sea and Ross Sea (Figs. 3.20, 3.21), the winter SSTs both in HiGEM and

WOA18 are close to the freezing point, leading to a small Tmin bias in HiGEM. As

solar radiation is negligible at high latitudes in winter, the winter warm bias due to

insufficient cloud is much smaller than that in summer. The seasonal cycle of MLD

may also contribute to the seasonal cycle of this warm SST bias. Shallower summer

mixed layer have smaller heat content, thus the bias in solar radiation can result in a
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larger bias in summer (smaller H can cause too large SST increase in equation 1.1).
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Figure 3.20: As Figure 3.9, but for Point L in the Ross Sea.
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Figure 3.21: As Figure 3.9, but for Point M in the Weddell Sea.

Further north (though still within the Southern Ocean), the winter SST warm bias (Fig.

3.2b) is likely to be related to open ocean deep convection in HiGEM, which rarely

occurs in reality (Heuzé et al., 2013). Open ocean deep convection brings warm water

from the ocean interior to the surface and cause warm SST bias, which is consistent

with the winter SST warm bias.

In most of the Southern Ocean, there is a saline bias of surface water (Figs. 3.5a-b).

Vertical mixing brings entrainment of relatively salty deep water into the upper ocean.

Excessive vertical mixing which is linked to too deep mixed layer in winter (Fig. 3.4b)

contributes to the saline bias. The seasonality of Antarctic sea ice is less in HiGEM
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than in observations (Shaffrey et al., 2009), which means the melt of sea ice in summer

is less in HiGEM. This contributes to the saline bias in Smin. In the Ross Sea and

Weddell Sea, the SSS bias dominates the SSD bias (Figs. 3.20c, 3.21c).

Sallée et al. (2013) showed that in the Southern Ocean the surface warm and light bias

can be propagated into the deep ocean, using CMIP5 models. Therefore, the warm

and saline bias at the surface in HiGEM can also spread over the entire water column

in the Southern Ocean. Specifically, the too warm and saline surface water at point N

(Fig. 3.22) will lead to too warm and too saline AAIW; at point L in the Ross Sea, the

too warm and saline surface water (Fig. 3.20) will lead to too warm and saline AABW.
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Figure 3.22: As Figure 3.22, but for Point N in the Southern Ocean.

Like the Antarctic, the Arctic has no significant biases in Tmin (Fig. 3.2b). The winter

SST at Point J in the Arctic has a cold bias of only 0.1◦C, because the freezing point is

about 0.1◦C lower in HiGEM than in WOA18 (Fig. 3.23a). In summer, there is a cold

SST bias in the Arctic (Fig. 3.2a), which is consistent with too much sea ice in HiGEM

(Shaffrey et al., 2009). Bias in salinity was not considered because of the uncertainty

in the climatological salinity (Fig. 3.5).

In the Greenland Sea, there is a cold SST bias, while it is larger in winter than in

summer (Figs. 3.2a, 3.2b, 3.24a). That may be linked to the bias of Atlantic Ocean

heat transport. The global peak poleward heat transport is weaker in HiGEM than the

observations (Shaffrey et al., 2009), which may explain the cold SST bias. As Point K

is a local convection source, the cold bias and the consequent dense bias of sea surface
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Figure 3.23: As Figure 3.9, but for Point J in the Arctic.

water will lead to a deeper convection, and North Atlantic Deep Water formed there

will be too cold and too dense.
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Figure 3.24: As Figure 3.9, but for Point K in the Greenland Sea.

The SSS seasonal cycle corresponds well with the SST seasonal cycle (Figs. 3.24a,

3.24b). At Point K in the Greenland Sea, SSS peaks in winter when sea ice forms with

brine rejection, while SSS minimizes in summer when sea ice melts. Due to the lack of

observation in ice-covered regions, SSS in WOA18 (Fig. 3.24b) may be unrealistic.
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3.4 Conclusion

HiGEM have seasonally dependent SST and SSS biases. The typical value of biases

for Tmax and Tmin is 1-2◦C, while it is 0.3-0.6 for Smax and Smin. Although patterns

of biases are similar in Tmax and Tmin, the amplitudes of Tmax and Tmin biases are

different, leading to Tcycle biases. This is also the case for the SSS bias. Because of

the seasonality of SST and SSS biases, there exists seasonal variation of surface density

bias, which might contribute to the seasonality of MLD bias. In turn, the seasonal

MLD bias may also affect the seasonal SST and SSS biases.

SST biases in HiGEM have large seasonal variations in polar regions and eastern

boundary upwelling regions. In polar regions, Tmax bias is larger than Tmin. Tmin bias

is close to 0◦C in polar regions because SSTs in HiGEM are at or close to freezing. As

solar radiation is negligible at high latitudes in winter, the SST bias due to cloud

error is much smaller than that in summer. The seasonal cycle of MLD also impacts

seasonal SST bias. Deep winter mixed layers will diffuse the effect of surface heat

fluxes, thus an error in heat fluxes or mixing processes leads to a small Tmin bias. In

eastern boundary upwelling regions (especially the Benguela Current and Humboldt

Current), the warm biases are smaller in Tmax than Tmin. The seasonal upwelling

cooling effect associated with seasonal upwelling-favourable wind contributes to the

seasonality of the SST bias.

Large seasonal variations of SSS biases mainly exist in equatorial regions and polar

regions, which is likely to be related to the poor simulated seasonal precipitation and

sea ice. In other regions, the biases in Smax and Smin are largely accounted for by

Smean. The seasonality of SSS bias is relatively small compared to the seasonality of

SST bias, considering to their contributions to density.

In regions where water mass forms, the bias in SST and SSS can be propagated into

deeper ocean. In the Southern Ocean, the significant surface cold and saline biases can

be transferred into ocean interior and cause too cold and too saline AAIW and AABW.

The cold bias in the Greenland Sea can cause a cold bias in the NADW.

The seasonal cycle of SST is well simulated in HiGEM. The bias of Tmax and Tmin
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timing is within 1 month in most of the world ocean, whereas in polar regions, equatorial

regions and monsoon regions the timing bias is up to 6 months. Compared with SST,

the timing of Smax and Smin is poorly simulated in specific regions.

Previous model evaluation studies focus on Tmean, however a good representation of

Tmean does not guarantee accurate Tmax and Tmin. The magnitude of differences

between Tmax and Tmin biases is typically 1-2◦C. By comparing with the Tmean bias

in HiGEM (Shaffrey et al., 2009), we found a larger Tmax bias in polar regions, and a

larger Tmin bias in the eastern boundary upwelling regions.

As a feasibility study for Chapter 4, this chapter shows that SST and SSS biases in

HiGEM have seasonal variations. SST is an essential parameter in weather prediction

and atmospheric model simulations, and it is also important for identifying El Niño,

formation of tropical cyclones and coral bleaching. Since SST bias attracts more interest

from climate scientists and meteorologists, in next chapter we will focus on SST biases

in CMIP6 models. Here, questions arise for Chapter 4: How is the performance of other

state-of-the-art climate models in simulating Tmax and Tmin? Which models have the

best performance? Do models have common features in the seasonal variations of SST

biases?



4

Seasonal extrema of sea surface

temperature in CMIP6 models

In this chapter, the performance of CMIP6 models in simulating SST seasonal extrema

is assessed, and the possible causes are explored. This study has been submitted to

Environmental Research Letters in May 2021 with the same title. The text in this

chapter is unchanged but has been reformatted for the thesis. The results which are

not shown in the paper due to limited space are provided in supplementary material

at the end of this chapter.

4.1 abstract

CMIP6 model sea surface temperature (SST) seasonal extrema averaged over

1980-2010 are assessed against the World Ocean Atlas (WOA18) observational

climatology. We propose a mask to identify and exclude regions of large differences

between three commonly-used climatologies. The biases in SST seasonal extrema are

largely consistent with the annual mean SST biases. However, the amplitude and

spatial pattern of SST bias vary seasonally in the 20 CMIP6 models assessed. Large

seasonal variations in the SST bias occur in eastern boundary upwelling regions, polar

regions, the North Pacific and eastern equatorial Atlantic. These results demonstrate

the importance of evaluating model performance not simply against annual mean

properties. Models with greater vertical resolution in their ocean component typically

demonstrate better representation of SST extrema, particularly seasonal maximum

SST. No significant relationship with horizontal ocean model resolution is found.
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4.2 Introduction

Seasonal extrema of sea surface temperature (SST) are important for the global climate

system. SST seasonal maxima influence the formation and intensity of tropical cyclones

(Palmen, 1948; Dare and McBride, 2011; Holland, 1997; Sun et al., 2017). SST seasonal

maxima may also be associated with marine heatwaves, which can cause damage to

marine ecosystems worldwide, including biomass decrease, bleaching of coral reefs, and

deaths of marine animals (Cheung and Frölicher, 2020; Hughes et al., 2018; Jones et al.,

2018). Heatwaves have been observed in all major ocean basins over the recent decade

(Frölicher and Laufkötter, 2018) and are projected to increase in intensity and frequency

over the 21st century (Oliver et al., 2019). SST seasonal minima are closely linked

to the freezing and melting of sea ice and determine the properties of intermediate

and deep water. Heat loss in winter allows surface water to subduct into the deep

ocean, important for thermohaline circulation. Therefore, future projections of tropical

cyclones, heatwaves, water mass formation or sea ice extent require our climate or earth

system models to have a realistic representation of SST seasonal extrema.

Typically, however, evaluations of climate model historical runs focus on annual or long-

term mean SST, revealing common biases across many models (Wang et al., 2014; Flato

et al., 2013). Assessments of model performance in simulating SST seasonal cycles are

less common, and are often only regional. For example, a marked seasonal variability

of SST warm bias in the eastern tropical Atlantic has been documented in CMIP5

(Coupled Model Intercomparison Project Phase 5) and CMIP6 (CMIP Phase 6) models

(Prodhomme et al., 2019; Richter et al., 2014; Richter and Tokinaga, 2020). In these

models, the eastern tropical Atlantic warm bias is maximum in boreal summer (June-

July-August), which has been attributed to the largest wind biases occurring during

spring (Richter et al., 2012; Richter and Tokinaga, 2020). Similarly, CMIP6 model SST

cold biases in the North Pacific subtropics vary seasonally (Zhu et al., 2020). Song and

Zhang (2020) suggested that the CMIP5 multi-model mean has seasonally dependent

SST biases in the northeastern Pacific Ocean, with a warm bias during summer and

a cold bias during winter, which they argued was caused by poorly simulated North

American monsoon winds. Wang et al. (2014) showed that the amplitude of CMIP5
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multi-model mean SST biases varies seasonally and therefore an accurate annual mean

SST does not guarantee accurate seasonal extrema or seasonal cycle. Here we evaluate

the seasonal cycle globally in 20 state-of-the-art CMIP6 climate models, to provide a

foundation for model SST bias identification and future reduction. By presenting maps

of SST bias in seasonal extrema for each model, we highlight the care needed in selecting

these models for future climate projections in particular regions. Section 2 introduces

the models and the analysis techniques, including evaluation of uncertainties in global

observational climatologies. Section 3 presents and discusses the biases in SST maxima

and minima, and explores possible causes.

4.3 Data and Methods

The historical runs of 20 models (table 4.1) were averaged over 1981-2010 to create

monthly mean climatologies for each model. The first ensemble member (r1i1p1f1) is

used, except when r1i1p1f1 is not available; we choose r1i1p1f3 for HadGEM3-GC3-

LL and HadGEM3-GC3-MM; r1i1p1f2 for UKESM1-0-LL. The models include those

incorporating biogeochemical cycling (earth system models) as well as conventional

climate models. The ocean vertical coordinate is typically z-level (or the related z∗) but

some models use isopycnal, sigma or hybrid coordinates (table 4.1). The total number

of levels and thickness of top grid cell are used as proxies for ocean vertical resolution.

The global averaged thickness of top grid cell in INM-CM5-0 was calculated using

the sigma coordinates and bottom topography obtained from E.M.Volodin (personal

communication). The thickness of the top grid cell in other models was obtained from

the references cited in table 4.1.

To examine the seasonal cycle of SST, most studies picked specific months to represent

summer and winter (for example, Zhang and Zhao (2015); Liu et al. (2020)). However,

model seasonal cycles may be out of phase with observations and real-ocean maxima

and minima occur in different months in different regions. Instead, here we simply take

the maximum and minimum SST of the monthly mean climatologies (Tmax and Tmin)

at each grid point, whichever months they occur in, for both model and observation.

Tmax and Tmin, plus the annual mean SST (Tmean) and the range of the seasonal cycle
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Table 4.1: The 20 CMIP6 models used in this study; the horizontal resolution of their
ocean component; ocean vertical coordinate (z - z traditional height coordinate; z∗ -
rescaled height coordinate for more accurate representation of free-surface variations; ρ
- isopycnic coordinate; σ - terrain following sigma coordinate; several symbols refer to
a hybrid coordinate) and total number of ocean vertical levels; thickness of the ocean
top grid; and references.

Model
Horizontal

resolution

Vertical

coordinate

Total

levels

Top grid

thickness
References

ACCESS-CM2 100 km z∗ 50 10 m Bi et al. (2020)

ACCESS-ESM1-5 100 km z∗ 50 10 m Law et al. (2017)

AWI-CM-1-1-MR 25 km z-σ 46 5 m Semmler et al. (2020)

BCC-CSM2-MR 50 km z 40 10 m Wu et al. (2019)

BCC-ESM1 50 km z 40 10 m Wu et al. (2020)

CESM2 100 km z 60 10 m Danabasoglu et al. (2020)

CanESM5 100 km z 45 6 m Swart et al. (2019)

E3SM-1-0 50 km z∗ 60 10 m Golaz et al. (2019)

GFDL-CM4 25 km z∗-ρ 75 2 m Held et al. (2019)

GISS-E2-1-G 100 km z 40 10 m Kelley et al. (2020)

GISS-E2-1-H 100 km z-ρ-σ 32 10 m Kelley et al. (2020)

HadGEM3-GC31-LL 100 km z∗ 75 1 m Andrews et al. (2020)

HadGEM3-GC31-MM 25 km z∗ 75 1 m Andrews et al. (2020)

INM-CM5-0 50 km σ 40 7.3 m Volodin et al. (2017)

IPSL-CM6A-LR 100 km z∗ 75 2 m Boucher et al. (2020)

MIROC6 100 km z-σ 62 2 m Tatebe et al. (2019)

MPI-ESM1-2-HR 50 km z 40 12 m Müller et al. (2018)

NorESM2-MM 100 km ρ 53 2.5 m Seland et al. (2020)

SAM0-UNICON 100 km z 60 10 m Park et al. (2019)

UKESM1-0-LL 100 km z∗ 75 1 m Sellar et al. (2019)

(Tcycle = Tmax − Tmin) from the model climatologies are compared with the World

Ocean Atlas 2018 (WOA18) observational climatology on a grid spacing of 0.25◦×0.25◦

(Locarnini et al., 2018), which covers the period from 1981 to 2010. The model fields

were interpolated to the same grid as WOA18. Biases are defined as model values

minus WOA18 values. For the multi-model mean, at each grid point we average Tmax,

Tmin, Tmean and Tcycle across the 20 CMIP6 models. To quantify the performance of

CMIP6 models, we calculated the area-weighted root mean square error of the model

against WOA18 (henceforth RMSE) for global SST.

Since there is some uncertainty in observational climatologies because of sparse

sampling, instrumental error, quality control or gridding techniques, we compared
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three recent climatologies: WOA18, WOCE-Argo Global Hydrographic Climatology

(WAGHC)(Gouretski, 2018) (covering the time period 1985-2016), and HadISST

(Rayner et al., 2003) (covering the time period 1981-2010). Any grid points where the

maximum difference in Tmax or Tmin between the three climatologies is larger than

2◦C are considered uncertain for that variable, and these grid points are excluded

from our assessment. Any grid points which did not have values for all 12 months for

at least two climatologies are also excluded. For Tmean and Tcycle, we exclude any

points where either Tmax or Tmin is excluded. 4%, 3%, 4% and 4% of the ocean’s

surface area is excluded for Tmax, Tmin, Tmean and Tcycle respectively. In our global

maps, these points are masked, and in calculations of global and regional metrics,

these points are excluded.

4.4 Results and Discussion

4.4.1 Model representation of SST extrema

For the multi-model mean, Tmax and Tmin have larger global RMSEs than Tmean (Fig.

4.1), as SST biases with opposite signs in different seasons compensate each other when

calculating the annual mean. Similarly, the Tmax and Tmin global RMSEs of the multi-

model mean are smaller than the RMSEs of individual models (Figs. 4.1b-c, 4.2, 4.3).

Therefore, a small bias in Tmean does not guarantee a realistic Tmax or Tmin; a small

bias in a multi-model mean does not guarantee good performance of individual models.

The magnitudes of biases in Tmax and Tmin vary from model to model (Figs. 4.2, 4.3).

The multi-model mean has RMSE less than 1◦C in both Tmax and Tmin (0.89◦C and

0.87◦C respectively). Most models have Tmax and Tmin RMSEs between 1◦C and 2◦C.

Only HadGEM3-GC31-LL and GFDL-CM4 have Tmax RMSE less than 1◦C (0.94◦C

and 0.93◦C respectively). GISS-E2-1-H has the largest Tmax RMSE of 1.89◦C and

MIROC6 has the largest Tmin RMSE of 1.62◦C (Figs. 4.2, 4.3).

Tmax and Tmin biases vary with latitude (Figs. 4.1b-c, 4.2, 4.3, 4.4g-h). Typically, the

RMSE of Tmax at 30◦-80◦ is 1-2◦C larger than at low latitudes (latitudes between 30◦N

and 30◦S) (Fig. 4.4g). For GISS-E2-1-H, GISS-E2-1-G, BCC-CSM2-MR, BCC-ESM1
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Figure 4.1: Biases (model minus climatology) of multi-model mean in (a) Tmean (b)
Tmax (c) Tmin (d) Tcycle. Black dots mark grid points excluded from our analysis, as
described in section 4.3. The numbers indicate the global RMSE (◦C).

and IPSL-CM6A-LR, Tmax RMSEs at 30◦N-80◦N are about 3◦C larger than at low

latitudes. A similar pattern can be seen for Tmin, but the variation of biases with

latitude is much smaller than for Tmax (Fig. 4.1c, 4.4h). Flato et al. (2013) found

a similar result for some CMIP5 models, with larger zonal mean biases in Tmean at

latitudes between 30◦ and 70◦ than at other latitudes. The larger biases, and greater

difference between Tmax and Tmin, at mid-high latitudes (latitudes greater than 30

degrees in both hemispheres) may be explained by the large seasonal cycle of mixed layer

depth there. Shallower summer mixed layers have smaller heat capacity, thus a small
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Figure 4.2: (a) Tmax in WOA18 and (b-u) Tmax model biases. Black dots mark grid
points excluded from our analysis, as described in section 4.3. The numbers on (b-u)
indicate the global RMSE of Tmax. Red lines in (a) are 30◦N and 30◦S. Note that the
range of bias color bar is twice as much as in Fig. 4.1.
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Figure 4.3: As Fig. 4.2, but for Tmin.
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error in heat fluxes or mixing processes can result in a large bias for Tmax, though this

will be modulated by any seasonal biases in mixed layer depth. The difference between

biases in Tmax and Tmin leads to biases in Tcycle (Fig. 4.1d). The RMSE of Tcycle at low

latitudes is typically 1◦C, whereas at mid-high latitudes it is larger, particularly in the

Northern Hemisphere (Fig. 4.4i). The Tcycle RMSE in IPSL-CM6A-LR and MIROC6

reaches 4◦C at high latitudes (Fig. 4.4i).

In polar regions, there are very small Tmin biases (Figs. 4.1c, 4.3, 4.4h) except for

MIROC6 in the Antarctic. Winter SSTs in models are at, or close to, freezing, but

cannot go below freezing because sea ice forms instead. As long as the models have

realistic freezing points, Tmin biases will be low. Some models have salinity-dependent

freezing points (Beaumet et al., 2019) in which case a salinity bias can cause a bias in

temperature. Tmin biases in the Arctic are larger than in the Antarctic (Figs. 4.1c,

4.4e-f). The larger Tmin cold biases in the Arctic may suggest larger saline biases or

too high sea ice extent in models (Shu et al., 2020).

In the subtropical North Pacific, the SST cold bias is typically 0.5-1◦C smaller in Tmax

than in Tmin, which leads to a too large Tcycle (Figs. 4.1b-d, 4.2, 4.3). Zhu et al.

(2020) showed a similar seasonal SST cold bias in the CMIP6 multi-model mean, but

not in the CMIP5 multi-model mean. Too strong westerly winds (Wang et al., 2014)

and biased cloud albedo (Burls et al., 2017) are possible reasons for the year round

cold bias. The westerly winds cool the surface through latent heat flux and southward

ocean advection due to Ekman transport. The latent heat loss is larger in summer

when evaporation is stronger (Yu, 2007), while the ocean heat advection is larger in

winter when meridional SST gradient is greater. For the biased cloud albedo which

causes insufficient surface shortwave fluxes, its associated cold bias can be smaller in

winter when there is less solar radiation.

SST biases are seasonally dependent in the northeastern Pacific Inter Tropical

Convergence Zone (ITCZ) (Figs. 4.1b-c, 4.2, 4.3). For the multi-model mean, there is

an evident warm bias which exceeds 2◦C in Tmax and a cold bias of 0.5-1.5◦C in Tmin.

Consistent with our results, Song and Zhang (2020) showed in CMIP5 models a warm

bias during summer-autumn and a cold bias during winter-spring in the northeastern
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Figure 4.4: Monthly time series of area-weighted mean SST over (a) western equatorial
Pacific (5◦S - 5◦N, 140◦E - 160◦W), (b) northwestern Indian Ocean (60 - 70◦E, 10
- 20◦N), (c) subtropical Southern Hemisphere (30◦ - 40◦S), (d) subtropical Northern
Hemisphere (30 - 40◦N), (e) Arctic (70 - 80◦N), (f) Antarctic (70 - 80◦S), and area-
weighted RMSE in 10◦ bands for (g) Tmax, (h) Tmin, (i) Tcycle. Y-axis range is same
for (a-f).
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Pacific ITCZ. They suggested that this seasonal bias is caused by an easterly wind

bias throughout the year in that monsoon region. During winter-spring, the

northeastern Pacific ITCZ is dominated by easterly winds, so overly strong easterly

winds enhance surface evaporation and lead to cold biases. In contrast, during

summer-autumn when westerly winds dominate, the simulated wind is too weak,

which causes the warm bias. The northeastern Pacific is a region where tropical

cyclones and heatwaves occur (Gilford et al., 2017; Frölicher and Laufkötter, 2018),

and hence a warm bias of over 2◦C in Tmax may lead to overprediction of tropical

cyclones and heatwaves by these models.

The multi-model mean has a cold bias in Tmax and a warm bias in Tmin over the

Northwest Pacific, leading to a too small Tcycle (bias of more than 2◦C) (Figs. 4.1b-d).

The warm bias in winter can be seen in many models, especially in ACCESS-ESM1-

5, BCC-ESM1, CanESM5 and INM-CM5-0 (Fig. 4.3). Models with a warm bias in

Tmin are likely to have overly intense winter storms, as warm SSTs will increase the

storm energy source. Greeves et al. (2007) demonstrated that there was a clear link

in the Hadley Centre models between winter SST warm bias to the east of Japan and

increased storm intensity in the region, and this is likely to be the case in other models

as well. The winter warm bias to the east of Japan was also found in a CMIP5 multi-

model mean (Wang et al., 2018), but from our results the warm bias extends further

east (Figs. 4.1c).

The large cold biases at northern hemisphere high latitudes in BCC-CSM2-MR, BCC-

ESM1, GISS-E2-1-G and GISS-E2-1-H, are typically 2-5◦C smaller in Tmin than in

Tmax (Figs. 4.2, 4.3, 4.4g-h). These cold biases have been previously linked to cloud

biases. The negative cloud radiative forcing is excessive in BCC-CSM2-MR (Wu et al.,

2019) and BCC-ESM1 (cloud simulation likely to be similar to BCC-CSM2-MR), while

overestimated cloud in GISS-E2-1-G and GISS-E2-1-H (Kelley et al., 2020) blocks more

of the incoming solar radiation. As solar radiation is negligible at high latitudes in

winter, the SST cold bias due to cloud bias is much smaller in winter than in summer,

consistent with our results. Deep winter mixed layer depths and SSTs close to freezing

likely also contribute to the smaller cold biases in Tmin than in Tmax at high latitudes.
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In most models there is a warm Tmean bias in the Southern Ocean, commonly attributed

to excessive short wave radiation linked to underestimated cloud (Hyder et al., 2018).

The warm bias is larger for Tmax than Tmin (Figs. 4.1b-c, 4.2, 4.3, 4.4g-h), because

the lack of incoming solar radiation in winter means cloud biases have minimal effect

on surface solar insolation. Shallower mixed layer depths in summer will also tend to

enhance any bias in incoming solar insolation. The larger warm bias in Tmax than

Tmin results in a sea ice extent that is too small in most CMIP6 models, especially in

summer (Beadling et al., 2020; Shu et al., 2020). As mode water and intermediate water

primarily form within the winter mixed layer on the northern edge of the ACC (Talley,

1999), the Tmin warm bias can be transferred into ventilated layers of the Southern

Ocean. Sallée et al. (2013) indicated that in CMIP5 models the surface warm bias of

the Southern Ocean spread over the entire water column.

MIROC6 stands out with the largest warm bias in the Southern Ocean (Figs. 4.2m,

4.3m), with a Tmax RMSE between 3 and 5◦C and a Tmin RMSE between 2 and 3◦C

at 50-80◦ S (Fig. 4.4g). Therefore, the largest biases in MIROC6 occur in the regions

where there should be sea ice and where the deep ocean is ventilated. Beadling et al.

(2020) found that MIROC6 has the lowest sea ice extent in the Southern Ocean among

the CMIP6 models in both summer and winter, and Tatebe et al. (2019) revealed annual

warm biases which can exceed 2◦C in the intermediate and deep layers in MIROC6.

In eastern boundary upwelling regions (especially the Benguela and Humboldt

Currents), most models have a seasonal warm bias that is 1-5◦C smaller in Tmax than

in Tmin (Figs. 4.1b-c, 4.2, 4.3). The warm bias we found in CMIP6 models may lead

to excessive precipitation. Rouault et al. (2003) indicated that in the South East

Atlantic Ocean off Angola and Namibia the warm events during the Tmax period

increase precipitation along the coast of those countries (sometimes extending inland).

Underestimation of cloud, and insufficient upwelling due to overly weak winds, are

suggested causes for the warm SST bias (Richter, 2015). Letelier et al. (2009) showed

that in the Humboldt Current coastal region the cooling effect of upwelling is

strongest in austral summer, which is consistent with the peak of upwelling-favourable

wind in December and January. A poor simulation of the seasonal cloud and

upwelling processes will contribute to the seasonality of the SST bias in eastern



Chapter 4: Seasonal extrema of sea surface temperature in CMIP6 models 121

upwelling boundary regions.

Most models have a seasonal warm SST bias in the eastern equatorial Atlantic (Figs.

4.1b-c, 4.2 and 4.3). The Tmin multi-model mean bias can be more than 2◦C larger

than the Tmax multi-model mean bias. Richter and Tokinaga (2020) showed a similar

seasonal warm bias in the CMIP6 multi-model mean, which is about 1-2◦C larger

during June-July-August than March-April-May. Richter et al. (2012) argued that the

warm SST bias in eastern equatorial Atlantic during June-July-August is linked to

wind stress errors during March-April-May. GISS-E2-1-G and GISS-E2-1-H have the

largest seasonality of SST warm bias in the eastern equatorial Atlantic, with Tmin biases

up to 5◦C. Richter and Tokinaga (2020) illustrated that warmer than observed SSTs

in the equatorial Atlantic lead to excessive precipitation. Roxy (2014) quantified SST-

precipitation relationship: a 1◦C SST increase corresponds to a 2 mm/day precipitation

increase. Therefore, the 5◦C Tmin warm bias in GISS-E2-1-G and GISS-E2-1-H could

cause a 10 mm/day increase in precipitation.

Although the amplitudes of biases are different in Tmax and Tmin, the global patterns

and signs of Tmax bias and of Tmin bias are similar to each other in most models (Figs.

4.2, 4.3). Wang et al. (2014) also indicated that the SST bias of the CMIP5 multi-model

mean has a pattern independent of season but did not analyse the seasonality in bias

in individual models. Our results show two exceptions: E3SM-1-0 and IPSL-CM6A-

LR, which both have an overall warm bias in Tmax, but an overall cold bias in Tmin

(Figs. 4.2h,t 4.3h,t), which tend to cancel out in the annual means. The Tmax RMSE

is 1.38◦C for E3SM-1-0 and 1.36◦C for IPSL-CM6A-LR, the Tmin RMSE is 1.39◦C for

E3SM-1-0 and 1.21◦C for IPSL-CM6A-LR, whereas the Tmean RMSE is only 1.17 ◦C

for E3SM-1-0 and 0.94◦C for IPSL-CM6A-LR. In E3SM-1-0, the global annual average

mixed layer depth is generally too shallow (Golaz et al., 2019), which can contribute

to the summer SST warm bias and winter SST cold bias, and a similar process may be

affecting IPSL-CM6A-LR. These results illustrate the risks involved in assessing only

the annual mean values, as a model may have greater biases than assumed, which may

mean that tropical cyclone formation, for example, is overpredicted in these models.

In mid-latitudes the SST seasonal cycle is well represented by an annual sinusoid
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whereas in equatorial and polar regions an annual sinusoid explains little of the total

SST seasonal variance (Trenberth, 1983; Yashayaev and Zveryaev, 2001). In regions

with fairly sinusoidal SST annual cycles such as the subtropics, models have realistic

SST seasonal cycles with well simulated amplitude and phase of the annual cycle

(Figs. 4.4c-d). Phase biases are mainly within 1 month. In subtropical regions, the

seasonal SST biases are consistent with biases in Tmean. Differences between the Tmax

and Tmin biases are smaller than those in non-sinusoidal regions (Fig. 4.4). In regions

with non-sinusoidal SST seasonal cycles such as the western equatorial Pacific,

northwestern Indian Ocean, the Arctic and the Antarctic, models tend to have biases

in amplitudes or phases of their SST seasonal cycles (Figs. 4.4a-b,e-f).

In the western equatorial Pacific, the SST seasonal cycle in WOA18 is modest (less than

1◦C), whereas in some models such as MPI-ESM1-2-HR, GISS-E2-1-G, GISS-E2-1-H

and especially INM-CM5-0 the seasonal cycle is much larger (Fig. 4.4a). In INM-CM5-

0, the range of SST seasonal cycle is about 2◦C and there is a cold SST bias throughout

the year, reaching 3◦C during September-October-November (Fig. 4.4a). Similar to

our analysis, Volodin et al. (2017) noted that INM-CM5-0 has a cold bias of more

than 4◦C in annual mean temperature in the upper 700 m of the western equatorial

Pacific. The cold bias could limit the skills of models in simulation of ENSO and

ENSO induced teleconnections, resulting in a too westward located rising branch of the

Walker circulation with a weak convective response (Bayr et al., 2018) and a significant

underestimation of ENSO-related precipitation anomaly over California (Bayr et al.,

2019). Jiang et al. (2021) showed that in the equatorial western Pacific INM-CM5-0

has an overly weak ENSO-related SST bias, whereas the most other CMIP6 models

have an overly strong SST bias, which may be linked to our finding that INM-CM5-0

has the largest SST cold bias.

In the northwestern Indian Ocean where the monsoon system prevails, SST has a semi-

annual cycle, but most models are unable to reproduce this with the correct amplitude

and phase (Fig. 4.4b). Most CMIP6 models have SST cold biases in this region

throughout the year, while the biases are generally larger during March-April-May

than other months and the multi-model mean fails to simulate the primary maximum

SST (Fig. 4.4b). As the northwestern Indian Ocean is an important moisture source
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for Indian monsoon precipitation (Prodhomme et al., 2014; Levine and Turner, 2012),

the cold biases in the CMIP6 models could lead to overly weak monsoon precipitation.

Consistent with our result, McKenna et al. (2020) found a cold SST bias over the

northwestern Indian Ocean in the CMIP6 multi-model mean. Fathrio et al. (2017)

showed that the SST cold bias over the western Indian Ocean in the CMIP5 multi-

model mean has a seasonal cycle with the coldest SST bias occurring in April, whereas

the coldest SST bias in our CMIP6 multi-model mean occurs in May. GISS-E2-1-G and

GISS-E2-1-H fail to simulate a realistic second minimum SST in August (Fig. 4.4b),

which would lead to overly intense tropical cyclones. SST in the northwestern Indian

Ocean is closely related to the onset of the summer monsoon (Sijikumar and Rajeev,

2012; Jiang and Li, 2011). The timing of the primary maximum SST is two months

later in ACCESS-ESM1-5 than in WOA18 (Fig. 4.4b), which may suggest a delay of

the summer monsoon onset date in projections using that model.

4.4.2 Impact of model characteristics on SST seasonal extrema

We have shown that biases in Tmax, Tmin and Tcycle are different between models. We

now use the diversity in the 20 CMIP6 models to explore the effects of different model

characteristics on the magnitude of these biases as quantified by global area weighted

RMSE for Tmax, Tmin, Tcycle and Tmean.

No significant correlation was found between the models’ seasonal biases and horizontal

ocean resolution, demonstrated by the lack of a relationship with the symbol size in

Figs. 4.5 and 4.6. Chassignet et al. (2020) used four pairs of matched low-resolution and

high-resolution ocean simulations from FSU-HYCOM, AWI-FESOM, NCAR-POP and

IAP-LICOM to isolate the effect of ocean horizontal resolution, and compared their

representation of global SST. They found that enhanced horizontal resolution does

not deliver unambiguous SST bias improvement in all regions for all models, which is

consistent with our finding. Nor did we find any correlation of seasonal biases with

atmospheric resolution, ocean grid type, ocean vertical coordinate, and inclusion (or

not) of biogeochemical processes (circles or squares in Figs. 4.5 and 4.6).

The only characteristic yielding a statistically significant relationship was the ocean
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Figure 4.5: Global RMSE of (a) Tmax, (b) Tmin, (c) Tcycle and (d) Tmean, all against
the total number of vertical levels in ocean. Circles represent earth system models,
while squares represent non earth system models. The size of the markers represents
the ocean horizontal resolution for that model, with larger markers for models with
lower horizontal resolution. The black line is the line of best fit (with the least sum of
squared errors). The inter-model correlation R is shown on each panel.

vertical resolution, for which we use as proxies the total number of vertical levels and

top grid cell thickness (table. 4.1). The number of vertical levels in the upper ocean

(e.g. upper 200 m) cannot be unambiguously determined for models using an isopycnal

or sigma vertical coordinate (6 out of 20 in our study) as their level depths vary with

location and time (Bleck, 2002; Shchepetkin and McWilliams, 2005). Excluding the

isopycnal and sigma models, the remaining high vertical resolution models are mainly

from the Met Office Hadley Centre family, and hence any relationship between SST

biases and vertical resolution in the upper ocean might have been overly influenced by

that particular family.

For the 20 models, there is a decrease in bias with increasing total number of vertical

levels (Fig. 4.5). Linear regression was performed for Tmax, Tmin, Tcycle and Tmean.

We also calculated the inter-model correlation between global RMSE and total number
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Figure 4.6: As Fig. 4.5, but against the thickness of top grid in ocean.

of vertical levels following the method of Wang et al. (2014). The correlations are

significant in Tmax, Tmin, and Tmean, with the highest correlation of -0.648 in Tmax.

The higher correlation between global Tmax RMSE and ocean vertical resolution is

likely linked to a shallower mixed layer depth in summer than in winter. The impact of

ocean vertical resolution can also be seen from RMSE against top grid thickness (but

with lower inter-model correlation relative to total number of vertical levels): models

with a smaller top grid thickness tend to have smaller biases (Fig. 4.6).

The importance of vertical resolution for reducing seasonal biases is not unexpected;

SST is influenced by ocean stratification and ocean vertical mixing processes, whose

representation depends upon the vertical resolution. It has been found that high

resolution in the upper ocean is important for the representation of diurnal and

intraseasonal SST variability in ocean general circulation models (Misra et al., 2008;

Xavier et al., 2008; Ge et al., 2017). Our study emphasises the importance of vertical

resolution for simulating seasonal extreme SST and annual mean SST.
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4.5 Conclusions

Using the newly-released CMIP6 models, this study provides a global view of the

biases in SST extrema, identifies regions with large seasonal bias, and suggests a

future direction to reduce these biases. Global area-weighted Tmax, Tmin and Tcycle

RMSEs are typically 1-2◦C. Most models have Tmax and Tmin biases of the same sign

at most grid points, apart from IPSL-CM6A-LR and E3SM-1-0 which have an overall

warm bias in Tmax and an overall cold bias in Tmin. When averaged across the whole

globe, the bias in Tmean is typically consistent with Tmax and Tmin biases, but certain

regions (eastern boundary upwelling regions, polar regions, the eastern equatorial

Atlantic, the North Pacific) show significant differences between winter and summer

biases. In regions with non-sinusoidal SST seasonal cycles, models tend to have biases

in amplitudes and/or phases of their SST seasonal cycles. For the models we

examined, those with increased vertical resolution in the ocean generally had a better

representation of SST extrema, particularly Tmax. This is likely related to the ability

of the higher resolution models to better represent the surface mixed layer, and

particularly shallow mixed layers in summer. For improving the accuracy of future

climate projections, we suggest that as much priority (or possibly more) should be

given to increasing vertical ocean model resolution as is given to increasing horizontal

resolution.

4.6 Supplementary material

This section presents supplementary material, including some figures and detailed

methodology that was not shown in the paper submitted to Environmental Research

Letters.

4.6.1 Methodology

To quantify the performance of CMIP6 models for SST seasonal extrema, the global

area-weighted average of SST biases T is calculated using equation 4.1 for each model.
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T =

n∑
i=1

Ti · Si
n∑

i=1
Si

, (4.1)

where Ti is the SST bias (that is model minus observation) at grid point. Si is the area

for the grid box. n is the total number of grids.

From the global area-weighted average of SST biases, we can tell if a model has an

overall warm bias or cold bias. However, it is hard to quantify the amplitude of the

global bias as the warm and cold biases in different regions may compensate for each

other. To solve this problem, we also calculated the global area-weighted root mean

square (RMS) of the SST biases Trms using equation 4.2.

Trms =

√√√√√√√
n∑

i=1
T 2
i · Si

n∑
i=1

Si

, (4.2)

To study the relationship between SST bias and model characteristics, linear regression

was performed. The best linear fit was obtained using least-squares. The correlation

coefficient R is calculated to study the inter-model correlation between SST bias and

the model characteristics, following the method of Wang et al. (2014).

R =

∑
(Trmsj − Trms)(Cj − C̄)√∑

(Trmsj − Trms)2
∑

(Cj − C̄)2
, (4.3)

where R is the correlation coefficient, Trmsj is the RMS bias for model j, Cj is the value

of the chosen model characteristic for model j. Trms is the multi-model mean of Trmsj ,

C̄ is the multi-model mean of Cj .

4.6.2 Seasonal cycle of SST in CMIP6 models

The SST seasonal cycle Tcycle in models is compared with WOA18 to obtain the map

of Tcycle bias for each model (Fig. 4.7). The difference between bias in Tmax and Tmin
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causes Tcycle bias (Fig. 4.7). Large Tcycle biases mean that Tmax and Tmin biases are

very different from Tmean, and hence we cannot evaluate the simulation of SST

seasonal extrema just based on Tmean. IPSL-CM6A-LR has the largest global

area-weighted Tcycle RMSE (1.62◦C) as Tmax has an overall warm bias and Tmin has

an overall cold bias (Figs. 4.2t, 4.3t, 4.7t). Therefore, when using IPSL-CM6A-LR for

projection, precipitation and storms could be overestimated in winter and

underestimated in summer. In the subpolar regions of the Northern Hemisphere,

IPSL-CM6A-LR has a Tcycle bias of more than 4◦C (Fig. 4.7t). Tcycle biases at

northern hemisphere high latitudes are large in BCC-CSM2-MR, BCC-ESM1,

GISS-E2-1-G and GISS-E2-1-H, as the cold bias there is large in Tmax but small in

Tmin (Figs. 4.2p-s, 4.3p-s, 4.7p-s). Therefore, the projected precipitation can be too

small compared to observation, especially in summer. In the eastern boundary

upwelling regions, all models have seasonal cycles that are too small because the

warm bias is smaller in Tmin than in Tmax.

The global area-weighted average of bias in most models has the same sign (warm or

cold) in both Tmax and Tmin, where as IPSL-CM6A-LR and E3SM-1-0 have opposite

signs in Tmax and in Tmin, leading to a too large Tcycle (Fig. 4.8). In models except

IPSL-CM6A-LR and E3SM-1-0, the sign of the bias in Tmax and Tmin is the same as

that in Tmean.

In most of the models, the global RMSE is larger in Tmax than in Tmin (Fig. 4.9). Tmean

has a smaller RMSE than Tmax and Tmin, as SST biases with opposite signs in summer

and winter compensate each other when calculating the annual mean. As the bias in

Tmax and Tmin is largely consistent with Tmean bias (Figs. 4.10a-b), Tcycle RMSE is

small compared with Tmax and Tmin RMSEs. Unlike Tmax and Tmin, Tcycle does not

have RMSE that largely consistent with Tmean RMSE (Figs. 4.10c). For Tmax and

Tmin, GISS-E2-1-H and MIROC6 have the largest RMSE among models, while GFDL-

CM4 and HadGEM3-GC3-1-LL have the smallest RMSE. For Tcycle, IPSL-CM6A-LR

has the largest RMSE among models, although its RMSE in Tmax and Tmin is relatively

small compared with other models.

Tcycle biases (Fig. 4.7) indicate differences between Tmax biases and Tmin biases.
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Figure 4.7: As Fig. 4.2 , but for Tcycle.
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Figure 4.9: The global area-weighted RMSE of the biases in Tmax, Tmin, Tmean and
Tcycle.

For example, IPSL-CM6A-LR has warm SST biases in summer and cold SST biases in

winter (Figs. 4.2, 4.3), and its global RMSE in Tcycle is the largest (1.62◦C) among the

models (Fig. 4.7). For models with large Tcycle biases, the biases in their projections

of climate variables (e.g. heatwave, storm, precipitation) can be very different between

in summer and in winter.

Different biases in Tmax, Tmin, Tcycle and Tmean (Figs. 4.8, 4.9) suggest that models
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Figure 4.10: The global area-weighted RMSE of the biases in (a) Tmax, (b) Tmin, (c)
Tcycle, all against the global area-weighted Tmean. The correlation R is shown on each
panel.

have different performance in simulating SST seasonal variation and annual mean. The

”best” and ”worst” models depend on whether you choose SST seasonal extrema or

annual mean as your metric. The best choice of models depends on whether you want

to simulate phenomenons related to Tmax or Tmin or Tmean. For example, GFDL-CM4

and HadGEM3-GC31-MM are best for simulating tropical cyclones and heatwaves;

SAM0-UNICON is best for simulating the properties of intermediate and deep waters.

4.6.3 The impact of model characteristics on SST seasonal extrema

The impact of oceanic vertical resolution at low latitudes and mid-high

latitudes

According to the variation with latitudes of SST biases (Fig. 4.4) and maximum mixed

layer depth (Fig. 4.11), the globe can be broken down into low latitudes and mid-high

latitudes, using 30◦ as the boundary. At low latitudes, the amplitude of SST bias is
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small and the maximum MLD is less than 200 m; at mid-high latitudes, the amplitude

of SST bias becomes larger and the maximum MLD is greater than 200 m in the North

Atlantic, north western Pacific and along the ACC.

Figure 4.11: Averaged maximum MLD from the Argo profiling float data set
(2000–2009), adapted from Talley (2011).

The significant relationship between the RMSE and ocean vertical levels exists both at

mid-high latitudes and low latitudes (Fig. 4.12). The area-weighted RMSE of Tmax is

larger at mid-high latitudes than at low latitudes (Fig. 4.12a,b), as shown in Fig. 4.4a.

Unlike at mid-high latitudes, the sensitivity of bias to vertical resolution is similar for

Tmax (-0.012◦C per level) and Tmin (-0.008◦C per level) at low latitudes (Fig. 4.12b,d).

The reason might be that low latitudes are ice free and the MLD there is less seasonal.

Furthermore, the impact of number of ocean vertical levels on Tcycle bias at low latitudes

is weak (only -0.002◦C per level), as the amplitude of SST seasonal cycle is small in

equatorial regions (Figs. 4.4a).

As shown in Figs. 4.5, 4.12, the better vertical resolution could lead to a better

simulation. To see the geographical structure to the improvements, the analysis is

expanded to each grid point. We calculated inter-model correlations between local

SST biases and ocean vertical resolutions.

Tmax biases over most of the world ocean tend to be reduced when increasing the ocean
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Figure 4.12: The area-weighted SST RMSE against total vertical levels for (a-b) mid-
high latitudes (30◦-90◦) and (c-d) low latitudes 30◦S-30◦N. Black line is the best linear
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are shown on each panel.

vertical resolutions (Fig. 4.13a). The inter-model correlation is largest in the eastern

Pacific and Atlantic, likely due to that the mixed layer is shallower in those regions

(Fig. 4.14). When the mixed layer is shallower, a realistic representation of MLD is

more important for the simulation of SST.

In the eastern South Atlantic and Pacific, and tropical Pacific, Tmin biases is sensitive

to ocean vertical resolution as the inter-model correlation between the Tmin bias and

total number of ocean vertical levels is smaller than -0.6 (Fig. 4.13b). However, there

are some regions (e.g. subtropical North and South Pacific, South Atlantic, eastern

Indian Ocean) with positive inter-model correlation, where Tmin bias decreases with

vertical resolution.
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Figure 4.13: Inter-model correlation between the local bias and the total number of
ocean vertical levels for (a)Tmax, (b)Tmin (c)Tcycle.

As for Tcycle, the geographical pattern of inter-model correlation is more complicated

(Fig. 4.13c). The Tcycle bias in the subtropical North Pacific increases with vertical

resolution, while the Tcycle bias in the tropical eastern Atlantic decreases with vertical

resolution. The inter-model correlation is small over most of the world ocean.
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Figure 4.14: Global mixed layer depth climatology in February and August. Adapted
from de Boyer Montégut et al. (2004).

The impact of other model characteristics on SST biases

In addition to ocean vertical levels, we also examined the impact of other model

characteristics (table. 4.2) on the magnitude of SST biases. No significant correlation

was found between those model characteristics (ocean horizontal resolution,

atmosphere horizontal and vertical resolutions) and RMSE for Tmax, Tmin, Tmean and

Tcycle (Figs. 4.15, 4.17, 4.16).
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Figure 4.15: As Fig. 4.5, but for ocean horizontal resolution.
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Figure 4.16: As Fig. 4.5, but for atmosphere vertical levels.
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Figure 4.17: As Fig. 4.5, but for atmosphere horizontal resolution.



5

Discussion and conclusions

5.1 Why does the definition of seasonal extrema matter?

To examine the seasonal cycle of SST, we picked the month when local seasonal SST

maxima/minima occur to represent summer and winter, and the monthly

maxima/minima are defined as the seasonal extrema. However, our definition is

different from most studies. Some pick specific months (e.g. August and February) or

number of months (e.g. June-July-August and December-January-February) to

represent summer and winter, while some use a yearly-period sinusoid and its

associated amplitude and phase to describe the SST seasonal cycle.

In many regions (e.g. mid latitudes) the SST seasonal cycle is well represented by a

sinusoid, however this is not the case in equatorial regions, monsoon regions and polar

regions. Dwyer et al. (2012) and Stine et al. (2009) described seasonal cycle of surface

temperature by the phase and amplitude of a sinusoid with a period of 1 year, but they

had to exclude the regions where an annual sinusoid explains little of the total seasonal

variance. However, the definition of seasonal extrema in this thesis can be applied to

the whole world ocean, even in areas that are not dominated by an annual sinusoid.

SST seasonal extrema tend to occur in August and February in most of the world

ocean but there are also exceptions. In monsoon regions, SST has a semi-annual cycle

and the extrema do not occur in August or February. In polar regions, winter SST is

often at or close to freezing, thus seasonal minimum may last for many months. Even

at mid-high latitudes where the SST seasonal cycle is well represented by an annual

sinusoid, the seasonal extrema may not occur exactly in August/February. For
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example, the SST seasonal minimum occurs in September instead of August in the

subtropical Southern Hemisphere (30-40◦S). Hieronymus et al. (2014) studied global

water mass formation rates in an ocean model using monthly averaged SST and SSS

in August and February. However, August/February are not always the coldest

months in southern/northern hemispheres when the strongest formation occurs.

Wang et al. (2014) calculated the CMIP5 multi-model mean SST biases in

March-April-May, June-July-August, September-October-November and

December-January-February, and demonstrated that the SST biases have seasonally

independent patterns and seasonal varying amplitudes. If using the definition of SST

seasonal extrema in this thesis, Wang et al. (2014) may found that the bias patterns

vary seasonally and the seasonality of SST biases amplitude is actually larger.

Similarly, Liu et al. (2020) and Chen and Wang (2015) used January-February-March

mean and July-August-September mean SSTs to study the seasonal variance of SST,

which may be larger when using the monthly maximum/minimum SSTs as in this

thesis.

However, it should also be noticed that uncertainty in observation may lead to errors

in finding the timing of SST maxima/minima. To be specific, when the observation

uncertainty is larger than the difference between SST maxima/minima and the second

maximum/minimum SST, errors are likely to exist in the timing of SST

maxima/minima we found.

For the future, we suggest using monthly maxima/minima to describe the SST

seasonal cycle and using the month when local seasonal SST maxima/minima occur

to represent summer and winter, especially in the equatorial region, polar region and

monsoon region. This definition can help us better study the range of SST seasonal

cycle and seasonal extrema, which are important to water mass formation, tropical

cyclone formation, heatwave and sea ice extent. For example, in northwestern Indian

Ocean where tropical cyclone occurs, SST in August or SST averaged in

July-August-September is 26-27◦C, whereas the Tmax reaches 30◦C in May (Fig.

4.4b). SST threshold below which tropical cyclones do not form was commonly

proposed to be 26-27◦C (Tory and Dare, 2015). Therefore, using SST in August or

SST averaged in July-August-September rather than Tmax can lead to underpredicted
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tropical cyclones formation.

5.2 Uncertainty of observational climatologies

By comparing observational climatologies, we obtained SST differences larger than

2◦C and SSS differences larger than 0.5 in some regions between climatologies. It

demonstrates that there is some uncertainty of SST/SSS in climatologies due to sparse

sampling, instrumental error, quality control or gridding techniques. Therefore, we

need to pay extra attention when using observational climatologies in the regions with

high uncertainty.

The SST difference between climatologies is largest (more than 2◦C) in regions with

strong SST gradient, such as the Gulf Stream, Kuroshio Extension, Brazil Current,

ACC and coastal upwelling regions. The techniques used to construct climatologies,

such as interpolation of sparse observational data onto a regular grid, and averaging

over many years, will tend to smooth SST gradients. It seems resonable to infer that

the differences between climatologies with high SST gradients may be due to

differences in their interpolation/gridding/averaging methodologies. Most model

evaluation works suggested model biases based on only one observational climatology.

Lauer and Hamilton (2013) calculated SST biases in CMIP5 models in comparison

with the National Oceanic and Atmospheric Administration (NOAA) optimum

interpolation daily SST analysis, and found warm SST biases of 1-3◦C in eastern

boundary upwelling regions. Considering the uncertainty of observation, in some

locations part of these biases may be attributed to biased reference data.

There also exist large differences between climatologies in polar regions, likely due to

the lack of observations in ice-covered regions and different time periods. The SST field

constructed in areas without observational data can be unrealistic. At some locations

in the Antarctic, the SST of WOA13/WOA18 peaks in July - austral winter, which

rarely happens in reality. Therefore, in those areas the SST biases of HiGEM and

CMIP6 models based on WOA18 cannot be trusted.

The SSS in climatologies has differences of more than 0.5 in much of the Arctic, which
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indicates high uncertainty of SSS in the Arctic. Dong et al. (2020) suggested a saline

SSS bias exceeding 1.5 in the Beaufort Sea of the Arctic in CAS-ESM2.0, using WOA13.

Shaffrey et al. (2009) showed a saline bias of up to 3 in the Arctic in HiGEM, using

World Ocean Atlas 2001 (WOA2001). Both of those saline biases could be from the

uncertainty of the reference climatologies. As most of the Arctic is much more fresher

in WOA18 than in WAGHC (Figs. 2.27, 2.29), and the previous versions of WOA18

(WOA2013 and WOA2001) are likely to have similar values with WOA18, the saline

biases in Shaffrey et al. (2009) and Dong et al. (2020) could be reduced or even convert

into fresh biases when using WAGHC as a reference.

For the future, we suggest that not taking observational climatologies as the ”truth”

and thinking carefully before picking an observational climatology as reference. Extra

attention needs to be paid when using a climatology in regions with large uncertainty.

To avoid the uncertainty of climatologies, it might be necessary to compare several

climatologies and mask areas with large difference between climatologies.

In this thesis, we also compared climatologies with different time periods and found

that due to climate change the choice of time period can make a difference. Therefore,

we recommend that when doing model evaluation, make sure the model simulations

and observational climatologies have the same (or nearly the same) time period.

5.3 Model biases in the seasonal cycle of sea surface water

characteristics

The seasonal extrema of SST and SSS affect the density extrema of sea surface water,

which determines the occurrence of subduction. The evolution of surface water

masses to intermediate and deep water masses is important for global heat,

freshwater, carbon budgets and thermohaline ocean circulation. However, most

climate model historical run evaluations focus on annual or longer-term mean

SST/SSS, and the SST/SSS seasonal extrema have not been evaluated globally. In

this thesis we evaluated SST seasonal extrema in 20 CMIP6 models, plus SST and

SSS seasonal extrema in HiGEM, and demonstrated the importance of evaluating
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model performance not simply against annual mean properties.

We found that Tmax and Tmin biases are largely consistent with the annual mean SST

biases, but in certain regions in some models Tmax and Tmin biases are different in both

amplitude and spatial patterns. Tmax biases are generally larger than Tmin biases,

especially at mid-high latitudes. Wang et al. (2014) showed that CMIP5 multi-model

mean SST biases have spatial patterns independent of seasons. However, a multi-model

mean does not reflect performance of individual models, my study found that spatial

pattern of SST biases varies seasonally in some models. Specifically, IPSL-CM6A-LR

and E3SM-1-0 have an overall warm bias in Tmax but an overall cold bias in Tmin. For

these models which have biases of different sign, the Tmax and Tmin biases can be much

larger than Tmean bias. Therefore, it can be risky if we only assess models based on

Tmean, which may lead to biased prediction of tropical cyclone, heatwaves, water mass

formation and sea ice extent. For example, Oliver et al. (2019) used CMIP5 models

including IPSL-CM5A-LR to estimate future changes in marine heatwaves to the end

of the 21st century, and indicated significant increase in the intensity and duration

of marine heatwaves. However, according to my study, even IPSL-CM6A-LR, as the

CMIP6 version of IPSL-CM5A-LR, have an overall warm bias in summer, which may

suggest overpredicted marine heatwave in the future projection in Oliver et al. (2019).

In regions with sinusoidal SST seasonal cycles, the biases in SST seasonal extrema are

largely consistent with the annual mean SST biases. In regions with non-sinusoidal

SST seasonal cycles, models tend to have biases in their seasonal cycles. In addition

to the seasonal extrema of SST, the timing of seasonal extrema is also an important

parameter to evaluate seasonal cycle. In the monsoon regions, phase biases are up to 6

months in some models, which may be linked to biased onset time of monsoon. Large

seasonal variations in the SST bias occur in eastern boundary upwelling region, polar

region and the eastern equatorial Atlantic. Large bias of SSS seasonal variation exists

in equatorial and polar regions. The large seasonality of SST/SSS biases means that

there is a poor simulation of the seasonal processes. It suggests that in these regions

model evaluation should not only focus on annual mean values, seasonal extreme values

also needs to be considered.
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In this thesis, we compared 20 CMIP6 models using RMSE. Here we use RMSE

rather than averaged bias for global SST because biases with opposite signs in

different regions compensate each other when calculating global averaged bias. On a

global scale, HadGEM3-GC31-LL and GFDL-CM4 have the best performance in

simulating summer SST, while HadGEM3-GC31-MM and SAM0-UNICON have the

best performance in simulating winter SST. These models can be useful tools for

understanding and predicting SST seasonal variability. Models with best performance

on annual mean SST are HadGEM3-GC31-LL and SAM0-UNICON, different from

those for SST seasonal extrema. However, the above recommendation of models only

relies on global RMSE. Your selection of the best model should also depend on the

location you care about, as the model performance differs in locations.

Previous studies have emphasised the benefits of increasing ocean model horizontal

resolution in SST simulation, whereas ocean vertical resolution has drawn much less

attention. The High Resolution Model Intercomparison Project (HighResMIP v1.0)

for CMIP6 was proposed to determine the robust benefits of increased horizontal

model resolution based on multi-model ensemble simulations, but vertical resolution

was not considered in the project (Haarsma et al., 2016). This thesis concludes that

increased ocean vertical resolution also needs to be valued. By comparing 20 CMIP6

models, we found that SST is better simulated in models with higher ocean vertical

resolution. The sensitivity of SST bias to ocean vertical resolution is larger in summer

than in winter, especially at mid-high latitudes. The improvement of SST simulation

shows geographical structures. Tmax and Tmin biases are especially sensitive to ocean

vertical resolution in the eastern Pacific and eastern South Atlantic, where mixed

layer is shallower than other regions. This is likely related to the ability of the higher

resolution models to better represent the surface mixed layer, and particularly shallow

mixed layers in summer. Models with coarse vertical resolution (few vertical levels or

thick upper layer) are likely not able to realistically simulate vertical stratification of

the upper ocean and results in biased SST.

Our results suggest that global SST biases are sensitive to ocean vertical resolution and

there is a geographical pattern for the improvement of SST simulation. Over most of the

world ocean SST biases can be reduced when increasing the ocean vertical resolution.
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However, in some specific regions (e.g. subtropical North Pacific, South Atlantic, South

Pacific and eastern Indian Ocean) enhancing ocean vertical resolution could increase

Tmin biases, which still needs to be explained.

In this thesis, we investigated the impact of model characteristics on global SST

biases. The model characteristics include: ocean grid type, ocean vertical coordinate,

ocean horizontal/vertical resolutions, atmosphere horizontal/vertical resolution and

earth system model or not. Only ocean vertical resolution shows a significant

relationship with SST bias. No clear relationship was found with any other model

characteristics considered here. Displaced pole grid and tripolar grid were came up to

avoid the pole problem; unstructured-mesh grid enables higher resolution in

dynamically active regions. However, there is no significant impact of ocean grid type

on RMSE of global SST, which may due to that ocean grid type only influences

specific regions (e.g. the polar regions, the NAC, the Southern Ocean), not the whole

world ocean. Higher atmosphere-ocean resolution leads to smaller SST biases in

specific regions, for example, the eastern boundary upwelling regions (Kuhlbrodt

et al., 2018) and the NAC (Andrews et al., 2019), but my study shows no significant

impact of atmosphere-ocean resolution on the SST bias on a global scale.

Previous works indicated that higher ocean horizontal resolution improves the

representation of boundary currents, ocean fronts and eddies, and hence reduces SST

biases in these regions. Skákala et al. (2019) showed that the representation of SST in

the Southern Ocean is substantially improved by increasing horizontal resolution from

1◦ to 1/12◦, using NEMO global model. de la Vara et al. (2020) used four different

configurations of AWI-CM and demonstrated that the Agulhas Current, Benguela

Current and coastal upwelling are better simulated with increased horizontal

resolution. Chassignet et al. (2020) investigated the impact of horizontal resolution on

SST bias based on four pairs of matched low and high resolution simulations and

indicated that SST bias in western boundary currents, equatorial currents and ACC

are significantly improved in the high-resolution models. Docquier et al. (2019) and

Roberts et al. (2020) showed that finer ocean horizontal resolution results in a better

represented Atlantic Ocean heat transport, resulting in a more realistic SST over the

North Atlantic. In line with the studies mentioned above, my results also
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demonstrated that higher ocean horizontal resolution reduces SST bias in regions

with boundary currents, ocean fronts and eddies. However, in this thesis, higher

horizontal resolution does not lead to an unambiguous reduced bias in all regions

(consistent with Chassignet et al. (2020)), and therefore there is not a significant

relationship between global SST RMSE and ocean horizontal resolution.

In this thesis, we also evaluated SSS seasonal extrema in HiGEM. It is found that the

biases in Smax and Smin are largely accounted for by Smean. Seasonal variation of SSS

bias is more than 1 in the equatorial regions, likely due to poor simulated seasonal

precipitation. In the polar regions (most of the Arctic and part of the Antarctic),

there is also a significant seasonal variation of SSS bias in HiGEM based on WOA18.

However, the seasonal SSS bias in the Arctic might be from the high uncertainty of

SSS observation. Seasonal SSS bias accompanied with seasonal SST bias lead to

seasonal surface density bias, which might contribute to the seasonality of MLD bias.

The seasonal variation of SSS biases is relatively small compared to that of SST bias,

considering their contributions to density of sea water.

For the future, we recommend more efforts on the evaluation of SST and SSS

extrema, which are closely related to water mass formation and propagating climate

signal into the deep ocean. Deep water and intermediate water form within the mixed

layer in winter when heat loss and/or brine rejection result in dense surface water and

destabilizes the water column. Therefore, bias in SST and SSS can be transferred into

ventilated layers. By studying SST/SSS seasonal extrema and the related water mass

formation, we can have a better understanding of global thermohaline ocean

circulation and ocean’s role in climate system.

5.4 Limitations and future work

Global SST RMSE were assessed against ocean vertical resolution, yielding a

statistically significant relationship. However it can be difficult to assess the impact of

ocean vertical resolution alone, because there are additional model characteristics

differences. To isolate the impact of horizontal resolution, experiments at different
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horizontal resolution (ranging from an atmosphere-ocean resolution of 130 km-1◦ to

25 km-1/12◦) were performed based on HadGEM3-GC3.1, using the same forcings

and initial conditions (Roberts et al., 2019). Modellers could do similar things

(compare high resolution models with their low-resolution counterparts) to vertical

resolution in the future, in order to determine the benefits of increased ocean model

resolution on model simulations. Here we suggest modellers carry out an equivalent to

HighResMIP for ocean vertical resolution.

In this thesis, we used only one ensemble member for each model. Model simulation

can vary in ensemble members due to internal variability, given the initial condition

uncertainty. For example, using coupled CESM over the historical period of 1920-

2005, Murphy et al. (2021) found the mean variance over 41 ensemble members of

AMV indices (average SST in 0◦-60◦N, 80◦W-0◦) is 0.011◦C2. The monthly ensemble

spread of SST over 60◦S-60◦N is around 0.1◦C during 1981-2010 in Feng et al. (2018).

Considering the SST difference between ensemble members, our results can be changed

if we pick another ensemble member. However, the results are still essentially robust

as the ensemble spread is small compared to the SST biases in the models. If possible,

we could use multi-ensemble mean instead of choosing only one ensemble member.

Our work focused on sea surface water, whereas intermediate water or deep water was

not discussed in this thesis. By analysing seasonality of temperature bias at 30◦W

section in HiGEM (Fig. 5.1), we found that the seasonality of temperature bias mainly

exists in the upper ocean (0-200 m), but there is also seasonal variation of temperature

bias below the upper ocean in specific regions (e.g. 100-500 m at 40◦S), which suggests

bias in seasonal cycle of intermediate water. Intermediate waters take part of the

Meridional Overturning Circulation and are of key importance to the transport of

global heat, nutrients and carbon dioxide (Sallée et al., 2012). The characteristics

of intermediate waters are strongly tied to the characteristics of the deep mixed layer

where they developed. It could be interesting to evaluate seasonal cycle of intermediate

water in CMIP6 models, so that we can see if the SST bias has penetrated into the

intermediate layers.

It would also be useful to examine the seasonal cycle of sea surface water in CMIP5
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Figure 5.1: Potential temperature difference between HiGEM and MIMOC at 30◦W
(in the Atlantic Ocean) in (a) August (b) February and (c) the difference between (a)
and (b).

models and compare with CMIP6 models, so we can see if there is a robust

improvement from CMIP5 to CMIP6. We could also compare CMIP5 models and

their CMIP6 counterparts with finer ocean vertical resolution to verify whether the

increase in vertical resolution has a positive impact on the fidelity of the simulation of

SST. Comparing the CMIP5 and CMIP6 versions of each model may help us find

other model characteristics that benefit the simulation of seasonal cycle of sea surface

water.

We have found that in most CMIP6 models and HiGEM, the warm biases in eastern
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boundary upwelling regions are 1-5◦C larger in winter than in summer. In this thesis,

we have not explained why the warm biases are larger in winter than in summer.

Underestimation of stratocumulus and insufficient upwelling are suggested causes for

these warm SST biases (Richter, 2015). Letelier et al. (2009) suggested that the cooling

effect of upwelling is the strongest in summer. The warm bias due to stratocumulus or

upwelling is supposed to be amplified by the shallow mixed layer in summer. However,

these seasonal processes contribute to a larger summer SST warm bias rather than a

larger winter SST warm bias as seen in our results (Fig. 4.1). To explain the seasonality

of SST bias in eastern boundary upwelling regions, further work (e.g. investigation of

seasonal upwelling intensity and seasonal MLD in models) still needs to be done.

It is found that in the Southern Ocean, MIROC6 stands out as having an exceptionally

large warm bias, especially in summer (more than 5◦C). It also stands out from 21

other CMIP6 models with the largest warm bias of annual mean 0-100 m averaged

temperature (Beadling et al., 2020). One possible reason is that the area of open ocean

deep convection (which brings deep warm water to the surface) is larger in MIROC6

than in other CMIP6 models (Heuzé, 2021). However, more information (e.g. cloud,

MLD, sea water temperature below the surface) is required to explain why MIROC6

has a much larger surface warm bias than other models.

Unlike most CMIP6 models that have similar SST bias patterns in summer and winter,

IPSL-CM6A-LR and E3SM-1-0 have an overall warm bias in summer but an overall

cold bias in winter. The biases in E3SM-1-0 may be attributed to its too shallow global

annual average MLD (Golaz et al., 2019). As shallower mixed layer will intensify the

effect of surface flux on SST, SST in E3SM-1-0 can be overly warmed in summer and

overly cooled in winter. However the possible reasons for the biases in IPSL-CM6A-LR

are still unclear. Much work is still to be done to explain why SST biases in these two

models have different sign at most grid points.

This study only examined CMIP6 simulations. Analyses of biases in CMIP6 and AMIP6

(Atmospheric Model Intercomparison Project phase 6) simulation in combination could

be done to separate the influences of atmospheric model errors and coupled feedback

due to SST biases (Hyder et al., 2018). AMIP6 uses the same atmospheric models
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as in CMIP6, but with a prescribed lower boundary condition of observed SST. To

further examine the mechanisms behind SST bias, mixed layer heat budget could also

be employed.

5.5 Summary of my thesis

In this thesis, we assessed the seasonal cycle of sea surface water characteristics in

HiGEM and CMIP6 models based on an observational climatology. Because of the

uncertainty of the observational climatology, we compared several climatologies and

finally used WOA18 with the high uncertainty areas excluded. On a global scale,

seasonal SST biases are consistent with biases in annual mean SST. However, in

particular areas in some models, the amplitude and spatial pattern of SST bias vary

seasonally. Large seasonal variations in amplitude of SST bias occur in eastern

boundary upwelling regions, polar regions and eastern equatorial Atlantic.

IPSL-CM6A-LR and E3SM-1-0 have an overall warm bias in summer and an overall

cold bias in winter. These results demonstrate the importance of evaluating model

performance not simply against annual mean properties. The impact of model

characteristics on SST biases were investigated for the models we examined. It is

found that models with increased ocean vertical resolution have a better

representation of SST, particular summer SST. No significant relationship with ocean

horizontal resolution is found.
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Beaumet, J., Krinner, G., Déqué, M., Haarsma, R., and Li, L. (2019). Assessing bias

corrections of oceanic surface conditions for atmospheric models. Geoscientific

Model Development, 12(1):321–342.

Bi, D., Dix, M., Marsland, S., O’Farrell, S., Sullivan, A., Bodman, R., Law, R., Harman,

I., Srbinovsky, J., Rashid, H. A., et al. (2020). Configuration and spin-up of

ACCESS-CM2, the new generation Australian Community Climate and Earth

System Simulator Coupled Model. Journal of Southern Hemisphere Earth Systems

Science, 70(1):225–251.

Bingham, F. M., Foltz, G., and McPhaden, M. (2012). Characteristics of the seasonal

cycle of surface layer salinity in the global ocean. Ocean Science, 8(5):915.

Bjerknes, J. (1966). A possible response of the atmospheric Hadley circulation to

equatorial anomalies of ocean temperature. Tellus, 18(4):820–829.

Bleck, R. (1978). On the use of hybrid vertical coordinates in numerical weather

prediction models. Monthly Weather Review, 106(9):1233–1244.

Bleck, R. (2002). An oceanic general circulation model framed in hybrid isopycnic-

Cartesian coordinates. Ocean Modelling, 4(1):55–88.

Bloomfield, P. (2004). Fourier analysis of time series: an introduction. John Wiley &

Sons.

Bodas-Salcedo, A., Williams, K., Field, P., and Lock, A. (2012). The surface

downwelling solar radiation surplus over the Southern Ocean in the Met Office

model: The role of midlatitude cyclone clouds. Journal of Climate, 25(21):7467–

7486.
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Sévellec, F., Fedorov, A. V., and Liu, W. (2017). Arctic sea-ice decline weakens the

atlantic meridional overturning circulation. Nature Climate Change, 7(8):604–610.

Shaffrey, L. C., Stevens, I., Norton, W. A., Roberts, M. J., Vidale, P. L., Harle, J. D.,

Jrrar, A., Stevens, D. P., Woodage, M. J., Demory, M. E., Donners, J., Clark,



Bibliography 169

D. B., Clayton, A., Cole, J. W., Wilson, S. S., Connolley, W. M., Davies, T. M., Iwi,

A. M., Johns, T. C., King, J. C., New, A. L., Slingo, J. M., Slingo, A., Steenman-

Clark, L., and Martin, G. M. (2009). U.K. HiGEM: The new U.K. high-resolution

global environment model - Model description and basic evaluation. Journal of

Climate, 22:1861–1896.

Shchepetkin, A. F. and McWilliams, J. C. (2005). The regional oceanic modeling system

(ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic

model. Ocean Modelling, 9(4):347–404.

Shu, Q., Wang, Q., Song, Z., Qiao, F., Zhao, J., Chu, M., and Li, X. (2020).

Assessment of sea ice extent in CMIP6 with comparison to observations and

CMIP5. Geophysical Research Letters, 47(9):e2020GL087965.

Sijikumar, S. and Rajeev, K. (2012). Role of the Arabian Sea warm pool on the

precipitation characteristics during the monsoon onset period. Journal of Climate,

25(6):1890–1899.

Skákala, J., Smyth, T. J., Torres, R., Buckingham, C. E., Brearley, A., Hyder, P.,

and Coward, A. C. (2019). SST dynamics at different scales: Evaluating the

oceanographic model resolution skill to represent SST processes in the Southern

Ocean. Journal of Geophysical Research: Oceans, 124(4):2546–2570.

Small, R. J., Curchitser, E., Hedstrom, K., Kauffman, B., and Large, W. G. (2015). The

Benguela upwelling system: Quantifying the sensitivity to resolution and coastal

wind representation in a global climate model. Journal of Climate, 28(23):9409–

9432.

Soares, S. M., Richards, K. J., Bryan, F. O., and Yoneyama, K. (2019). On the

Seasonal Cycle of the Tropical South Indian Ocean. Part I: Mixed Layer Heat and

Salt Budgets. Journal of Climate, 32(6):1951–1972.

Solomon, A. and Newman, M. (2012). Reconciling disparate twentieth-century Indo-

Pacific ocean temperature trends in the instrumental record. Nature Climate

Change, 2(9):691.



Bibliography 170

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M.,

Miller, H., et al. (2007). The physical science basis. Contribution of working group

I to the fourth assessment report of the intergovernmental panel on climate change,

2007:235–337.

Song, F. and Zhang, G. J. (2020). The Impacts of Horizontal Resolution on the

Seasonally Dependent Biases of the Northeastern Pacific ITCZ in Coupled Climate

Models. Journal of Climate, 33(3):941–957.

Sprintall, J. and Tomczak, M. (1992). Evidence of the barrier layer in the surface layer

of the tropics. Journal of Geophysical Research: Oceans, 97(C5):7305–7316.

Stine, A. R., Huybers, P., and Fung, I. Y. (2009). Changes in the phase of the annual

cycle of surface temperature. Nature, 457:435–440.

Stocker, T. (2014). Climate change 2013: the physical science basis: Working Group

I contribution to the Fifth assessment report of the Intergovernmental Panel on

Climate Change. Cambridge University Press.

Storkey, D., Blaker, A. T., Mathiot, P., Megann, A., Aksenov, Y., Blockley, E. W.,

Calvert, D., Graham, T., Hewitt, H. T., Hyder, P., et al. (2018). UK Global

Ocean GO6 and GO7: A traceable hierarchy of model resolutions. Geoscientific

Model Development, 11(8):3187–3213.

Sun, Y., Zhong, Z., Li, T., Yi, L., Hu, Y., Wan, H., Chen, H., Liao, Q., Ma, C., and Li,

Q. (2017). Impact of ocean warming on tropical cyclone size and its destructiveness.

Scientific Reports, 7(1):1–10.

Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P.,

Anstey, J., Arora, V., Christian, J. R., and Hanna, S. (2019). The Canadian

Earth System Model version 5 (CanESM5.0.3). Geoscientific Model Development,

12(11):4823–4873.

Talley, L. D. (1999). Some aspects of ocean heat transport by the shallow, intermediate

and deep overturning circulations. Geophysical Monograph-American Geophysical

Union, 112:1–22.



Bibliography 171

Talley, L. D. (2011). Descriptive physical oceanography: an introduction. Academic

Press.

Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K.,

Sekiguchi, M., Abe, M., Saito, F., et al. (2019). Description and basic evaluation

of simulated mean state, internal variability, and climate sensitivity in MIROC6.

Geoscientific Model Development, 12(7):2727–2765.

Terhaar, J., Frölicher, T. L., and Joos, F. (2021). Southern ocean anthropogenic carbon

sink constrained by sea surface salinity. Science Advances, 7(18):eabd5964.

Tory, K. J. and Dare, R. A. (2015). Sea surface temperature thresholds for tropical

cyclone formation. Journal of Climate, 28(20):8171–8183.

Trenberth, K. E. (1983). What are the seasons? Bulletin of the American Meteorological

Society, 64(11):1276–1282.

Trenberth, K. E., Smith, L., Qian, T., Dai, A., and Fasullo, J. (2007). Estimates of

the global water budget and its annual cycle using observational and model data.

Journal of Hydrometeorology, 8(4):758–769.

Trenberth, K. E. and Stepaniak, D. P. (2001). Indices of el niño evolution. Journal of

Climate, 14(8):1697–1701.

Turkington, T., Timbal, B., and Rahmat, R. (2019). The impact of global warming on

sea surface temperature based El Niño–Southern Oscillation monitoring indices.

International Journal of Climatology, 39(2):1092–1103.

Volodin, E., Mortikov, E., Kostrykin, S., Galin, V. Y., Lykossov, V., Gritsun, A.,

Diansky, N., Gusev, A., and Iakovlev, N. (2017). Simulation of the present-day

climate with the climate model INMCM5. Climate Dynamics, 49(11-12):3715–

3734.
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