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Abbreviations  

AMRHAI, antimicrobial resistance and healthcare associated infections 

API, Analytical Profile Index 

CLED, cysteine lactose electrolyte deficient 

CLSI, Clinical and Laboratory Standards Institute 

EMA, European Medicines Agency 

ESBLs, extended-spectrum β-lactamases 

EUCAST, European Committee on Antimicrobial Susceptibility Testing 

MALDI-ToF, matrix-assisted laser desorption/ionization time-of-flight 

MIC, minimum inhibitory concentration 

NA, not applicable 

REWIND, REal World INternational Database 

SURF, Surveillance sUsceptibility and Resistance to Fosfomycin in comparison with other 

antimicrobial agents study 

UTI, urinary tract infection 

uUTI, uncomplicated urinary tract infection 
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Abstract  1 

Background: Urinary tract infections (UTIs) are prevalent world-wide, particularly 2 

among women. Their incidence increases with age, and treatment is increasingly 3 

challenging owing to antibiotic resistance and the lack of new agents. We investigated 4 

the susceptibility of current urinary isolates to fosfomycin and other antibiotics across 5 

Europe. 6 

Methods: This cross-sectional study collected consecutive urinary isolates from non-7 

hospitalised women at 20 centres in Belgium, UK, Italy, Spain and Russia. Bacteria were 8 

tested by disk diffusion with relevant antibiotics. As a quality control, a central 9 

laboratory re-tested, by agar dilution: (i) isolates found resistant to fosfomycin, and (ii) 10 

every tenth isolate; all non-Russian sites were included. 11 

Results: A total of 2848 isolates were analysed, principally Escherichia coli (2064, 12 

72.5%), Klebsiella spp. (275, 9.7%) and 103 Proteus spp. (103, 3.6%). For E. coli, agents 13 

active against >90% of isolates were nitrofurantoin (98.5%), fosfomycin (96.4%), and 14 

mecillinam (91.8%). Fosfomycin and nitrofurantoin remained active against >90% of 15 

cephalosporin-resistant E. coli. Among 143 E. coli recorded as susceptible locally by 16 

disk tests, 138 (96.5%) were confirmed susceptible by MIC tests, however resistance 17 

was only confirmed in 29/58 (50%) of those reported resistant by local disk tests. 18 

Conclusion: E. coli was found to be the most common uropathogen isolated and was 19 
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highly susceptible to fosfomycin, nitrofurantoin and mecillinam, all used effectively for 20 

more than 30 years. Guidelines advocating fosfomycin for uUTIs in women remain 21 

microbiologically valid.  22 

 23 

Keywords: urinary tract infection, uropathogen, fosfomycin trometamol, antibiotic 24 

susceptibility, cystitis, Escherichia coli25 
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1 Introduction 26 

Urinary tract infections (UTIs) – principally uncomplicated cystitis in women – are 27 

among the most common bacterial diseases in humans [1]. They are a significant cause 28 

of morbidity at all ages [2] but there is an increased prevalence in women aged 15–24 29 

years and aged ≥45 years [3, 4]. The most prevalent pathogen is Escherichia coli, 30 

accounting for 80% of cases, but other Enterobacterales are also frequent, notably 31 

Klebsiella pneumoniae [5, 6]. 32 

If untreated, or if the treatment fails, cystitis can precipitate ascending infections, 33 

including pyelonephritis and sepsis, with renal damage [2]. The main reason for failure 34 

is resistance to the antibiotics used, which standardly include -lactams, trimethoprim, 35 

and co-trimoxazole [7, 8]; fluoroquinolones also are still widely used, as revealed in the 36 

multi-national REWIND (REal World INternational Database) study [9], although they 37 

are no longer recommended in European or international guidelines. Resistance to 38 

these standardly used antibiotics is increasing, although its prevalence varies among 39 

countries [10-13]. Most resistance, except to fluoroquinolones, is determined via 40 

acquired plasmids, including those encoding extended-spectrum β-lactamases (ESBLs), 41 

which inactivate cephalosporins [8, 11, 14].  42 

The challenge of resistance, along with the paucity of novel antibiotics, highlight the 43 

need to re-evaluate older alternatives [15]. These include fosfomycin, an agent known 44 

for over 40 years, which is available as an oral trometamol salt as well as in parenteral 45 
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formulations. A systematic review and meta-analysis has shown that a single dose of 46 

fosfomycin trometamol was as effective as longer courses of alternative agents for 47 

uncomplicated UTIs (uUTIs) in women [16].  48 

Fosfomycin has an inherently broad spectrum of activity; however, the European 49 

Committee on Antimicrobial Susceptibility Testing (EUCAST) now only has breakpoints 50 

(S <8, R >8 mg/L) for E. coli in respect of the trometamol formulation used for uUTI 51 

[17].  52 

The aim of the European-wide ‘Surveillance sUsceptibility and Resistance to 53 

Fosfomycin in comparison with other antimicrobial agents study’ (SURF) was to 54 

provide a current snapshot of the prevalence of resistance to fosfomycin compared 55 

with that to other oral antibiotics frequently prescribed to treat uUTIs in women.  56 

2 Materials and methods 57 

2.1 Study design and isolates 58 

SURF was a cross-sectional epidemiological study on bacteria isolated from urine 59 

samples collected from women between April 2019 and November 2019. Twenty 60 

laboratories located across five countries participated, comprising three in Belgium, 61 

two in UK, five in Italy, four in Spain and six in Russia (see Acknowledgements). To 62 

avoid selection bias, the study protocol required collection of urine samples from all 63 

consecutively sampled non-hospitalised women who (according to clinical referral or 64 
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the International Classification of Diseases coding system) were believed to have a 65 

lower UTI. No clinical data were collected and since the ‘study subjects’ were the 66 

uropathogens, not the patients, only limited institutional review was required and 67 

obtained.  68 

2.2 Sample processing and analysis 69 

Isolates were sub-cultured and streaked for single colonies on MacConkey or Cysteine 70 

Lactose Electrolyte Deficient (CLED) agar. Local laboratories used the following 71 

methods to identify the organisms: matrix-assisted laser desorption/ionization time-of-72 

flight (MALDI-ToF) mass spectroscopy (14 sites), Vitek or other automated systems (5 73 

sites) or Analytical Profile Index (API) strips (1 site). Diffusion susceptibility tests were 74 

performed for each isolate using disks containing fosfomycin (plus glucose-6-75 

phosphate) 200 μg, amoxicillin/clavulanate 20/10 μg, ampicillin 10 μg, cefpodoxime 76 

10 μg, cefalexin 30 μg, ciprofloxacin 5 μg, trimethoprim 5 μg, mecillinam 10 μg and 77 

nitrofurantoin 100 μg. These disks were obtained centrally from Thermofisher (Life 78 

Technologies Italia Fil. Life Technologies Europe BV Via G.B. Tiepolo, 18 I-20900 Monza 79 

MB, Italy) and distributed to the sites to ensure consistent quality. Sites used Mueller-80 

Hinton agar and confluent growth, following the test method shared by both EUCAST 81 

and the CLSI. Disk diffusion zone diameters were interpreted according to current 82 

EUCAST breakpoints (EUCAST 2021), following the amendments to guidance on 83 

fosfomycin susceptibility testing [18]. 84 
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Given that E. coli is the most commonly identified uropathogen and that EUCAST 2021 85 

only provides zone diameter breakpoints for fosfomycin applied to E. coli [18], our 86 

analysis focused on this species. 87 

2.3 Quality control 88 

As a representative quality control sample, laboratories in all participating countries 89 

except Russia sent a subculture of every tenth bacterial isolate to a central laboratory 90 

(Antimicrobial Resistance and Healthcare Associated Infections [AMRHAI] Reference 91 

Unit, Public Health England, now UK Health Security Agency) for re-testing. They also 92 

sent all isolates, irrespective of species, with a zone diameter <24 mm, corresponding 93 

to the then (and current) EUCAST disk breakpoint.  94 

Isolates received by AMRHAI were re-identified by MALDI-ToF mass spectroscopy 95 

(Biotyper, Bruker, Bremen Germany), then minimum inhibitory concentrations (MICs) 96 

were determined using the CLSI agar dilution method [19]. Fosfomycin, glucose-6-97 

phosphate, nitrofurantoin, ampicillin, clavulanate, ciprofloxacin, trimethoprim and 98 

cephalexin were purchased from Merck Life Sciences (Gillingham, UK); amoxicillin, 99 

cefpodoxime and mecillinam were purchased from Alpha Aesar (Heysham, UK).  100 

2.4 Statistical analysis 101 

All statistical analyses were conducted using SAS® release 9.4 (SAS Institute, Inc., Cary, 102 

NC, USA). No formal hypothesis was formulated; rather the analyses were exploratory 103 
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and contained analytical and descriptive aspects. No formal sample size estimation 104 

was computed. Categorical data are presented as absolute and relative frequencies (n 105 

and %). Chi-squared tests were used to compare proportions of resistant and 106 

susceptible isolates between countries; data validation/sensitivity analyses considered 107 

all isolates with paired (local and central laboratory) results. 108 

Results were assigned to a not applicable (NA) category when there was no EUCAST 109 

breakpoint defined for a particular organism/antibiotic combination, or when there 110 

were missing values.  111 

3 Results 112 

3.1 Isolates collected and tested 113 

A total of 2848 isolates were collected and tested: 473 (16.6%) in Belgium, 581 (20.4%) 114 

in Italy, 565 (19.8%) in Spain, 393 (13.8%) in the UK and 836 (29.4%) in Russia (Figure 115 

1). Among the 2012 non-Russian isolates, 543 (19.1%) were sent to the central 116 

laboratory for re-testing as part of the quality control, and 542 (19.0%) were re-tested 117 

there, with MICs determined. Ultimately, a total of 534 isolates (18.8%) had matching 118 

paired local and central laboratory susceptibility results, comprising 116 (21.7%) from 119 

Belgium, 150 (28.1%) from Italy, 150 (28.1%) from Spain and 118 (22.1%) from the UK 120 

(Figure 1). Of the 534 paired isolate samples, 333 had been sent for central analysis 121 

because they had an inhibition zone diameter measurement of <24 mm for fosfomycin 122 

and 201 as part of the representative 10% sampling (26 fulfilled both criteria and, to 123 
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avoid double inclusion, are counted only within the 10% sample).  124 

The most prevalent uropathogen was E. coli (n= 2064, 72.5%), followed, among 125 

Enterobacterales, by Klebsiella spp. (n=275, 9.7%) and Proteeae (n=103, 3.6%); 126 

substantial groups among the remaining 406 (14.3%) included Enterococcus spp. 127 

(n=134), Streptococcus spp. (n=45), Staphylococcus spp. (n=28) and Pseudomonas 128 

aeruginosa (n=21). 129 

3.2 Susceptibility and resistance among eligible E. coli isolates 130 

Based on the disk diffusion tests by local laboratories, only three agents – 131 

nitrofurantoin, fosfomycin and mecillinam – were active against >90% of E. coli 132 

isolates, with resistance rates of 0.5%, 3.6% and 8.2%, respectively. Of these, only 133 

nitrofurantoin and fosfomycin retained activity against over 90% of the 348 (16.9%) E. 134 

coli isolates that were resistant to cefpodoxime and which accordingly were inferred to 135 

be ESBL producers or AmpC hyperproducers. Mecillinam appeared active against 136 

84.2% of these cefpodoxime-resistant isolates, though its clinical efficacy against ESBL 137 

producers remains contentious [20, 21] even when these appear susceptible in vitro. 138 

Cephalosporins, amoxicillin/clavulanate and ciprofloxacin were active against around 139 

80% (79.2–83.1%) of all E. coli isolates, whereas trimethoprim and ampicillin inhibited 140 

fewer than 70%. Under 60% of the cefpodoxime-resistant E. coli isolates were 141 

susceptible to agents besides fosfomycin, nitrofurantoin and mecillinam. 142 
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Comparisons covering all species are challenging due to the lack of fosfomycin and 143 

nitrofurantoin breakpoints, except for E. coli. Among agents with breakpoints for all 144 

uropathogens, only mecillinam remained active against >90% of isolates; 145 

cephalosporins, amoxicillin/clavulanate and ciprofloxacin were active against 80–146 

83.9%, trimethoprim against 71%, and ampicillin against 48.2% (Table 1). 147 

Resistance rates differed significantly (p<0.01) between countries for all the antibiotics 148 

studied except trimethoprim. Fosfomycin and nitrofurantoin nonetheless retained 149 

activity against >90% of E. coli in all the countries (Table 2), while mecillinam only 150 

narrowly failed to do so, with resistance rates of 10.0–10.8% in Italy, Belgium and the 151 

UK. Overall, the highest resistance rates were seen in Italy (highest for five of nine 152 

antibiotics tested) and the UK (highest for four antibiotics); Russia had the lowest 153 

resistance rates for five of the nine agents included. Resistance prevalence rates for 154 

cefpodoxime and cephalexin closely tracked each other across countries, being highest 155 

(27.5% and 26.3%, respectively) in the UK and lowest (6.4% and 8.0%, respectively) in 156 

Spain (Table 2). 157 

3.3 Data validation 158 

Two hundred and one E. coli isolates were sent to the central laboratory for MIC 159 

testing (Table 3). Among the 143 isolates submitted as fosfomycin susceptible, based 160 

on zone diameters >24 mm, 138 were confirmed susceptible by MIC tests, with MICs 161 

<8 mg/L, indicating a false susceptible rate from local laboratories of 3.5%. Four of the 162 
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five isolates sent as susceptible but found resistant by the central laboratory were 163 

inhibited by fosfomycin at 16–32 mg/L, with only one isolate found substantially more 164 

resistant (MIC 64 mg/L). The rate of false susceptible results was also low (<5%) for 165 

cefpodoxime, cephalexin, ciprofloxacin, trimethoprim and nitrofurantoin, but was 9.3% 166 

for mecillinam (17/183), 15.5% (14/90) for ampicillin and 21.6% (34/157) for 167 

amoxicillin/clavulanate.  168 

False resistance rates were higher. Only half (29/58, 50%) of the E. coli submitted as 169 

‘fosfomycin resistant’, based on zones <24 mm were confirmed as resistant by dilution 170 

testing (MIC >8 mg/L), whereas the other 29 isolates were found susceptible, 22 of 171 

them with MICs of <1 mg/L; for nitrofurantoin, 4/5 isolates submitted as resistant were 172 

found susceptible, indicating a false resistance rate of 80%, albeit based on a tiny 173 

group. Mecillinam (7/18, 39%), cefpodoxime (10/46, 22%), trimethoprim (10/71, 14%) 174 

and cephalexin (5/44, 11%) also had false resistance rates >10%, whereas rates were 175 

under 10% for amoxicillin/clavulanate, ampicillin and ciprofloxacin.  176 

Three hundred and thirty-three non-E. coli isolates were re-tested for susceptibility to 177 

fosfomycin at the central laboratory (Table 4), 36 with zones equal to or larger than 178 

the E. coli breakpoint of 24 mm and 297 with smaller zones. Among the former 36, 179 

‘susceptible’ MICs <8 mg/L were confirmed for 14, including 3/4 Klebsiella spp. and 6/7 180 

Proteeae, though only for 5/25 isolates of other species. MICs >8 mg/L were seen for 181 

248/297 non-E. coli reported to give zones <24 mm, including 20/23 Proteeae and 182 
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116/123 ‘others’; ‘discordances’ of an MIC <8 mg/L but a zone <24 mm were 183 

predominantly seen for Klebsiella spp. (39 cases among 151 Klebsiella tested with 184 

zones <24 mm). 185 

4 Discussion 186 

This study aimed to identify the pathogens responsible for community uUTIs in women 187 

and to assess their current antimicrobial resistance profiles across Europe, including 188 

Russia. In vitro susceptibility is a strong predictor of the likely success of antimicrobial 189 

treatment in uUTI [22]. Although most resistance-contingent treatment failures are not 190 

seriously consequential, a minority do lead to more severe disease, mostly in the 191 

elderly; in particular, E. coli bacteraemias are strongly associated with failure of 192 

therapy of prior UTIs [23]. 193 

A total of 2848 isolates were analysed and, as expected, considerably the most 194 

common uropathogen was E. coli (72.5%), followed by Klebsiella spp. (9.7%) and 195 

Proteus spp. (3.6%). The dominance of E. coli is consistent with prior studies [12, 24, 196 

25], especially in Europe and the USA [12].  197 

Although the Infectious Diseases Society of America (IDSA) no longer advocates a 198 

single threshold for the rate of resistance, as it previously did specifically for co-199 

trimoxazole [25], it is widely agreed that an antibiotic ceases to be appropriate as 200 

empirical therapy for uUTI when the resistance rate reaches 15–20% [25-27]. A cut-off 201 
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of approximately 20% is also supported by cost-effectiveness studies [28, 29]. On this 202 

criterion, the only agents considered here that retained acceptable activity were 203 

nitrofurantoin, fosfomycin and mecillinam, with cefpodoxime, cephalexin, 204 

ciprofloxacin and amoxicillin/clavulanate 20/10 μg marginal, having resistance rates 205 

around 15–20% and trimethoprim and ampicillin unacceptable, owing to much higher 206 

resistance rates. Ciprofloxacin is now also discouraged by the European Medicines 207 

Agency owing to toxicity concerns [30]. 208 

The resistance of E. coli to antimicrobials has increased in both developed and 209 

developing countries [31], partly owing to spread of the sequence type (ST)131 210 

lineage, which is often fluoroquinolone resistant and carries cephalosporin-hydrolysing 211 

ESBLs along with the inhibitor-resistant OXA-1 penicillinase [32, 33]. Among the 212 

present 2848 isolates, 14% were cefpodoxime resistant, suggesting likely ESBL 213 

production and, among these, over 90% remained susceptible to fosfomycin and 214 

nitrofurantoin. 215 

Resistance rates among E. coli isolates differed between countries, being highest in 216 

Italy and the UK and lowest in Russia and Belgium. These patterns are somewhat 217 

counterintuitive: resistance rates for bloodstream isolates are generally highest in 218 

Mediterranean Europe rather than, for example, the UK [34]. This dissonance may 219 

reflect either differences in antimicrobial use between countries, or differences in the 220 

extent of testing biases: treatment is often empirical, with culture reserved for first-221 
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regimen failures. Consequently, laboratory testing may be biased towards recurrent 222 

and recalcitrant infections, more likely to harbour resistant bacteria [35]. We do not 223 

know the extent of this confounder in different countries, nor how much it varied 224 

between them. Nevertheless, despite its effect, over 90% of E. coli isolates were 225 

susceptible to fosfomycin and nitrofurantoin in all countries, supporting their broad 226 

utility, and consistent with the results of other recent surveys [36]. 227 

Site-to-site reproducibility is a challenge for all decentralised surveys of antimicrobial 228 

susceptibility; moreover, fosfomycin is a challenging drug to test in the laboratory, 229 

requiring addition of glucose-6-phosphate to the disks and the discounting of isolated 230 

colonies within inhibition zones [37]. We addressed these issues by central re-testing, 231 

using the reference agar dilution method, for every tenth isolate and for all those that 232 

gave zones <24 mm. For E. coli the results were reassuring: only 5 of the 143 re-tested 233 

isolates that had given zones >24 mm proved resistant at 8 mg/L and only one of these 234 

5 were resistant at the pre-2021 EUCAST fosfomycin trometamol breakpoint of 32 235 

mg/L. ‘False susceptibility’ was a greater issue for amoxicillin/clavulanate and 236 

mecillinam, with incidence rates of 34/157 and 17/183 respectively. The more 237 

frequent error in the case of fosfomycin was that resistance was over-estimated by 238 

disk diffusion, being confirmed by MIC testing in only half (29/58) E. coli isolates where 239 

it was claimed from disk testing. No other agent had such a degree of resistance over-240 

estimation, except nitrofurantoin, where resistance was extremely rare.  241 



 

17 

When this project was initiated, EUCAST had an S <32/R >32 breakpoint for fosfomycin 242 

trometamol with all Enterobacterales; while the SURF study was in progress, this 243 

breakpoint was lowered to S <8/R >8 and narrowed to E. coli. The present data support 244 

the view that disk testing has little reliability beyond E. coli, with poor MIC/zone 245 

concordance found. Moreover, MIC distribution collated by EUCAST indicate that 246 

modal values for fosfomycin for other relevant pathogens besides E. coli either equal 247 

(Klebsiella spp.) or exceed (Enterococcus spp., and Staphylococcus spp.) an 8 mg/L 248 

breakpoint [38]. The one notable and pertinent exception to these generalisations, 249 

from the present data, is that the E. coli susceptibility criteria potentially might be 250 

extended to Proteeae, where 6/7 collected isolates with zones >24 mm were 251 

confirmed inhibited at 8 mg/L whereas 20/23 with zones <24 mm were confirmed 252 

resistant at 8 mg/L (Table 4). Further zone/MIC correlation studies, along with 253 

outcome data, are needed to resolve this issue and the role for fosfomycin trometamol 254 

in uUTIs involving Proteeae. 255 

Due to the dominance of E. coli and low rates of antimicrobial resistance, fosfomycin is 256 

recommended as first-line treatment in many European countries, including Belgium 257 

and Italy, and also in Russia and Brazil [9]. In addition, fosfomycin is recommended as a 258 

first-line treatment for uUTIs in the latest European Association of Urology and IDSA 259 

guidelines on urological infections [25, 39, 40]. The present results support such 260 

guidance. 261 
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A strength of this study is that it included a large sample, covering five countries 262 

(Belgium, Italy, Russia, Spain and UK), and should prove to be a useful source of quality 263 

data on antibiotic resistance to guide empirical therapy. Limitations are that it 264 

recruited consecutive laboratory isolates, rather than consecutive women presenting 265 

with uUTI, and that individual patient characteristics were not collected. This 266 

precluded exploration of reasons for differences in resistance rates between countries 267 

and, as discussed earlier, raises questions on whether the extent of routine testing – 268 

and the contingent sample bias towards difficult cases – may vary between countries. 269 

Lastly, only four of the five participating countries sent samples to the central 270 

laboratory to be re-tested.  271 

In summary, stewardship is crucial to maintaining the utility of antibiotics, and should 272 

be a key consideration for physicians managing UTIs. Good stewardship has two key 273 

aspects: (i) ensuring that patients who need antibiotics swiftly receive active, 274 

proportionate ones, and (ii) preventing over-use and disproportionate use of 275 

antibiotics. In this context, fosfomycin and nitrofurantoin represent important tools for 276 

the management of uUTIs owing to their low prevalence of resistance. 277 

5 Conclusion 278 

E. coli remains the most common causative uropathogen in all countries included in 279 

this study. Due to the high susceptibility rates and acceptable resistance, especially 280 

against E. coli isolates, fosfomycin, like nitrofurantoin, seems to be a good candidate to 281 
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effectively address antibiotic-resistant UTIs Europe-wide. 282 
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Figure legend 452 

Figure 1. Disposition of samples by country and by laboratory in the analysis 453 

population. 454 

 455 
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Tables 

Table 1. Number and percentages of resistant and susceptible isolates (eligible and cefpodoxime-resistant isolates)  

Antibiotic All E. coli Cefpodoxime-resistant E. coli All isolates 

Na Resistant isolates, n (%) Na Resistant isolates, n (%) Na Resistant isolates, n (%) 

Nitrofurantoin 100 μg  2060 31 (0.5) 348 15 (4.3) 2766 EUCAST breakpoints only for E. coli 

Fosfomycin 200 μg  2062 74 (3.6) 348 28 (8.0) 2816 EUCAST breakpoints only for E. coli  

Mecillinam 10 μg 2061 169 (8.2) 348 61 (17.6) 2804 203 (7.2) 

Cefpodoxime 10 μg 2062 348 (16.9) 348 348 (100.0) 2813 454 (16.1) 

Cephalexin 30 μg 2062 358 (17.4) 348 319 (91.7) 2811 500 (17.8) 

Amoxicillin/clavulanate 20/10 μg 2062 383 (18.6) 348 165 (47.4) 2830 506 (17.9) 

Ciprofloxacin 5 μg 2062 428 (20.8) 348 208 (59.8) 2841 568 (20.0) 

Trimethoprim 5 μg 2062 632 (30.6) 348 172 (49.4) 2824 820 (29.0) 

Ampicillin 10 μg 2062 1007 (51.2) 348 333 (95.7) 2827 1463 (51.8) 
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Table 2. Number and percentage of resistant E. coli isolates by antibiotic and country (eligible isolates)  
Fosfomyci

n  

Amoxicillin/ 

clavulanate  

Ampicillin Cefpodoxime Cephalexin Ciprofloxacin Trimethoprim Mecillinam Nitrofurantoin  

Italy (N=325)a 27 (8.3) 91 (28.0) 169 (52.0) 71 (21.8) 70 (21.5) 105 (32.3) 101 (31.1) 35 (10.8) 8 (2.5) 

Spain (N=435) 20 (4.6) 70 (16.1) 225 (51.7) 28 (6.4) 35 (8.0) 73 (16.8) 132 (30.3) 37 (8.5) 0 

United Kingdom (N=240) 7 (2.9) 66 (27.5) 153 (63.8) 66 (27.5) 63 (26.3) 36 (15.0) 87 (36.3) 24 (10.0) 5 (2.1) 

Belgium (N=367)a 7 (1.9) 82 (22.3) 176 (48.0) 43 (11.7) 46 (12.5) 53 (14.4) 110 (30.0) 37 (10.1) 5 (1.4) 

Russia (N=695) 13 (1.9) 74 (10.6) 332 (47.8) 140 (20.1) 144 (20.7) 161 (23.2) 202 (29.1) 36 (5.2) 13 (1.9) 

Chi square <.0001 <.0001 0.0005 <.0001 <.0001 <.0001 0.3496 0.0068 0.0067 

N = total number of isolates per country; E. coli resistance data are presented n (%) of samples. Percentages are computed on eligible isolates tested for each antibiotic within each country.  

a Numbers of isolates tested are one or two lower than N in some cases owing to failed tests 

Bold: highest rates; italic, lowest rates for each antibiotic 
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Table 3. Comparison of central and local results for E. coli (n=201) retested as a QC sample.  

 

 

a Includes isolates found ‘I’, defined by EUCAST as high-dose susceptible. 

b I, high dose susceptible. 

Concordance between local and central laboratory results for each tested uropathogen by antibiotic (paired isolates subgroup) 

 Isolates categorised as susceptible at local laboratory Isolates categorised as resistant at local laboratory 

Total submitted to 
central lab. 

Central lab found 
susceptible 

Central lab found 
resistant 

Total submitted to 
central lab. 

Central lab found 
susceptible 

Central lab found 
resistant 

Fosfomycin 200 μg 143 138 5 58 29 29 

Amoxicillin/clavulanate 20/10 μg 157 123 34 44 4 40 

Ampicillin 10 μg 90 76 14 111 7 104 

Cefpodoxime 10 μg 155 148 7 46 10 36 
Cephalexin 30 μg 157 152 5 44 5 39 

Ciprofloxacin 5 μg 147a 137 + 8 found Ib 2  50 4 46 

Trimethoprim 5 μg 130 128 2 71 10 61 

Mecillinam 10 μg 183 166 17 18 7 11 

Nitrofurantoin 100 μg 196 196 0 5 4 1 
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Table 4. Concordance between local and central laboratory results for fosfomycin only, 

shown for non-E. coli bacteria 

 Central Laboratory 

Local Laboratory MIC <8 mg/L Susceptible, n  MIC >8 mg/L Resistant, n 

All non-E. coli   
Zone >24 mm, Susceptible 14 22 
Zone <24 mm, Resistant 49 248 

Klebsiella spp.   
Zone >24 mm, Susceptible 3 1 
Zone <24 mm, Resistant 39 112 

Proteeae (i.e. Proteus, Morganella and 
Providencia spp.) 

  

Zone >24 mm, Susceptible 6 1 
Zone <24 mm, Resistant 3 20 

Other   
Zone >24 mm, Susceptible 5 20 
Zone <24 mm, Resistant 7 116 
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