
# Journal Pre-proof

Zinc and selenium supplementation in COVID-19 prevention and treatment: a systematic review of the experimental studiesZinc and selenium supplementation in COVID-19

Erica Balboni, Federico Zagnoli, Tommaso Filippini, Susan J. Fairweather-Tait, Marco Vinceti



PII: S0946-672X(22)00036-0

DOI: https://doi.org/10.1016/j.jtemb.2022.126956

Reference: JTEMB126956

To appear in: Journal of Trace Elements in Medicine and Biology

Received date: 26 October 2021 Revised date: 18 January 2022 Accepted date: 15 February 2022

Please cite this article as: Erica Balboni, Federico Zagnoli, Tommaso Filippini, Susan J. Fairweather-Tait and Marco Vinceti, Zinc and selenium supplementation in COVID-19 prevention and treatment: a systematic review of the experimental studiesZinc and selenium supplementation in COVID-19, *Journal of Trace Elements in Medicine and Biology*, (2021) doi:https://doi.org/10.1016/j.jtemb.2022.126956

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier.

Zinc and selenium supplementation in COVID-19 prevention and treatment: a systematic review of the experimental studies

Running title: Zinc and selenium supplementation in COVID-19

Erica Balboni<sup>1</sup>+, Federico Zagnoli<sup>1</sup>+, Tommaso Filippini<sup>1</sup>, Susan J. Fairweather-Tait<sup>2</sup>, Marco Vinceti<sup>1,3</sup>

<sup>1</sup>Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy;

<sup>2</sup>Norwich Medical School, University of East Anglia, Norwich, UK;

<sup>3</sup>Department of Epidemiology, Boston University School of Public Health, Boston, USA.

†These authors contributed equally to this work.

Corresponding author: Marco Vinceti, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy. (Tel. +39-059-2055481; fax +39-059-2055483; e-mail: marco.vinceti@unimore.it; ORCID 0000-0002-0551-2473)

#### Abstract

## **BACKGROUND AND AIM**

The COVID-19 pandemic has severely affected the world's population in the last two years. Along with non-pharmacological public health interventions, major efforts have also been made to identify effective drugs or active substances for COVID-19 prevention and treatment. These include, among many others, the trace elements zinc and selenium, based on laboratory studies and some observational human studies. However, both of these study designs are not adequate to identify and approve treatments in human medicine, and experimental studies in the form of randomized controlled trials are needed to demonstrate the effectiveness and the safety of any interventions.

## **METHODS**

We undertook a systematic review in which we searched for published and unpublished clinical trials using zinc or selenium supplementation to treat or prevent COVID-19 in the Pubmed, Scopus and ClinicalTrials databases up to January 10<sup>th</sup>, 2022.

## **RESULTS**

Amongst the published studies, we did not find any trial with selenium, whereas we retrieved four eligible randomized clinical trials using zinc supplementation, only one of which was double-blind. One of these trials looked at the effect of the intervention on the rate of new SARS-CoV-2 infections, and three at the COVID-19 clinical outcome in already infected individuals. The study populations of the four trials were very heterogeneous, ranging from uninfected individuals to those hospitalized for COVID-19. Only two studies investigated zinc alone in the intervention arm with no differences in the endpoints. The other two studies examined zinc in association with one or more drugs and supplements in the intervention arm, therefore making it impossible to disentangle any specific effects of the element. In addition, we identified 22 unpublished ongoing clinical trials, 19 on zinc, one on selenium and two on both elements.

#### CONCLUSION

No trials investigated the effect of selenium supplementation on COVID-19, while the very few studies on the effects of zinc supplementation did not confirm efficacy. Therefore, preventive or therapeutic interventions against COVID-19 based on zinc or selenium supplementation are currently unjustified, although when the results of the on-going studies are published, this may change our conclusion.

#### **Keywords:**

COVID-19; clinical trial; selenium; systematic review; supplementation; zinc.

#### Introduction

Coronavirus disease (COVID-19) is a severe and potentially fatal condition caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), an airborne virus that spread globally after its initial outbreak in late 2019 in China [1]. The clinical spectrum of SARS-CoV-2 severity ranges from an asymptomatic condition to mild symptoms such as fever, cough, ageusia, anosmia and asthenia [2, 3], up to most severe conditions, as acute respiratory distress syndrome (ARDS) and multi organ failure [4]. When the outbreak swept across Italy, which was the first country to be seriously and extensively hit by the epidemic [5], the case-fatality rate was as high as 15% [6].

To reduce the risk of transmission of SARS-CoV-2, several public health and preventive measures have been advised, including mobility restrictions through lockdown, and hand and respiratory hygiene [7, 8]. In the last months specific vaccines have been developed, with subsequent implementation of an impressive and most effective vaccination campaign [4, 9]. For COVID-19 patients, supportive care measures, such as mechanical ventilation, and a few pharmacological therapies, such as systemic corticosteroids, remain the standard of care, in the absence of a specific antiviral therapy [3, 10, 11].

In the current situation, there is an enormous interest about the possible preventive or supportive therapies against SARS-CoV-2 infection and the related disease, COVID-19. Among these, supplementation with vitamins and minerals has been suggested to help in counteracting the COVID-19 pandemic, and it has therefore increased in some populations [12-18]. Focusing on trace elements, zinc and selenium are the two minerals that triggered most of the interest by researchers and the general population, and there is evidence that self-supplementation with these two minerals has considerably increased due to this perception in the areas characterized by a high COVID-19 prevalence [19].

Some support for the possibility that zinc and selenium may be helpful in the prevention of the SARS-CoV-2 infection and the therapy of COVID-19 comes from the antioxidant and immunomodulatory properties of these two elements or related proteins [20-22], from their antiviral activity [23, 24], as well as from some nonexperimental human studies that suggested an involvement of a 'low' zinc and selenium status in favouring COVID-19 incidence and lethality [25, 26]. It has also been noted that zinc deficiency increases IL-6 levels [27], an observation of interest given the cytokine storm characterizing COVID-19 [28]. Concerning selenium, it has been proposed that the selenium-containing antioxidant enzyme glutathione peroxidase 1 could be related to the main protease (M<sup>pro</sup>) of SARS-CoV-2, and therefore selenium status might have a role in COVID-19 onset [29, 30]. In addition, the zinc supplement appears to have mild beneficial effects on acute viral respiratory tract infections [31]. Some human non-experimental studies have suggested an involvement of low zinc and selenium status in COVID-19 development, but not all studies have yielded consistent results, and the

observational design substantially weaken their capacity to demonstrate causal links [25, 32-37]. This also explains why a recent meta-analysis including both experimental (clinical trials) and non-experimental human studies on zinc and COVID-19 concluded that zinc was not proven to be effective against COVID-19 [38].

However, in human medicine any claims of efficacy (and safety) of supplementation of substances, such as drugs or nutrients, will only be accepted if the data is derived from well-designed experimental studies, the prime choice being randomized controlled trials (RCTs) [39, 40]. COVID-19 is no exception to this general rule [41, 42]. The need to obtain experimental evidence for safety and efficacy before permitting supplementation with trace elements is important, and particularly relevant for selenium where the safety margin (between adequacy and toxicity) is narrow [43]. In the past it has been claimed that selenium could reduce the risk of cancer, cardiovascular disease and diabetes, mainly on the basis of observational epidemiologic studies and one single small trial [44]. However, experimental human studies in the form of RCTs have later shown that no such effects exist, and have even reported that adverse effects such as advanced prostate cancer and type 2 diabetes may be favoured by selenium supplementation [45, 46].

In the light of our improved understanding of the controversies surrounding nutrient supplementation studies, we reviewed published clinical trials to see if there is any evidence for possible effects of zinc or selenium on COVID-19, and therefore if there is any indication that increased intake of these trace element is warranted and appropriate to prevent the current COVID-19 pandemic. In particular, according to the PICO approach, we searched for studies which investigated subjects with a clinical diagnosis of SARS-CoV-2 infection or with developed COVID-19. The considered interventions were zinc or selenium, with the control group allocated to placebo only. Finally, we considered all possible clinical outcomes showing a potential effect of the intervention on the risk of SARS-CoV-2 infection and COVID-19 onset and progression, including, for instance, symptoms of reduction or clearance from the nasopharyngeal tract.

In addition, we wanted to determine whether the current recommendations not to use zinc supplements that exceed the recommended dietary allowance [47] should be changed. Excess intake of any nutrient, including that of these two trace elements, may lead to toxicity when the upper intake level is exceeded, therefore inappropriate reliance on these or other alleged therapeutic tools may have serious health consequence. In addition, we searched for unpublished RCTs and assessed their quality where possible, in order to predict which high quality evidence would be available for meta-analysis in the future.

#### Methods

To assess all the evidence on the efficiency of zinc or selenium against SARS-CoV-2 transmission and COVID-19 onset and progression, we searched for clinical trials in the Pubmed, Scopus and ClinicalTrials databases from inception until January 10, 2022, using "(zinc OR selenium) AND (COVID-19 OR SARS-CoV-2)" as MeSH terms for Pubmed and as keywords for Scopus. We filtered the research including "Clinical Trial" option on Pubmed and adding INDEXTERMS ("clinical trials") AND (LIMIT-TO (DOCTYPE, "ar")) on Scopus. On the ClinicalTrials.gov database we set COVID-19 in the "condition or disease" field and alternatively zinc or selenium in the "Intervention/treatment" field. Included clinical trials had to report results on the effects of zinc or selenium compared to no intervention or placebo, with the use of the trace element, combined or not with other treatments, being the only difference between the treated and control groups.

We assessed the risk of bias in both published and unpublished clinical trials with RoB 2 guidelines [48]. Two investigators (EB and FZ) assessed the risk of bias and any discrepancy was resolved with the help of a third coauthor (TF). Outcomes of primary interest were mortality and Intensive Care Unit admissions. Secondary outcomes were all outcomes related to SARS-CoV-2 infection and COVID-19 onset and progression, e.g. hospitalization, time after symptoms reduction or time for nasopharyngeal tract clearance.

## Results

We retrieved 78 records from Pubmed and Scopus databases after removing duplicates (Figure 1). After title and abstract screening, we assessed the full-text of the remaining 13 papers. After removing duplicate studies and investigations not reporting any endpoints, we retrieved 4 trials, all of them evaluating the effect of zinc on COVID-19. Two of these four trials were registered on ClinicalTrials.gov database. No published clinical trial on selenium was found.

The characteristics of the four eligible studies are shown in Table 1 [49-52]. The first study was a multi-center randomized clinical trial, considering a generic population of patients with a confirmed diagnosis of COVID-19 [49]. It included a total of 191 participants from Egypt with a mean age of 43 years and with possible comorbidities of hypertension, diabetes or hepatic diseases. The observation period was 28 days and the intervention consisted of 220 mg of zinc sulfate, which contained 50 mg of elemental zinc, twice a day for 15 days. Both the intervention and the placebo arms also received hydroxicloroquine, a drug which could act as a zinc ionophore. They did not evaluated baseline zinc concentration or time between zinc initiation and symptoms onset [49]. Results did not show a significant effect of zinc treatment: recovery after 28 days and death rate were 79.2% and 5.2% in the intervention group respectively, and 77.9% and 5.3% in the control group respectively.

The second study was a single-center non-randomized and apparently unblinded clinical trial [50]. It included 113 healthy exposed participants from United States, with a duration of intervention of 20 week encompassing the adminitration of 25 mg/day of zinc together with zinc ionophores (quina plant bark extract and quercetin), vitamins C, D3 and E, and I-lysine. Population age mode was 59 years and considered comorbidities were hypertension, coronary artery disease and type 2 diabetes mellitus. Also, in this case, zinc baseline concentration was not considered. This non-randomized trial suggested possible differences between the intervention arm and the control arm (apparently not given placebo), as it reported a lower infection rate in the intervention arm (15% were diagnosed with SARS-CoV-2 infection in the control group after 20 weeks, 0% in intervention group).

The third study was a single-center double-blind randomized clinical trial on 33 COVID-19 confirmed hospitalized adults with oxigen saturation of 94% or less, having a mean age of 60 years [51]. The population was from Australia and it included participants with hypertension, diabetes, chronic cardiovascular disease, chronic respiratory disease, cirrhosis and hepathic failure. The period of intervention (0.24 mg elemental zinc/kg body weight/day) was 7 days and the period of observation of both intervention and placebo arms was 28 days. In contrast to other studies, serum baseline zinc concentration was assessed. The study did not reach the enrolment target because public health measures reduced the number of people eligible for enrolment [51]. As the only conclusion of the study, the authors reported the increased serum zinc levels induced by intravenous zinc supplementation, and the capacity of zinc supplementation to restore adequate zinc status in the supplemented participants. Additional results reported a worse outcome concerning hospitalization in the first 7 days in the intervention arm (85% of patients hospitalized versus 67% in the placebo arm), while no differences between the two arms was observed at 28 days.

The last study was a multi-center and apparently unblinded randomized clinical trial carried out in the US, with 214 participants with SARS-CoV-2 infection who were receiving outpatient care in Ohio and Florida [52]. The mean age of the population was 45 years, and a substantial part of it reported comorbidities such as diabetes, hypertension, dyslipidemia, asthma, anxiety and depression. The intervention arm received a daily supplementation of 50 mg gluconate zinc for 10 days, while the control group received a standard 'usual care' for COVID-19 without further specification. The time between symptom onset and zinc intervention was assessed. The trial was stopped early for futility. A 50% reduction in symptoms occurred in a mean period of 6.7 days after the start of the trial in the standard care group, while the corresponding period in the zinc-only group was 5.9 days. Additionally, hospitalization occurred in 8.6% of the intervention group and 6.0% of the control group, while death fate was 0% for both.

Risk of bias evaluation of clinical trials with published results is shown in Table 2. All the studies had at least one source of high risk of bias: all studies analyzed, except one [51], have high

risk of bias in the deviation from the intendeed interventions. It should be noted that only two out of four trials were registered on ClinicalTrial.gov [49, 52], one [51] had published its protocol in a previous study [53], and one not neither [50].

## Ongoing Trials

For currently unpublished clinical trials searched on ClinicalTrials.gov database, we retrieved 82 records, 22 of which were included even if they did not upload results (Table 3): five clinical trials are completed but the results are not yet published; ten clinical trials are in the recruitment phase. The main reason for excluding a study was the fact that the effects of trace elements were not tested, as they were administrated to both the control and case group. Nineteen ongoing trials evaluate the administration of zinc, fourteen ongoing trials specify the dose in various zinc coumpounds. The minimum daily dose of zinc was 10 mg and the maximum was 220 mg. One study analyzed selenium through administering a dose of 1000 mcg daily intravenously. In other two ongoing trials, zinc and selenium together were administered at daily doses of 7.5 mg and 15 mcg and of 10 mg and 110 mg, respectively. The risk of bias assessment was performed without considering the two domains referred to result reporting (Table 4). Most of unpublished clinical trials performed a randomized allocation for the interventions but did not provide any information about allocation concealment. Twenty ongoing trials performed a randomization, one is not randomized and another had no information available. Some studies did not blind all the participants, trial personnel and outcome assessors e.g. analysts: five studies were open label, two had a single masking: in one of the two the evaluators are blinded, in the other the participants are blinded. The remaining studies were at least double-blind.

#### Discussion

The relation between zinc, selenium and SARS-CoV-2 infection and COVID-19 has been discussed in the biomedical literature [49-52], and the possibility of beneficial effects of supplementation with these two trace elements has been proposed based on the purported effects of

zinc and selenium on the immune system, the capacity of these elements to counteract viral infections and diseases [24, 54, 55], and, finally, on the results of a few nonexperimental human studies [56-58]. The hypothesis arises from mechanistic evidence generated from biochemical and toxicological studies *in vitro* or in laboratory animals, showing that zinc and selenium support the immune system [13, 20] and can have effects against viral pathologies and viral replication [24, 54]. Indeed, zinc and selenium are involved in both the innate and cell-mediated immune response [20, 59-65], and zinc supplementation has been proposed to enhance the immune response [13, 66, 67].

However, in order to establish causal connections between these two trace elements and both SARS-CoV-2 infection and COVID-19 disease, randomized controlled trials are needed. In fact, this is the only reliable study design, and the gold standard for clinical research, human medicine and pharmacology to assess and confirm the efficacy and safety of any intervention [68-70]. For zinc and selenium, safety is also an issue and an endpoint of major relevance, due to the potential toxicity of high doses of these two elements, particularly of selenium, an element known to have a narrow safe range of intake [71, 72]. In this review, we were unable to retrieve any trials on selenium supplementation and COVID19-related endpoints, and therefore the current evidence does not justify selenium supplementation to prevent and treat COVID-19, especially given potential safety issues. The RCTs on zinc were characterized by substantially null and non-conclusive findings, and, in addition, several methodological issues that hampered the interpretation of results. In particular, one study did not implement any randomization, since allocation to the treatment was on a voluntary basis [50]. The results were interpreted independently from the comments and conclusions of the authors of the corresponding studies, and from the implementation of any statistical analysis.

Two of the eligible studies evaluated the effect of zinc in monotherapy supplementation, both showing lack of effect against COVID-19 severity [51, 52]. Conversely, one trial suggested possible differences between the control and intervention groups, but it was not randomized, and, in addition, zinc was part of a multi-pharmacological intervention, so the effect of zinc itself could not be disentangled. The included studies showed high heterogeneity also in terms of employed elemental

zinc doses, ranging from 7 mg/day to 100 mg/day, as well as mode of administration, i.e. intravenous or oral. In addition, the study populations in these trials were heterogeneous, since they included both participants uninfected and infected by SARS-CoV-2, and without COVID19 or with very different severity of the disease (mild, moderate, severe and critical COVID19, or unknown severity). Three studies were unblinded, thus being exposed to very serious risk of bias for possible difference in behaviour among participants based on the allocation arm, and no RCTs with low risk of bias appear to have been carried out so far. An aspect that can mislead is the lack of baseline zinc measurement at the time of enrolment, especially if no randomization has been done. Only one study performed this measurement at baseline [51].

Zinc status is notoriously difficult to assess, except for severe deficiency, and plasma zinc concentration changes in the presence of infection, so it would be difficult to determine zinc status in patients infected with COVID-19 [73, 74]. For all these reasons, any utility of zinc supplementation in COVID-19 prevention and treatment has not been proven so far, thus supporting the recommendation not to rely on zinc supplementation in COVID-19 therapy [47, 75].

For the prevention and therapy of COVID19, as more generally with any human disease, it is mandatory to use only treatments and drugs with scientifically established efficacy, and these may only be identified through randomized controlled trials adequately testing the efficacy and safety of an intervention in the target populations [69, 70]. Claims based on observational studies or laboratory studies are insufficient and may be misleading and therefore have serious consequences, such as false expectations of protection, choice of ineffective treatment, and decrease in the use of the appropriate measures to prevent the infection (starting from the specific vaccination). Finally, in some cases, mineral supplementation may lead to intakes that exceed the upper safe level (UL), a serious instance particularly for selenium given its uncertain but narrow safe range of intake [46, 72, 76]. The intake of zinc exceeded the UL derived by various agencies [77, 78] in one analyzed trial [49]. As things stand, in the absence of data from clinical trials to support zinc and selenium supplementation in COVID19 prevention and therapy, supplementation of these trace elements for these goals should

be avoided. It should also be noted that the use of zinc and selenium has not been supported or authorized by Drug Regulatory Agencies and by bodies as the World Health Organization and the Center for Disease Control [47, 75]. Nevertheless, the presence of so many ongoing trials compared to those published until now could in future modify the indications that emerge from our review.

### Declarations of interest: none.

## **Funding**

Drs. Balboni, Filippini, and Vinceti were supported by grant 'Dipartimenti di Eccellenza 2018–2022" to the UNIMORE Department of Biomedical, Metabolic and Neural Sciences from the Italian Ministry of Education, University and Research. Dr. Filippini was supported by grant 'UNIMORE FAR 2020 Interdisciplinare Linea FOMO - Fondazione di Modena' and by grant 'UNIMORE FAR IMPULSO 2020' (no. 494/2020) from the University of Modena and Reggio Emilia.

#### References

- [1] D. Yesudhas, A. Srivastava, M.M. Gromiha, COVID-19 outbreak: history, mechanism, transmission. structural studies therapeutics, and Infection 49(2) (2021)199-213. https://doi.org/10.1007/s15010-020-01516-2.
- [2] Z. Gao, Y. Xu, C. Sun, X. Wang, Y. Guo, S. Qiu, K. Ma, A systematic review of asymptomatic infections with COVID-19. Microbiol Immunol Infect (2021)54(1) 12-16. https://doi.org/10.1016/j.jmii.2020.05.001.
- [3] S.S. Tan, B. Yan, S. Saw, C.K. Lee, A.T. Chong, R. Jureen, S. Sethi, Practical laboratory considerations amidst the COVID-19 outbreak: early experience from Singapore, J Clin Pathol 74(4) (2021) 257-260. https://doi.org/10.1136/jclinpath-2020-206563.
- [4] A.O. Docea, A. Tsatsakis, D. Albulescu, O. Cristea, O. Zlatian, M. Vinceti, S.A. Moschos, D. Tsoukalas, M. Goumenou, N. Drakoulis, J.M. Dumanov, V.A. Tutelyan, G.G. Onischenko, M. Aschner,

- D.A. Spandidos, D. Calina, A new threat from an old enemy: reemergence of coronavirus (Review), Int J Mol Med 45(6) (2020) 1631-1643. https://doi.org/10.3892/ijmm.2020.4555.
- [5] M. Vinceti, T. Filippini, K.J. Rothman, S. Di Federico, N. Orsini, SARS-CoV-2 infection incidence during the first and second COVID-19 waves in Italy, Environ Res 197 (2021) 111097. https://doi.org/10.1016/j.envres.2021.111097.
- [6] T. Filippini, F. Zagnoli, M. Bosi, M.E. Giannone, C. Marchesi, M. Vinceti, An assessment of case-fatality and infection-fatality rates of first and second COVID-19 waves in Italy, Acta Biomed 92(S6) (2021) e2021420. https://doi.org/10.23750/abm.v92iS6.12241.
- [7] C.J. Hemmer, F. Hufert, S. Siewert, E. Reisinger, Protection from COVID-19: the efficacy of face masks, Dtsch Arztebl Int 118(5) (2021) 59-65. https://doi.org/10.3238/arztebl.m2021.0119.
- [8] M. Vinceti, T. Filippini, K.J. Rothman, F. Ferrari, A. Goffi, G. Maffeis, N. Orsini, Lockdown timing and efficacy in controlling COVID-19 using mobile phone tracking, EClinicalMedicine 25 (2020) 100457. https://doi.org/10.1016/j.eclinm.2020.100457.
- [9] J. Wang, New strategy for COVID-19 vaccination: targeting the receptor-binding domain of the SARS-CoV-2 spike protein, Cell Mol Immunol 18(2) (2021) 243-244. https://doi.org/10.1038/s41423-020-00584-6.
- [10] A. Di Castelnuovo, S. Costanzo, A. Antinori, N. Berselli, L. Blandi, M. Bonaccio, R. Bruno, R. Cauda, A. Gialluisi, G. Guaraldi, L. Menicanti, M. Mennuni, I. My, A. Parruti, G. Patti, S. Perlini, F. Santilli, C. Signorelli, G.G. Stefanini, A. Vergori, W. Ageno, L. Aiello, P. Agostoni, S. Al Moghazi, R. Arboretti, F. Aucella, G. Barbieri, M. Barchitta, A. Bartoloni, C. Bologna, P. Bonfanti, L. Caiano, L. Carrozzi, A. Cascio, G. Castiglione, M. Chiarito, A. Ciccullo, A. Cingolani, F. Cipollone, C. Colomba, C. Colombo, F. Crosta, G. Dalena, C. Dal Pra, G.B. Danzi, D. D'Ardes, K. de Gaetano Donati, F. Di Gennaro, G. Di Tano, G. D'Offizi, T. Filippini, F. Maria Fusco, C. Gaudiosi, I. Gentile, G. Gini, E. Grandone, G. Guarnieri, G.L.F. Lamanna, G. Larizza, A. Leone, V. Lio, A.R. Losito, G. Maccagni, S. Maitan, S. Mancarella, R. Manuele, M. Mapelli, R. Maragna, L. Marra, G. Maresca, C. Marotta, F. Mastroianni, M. Mazzitelli, A. Mengozzi, F. Menichetti, J. Milic, F. Minutolo, B. Molena, R. Mussinelli,

- C. Mussini, M. Musso, A. Odone, M. Olivieri, E. Pasi, A. Perroni, F. Petri, B. Pinchera, C.A. Pivato, V. Poletti, C. Ravaglia, M. Rossato, M. Rossi, A. Sabena, F. Salinaro, V. Sangiovanni, C. Sanrocco, L. Scorzolini, R. Sgariglia, P.G. Simeone, M. Spinicci, E.M. Trecarichi, G. Veronesi, R. Vettor, A. Vianello, M. Vinceti, E. Visconti, L. Vocciante, R. De Caterina, L. Iacoviello, R. Covid, C. Treatments, Lopinavir/ritonavir and darunavir/cobicistat in hospitalized COVID-19 patients: findings from the multicenter Italian CORIST Study, Front Med (Lausanne) (2021)639970. 8 https://doi.org/10.3389/fmed.2021.639970.
- [11] M. Gavriatopoulou, I. Ntanasis-Stathopoulos, E. Korompoki, D. Fotiou, M. Migkou, I.G. Tzanninis, T. Psaltopoulou, E. Kastritis, E. Terpos, M.A. Dimopoulos, Emerging treatment strategies for COVID-19 infection, Clin Exp Med 21(2) (2021) 167-179. https://doi.org/10.1007/s10238-020-00671-y.
- [12] S. Corrao, R. Mallaci Bocchio, M. Lo Monaco, G. Natoli, A. Cavezzi, E. Troiani, C. Argano, Does evidence exist to blunt inflammatory response by nutraceutical supplementation during COVID-19 pandemic? An overview of systematic reviews of vitamin D, vitamin C, melatonin, and zinc, Nutrients 13(4) (2021) 1261. https://doi.org/10.3390/nu13041261.
- [13] S. Li, Y. Yang, X. Lin, Z. Li, G. Ma, Z. Su, S. Zhang, A novel particulate delivery system based on antigen-Zn(2+) coordination interactions enhances stability and cellular immune response of inactivated foot and mouth disease virus, Mol Pharm 17(8) (2020) 2952-2963. https://doi.org/10.1021/acs.molpharmaceut.0c00365.
- [14] T.H. Jovic, S.R. Ali, N. Ibrahim, Z.M. Jessop, S.P. Tarassoli, T.D. Dobbs, P. Holford, C.A. Thornton, I.S. Whitaker, Could vitamins help in the fight against COVID-19?, Nutrients 12(9) (2020) 2550. https://doi.org/10.3390/nu12092550.
- [15] F. Petrelli, A. Luciani, G. Perego, G. Dognini, P.L. Colombelli, A. Ghidini, Therapeutic and prognostic role of vitamin D for COVID-19 infection: a systematic review and meta-analysis of 43 observational studies, J Steroid Biochem Mol Biol 211 (2021) 105883. https://doi.org/10.1016/j.jsbmb.2021.105883.

- [16] H. Shakoor, J. Feehan, A.S. Al Dhaheri, H.I. Ali, C. Platat, L.C. Ismail, V. Apostolopoulos, L. Stojanovska, Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: could they help against COVID-19?, Maturitas 143 (2021) 1-9. https://doi.org/10.1016/j.maturitas.2020.08.003.
- [17] L. Schomburg, Selenium deficiency due to diet, pregnancy, severe illness, or COVID-19-A preventable trigger for autoimmune disease, Int J Mol Sci 22(16) (2021) 8532. https://doi.org/10.3390/ijms22168532.
- [18] S. Taheri, S. Asadi, M. Nilashi, R. Ali Abumalloh, N.M.A. Ghabban, S.Y. Mohd Yusuf, E. Supriyanto, S. Samad, A literature review on beneficial role of vitamins and trace elements: evidence from published clinical studies, J Trace Elem Med Biol 67 (2021) 126789. https://doi.org/10.1016/j.jtemb.2021.126789.
- [19] E. Aysin, M. Urhan, Dramatic increase in dietary supplement use during COVID-19, Curr Develop Nutr 5 (2021) 207. https://doi.org/10.1093/cdn/nzab029\_008.
- [20] J.C. Avery, P.R. Hoffmann, Selenium, selenoproteins, and immunity, Nutrients 10(9) (2018) 1203. https://doi.org/10.3390/nu10091203.
- [21] B. Haryanto, T. Suksmasari, E.S. Wintergerst, S. Maggini, Multivitamin supplementation supports immune function and ameliorates conditions triggered by reduced air quality, Vitam Miner 4(2) (2015) 1000128.
- [22] S. Prentice, They are what you eat: can nutritional factors during gestation and early infancy modulate the neonatal immune response?, Front Immunol 8 (2017) 1641. https://doi.org/10.3389/fimmu.2017.01641.
- [23] C. Cermelli, M. Vinceti, E. Scaltriti, E. Bazzani, F. Beretti, G. Vivoli, M. Portolani, Selenite inhibition of *Coxsackie virus* B5 replication: Implications on the etiology of Keshan disease, J Trace Elem Med Biol 16(1) (2002) 41-6. https://doi.org/10.1016/S0946-672X(02)80007-4.
- [24] A.J. te Velthuis, S.H. van den Worm, A.C. Sims, R.S. Baric, E.J. Snijder, M.J. van Hemert, Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the

- replication of these viruses in cell culture, PLoS Pathog 6(11) (2010) e1001176. https://doi.org/10.1371/journal.ppat.1001176.
- [25] O. Younesian, B. Khodabakhshi, N. Abdolahi, A. Norouzi, N. Behnampour, S. Hosseinzadeh, S.S.H. Alarzi, H. Joshaghani, Decreased serum selenium levels of COVID-19 patients in comparison with healthy individuals, Biol Trace Elem Res (2021). https://doi.org/10.1007/s12011-021-02797-w.
- [26] G. Dubourg, J.C. Lagier, P. Brouqui, J.P. Casalta, V. Jacomo, B. La Scola, J.M. Rolain, D. Raoult, Low blood zinc concentrations in patients with poor clinical outcome during SARS-CoV-2 infection: is there a need to supplement with zinc COVID-19 patients?, J Microbiol Immunol Infect 54(5) (2021) 997-1000. https://doi.org/10.1016/j.jmii.2021.01.012.
- [27] N.Z. Gammoh, L. Rink, Zinc in infection and inflammation, Nutrients 9(6) (2017) 324. https://doi.org/10.3390/nu9060624.
- [28] M. Neagu, D. Calina, A.O. Docea, C. Constantin, T. Filippini, M. Vinceti, N. Drakoulis, K. Poulas, T.K. Nikolouzakis, D.A. Spandidos, A. Tsatsakis, Back to basics in COVID-19: Antigens and antibodies-Completing the puzzle, J Cell Mol Med 25(10) (2021) 4523-4533. https://doi.org/10.1111/jcmm.16462.
- [29] L.A. Seale, D.J. Torres, M.J. Berry, M.W. Pitts, A role for selenium-dependent GPX1 in SARS-CoV-2 virulence, Am J Clin Nutr 112(2) (2020) 447-448. https://doi.org/10.1093/ajcn/nqaa177.
- [30] D.E. Gordon, G.M. Jang, M. Bouhaddou, J. Xu, K. Obernier, K.M. White, M.J. O'Meara, V.V. Rezelj, J.Z. Guo, D.L. Swaney, T.A. Tummino, R. Huttenhain, R.M. Kaake, A.L. Richards, B. Tutuncuoglu, H. Foussard, J. Batra, K. Haas, M. Modak, M. Kim, P. Haas, B.J. Polacco, H. Braberg, J.M. Fabius, M. Eckhardt, M. Soucheray, M.J. Bennett, M. Cakir, M.J. McGregor, Q. Li, B. Meyer, F. Roesch, T. Vallet, A. Mac Kain, L. Miorin, E. Moreno, Z.Z.C. Naing, Y. Zhou, S. Peng, Y. Shi, Z. Zhang, W. Shen, I.T. Kirby, J.E. Melnyk, J.S. Chorba, K. Lou, S.A. Dai, I. Barrio-Hernandez, D. Memon, C. Hernandez-Armenta, J. Lyu, C.J.P. Mathy, T. Perica, K.B. Pilla, S.J. Ganesan, D.J. Saltzberg, R. Rakesh, X. Liu, S.B. Rosenthal, L. Calviello, S. Venkataramanan, J. Liboy-Lugo, Y. Lin, X.P. Huang, Y. Liu, S.A. Wankowicz, M. Bohn, M. Safari, F.S. Ugur, C. Koh, N.S. Savar, Q.D. Tran, D.

- Shengjuler, S.J. Fletcher, M.C. O'Neal, Y. Cai, J.C.J. Chang, D.J. Broadhurst, S. Klippsten, P.P. Sharp, N.A. Wenzell, D. Kuzuoglu-Ozturk, H.Y. Wang, R. Trenker, J.M. Young, D.A. Cavero, J. Hiatt, T.L. Roth, U. Rathore, A. Subramanian, J. Noack, M. Hubert, R.M. Stroud, A.D. Frankel, O.S. Rosenberg, K.A. Verba, D.A. Agard, M. Ott, M. Emerman, N. Jura, M. von Zastrow, E. Verdin, A. Ashworth, O. Schwartz, C. d'Enfert, S. Mukherjee, M. Jacobson, H.S. Malik, D.G. Fujimori, T. Ideker, C.S. Craik, S.N. Floor, J.S. Fraser, J.D. Gross, A. Sali, B.L. Roth, D. Ruggero, J. Taunton, T. Kortemme, P. Beltrao, M. Vignuzzi, A. Garcia-Sastre, K.M. Shokat, B.K. Shoichet, N.J. Krogan, A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature 583(7816) (2020) 459-468. https://doi.org/10.1038/s41586-020-2286-9.
- [31] J. Hunter, S. Arentz, J. Goldenberg, G. Yang, J. Beardsley, S.P. Myers, D. Mertz, S. Leeder, Zinc for the prevention or treatment of acute viral respiratory tract infections in adults: a rapid systematic review and meta-analysis of randomised controlled trials, BMJ Open 11(11) (2021) e047474. https://doi.org/10.1136/bmjopen-2020-047474.
- [32] A. Moghaddam, R.A. Heller, Q. Sun, J. Seelig, A. Cherkezov, L. Seibert, J. Hackler, P. Seemann, J. Diegmann, M. Pilz, M. Bachmann, W.B. Minich, L. Schomburg, Selenium deficiency is associated with mortality risk from COVID-19, Nutrients 12(7) (2020) 2098. https://doi.org/10.3390/nu12072098.
- [33] J. Fromonot, M. Gette, A. Ben Lassoued, J.L. Gueant, R.M. Gueant-Rodriguez, R. Guieu, Hypozincemia in the early stage of COVID-19 is associated with an increased risk of severe COVID-19, Clin Nutr (2021). https://doi.org/10.1016/j.clnu.2021.04.042.
- [34] A. Duncan, D. Talwar, D.C. McMillan, F. Stefanowicz, D.S. O'Reilly, Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements, Am J Clin Nutr 95(1) (2012) 64-71. https://doi.org/10.3945/ajcn.111.023812.
- [35] J.S. Yao, J.A. Paguio, E.C. Dee, H.C. Tan, A. Moulick, C. Milazzo, J. Jurado, N. Della Penna, L.A. Celi, The minimal effect of zinc on the survival of hospitalized patients with COVID-19: an observational study, Chest 159(1) (2021) 108-111. https://doi.org/10.1016/j.chest.2020.06.082.

- [36] P.M. Carlucci, T. Ahuja, C. Petrilli, H. Rajagopalan, S. Jones, J. Rahimian, Zinc sulfate in combination with a zinc ionophore may improve outcomes in hospitalized COVID-19 patients, J Med Microbiol 69(10) (2020) 1228-1234. https://doi.org/10.1099/jmm.0.001250.
- [37] R. Derwand, M. Scholz, V. Zelenko, COVID-19 outpatients: early risk-stratified treatment with zinc plus low-dose hydroxychloroquine and azithromycin: a retrospective case series study, Int J Antimicrob Agents 56(6) (2020) 106214. https://doi.org/10.1016/j.ijantimicag.2020.106214.
- [38] L. Szarpak, M. Pruc, A. Gasecka, M.J. Jaguszewski, T. Michalski, F.W. Peacock, J. Smereka, K. Pytkowska, K.J. Filipiak, Should we supplement zinc in COVID-19 patients? Evidence from a meta-analysis, Pol Arch Intern Med 131(9) (2021) 802-807. https://doi.org/10.20452/pamw.16048.
- [39] European Medicine Agency, Clinical trials in human medicines. <a href="https://www.ema.europa.eu/en/human-regulatory/research-development/clinical-trials-human-medicines">https://www.ema.europa.eu/en/human-regulatory/research-development/clinical-trials-human-medicines</a>, 2021 (Accessed January 18, 2022).
- [40] Food and Drug Administration, Conducting clinical trials. <a href="https://www.fda.gov/drugs/development-approval-process-drugs/conducting-clinical-trials">https://www.fda.gov/drugs/development-approval-process-drugs/conducting-clinical-trials</a>, 2021 (Accessed January 18, 2022).
- [41] N. Ben-Zuk, I.D. Dechtman, I. Henn, L. Weiss, A. Afriat, E. Krasner, Y. Gal, Potential prophylactic treatments for COVID-19, Viruses 13(7) (2021) 1292. https://doi.org/10.3390/v13071292.
- [42] S. Mouffak, Q. Shubbar, E. Saleh, R. El-Awady, Recent advances in management of COVID-19: a review, Biomed Pharmacother 143 (2021) 112107. https://doi.org/10.1016/j.biopha.2021.112107.
- [43] E. Jablonska, M. Vinceti, Selenium and human health: witnessing a Copernican Revolution?, J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 33(3) (2015) 328-68. https://doi.org/10.1080/10590501.2015.1055163.
- [44] L.C. Clark, G.F. Combs, Jr., B.W. Turnbull, E.H. Slate, D.K. Chalker, J. Chow, L.S. Davis, R.A. Glover, G.F. Graham, E.G. Gross, A. Krongrad, J.L. Lesher, Jr., H.K. Park, B.B. Sanders, Jr., C.L. Smith, J.R. Taylor, Effects of selenium supplementation for cancer prevention in patients with

- carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group, JAMA 276(24) (1996) 1957-63.
- [45] M. Vinceti, T. Filippini, C. Del Giovane, G. Dennert, M. Zwahlen, M. Brinkman, M.P. Zeegers, M. Horneber, R. D'Amico, C.M. Crespi, Selenium for preventing cancer, Cochrane Database Syst Rev 1 (2018) CD005195. https://doi.org/10.1002/14651858.CD005195.pub4.
- [46] M. Vinceti, T. Filippini, L.A. Wise, K.J. Rothman, A systematic review and dose-response metaanalysis of exposure to environmental selenium and the risk of type 2 diabetes in nonexperimental studies, Environ Res 197 (2021) 111210. https://doi.org/10.1016/j.envres.2021.111210.
- [47] National Institute of Health, COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. <a href="https://www.covid19treatmentguidelines.nih.gov/">https://www.covid19treatmentguidelines.nih.gov/</a>, 2021 (Accessed January 18, 2022).
- [48] J.A.C. Sterne, J. Savovic, M.J. Page, R.G. Elbers, N.S. Blencowe, I. Boutron, C.J. Cates, H.Y. Cheng, M.S. Corbett, S.M. Eldridge, J.R. Emberson, M.A. Hernan, S. Hopewell, A. Hrobjartsson, D.R. Junqueira, P. Juni, J.J. Kirkham, T. Lasserson, T. Li, A. McAleenan, B.C. Reeves, S. Shepperd, I. Shrier, L.A. Stewart, K. Tilling, I.R. White, P.F. Whiting, J.P.T. Higgins, RoB 2: a revised tool for assessing risk of bias in randomised trials, BMJ 366 (2019) I4898. https://doi.org/10.1136/bmj.I4898.
- [49] S. Abd-Elsalam, S. Soliman, E.S. Esmail, M. Khalaf, E.F. Mostafa, M.A. Medhat, O.A. Ahmed, M.S.A. El Ghafar, M. Alboraie, S.M. Hassany, Do zinc supplements enhance the clinical efficacy of hydroxychloroquine?: a randomized, multicenter trial, Biol Trace Elem Res 199(10) (2021) 3642-3646. https://doi.org/10.1007/s12011-020-02512-1.
- [50] L. Margolin, J. Luchins, D. Margolin, M. Margolin, S. Lefkowitz, 20-week study of clinical outcomes of over-the-counter COVID-19 prophylaxis and treatment, J Evid Based Integr Med 26 (2021). https://doi.org/10.1177/2515690X211026193.
- [51] O. Patel, V. Chinni, J. El-Khoury, M. Perera, A.S. Neto, C. McDonald, E. See, D. Jones, D. Bolton, R. Bellomo, J. Trubiano, J. Ischia, A pilot double-blind safety and feasibility randomized controlled trial

- of high-dose intravenous zinc in hospitalized COVID-19 patients, J Med Virol 93(5) (2021) 3261-3267. https://doi.org/10.1002/jmv.26895.
- [52] S. Thomas, D. Patel, B. Bittel, K. Wolski, Q. Wang, A. Kumar, Z.J. Il'Giovine, R. Mehra, C. McWilliams, S.E. Nissen, M.Y. Desai, Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection: the COVID A to Z randomized clinical trial, JAMA Netw Open 4(2) (2021) e210369. https://doi.org/10.1001/jamanetworkopen.2021.0369.
- [53] M. Perera, J. El Khoury, V. Chinni, D. Bolton, L. Qu, P. Johnson, J. Trubiano, C.F. McDonald, D. Jones, R. Bellomo, O. Patel, J. Ischia, Randomised controlled trial for high-dose intravenous zinc as adjunctive therapy in SARS-CoV- 2 (COVID-19) positive critically ill patients: trial protocol, BMJ Open 10(12) (2020). https://doi.org/10.1136/bmjopen-2020-040580.
- [54] M.A. Beck, Q. Shi, V.C. Morris, O.A. Levander, Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates, Nat Med 1(5) (1995) 433-6. https://doi.org/10.1038/nm0595-433.
- [55] N. Kaushik, C. Subramani, S. Anang, R. Muthumohan, Shalimar, B. Nayak, C.T. Ranjith-Kumar, M. Surjit, Zinc salts block hepatitis E virus replication by inhibiting the activity of viral RNA-dependent RNA polymerase, J Virol 91(21) (2017) e00754-17. https://doi.org/10.1128/JVI.00754-17.
- [56] S. Razeghi Jahromi, H. Moradi Tabriz, M. Togha, S. Ariyanfar, Z. Ghorbani, S. Naeeni, S. Haghighi, A. Jazayeri, M. Montazeri, M. Talebpour, H. Ashraf, M. Ebrahimi, A. Hekmatdoost, E. Jafari, The correlation between serum selenium, zinc, and COVID-19 severity: an observational study, BMC Infect Dis 21(1) (2021) 899. https://doi.org/10.1186/s12879-021-06617-3.
- [57] O. Bagher Pour, Y. Yahyavi, A. Karimi, A.M. Khamaneh, M. Milani, M. Khalili, A. Sharifi, Serum trace elements levels and clinical outcomes among Iranian COVID-19 patients, Int J Infect Dis 111 (2021) 164-168. https://doi.org/10.1016/j.ijid.2021.08.053.

- [58] S. Singh, A. Diwaker, B.P. Singh, R.K. Singh, Nutritional immunity, zinc sufficiency, and COVID-19 mortality in socially similar European populations, Front Immunol 12 (2021) 699389. https://doi.org/10.3389/fimmu.2021.699389.
- [59] C. Ma, P.R. Hoffmann, Selenoproteins as regulators of T cell proliferation, differentiation, and metabolism, Semin Cell Dev Biol 115 (2021) 54-61. https://doi.org/10.1016/j.semcdb.2020.11.006.
- [60] M. Maywald, I. Wessels, L. Rink, Zinc signals and immunity, Int J Mol Sci 18(10) (2017) 2222. https://doi.org/10.3390/ijms18102222.
- [61] I. Wessels, H.J. Fischer, L. Rink, Update on the multi-layered levels of zinc-mediated immune regulation, Semin Cell Dev Biol 115 (2021) 62-69. https://doi.org/10.1016/j.semcdb.2020.11.005.
- [62] E.S. Wintergerst, S. Maggini, D.H. Hornig, Immune-enhancing role of vitamin C and zinc and effect on clinical conditions, Ann Nutr Metab 50(2) (2006) 85-94. https://doi.org/10.1159/000090495.
- [63] B. Kim, W.W. Lee, Regulatory role of zinc in immune cell signaling, Mol Cells 44(5) (2021) 335-341. https://doi.org/10.14348/molcells.2021.0061.
- [64] R.S. Lin, C. Rodriguez, A. Veillette, H.F. Lodish, Zinc is essential for binding of p56(lck) to CD4 and CD8alpha, J Biol Chem 273(49) (1998) 32878-82. https://doi.org/10.1074/jbc.273.49.32878.
- [65] J. Romir, H. Lilie, C. Egerer-Sieber, F. Bauer, H. Sticht, Y.A. Muller, Crystal structure analysis and solution studies of human Lck-SH3; zinc-induced homodimerization competes with the binding of proline-rich motifs, J Mol Biol 365(5) (2007) 1417-28. https://doi.org/10.1016/j.jmb.2006.10.058.
- [66] K.P. Singh, S.I. Zaidi, S. Raisuddin, A.K. Saxena, R.C. Murthy, P.K. Ray, Effect of zinc on immune functions and host resistance against infection and tumor challenge, Immunopharmacol Immunotoxicol 14(4) (1992) 813-40. https://doi.org/10.3109/08923979209009237.
- [67] C.P. Wong, N.A. Rinaldi, E. Ho, Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation, Mol Nutr Food Res 59(5) (2015) 991-9. https://doi.org/10.1002/mnfr.201400761.
- [68] C.Y. Lim, J. In, Randomization in clinical studies, Korean J Anesthesiol 72(3) (2019) 221-232. https://doi.org/10.4097/kja.19049.

- [69] E. Hariton, J.J. Locascio, Randomised controlled trials the gold standard for effectiveness research: study design: randomised controlled trials, BJOG 125(13) (2018) 1716. https://doi.org/10.1111/1471-0528.15199.
- [70] T. Lash, T. VanderWeele, S. Haneuse, K. Rothman, Modern Epidemiology, 4th ed., Lippincott Williams and Wilkins, 2021.
- [71] M. Vinceti, T. Filippini, L.A. Wise, Environmental selenium and human health: an update, Curr Environ Health Rep 5(4) (2018) 464-485. https://doi.org/10.1007/s40572-018-0213-0.
- [72] S.J. Fairweather-Tait, Y. Bao, M.R. Broadley, R. Collings, D. Ford, J.E. Hesketh, R. Hurst, Selenium in human health and disease, Antioxid Redox Signal 14(7) (2011) 1337-83. https://doi.org/10.1089/ars.2010.3275.
- [73] J. Arnaud, M. Patriarca, B.M. Fofou-Caillierez, M. Gonzalez-Estecha, M.G. Gomez, I. De Graaf, V. Patriarca, M. Ropert-Bouchet, L. Schroer-Janssen, C. Siebelder, M. Te Winkel, M. Ventura Alemany, C. Weykamp, External quality assessment schemes for inorganic elements in the clinical laboratory: lessons from the OELM scheme, J Trace Elem Med Biol 59 (2020) 126414. https://doi.org/10.1016/j.jtemb.2019.126414.
- [74] B. Chovelon, J. Arnaud, Influence of delayed separation of plasma from whole blood on Cu, I, Mn, Se, and Zn plasma concentrations, Clin Chem Lab Med 56(3) (2018) e69-e71. https://doi.org/10.1515/cclm-2017-0358.
- [75] World Health Organization, Coronavirus disease (COVID-19): food safety and nutrition. <a href="https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-food-safety-and-nutrition">https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-food-safety-and-nutrition</a>, 2020 (Accessed January 18, 2022).
- [76] M. Vinceti, J. Mandrioli, P. Borella, B. Michalke, A. Tsatsakis, Y. Finkelstein, Selenium neurotoxicity in humans: bridging laboratory and epidemiologic studies, Toxicol Lett 230(2) (2014) 295-303. https://doi.org/10.1016/j.toxlet.2013.11.016.

[77] Institute of Medicine, Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc, National Academies Press, 2001.

[78] European Food Safety Authority, Tolerable upper intake levels for vitamins and minerals, 2006. [79] R.B. Saper, R. Rash, Zinc: an essential micronutrient, Am Fam Physician 79(9) (2009) 768-72.

**Table 1.** Description of eligible studies on clinical trials on the effects of zinc and selenium against COVID-19.

| Stud<br>y                           | Trial<br>type<br>and<br>durati<br>on                              | Populati<br>on                                   | Population characteristics                                                                                                                                                                                                                                                                                                                                                                  | Locati<br>on | Int<br>er<br>ve<br>nti<br>on<br>s                                                                                    | Conc<br>lusio<br>ns of<br>the<br>study                                                                                                                                                                      |
|-------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abd-<br>Elsal<br>am<br>2021<br>[49] | RCT<br>23<br>June<br>2020-<br>23<br>Augus<br>t 2020<br>28<br>days | Confirme d diagnosis of COVID-19 infection N=191 | Female: 44 IG group-31 CG; Male: 52 IG-64 CG Excluded: patients with hypokalemia or hypomagnesemia, porphyria, neutrophilia, myasthenia gravis, maculopathy or changes in the visual field, heart failure, prolonged QT interval in ECG, liver cirrhosis, psoriasis, epilepsy, anemia from pyruvate kinase and G6PD deficiencies, chronic kidney disease, and pregnant or lactating females | Egypt        | Co mb ina tio n of: - C Q/ H C Q - 22 0 mg of Zin c Su Ifat e twe edil y (5 0 mg of El m ent al Zin c twi ce dai ly) | Zinc suppl emen ts did not modif y the clinic al effica cy of HCQ: recov ery after 28 days and death fate were 79.2 % and 5.2% in interventio n group respe ctivel y, and 77.9 % and 5.3% in contr ol group |

| _                            |                                                                                       |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                                                                                                   |                                                                                                                             |
|------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                              |                                                                                       |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                                                                                                   | respe<br>ctivel<br>y.                                                                                                       |
| Marg<br>olin<br>2021<br>[50] | Non-rando mized clinical trial March 2020-July 2020 20 weeks                          | Healthy exposed population N=113                                                                                                 | 53 IG-60 CG Female/male:60/40 Excluded: Oxygen saturation<94%, afebrile temperature                                                                                                                                                                                                                                                                                                                               | United<br>States<br>(Ohio) | Co mb ina tio n of: - Zin c 25 mg on ce a da y - Vit am inc D3 - Vit am ine E - l- lys ine - Qu erci n - Qu ina ™ | 15% were diagn osed with SAR S-CoV-2 infecti on in the contr ol group after 20 week s, 0% in intervention group.            |
| Patel 2021 [51]              | Phase<br>Ila<br>pilot<br>double<br>-blind<br>RCT<br>From<br>May<br>2020<br>28<br>days | covID-<br>19<br>confirme<br>d<br>hospitaliz<br>ed adults<br>with<br>oxygen<br>saturatio<br>n (SpO2)<br>of 94% or<br>less<br>N=33 | Female: 4 IG-8 CG Male: 11 IG-10 CG Exclusion: age<18, pregnant, lactating female, allergy to zinc, severe hepatic impairment, history of organ transplant which requires immunosuppressive treatment which can interfere with kidney function, HIV infection, patient required cardiopulmonary resuscitation, imminent or inevitable death, eGFR<60mL/min/1,73m² or patient requiring dialysis, haemochromatosis | Austral                    | O.5 mg /kg /da y of Zin c Ch lori de (0. 24 mg /da y ele me nta l zin c)                                          | The prima ry outco me in non-ventil ated patie nts was oxyge n flow requir ed to maint ain blood oxyge n levels abov e 94%. |

|                            |                                                                        |                                                                                                                                                              |                                                  | by intr av en ou s inf usi on                                                                       | Did not reach its target enroll ment. Same clinic al result s in the two group s. HDIV Zn incre ased seru m zinc levels abov e the defici ency cutoff of 10.7 µmol/ L in the interv entio n arm. |
|----------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tho<br>mas<br>2021<br>[52] | RCT<br>27<br>April<br>2020-<br>14<br>Octob<br>er<br>2020<br>10<br>days | s of Male: 0 S<br>SARS- Excluded: hospitalized, resided outside of (Ov-2 Ohio or Florida, pregnant, actively lactating, had advanced chronic kidney disease, | United<br>States<br>(Ohio<br>and<br>Florida<br>) | S ep ar ate ly: - 50 mg of Zin c GI uc on ate on ce a da y (7 mg of EI em ent al Zin c on ce a da y | Study was stopp ed. Treat ment had no effect on SAR S-CoV-2 sympt oms. 50% reduction in sympt oms occur red in a mean of 6.7 days in stand ard care group and 5.9                                |

| [79        | days  |
|------------|-------|
| ])         | in    |
| -          | zinc  |
| As         | only  |
| cor<br>bic | group |
| aci        | •     |
| d          |       |
| -<br>-     |       |
| Co         |       |
| mb         |       |
| ina        |       |
| tio        |       |
| n          |       |
| of         |       |
| bot        |       |
| h          |       |
| tre        |       |
| at         |       |
| me         |       |
| nt         |       |

**Abbreviations:** CG, control group; CQ, chloroquine; eGFR, estimated glomerular filtration rate; HCQ, hydroxychloroquine; HDIVZn, high-dose intravenous zinc; IG, intervention group; RCT, randomized controlled

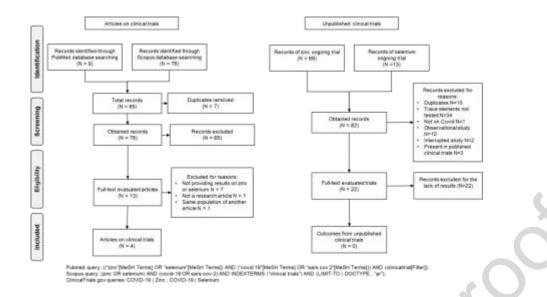
**Table 2.** Risk of bias of the eligible clinical trials evaluated with RoB 2 tools. Red, yellow and green marks correspond to high, medium and low risk of bias respectively.

| Study                        | Bias arising<br>from<br>randomization<br>process | Risk of bias due to<br>deviations from the<br>intended<br>interventions<br>(effect of<br>assignment to<br>intervention) | Risk of bias<br>due to<br>deviations from<br>the intended<br>interventions<br>(effect of<br>adhering to<br>intervention) | Missing outcome data | Risk of bias in<br>measurement<br>of the outcome | Risk of bias in<br>selection of the<br>reported result |
|------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------|--------------------------------------------------------|
| Abd-<br>Elsalam<br>2021 [49] |                                                  | 8                                                                                                                       | 8                                                                                                                        | 0                    |                                                  | •                                                      |
| Margolin<br>2021 [50]        | 8                                                | 8                                                                                                                       | 8                                                                                                                        | 0                    | •                                                | 0                                                      |
| Patel 2021[51]               | 0                                                | 0                                                                                                                       | 0                                                                                                                        | 0                    | 0                                                | 8                                                      |
| Thomas 2021 [52]             | 0                                                | 8                                                                                                                       | 8                                                                                                                        | 0                    | •                                                | 0                                                      |

**Table 3.** Description of unpublished clinical trials on the effects of zinc and selenium against COVID-19.

| NCT Number  | Interventions                                                                                                                                                       | Enrollment | Study Designs                                                                                                                                        | Locations                       | Status     |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------|
| NCT04323228 | Dietary Supplement: Oral supplement enriched in antioxidants (15 mcg Selenium and 7.5 mg Zinc once a day) Dietary Supplement: cellulose-containing placebo capsules | 40         | Allocation: Randomized Intervention Model: Parallel Assignment Masking: Double (Participant, Care Provider) Primary Purpose: Supportive Care         | Saudi<br>Arabia                 | Recruiting |
| NCT04334512 | Drug: Hydroxychloroquine Drug: Azithromycin Dietary Supplement: Vitamin C Dietary Supplement: Vitamin D Dietary Supplement: Zinc (not                               | 600        | Allocation: Randomized<br>Intervention Model: Parallel<br>Assignment<br>Masking: Double (Participant,<br>Investigator)<br>Primary Purpose: Treatment | California,<br>United<br>States | Recruiting |

| NCT04335084  Drug: Hydroxychloroquine Dietary Supplement: Vitamin C Dietary Supplement: Vitamin Dietary Supplement: Vitamin Dietary Supplement: Vitamin Dietary Supplement: Vitamin Dietary Supplement: Zinc (not specified)  NCT04435587  NCT04435587  NCT04446104  NCT04446104  NCT04446104  NCT0446104  NCT04486104  Drug: Hydroxychloroquine Sulfate (33 mg two times a day for five days) Drug: Lydroxychloroquine Sulfate Tablets Drug: Vermectin 3 mg Tab Drug: Zinc (80 mg once a Masking: None (Open Label) Assignment Masking: None (Open Label) Primary Purpose: Prevention  Allocation: Randomized California, Recruiting United States  Naking: Onuble (Participant, Investigator) Primary Purpose: Prevention  Allocation: Randomized Intervention Model: Parallel Assignment Masking: None (Open Label) Primary Purpose: Prevention |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| day for three days) Drug: Combined ART/hydroxychloroquine/Zinc Sulfate (23 mg two times a day for five days)  NCT04446104  NCT04446104  Drug: Hydroxychloroquine Sulfate Tablets Drug: Ivermectin 3 mg Tab Drug: Zinc (80 mg once a  Assignment Masking: Single (Outcomes Assessor) Primary Purpose: Treatment Assessor) Allocation: Randomized Intervention Model: Parallel Assignment Masking: None (Open Label)                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sulfate Tablets  Drug: Ivermectin 3 mg Tab  Drug: Zinc (80 mg once a  Intervention Model: Parallel  Assignment  Masking: None (Open Label)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Drug: Povidone-lodine<br>Dietary Supplement: Vitamin<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NCT04468139 Drug: Quercetin Dietary Supplement: bromelain Drug: Zinc (50 mg once a day) Drug: Vitamin C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NCT04472585 Drug: Ivermectin Injectable Solution Other: Injectable Placebo Drug: Zinc (20 mg three times a day) Drug: Placebo empty capsule Drug: Oral Ivermectin Drug: Oral Ivermectin Drug: Injectable Placebo Assignment Masking: Quadruple (Participant, Care Provider, Investigator, Outcomes Assessor) Primary Purpose: Treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NCT04542993  Dietary Supplement: Zinc Picolinate (50 mg three times a day) Dietary Supplement: Resveratrol Dietary Supplement: Zinc Picolinate Placebo Dietary Supplement: Resveratrol Placebo Dietary Supplement: Resveratrol Placebo Dietary Supplement: Resveratrol Placebo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NCT04558424 Dietary Supplement: Zinc gluconate (220 mg once a day) and ascorbic acid Signal and ascorbic acid Assignment Masking: Quadruple (Participant, Care Provider, Investigator, Outcomes Assessor) Primary Purpose: Supportive Care                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NCT04621149 Other: chlorine dioxide Dietary Supplement: zinc Intervention Model: Factorial United acetate (not specified) Assignment States  Drug: Famotidine Masking: Quadruple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Other: placebo (Participant, Care Provider, Dietary Supplement: Investigator, Outcomes lactoferrin, green tea extract Assessor) Primary Purpose: Treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |


|             | Cultata (200                                                                                                                                                                                                                   |      | Intervention Martin O'                                                                                                                                                      | السنديا                    |                        |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|
|             | Sulfate (220 mg once a day)<br>Drug: Placebo                                                                                                                                                                                   |      | Intervention Model: Single<br>Group Assignment<br>Masking: Double (Participant,<br>Investigator)<br>Primary Purpose: Treatment                                              | United<br>States           |                        |
| NCT04641195 | Dietary Supplement: Vitamin<br>D3 (cholecalciferol)<br>Dietary Supplement: Zinc<br>gluconate (40 mg once a day)<br>Dietary Supplement: Zinc<br>gluconate (40 mg once a day)<br>& Vitamin D (cholecalciferol)<br>Other: Placebo | 700  | Allocation: Randomized Intervention Model: Factorial Assignment Masking: Quadruple (Participant, Care Provider, Investigator, Outcomes Assessor) Primary Purpose: Treatment | India                      | Recruiting             |
| NCT04751669 | Dietary Supplement: Vitamin<br>and trace elements (Zinc 10<br>mg once a day and Selenium<br>110 mg once a day)<br>Dietary Supplement: Placebo                                                                                  | 300  | Allocation: Randomized Intervention Model: Parallel Assignment Masking: Quadruple (Participant, Care Provider, Investigator, Outcomes Assessor) Primary Purpose: Treatment  | Spain                      | Not yet<br>recruiting  |
| NCT04828538 | Dietary Supplement: Vitamin D Dietary Supplement: Omega DHA / EPA Dietary Supplement: Vitamin C, Vitamin B complex and Zinc Acetate (100 mg once a day)                                                                        | 3600 | Allocation: Randomized<br>Intervention Model: Factorial<br>Assignment<br>Masking: Triple (Participant,<br>Care Provider, Investigator)<br>Primary Purpose: Other            | Mexico                     | Active, not recruiting |
| NCT04869579 | Drug: Selenious Acid (first<br>day 2000 mcg, following days<br>1000 mcg)<br>Other: Placebo                                                                                                                                     | 100  | Allocation: Randomized<br>Intervention Model: Parallel<br>Assignment<br>Masking: Double (Participant,<br>Investigator)<br>Primary Purpose: Treatment                        | Texas,<br>United<br>States | Not yet recruiting     |
| NCT04935515 | Drug: Oral Antibiotic, Antihistamine, Anti- inflammatory, Multivitamins and Zinc (not specified) Drug: Oral low dose steroid Drug: Intravenous Antibiotics with Low dose steroid. Drug: Oral anti-coagulant                    | 25   | Allocation: Non-Randomized<br>Intervention Model: Parallel<br>Assignment<br>Masking: None (Open Label)<br>Primary Purpose: Supportive<br>Care                               | India                      | Completed              |
| NCT04937556 | Dietary Supplement: Probiotic: Lactobacillus salivarius + Vit D + Zinc (not specified) Dietary Supplement: Placebo                                                                                                             | 60   | Allocation: Randomized<br>Intervention Model: Parallel<br>Assignment<br>Masking: Triple (Participant,<br>Care Provider, Investigator)<br>Primary Purpose: Treatment         | Spain                      | Recruiting             |
| NCT05003492 | Combination Product: Combination therapy with Zinc (15 mg twice daily) plus Standard therapy Radiation: Photodynamic therapy Drug: Standard therapy                                                                            | 2    | Allocation: Randomized<br>Intervention Model: Parallel<br>Assignment<br>Masking: None (Open Label)<br>Primary Purpose: Treatment                                            | Saudi<br>Arabia            | Not yet recruiting     |
| NCT04377646 | Drug: Hydroxychloroquine Drug: Hydroxychloroquine (placebo) Drug: Zinc (15 mg once a day) Drug: Zinc (Placebo)                                                                                                                 | 660  | Allocation: Randomized<br>Intervention Model: Parallel<br>Assignment<br>Masking: Triple (Participant,<br>Care Provider, Investigator)<br>Primary Purpose: Prevention        | Tunisia                    | Not yet<br>recruiting  |
| NCT04551339 | Dietary Supplement: PreserVision AREDS                                                                                                                                                                                         | 2700 | Allocation: Randomized<br>Intervention Model: Parallel                                                                                                                      | Minnesota,<br>United       | Completed              |

|             | formulation soft gels or tablets<br>(69,6 mg/day of zinc)<br>Dietary Supplement:<br>Multivitamin with 11mg of zinc                                                                                       |     | Assignment<br>Masking: None (Open Label)<br>Primary Purpose: Other                                                                                                                              | States |            |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|
| NCT04584567 | Drug: Doxycyclin + Placebo<br>Drug: Doxycyclin + Zinc (15<br>mg once a day)<br>Drug: Placebo                                                                                                             | 194 | Allocation: Randomized<br>Intervention Model: Parallel<br>Assignment<br>Masking: Double (Participant<br>Investigator)<br>Primary Purpose: Prevention                                            |        | Completed  |
| NCT04780061 | Drug: Vitamin D3 50,000 IU Dietary Supplement: Vitamin C/Zinc (8,3 mg three times a day) Dietary Supplement: Vitamin K2/D Other: Microcrystalline Cellulose Capsule Other: Medium Chain Triglyceride Oil | 200 | Allocation: Randomized<br>Intervention Model: Parallel<br>Assignment<br>Masking: Quadruple<br>(Participant, Care Provider,<br>Investigator, Outcomes<br>Assessor)<br>Primary Purpose: Treatment | Canada | Recruiting |

**Table 4**. Risk of bias evaluation of the ongoing clinical trials having used RoB tools. Red, yellow and green marks correspond to high, medium and low risk of bias, respectively. The last two domains have not been evaluated as no result was presented.

| Trial       | Bias arising from randomization process | Risk of bias due to<br>deviations from the<br>intended interventions<br>(effect of assignment<br>to intervention) | Risk of bias due to<br>deviations from the<br>intended interventions<br>(effect of adhering to<br>intervention) | Risk of bias in<br>measurement of the<br>outcome |
|-------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| NCT04468139 | 8                                       | 8                                                                                                                 | 0                                                                                                               | 0                                                |
| NCT05003492 | •                                       | 8                                                                                                                 | 8                                                                                                               | •                                                |
| NCT04446104 |                                         | 8                                                                                                                 | 8                                                                                                               |                                                  |
| NCT04935515 | 8                                       | 8                                                                                                                 | 8                                                                                                               | •                                                |
| NCT04435587 |                                         | 8                                                                                                                 | 8                                                                                                               |                                                  |
| NCT04542993 |                                         | 8                                                                                                                 | 8                                                                                                               |                                                  |
| NCT04334512 |                                         | 8                                                                                                                 | 8                                                                                                               | 0                                                |
| NCT04869579 |                                         | 8                                                                                                                 | 8                                                                                                               | •                                                |
| NCT04641195 |                                         | 0                                                                                                                 | 0                                                                                                               | 0                                                |
| NCT04828538 | 0                                       | 0                                                                                                                 | •                                                                                                               | •                                                |
| NCT04621461 |                                         | 8                                                                                                                 | 8                                                                                                               | 0                                                |
| NCT04335084 |                                         | 8                                                                                                                 | 8                                                                                                               | •                                                |
| NCT04323228 |                                         | 0                                                                                                                 | 0                                                                                                               |                                                  |
| NCT04472585 |                                         | 0                                                                                                                 | 0                                                                                                               | •                                                |
| NCT04937556 |                                         | 0                                                                                                                 | 0                                                                                                               | 0                                                |
| NCT04621149 |                                         | 0                                                                                                                 | 0                                                                                                               | •                                                |
| NCT04751669 |                                         | 0                                                                                                                 | 0                                                                                                               | 0                                                |
| NCT04558424 | •                                       | 0                                                                                                                 | 0                                                                                                               | 0                                                |
| NCT04377646 |                                         | 0                                                                                                                 | 0                                                                                                               | 0                                                |
| NCT04551339 |                                         |                                                                                                                   | 8                                                                                                               |                                                  |
| NCT04584567 |                                         | 0                                                                                                                 | 0                                                                                                               |                                                  |
| NCT04780061 |                                         | 0                                                                                                                 | •                                                                                                               | •                                                |

Figure 1: Flow chart for clinical trials on zinc or selenium for COVID-19 prevention and treatment.



## CRediT authorship contribution statement

TF and MV conceived the study. EB and FZ extracted and analyzed data with TF. All authors interpreted the data. EB and FZ prepared the first of the manuscript with contribution of TF and MV. All authors read and approved the final manuscript.