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Recently identified post-fire carbon fluxes indicate that in order to understand if global 
fires represent a net carbon source or sink, one must consider both terrestrial carbon 
retention through pyrogenic carbon production, and carbon losses via multiple 
pathways. Here, these legacy source and sink pathways are quantified using a CMIP6 
land surface model to estimate Earth's fire carbon budget. Over 1901-2010, global 
pyrogenic carbon drives annual soil carbon accumulation of 337 TgCyr-1, offset by 
legacy carbon losses totalling -248 TgCyr-1. The residual of these values constrains 
maximum annual pyrogenic carbon mineralisation to 89 TgCyr-1, and pyrogenic carbon 
mean residence time to 5387 years, assuming steady state.   The residual is negative over 
forests and positive over grassland-savannahs (implying a potential sink), suggesting 
contrasting roles of vegetation in the fire carbon cycle. Paucity of observational 
constraints for representing pyrogenic carbon mineralisation mean that without 
assuming steady state, we are unable to determine the sign of the overall fire carbon 
balance. Constraining pyrogenic carbon mineralisation rates, particularly over 
grassland-savannahs, is a critical research frontier that would enable fuller 
understanding of fire’s role in the earth system and inform attendant land use and 
conservation policy.   
 
 
Wildfires are a key driver of disturbance-recovery cycles in many regions of the world. While 
fires emit large quantities of CO2-C to the atmosphere (~2 PgC yr-1, hereafter 𝐸 !"#$

! )1, 
subsequent vegetation recovery re-captures the emitted C on decadal timescales2–4 and results 
in an uncertain but likely small net impact on atmospheric C in the long run5, and is 
insignificant compared to other biogeochemical feedbacks in geological time6–8.  Natural 
shifts in fire regimes and vegetation occur infrequently9 and current changes are largely 
driven by climatic10 and human11 perturbations.  However, even in the absence of global fire 
regime changes, a range of long-term ‘legacy’ post-fire C fluxes lead to either C accumulation 
or loss by land ecosystems locally, with their balance as yet undetermined12.  
 



On the terrestrial legacy C sink side, the charring of biomass by fire creates a by-product 
known as pyrogenic C (PyC) (~10-20% annual fire CO2 emissions)12,13 which is significantly 
more resistant to biochemical oxidation than bulk soil organic C (SOC)14–17.  Most studies 
find that PyC degrades with a highly uncertain mean residence time (MRT), ranging from 
decades to thousands of years 18–23 (1-3 orders of magnitude higher than non-PyC SOC), 
suggesting that its production drives a sequestration flux from the atmosphere which exceeds 
the temporal boundaries of the fire-recovery cycle in most fire regimes, resulting in long-term 
terrestrial PyC accumulation (𝑆𝑂𝐶!"#! ). In addition to the production of refractory PyC 
accumulating in soils (𝑆𝑂𝐶!"#! ), there is also a lightweight ‘labile’ component that is likewise 
readily mobilised, hereafter denoted (𝑃𝑦𝐶!"! , Supplementary Text S2). 
 
On the terrestrial ‘legacy C loss’ side, like other forms of SOC, PyC is liable to mineralisation 
to the atmosphere (𝐸!"#! ), and to export from land to oceans via rivers (𝑆𝑂𝐶!"#$%&! ) in 
particulate or dissolved form (Py-POC and Py-DOC, respectively), totalling > 40 TgPyC-C 
yr-1 18,24.  A fraction of this river-transported PyC is eventually deposited to the ocean floor up 
to 10,000 years18,21 after its initial production, with some presently unknown proportion of 
photo-oxidation occurring en route in fresh and marine surface waters and in sediments25. The 
steady state condition of the terrestrial fire C cycle thus has the following formulation:  
 

𝑬 𝑭𝒊𝒓𝒆
! + 𝑬𝑷𝒚𝑪! + 𝑺𝑶𝑪𝑷𝒚𝑪𝑬𝒙𝒑! =  𝑼𝑽𝑪𝑶𝟐

! + 𝑺𝑶𝑪𝑷𝒚𝑪! + 𝑷𝒚𝑪𝑳𝑾!    (1) 
 
Where 𝐸 !"#$

!  is the fire C emissions due to vegetation combustion, 𝐸!"#!  represents refractory 
and light-weight PyC mineralisation in the terrestrial domain25, and 𝑈!"!!  is uptake of 
atmospheric CO2 by post-fire vegetation recovery, poles referring to flux direction (gain 
(+)/loss (-)) with respect to C stocks in the terrestrial biosphere.  
 
The production rate of PyC is intimately linked with vegetation type, mean climate and 
climate variability6,26.  Bio-climatic zones determine the rate of biomass (fuel) build-up as 
well as probable time between fire events, referred to here as fire return interval (FRI), with a 
positive relation between fuel accumulation and FRI across a gradient of increasing FRI from 
e.g. grassland-savannah to dry forest and rainforest biomes (Fig. 1a). FRI in turn proxies 
biome-scale PyC production rates (Fig. 1d), while increasing dry fuel accumulation per unit 
area enables greater combustion, heat release and flame temperatures, all else (fuel and 
climate conditions) equal (model H1, Fig.1c).   
 
Less is known about how the MRT of PyC is affected by FRI. One plausible conceptual 
model is that MRT is a positive function of flame temperature14,20, such that low FRI biomes 
will tend to generate PyC of lower MRT (inverse curves, Fig. 1d), all else equal.  However, 
flame temperatures are also determined by climate over the mid-length (drought and fuel 
moisture) and the short (e.g. wind conditions) cumulative timescales of fire drivers27,28, as 
well as by human suppression, meaning that other conceptual models whereby low FRI 
results in higher-MRT PyC are plausible (e.g. models H2, H3 in Figs.1c,d).   
 
To constrain the overall terrestrial fire C balance, several mechanisms which impose long-
term C deficits on the terrestrial biosphere must be considered: First, the return of biomes to 
their pre-fire biomass state (Fig.1a) requires a stable fire regime, in which the biomass 
recovery interval (BRI; the time period of complete vegetation recovery) is shorter than the 
FRI.  Violation of this condition (BRI < FRI) entails a natural or man-made change in the fire 
regime and an overall C-deficit, representing a step-wise decrease in biomass C (𝑉𝐶∆!"#$%! ) 



(Fig. 1a). Second, tropical rainforests exposed to drought29 are vulnerable to episodes of 
vegetation-C (VC) mortality in the decades following fires (mortality can be up to 25% of 
VC30,31) and may not fully recover prior to the next fire event, so that C is lost from this 
biome  (𝑉𝐶!"#$! ).  Third, in areas where fire regime shifts to higher fire frequencies than the 
average for that vegetation type, large fractions of SOC can be lost through combustion, 
erosion and microbial mineralisation (𝑆𝑂𝐶!!"#$$! )32. Average topsoil SOC losses of >20% 
through this mechanism has been observed in grasslands and broadleaf forests globally33. 
Finally, PyC loss occurs through soil-atmosphere mineralisation (𝐸!"#! ), and is the principal 
‘unknown’ of this study. Equation 1 can then be expanded to include legacy fluxes from these 
changes in fire regimes, to arrive at the net balance of post-fire C with respect to the terrestrial 
biosphere (Supplementary Text S1a,b): 
 

𝑬 𝑭𝒊𝒓𝒆
! + 𝑬𝑷𝒚𝑪! + 𝑺𝑶𝑪𝑷𝒚𝑪𝑬𝒙𝒑! + 𝑽𝑪∆𝑭𝒊𝑹𝒆𝒈! + 𝑽𝑪𝑴𝒐𝒓𝒕! + 𝑺𝑶𝑪𝒉𝒇𝒍𝒐𝒔𝒔!    

= 
𝑼𝑽𝑪𝑶𝟐
! + 𝑺𝑶𝑪𝑷𝒚𝑪! + 𝑷𝒚𝑪𝑳𝑾!     (2) 

 
Mechanistic models of the terrestrial C-cycle have thus far omitted these collective fire 
legacy-C sinks and sources34,38. Here, we integrate them into a global land surface model 
(Methods, Fig. S1) to provide an estimate of the annualised components of the fire legacy C 
cycle represented by Eq. 2. Specifically, we incorporate dynamic PyC production by fires into 
ORCHIDEE-MICT (Figs. S1,S2)39,40,41 and run the model globally over 1901-2010 with 
prescribed vegetation and anthropogenic land use changes (LUC), variable climate and 
historical CO2 forcing (Methods, SI Text S7). We investigate the spatio-temporal dynamics of 
the legacy fluxes over the 20th Century and quantify a fire C balance for global biomes 
(Methods). C loss terms on the left side of Eq. 2 are derived offline from model output 
(Methods). The FRI is determined for each grid cell and plant type (Figs. S2,S3,S4, Table S1), 
as is vegetation-specific BRI (Fig. S5, Methods). We did not attempt to estimate global mean 
PyC mineralisation (𝐸!"#! ) due to a critical paucity of information on PyC residence times, 
their drivers, and measurement across biomes36,42,43. Instead, we infer the maximum value of 
PyC mineralisation that would lead to mass balance in Eq. 2. From this we infer a constraint 
on global terrestrial PyC MRT (MRTTerr.) (Methods, Supplementary Text).  
 
20th Century Patterns of PyC Production 
 
Over 1901-2010, we estimate average annual 𝑆𝑂𝐶!"#! of 281 TgC-PyC yr-1 (min.-max. range 
188-424, TgC yr-1, see Methods), similar to a previous estimate for the period 1997-2016 
driven by satellite observations of fire (256 (196-340) TgC yr-1)13. Large interannual 
variations found (251-345 TgC yr-1, 𝜎=18 TgC yr-1) are symptomatic of trends over the 20thC 
44,45, when PyC production declined from an average of 298 to 269 TgC yr-1 between the first 
and last 3 decades (Methods, SI Text S7).    Distribution of PyC production is consistent with 
that of fires generally, with the bulk occurring in the range 20°N-30°S (Fig. 2a,b)13. However, 
20thC declines in PyC production occurred mostly in the northern hemisphere, reflecting 
grassland LUC (Fig. 2b), while most localised PyC production gains were modelled in the 
southern tropics, resulting from increasing aridity and FRI (Figs. S6-9).  
 
Globally, fires affect biomes disproportionately, as ~80% of burning occurs in grassland-
savannah dominated regions46, with 73-79% and 13-17% of modelled PyC production taking 
place in C4 and C3 (13-17%) grasslands, respectively, despite these accounting for ~30-40% 
of the global land surface47,48. This mismatch is caused by the evolutionary fire adaptations of 



grasslands, which preferentially allocate biomass to belowground organs, allowing them to 
rapidly recover from disturbance 49,50 (BRI <1-3 yr27,51).  This enables the rapid return of fire 
events almost as soon as vegetation has recovered (FRI≅BRI) since tropical grassland-
savannah fires are particularly fuel-limited52, enabling them to thrive where tree cover is 
limited by environmental conditions53. This feature of grassland-savannah biomes is 
important to Eq. 2, since whereas loss terms 𝑉𝐶!"#$!  and 𝑉𝐶∆!"#$% are dependent on relative 
FRI:BRI, the production of refractory 𝑆𝑂𝐶!"#!  is an absolute quantity, meaning simply that 
the more fire there is the more PyC is injected into the global soil mass (Fig.1).  Low FRI and 
BRI values mean that we find grassland-savannahs to be both the main PyC source (~250 
TgCyr-1), and, compared to other vegetation types, pull the relative sink and source terms of 
Eq. 2 towards the former, in agreement with the relatively high PyC proportion of bulk SOC 
(5-30%) found in global grassland soils54.   
 
Our vegetation maps drive a -21% (-1.16 Mkm2) and -12% (-3.6 Mkm2) net decline in C3 and 
(tropical) grassland-savannah area between the first and last decades of simulation (Fig. S6). 
These changes lead to global decreases in PyC production (Fig. 2, Fig S7) during 1901-2010 
in spite of global forest PyC production doubling (Fig. S10), as is consistent with a marked 
decrease in 20thC forest FRI (Fig. S8).  These PyC dynamics can be explained by bioclimatic 
and human factors that impact global patterns of burned area and fire emission (Figs. S7, S9). 
In grassland-savannah regions where fire emissions and PyC production decreased, reduced 
fuel loading through conversion to agriculture where burning is suppressed is likely a 
factor2,44,55.  
 
Conversion of native grassland to cultivation is visible in our simulated PyC production 
trends (Fig. S7), consistent with global-scale2,44,55 and localised observations in Argentina56,57, 
northern Turkey58,59, post-Soviet European and west Asian steppe60, India61,62, north-eastern 
China63,64, south-eastern Australia65,66, the Great Plains region67, central and northern 
Mexico68.  PyC gain/loss is thus modulated by human management69,70, largely responsible 
for an apparent decrease in fires in recent decades44 and over the past century45, as captured 
by modelled declines in global PyC production, mean fire radiation and duration (Fig. S12). 
The net effect of these dynamics has been to approximately halve the partial fire C sink over 
the 20th Century (Fig. S12). 
 
Emerging Constraints on Fire’s Role in the Carbon Cycle 
 
This study has simulated the legacy impacts of PyC production and fire C losses, a significant 
advance on previous studies that considered these in isolation13,32,71. Over 1901-2010, average 
global legacy soil C sinks through refractory PyC production (𝑆𝑂𝐶!"#! ; 281 (188-424) TgC yr-

1) and lightweight PyC production (𝑃𝑦𝐶!"!  = 56 (45-90) TgC yr-1) are partially countered by 
legacy C sources from incomplete post-fire vegetation recovery (𝑉𝐶∆!"#$%!  = 129 (123-231) 
TgC yr-1, Fig. S15;Table S4), high frequency topsoil degradation (𝑆𝑂𝐶!!"#$$!  = 57 (30-95) 
TgC yr-1, Fig. S16; Table S4), PyC aquatic export (𝑆𝑂𝐶!"#$%&!  = 44(28-59) TgC yr-1, 
Figs.3,S17,18; Table 4), and tropical drought-induced post-fire mortality (𝑉𝐶!"#$!  = 21 (18-
25) TgC yr-1, Figs. 4,S19;Table S4). Excluding 𝐸!"#! , the legacy fluxes are imbalanced and 
indicate a partial terrestrial C sink in PyC of 89 (34-104) TgC yr-1 (Fig. 3; Table S4) assuming 
Eq.2 is in steady state, implying a potential net fire ‘C-savings’ rate of 0-4% of the ~2.2 PgC 
yr-1 in fire CO2 emissions. The magnitude of 𝐸!"#!  is solved as a residual of Eq (2), meaning 
that if 𝐸!"#!  exceeds the net PyC accumulation of 89 (34-104) TgC yr-1 then wildfires result in 
terrestrial PyC losses, and if 𝐸!"#!  is in balance with the net PyC accumulation (steady state), 



then we can constrain the global terrestrial mean residence time (MRTTerr.) of PyC to a value 
of ~5,370 (1,966-14,100) years (Methods, Text S1b, Table S8), longer than refs20,22,23  but 
smaller than ref19. 
 
Field and laboratory studies of PyC MRT have been sparse and restricted to a subset of 
biomes and fuel types, providing inconsistent central estimates with impractically large 
uncertainty ranges19,20. The temperature sensitivity of PyC decomposition is another key 
parameter for PyC turnover which is poorly understood, and whether PyC degradation is 
primarily mechanical or metabolic remains an open question17, with implications for model 
representation18,72.  Ultimately, the lack of robust mechanistic description of PyC 
mineralisation rates and drivers, perhaps attributable to inconsistencies in their measurement 
and definition, lead to PyC MRT estimates that vary by at least 40-fold (see Text S1b).  Our 
steady state constraint on PyC MRT (~5,370yrs) is in the range of values reported in a soil 
incubation experiment19 and the radiocarbon age of riverine Py-POC18. Until addressed, the 
observational shortfall will frustrate efforts to reliably quantify or constrain the fire C balance 
(Text S1).  
 
Regional Distribution of Legacy Carbon Fluxes 
 
The global value of the residual C-sink from changes in fire regimes and PyC masks 
substantial variability at the biome level. The largest absolute fire C gains and losses are 
simulated in the tropics (Fig. 4a). The net legacy C gain associated with PyC production is 
greatest in the tropics (+83 TgCyr-1) although it is substantially offset by legacy C losses, 
most notably by incomplete vegetation recovery (𝑉𝐶!"#$! ), soil degradation (𝑆𝑂𝐶!!"#$$! ; 
Figs.4c, S8, S16) and riverine export (𝑆𝑂𝐶!"#$%&! ). The ratio of gains to losses is 1.2 in the 
NH tropics and 1.7 in the SH tropics, signifying a potential for overall C sequestration 
depending on the magnitude of the PyC mineralisation flux in these regions. Gains exceed 
losses in the tropics predominantly due to tropical grassland-savannahs (gains:losses of 1.5 
and 2.1. in the NH and SH respectively), whereas losses substantially exceed gains in tropical 
forests (Figure 4).  Legacy C losses exceed legacy C gains in the southern extra-tropics even 
before the unconstrained losses of PyC are considered. Globally, the residual of the 
constrained fluxes is strongly on the sink side in grasslands (+148 TgCyr-1), but on the source 
side in forests (-43 TgCyr-1).  
 
We show that most (73-79%) PyC production occurs in tropical grassland-savannah regions, 
through fires which also generate the highest mean global flame temperatures (~500°C, Table 
S2), implying that the majority of global PyC production may result in PyC with a high MRT, 
as conferred by the heat of charring  (Fig. 1c,d; Table 1)14,73. In contrast, tropical and 
temperate forest fires produce the highest maximal but lower average flame temperatures, 
consistent with the greater dependence of fire on fuel moisture than fuel availability in these 
regions (Fig. 1c).  Overall, the model simulates the highest flame temperatures in semi-arid 
and higher elevation regions in the 0-30°N/S range, implying we can expect a decreasing 
PyC-MRT gradient from tropics to poles.  
 
Simulated fire temperatures(Table S2) increase across biomes over the gradient: 
boreal(188°C), C3 grass(335°C), tropical forest(353°C), temperate forest (404°C) and tropical 
grassland-savannah (501°C), indicating the relationship between flame temperature and fuel 
availability (Fig. 1c) is nonlinear and strongly modulated by climatic and fuel conditions74, 
such that curves H1-H3 (Fig. 1c,d) cannot accurately represent the global relationship without 
additional dimensionality, such as plant trait impacts on flammability and flame intensity75.  



However, current understanding of PyC charring14,73 allows us to propose that tropical 
grassland and savannah regions produce the greatest quantity of PyC of the greatest relative 
longevity, and that grassland and forest fires play contrasting functional roles in the terrestrial 
C balance, with tropical grassland-savannah fires conferring the greatest capacity to increase 
terrestrial C storage. 
		

Towards a Holistic Understanding of Fire’s Role in the Carbon Cycle 
 
Legacy C sequestration fluxes driven by PyC production exceed legacy C losses through 
incomplete post-fire recovery, LUC and soil degradation. The overall impact of legacy C 
fluxes on the terrestrial C balance is nonetheless not constrained due to insufficient 
knowledge regarding PyC mineralisation. We note that the riverine export of PyC to the 
global oceans (𝑆𝑂𝐶!"#$%&! ) is also a conservative flux with respect to the atmospheric C-
balance, however rates of PyC mineralisation in oceanic pools are constrained at least as 
poorly as in the terrestrial domain18,76. The resolution of PyC mineralisation fluxes in soils 
and sediments across the land-to-ocean continuum is a critical research frontier for the 
coming decade if we are to constrain the overall impact of fires on the global C-cycle. 
 
Our results highlight the regional complexity of legacy C fluxes from fires and challenges the 
narrative that fires are solely catastrophic phenomena77, suggesting that their severity and the 
long-term extent of their destructiveness is highly biome-dependent78.  In forests, fire C losses 
can overwhelm PyC gains even without considering PyC mineralisation.  This is not 
surprising, particularly in the humid tropics, where tree species are ill-adapted to disturbance79 
and massive post-fire mortality is commonplace29–31,79(Fig. S19).  Globally, forest fire-
induced C losses are compensated by the dynamics of grassland ignition, in the absence of 
which fire phenomena would impose a net terrestrial C source irrespective of PyC production.  
Without widespread grassland-savannah coverage in the tropics, the legacy effects of fires 
could not feasibly enhance terrestrial C storage-a result afforded by grasses’ capacity for fire 
recovery80.  This emergent result coheres with studies suggesting that the co-evolution of 
grassland fire and herbivory, particularly in tropical grasslands, led to the formation of PyC-
rich Mollisols that may have been central to climatic cooling in geological time50, and that 
evolution of vegetation types with fire may have been central to the trajectory of Earth’s C 
and O2 cycles81.   
 
The dependency of the fire C residual on vegetation composition has important implications 
for projected increases9,82,83 in climate extremes84–86, potentially increasing all terms in Eq.2.  
The preservation/restoration of native grasslands may be an important vector for decreasing C 
losses from future fire activity in both temperate and tropical systems.  Despite this, tropical 
grasslands have until recently been ignored in the landscape restoration and ‘carbon farming’ 
agenda51,53,87,4,88.   
 
This paper has attempted to further understanding of fire’s role in the Earth’s C-cycle by 
identification and first-order quantification of multiple legacy terms of the fire C budget in a 
land surface model. We provide a benchmark for the maximum global PyC mineralisation 
rate and show that without widespread grassland-savannah coverage, fires would be a net 
global source of atmospheric C.  We call for significant investments in understanding of PyC 
degradation and its drivers18,72,  in addition to improved estimates of legacy fire C fluxes.  
Reliable quantification of PyC mineralisation and erosion, particularly over grasslands, 
remains the principal missing link in a holistic understanding of fire’s role in the Earth 
system. 
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Figure Captions 
 
Figure 1: Schematic conceptual representation of the interrelation between plot or biome -scale: (a) Change of 
vegetation biomass carbon post-fire to steady state (𝑉𝐶!!" ) and its evolution with change in fire regime 
(𝐹𝑖𝑟𝑒 𝑅𝑒𝑔𝑖𝑚𝑒.!), where subscript (𝑇) refers to the specific fire regime as a 𝑓(time (x-axis)). Coloured shading 
indicates a hypothetical transition between stable vegetative states in a given biome or latitudinal bin along an 
environmental humidity and fire regime gradient.  Included is vegetative C-loss term due to a change between 
fire regimes T and T+1 (∆𝑉𝐶∆!"#$%(!!!!!)), where FiReg. is an abbreviation of 𝐹𝑖𝑟𝑒 𝑅𝑒𝑔𝑖𝑚𝑒.!. The transition 
between vegetative states illustrates a shift from an idealised high BRI,FRI biome to a lower one. (b) is a 
graphic aid to mirror the y-axis in (a) onto the x-axis in (c).  (c) Fire temperature and terrestrial fuel 
accumulation (assumed here to be directly proportionate to ∆Biomass in (a)) The three curves denote different 
idealised possible relationships between the two variables, varying as a result of fuel conditions. Curve H1 
(black) describes a situation in which the conditions of fuel and fire (e.g. fuel moisture and wind velocity are 
equal across biomes). H2 (dot-dash grey line) assumes that fuel condition differs with biome, and assumes that 
grassland fuels are driest and rainforest fuels wettest, such that fuel accumulation is inversely related to flame 
temperature. H3 (dotted grey line)describes a situation in which flame temperatures are highest in tropical 
forests and grassland, under the situation that severe drought conditions (and hence dry fuel) are a prerequisite 
for tropical wildfires, while grassland fuels tend to be very dry, whereas temperate biomes support fires even if 
they are relatively wet and of a lower temperature.   (d) Idealised PyC production (dashed pink) and its mean 
residence time (MRTH1(black) -3(grey),) for different potential relationships between FRI, fuel accumulation and flame 
temperature in (c). PyC production is assumed to increase with decreasing environmental moisture and FRI. 
Black circles relate a specific level of PyC production for a given vegetative state to its corresponding MRT and 
flame temperature.  Sub-graphs (a,c,d) are thus related to one another by the coloured dashed lines. Curves 
MRTH1, MRTH2 and MRTH3 relate to the respective flame temperature/fuel accumulation curves in (c).  Refs.: 13–

15,27,34–37 

 

Figure 2: Simulated PyC production and change over 1901-2010. (a)  Map of global PyC production averaged 
over the entire simulation period (log gC m-2yr-1), with global annual mean production and standard deviation 



inset. (b) Simulation-averaged annual absolute PyC production summed per 0.5° latitude bin (TgC yr-1) in 1901-
10 (orange) and 2001-10 (green), with the difference (latter-former) shown in yellow. 

 
Figure 3: Time averaged estimates for the source and sink terms in Eq. 2 (top), with the PyC mineralisation loss 
quantity unknown, but constrained by the net fire C balance.  The PyC aquatic export flux (𝑆𝑂𝐶!"#$%&! ) is dotted 
to highlight that it is a terrestrial export flux, not an atmospheric flux. Bottom panel shows aggregations of (h) 
fire C losses relative to PyC production (sum of (c-f)) and (i) the fire C balance net of refractory PyC 
mineralisation, i.e. the sum of (a,b) and (c,d,e,f). Assuming steady state, maximum PyC mineralisation (g) is thus 
equal to the residual, (i), with the red, blue portions showing the range of maximum and minimum possible 
mineralisation respectively, and the arrows the possible mineralisation range according to the reported central 
estimate. 

 
Figure 4: (a) Simulation-average (1901-2010) sources and sinks in the global fire C-cycle, summed per 30-
degree latitudinal band, in Tg C yr-1. Note that fire regime change and high frequency fire SOC loss terms are 
disaggregated between forest (solid) and grass (dashed), and that the colour legend for each term is equivalent 
to that in Figure 3.  Values appended to bars denote the ratio of C gain:loss (>1=C-sink). (b) Comparison of 
time-averaged grassland (left) and forest (right) fire C sources (red) and sinks (black) summed per 30° bin (as in 
(a)), in TgC yr-1.  Values appended to bars denote the ratio of C gain:loss (>1=partial C-sink, excluding 𝐸!"#!  ). 
(c) Global map of the time-averaged, vegetation-summed residual in Eq. 2  (gC m-2 yr-1) for each pixel, where 
negative values indicate C-source, and positive a C-sink.  The balance is calculated as the net sum of Eq. 2, 
excluding the PyC mineralisation term (𝐸!"#! ), which is constrained but unknown.  A summary statistics table of 
the residual per plant type (mean, standard deviation and its %-mean value, concluding with the residual as a 
fraction of total PyCSOC) are reported inset. In that table, EG, RG and SG refer to evergreen, rain-green and 
summer-green, respectively.  
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Methods 
 
 
Model description: 
 
Here we apply PyC production to the IPSL Earth System Model, ORCHIDEE-MICT revision 
number 5308, a widely used sub-branch of ORCHIDEE that is global in scope but includes 
some soil, hydrological and thermal processes specific to boreal regions 1–3 , whose use here 
will facilitate future assessments of PyC stocks in deep permafrost soils.  At the core of the 
model is terrestrial biomass fixed by photosynthetic C uptake, performed by 13 plant 
functional types (PFTs) with distinct primary production, senescence and carbon dynamics4.  
Biomass is allocated to foliage, fruit, roots, above/below -ground sap, heart wood and carbon 
reserves which are transfered to two reactivity-differentiated litter pools.  ORCHIDEE-MICT 
is integrated with a model-specific version (see (5,6))of the SPITFIRE fire module5,7,8, which 
takes the aboveground portion of these biomass components and allocates them to potential 
fire fuel classes differentiated by their potential time to combustion/oxidation.  ORCHIDEE-
SPITFIRE has been involved in multiple phases of FireMIP9 and its predictions found to be 
within the range of those from available fire models10–13. Fire ignitions are controlled by 
lightning strikes and human ignitions, the latter of which is determined as a positive logistic 
function of population density. Vegetation flammability is determined by fuel and climatic 
conditions (Nesterov Index and Fire Danger Index).  Burned area is controlled by fire spread 
rate and fire duration, as influenced by vegetation flammability, and affects fire CO2 
emissions.  
 
Modelled PyC Production: 
 
PyC is produced in ORCHIDEE-MICT as a function of fuel class-specific fire CO2 emissions 
using an adaptation of the apportioning between PyC production and fire CO2 emissions 
estimate by Jones et al. (2019)14, which posits  central literature-based prediction of ratios 
[𝑆𝑂𝐶!"#:𝐸!"!] of 0.261, 0.1 and 0.091 gPyC produced g-1 CO2-C emitted, for the three fuel 
classes of Coarse Woody Fuels (CWF), Fine Woody Fuels (FWF), and Non Woody Fuels 
(NWF), respectively.  Uncertainty in PyC production (Fig. 3) is based on the bootstrapped 
95% confidence interval range in Jones et al. (2019), for PyC production ratios 
( [𝑆𝑂𝐶!"#:𝐸!"!] , gPyC-C g-1 CO2-C) for CWF(0.176-0.389), FWF(0.064-0.153) and 
NWF(0.074-0.114) and applying the fractional difference of each bound from the central 
bound to PyC produced in the post-processing analysis. We apportion these to the four 
SPITFIRE fuel classes such that (1hr fuelsàNWF), (10hr; 100hr fuels à FWF), (1000hr 
fuels à CWF), where the hour-term in SPITFIRE fuel classes refers to the order of 
magnitude of time required for the fuel to lose 63% of its moisture under idealized 



atmospheric conditions8, determined effectively by the stem thickness of each biomass 
component of each PFT based on the ‘average individual’ of each woody PFT. 
 
C mass balance is maintained by removing PyC produced from other C pools.  PyC produced 
is first subtracted from the fraction of biomass going to litter pools in that SPITFIRE timestep 
(1 day).  If PyC produced > biomass going to litter in that timestep, then the remaining 
quantity is taken from CO2 emissions, whose reduction recursively reduces total PyC 
production.  PyC is then introduced to the biosphere-pedosphere interface by its allocation to 
PyC-specific SOC reactivity pools, complementing the traditional CENTURY 3-pool 
model15, with a ‘Slow PyC’ pool composed of (PyC10hr + PyC100hr), and a ‘Passive PyC’ pool 
(PyC1000hr), where the subscript refers to the source fuel class of PyC. In the present 
configuration, PyC1hr does not enter into either of the SOC pools and once produced, is 
instead added to the pool of dead biomass that becomes litter, which is then subject to normal 
model SOC dynamics  (SI Text S2).   
 
Once produced, the PyC SOC pools are immediately redistributed equally amongst the top 
2.1cm of the model’s vertically discretized soil layers to represent the initial translocation of 
PyC in the first year of production, following field observations from ref. (16). PyC pools are 
not exchanged with one another or with the other SOC pools, and are subjected to vertical 
bio- and cryo- turbation processes in the soil, and temperature and moisture -dependent 
mineralization Mineralisation rates are equivalent to bulk MRTs of ~300 and ~3000yrs for 
Slow and Passive PyC, respectively.   
 
Simulation Configuration: 
 
The simulations used for this study were forced with imposed historical 13-PFT vegetation 
(ESA-LUH2 v1.2), CRU-NCEP v817 climatology and atmospheric CO2 concentrations at 0.5° 
resolution with SPITFIRE activated and hydrological river routing deactivated.  Deforestation 
fires were deactivated and agricultural fires in the output ignored to simplify analysis. A 50 
year ‘spinup’ run on a loop of the years 1901-1920 for the above input forcing datasets was 
first performed to bring the biosphere and fire cycle to a quasi-steady state under the closest 
pre-20th Century climatology we can approximate with our climate data. The same model was 
then run continuously over years 1901-2010. Fire C loss terms were estimated from derived 
variables in the simulation output. Deforestation fires were not activated for in these 
simulations as the legacy effects of these events remain poorly understood and quantified. 
 
Estimating PFT-specific Fire Return Interval (FRI): 
 
PFT-specific FRI is defined as the interval between consecutive fires affecting a consistent 
area, which is not a standard output of ORCHIDEE and so was determined probabilistically. 
To do so, first we find the annual fractional fire contribution of each PFT (𝑓𝐹𝑖𝑟𝑒!"#) to total 
CO2 emissions:  
 

𝒇𝑭𝒊𝒓𝒆𝑷𝑭𝑻 =  𝑬𝑭𝒊𝒓𝒆𝑷𝑭𝑻 / 𝚺 𝑬𝑭𝒊𝒓𝒆𝑷𝑭𝑻         (3) 
 
From this the probabilistic fire incidence per PFT, pixel and year can be estimated: 
 

𝒑(𝑭𝒊𝒓𝒆)𝑷𝑭𝑻 =  𝒇𝑷𝑭𝑻𝑷𝒊𝒙 ∗ 𝒇𝑭𝒊𝒓𝒆𝑷𝑭𝑻 ∗ 𝑩𝑨𝑷𝒊𝒙      (4) 
 



Where 𝑝(𝐹𝑖𝑟𝑒)!"# is the annual probabilistic fire incidence per PFT and pixel, and 𝑓𝑃𝐹𝑇!"# 
the fraction of each PFT occupied by vegetation from a given PFT (𝒇𝑷𝑭𝑻𝑷𝒊𝒙).  Global 
probabilistic FRI (yrs) for each pixel and PFT (𝐹𝑅𝐼!"#) over a given unspecifiable surface 
area (e.g. one hectare) can then be calculated by dividing  𝑝(𝐹𝑖𝑟𝑒)!"#  by PFT-specific 
vegetated area, giving the probability that a given hectare occupied by a given PFT in that 
pixel is the one that burned that year. This is summed over the simulation years then divided 
over the simulation length (110yrs).  1/ this value gives the FRI: 
 

𝑭𝑹𝑰𝑷𝑭𝑻 =  𝟏/(( (𝟏𝟏𝟎
𝒕!𝟏  𝒑(𝑭𝒊𝒓𝒆)𝑷𝑭𝑻/(𝒇𝑷𝑭𝑻𝑷𝒊𝒙 ∗ 𝑨𝒓𝒆𝒂𝑷𝒊𝒙)))/𝟏𝟏𝟎)  (5) 

 
The resulting gridded PFT specific map is then adapted to set the maximum value of FRI at 
1000 yrs across all PFTs, since this would largely result from insufficient sample size in time 
to adequately estimate the probabilistic FRI for these pixels/PFTs, resulting in strong potential 
skews in the FRI:BRI ratio, given that BRI itself rarely exceeds this value.  
 
For estimating the average FRI value for each PFT, we employed a similar, yet PFT-specific 
approach.  This was done for the same reasons as above, but with stricter thresholds for each 
PFT so as not to skew average values with unrealistic probabilistic values. We used expert 
judgement based on both the literature and authors’ expertise to set maximum realistic FRI 
values for each PFT of 2000, 500, 200 and 100 years for tropical, temperate and boreal, C3 
grass and C4 grasses, respectively, removing values above these for the mean estimate shown 
in the Supplementary Table.  
 
Estimating PFT-specific Biomass Recovery Interval (BRI): 
 
Biomass carbon recovery times (the time for which a given surface area recovers all of the 
biomass lost due to a disturbance event) are difficult to quantify, and to our knowledge no 
global gridded product estimating disturbance approximate PFT-specific BRI, modulated in 
space and time by the NPP of a pixel-specific PFT relative to the global median NPP of that 
PFT.  We treated (a) C3 and C4 grasses, (b) all extra-tropical forest types, and (c) tropical 
forests, as separate categories. For (a) and (b), we assumed that for a given pixel and year, C 
losses from fire can be recovered by the completion of that time interval which itself varies by 
±𝛽 as a function of the NPP experienced by that pixel relative to the global median NPP for 
that PFT: 
 

𝑩𝑹𝑰𝑷𝒊𝒙𝑷𝑭𝑻 = 𝑩𝑹𝑰𝑷𝑭𝑻 ± (𝑩𝑹𝑰𝑷𝑭𝑻 ∗ (𝜷 ∗𝑵𝑷𝑷𝑷𝒊𝒙𝑷𝑭𝑻/𝑵𝑷𝑷𝒎𝑮𝒍𝒐𝒃𝒂𝒍
𝑷𝑭𝑻  ))  (6) 

 
Where 𝐵𝑅𝐼!"#!"# is BRI per PFT, pixel and year, 𝐵𝑅𝐼!"# is the central, global value of BRI, 𝛽 
is the fractional maximum variation of 𝐵𝑅𝐼!"#!"# from the central value, 𝑁𝑃𝑃!"#!"# the annual 
NPP of that PFT in a specific pixel and 𝑁𝑃𝑃𝑚!"#$%!

!"#  is the time averaged global median NPP 
of that PFT. For C3 and C4 grasses, we set 𝐵𝑅𝐼!"# at 2.5 and 1.5 years respectively, and 𝛽 at 
±25%, based on literature-based estimates and the assumption that tropical grasses have high 
NPP and recovery rates. For forests we set central 𝐵𝑅𝐼!"# for all non-tropical forest PFTs to 
the value reported in a literature review -based study (fig. 4d of ref. 18) of 133 years, which we 
then allow to vary (𝛽) by ±50% as a function of NPP relative to 𝑁𝑃𝑃𝑚!"#$%"

!"#   for each PFT. 
See the supplementary material for further discussion of parameter choices. 
 
Estimating loss terms in Equation 2 
 



Loss of biospheric C due to fire regime change (𝑽𝑪∆𝑭𝒊𝑹𝒆𝒈) 
 
This loss term is calculated for each PFT and includes net C losses from areas where the 
biospheric disturbance steady state condition is not satisfied (BRI<FRI) as a result of a 
change in fire regime. We treat areas that experienced decreases in FRI of >10% between the 
first and last three decades of the simulation (Fig. S7), as having exhibited a fire regime shift.  
Then, we estimate the system biomass loss per fire event for these areas as the BRI:FRI ratio 
in the year of the event multiplied by the total CO2 emissions from a given PFT in that year’s 
fires: 

𝑽𝑪∆𝑭𝒊𝑹𝒆𝒈 = (𝑩𝑹𝑰𝑷𝑭𝑻 𝑭𝑹𝑰𝑷𝑭𝑻) ∗ 𝑬𝑭𝑪𝑶𝟐     (7) 
 
Unrecovered drought-induced tropical post-fire mortality  (𝑽𝑪𝑴𝒐𝒓𝒕! ) 
 
Here, we extrapolate literature-derived estimates of tropical forest mortality losses derived 
from drought-induced fires to tropical forests globally and aggregate them annually.  Existing 
literature estimates of this phenomenon are mostly drawn from the aftermath of El-Niño 
events,  however given that drought is a continuous function of precipitation over time for a 
given biome, and that (a) not all droughts are El Niño driven and (b) not all tropical forests 
exist in zones whose interannual climate is strongly characterized by El-Niño activity, we 
extrapolate the findings of these field studies to all tropical forest regions characterized by 
severe or extreme drought according to a widely used drought index, tempering the index by 
taking only those regions where the index indicates these conditions on average over the 
course of a whole year.  This gives a spatially-explicit timeseries of post drought-fire tree 
mortality conditions.  The unrecoverable vegetative C losses from that mortality are 
calculated on the basis of the relative timescales of fire return and vegetative recovery, as 
detailed below.  
 
For this annual estimate we do not consider belowground mortality losses, which are not 
estimated in the literature for this type of disturbance event.  To get the per-PFT total 
aboveground fraction of biomass allocation (𝑉𝐶!"!"#), we extract annual gridded biomass 
allocation terms and sum them over the total biomass allocated to all vegetation C pools for 
each PFT (𝑓𝑉𝐶!"!"#).  The approximate total above and below -ground vegetative biomass C 
of tropical PFTs for each gridcell and year is obtained by weighting total vegetation C per 
pixel (𝑉𝐶!"#$%!"#  , a non-PFT specific variable) by the fractional vegetation coverage of that 
pixel by that PFT (𝑓𝑃𝐹𝑇!"#) and the relative NPP of that pixel (𝑁𝑃𝑃!"#!"#) versus that of the 
pixel mean NPP (𝑁𝑃𝑃!"# ).  Multiplying this by (𝑓𝑉𝐶!"!"#) gives an estimate of the total 
aboveground annual biomass of the two tropical PFTs per pixel: 
 

𝑽𝑪𝑨𝑮𝑷𝑭𝑻 =  [𝑽𝑪𝑻𝒐𝒕𝒂𝒍𝑷𝑭𝑻 ∗  𝒇𝑷𝑭𝑻𝑷𝒊𝒙 ∗ (𝑵𝑷𝑷𝑷𝒊𝒙𝑷𝑭𝑻/𝑵𝑷𝑷𝑷"𝒙 )]  ∗  𝒇𝑽𝑪𝑨𝑮𝑷𝑭𝑻  (8) 
 
Annual aboveground biomass maps are then filtered to mask out pixels where fire is absent in 
a given year.  The resulting gridded 𝑉𝐶!"!"# dataset is then used to estimate the proportion of 
tropical vegetation affected by fire by multiplying the probability that a fire in a given pixel 
comes from a given PFT by the burned fraction of that PFT (𝒇𝑩𝒖𝒓𝒏𝑷𝒊𝒙):  
 

𝑭𝒊𝒓𝒆𝑽𝑪𝑨𝑮𝑷𝑭𝑻 = 𝑽𝑪𝑨𝑮𝑷𝑭𝑻 ∗ 𝒑(𝑭𝒊𝒓𝒆)𝑷𝑭𝑻 ∗ 𝒇𝑩𝒖𝒓𝒏𝑷𝒊𝒙    (9) 
  
To capture only those areas that may have experienced drought and hence drought induced 
fire mortality, we employ the standardised precipitation index (SPI)19, which derives a generic 



wet-dry index for any location by fixing a gamma probability density function to a timeseries 
of precipitation for a given location (in this case a given pixel containing a tropical forest 
PFT).  To calculate the SPI for all grid cells over the timeseries of the study simulation, we 
use a pre-existing SPI function available in the NCAR Command Language (NCL)20.  The 
SPI defines different thresholds for wet and dry conditions according to a continuous positive 
and negative scale, in which all SPI values under SPI<-1.5 are indicative of a location 
experiencing severe to extreme drought.  Averaging the SPI annually, we mask out pixels in 
the dataset 𝐹𝑖𝑟𝑒𝑉𝐶!"!"# which do not satisfy the SPI <-1.5 condition.  We then assume that 
total post-fire mortality loss is approximated from the mean literature value of -24.8% 
(±6.9%)21 and define this fraction as the total C-loss.  However, since this biomass loss should 
be recoverable by the biosphere if BRI<FRI, only those pixels in which BRI>FRI are 
considered time-integrated losses, and only by the fraction given by the ratio of the two.  To 
this loss is added the vegetative carbon-derived CO2 emissions in the original drought-
induced fire which is likewise reduced by the (BRI:FRI) ratio.  Thus: 
 

𝒘𝒉𝒆𝒓𝒆 𝑺𝑷𝑰 < −𝟏.𝟓 𝒂𝒏𝒅 𝑩𝑹𝑰 > 𝑭𝑹𝑰:  
  𝑽𝑪𝑴𝒐𝒓𝒕! = ( 𝑭𝒊𝒓𝒆𝑽𝑪𝑨𝑮𝑷𝑭𝑻 ∗ 𝟎.𝟐𝟒𝟖 + 𝑬𝑭𝑪𝑶𝟐) ∗ (

𝑩𝑹𝑰𝑷𝑭𝑻
𝑭𝑹𝑰𝑷𝑭𝑻)       

(10) 
 
For the 𝑉𝐶!"#$!  presented in the maps, figures and balance calculations, the total loss over the 
mortality period is calculated instantaneously for a given year, then spread into discrete 
annual loss terms over the cumulative period of dieback (see Supplementary Text S6) Note 
that online tree mortality calculations made by ORCHIDEE-SPITFIRE owing to crown and 
cambial scorching (Fig. S1) are excluded from the calculation of this metric as their time 
frame (quasi-instantaneous) is inconsistent with the phenomena measured and reported in the 
literature on which the 𝑉𝐶!"#$!  term is based: drought induced fire leading to persistent, 
widespread and non-saturating dieback over several decades owing to a variety of fire and 
drought related physiological weaknesses.  Likewise, instantaneously-killed biomass is a 
small fraction of the cumulative biomass loss instigated by drought-induced fires in tropical 
forests, according to the literature cited.  Nevertheless, this quantity is in principle accounted 
for in the current iteration of 𝑉𝐶!"#$! . 
 
Soil carbon loss in areas with high frequency fire (𝑺𝑶𝑪𝒉𝒇𝒍𝒐𝒔𝒔! ) 
 
These losses are based on a recent empirical study22 which found that large topsoil SOC 
losses are apparent across multiple sites globally in areas with high fire frequency’, defined 
therein as anywhere with roughly 4.3 times the mean fire frequency for a given vegetation 
type, with losses of 27% and 21% accruing in areas of broadleaf and grassland vegetation.  
Here, and for each PFT defined as broadleaf forest and grassland, we approximate this loss 
spatially first by isolating those pixels which have an FRI ≥4.3x that of the global average of 
that PFT (the threshold identified in ref. 22). To account for the fact that the model simulation 
is transient and hence in the early years of simulation the topsoil carbon stocks will be 
unrealistically low, we only analyse  𝑆𝑂𝐶!!"#$$!  for the last 30 years of simulation (1981-
2010). The loss over the top 19cm of the soil column, based on the literature-derived soil loss 
parameters (27% ± 18% for broadleaf, 21% ± 12% for grassland)22, is estimated for the 
relevant pixels during 1981-2010.  Although SOC losses are not fully saturating in the 
Pellegrini et al. study, they are close enough that we assume that they represent total SOC 
losses due to high frequency fires. Our estimate is limited because the loss term is predicated 
on the last 30 years of simulation, whereas FRI is based on the temporal range of the 



simulation (110yrs; see above).  Thus, once annualised, the 𝑆𝑂𝐶!!"#$$!  estimate is constant 
over the whole simulation.   
 
PyC export losses within the inland water network (𝑺𝑶𝑪𝑷𝒚𝑪𝑬𝒙𝒑! ) 
 
A recent study has provided the first credible estimate to show that ~18 Tg of PyC in 
dissolved phase (Py-DOC) flushes out of the global terrestrial landmass into the inland 
aquatic network annually23, while estimates of similar particulate PyC (Py-POC) aquatic 
export are thought to total ~25 TgC yr-1 24.  Here, we use ORCHIDEE-MICT to construct the 
first gridded, PFT-specific and spatio-temporally dynamic estimate of outflux.   Jones et al. 
(2020) estimated that boreal, tropical (<30°	N/S) and temperate regions  export 3.8 (±	0.6), 
12.4 (±	4.9) and 1.8 (±	0.8) Tg Py-DOC yr-1, respectively, providing observational constraints 
on the total export of  Py-DOC for latitude bins  ( 𝐷𝑂𝐶!"#). 
 
To integrate 𝐷𝑂𝐶!"# with model output we estimate the contribution of each PFT to global 
PyC slow and PyC passive pool distributions and in doing so estimate the relative proportion 
of total DOC outflow originating from fires from each of these vegetation sources 
( 𝐷𝑂𝐶!"#!""#).  The relative global distribution of PyC produced are extracted from simulated 
global PyC soil pools in 1920, to approach historical distributions of PyC production.  The 
fraction of total PyC per PFT and per PySOC pool (𝑓(𝑃𝑦𝐶!"#!""#)) is calculated globally. The 
PFTs in 𝑓(𝑃𝑦𝐶!"#!""#) are then split into boreal, temperate and tropical categories, and their 
fractional contribution to PyC of each bin to PyCSlow/PyCPassive is calculated (𝑓(𝑃𝑦𝐶!"#)!"#!""#).  
C3 grasses incorporate temperate grasslands and tundra, so are split between by 
[temperate:boreal] surface area at 30-50°	 (~66%) and 50-90° N/S (~34%).  Total mean 
absolute DOC flux (TgC yr-1) per pool and PFT ( 𝑫𝑶𝑪𝑷𝑭𝑻𝑷𝒐𝒐𝒍)is given by the following 
equation (Table S1): 
 

𝑫𝑶𝑪𝑷𝑭𝑻𝑷𝒐𝒐𝒍 = 𝒇 𝑷𝒚𝑪𝑷𝑭𝑻𝑷𝒐𝒐𝒍 ∗ 𝒇(𝑷𝒚𝑪𝑷𝑭𝑻)𝑩𝒊𝒏𝑷𝒐𝒐𝒍 ∗ 𝑫𝑶𝑪𝑩𝒊𝒏   (11) 
 
We assume that Py-POC export occurs proportionally to Py-DOC export based on their 
literature-reported global export rates, such that total Py-POC+DOC export occurs at a rate 
2.39 ( = (18+25)/25) times that of Py-DOC. The total Py-SOC that is hydrologically 
mobilized from each soil pool (𝐻𝑦𝑑.𝑃𝑦𝐶!"#!""#) is thus given by: 
 

𝑯𝒚𝒅.𝑷𝒚𝑪𝑷𝑭𝑻𝑷𝒐𝒐𝒍 = 𝑫𝑶𝑪𝑷𝑭𝑻𝑷𝒐𝒐𝒍 ∗ 𝟐.𝟑𝟖𝟖    (12) 
 
The global export quantities are then distributed spatially over the globe in proportion to soil 
PyC stocks. by a weighting based on the per-pixel fraction of the summed per-pool vertical 
PyC profile that is constituted by that pixel (𝑂𝑈𝑇!"#,!"#$%!""# ): 
 

𝑶𝑼𝑻𝑷𝑭𝑻,𝑷𝒊𝒙𝒆𝒍𝑷𝒐𝒐𝒍 = 𝑫𝑶𝑪𝑷𝑭𝑻𝑷𝒐𝒐𝒍 /( 𝑷𝒚𝑪𝑷𝒊𝒙
𝑷𝒐𝒐𝒍𝟎𝒎

𝟑𝒎
𝑷𝒚𝑪𝑮𝒍𝒐𝒃𝒆

𝑷𝒐𝒐𝒍𝟎𝒎
𝟑𝒎

)    (13) 

 
This generates gridded estimates for mean annual PFT-specific DOC+POC export that are 
constrained by the global latitude-specific estimates reported in ref.(23). Interannual variability 
is implemented by allowing export to vary for each pixel by up 25% of the central value for 
each pixel in a manner that scales with deviation of annual precipitation from the median of 
the simulation period. Uncertainty is calculated by adjusting the DOC outflow values 
( 𝐷𝑂𝐶!"#) within the uncertainty ranges reported in (23). 



 
Estimating Modelled Flame Temperature and Fire Radiative Power 
 
Approximate flame temperatures for each fire event are calculated online within the 
ORCHIDEE-SPITFIRE code.  There, the reaction intensity (see Eq. 9 in ref.8 ), i.e. the mean 
energy release rate per unit area of fire front (kJ m-2 min-1), which is a measure of flame 
power, is converted to temperature using the classical Boltzmann equation: 
 
  𝑸 = ℇ ∗ 𝒌 ∗ 𝑻𝑭𝟒          (14)  
 
 where Q is flame power, ℇ the emissivity of the combusting material (here assumed 0.9 for 
wood), k the Boltzmann constant and TF flame temperature (K).  The equation is solved for 
temperature and converted to Celsius.  Given that this is the first time to our knowledge that 
wildfire flame temperatures are directly estimated by an earth system model, which are 
likewise not, to our knowledge, currently estimated by satellite products, we evaluate the 
flame temperature estimates simulated here by converting them to fire radiative power (FRP), 
a metric commonly employed by remote sensing practitioners for assessing fire intensity.  For 
this purpose, we redeploy the equation proposed and employed by refs.25,26 respectively, for 
returning FRP from MODIS satellite data to account for variations in pixel size: 
 

𝑭𝑹𝑷 =  𝑨𝒔 ∗ 𝜷 ∗ 𝑻𝒇𝟖 − 𝑻𝒃𝟖      (15) 
 
Where FRP (MWss) is fire radiative power, 𝐴! is the nominal pixel area evaluated at scan or 
sample number,  𝛽 is a coefficient relevant to the MODIS spectral response, while Tf and Tb 
are the temperature of the fire pixel and a ‘representative’ or neighbouring background pixel 
without fire, respectively. For our purposes, we convert each pixel to km2, retain the beta 
coefficient, and use the calculated flame temperature TF for Tf and the input climatological 
data for Tb, respectively. These are discussed in the Supplement.   
 
Back-envelope estimation of PyC Bulk Mean Residence Time  
 
The back-envelope estimates of minimum PyC MRT are made on the basis of a mix of 
existing stock and flow estimates, as well as the estimated maximum mineralisation rate 
found in this study.  This is calculated using the maximum PyC mineralisation rate 
(𝐸!"#!  (PgC y𝑟!!)), the estimated fraction of PyC in global SOC (𝑓𝑃𝑦𝐶!"#), the estimated 
annual mineralisation of bulk SOC (𝐸!"#  (PgC yr-1)) and the estimated bulk mean MRT of 
SOC globally (𝑀𝑅𝑇!"# , (𝑦𝑟𝑠. )). PyC MRT (𝑀𝑅𝑇!"#  (yrs.)) is estimated by: 
 

𝑴𝑹𝑻𝑷𝒚𝑪 = (𝒇𝑷𝒚𝑪𝑺𝑶𝑪/(
𝑬𝑷𝒚𝑪
!

𝑬𝑺𝑶𝑪
)) ∗  𝑴𝑹𝑻𝑺𝑶𝑪    (16) 

    
For the central estimate, we use the central value of the residual found here and central values 
for the above variables found in the literature such that  𝑓𝑃𝑦𝐶!"#=13.7%27, 𝐸!"#=70 PgCyr-

1)28,29, and 𝑀𝑅𝑇!"#=50 yrs30.  For the range reported in the main text we varied the 
calculation by the calculated range of the residual and by the range of 𝑓𝑃𝑦𝐶!"#  in global 
grassland soils reported in ref.31 and summarised in Table S8. 
 
Code Availability: 
 
The source code for this version of ORCHIDEE-MICT is available via 



https://forge.ipsl.jussieu.fr/orchidee/wiki/GroupActivities/CodeAvalaibilityPublication/ORC
HIDEE_Biochar (DOI: https://doi.org/10.14768/054193dc-a5b0-4a51-bd11-3812e8f123079 
Bowring, 2021).  Please follow the online instructions for accessing the code -we suggest that 
interested parties contact the corresponding author for latest code versions containing bug 
fixes, improvements or cleaner code.  
 
This software is governed by the CeCILL licence under French law and abiding by the rules 
of distribution of free software. You can use, modify, and/or redistribute the software under 
the terms of the CeCILL licence as circulated by CEA, CNRS, and INRIA at the following 
URL: http://www.cecill.info (last access: 20 November 2021). 
 
Data Availability 
 
The data for Figure reconstruction in addition to data for tropical post drought-fire mortality 
and pyrogenic production and aquatic export are available online as figure source data and 
supplementary information, respectively, and are also deposited in the Zenodo digital 
repository [https://www.zenodo.org; DOI: https://doi.org/10.5281/zenodo.5789942], which is 
managed by the European Organization For Nuclear Research (CERN) and OpenAIRE. Due 
to file size limitations we are unable to deposit primary data (model output) online. These are 
archived on the Obelix cluster and repository managed by LSCE/IPSL that can be made 
available upon request by contacting the corresponding author. 
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