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Abstract

Digital cameras sense colour different than the human visual system (HVS). Digital cameras
sense colour using imaging sensor, whereas the HVS senses colour using the cone pho-
toreceptors in our retina. Each digital camera model has its own device specific spectral
sensitivity function. It is therefore necessary to convert the device specific colour responses
of an imaging sensor to values that are related to the HVS. This process is typically referred
to as colour correction, and it is common to the image processing pipeline across all cameras.

In this thesis, we explore the topic of colour correction for digital cameras. Colour
correction algorithms establish the mapping between device specific responses of the camera
with HVS related colour responses. Colour correction algorithms typically need to be trained
with datasets. During the training process, we adjust the parameters of the colour correction
algorithm, in order to minimise the fitting error between the device specific responses and
the corresponding HVS responses.

In this thesis, we first show that the choice of the training dataset affects the performance
of the colour correction algorithm. Then, we propose to circumvent this problem by con-
sidering a reflectance dataset as a set of samples of a much larger reflectance space. We
approximate the convex closure of the reflectance dataset in the reflectance space using a
hypercube. Finally we integrate over this hypercube in order to calculate a matrix for linear
colour correction. By computing the linear colour correction matrix this way, we are able to
fill in the gap within a reflectance dataset.

We then expand upon the idea of reflectance space further, by allowing all possible
reflectances. We explore an alternative formulation of Maximum Ignorance with Positivity
(MIP) colour correction. Our alternative formulation allows us to develop a polynomial
variant of the concept. Polynomial MIP colour correction is far more complex thant MIP
colour correction in terms of formulation. Our contribution is theoretically interesting,
however practically, it delivers poorer performance.
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Chapter 1

Introduction

Digital cameras are becoming more common as they become increasingly affordable. The
price of a new compact digital camera can be as low as £70. The price of a new entry-level
Digital Single-Lens Reflex (DSLR) camera is at around £300. Perhaps the most widely
used digital cameras are the built-in cameras of smartphones. Smartphones are one of the
must-have accessories in the modern society. Most smartphones typically come with a digital
camera. Some of the high-end smartphones even come with multiple cameras different
features, e.g. wide-angle lens or zoom lens.

Digital camera-related research topics have become important, due to their widespread
use. Colour is a major research topic, as the overall quality of an image is affected the quality
of its colour. Capturing images that are pleasing to the human visual system (HVS) is not a
straightforward topic, as digital cameras sense colour differently than HVS. Digital cameras
sense colour using their imaging sensors, whereas HVS sense colour using the retina. This
is because the imaging sensors and the cones (the light sensitive cells in the retina) have
different spectral sensitivity functions. This difference is due the limitation and difficulties in
imaging sensor design and fabrication. Furthermore, different imaging sensors have different
sensitivity functions, as different imaging sensors have different design priorities.

For capturing images, it is necessary to convert the colour responses from the camera
into a form that is related to the colour responses of HVS. This process, whicch is common
to the image processing pipelines of across all digital cameras, is called colour correction.

In Figure 1.1, we show a typical colour correction scenario. We take a picture of the
Macbeth ColorChecker and then regress the camera space RGBs to the display space RGBs,
so the captured image looks as close as possible to the correct colours, i.e. the colours we see
ourselves when viewing the checker.

In this thesis, we explore the topic of colour correction for digital cameras. There are
many colour correction algorithms. They had been designed to solve different optimisations.



2 Introduction

Fig. 1.1 The top-left and top-right shows respectively raw and colour corrected image. SRGB
gamma have been applied to both images). Prior to applying the gamma correction, the raw
values were mapped into RGB values using a linear 3×3 matrix. This matrix is chosen to
best fit the data.

The difference in algorithms is influenced by various trade-offs, e.g. insisting that white
is exactly corrected at the cost of a higher colour error overall, ensuring that a correction
transform works for different exposures and etc. Typically a colour correction algorithm
is trained before a digital camera leaves the factory. We say “trained” because a typical
colour correction algorithm is data-driven optimisation. The data which feed the optimisation
depend on the spectral sensitivities of the camera in question. Not only cameras of different
models have different spectral sensitivities, cameras of the same model will have slightly
different sensitivities if they were manufactured in a different batch.

The training process for a typical colour correction algorithm is carried out using training
targets. The quality of training target affects the performance of the algorithm. During
training, we map camera measurements to corresponding HVS coordinates while minimising
some fitting error by adjust the parameters of the algorithm. The trained algorithm is
guaranteed to be optimal for the training dataset but may be sub-optimal for other reflectance
samples that the camera may encounter in real-world usage.

In this thesis, we explore the topic of colour correction algorithms. We evaluate both the
performance of the colour correction algorithms as well as the reflectance training datasets.
In particular, we attempt to address two questions in this thesis – “what reflectance dataset
to use” and “how many samples are required”. These two questions are important, because
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when comparing colour correction algorithms, their performances are affected by the choices
of the reflectance datasets. This thesis is therefore useful for colour scientists who develop
and evaluate colour correction algorithms and engineers who seek to improve the colour
performance of the camera.

This thesis is organised as the following:
In Chapter 2, we set the scene by giving an overview of how colour responses are formed.

We do this for both cameras and the HVS. An emphasis is placed on explaining how linear
algebra can be used to describe image formation (this helps in later chapters). We also
provide a review of the camera processing pipeline.

In Chapter 3, we move on to a discussion of correction algorithms. We review in
detail several approaches and empirically evaluate their performance. We also discuss their
strengths and weakness from a physical point of view (e.g. whether they work across
exposures). In companion to this section we have made a toolbox of algorithms which is
available to the community.

In Chapter 4, we provide a discussion of reflectance datasets that have been used in
colour correction research. The question of "which dataset should I use" is often asked
by researchers. Moreover, the datasets are surprisingly diverse. In this chapter we review
existing measures for comparing reflectance datasets, then we introduce a new measure. We
then compare reflectance datasets using the measures we described. We show that the choice
of reflectance dataset has impact on the performance of colour correction algorithms.

In Chapter 5, we look at the question of reflectance dataset similarity in great depth. We
make three important contributions. First, we argue that the surfaces in a reflectance dataset is
a subsample of a much larger class of surfaces. Formally, the convex closure of a reflectance
dataset is possible, as at micro level, the colours we see are the averages of many distinct
surfaces. In our second contribution we show how the convex closure of a reflectance dataset
can be represented, and how this in turn can be approximated by its enclosing hypercube. We
use the latter for computational necessity, as dealing with high dimensional convex shapes
is computationally hard. In our third contribution, we show how we can integrate over our
hypercube representation to calculate linear colour correction transforms.

Our experiments also show that the hypercube enclosure of reflectance sets are much
more similar than the sampled reflectance dataset themselves. We effectively answer the
question of "What data set should I use?" with the answer "It doesn’t matter too much
so long as we represent reflectances by their enclosing hypercube." Significantly, colour
correction driven by the hypercubes delivers colour correction that is almost as good as using
the sampled data itself.
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In Chapter 6 we consider relaxing the limiting case of the bounding hypercube idea
of Chapter 5 by allowing all possible reflectances – any function which is larger than 0%
reflectance and less than 100% throughout the visible spectrum. We refer to the resulting
maximally large bounding hypercube as Maximum Ignorance with Positivity (MIP). Within
the relaxed limiting case, we implement second order polynomial colour correction colour
correction algorithms which are more complex than linear regression. This is a theoretical
contribution as the resulting transform in practice delivers poor colour correction.

In Chapter 7, we provide a conclusion to this thesis.



Chapter 2

Background

Vision is one of our most important senses, as it informs us about the structure and properties
of our physical environment. It is therefore natural for us to want to record what we see.
Photography allows us to capture light and create images. It is an art form, as well as a hobby
for many people.

Creating images by recording light has been a long running scientific and engineering
endeavour. The technology behind photography has evolved over time. The first photograph
was taken in 1822 by French Inventor Nicéphore Niṕce [1], using the technique of photoetch-
ing. This was the first time in which visible light was recorded as a permanent image. In
1861, photographer Thomas Sutton took a set of three monochromatic images of a tartan
ribbon separately, using a camera with red, green and blue filters attached. By projecting
these three images to the same location, a colour reproduction of the original tartan ribbon
was produced. This idea was first outlined by Scottish physicist James Clerk Maxwell [2].

The 20th century was dominated by film cameras, with consumer grade film cameras
becoming more popular in the later half of the century. The first commercially available digital
camera was introduced by Sony in 1981 [3]. Since then, digital cameras become increasingly
popular. Sharp released the first mobile phone with integrated camera functionality in
2000 [4]. The competition between digital camera and camera phones had been intense in
the 2010s. According to the Camera & Imaging Products Association, the sale of digital
cameras peaked at 2010. The sales figures has been in gradual decline as due to the improved
camera quality of smartphones – consumers prefer to use smartphones with good cameras
as their primary camera. As the award winning photographer Chase Jarvis says, “The best
camera is the one that’s with you” [5].

Despite the changes in the form factors and the technologies of the cameras, some of the
fundamental theories behind creating images remain constant. James Clerk Maxwell used
three colour filters to create the three colour channels required for forming colour images.
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Colour filters are still present on the imaging sensors of modern digital camera. Three
colour channels at the right frequencies are needed for the creation of colour images, due to
trichromatic theory of colour vision. Trichromacy of colour vision is due to the physiology of
human eyes. The retina at the back of the eye has three types of colour sensitive photoreceptor
cells, which are called cone cells.

Colour plays important roles in vision. Colour can provide cues for image segmentation.
Primates use colour as a cue for locating fruit in foliage [6]. Colour also provides information
regarding the object properties, e.g. identifying the freshness of meat [7] and fish [8], and
the ripeness of fruits [9]. Due to the importance of colour in vision, faithful reproduction
of colour images is therefore an important topic. However, this problem is complicated by
the diversity of imaging devices (which includes cameras and scanners) and the diversity of
image reproduction devices (which includes displays and printers).

Horn [10] divided the process of image reproduction grossly into five stages (shown in
Figure 2.1). The physical original image is captured by images sensors, a computational
subsystem process and store the digital representation of the image, finally an image repro-
duction device regenerates another image. The regenerated image is finally shown to human
observers.

Original Image

Image Sensors

Computational Subsystem

Image Generators

Reproduced Image

Fig. 2.1 Stages in image reproduction [10]
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This thesis concerns the faithful capturing of colour images. In this thesis, we mainly
explore the colour correction subcomponent within the “Computational Subsystem” block.
However, in this background section, we also touch on the interaction between the “Original
Image” and “Image Sensors”. We start by exploring the process behind image formation.
We then move onto the human visual system (HVS), as the goal of an image reproduction
system is to reproduce captured images with that are pleasant to a human observer. We then
touch on digital imaging systems, which capture images digitally. Finally we explore why
colour correction is necessary.

2.1 Colour Image Formation

In this section, we will discuss the formation of colour signal on imaging sensors. There
are different kinds of imaging sensors. In digital cameras, the imaging sensors can be CCD
sensors or CMOS sensors. In human eyes, the imaging sensors are the rods and the cones.
Despite the fact that different imaging sensors function in different ways due to their physical
differences, they can be modelled in a similar manner. Fundamentally, imaging sensors
convert incident photons into electrical signals.

A monochromatic imaging sensor can be modelled using the following equation:

x =
∫

ω

E(λ )S(λ )r(λ ) dλ , (2.1)

where λ is the wavelength. x is the colour response of the imaging sensor, E(λ ) is the
spectral power distribution of electromagnetic radiation which illuminates the scene. S(λ ) is
the reflectance spectra of a surface patch in the scene. r(λ ) is the device specific spectral
sensitivity function of the imaging sensor.

If the imaging sensor consists of m colour channels, we concatenate the responses from
each channel to form m-dimensional vector sensor responses [x1,x2, · · · ,xm]

⊺, which we
denote as x. We concatenate the specific spectral sensitivity function of each channel together
to form a m-dimensional spectral sensitivity vector function [r1(λ ),r2(λ ), · · · ,rm(λ )]

⊺, which
we denote as r(λ ). By substituting x and r(λ ) into Equation 2.1, we obtain the sensor
response for a multi-channel imaging sensor:

x =
∫

ω

E(λ )S(λ )rrr(λ ) dλ , (2.2)

When we are dealing with the HVS, we replace r(λ ) with the CIE colour matching
functions [11], which is the spectral sensitivity function for the HVS. By using the CIE
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colour matching function, we can calculate the XYZ tristimulus values, which numerically
describes the colour response of a typical human observer (in the context of a colour matching
experiment). Since colour matching functions are linearly related to cone responses they are
taken as a measure of what we see (in terms of the signal measured by the sensors in the eye).
CIE colour matching functions are discussed further in a later subsection below.

It should be noted that a typical imaging device tends to have 3 colour channels (m = 3).
This is because human eyes have 3 different types of cones. However this is not always the
case, for example, hyperspectral cameras may have more than 3 colour channels in order
to cover electromagnetic radiation outside the visible range, such as infrared radiation or
ultraviolet radiation [12].

By multiplication of the illuminant E(λ ) and the reflectance S(λ ) together, we can obtain
the actual colour signal (C(λ )) that reaches the imaging sensor:

C(λ ) = E(λ )S(λ ) . (2.3)

By substituting Equation 2.3 into Equation 2.2, it can be simplified into:

x =
∫

ω

C(λ )r(λ ) dλ , (2.4)

In Equation 2.4, the colour formation model is presented in continuous form. This is more
realistic in terms of modelling the physical process. However, it is reasonable to discretise the
colour signal and device specific spectral sensitivity function. Discretisation of continuous
distribution is carried out by taking samples at regular intervals.

The visible spectrum is the range of electromagnetic wave that a human eye will respond
to. The exact range varies between individuals, and it is between about 365 nm to 750
nm [13]. However in context of computer vision, only the wavelength between 400 nm and
700 nm are taken into account, as the responses produced by stimuli below 400 nm and above
700 nm in human observers are fairly weak.

2.1.1 Discrete Representation

In practice, computation of colour responses is done in discrete domain rather than continuous
domain. This is because spectrum data mentioned in Equation 2.4 can only be sampled in
discrete intervals. By sampling the colour signal C(λ ) and spectral sensitivity function r(λ )
at a regular 10 nm interval between 400 nm to 700 nm, we can represent r(λ ) using a 31×m
matrix R (m = 3 for RGB imaging sensor), and C(λ ) can be represented using a 31-column
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vector c. In this way, we have that,

λi = 400+10i (i = 1..31) (2.5a)

(R) ji = r j(λi) (2.5b)

(c)i =C(λi)∆i , (2.5c)

where ∆i is the sampling interval.
By adopting the convention above and assuming sampling interval is incorporated in the

vector approximation, Equation 2.4 can be replaced by matrix multiplication:

x = R⊺c (2.6)

2.1.2 Colour spaces

A colour space is a distinct representation of colour. As our understandings of colour evolve
over time, different representations of colour have been developed as different interest groups
utilise colour in different ways. In the previous section, we discussed that the device specific
spectral sensitivity function is used when calculating the colour response of a digital camera,
while the CIE colour matching functions is used to calculate the XYZ tristimulus of HVS.
Due to the fact that in general, the device specific spectral sensitivity functions are different
to the CIE colour matching functions, digital cameras produce different responses than the
HVS for the same colour stimulus. The responses from a digital camera occupy a different
colour space to the responses from HVS. This is partly due to the engineering difficulty
associated with imaging sensor design and noise property constraints of the signal (especially
when interactions between imaging and display devices are involved).

Device independent colour spaces can be broadly classified into two categories: unren-
dered colour space, and rendered colour space [14]. Rendered colour spaces are designed
with being used for device output purposes in mind. They tend to be smaller than unrendered
colour spaces, and therefore in general, smaller ranges of colour can be expressed in rendered
colour spaces compared to unrendered colour spaces. Unrendered colour spaces are not
designed for output purposes, they are designed for storage and calculation. Colours which
cannot by physically realised by output devices can be represented in unrendered colour
spaces. Examples of this type of colour space include CIE XYZ [15], RIMM RGB [16] and
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etc. Rendered colour space are designed for output purposes. Example of rendered colour
space include ITU-R BT.709-3, sRGB [17],and etc.

2.2 Human Visual System

The Human Visual System (HVS) consists of various components, however the most impor-
tant two parts of are the eyes and the visual cortex. The eyes convert the received light into
electrical signal. The electrical signal is then transmitted to visual cortex via the optic nerve.
The visual cortex process and interpret the received electrical signal.

Figure 2.2 shows a schematic diagram of a human eye. Light first enters the eye through
the pupil. The pupil controls the amount of light that enters the eye by adjusting its diameter.
In a bright environment, the pupil constricts to reduce the amount of light that enters . In a
dark environment, the pupil dilates to allow more light to enter. The light is then focused by
the lens onto the retina. The curvature of the lens can be changed by the ciliary muscle, this
allows objects from different distances to come into focus. The retina is the light sensitive
tissue responsible for converting light energy to electrical neural impulses.

Fig. 2.2 The schematic diagram of the human eye, the diagram has been released into the
public domain by the original author [18]

The retina consists of layers of neurones and capillaries, and a layer of photoreceptor
cells. In human (and other vertebrates), light has to pass through layers of neurones and
capillaries before reaching the photoreceptor cells. An image of section of the author’s retina
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imaged using Adaptive Optics Scanning Laser Ophthalmoscopy [19] is shown in Figure 2.3.
The grains in the image are the cone cells, the dark patch in the middle of the image is a
blood vessel. The image shows that cone cells are tightly packed together. This enables a
high degree of visual acuity.

Fig. 2.3 The author’s retina imaged using Adaptive Optics Scanning Laser Ophthalmoscopy
(AOSLO) at Department of Experimental Psychology, University of Oxford. The grains in
the image are cone cells, the dark patch in the middle of the image is a blood vessel.

There are two types photoreceptor cells in human retina – rods and cones. Two types
of photoreceptor cells are responsible for transducing light to electrical. The type of cells
used depends on ambient illumination level. At very low light level, rods are responsible
for the monochromatic vision that we experience. This is referred to as scotopic vision. In
most night time outdoor and street light condition, human vision is in the mesopic range [20].
In mesopic vision, a combination of cones and rods are responsible for vision. When the
environment is illuminated to day light level, cones alone are responsible for vision. This
is referred to as photopic vision. Most of the work on colour correction focus on photopic
vision.
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There are three types of cones. They are named based on the wavelength of the visible
light they respond to – L (long) cones have peak sensitivity near 564-580 nm, for M (medium)
it is around 534-545nm, and for S (short), it is around 420-440 nm [21]. S cones appear
randomly and far less frequently than M and L cones. The ratio of M and L cones varies
greatly among individuals with normal colour vision [22]. The average sensitivities for the
three types of cones is show in Figure 2.4 [23]. This figure describes how much neural
impulse each type of cone cell produces given a monochromatic light stimulus at a certain
frequency. The measurement of cone sensitivities is beyond the scope of this thesis. The
CIE XYZ colour matching functions are related to the cone sensitivities, as they are linear
combinations of the cone sensitivities.

Fig. 2.4 The sensitivities of human cone [23]

2.2.1 Trichromatic Theory of Colour Vision

Photopic vision – the vision of the eye under well-lit condition, can be best explained using
trichromatic theory of colour vision. This is primarily because the three types of cones
are responsible for this mode of vision. The development of trichromatic theory began as
scientists investigated what makes up visible light.

Young [24] observed that painters mix red, yellow and blue pigment to achieve a wide
variety of colour. Based on these observation, Young postulated that visible light comes
in a continuum of frequencies, but the human eyes have only three types of receptors. He
believed that these receptors responds to red, yellow and blue light.
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Maxwell studied the composition of colour using a wooden spinning top [25, 26]. An
illustration of Maxwell’s spinning top is shown in Figure 2.5. A colour sample was placed at
the middle of the spinning top. The outer rim of the spinning top consists of three pieces paper
coloured using the primary colour red, green and blue. Maxwell performed experiments
by spinning the top at a high speed, and due to the persistence of vision, the colour in the
outer rim would blend into one colour. Maxwell demonstrated that by varying the amount of
primary colour at the outer rim, it is possible for the outer rim’s blended colour to match the
colour of the sample at the middle of the spinning top. He hypothesised that all colour could
be synthesized by varying the amount of light with primary colour.

Fig. 2.5 An illustration of Maxwell’s wooden colour spinning top for his original colour
matching experiment

Maxwell discovered the difference between additive colour mixing and subtractive colour
mixing models. In both situations, new colours forms as the result of light of different colours
mixing together. However in additive colour mixing, one starts with black, which is the
absence of light. As lights of different wavelength mix together, colour forms. In subtractive
colour mixing, one starts with a “white” surface, which is a surface which reflects of the
illuminant equally across different wavelengths. By adding pigment to the surface, light
of certain wavelengths are subtracted, which results in colour. The colour model behind
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cameras, eyes and displays is additive colour mixing. The colour model used by printers is
subtractive colour mixing.

The spinning top experiment performed by Maxwell was effectively a “colour matching
experiment”, in which the participant attempts recreate a sample colour by mixing varying
amount of light with primary colours.

2.2.2 CIE Primaries

CIE stands for Commission Internationale de l’Éclairage. In English, it means the Interna-
tional Commission on Illumination. It is the international organisation that sets standards on
illumination and colour. CIE took the idea of colour matching experiment further, by defining
what primary colours are, and created various associated colour spaces. In particular, CIE
combined the work from two separate teams, Wright [27] from Imperical College London,
and Guild [28] from the National Physical Laboratory.

Both researchers conducted colour matching experiments using participants with normal
colour vision. The participants were asked to look into a device called “colorimeter”, which
had a square field of view divided horizontally into two equal rectangles. Each side of the
square occupied 2°of vision. This ensured that only the fovea was involved in the colour
matching. One of the rectangle was the test field, which showed a monochromatic light – it
was the colour to be matched. The other rectangle was the match field, it showed the result
of three primary colours blended together. Each primary colour was a monochromatic light –
its spectrum contained one sharp peak at a single wavelength.

The participants were asked to adjust the strength of the primaries, so the colour in the
match field matched the colour in the test field. The strengths of the primaries needed to
produce those colour responses were recorded, these are known as the colour matching
functions. A diagram representing the setup of the colour matching experiment is shown in
Figure 2.6.
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Fig. 2.6 A diagram representing the colour matching experiment, the participants adjust the
strength of the red, green and blue light beam, so when these three light beams mix, the
resulting colour matches the colour of the test source, image taken from [29]

The two team used two different primary colours, as they used different methods to isolate
those monochromatic lights, Guild [28] used a tungsten lamp and colour filters, while Wright
[27] used a system of prisms. CIE committee combined the results from these two research
groups using mathematical transformation, resulting in CIE 1931 RGB Colour Matching
Functions. The primaries were standardised to 700 nm, 546.1 nm and 435.8 nm, and they are
denoted using r̄(λ ), ḡ(λ ) and b̄(λ ) respectively. CIE 1931 RGB Colour Matching Functions
are shown in Figure 2.7.
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Fig. 2.7 The CIE 1931 RGB Colour Matching Functions. The red curve is r̄(λ ), the green
curve is ḡ(λ ) and the blue curve is b̄(λ ).

During colour matching experiments, there were spectral colours which could not be
matched by mixing primaries in the match field. The solution was to mix the red primary to
into the test field. This solution is represented mathematically using negative values in r̄(λ ).
This effect is especially prominent at around 500 nm.

2.2.3 CIE XYZ colour matching functions

The CIE commission felt that the negative values in the RGB colour matching function might
lead to error in its usage and impede its adoption. In order to avoid the negative values, CIE
devised the CIE XYZ colour matching function.

The CIE XYZ colour matching functions are denoted using the symbol x̄(λ ), ȳ(λ ) and
z̄(λ ). The CIE XYZ colour matching functions are a linear combination of the CIE RGB
colour matching function. It is designed in such a way so that negative numbers do not exist
in the colour space. Additionally, the Y values in CIE XYZ are proportional to the overall
luminance of a colour [30].

The CIE XYZ colour matching functions can be calculated from the CIE RGB colour
matching functions using the following formulae [15]:

x̄(λ ) = 0.49r̄(λ )+0.31ḡ(λ )+0.20b̄(λ )

ȳ(λ ) = 0.17697r̄(λ )+0.81240ḡ(λ )+0.01063b̄(λ )

z̄(λ ) = 0.00r̄(λ )+0.01ḡ(λ )+0.99b̄(λ )

(2.7)

The CIE XYZ colour matching function is shown in Figure 2.8.
The CIE XYZ colour space can represent all possible colour sensation an average person

can perceive, therefore it is used as a device independent colour space. Mapping from device
dependent colour space to CIE XYZ is an important tool when designing and analysing the
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Fig. 2.8 The CIE XYZ colour matching function, The red curve is x̄(λ ), the green curve is
ȳ(λ ) and the blue curve is z̄(λ ).n

image processing pipeline for cameras [14], although the cameras themselves may never
explicitly use this colour space. When we are analysing how good a camera is at measuring
colour, we are typically interested in how well a camera’s device dependent RGBs can be
corrected to the corresponding XYZs. We measure the difference between the corrected
XYZs as reported by the camera and the true XYZs measured by another more accurate
colorimetric device, e.g. a spectrophotometer. The smaller the differences are, the more
colour accurate the camera is.

The CIE XYZ colour space cannot be used directly to measure the perceptual difference
between two colours, as it is not perceptually uniform [31]. In a perceptually uniform colour
space, the same numerical change in the colour values must correspond to the same magnitude
of perceived change in colour by human observers across the whole colour space [21]. This
is not quite the case with CIE XYZ. In particular, the same numerical differences result in
a much larger magnitude of perceptual difference in the green region than the blue region.
This effect was first investigated by MacAdam [32].

Perceptually uniform colour spaces have been derived from CIE XYZ colour space. The
most prominent ones are CIELAB and CIELUV [33], CIELAB is the more commonly used.

2.2.4 CIELAB colour space

CIELAB colour space is a approximately perceptually uniform colour space based on CIE
XYZ. In this colour space, it is easy to calculate the perceptual differences between two
colours.
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CIE XYZ can be converted to CIELAB using the folllowing formulae [34]:
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and Xn, Yn and Zn are the XYZ tristimulus values of the whitepoint.
The ‘L∗’ in CIELAB is the lightness factor, which measures the brightness of the colour

on a scale between 0 to 100, with 0 being the darkest black, and 100 being the brightest
white. The ‘a*’ measures the ratio of red and green, with positive values representing red,
and negative values representing green. The ‘b*’ measures the ratio of blue and yellow, with
positive values representing yellow, and negative values representing blue [35].

In order to calculate the perceptual difference between two colours in CIELAB colour
space, the colour difference formulae need be used. These formulae have evolved over time.

CIE76 Colour Difference Formula

CIE76 is the original colour difference formula. It is is defined as [33]:

∆E∗
ab =

√
(∆L∗)2 +(∆a∗)2 +(∆b∗)2. (2.10)

This formula calculates Euclidean distance between two colour coordinates within the
CIELAB colour space. The result is known as the CIELAB ∆E∗

ab , also commonly referred
to as the “CIELAB difference”. The CIELAB ∆E∗

ab is typically used for evaluating the
performance of colour correction algorithm. In terms of fine human colour difference
judgements, a ∆E∗

ab of 1 roughly corresponds a difference that’s perceptually just noticeable.
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CIE94 Colour Difference Formula

The CIELAB colour space is only approximately perceptually uniform. It was indicated that
the use of different weighting for lightness, chroma and hue differences may be necessary
in different practical application. Various formulae have gradually evolved to address these
issues. A prominent example was the CIE94 formula released in 1994 [36]. It provides
significant improvement in accuracy over CIELAB [37].

The CIE94 colour-difference formula is designated as ∆E∗
94(kL:kC:kH), it is defined as:

∆E∗
94(kL:kC:kH) =

√(
∆L∗

kLSL

)2

+

(
∆C∗

ab
kCSC

)2

+

(
∆H∗

ab
kHSH

)2

, (2.11)

where the CIELAB lightness (∆L∗), chroma (∆C∗
ab), and hue differences(∆H∗

ab) are given by:

∆L∗ = L∗
1 −L∗−2 (2.12)

∆C∗
ab =C∗

ab,1 −C∗
ab,2 (2.13)

∆H∗
ab = 2

√
C∗

ab,1C∗
ab,2 sin

(
∆hab

2

)
(2.14)

∆hab = hab,1 −hab,2. (2.15)

The “weighting functions” for lightness (SL), chroma (SC) and hue (SH) are defined as:

SL = 1 (2.16)

SC = 1+0.045(C∗
ab,1C∗

ab,2) (2.17)

SH = 1+0.015(C∗
ab,1C∗

ab,2). (2.18)

The “parametric factors kL,kC,kH are set to 1.0. However in the textile industry, it is a
common practice to set the lightness parametric factor to 2.0.

CIEDE2000 Colour Difference Formula

In 2001, the CIE released a new colour difference formula - CIEDE2000[38]. It provides
the improved overall accuracy compared to CIE94, by further correcting perceptual non-
uniformity within the CIELAB colour space.

The CIEDE2000 colour difference is designated as ∆i00, it is calculated using a three-step
process described below.



20 Background

Step 1: Preparation of data to calculate a′,C′ and h′:

L′ = L∗ (2.19)

a′ = (1+G)a∗ (2.20)

b′ = b∗ (2.21)

C′
ab =

√
a′2 +b′2 (2.22)

hab = tan−1
(

b′

a′

)
(2.23)

where

G = 0.5

(
1−

√√√√ C∗
ab

7

C∗
ab

7
+257

)
, (2.24)

and C∗
ab is the arithmetic mean of C∗

ab values for a pair of samples.
Step 2: Calculate ∆L′,∆C′ and ∆H ′
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where
∆h′ab = h′ab,2 −h′ab,1 (2.28)

Step 3: Calculate CIEDE2000 ∆E00
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where

SL = 1+
0.015(L̄′−50)2√

20+(L̄′−50)2
(2.30)

SC = 1+0.045C′
ab (2.31)

SH = 1+0.045C′
abT (2.32)
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)
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)
+0.32cos
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)
+ (2.33)
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(2.34)

RT =−sin(2∆θ)RC (2.35)

∆θ = 30exp
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−
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25
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(2.36)

RC = 2

√
7Cab

7Cab +257
(2.37)

Note that L′, C′
ab and h′ab are arithmetic means of the L′, C′

ab and h′ab values for a pair of
samples.

2.3 Digital imaging system

Digital cameras capture images by converting light signals into electrical signals using
imaging sensors [39]. The typical processing pipeline of a digital camera is shown in
Figure 2.9 [14]. A typical digital camera has all the blocks in the flow chart, however the
implementation of the same blocks may be very different between cameras may be very
different, as manufacturers tune their cameras differently. We now explore a few selected
blocks within the flowchart.
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Lens Aperture Sensor

Focus
control

Exposure
control

Preprocessing

Demosaicing

Colour
Correction

Colour
Balancing

Postprocessing

Storage

Fig. 2.9 A typical camera image processing pipeline [14], the red blocks represent physical
components, while the yellow blocks represent processes. It should be noted that the exact
processing sequence differs between manufacturers.

2.3.1 Focus control

Focus control is primarily achieved by two methods - contrast measurement and phase
detection. In contrast measurement, the image is first divided into different regions. The lens
system is then adjusted so the contrast and the amount of high spatial frequency content in
the foreground region is maximised [14]. In camera systems that use phase detection, the
autofocus sensor is effectively a rangefinder. The incoming light is split into two using a
beam splitter. This creates two images, and their intensity patterns are then compared and
analysed. The phase difference between the two images is then used to calculate the focus
with respect to the scene [40].

2.3.2 Exposure control

Exposure controls the amount of light recorded by the imaging sensor. Overexposure happens
if the imaging sensor capture too much light. Overexposed images contain low contrast bright
regions lacking in spatial details which are indistinguishable from white. Underexposure
happens if the imaging sensor does not capture enough light. Underexposed images contain
low contrast dark regions lacking in spatial details which are indistinguishable from black.

There are two ways to achieve the control of the level of exposure - the camera can
change the size of the aperture and/or change the shutter speed. It should be noted that on
cheaper cameras, the size of the aperture may be fixed. However, the shutter speed can be
changed on all cameras.
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Scene with high dynamic range presents a particular challenge for digital camera. Dy-
namic range refers to the contrast ratio between the brightest pixel and the darkest pixel
within an image. The HVS is capable of distinguishing contrast over a range of 3.7 orders
of magnitude [41], while a typical camera and a typical display has a dynamic range of 2
orders of magnitude [42]. This means that for an image of the scene with extreme contrast,
overexposed region and underexposed region may occur at the same time. This is because
the camera can only record a limited range of the full contrast. The solution for this problem
is through the use of high dynamic range (HDR) imaging [43]. HDR images are created by
fusing multiple images of the same scene captured different exposure level. The creation of
HDR image is beyond the scope of this thesis, more information can be found in [43].

2.3.3 Sensor

After the focus and exposure are set, the imaging sensor can finally start to capture the scene.
There are two types of imaging sensor - Charged Coupled Device (CCD) and Complementary
Metal Oxide Semiconductor (CMOS). The details on how these sensors operate is beyond
the scope of this thesis, more information can be found in [39].

The main advantage for CMOS sensors is that they tend to be cheaper than CCD sensor.
This leads to their wide adoption in the low end market, traditionally webcams and mobile
phone cameras use CMOS sensors. Historically, CCD sensors is considered as a more
mature technology. CCD were able to produce images with lower noise compared to CMOS
sensors [44]. However due to improvement in CMOS sensor technology, this is no longer the
case. Since 2010s, DSLR cameras have been exclusively using CMOS sensors [45].

The major difference between CMOS sensors and CCD sensors is the way the electronic
shutter operates. CMOS sensors use a rolling shutter, while CCD sensor uses a global shutter.
When taking picture using a camera with a CMOS sensor, the scene is not actually captured
instantaneously at once. The scene is captured by recording pixel values from the imaging
sensor one-by-one from each row, then row-by-row. This is similar to the way the electron
beam from a CRT display scan across the screen. Rolling shutter can produce imaging
artefacts. Figure 2.10 shows spatial aliasing artefact. This artefact occurs when the shutter
speed is below the sampling frequency required for the subject.
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Fig. 2.10 An image showing the effect of rolling shutter, with the red rectangle encircles the
affected region. The shape of the propeller blade of the helicopter is physically different to
what is shown in the image - it should be straight. This image is licensed under the Creative
Commons Attribution-Share Alike 3.0 Unported license [46]

2.3.4 Colour filter array and demosaicing

For a camera to form colour images, information for three colour channels need to be
generated at each pixel location. There are primarily two ways to achieve this – using a
colour filter array (CFA) on one single sensor then use interpolation, or using three imaging
sensors to measure each channel independently. By using a CFA, each pixel location on
the imaging sensor measures one single colour channel, the information of the two missing
colour channels are interpolated from the adjacent pixels. Having multiple sensors in a single
camera means that information about all three colour channels are available for each pixel
location. Having multiple sensors produce images with better quality, However this greatly
increases the size of the camera, as well as the cost. Therefore, most consumer grade digital
cameras have one single imaging sensor with a CFA.

There are many CFA patterns available. However the most popular CFA is the Bayer
array [47]. Bayer array consists of one red mask, one blue mask and two green masks. The
Bayer array patten is shown in Figure 2.11. Camera manufacturers have produced cameras
using different CFA pattern, however they are not very common.
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Fig. 2.11 A diagram showing a Bayer pattern array which contains three sets of repeated
pattern both horizontally and vertically.

The use of CFA means that at a single pixel location only the intensity value for one
single colour channel is measured. To fill in the information for other channels, a computa-
tionally intensive process called “demosaicing” is required. Different cameras use different
demosaicing algorithm. Quite often the exact implementation is covered by patents or propri-
etary. There is a large volume of researches on demosaicing, [48, 49] provide good reviews
in this topic. Popular demosaicing techniques include weighted sum interpolation [50],
adaptive homogeneity-directed demosaicing [51], succesive approximation [52], Bayesian
approaches [53], neural network [54, 55] and etc. Poorly designed demosaicing algorithm
tends to introduce artefacts into the resulting image, i.e. the zipper artefacts [52] and confetti
artefacts [56].

2.3.5 Preprocessing

After the imaging system receives a command to capture an image, a record of the intensity
values from each pixel location on the imaging sensor is created. We refer to this record as
the “raw” image. The first stage of the image processing pipeline is the preprocessing of
the raw image. This involves the following processes: removal of readings from defective
pixels (due to imperfect manufacturing processes) [57], linearisation of the camera responses
using an opto-electronic conversion function [58, 59], compensation of the dark current (the
thermal noise inherent to the imaging sensor) [60], compensation of the flare caused by the
undesired scattering and reflection of light by the components in the optical system [61]. The
purpose of preprocessing is to improve the performance of the downstream stages within the
pipeline.
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2.3.6 Colour correction

Cameras measure colour differently to the HVS, due to the spectral sensitivity difference
between the imaging sensors of the cameras and the cone cells of human eyes. To faithfully
reproduce colours as perceived by the HVS, it is therefore necessary to convert the device
specific colour responses produced by the camera to a well-defined device independent colour
spaces linked to the HVS. This process is called colour correction.

Colour correction in digital a digital camera conceptually can be thought of as a two step
process. The raw sensor reading is first transformed from the device specific colour space
to an unrendered colour space, then from that unrendered colour space to a rendered colour
space [14]. However, quite often the two operations are combined together mathematically,
so colour correction can be completed in one step. However, since colour corrections are
generally evaluated with respect to an unrendered space (typically XYZ) then it is useful to
think of the process as being in two stages.

As colour correction is the main topic of this thesis, we devote Chapter 3 to the introduc-
tory discussion of this topic.

2.3.7 Colour balancing

Colour balancing is the global adjustment of the colours, so the objects in the image appear to
have the expected colour. Colour balancing is necessary, because the illuminant can influence
the colour appearance of the object. To understand the reasoning behind this, we need to
revisit the equation that describe the formation of imaging sensor responses. According to
Equation 2.4, if the surface reflectance S(λ ) and the device spectral sensitivity function r(λ )
are held constant, a changed illuminant E(λ ) results in a different sensor response x.

The HVS has the natural ability to take the illuminant into account when sensing colour.
Despite that a sheet of white paper generate different XYZ tristimulus values under different
illuminants (e.g a 3600K lightbulb and daylight), the HVS interprets the colour of the paper
to be white as long as the illuminant has a relatively neutral colour. This phenomenon is
known as colour constancy [62]. This behaviour is not inherent to a machine vision system.
The ability to reduce and remove the influence of the illuminant to the final image needs to
be programmed into the image processing pipeline. An important goal of colour balancing is
to adjust the appearance of neutral colour, especially white. Therefore colour balancing is
also often referred to as “white balancing”.

There are various algorithms to perform colour balancing, with the end goal of achieving
colour constancy for a machine vision system. The simplest approaches are Grey World
algorithm Buchsbaum [63], which makes the assumption that the average pixel colour over
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the entire image is grey. Each colour channel is scaled by the mean intensity value of that
channel, i.e:

Ic(x,y)=
I′c(x,y)

mean(I′c)
, (2.38)

where Ic(x,y) is the scaled pixel intensity at coordinate (x,y), and I′c(x,y) is the corresponding
unscaled pixel intensity and mean(I′c) is the mean pixel intensity of colour channel c.

Scale by Max algorithms [64] each colour channel is scaled by the maximum intensity
value of that channel, i.e:

Ic(x,y)=
I′c(x,y)
max(I′c)

, (2.39)

Both Grey World algorithm and Scale by Max algorithms are naive approaches which
are simple to implement, however and they perform poorly on colourful images, which do
not necessarily fit with the assumption of these algorithms. They suffer from instability on
video footage with dynamic scene,

More advanced approaches of colour balancing includes the Retinex algorithm by Land
and McCann [65], which is based on the psychological aspects of lightness and colour
perception of human vision. There are other algorithms which are improvements over
Retinex algorithm, e.g. Hurlbert [66] proposed a Gaussian surround function, Multiscale
Retinex [67] which incoporates a number of image processing operations. More information
about white balancing and colour constancy can be found at [68–72].

2.3.8 Postprocessing

The goal of postprocessing is to remove the artefacts generated in the previous processing
steps, and to enhance the final appearance of the image. Common postprocessing steps
include colour artifact removal, edge enhancement and tone mapping.

Colour artifact removal refers to the process of removing the zipper artefacts and confetti
artifacts introduced during the demosaicing step [73]. These artefacts need to be removed as
they are visually objectionable. The exact process in this step differs between camera models,
and they tend to be proprietary.

Human visual system is highly sensitive to sharp edges [74]. Experiments have shown
that observers tend to prefer sharp edges over blurred edges [75]. In order to make images
more aesthetically pleasing, most camera manufactuers apply edge enhancement during
postprocessing. A commonly used edge enhancement technique is unsharp masking [76].

Tone mapping is one of the final step in postprocessing. Typically, the imaging sensor of
the camera has a higher dynamic range than the output file format (typically JPEG). Tone
mapping allows the high dynamic range intermediate image to be mapped down to a low
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dynamic range storage format, which remain aesthetically pleasing [77]. For producing
a standard low dynamic range image, tone mapping is a global operator – the same tone
mapping function is applied across the whole image. However to produce HDR image,
spatially varying local tone mapping is necessary [78].

2.3.9 Storage

Generally there are primarily two ways for the camera to store the image taken: JPEG/Exif
format and device specific raw image format.

JPEG/Exif stands for Joint Photographic Experts Group/Exchangeable Image Format.
Joint Photographic Experts Group (JPEG) developed the compression standard for this file
format [79]. However the file format itself is jointly maintained by Japan Electronics and
Information Technology Industries Association (JEITA) and Camera & Imaging Products
Association (CIPA) [80]. JPEG/Exif files have the extension of ‘.JPG’. JPEG compression
standard is a lossy form of compression utilising discrete cosine transform (DCT). The image
is first converted into the frequency domain. The compression is achieved by discarding high
frequency information based on a psychovisual perceptual model. Storing fully processed
image in JPEG/Exif format is available for all digital still cameras.

High end cameras such as DSLR cameras, and more recently mobile phones [81, 82] can
also store device specific raw images. A raw image is the unprocessed readings captured by
the imaging sensor – the captured image data before going through the “preprocessing” step
in Figure 2.9. The exact format of the raw image is dependent on the exact model camera.
There is no industry-wide agreement on the format of the raw image. However Adobe’s
Digital Negative (DNG) format [83] appears to be quite popular [82, 84].

2.4 Conclusion

In this chapter, we discussed colour image formation model, human visual system (HVS)
and digital imaging system. We explored how these components are linked together. In
the discussion on the image formation model, we described how the interaction between
illuminant, surface and sensor (both HVS and imaging sensor) is mathematically modelled.
In the discussion on HVS, we gave a brief description on the structure of HVS. We then
discussed how the responses from the HVS was first measured, and how it is represented
mathematically. In the discussion on digital imaging system, we gave a brief description
on the image processing pipeline of a digital camera. We discussed the steps involved in
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creating a digital image. The process that convert the raw colour response from a digital
imaging system and the HVS-linked mathematical representation is colour correction.

There are two factors which affects the results of colour correction. The process of colour
correction can be affected by the algorithm used, as well as the dataset which is used to train
the colour correction algorithm. In the next chapter, Chapter 3, we will have a review of
common colour correction algorithms. In Chapter 4, we will look at the reflectance datasets
which are used to train and evaluate colour correction algorithms.





Chapter 3

Evaluation of commonly used colour
correction algorithms

3.1 Introduction

This chapter is an extended version of a published conference paper [85].
The problem of colour correction arises from the fact that cameras do not measure colour

in the same way as the Human Visual System (HVS). The imaging sensor in a camera does
not have the same spectral sensitivity as the cone cells in the human eyes. The problem is
aggravated by the fact that different models of cameras also use different imaging sensors.
Therefore, to reproduce colour responses as perceived by the HVS, it is necessary to convert
device specific responses produced by a particular camera to a device independent colour
space linked to the HVS.

Conceptually colour correction in a digital camera is a two step process [14]. The colour
responses are first transformed from the device specific colour space to an unrendered colour
space, which is typically the CIE XYZ (introduced in subsection 2.2.3). Then, the obtained
values are converted from the chosen unrendered colour space to a rendered colour space,
which is typically the sRGB [86]. The conversion from device specific colour space to CIE
XYZ is never a perfect process, as the device specific colour space is typically not a linear
combination of CIE XYZ. We will discuss this further later in the chapter.

Typically, the colour correction procedure involves measuring the device response for
some physical targets, often viewed with respect to multiple lights, then perform a correction
towards the actual colour values of the same targets on the device-independent colour space.
For example, Figure 3.1a shows a raw image of a colour checker captured by a Nikon D5100
camera, and Figure 3.1b shows the same image after it is corrected to sRGB colour space.
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It is clear that the colours recorded by the camera are significantly different after colour
correction.

(a) Raw image from Nikon D5100

(b) Same image after being corrected to sRGB

Fig. 3.1 Nikon D5100 raw camera response of an image containing a colour checker [87],
before (a) and after (b) correction to sRGB colour space by means of a 3×3 colour correction
matrix. Both images have a gamma of 0.45 applied (standard for the sRGB case). Note the
washed out colour in (a).

The sRGB colour space is constructed as a linear combination of the CIE XYZ colour
matching function. Similar to XYZ, sRGB is a linear space – doubling the light intensity
doubles the sRGB responses. To make a reproduction the sRGB, a fractional gamma term is
applied.

The XYZ colour space is widely used in colour sciences when the aim is to automatically
grade reproduction performance. The XYZ coordinate system underpins commonly used
perceptually colour spaces including CIELAB and CIELUV [33]. Throughout this thesis we
map camera colours to XYZ and judge colour correction performance relative to this space.
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Colour correction is never perfect. In order to achieve perfect colour correction, the
spectral sensitivities of the camera must be a linear transform from the CIE XYZ colour
matching functions, in other words the Luther conditions must hold [88]. As an example,
Figure 3.2a shows the CIE XYZ standard human observer colour matching function, while
Figure 3.2b shows the spectral sensitivities of an Nikon 5100 digital camera [89]. From these
two plots, it is clear that the spectral sensitivities from the camera are far away from those of
XYZ. Figure 3.2c shows the result of applying the best linear least square transform to the
camera spectral sensitivities in order to match the CIE XYZ curves. However, we can clearly
see that the curves in Figure 3.2c are still different than those in Figure 3.2a. This shows that
colour correction is not perfect, and thus that The Luther condition does not hold.

Different colour correction algorithms have different advantages and disadvantages, as
they were designed with different priorities in mind. Before we look into different algorithms
individually, we need to first look at how to capture the data used in colour correction
algorithm training.

There are two approaches for training colour correction algorithms: the empirical and
the synthetic approach. In the empirical approach, we regress observed camera RGBs to
previously measured target XYZs. Typically the training target is the colour checkers [87]
(as shown in Figure 3.1). This approach presents one main drawback, to achieve the best
result, each patch on the colour checker needs to receive the same amount of illumination.
There are two techniques to solve this problem. First, we could try and make the illumination
uniform. However uniform light is hard to achieve in real-life condition as well as inside a
laboratory.

The second technique, aims at measuring then discounting the variation of illumination
on the colour checker. A grey chart at the same location of the colour checker, and capturing
an image of it. Then the variation of illumination on the colour checker can be removed by
dividing the image of the colour checker by the image of the grey chart. However, it can be
difficult to place the grey chart at the exact same location as the colour checker. The empirical
approach also has another problem – the reflectance of the patches on the colour checker may
change over time. Furthermore,the grey chart and the colour checker may develop warping
over time, due to the temperature and humidity of the environment. All of these issues make
capturing data to train colour correction algorithm empirically a rather laborious and delicate
task.

In contrast, the synthetic approach for colour correction is based on the camera’s spectral
sensitivity, measured reflectance spectra, measured illuminant spectra and the mathematical
model of image formation. Rather than measuring the camera’s RGB response by taking
pictures, they are calculated using the image formation model. The image formation model
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Fig. 3.2 (a) The CIE XYZ colour matching function; (b) The spectral sensitivities for Nikon
D5100) [89]; and (c) CIE XYZ estimated from the spectral sensitivities of Nikon D5100
using linear least square transform.
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was reviewed in section 3.3. Advantageously, given measured data it is easy to create ‘images’
of many samples. This means that the problems associated with taking physical images
(e.g. varying illumination) no longer applies. Conversely, measurement of spectra takes time
and recovering camera device sensitivities is a laborious process. Of course, in terms of the
measured spectra we can use one of the many set of reflectances and illuminants that are
publicly available. However, the question of which spectral dataset should be used remains.
This is a question we address in some detail in this thesis.

3.2 The experimental dataset used in this thesis

In this thesis, we mainly use the synthetic approach for colour correction. This allows us to
generate a large amount of device specific RGBs under different illuminants conditions, and
their corresponding XYZs. To do so, we extensively use previously published datasets.

Regarding the reflectance datasets, we consider:

• Agfa ColorReference IT8.7/2 [90] – This dataset contains 288 reflectance measure-
ments in total. It is designed according the ANSI IT8.7/2 standard [91], which describes
the layout and colorimetric values of a input calibration target intended for a photo-
graphic paper / scanner combination. The standard is designed in such a way so
the calibration target can be manufactured using a colour photographic paper with
photographic medium dye.

• Natural Dataset [92] – This dataset measured by Westland et al comprises 404 measured
spectra of plants, foliage and flowers.

• 1269 Munsell colour chips [93] – This dataset contains the reflectance measurements
from 1269 colour chips from Munsell Book of Colour, Matte Edition [94]. Munsell
Book of Colour covers a wide range of colour, this leads to its wide-spread usage.

• Macbeth ColorChecker [95] – This dataset contains 24 reflectance measurements.
Macbeth ColorChecker was originally developed to facilitate quantitative and visual
evaluation processes employed in photography, television and printing.

• ColorChecker Digital SG [87] – This dataset contains 96 reflectance measurements.
ColorChecker Digital SG is an extension to the original Macbeth ColorChecker. It is a
commonly used calibration target for digital cameras and scanners.

• 120 DuPont paint chips [96] – the chips were selected from the Solid Color Selection
of the DuPoint Color Sampler. This dataset contains commonly used artificial colour.
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• 170 Objects [96] – the selected sample include various natural and man-made objects,
including rocks, plants and vegetation, human skin and hair, and fabrics.

We use the following camera spectral sensitivities dataset:

• A camera spectral sensitivity dataset consists of 28 cameras [88]

• Sony DXC-930 three chip CCD video camera [97]

• Nikon D5100 DSLR [89]

• Sigma SD1 Merill DSLR [89]

Finally we consider the following illuminant datasets:

• Illuminant series D [98], which represents various phases of daylight between 4800 K
and 10000 K. In particular, the CIE Standard Illuminant D65 is intended to represent
average daylight and has a correlated colour temperature of approximately 6500 K. It
is recommended to be used in all colorimetric calculations requiring representative
daylight [35].

• Illuminant A [99], which is intended to represent typical, domestic, tungsten-filament
lighting. Its relative spectral power distribution is that of a Planckian radiator at a
temperature of approximately 2856 K. CIE standard illuminant A is recommended for
all applications of colorimetry involving the use of incandescent lighting.

• SFU illuminant database [97], which consists of the spectra of 11 various light sources
and 82 spectra measured in and around the Simon Fraser University campus at various
times of the day, and in a variety of weather conditions.

3.3 Colour formation

Unless stated otherwise, we adopt the following convention in this thesis regarding image
formation:

• All spectra (including illuminant, reflectance, colour matching function and camera
spectral sensitivities, etc.) are sampled between 400 nm and 700 nm at a 10 nm interval.
This means that we obtain 31 discrete samples for each spectrum. For the spectra that
were originally not sampled at the wavelength and interval stated above, we perform
resampling using monotone piecewise cubic interpolation [100].
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• S is a 31×n matrix representing a set of n surface reflectance spectra. Each row of the
matrix represents the reflectivity at a certain wavelength, and each column represents a
different surface sample.

• X and R are 31×3 matrices containing the CIE XYZ colour matching function and
the device spectral sensitivities respectively;

• E is an n×n diagonal matrix, where each entry in the diagonal represents the intensity
of the illuminant at a particular wavelength.

• P and Q are 3× n matrices representing the camera responses and the CIE XYZ
tristimulus values to the entire calibration dataset.

The camera and the CIE XYZ responses to the illuminant E and reflectances S are
captured by the 3×n matrices P and Q, that can be computed by:

P = R⊺(ES) (3.1a)

Q = X⊺(ES). (3.1b)

The problem of colour correction can be considered as finding ways to map the values of
P to those of Q, i.e. finding a function f (·) such that f (P)≈ Q.

3.4 Evaluation framework for colour correction algorithms

We focus on the synthetic approach to evaluate the performance of colour correction algo-
rithms. In particular, we proceed as follows:

1. For a chosen illuminant (e.g. D65), we compute the CIE XYZ tristimulus values for
the chosen reflectance datasets.

2. The corresponding device specific RGBs for the chosen cameras is then computed.

3. We use three-fold cross-validation to select the training set and the testing set. Three-
fold cross validation was chosen because it is quite common in colour research [101–
103].

4. The chosen colour correction algorithm is trained using the training dataset.

5. We then apply the colour correction algorithm to the test dataset, converting device
specific RGBs to estimated XYZs.
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6. Both the estimated XYZs and the true XYZs are converted into CIELAB colour space.
The CIELAB ∆E∗

ab colour distance metric is then computed.

3.5 Colour correction algorithms

There are many methods for relating the device specific responses to CIE XYZ. In this
chapter, we look at the following colour correction methods:

• Linear least squares

• Polynomial regression

• Root polynomial regression

• Homography

• Angular minimisation

• Hue plane preserving

• Maximum ignorance

• Maximum ignorance with positivity

There are other colour correction algorithms, e.g. look-up tables [104] or neural net-
works [105], but they are outside the scope of this thesis.

3.5.1 Linear Least Square Colour Correction

Linear least squares colour correction (LLSCC) is the simplest and most commonly used
method for colour correction. The aim of LLSCC is to find the best 3×3 matrix M such as
the relation between the device specific RGBs and the XYZ tristimulus values can be written
as:

Q = MP . (3.2)

Therefore, we look for the 3×3 matrix M that minimises:

min
M

{∥MP−Q∥F} , (3.3)

where ∥·∥F above denotes Frobenius norm.
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The most common solution for this problem – the ordinary least-squares 3×3 regression
states that matrix M can be solved by the Moore-Penrose pseudoinverse:

M = QP⊺(PP⊺)−1. (3.4)

The matrix M can be thus understood as the one that best maps the colour values of a
particular dataset in the ordinary least-square sense. The idea of using linear regression to
establish a mapping between RGB and XYZ was first introduced by Horn [10].

The popularity of LLSCC is partly due to the fact that it is exposure invariant. Exposure
invariance is a desirable property for a colour correction algorithm that is used in a digital
camera. This is because in most practical applications involving digital cameras, the length
of exposure is uncontrollable and unpredictable, and they are expected to operate across
different lighting conditions.

Let us mathematically explain the exposure invariant property of LLSCC. Suppose that
matrix M maps an RGB p to its corresponding XYZ q. Now, we double the intensity of
the light yielding a linear raw RGB response of 2p. The correct colour correction here is
still M since M(2p) = 2q. With some exceptions (e.g. [106, 107]), most non-linear colour
corrections are not exposure invariant.

Another factor for the popularity of LLSCC is that linear colour correction is easy to
implement. After training the colour correction matrix, the colour correction step itself is a
simple 3×3 matrix multiplication. Moreover, the conversion from XYZ to the sRGB colour
space (the output space of most cameras) is modelled as a 3×3 matrix multiplication plus a
non-linear gamma correction. For this reason, quite often, the colour correction matrix and
the XYZ-to-sRGB conversion matrix are multiplied together to form a single 3×3 matrix, in
order to reduce the number of computational steps required. In summary, LLSCC provides
reasonable performance under most conditions.

3.5.2 Polynomial Colour Correction

In order to reduce the colour reproduction error obtained by LLSCC, one can use polynomial
colour correction (PCC). In PCC, polynomial regression is used to find the colour correction
matrix, rather than ordinary least square regression. Practically, this is achieved by adding
extra rows containing polynomial terms in the minimisation equation shown for LLSCC (P
of Equation 3.2). By doing this, we obtain the following equation:

min
M

{∥M̃P̃−Q∥F} , (3.5)
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where M̃ is the polynomial colour correction matrix, P̃ is the device response matrix with
rows of polynomial terms added.

The explicit solution for Equation 3.5 using the Moore-Penrose pseudoinverse is:

M = QP⊺(PP⊺)−1. (3.6)

Let us denote the polynomial terms using ρρρk,n, where k is the polynomial order, and n is
the number of channels on the imaging sensor. The 2nd, 3rd and 4th polynomial terms of an
imaging sensor with 3 channels are:

ρρρ2,3 : (r,g,b,r2,g2,b2,rg,rb,gb)⊺

ρρρ3,3 : (r,g,b,r2,g2,b2,rg,rb,gb

r3,r2g,r2b,rg2,rgb,rb2,g3,g2b,gb2,b3)⊺

ρρρ4,3 : (r,g,b,r2,g2,b2,rg,rb,

r3,r2g,r2b,rg2,rgb,rb2,g3,g2b,gb2,b3,

b4,gb3,g2b2,g3b,g4,rb3,rgb2,rg2b,rg3,r2b2,r2gb,r2g2,r3b,r3g,r4)⊺

(3.7)

Therefore matrices M̃ and P̃ respectively have dimension 3× t and t × n, where t =
9,19,37 for orders 2, 3, and 4.

Formally, the setup of Kth degree polynomial terms in N variables is defined as:

ρρρk,n = {
n

∏
i=1

ρ
αi:∑ai≤k}, (3.8)

It can be shown that the number of polynomial terms up to kth degree is
(n+k−1

k

)
.

Polynomial terms beyond 4th degree can be enumerated, however they are not often
used. This is because the issue of overfitting. Overfitting happens when the resulting model
contains more parameters than those that are justifiable by the training data.

An overfitted colour correction matrix has a really low CIELAB ∆E error when applied
to the training dataset. However, the error is very large when applied to a testing dataset.
Additionally, when an overfitted colour correction matrix is applied to a RAW image, the
noise from the raw image is amplified, which results in unpleasant artefacts in the colour
corrected image.

Overfitting can be avoided by using regularisation techniques. A commonly used regu-
larisation technique is the Tikhonov regularisation. Here, a regularisation term ∥ΓΓΓM̃∥F is
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incorporated into the minimisation equation(Equation 3.5). In this way we obtain:

min
M

{∥M̃P̃−Q∥F +∥ΓΓΓM̃∥F} , (3.9)

where ΓΓΓ is denoted as the Tikhonov matrix.
Tikhonov matrix is typically chosen as a multiple of the identity matrix, i.e. ΓΓΓ = αI,

where α is a positive scalar (typically a small number). As we increase α the magnitude
of the fitting matrix is significant if it has large values. Put another way, the penalty term
encourages the fitting matrix to have bounded norm. Bounded-norm fits are more likely to
generalise to unseen data.

The optimal α can be chosen by search (where the user seeks to trade off the fitting error
and the magnitude of the recovered fitting matrix). Tikhonov regularisation is also known as
L2 regularisation.

The explicit solution for Equation 3.9 using Moore-Penrose pseudoinverse is:

M̃ = QP̃⊺
(P̃P̃⊺

+ΓΓΓΓΓΓ
⊺)−1. (3.10)

PCC is not exposure invariant. It is therefore not practical to use it in digital cameras
for photography. This is because digital cameras are expected to operate in environment
with varied brightness. PCC can be used in conditions where imaging conditions can be
controlled, e.g. document and photo scanners.

3.5.3 Root-Polynomial Colour Correction

Root polynomial colour correction (RPCC) [106] was proposed to provide better performance
than LLSCC, while at the same time preserving the important property of exposure invariance.
This is achieved by adding rows with root-polynomial terms into P in Equation 3.2, instead
of polynomial terms.

Let us denote the root-polynomial terms using ρ̄ρρk,n, where k is the order of the root-
polynomial, and n is the number of channels on the imaging sensor. The 2nd, 3rd and 4th
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root-polynomial terms of an imaging sensor with 3 channels are:

ρ̄ρρ2,3 : (r,g,b,
√

rg,
√

gb,
√

rb)⊺

ρ̄ρρ3,3 : (r,g,b,
√

rg,
√

gb,
√

rb,
3
√

rg2, 3
√

gb2,
3√

rb2, 3
√

gr2, 3
√

bg2,
3√

br2, 3
√

rgb)⊺

ρ̄ρρ4,3 : (r,g,b,
√

rg,
√

gb,
√

rb,
3
√

rg2, 3
√

gb2,
3√

rb2, 3
√

gr2, 3
√

bg2,
3√

br2, 3
√

rgb
4
√

r3g,
4√

r3b, 4
√

g3r, 4
√

g3b,
4√

b3r, 4
√

b3g,
4
√

r2gb, 4
√

g2rb, 4
√

b2rg)⊺

(3.11)

Similar to PCC, the higher order root-polynomial terms can be derived, although they
are not used often due to the the overfitting problem. However, RPCC is less susceptible to
overfitting compared to PCC. This is because for each root-polynomial order, there are fewer
parameters.

In terms of CIELAB error, RPCC performs better than LLSCC, but worse than PCC.
However it should be noted that there are fewer variable terms in RPCC compared to PCC,
i.e. the number of root-polynomial terms in RPCC is fewer than the number of polynomial
terms in PCC. RPCC tends to produce less noisy images as it is less susceptible to overfitting.
The most important advantage of RPCC over PCC is that RPCC is exposure invariant, similar
to LLSCC. This provides the advantage that a brightness change in the imaging environment
does not result in hue shifts for the colour corrected image. This means that RPCC is suitable
for used in digital cameras.

3.5.4 Hue Plane Preserving Colour Correction

A hue plane is a geometrical half-plane defined by the neutral axis and a chromatic colour.
In this way, hue planes can be used for separating the colour space into different regions,
each of them having similar colour properties. In particular, in hue plane preserving colour
correction, the colour spaces are divided in sub-regions delimited by two hue planes. In
order to map RGBs to XYZs, a 3× 3 matrix is learned and applied in each subregion
separately [107]. These matrices can also be constrained to preserve the whitepoint. The sub-
regions can also be flexibly chosen in number and position to regularise and optimise results,
while constraining continuity across hue planes. Hue plane preserving colour correction
provide significantly higher colorimetric accuracy compared to linear colour correction,
while maintaining exposure invariance. Its performance is comparable to root-polynomial
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colour correction. This disadvantage is that this algorithm is formulated in a mathematically
more complex way.

3.5.5 Colour Correction by Angular Minimisation

As discussed in section 3.1, most colour correction algorithms are sensitive to the brightness
difference within the training RGBs and XYZs. In Colour Correction by Angular Minimi-
sation (CCAM), RGB and XYZ triplets are treated as two sets of vectors. The angular
differences between these two sets of vectors are minimised [108]. The magnitude of these
two sets of vectors are ignored during the optimisation. This means that colour correction by
angular minimisation is resistant to brightness difference within the training dataset.

CCAM finds a 3×3 linear transform M which map RGB to XYZ. Considering a set of
device specific RGBs {p}N

i=1, and their corresponding XYZ tristimulus values {q}N
i=1, the

formulation for the minimisation is the following:

N

∑
i=1

cos−1
(

Mpi ·qi

|Mpi||qi|

)
, (3.12)

where ‘ · ’ denotes the vector dot-product. This algorithm is based on the idea of dot-
product vectors – the dot-product of two vectors divide by the product of their magnitudes
equals to the cosine of the angle between them. Since the vector magnitudes are ignored in
the minimisation, the magnitude of M can be arbitrarily small or large. In order to not alter
the overage image brightness, M is rescaled so that the sum of all its elements equals 3 in
sRGB space.

3.5.6 Homography Colour Correction

In mathematics, a homography is a mapping between two projective spaces. In computer
vision, homography is typically used in tasks such as image registration and stereo vision.
This is because if there are two images of the same object taken at different perspectives
and/or with different cameras, they are related to each other via a homography transform. In
homography colour correction (HMCC) [109], the transformation between RGB and XYZ is
treated as a problem involving the mapping of chromaticities in homogeneous coordinates,
which is then solved using homography.

As in the previous cases, HMCC assumes Lambertian image formation. The relationship
between device specific RGB and XYZ tristimulus values is written as the following:

DPH ≈ Q , (3.13)
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where D is an n×n diagonal matrix of scalar shading factor, and H is a 3×3 homography
colour correction matrix. If both D and H are applied to P, then this is called shading
homography.

Equation 3.13 is solved using alternating least squares algorithm [110, 109]. This
algorithm iterates between optimising for shading difference and for chromaticity difference
for a final output. The colour correction matrix generated by homography colour correction is
exposure invariant. A uniform lighting field is also not required during the capture of training
data as the variation is captured by the matrix D. This method discards less information
during the training phase, compared to colour correction by angular minimisation.

3.5.7 Maximum Ignorance Colour Correction

The maximum ignorance colour correction (MICC) is an approach which operates without
an explicit calibration data set. Instead, the transform used for colour correction is defined
to be the mapping which best takes the device response functions onto the XYZ matching
curves. The statistical assumption made here is that all possible spectra, with both positive
and negative power at each wavelength, all occur with equal likelihood. This approach can be
justified, as [10, 111] have shown, in that perfect colour correction for any colour stimulus is
possible if and only if the device sensitivities are a linear transform from the colour matching
functions. The maximum ignorance assumption is useful in practice, as the CIELAB ∆E∗

ab

for this method can be as low as 4. However, the statistical assumption made here is of course
flawed, since spectra with negative power cannot physically exist.

In section 3.3, we presented the equation for the formation of device specific RGB
responses, and CIE XYZ tristimulus responses. By defining the colour signal as C = ES, we
have:

P = R⊺C (3.14a)

Q = X⊺C . (3.14b)

We showed that linear least square colour correction uses a 3×3 matrix M to transform
device specific RGB to CIE XYZ:

Q = MP . (3.15)

We also showed the ordinary least square solution for this problem is:

M = QP⊺(PP⊺)−1 . (3.16)
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By substituting Equation 3.14 into Equation 3.16, we obtain:

M = X⊺CC⊺R(R⊺CC⊺R)−1 . (3.17)

This shows that the knowledge of the colour signal is required for calculating the camera
sensor response, which is needed for calculating the colour correction matrix.

The aim of MICC is to compute the best linear correction matrix, when the information
about the colour signal is unavailable. We assume no knowledge of the surface reflectance
of the scene, or the spectral curve of the illuminant. The only required information is the
sensor response curve for the imaging device. We make the assumption that the colour signal
is a random variable following uniform distribution with values between [−1,1]. This means
that the vector c in Equation 2.6 is filled with uniformly distributed random values drawn
between [−1,1] [112].

Rather than computing the CC⊺ multiplication using data, we can compute the expectation
of CC⊺, denoted as E(CC⊺). Matrix CC⊺ contains the variance and covariance for the colour
signal readings at difference frequencies. It has the following structure:

E(c2
1) E(c1c2) . . . E(c1c31)

E(c2c1) E(c2
2) . . . E(c2c31)

...
... . . .

E(c31c1) E(c31c2) . . . E(c2
31)

 , (3.18)

where ci is the i-th row of C. The major-diagonal entries of Equation 3.18 contain the
variance of ci. We can calculate their numerical values by using the following approach:
let a be a continuous random variable, the variance of that variable can be calculated using
integration:

∫ 1

−1
a ·a da∫ 1

−1
a2 da

=

[
a3

3

]1

−1

=
2
3

(3.19)

The off-diagonal entries of Equation 3.18 contains the covariance between ci and c j. This
covariance can also be computed by integration: let a and b be two unrelated continuous
random variables representing the colour signal, the covariance between a and b can be
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calculated as: ∫ 1

−1

∫ 1

−1
ab da db

=

[[
a2b2

4

]1

−1

]1

−1

=

[
b2

4

]1

−1

= 0

(3.20)

By substituting the results from Equation 3.19 and Equation 3.20 into Equation 3.18,
we obtain a 31×31 identity matrix multiplied by 2

3 . By ignoring the scaling factor, we can
replace the raw cross product matrix CC⊺ in Equation 3.17 with a 31×31 identity matrix.
Equation 3.17 becomes:

M = X⊺R(R⊺R)−1. (3.21)

Therefore, the problem of maximum ignorance colour correction effectively becomes
linear regression problem between the camera’s spectral sensitivity curve and the CIE XYZ
colour matching function.

3.5.8 Maximum Ignorance with Positivity Colour Correction

Maximum ignorance with positivity colour correction (MIPCC) is similar to MICC, in the
sense that it does not require an explicit calibration data set. The major difference for this
method is that the colour signal is assumed to be strictly positive and equally likely [112].
MIPCC improves on the conventional MICC zero-calibration method by providing a better
statistical assumption, as negative spectral power does not make physical sense. Practically
MIPCC provides a substantially improved colour correction performance.

MIPCC is achieved by computing a different expected colour signal autocorrelation
matrix (E(CC⊺)). We make the assumption that the colour signal is a random variable
following uniform distribution with values between [0,1].

The major-diagonal entries of E(CC⊺) contain the variance of ci, and can be computed as
follows: Let a be a continuous random variable, the variance of variable a can be calculated
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using integration:

∫ 1

0
a ·a da∫ 1

0
a2 da

=

[
a3

3

]1

0

=
1
3

(3.22)

Also as before, the off-diagonal entries E(CC⊺) contains the covariance between ci and
c j and can be compued as follows: Let a and b be two unrelated continuous random variables,
the covariance between a and b can be calculated using integration:

∫ 1

0

∫ 1

0
ab da db

=

[[
a2b2

4

]1

0

]1

0

=

[
b2

4

]1

0

=
1
4

(3.23)

The resulting E(CC⊺) has the following structure:
1
3

1
4 . . . 1

4
1
4

1
3 . . . 1

4
...

... . . .
1
4

1
4 . . . 1

3

 , (3.24)

We will revisit the idea of finding the expectation of an autocorrelation in Chapter 5.

3.6 Experiment

In this chapter, we performed a colour correction experiment using spectral data and camera
responses measured ourselves, to demonstrate the performance of the colour correction
algorithms described. We took reflectance spectra measurements from a SG140 colour
checker, under a D65 illuminant, using a Photo Research PR-670 spectroradiometer. The
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colour checker was then photographed using a Nikon D5100 camera. In this particular
colour correction experiment, we decided to use empirically measured camera responses
rather than synthetically generate camera responses. This provides us with real-world
performance metrics, which acts as a sanity check for the later chapter, in which we use
synthetically generated camera responses for studying colour correction algorithms. The
colour correction experiments itself was performed using three-fold cross-validation. The
results of the experiment are shown in Table 3.1.

Table 3.1 CIELAB ∆E∗
ab for Colour Correction Algorithms Described in this Chapter

Method Mean Median 95% Max

Linear least squares 2.93 2.09 8.31 26.99
Second order polynomial 2.34 1.71 7.10 10.36
Third order polynomial 1.77 1.43 4.07 6.30
Second order root-polynomial 2.05 1.72 4.45 6.42
Third order root-polynomial 2.66 1.34 6.65 6.18
Homography 2.71 2.23 6.15 15.82
Hue plane preserving 2.09 1.61 5.29 13.44
Angular minimisation 2.80 2.07 6.66 15.74
Maximum ignorance 5.32 4.46 12.22 13.61
Maximum ignorance with positivity 3.99 3.66 8.25 9.35

These results show that every method other than the maximum-ignorance based ap-
proaches outperforms linear least square colour correction. This is because linear least square
colour correction is the simplest, and every other algorithms were designed to improve upon
linear least square colour correction.

The algorithm with the best performance is the third order polynomial colour correction.
The second order root-polynomial colour correction performs better than second order
polynomial colour correction, while the third order polynomial colour correction performs
better that the third order root-polynomial colour correction for the mean and the 95%
measures. Therefore, root-polynomial colour correction provides comparable performance
compared to polynomial colour correction. However, it should be noted again that root-
polynomial based approaches are exposure invariant, which means that they are not affected
by changes in the scene brightness. This makes root-polynomial based approaches more
versatile than polynomial based approaches. The numerical value of the benchmark does not
tell the full story.

Homography colour correction performs slightly better than colour correction by angular
minimisation, in terms of mean CIELAB ∆E∗

ab . They both perform slightly better than linear
least square colour correction. They both have the advantage that they do not require an
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image of the grey chart, or the training colour checker to be uniformly illuminated. These
two conditions can be hard to achieve in practice.

Hue-plane preserving colour correction produces error comparable to second order root-
polynomial colour correction. However it requires a lot of parameters, as the colour space is
divided based on hue planes, and a linear least square colour correction matrix is produced
for each hue plane.

Maximum ignorance-based colour correction methods produce higher CIELAB ∆E∗
ab

than other methods. This is because they assume no prior information about the colour signal.
However, their performance is more consistent across datasets.

3.7 Conclusion

In this chapter, we looked at how experimental data for colour correction can be captured,
and we briefly introduced the experimental data used in this thesis. We then discussed a few
commonly used colour correction algorithms. In the next chapter, we will perform colour
correction experiments using different reflectance datasets, and study their differences.





Chapter 4

Measuring the differences between
reflectance datasets

4.1 Introduction

The performance of colour correction of a digital imaging device depends on two factors –
the algorithm used and the dataset used for training the algorithm. In the previous chapter
(Chapter 3), we introduced the datasets used in this thesis, we then reviewed various colour
correction algorithms. We performed colour correction experiment using spectral data and
camera responses measured ourselves. In this chapter, we look at the various reflectance data
introduced by other authors.

Reflectance datasets are heavily used in colour science research. In the context of colour
correction, reflectance datasets are used to train colour correction algorithms, typically
resulting in colour correction matrices. The training reflectance dataset does have an impact
on the resulting colour correction matrix. For this reason, it is widely accepted that the
performance of a colour correction matrix is best when the reflectance of the scene matches
with the training dataset, but it may suffer more errors when this is not the case.

Perhaps the most commonly used reflectance dataset is the combined SFU reflectance
dataset, which contains 1995 reflectance spectra by Barnard et al. [97]. The SFU reflectance
dataset itself is a combination of multiple reflectance datasets, including 1269 Munsell colour
chips [94], 120 Dupont paint chips [96], 170 natural objects [96], 350 reflectances from
natural formations [113], and 57 additional surfaces measured by Barnard et al. themselves.
However, the composition of this reflectance dataset is fairly arbitrary as Barnard et al. did
not provide a justification for the choice of the reflectance dataset they included.
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In this chapter, we investigate the differences between various reflectance datasets and
how these differences affect colour correction. In more detail, we attempt to answer the
following question: Given two reflectance datasets, how applicable the colour correction
algorithm trained under one reflectance dataset is, to a scene consisting of reflectances from
the other dataset? In other words, we look into the impact of reflectance dataset choices on
the performance of colour correction algorithms.

For the list of the dataset we used, please refer to section 3.2. We also purposefully
excluded the SFU combined reflectance dataset [97]. This is because the SFU reflectance
dataset is a combination of multiple reflectance datasets, including the datasets listed above.

We study the relationship between reflectance datasets using different criteria, including:
chromaticity distribution, colour solids formed by the reflectance dataset, the linear model
basis for the reflectance dataset, and the performance of the colour correction matrices trained.
Finally, we look into whether any of the metrics we explored has impacts on colour correction
performances.

The conclusion we will take from this section is that the problem of finding a proper
training dataset is far from being solved, and that none of the proposed metrics can really tell
us about the ability of a dataset to be used as a training dataset. Also, we will see that there
exists an exception: training datasets that present high regression residuals seem to be better
for testing.

4.2 Chromaticity of the reflectance dataset under D65 illu-
mination

We start our analysis on the reflectance datasets by qualitatively looking at the colours pro-
duced by them. More specifically, we achieve this by looking at the chromaticity distributions
of the colours they produce.

We computed the chromaticities of the colours under D65 illumination in CIE 1976
Uniform Chromaticity Scale (CIE1976 UCS) [114, 115]. We chose the D65 illuminant, as
it is one of the most commonly used illuminants in colour science studies. The CIE1976
UCS space was selected because colours are distributed more or less uniformly in this
space. Specifically, the Euclidean distance between two colour points in this scale roughly
corresponds to the perceptual difference between the two colours.

As stated in section section 3.3, each of the reflectance datasets is in the form of a 31×n
matrix, where n is the number of reflectance spectra. Each reflectance spectrum in the dataset
is sampled from 400 nm to 700 nm at 10 nm interval, with 31 samples in total.
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We first compute the CIE XYZ tristimulus values for all reflectances in each of the
reflectance datasets under D65 illumination, using the following equation:

Q = X⊺ES, (4.1)

where X is a 31×3 matrix containing CIE XYZ colour matching functions, E is a 31×31
matrix containing the illuminant in the diagonal, and S is a 31×n matrix containing a set of
n surface reflectance spectra.

The dimension of Q is therefore 3×n. The rows of Q contain the X, Y and Z tristimulus
values respectively. We then calculate the u′,v′ chromaticity values for each of tristimulus
values. The u′,v′ values are obtained using the following formulae:

u′ =
4X

X +15Y +3Z
(4.2a)

v′ =
9Y

X +15Y +3Z
(4.2b)

We finally compute the mean u′,v′ chromaticities of the reflectance samples under D65
illumination for each reflectance dataset. These results are shown in Table 4.1. We can
see in this Table that the mean u′,v′ values for each reflectance dataset are quite close to
the D65 whitepoint. This means that these reflectance datasets conform to the grey world
assumption [63]. For reflectance datasets that were created for covering a large gamut or for
camera calibration (e.g. AGFA, Munsell, Macbeth and SG140), this is certainly a design
choice. For reflectance datasets that sample real-world objects, this could be a confirmation
of the grey world assumption, i.e. the average reflectance in the world is grey.

Table 4.1 The mean u’, v’ chromaticity values for various reflectance datasets

u’ v’
AGFA 0.2050 0.4662
Natural 0.2287 0.4923
Munsell 0.2052 0.4712
SG140 0.2212 0.4767
Macbeth 0.2215 0.4648
Dupont 0.2338 0.4909
Object 0.2232 0.4935
D65 Whitepoint 0.1977 0.4685
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Let us now dive deeper on the analysis of the u′,v′ chromaticities. In Figure 4.1 we
plotted the u′,v′ chromaticity of each reflectance sample for four different datasets (Munsell,
SG140, Dupont and Natural). In this figure, in addition to calculating the chromaticity of
each reflectance sample, we also computed its sRGB value. We coloured each point in the
plots using its associated sRGB value. It should be noted the colour for each point is for
illustrative purpose only, and we cannot guarantee the accurate colour reproduction in both
digital and printed format of this thesis.

We can see in this figure that the distribution of colours is different among the reflectance
datasets. The chromaticity plot for the Munsell dataset shows that Munsell colour chips
densely cover a relatively small colour space in a relatively uniform fashion. The chromaticity
plot for SG140 shows that while this dataset covers a larger colour space, the sampling is
more sparse and less uniform.

The u′,v′ chromaticity plot for Dupont dataset shows that this dataset is lacking in
magenta coloured samples, while Natural dataset is lacking in samples that are deeply blue
or deeply red. Natural dataset represents reflectances found in the nature, and for this reason
it shows a dense sampling around the green/yellow and brown regions.

From these four examples, it is clear that there are important differences in the contents
of the reflectance datasets, both in terms of the samples they contain, and in terms of their
sampling density. In the next section, we will explore these differences further.
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(a) (b)

(c) (d)

Fig. 4.1 UV chromaticity plot for (a) Munsell, (b) SG140, (c) Dupont, (d) Natural

4.3 Colour solid of the reflectance dataset under D65 illu-
mination

In the previous section, we qualitatively looked at what reflectances are inside each dataset.
In this section, we present a numeric metric for measuring the differences between reflectance
datasets.

We start by treating the XYZ values for a reflectance dataset as points in 3D space, and
we then calculate the convex hull for these points. We refer to the resulting construct as a
colour solid. Formally, the convex hull Conv(X) for a set of points X is the smallest convex
set that contains X. In a convex set, any line segment

−→
AB that joins any two arbitrary point

A,B lines completely within the convex set itself. In 2D, a convex hull can be visualised as
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the shape enclosed by a rubber band around the point set X. An illustration of a convex hull
in 2D is shown in Figure 4.2.

A

B

Fig. 4.2 A set of points in 2D, with their convex hull. The convex hull is the red line
surrounding the points. The line

−→
AB lies completely within the space enclosed by the red

lines.

Let us note that by combining colours produced by the reflectance dataset, it is possible
to generate colours that are within the convex hull which are not already produced by the
reflectance dataset. This is because of the concept of additive colour mixing. This can
be demonstrated by arranging tiles of colours in a mosaic pattern. When the observer is
sufficiently far away from the mosaic pattern, due to the limited spatial resolution of the
imaging sensor, it becomes impossible to distinguish individual tiles on the mosaic. This
results in colour mixing. This is illustrated in Figure 4.3.

Fig. 4.3 When the observer is sufficiently away from a mosaic pattern, it becomes impossible
to distinguish the individual tiles. This results in colour mixing.

For each reflectance dataset, we construct its colour solid (the convex hull). They
are generated by applying the Quickhull algorithm on the XYZ values produced by each
reflectance dataset [116]. As an example, Figure 4.4 shows the colour solid for Munsell
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dataset from 4 different perspectives. The surface of the colour solid is coloured based on the
vertices of the convex hull. The individual dots within the colour solid represent individual
reflectance spectrum. We will return to the idea of convex closure in the next chapter.

Fig. 4.4 The colour solid for Munsell reflectance dataset viewed from four different perspec-
tives.

Once the colour solids are computed, we can perform pairwise comparisons to investigate
how well one colour solid can be used to represent another colour solid. We devised a metric
which we refer to as the commonality ratio.

4.3.1 Commonality ratio of the colour solid

Let us assume that we have two reflectance datasets – we train our colour correction algorithm
on the training dataset, then apply the trained colour correction algorithm to the test dataset.
How well will the trained colour correction algorithm perform in this scenario? In other
words, how suitable is the training dataset for targetting this particular test dataset?
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To answer these two questions, we need to revisit how colour correction works. In the
simplest form of colour correction – linear least square colour correction, we train a 3×3
matrix by performing linear regression between device specific RGB values from the camera
and their corresponding CIE XYZ tristimulus values. When the colour correction matrix is
applied to new input RGBs, the residuals associated with the estimated XYZs are the smallest
when the input RGBs are close to the RGBs within the training dataset.

In this subsection, we propose a quantitative metric which measures the suitability of a
training reflectance set for a particular test reflectance dataset, by comparing their associated
colour solids. We achieve this by calculating the ratio of the volume of intersection between
the training and testing colour solids, and the volume testing colour solid. We refer to our
metric as the commonality ratio.

The commonality ratio, C can therefore be expressed using the following formula:

C(T,V ) =
T ∩V

V
, (4.3)

where T is the volume of the training colour solid, and V is the volume of the testing colour
solid.

In short, our metric answers the question of how much the testing colour solid is within
the training colour solid. By construction, if the training colour solid and the testing colour
solids are identical, i.e. they occupy the same volume, the commonality ratio is 1. If there is
no intersection between the two colour solid, then the ratio is 0. The commonality ratio is
higher when a larger proportion testing colour solid resides within the training colour solid.

Figure 4.5 illustrates the ideas behind commonality ratio. It shows the colour solids of
Natural and Dupont datasets drawn in the space, so they are intersecting, using two different
perspectives. In Figure 4.5a and Figure 4.5c, the colour solid for Natural is coloured in red,
while the colour solid for Dupont is coloured in blue. In Figure 4.5b and Figure 4.5d, we
coloured the faces of both colour solids in semi-transparent light grey, leaving the wireframe
of Natural as red, and the wireframe of Dupont as Blue. The intersecting volume between
Natural and Dupont is coloured in green.
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(a) (b)

(c) (d)

Fig. 4.5 The colour solids of Natural and Dupont drawn in the same space, so they are
intersecting. (a) (b) and (c) (d) show the two colour solids in two different perspectives. In
(a) and (c), Natural’s colour solid is coloured in red, while Dupont’s colour solid is coloured
in blue. In (b) and (d), both Natural and Dupont’s colour solids are coloured in transparent
light grey, while their intersecting volume is coloured in green.

The commonality ratio is an asymmetric measure. The commonality ratio of Natural
dataset to Dupont dataset is the volume of the green solid divided by the volume of the red
solid, while for the Dupont dataset to Natural dataset, it is the volume of the green solid
divided by the volume of the blue solid.

The commonality ratios between any two pairs of reflectance datasets were computed
and they are presented in Table 4.2.
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A case to remark is the SG140-Macbeth pair. The ratio of SG140 to Macbeth is 1.000,
and for Macbeth to SG140 is 0.594. This is because Macbeth dataset is a strict subset of the
SG140 dataset.

Munsell reflectance dataset achieves high average commonality ratio across all reflectance
dataset. This is partially because Munsell dataset is the largest, and it covers the widest range.
Conversely, when the Natural dataset is used as the training dataset, the commonality ratio
tends to be lower. This may be potentially caused by the fact that the reflectances in the
Natural dataset are restricted to samples collected from the nature, such as flower and leaves,
while artificial paint and coloured chips are included in the other datasets.

Across the whole result table, the lowest commonality ratio (0.338) occurred when the
training dataset is Natural, and when the testing dataset is Dupont. This is unsurprising, as
the Dupont dataset consists of artificially coloured tiles, which do not exist in the Natural
dataset. Furthermore, the Dupont dataset contain some pure red colours, which do not exist
in the Natural dataset. This can be seen by looking at the UV chromaticity plots for Dupont
and Natural in Figure 4.1c and Figure 4.1d respectively.

Other than the SG140-Macbeth pair, the highest commonality ratio (0.950) occurs
between Munsell and Agfa. This is to be expected, as both datasets consists of colour
resulted from artificial dyes, and they were both designed to cover a large range of colours.

Table 4.2 The commonality ratio between pairs of reflectance datasets

Testing
Training AGFA Natural Munsell SG140 Macbeth Dupont Object
AGFA 1.000 0.616 0.417 0.512 0.607 0.408 0.541
Natural 0.633 1.000 0.379 0.450 0.490 0.338 0.451
Munsell 0.950 0.839 1.000 0.830 0.846 0.794 0.861
SG140 0.793 0.677 0.564 1.000 1.000 0.622 0.725
Macbeth 0.558 0.439 0.342 0.594 1.000 0.419 0.527
Dupont 0.723 0.582 0.618 0.712 0.807 1.000 0.701
Object 0.703 0.570 0.492 0.608 0.744 0.514 1.000

4.4 Analysing the basis vectors for the reflectance dataset

In the previous section, we introduced the concept of colour solids. We measured the
differences of the colour solids using commonality ratio, which measures the volumetric
differences between them. In this section, we perform an analysis on the reflectance spectra
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themselves, by comparing the basis vectors associated with the reflectance spectra of each
dataset.

This section is organised as follows: we start by discussing how the basis vectors and the
coefficient matrix are obtained. We then adapt the concept of the Vora values [117] to use
it for comparing reflectance datasets, and we finally discuss the variance of the reflectance
dataset that can be captured by the first few basis vectors.

Let us first revisit how reflectance spectra and reflectance datasets are represented. A
single reflectance spectrum can be represented by a 31×1 column vector s. A reflectance
dataset is constructed by concatenating n reflectance spectrum vectors horizontally, resulting
a single 31×n matrix, that we denote as S.

We can represent S as a linear combination of bases and coefficients:

S = UK, (4.4)

where:

• U is a 31×31 orthonormal matrix containing the basis vectors, where each column of
the matrix is a basis vector;

• K is a 31×n matrix containing the coefficients. Each column contains the coefficients
associated with a single reflectance sample.

4.4.1 Obtaining the basis for the linear combination

To obtain the basis for the linear combination, we start by decomposing S using singular
value decomposition:

S = UDV⊺, (4.5)

where:

• U is a 31×31 orthonormal matrix containing the basis for the column space;

• D is a 31×n matrix with non-negative real numbers on the diagonal, these numbers
are known as the singular values;

• V is a n×n orthonormal matrix containing the basis for the row space.

Therefore, U contains the basis vectors associated with the reflectance dataset S. Each
column of U is a single orthonormal basis vector. They are also known as the principal
components. Each basis vector is associated with a singular value, which is a single element
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in the main diagonal of D. The singular value indicates the amount of variance of the dataset
that is accounted for by the basis vector. Typically, the singular values in S, and therefore
the basis vectors in U are sorted in descending order, although this depends on the exact
algorithm or implementation used for decomposition.

We can reconstruct S with a high degree of accuracy without using all of the available
bases. It is sufficient to use bases that are associated with large singular values, as they
capture large amounts of variance. Typically, only 3 to 6 basis vectors are sufficient for
reconstructing S to an acceptable degree of accuracy, as they are able to capture adequate
amount of variance from S [118]. However, to achieve perfect reconstruction, every basis
vector in U is required.

Typically the basis vectors that account for the most variance are chosen. Representing
a dataset without using all of the available basis vectors is a form of dimensionality reduc-
tion [119]. Assuming that the basis vectors in U are sorted in a descending order based on
the amount of variance they capture, typically only the first few vectors in U are chosen to
form the basis matrix, which we denote using Ũ.

4.4.2 The Reflectance Vora Values between datasets

In this subsection, we measure the difference between the bases of the reflectance datasets
using the Vora value [117].

The Vora value is a metric originally designed to measure how well a camera sensor set
measures colour and is related to the method of principal angles. It measures the principal
angles between the two sub-spaces spanned by the camera spectral sensitivity functions
and the colour matching functions. For a conventional set of camera spectral sensitivities
comprising 3 filters, the sub-space spanned by these three spectra is three dimensional. The
same can be said about the sub-space spanned by the colour matching functions. Hence, we
have three, in general non-zero, angles (called principal or canonical angles) that minimise
the ‘gap’ between the two sub-spaces. Vora value is the sum of squared cosines of the three
principal angles normalised by the number of the principal angles (here 3). The value tends
to 1 for colorimetric sets of sensors; and conversely, tends to 0 for sets of sensors which
are poor from the point of view of colour measurement. An imaging sensor set with a Vora
value of 1 is a perfect colorimeter i.e. it measures colour equally well as the colour matching
functions do. Practically, the colour reproduction errors arising from an imaging sensor with
a Vora value of 0.9 are perceptually tolerable [120].
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The formula for Vora value V (X,R) is defined as:

V (X,R) =
Tr(XX+RR+)

α
, (4.6)

where X is the matrix containing the colour matching functions, and R is the matrix containing
the camera spectral sensitivity functions, and α is the rank of X [121]. Tr(•) represents the
trace of a matrix, which is a sum of the elements on the main diagonal of a matrix.

Equation 4.6 can be rewritten as:

V (N,O) =
Tr(NNTOOT)

α
, (4.7)

where N and O are the matrices containing the orthonormal basis of the colour match-
ing functions and the camera spectral sensitivities respectively (the pseudo inverse of an
orthonormal matrix is the matrix transpose).

Here, we adapted the Vora value formula for measuring the difference between the bases
of reflectance datasets. We refer to our metric as the Reflectance Vora Value. We substitute
N and O for the orthonormal bases of the two reflectance datasets. We denote the basis of
one of the reflectance datasets as Ũ1, and the basis of the other reflectance dataset as Ũ2. The
formula for reflectance Vora value between two reflectance datasets, Vref(Ũ1, Ũ2) is defined
as:

Vref(Ũ1, Ũ2) =
Tr(Ũ1ŨT

1 Ũ2ŨT
2 )

β
, (4.8)

where β is the rank of Ũ1 and Ũ2. We are assuming that Ũ1 and Ũ2 have the same rank. The
rank of Ũ1 or Ũ2 is also known as the dimension of the basis.

We also expect V (Ũ1, Ũ2) =V (Ũ2, Ũ1), due to the mathematical property of Tr(AB) =
Tr(BA). This means given that Ũ1 is generated from reflectance dataset S1 and Ũ2 is
generated from reflectance dataset S2, based on our metric, reconstructing S1 using Ũ2 has
the same accuracy as reconstructing S2 using Ũ1.

For each pair of the reflectance datasets, we computed its Reflectance Vora value for the
bases of the dimensionality ranging from 3 to 31. We computed the mean Vora values of
all pairs, and plotted them in Figure 4.6. The reason we chose to start from 3 dimensions is
because previous research had suggested that the minimum number of dimensions required
to reproduce a reflectance dataset to an acceptable degree of accuracy is 3 [122, 118, 123,
124, 96].
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Fig. 4.6 A line plot showing the mean reflectance Vora value across all datasets against the
dimension of the basis, for dimensions 3 to 31.

Figure 4.6 shows that the mean Vora value between reflectance dataset is above 0.95
for three dimensional basis. It rapidly drops to below 0.85, for six dimensional basis. This
happens due to "underfitting" when the number of dimensions is below 6. The reconstructed
reflectances lack details, so they look very similar across different datasets. The mean Vora
value gradually climbs up to just below 0.90 when the number of dimensions reaches 9, and it
plateaus until the number of dimensions is 24. This suggests that the Reflectance Vora values
calculated for 9-24 dimensions are a fair representation of the similarity between reflectance
datasets. From 24 to 31 dimensional basis, the mean Vora value gradually increases to 1.
This happens due to "overfitting". With the addition of basis of low importance, it becomes
easier to reconstruct one reflectance dataset using the basis from another reflectance dataset.

In, Table 4.3, we show the reflectance Vora values for each pairs of datasets represented
with 9-dimensional basis. We have chosen 9-dimensional basis, because previous research
suggested that 9-dimensional basis are sufficient for reconstructing reflectances to a high
degree of accuracy. Additionally, Figure 4.6 shows that reflectance Vora values do not change
significantly for 9-24 dimensional basis.
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Table 4.3 The Reflectance Vora Values for each pair of the reflectance datasets with 9-
dimensional basis

.

AGFA Natural Munsell SG140 Macbeth Dupont Object
AGFA 1.000 0.859 0.913 0.919 0.939 0.902 0.897
Natural 0.859 1.000 0.808 0.809 0.812 0.786 0.875
Munsell 0.913 0.808 1.000 0.961 0.931 0.955 0.854
SG140 0.919 0.809 0.961 1.000 0.957 0.944 0.899
Macbeth 0.939 0.812 0.931 0.957 1.000 0.924 0.897
Dupont 0.902 0.786 0.955 0.944 0.924 1.000 0.857
Object 0.897 0.875 0.854 0.899 0.897 0.857 1.000

Table 4.3 shows symmetry along the diagonal – the lower triangular of the table is the
mirror of the upper triangular. This is to be expected, due to the construction of Equation 4.8.
The main diagonal of the table has values of 1 as comparing the identical bases must give a
reflectance Vora value of 1.

Table 4.3 shows a similar pattern to Table 4.2. The lowest reflectance Vora value happens
between Dupont dataset and Natural dataset. This is unsurprising, as Dupont dataset consists
of reflectance spectra from artificially coloured tiles, while the Natural dataset consists of
reflectance spectra from flowers, leaves and other colourful plants. The reflectance spectra
in these two datasets are very different which means that their bases should be also very
different.

The highest reflectance Vora value occurs between Munsell dataset and SG140 dataset.
This is probably because both datasets comprise tiles coloured by artificial dye, and SG140
dataset was designed to cover a wide range of colours. Additionally, reflectance dataset pairs
involving Munsell dataset have high reflectance Vora value in general. This is probably due
to the large size of the Munsell dataset – it has the widest range of reflectance spectrum
samples.

4.4.3 Variance of the dataset captured by the basis vectors

Individual reflectances from a dataset are reconstructed by linearly combining the basis
vectors. The accuracy of the reconstruction can be improved by using more basis vectors.
The limit to the accuracy of the reconstruction depends on the amount of variance captured
by the chosen basis vectors.

As stated above, the singular value associated with a basis vector indicates the amount
of variance that the basis vector accounts for. The percentage of variance captured by the
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ith basis vector, pi can be calculated using the singular value matrix D, using the following
formula:

pi = 100× D2
ii

∑
n
j=1 D2

j j
. (4.9)

The cumulative percentage of variance captured by the first ith basis vectors, ci can be
calculated using summing up the first pi terms:

ci = 100×
i

∑
j=1

pi =
∑

i
k=1 D2

kk

∑
n
j=1 D2

j j
. (4.10)

Our analysis focus on the first six basis vectors, as they are sufficient to reconstruct
reflectances within a dataset to a high degree of accuracy.

The result of our analysis is shown in Table 4.4. In this table, in the first 6 columns,
we show the percentage of variance captured by basis 1 to basis 6 individually. In the last
two columns, we show the percentage of variance captured by the first three basis and the
first six basis. The results show that for each reflectance dataset, more than 98.1% of the
total variance can be captured by the first three basis vectors, and more than 99.6% can be
captured by the first six basis vectors. This suggests that 3-6 basis vectors are sufficient
for reconstructing the reflectances to a high degree of accuracy. This is consistent with the
findings of [122, 118, 123, 124, 96].

Table 4.4 The percentage of variance captured by the basis vectors for each reflectance dataset

Basis
Dataset 1 2 3 4 5 6 1-3 1-6
AGFA 93.156 5.130 1.422 0.114 0.096 0.045 99.708 99.964
Natural 90.763 4.157 3.277 0.862 0.439 0.181 98.197 99.680
Munsell 92.161 5.328 2.011 0.258 0.124 0.041 99.500 99.922
SG140 86.237 9.789 3.094 0.455 0.257 0.059 99.119 99.889
Macbeth 84.372 11.075 3.657 0.491 0.209 0.073 99.105 99.877
Dupont 87.782 9.543 2.156 0.324 0.099 0.043 99.482 99.948
Object 92.857 4.643 1.638 0.351 0.227 0.129 99.137 99.844

4.5 Colour correction experiments

So far we investigated the differences between reflectance datasets by exploring their chro-
maticity distributions, the intersection of their colour solids, and the reflectance Vora value
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for the basis vectors. However, it is not clear if the differences between reflectance datasets
have any practical consequences. In this section, we answer the question if the choice of the
training reflectance dataset has impact on the performance of colour correction.

To measure the impact of the reflectance dataset choice on colour correction, we perform
a colour correction experiment using the linear least square (LSS) algorithm under D65
illumination, considering the 28 camera dataset [88] . We selected the LSS method as it is
the simplest and most popular method for colour correction.

Let us recall here the formulation of LLS. In LLS colour correction, we look for the 3×3
matrix M that minimises:

min
M

{∥MP−Q∥F} , (4.11)

where P and Q are respectively the colour values for the camera sensors and the XYZ
tristimulus values, respectively. The ∥·∥F above denotes Frobenius norm.

The most common solution for this problem – the ordinary least-squares 3×3 regression
matrix M can be solved by Moore-Penrose pseudoinverse:

M = QP⊺(PP⊺)−1. (4.12)

Therefore, the colour correction matrix M can be understood as a matrix that best maps
the the device specific RGBs captured by the camera to their corresponding CIE XYZ
tristimulues values in the ordinary least-square sense, for a particular dataset.

To perform our colour correction experiment, we repeated the following procedure for
each of the cameras considered. For each reflectance dataset we have, we trained a colour
correction matrix. We then applied the colour correction matrix to the device specific RGBs
generated from the other reflectance datasets, in order to estimate the corresponding CIE
XYZs. We then measured the colour differences between the ground truth XYZs and the
estimated XYZs using the CIE 1976 Colour Difference Formula [125] (CIELAB ∆E∗

ab ).
Finally, we calculated the mean across all sample spectra and all the different cameras.

In other words, we validate the colour correction matrices trained on one dataset by
applying them to device specific RGBs generated from the other datasets. Let us give an
example of the previous explanation. When we trained the colour correction matrices under
AGFA dataset, we tested them on Natural, Munsell, SG140, etc. Therefore, in this scenario
we investigate how applicable is a colour correction matrix learnt for a specific dataset to
other reflectance datasets.

The mean CIELAB ∆E∗
ab for this experiment are shown in Table 4.5. The datasets which

produce the highest and lowest mean CIELAB ∆E∗
ab are highlighted in the table.
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Table 4.5 The mean CIELAB ∆E for applying colour correction matrices to RGBs generated
from different reflectance datasets

Testing
AGFA Natural Munsell SG140 Macbeth Dupont Object Mean

Tr
ai

ni
ng

AGFA - 2.48 1.95 3.76 2.93 4.83 2.17 3.02
Natural 1.48 - 1.72 3.01 2.65 3.84 1.81 2.42
Munsell 1.37 2.49 - 3.54 2.96 4.62 2.20 2.87
SG140 1.40 1.91 1.71 - 2.80 3.48 1.64 2.16
Macbeth 1.38 2.14 1.79 3.23 - 4.15 1.83 2.42
Dupont 1.41 1.84 1.79 2.74 2.73 - 1.55 2.01
Object 1.36 2.17 1.94 3.18 2.75 3.87 - 2.55
Mean 1.40 2.17 1.82 3.24 2.80 4.13 1.87 -

Table 4.5 shows that the choice of the training dataset has an impact on the performance
of the resulting colour correction matrices.When colour correction matrices are trained using
a single reflectance dataset and then tested in all the other datasets, the reflectance dataset
that produces the highest mean CIELAB ∆E∗

ab is AGFA (3.02), while Dupont produced
the lowest mean (2.01). This suggests that Dupont is the best dataset for training colour
correction matrices, while AGFA is the worst.

Table 4.5 also shows that the testing dataset choice can also affect the process of evalu-
ating colour correction algorithms. When a single reflectance dataset is used to test colour
correction matrices trained by all other datasets, Dupont dataset produced the highest mean
CIELAB ∆E∗

ab (4.13), while AGFA produced the lowest CIELAB ∆E∗
ab (1.40). This suggests

that Dupont dataset is the most challenging dataset for testing colour correction matrices,
while AGFA is the least challenging.

From the previous results is interesting to note that the most challenging testing dataset
appears to be the best training dataset. This suggests that it is beneficial to incorporate
challenging reflectance samples in the process of training colour correction algorithm.

The previous conclusion made also look at a second scenario, in which we apply the
colour correction matrices to the RGBs generated from the training dataset itself. In this
scenario, we effectively measure the regression residuals of training the colour correction
matrix. The regression residuals of a variable are the differences between the estimated
values and the actual observed values. The mean regression residual of a variable is a good
indication of how varied the observations of that variable are. In this case we also use mean
CIELAB ∆E∗

ab as an indicator for how varied the reflectance spectra are within a dataset.
Table 4.6 present the results for this experiment. This table shows that the reflectance

dataset that gives the highest regression residual is the Dupont, while AGFA dataset gives the
lowest regression residual.
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Table 4.6 The mean CIELAB ∆E for applying colour correction matrices to device specific
RGBs generated from the training dataset

AGFA Natural Munsell SG140 Macbeth Dupont Object
1.09 1.70 1.45 2.86 2.57 3.13 1.74

Interestingly, comparing Tables 4.5 and 4.6 it seems that a reflectance dataset with a high
regression residual appears to perform better as a training dataset. We look further at this
relation in Figure 4.7. The y-axis of the figure has the mean CIELAB ∆E∗

ab values when
using the colour correction matrices that were trained with other reflectance datasets. The
x-axis presents the mean CIELAB ∆E∗

ab value when using the colour correction matrices that
were trained with same dataset (i.e. the regression residuals). The Pearson’s r score between
the the variables at y-axis and x-axis is -0.92, which (as we were hypothesizing) indicates a
strong negative correlation between the regression residuals of a reflectance dataset, and how
well this reflectance dataset performs as a training dataset.
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Fig. 4.7 Scatter plot showing the mean CIELAB ∆E∗
ab of applying colour correction matrices

(CCMs) on RGBs generated from different reflectance datasets and the training dataset (r =
-0.92)

4.6 The relationship between colour correction experiments
and other metrics

In this chapter, we have performed pairwise comparisons of different reflectance datasets
using various metrics. Now we look at whether there is a link between the metrics we
investigated, and the performance of colour correction experiments.

In particular, we want to investigate whether the various metrics introduced have any
correlation with the CIELAB ∆E∗

ab values obtained in the last section. To this end, we
computed the Pearson correlation coefficient (Pearson’s r) between the chosen metric and
the CIELAB ∆E∗

ab . We then visualise the relationship between using scatter plots.
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In Figure 4.8, we plotted the mean CIELAB ∆E∗
ab against the Vora value between the

training and testing reflectance dataset. We showed that the they have no correlation, as the
Pearson’s r of 0.01. Figure 4.9 shows that the ratio of the intersecting convex hull volume
has no impact on CIELAB ∆E∗

ab , with a Pearson’s r of -0.10.
The results in this section show that our proposed metrics are not useful in order to predict

the colour correction performance of a training reflectance dataset.
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Fig. 4.8 A scatter plot showing mean CIELAB ∆E∗
ab against Vora values between training

and testing reflectance datasets (r = 0.01)
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Fig. 4.9 A scatter plot showing mean CIELAB ∆E∗
ab against against the ratio of convex hull

intersection between the training and testing reflectance datasets (r =−0.10)

4.7 Conclusion

In this chapter, we started by computing chromaticities in the CIE 1976 uniform chromaticity
scale diagram for various reflectance datasets under D65 illumination. This allowed us to
perform a qualitative visual comparison of the colours in each dataset. These plots show
that the reflectance datasets are quite different from one another. We then generated colour
solids for the reflectance datasets under D65 illumination and proposed and computed the
contribution ratio for the colour solids. We then looked into the basis functions for the
reflectance datasets. From them, we proposed a modification of the Vora Value measure, in
order to deal with the comparison of reflectance datasets.

We then looked at how the Linear Least-Squares Colour Correction Method is affected
by the training dataset, and show that it exists a negative correlation between the regression
residuals of a reflectance dataset, and how well this reflectance dataset performs as a training
dataset.

As a common thread through all our results is that the choice of dataset matters. The
reflectance sets are different from one another. And, adopting any as a training set impacts on
the colour correction performance of another set (used for testing). I doubt any researchers
would have predicted that the Dupont reflectance set – which itself is the most difficult to
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colour correct – would be the one that is best for training colour correction in the sense that
the trained correction matrices generalise to other datasets.





Chapter 5

Integrating the space of reflectance
spectra

5.1 Introduction

The content of this chapter is based on a published conference paper [126].
Unsurprisingly, many colour algorithms ranging from colour correction to colour con-

stancy to spectral estimation are developed from and tuned using measured reflectance data.
Because the spectral sensitivities of the camera are different (not a linear transform) from
the human vision system sensitivities there is no way to exactly solve the colour correction
problem. Metamerism occurs as a natural consequence of the difference in spectral sensi-
tivities leads. Metamerism [127–129] is the circumstance where two spectra look different,
integrate to different RGBs for the camera, but are identical to the human observer and vice
versa. Clearly, we cannot map the same camera RGB to different sRGB colour coordinates,
so error free colour correction is impossible. Colour correction algorithms dually seek both
to fit training data and to generalise in the sense that they colour correct the RGBs for unseen
reflectances with low error.

The role of the reflectance ‘training data’ is very important. Any regression-based
algorithm (e.g. simple least-squares) is guaranteed to be optimal for the training dataset
but may be sub-optimal for other sets of reflectances, i.e. for the other colours that did not
appear in the training dataset. The performance of colour correction algorithm depends on
the training reflectance dataset. Consequently, when comparing colour algorithms, the choice
of reflectance datasets affects the resulting rankings.

In this chapter, we are going to consider the reflectance dependency problem in detail.
We will begin by making the observation that reflectances are high dimensional data points
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and if we wish to sample the world and arrive at a representative sample-set then we must
address the issue of high dimensionality.

There are a couple of important questions to consider here. First, to what extent is it
possible to decide a priori the distributions of reflectances in the world. Clearly, if we are
interested in colour with respect to a restricted environment – where not all colours naturally
appear – then it makes sense to use only a subset of all plausible colours. We will not consider
this scenario here. Indeed, we will always assume that all typical photographic scenes might
be encountered. Second, once the environment – or range of colours – is defined, the pertinent
question to ask is how many reflectances do we need to sample to represent the space of all
reflectances?

Let us consider this second question. We are going to carry out an abstract experiment
which, at least initially, will seem unrelated to the problem at hand. We ask the question:
“how many points do we need to generate – uniformly and randomly in a unit square – to
‘cover’ the square?” We then extend this question to hypercubes of arbitrary dimension. In
providing an answer, we will come to understand a central problem of sampling: the need for
many points. Usefully, it will become apparent that the idea of a hypercube – and how it is
sampled – is key to to the arguments we will develop in this chapter.

In Figure 5.1, we plot 100 uniformly and randomly generated points in the unit cube
(blue crosses). The unit square looks like it is well covered, the points seem to fill the square.
To more formally measure the point coverage, we calculate the convex hull of the points,
bounded by the red line in Figure 5.2. We say that the convex hull bounds the convex closure
of the point set. The area of the convex hull is just 0.83. For this experiment, the 100 random
points results covers 83% of the area of the unit square.
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Fig. 5.1 100 points are uniformly and randomly selected and plotted (blue crosses). The
convex hull of these points is shown in red.

Now, let us move from a 2-dimensional unit square to a d-dimensional unit cube. We
know that square, cube or d-dimensional hypercube have an area, volume or hyper-volume
of 1 by definition. As before, for a given d-dimensional space, we randomly sample the unit
hyper-cube, calculate the convex hull of the points and then we compute the corresponding
volume. We ask: “how many points do we need to randomly sample in order to approximate
the volume?” For the purposes is deemed to be ‘good enough’.

In Figure 5.2, we plot log10(number of points) on the x axis. For a given hypercube we
randomly select 100, 1000, 10000, 100,000 and 1 million points) and then calculate the
convex hull of the points and their volumes. We plot log10(number of points) against volume
estimated for 3, 4, 5 and 6 dimensional data.
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Fig. 5.2 Volume of the convex hull of uniformly and randomly selected points in dimensions
3, 4, 5 and 6. To cover 99% of the hypercube we need O(10d) points.

Very roughly, our experiment shows that to cover 99% of the unit volume (independent of
the hypercube dimension), we need 10d+1 points, where d is the dimension of the hypercube.
This shows that the number of sample points needed to cover a hypercube grows exponentially
with respect to the dimension of the hypercube. This simple empirical observation turns out
to be true in the limit (where the dimension becomes large) [130].

Let us return to the problem at hand: representing reflectance data. Spectra are often
represented by 31 measurements: every 10 nanometres across the visible spectrum (400
to 700 nanometres). Spectral datasets range from a few dozens of reflectance spectra
measurements to a few thousands, e.g. the Macbeth ColorChecker (24 reflectances) [95], the
Dupont reflectance set (120 reflectances), the object dataset (170 reflectances) [96] and the
SFU composite reflectance set [97] (2000 reflectances including the Macbeth and Object
dataset). All these datasets have been widely deployed in the development of colour imaging
algorithms. Given these data sets comprise points in 31-dimensional space, they are modest
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in size. Can even 2000 reflectances adequately represent all reflectances we might encounter
in the natural world?.

In this chapter, we propose that the problem lies not in the dataset – and the number of
sample points – per se but rather than how those samples are used. We begin by drawing a
simple lesson from the apparently abstract example of Figure 5.1 and Figure 5.2. There, we
sought to make enough samples so that the volume of the enclosing convex hull of the point
set approximated the volume of the unit-cube. In terms of reflectances, this convex hull idea,
where all reflectances therein are equally likely, is not only useful for our thought experiment
but actually reflects the physics of image formation.

Suppose we have a surface that is a patchwork of materials (e.g. a simple coloured
texture) and we view this texture from far enough away. The effective reflectance we see is a
combination of the underlying reflectances. In other words, mathematically, the combined
reflectances is a convex combination of the individual reflectances (in proportion to the area
that each reflectance covers). By making mosaics of colours by taking the reflectances in a
given sampled data set we can – when viewing the mosaic from far enough away – make
every reflectance that lies in the convex closure of the reflectance dataset.

Fig. 5.3 As we replicate more and more images of the DC colour checker together, eventually
all the colours blend into a uniform grey (bottom, right)
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In Figure 5.3, we illustrate the blending of colours as we view a colourful object from
sufficiently far away. Top left we show 4 copies the DC Macbeth Colorchecker. Then top
right there are 16 copies and bottom left 64 copies and finally bottom-right 4096 copies. In
this last example the individual colours in the colour chart can no longer be resolved. This is
how a mosaic of DC Macbeth Colorchecker would appear from distance. Clearly, viewed
from far enough away this colour target ‘looks’ grey.

As well as representing spectral data by its convex hull (more precisely, its convex
closure), we also propose that the convex closure should be sampled uniformly and randomly.
Of course, in doing so, we are changing the underlying distribution of the measured data. We
argue that this is not a problem. Indeed, an argument can be made that we want to change
the distribution. By uniformly and randomly sampling, we admit all possible physically
plausible stimuli to be considered and every reflectance is equally as important as any other.
In a sense, we are taking a sort of maximal ignorance stance (commonly used in colour
imaging research [111, 112, 10]) and being agnostic – save for the fact that it is statistically
plausible – of the likelihood of saying that one measured spectrum is more or less likely than
another.

Given the assumption that we can represent a reflectance set by its convex hull (and that
all reflectances within this hull, its convex closure, are possible) then this begs the question
of how do we make use this representation. We will study this question in detail for the
problem of colour correction.

Colour correction algorithms attempt to map camera RGBs to a human vision system
referenced colour space, typically with a 3×3 matrix transform. RGBs could be mapped to
the XYZ tristimulus values [131], to RGBs that drive a display (sRGB [86]).

The convex closure of reflectances is an infinite set of reflectances. This seems to pose
a problem for regression-based colour correction. By utilising a single reflectance dataset,
we can only carry out a regression based on the finite corresponding samples within this
dataset. To sidestep this problem, we will show that the least-squares regression depends on
the spectral autocorrelation matrix which, assuming 31 sampling wavelengths, is a 31×31
matrix. We may still use regression if we can solve for the autocorrelation corresponding to
an infitite set of reflectances.

Unfortunately, for our convex closure of reflectances, calculating the autocorrelation is
surprisingly laborious. Although it can practically be solved by random point generation,
this brings us back to the question of “how many samples are required”. To make the
computation feasible, we represent reflectances by the enclosing hypercube of the data
(which also includes the data’s convex closure) described with respect to a privileged basis.
This privileged basis is related to a PCA decomposition of the data. By using the privileged
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basis, the enclosing hypercube is a tighter fit than if the hypercube were applied in the
spectral domain. This means by using the privileged basis, the hypercube is smaller and more
tuned to the data. We can then show how we calculate the 3×3 colour correction matrix, in
a least-squares sense – by integrating over the enclosing hypercube.

We make a couple of additional remarks. First, here and henceforth throughout this
chapter we use hypercube to mean any cubic type object whose faces are orthogonal to each
other (but they need not to have unit volume). Second, we note that an enclosing hypercube
also contains the convex-closure. The convex closure integrates and generalises a dataset,
and the hypercube generalises the convex closure even further.

Experiments establishs that integrating the reflectance sets (not sampling) leads to good
colour correction when we train on a hypercube reflectance set and test on the individual
sampled reflectances. Indeed, performance is similar to optimal least-squares using the
sampled data alone. Significantly, when we train and test on different reflectance datasets
(i.e. when we cross validate) our integration method continues to deliver good results that
are competitive with the prior art. Finally, we show that, by representing reflectances by their
hypercube enclosures, different reflectance datasets are much more similar to one another.
This is an important result since the question of ‘what reflectance data should we use?’ is
often posed in colour imaging research. The work we present here indicates the choice of
which dataset is less important if it is integrated (i.e. all data sets become more similar to one
another).

In section 5.2, we review colour correction and the idea of representing reflectances using
a linear model. In section 5.3 we explain our core contribution solving for colour correction
by integrating over a sampled data set. Experiments validate our method in section 5.4. The
chapter concludes in section 5.5.

5.2 Representing Reflectance and Linear Least-Squaress
Colour Correction

Let us begin by recapitulating the integrated response equation that relates the eye’s or
camera’s response to a spectrum of light E(λ ) striking a surface with the spectral reflectance
function S(λ ):

ρ =
∫

ω

E(λ )S(λ )Q(λ )dλ (5.1)
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In Equation 5.1, Q(λ ) is a vector function of 3 camera or three human vision system
referenced sensors and ρ is the trichromatic response vector. The integral is computed over
the visible spectrum ω , which runs from 400 to 700 Nanometres.

Let us consider some actual spectral measured data. Top left of Figure 5.4 we show the
spectral reflectances for the top 6 patches of the Macbeth ColorChecker (For a picture of the
Macbeth ColorChecker, please refer to Figure 1.1). Top right, we plot the spectral power
distribution for a typical Daylight illumination. Finally, bottom, we plot the XYZ colour
matching functions.

Fig. 5.4 In (a), (b) and (c) we plot spectral reflectance functions, a Daylight illumination and
the XYZ colour matching functions

It is common to represent spectral quantities at 10 Nanometre sample points across the
visible spectrum. This means that the spectral quantities E(λ ), S(λ ) and Qi(λ ) (i∈{R,G,B})
in Equation 5.1 are represented by the corresponding 31-component vectors: E, S and Qi
(where Qi also incorporates the 10Nm sampling distance) . Grouping the 3 sensors in a
31×3 matrix Q, we can rewrite Equation 5.1 as:

ρ = Q⊺diag(E)S⊺ (5.2)



5.2 Representing Reflectance and Linear Least-Squaress Colour Correction 83

where diag() makes a diagonal matrix from the vector argument and ⊺ denotes vector/matrix
transpose.

Let us represent a set of n surface reflectance spectra by the 31×n matrix S. Each row
of the matrix represents the reflectances at a single wavelength, and each column is one
reflectance spectrum. We will denote camera sensors and the XYZ colour matching functions
(CMFs) by respectively R and Q (both 31×3 matrices). The camera and XYZ trichromatic
responses to all the reflectances in S are computed is:

P = R⊺diag(E)S (5.3a)

X = Q⊺diag(E)S (5.3b)

Both P and X are 3×n matrices.
In Equation 5.3, we are calculating the XYZ response but we could also have calculated

triplets for another human vision referenced colour space such as sRGB [86]. But, here and
henceforth in this chapter we will calculate XYZs.

In colour correction, we seek to map RGBs to XYZs, typically with a 3× 3 matrix.
Unless the camera sensitivities are a linear transform from the XYZs – the so called Luther
conditions [10] are met – the correction is inexact. The least-squares colour correction
optimisation problem is written as:

min
M

∥MP−X∥F , (5.4)

where ∥·∥F above denotes Frobenius norm.
Equation 5.4 can be solved in closed form using the Moore-Penrose inverse [132]:

M = XP⊺(PP⊺)−1. (5.5)

We now wish to consider the least-squares, Moore-Penrose, solution in more detail. To
simplify matters it is useful to define a colour signal matrix as

C = diag(E)S (5.6)

which means we can rewrite Equation 3 as:

P = R⊺C (5.7a)

X = Q⊺C (5.7b)

Let’s substitute Equation 5.7 into Equation 5.5



84 Integrating the space of reflectance spectra

M = Q⊺CC⊺R(R⊺CC⊺R)−1. (5.8)

Equation 5.8 teaches that the correction matrix M only depends on the 31×31 colour
signal autocorrelation matrix CC⊺ and camera and XYZ spectral sensitivities.

We note, of course, that the least-squares solution is only one way to calculate the 3×3
correction matrix. Indeed, various authors [133, 134] suggest that we should find a matrix
that minimizes a perceptual error. In other research the colour correction transform is not a
matrix [104, 105]. This said the venerable linear matrix and least-squares is widely deployed
not least because image formation itself is linear. Here we will use linear regression not only
because it is tried and tested but also because computing the best least-squares transform for
our enclosing hypercube of reflectances can also be computed (because we can calculate the
autocorrelations for our infinite reflectance sets). It is not clear whether any other correction
methods except least-squares regression can be easily computed (given the methods we
develop in this chapter).

Note also that the development we have made so far tacitly assumes that we are correcting
colours for one illuminant condition. In reality – especially for cameras used outside the
lab – we have multiple lights. Assuming that we find the best 3× 3 matrix for each light
individually we can use the formulation set forth above.

However, sometimes we might find the single linear mapping that best maps the RGBs
for all surfaces viewed under all lights to corresponding XYZs. Even for this circumstance
the role of CC⊺ is important. Let us expand CC⊺ using Equation 5.6:

CC⊺ = diag(E)SS⊺diag(E) (5.9)

In [135] it was shown that we could rewrite Equation 5.9 as:

diag(E)SS⊺diag(E) = [E E⊺]⊗ [SS⊺] (5.10)

where the operator ⊗ ‘means’ the component-wise multiplication of two matrices. Further
in [135] it was shown that if there were m measured lights in the 31×m matrix E then the
colour signal correlation matrix (all lights and all surfaces) equals:

CC⊺ = [SS⊺]⊗ [EE⊺] (5.11)

Again the central role of the spectral autocorrelation SS⊺ is clear.
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Also, note that in the least-squares solution (Equation 5.5) both the autocorrelation and
its inverse occur (in the least-squares fit formula). It follows that if we substitute kCC⊺ (k is
an arbitrary scalar) that the least-squares fit matrix is unchanged.

M = Q⊺kCC⊺R(R⊺kCC⊺R)−1 = Q⊺CC⊺R(R⊺CC⊺R)−1 (5.12)

From Equation 5.12, it both follows that the colour correction matrix is calculated
is independent of scene exposure (a useful property) and second that we can divide the
auto-correlation by a scalar (and this will facilitate calculating the similarity of two autocor-
relations).

5.2.1 Representing Reflectance Data

In Figure 5.5, respectively, in panels (a), (b) and (c), we show the autocorrelation for the 170
object reflectances [96] , the 462 Munsell’s [136] and the 120 Dupont reflectances [96].

Fig. 5.5 in (a), (b) and (c) the autocorrelations, SS⊺/n (n denotes the number of samples) of
the Munsell, Object and Dupont reflectance datasets
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Encouragingly, the autocorrelations look, broadly, similar. As a function of increasing
wavelength each of the reflectance datasets appear more correlated. And, the further apart
two wavelengths are, the less they are correlated. This said, the autocorrelations are quite
different from one another. The different autocorrelations lead to significantly different
colour correction matrices (see the reported experiments in Chapter 4 and more experimental
presented later in this chapter). Looking at the shapes of the autocorrelations we might
assume that the autocorrelation for the Munsells is the ‘outlier’. It is more different than the
other too, and it appears the most ’bumpy’. Yet as we develop our method of integrating over
reflectance sets we will, tantalisingly, discover that all data sets start to exhibit these bumps.

In Figure 5.5 panel d), we show the autocorrelation corresponding to the Maximum
ignorance with positivity (MIP) assumption, where any vector that is all positive between
0 and 1 is equally likely. Relative to this assumption, very jaggy spectra as well as smooth
spectra can occur even though the former do not appear in nature. We include the MIP
autocorrelation to show how different it is from the autocorrelations of real reflectance data.
Previous work has shown that the MIP assumption (i.e. adopting the MIP autocorrelation
matrix) leads to poor colour correction performance.

Returning to Figure 5.4, we see that the 6 Macbeth ColorChecker reflectance curves
plotted are smooth. Smoothness, at least in first-order, is a property of all naturally occurring
reflectance. Because surfaces are smooth they can be represented by an m-dimensional linear
model (where m << 31):

S(λ )≈
m

∑
i=1

Ui(λ )σi ≡ S ≈Uσ (5.13)

here Ui (or Ui(λ )) is called a basis function and σi is a scalar weighting its contribution, σ is
a m×1 vector. In Equation 5.13, U is a 31×m matrix and represents the discrete linear basis
for modelling reflectances. The interesting question, of course, is what is the value of m.
Different studies have concluded that the answer is between 6 and 9 basis functions [124, 137].
Though, for some applications even a 3-dimensional basis set suffices [138, 62].

For an n-reflectance data-set S and a fixed dimension m we would like to find the basis U
that best approximates:

minU,Ω ||S−UΩ||2 (5.14)

where U and Ω are respectively a 31×m and m×n and the ith column of Ω is σ i. Character-
istic Vector Analysis (like PCA where the mean is not subtracted) is the apposite tool. CVA
returns the optimal solution to Equation 5.14.
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The CVA solution has a number of attractive properties. First, the basis matrix U is
orthonormal, U⊺U = Im×m. Second, the basis is ordered. The first basis function is the
direction (among all others) that best captures the variance in the spectral data S. The second
basis function is the direction orthogonal to the first that captures the most variance. If Um

denotes the basis for m dimensions then [Um um+1] denotes the solution for m+1 dimensions
(where [um+1]⊺Um = 0, 0 is the m-component vector of 0s).

Further, in CVA, the m×m matrix ΩΩ⊺ is the diagonal matrix D2 with all positive
diagonal components that decrease monotonically, from first to last diagonal component.
Placing the diagonal components of D2 in the vector d, the ratio (∑k

i=1 di)/(∑
m
i=1 di)) reports

the % of variance captured by the first k basis functions.
It follows we can write Ω as DV ⊺ (note D is the diagonal matrix that is the square-root of

D2) where V is also orthonormal. Effectively, we recapitulated – what is in fact the evident
truth for those that have seen similar equations before – the Singular Value Decomposition
of reflectances.

S ≈UDV ⊺ (5.15)

From which it follows that we can decompose the autocorrelation of SS⊺ as:

SS⊺ ≈UD2U⊺ (5.16)

Again, the approximation in 5.16 is also that best least-squares approximation: the SVD
decomposition of the autocorrelation suffices to find the optimal basis U . Once more, we
see that what is important in datasets is not the reflectance set per se but the autocorrelation
(from which the optimal basis can be found). See [118] for a wider review of representing
spectra by characteristic vector analysis.

In Figure 5.6, we respectively show the best 3-dimensional basis for the Munsell, Object
and Dupont Reflectances. These 3-dimensional basis sets respectively capture 99.63%,
99.14% and 99.48% of the variance in the dataset. Unsurprisingly, as for the autocorrelations
we find the ‘trend’ in the data to be similar: the basis functions appear similar but there are
significant differences in their shapes.

The basis functions (or coordinate axes) are ordered in terms of importance – actually in
terms of the amount of variance in the dataset that falls in the direction of the basis function –
and this is colour coded in Figure 5.6. The 1st characteristic vectors are shown in blue, the
second in red and the third in orange. Notice that these curves increase in complexity (they
become less straight). The blue lines are almost straight (DC terms). The red curves are
smooth and cross the x-axis once (abstractly, they resemble a function like cos 0.5x (where
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the period of x is the visible spectrum). The 3rd characteristic vectors – again very abstractly
looks like −cos x.

Fig. 5.6 in (a), (b) and (c) the best 3-dimensional bases for the Munsell, Object and Dupont
reflectance datasets

With respect to each basis lets reconstruct, optimally in a least-squares sense, a reddish
reflectance spectrum, from the checker in Fig. 5.4. The result is shown in Figure 5.7. Visually,
none of the ‘fits’ seems that good: they all have a significant error compared to the original.

If we measure the error in spectral recovery as ||S− Ŝ||/||S|| – where Ŝ denotes the
closest spectrum in the span of one of our 3-dimensional basis sets – then respectively, the
3 reconstructed spectra have reconstruction errors of 13% (Munsell basis), 13% (Object
basis) and 9% (Dupont basis). Indeed, it is well known in the field that the high % variance
captured method (>99%) is an overly optimistic measure of how well a basis set models
individual reflectance spectra. Significantly, the percentage error between the recovered
spectra themselves is also high e.g. the % error of the recovered estimate using the object
basis compared with the Munsell recovery is 9%.

In Equation 5.14, we recapitulated how the singular value decomposition is used to find
the best m dimensional basis U for a given reflectance data set. We are interested in finding
coordinates in the basis that best approximates the ith reflectance in a dataset:
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Fig. 5.7 Red, is the actual reflectance. Three 3-dimensional fits are shown (using the bases
derived from the Munsells, Object and Dupont datasets)

Si =Uσ i (5.17)

We find the σ i that minimizes ||Si −Uσ i|| via the Moore-Penrose inverse

σ i = [U⊺U ]−1U⊺Si (5.18)

Since U is orthonormal,

σ i =U⊺Si (5.19)

and
U⊺S = Ω (5.20)

Let’s plot, in 3 dimensions, the coordinates of the 120 Dupont reflectances relative to the
optimal basis (itself plotted in Figure 5.6).
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Fig. 5.8 For a 3-dimensional basis we plot the coordinates for the Dupont reflectance set
(each coordinate against the other two). Bottom right the plot of the 3-dimensional convex
hull

In Figure 5.8, top left, we plot the 1st against the 2nd basis coordinates. Top-right and
bottom-left we plot 1st against 3rd and 2nd against 3rd. Bottom-right we plot the convex hull
of the coordinates. Looking at the figure we see that the range of coordinates diminishes as
the dimension number increases. For this set respectively, the 1st, second and 3rd coordinates
lie in the intervals [0,-5], [-1.25,1.25] and [-.625,.625]. That is the spread of the data (roughly)
halves per dimension.

5.3 Integrated Reflectance Sets

As presented the last section, least-squares regression colour correction is driven by the
autocorrelation of the reflectance data set SS⊺ (or the autocorrelation of the colour signal
matrix that itself also depends on the reflectance autocorrelation). Figure 5.5, shows that the
auto-correlation varies for different reflectance datasets. Moreover, even the best basis – the
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best coordinate system for describing reflectances – also varies with reflectance data set, see
Figure 5.6 and Figure 5.7.

In this section we make 3 contributions. First, we re-describe all reflectance datasets
with a common basis and we discuss how such a basis is computed. Second, we develop
our convex closure representation: i.e. the idea that the convex hull of a reflectance set
delimits all physically plausible reflectances. For applications like colour correction we need
to integrate over the convex closure e.g. to calculate the best colour correction transform.
But, integrating over convex sets is hard. Thus our third contribution, is directed towards
making computations feasible. We represent reflectance data by the enclosing hypercube
with respect to the common basis coordinates.

5.3.1 Deriving a common reflectance basis

As illustrated in Figure 5.6, different reflectance data sets have different basis functions. This
fact alone means it is difficult – if we use a low dimensional representation of reflectance –
to compare one reflectance set against another. We can compare basis coordinates (the σ ) if
and only if we use the same basis functions. To solve this problem we will find a single set
of basis functions which is suitable to represent all reflectance datasets.

The Statistical Approach: One might start by combining the autocorrelation of the
different datasets using a weighted sum:

SS⊺ = ∑
i

SiS
⊺
i

ni
(5.21)

where Si is the set of reflectances in dataset i and ni is the number of samples in this dataset.
This weighted summation gives each reflectance dataset equal weight on its influence on the
final basis functions, regardless the size of the reflectance dataset itself. Now, as described in
the last section, single value decomposition (SVD) [139] is used to find the optimal 31×m
basis matrix U .

The Cosine Series expansion. As commented previously (see discussion of Figure 5.6),
the optimal basis functions (set of characteristic vectors) found for a reflectance set – at least
from an abstract vantage point – looks somewhat like the first three terms in discrete cosine
series expansion. Thus, it is natural that we consider using the discrete cosine expansion
as the common basis. Importantly, a discrete cosine basis has well known (optimal) energy
compaction properties [140]. It is a reasonable choice for the common basis if we wish to be
a priori agnostic about the shape of reflectances.
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As a cosine series, the basis matrix U is written in closed form. Here i ∈ {0,1,2, · · · ,31}
and j ∈ {1,2, · · · ,m}

Ui j = cos
(
( j−1)π

N

(
i+

1
2

))
/k j. (5.22)

where the form of above equation is chosen so that U is orthogonal. The scalar k j chosen so
that the individual columns of U have magnitude 1 (it accounts for the Wavelength sampling).

Henceforth, we will use cosine series basis in the following discussion and in the experi-
mental section.

5.3.2 Convex- and Hyper-cube closures of reflectances

Physically, if we have a checker-board pattern comprising two reflectances S1(λ ) and S2(λ )

in equal proportions then if we view this checker board from far enough away the checker
will appear to have a single colour (with an effective reflectance 0.5S1(λ )+0.5S2(λ )). More
generally, viewed at distance a texture of colours blends to a single colour (with the new
effective reflectance being a convex sum of the individual reflectances in proportion to their
% area coverage). That is, given a dataset of reflectances, if they are allowed appear in
patterns of arbitrary shape and complexity, then all convex combinations of the reflectances
in a dataset might be physically measured.

It follows that the set of plausible spectra is the convex closure of the reflectance samples
found in a given data set. And, this convex closure in turn is delimited by the convex hull of
the dataset. Unfortunately, calculating a convex hull in d dimensions (for reflectances d is
31) is computationally hard (complexity O(n⌊

d
2 ⌋), [141]). Even for 8 dimensional data and a

few 100s of reflectances the problem is intractable (at least given the current implementation
in Matlab). In the 8-dimensional case, given 1000 points leads to on the order of 1 trillion
operations to solve for the convex hull!

Suppose we can compute the convex hull of a reflectance set. For colour correction we
need to integrate over this set. Arguably, the cost of integrating over a convex hull is even
greater than the cost of computing the hull itself. Perhaps the simplest integration problem is
computing the volume of the convex hull. Here, the cost of computing an analytical solution
is the same as the convex hull computation. Indeed, the cost is sufficiently high, that volumes
are generally computed via a Monte Carlo simulation.

To illustrate the Monte Carlo simulation suppose we are given a convex hull and we
compute the bounding hypercube (the min and max coordinates in the hull per dimension, an
easy computation). The volume of this enclosing hypercube is the product of the dimensions
(of the hypercube). For the purposes of this example, suppose the volume of the hypercube is
k. Now, we generate p points uniformly and randomly in the cube. For each point we check
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if it is inside or outside of the convex hull (a fast operation). If we find that 90% of the points
are inside the hull then the computed volume – by random sampling – is 0.9k. Of course, we
have to choose enough random points to calculate the volume with good accuracy. From the
introduction to thos chapter ‘enough’ can be very large.

To sidestep the issue of the complexity of integration, we will find the enclosing hypercube
of the data with respect to the common basis. This turns out to be a simple computation (the
complexity is O(d)), as we discussed above in our volume computation example. For a d
dimensional dataset S the coordinates of S in basis U are equal to Ω =U⊺S (see Equation
5.20). Denoting the kth row of Ω as Ωk, the min and max values (mk and Mk) for the
coefficient σ k are calculated:

mk = min(Ωk)< σk < max(Ωk) = Mk (5.23)

The 2d min and max coordinates in m and M delimit a hypercube. We illustrate this
idea by redrawing Figure 5.8 making clear the bounding hyper-cube (in this case the 3
dimensional rectangle plotted in red in Figure 5.9).

Notice there is a significant ‘gap’ between the boundary of the points and the edge of
the cube. In fact, for this example, the enclosing hypercube has more than twice the volume
compared to the convex set.

The physical meaning of the ‘gap’ is that under the hypercube model we admit reflectances
that we both haven’t seen before and may well be non-physically realizable. That is, they
have either reflectivity less than 0 or greater than 1. This kind of extrapolation is common.
The Maximum Ignorance, Maximum Ignorance with positivity and Toeplitz assumptions [10,
112, 142] all effectively admit non-physically realizable reflectances.

Under the Maximum ignorance with positivity assumption, we allow each spectral wave-
length to be in the interval [0,1] and the value selected per wavelength to be independently
of all other wavelengths. Here, all reflectances in the 31-dimensional unit cube are equally
likely. For our worked example, we can also compute the bounding hypercube – relative to
the Dupont 3-dimensional basis – for the Maximum ignorance assumption with positivity.
The corresponding MIP hypercube is shown in blue. The MIP cube is 8 times than the red
hyper-cube based on real data (so, a substantially weaker assumption that admits many more
infeasible reflectances).

The importance of the coordinate space

The reader might wonder why all the analysis building to this point has represented spectra
with respect to a basis. The reason is that we are seeking a representation where the bounding
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Fig. 5.9 For the Dupont data set we plot the coordinates with respect to an optimal basis.
The enclosing hypercube is shown in red. Assuming we projected all possible spectral data
(the maximum ignorance with positivity assumption) on the same basis the corresponding
enclosing hypercube is shown in blue.

hypercube idea makes sense. While we are willing to allow some spectra that are not in the
convex closure of the data set, we do not wish to admit too many.

Arguably, by decorrelating the data, CVA – or indeed the cosine basis that achieves a
similar decomposition – finds a representation that is more cube-like. Indeed, data uniformly
randomly distributed in a cube is completely decorrelated (knowledge of one coordinate tells
you nothing about the other). And, of course by coding a reflectance with respect to a basis,
we can choose to use fewer than 31 parameters (fewer than the total number of wavelengths).

Suppose instead we carried out a similar analysis in the primal domain (the primal
domain here is the reflectance spectra themselves). For each wavelength, we can calculate
the max and minimum reflectance values. In all likelihood this will give reflectances close
to 0 and 1 respectively since there are very dark and very bright colours of all hues. If, per
wavelength, we assume that reflectance lies in [0,1] and that one wavelength is not correlated
with another then this is the definition of the Maximum ignorance with positivity assumption.
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This assumption leads us to accept many reflectances (think very jaggy spectra) which are
not similar to any actual measured data.

We note that the volume of a geometric object does not change when we rotate the object
(or more generally apply a unitary transform). When we project reflectances onto a basis,
such as the cosine expansion we are re-describing the data with respect to new axes but we
are not changing the shape of the data. As a test we projected the 120 Dupont data onto the
full 31-dimensional cosine expansion (i.e. we applied a full rank unitary 31x31 matrix) to
the reflectances. Using the bounded hypercube we can calculate the volume before and after
the unitary transform. Literally, we find the volume with respect to the discrete cosine basis
to be orders of magnitude less than in the primal wavelength domain. That is the minimum
bounding hypercube depends on the basis in which data is described.

We illustrate this concept in Figure 5.10 for the data shown (blue dots). in 2 dimensions.
The rectangle at 45 degrees has a large bounding triangle (according to the primal axis).
Rotating to a new basis returns a bounding box that more closely describes the shape of the
underlying data.

Fig. 5.10 In the left we see points scattered at 45 degrees. Relative to the x- and y- axes the
bounding box – enclosing hypercube – of the data has area 1. Right, we rotate the axes 45
degrees (analogous to CVA). Now the bounding box fits the data better and has area 0.21.

In our method, it is important to compute the bounding hypercube of the basis coordinates
and not of the reflectances themselves.
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5.4 Calculating the autocorrelation matrix from the Re-
flectance Hypercube

We have already seen that the least-squares computation is carried out given knowledge of
the spectral sensitivities of the camera and XYZ sensors, the autocorrelation and the light (or
lights). In the discrete world the autocorrelation is simple to compute:

auto(S) =
SS⊺

n
(5.24)

where n is the number of surfaces in the reflectance dataset. We would like to calculate
the autocorrelation given the bounding hypercube. First, remember that in our basis repre-
sentation we can write S = UΩ where U is the 31×m reflectance basis and each column
of (the m×n matrix) Ω is the basis coordinates that define a single reflectance. Here, and
henceforth – unless otherwise stated – we will assume m = 31 and that U is the cosine series
basis. Moreover, we will set m = 31 so that U plays a decorrelating role – allows a bounding
hypercube to better fit the data – but the transform is lossless. It follows that

auto(S) =
UΩΩ⊺U⊺

n
(5.25)

Given that U is fixed, the autocorrelation for a reflectance set depends on ΩΩ⊺ (the
autocorrelation of the coordinates of the reflectances with respect to the basis).

auto(Ω) =
ΩΩ⊺

n
(5.26)

Let us rewrite Equation 5.26 as a summation:

[auto(Ω)]i j =
31

∑
k=1

ΩikΩ jk (5.27)

for the special case when i = j,

[auto(Ω)]ii =
31

∑
k=1

Ω
2
ik (5.28)

When we come to computing the autocorrelation over the hypercube, the special case of
Equation 5.28 is important. In Equation 5.27 (when i ̸= j) there are two statistical variables
but in 5.28 there is only one. This an important detail.

Let us consider for a moment three dimensional data bounded by the min and max values
in each of the 3 dimensions. In the 3-dimensional case we have 3 minimum coordinates – in
the x-, y- and z-directions – and 3 maxima. If we denote the coordinate of a vertex on the cube
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as (x,y,z) then independent of other dimensions x∈{mx,Mx}, y∈{my,My} and z∈{mz,Mz};
that is by selecting all combinations there are 23 = 8 combinations (the 8 vertices of the
hypercube). In n dimensions we have n minima and n maxima, 2n combinations i.e. there
are 2n vertices on an n dimensional hypercube,

Remembering that the ith row of Ω is denote Ωi, and that the hypercube bounding Ω is
defined by the min and max row coordinates in Ω.

box(Ω) = {m,M} , where mi = min(Ωi) and Mi = max(Ωi) (5.29)

We denote the autocorrelation of all the reflectances in a bounding hypercube for Ω as
auto(Box(Ω)). To calculate auto(Box(Ω)) we need to integrate over the bounding box.

5.4.1 Discrete versus continuous estimation

Before showing how we integrate over a hypercube it is informative to review how we
calculate expectations in the discrete versus continuous domains. As an example, let us
suppose that points belong to a uniform distribution in the interval [3,5]. Now 10 points are
drawn uniformly and randomly sampled from this distribution. We find the expected value of
the sample set by summing up the 10 points and dividing by 10. As, defined – points belong
to a uniform distribution in the interval [3,4] – we know that the average should be 4. But,
because of there being only small numbers of samples the average will likely be a little bit
less or greater than 4.

Denoting each discrete sample as si we can write the expected value E(s)

E(s) =
∑

10
i=1 si

10
(5.30)

Given we know that the underlying distribution is uniform, we can in fact find the
expected distribution analytically i.e. without sampling. Rather we can sample every point
(an infinity of points) in the interval and calculate the average. The apposite tool for this
calculation is integration. In the continuous case we write

E(s) =
∫ 5

3 x ds∫ 5
3 1 ds

=
x2

2 |
5
3

x|53
=

8
2
= 4 (5.31)

Usefully, here we get exactly the correct answer (since we have sampled all points). Note that
the integral and discrete formulations are similar. Indeed

∫ 5
3 x ds means summing up x over

the interval [3,5] and this is analogous to the summation in Equation 5.30. The denominator
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terms of Equation 5.30 is analogous to the sample size. We must divide by the interval length
(analogous to dividing by the number of samples).

Suppose, as it will be relevant to integrating over hypercubes, that we have two samples
s and t defined over intervals [a,b] and [c,d]. The expected value of the product st in the
continuous domain is calculated as:

E(s) =
∫ b

a
∫ d

c st dt ds∫ b
a
∫ d

c 1 ds
=

∫ b
a
∫ d

c st dt ds
(d − c)(b−a)

(5.32)

Here 1/((d − c)(b−a)) is the area over which we are taking the double integral.

5.4.2 Integrating over a hypercube

Because the hypercube is a continuous set, the summations in Equation 5.29 become integrals.
We will use the notion σi to denote a sample in the ith coordinate ( σi denotes a continuous
variable). Given that the enclosing hypercube is defined by the min and max coordinates
in each dimension (see Equation 5.26) then mi < σi < Mi. The Expected value of the
autocorrelation is computed as:

[E(auto(Box(Ω)))]i j =


∫Mi

mi σ2
i dσi

Mi−mi
when i = j

∫M j
m j
∫ mi

Mi
σiσ j dσidσ j

(Mi−mi)(M j−m j)
when i ̸= j.

(5.33)

We have different expressions for the diagonal and off diagonal terms for the same reason
as the discrete case (see Equation 5.27 and Equation 5.28 and discussion). For the diagonal
case there is only one statistical variable but for the off diagonal there are two. This in turn
means computing the expectation along the diagonal of the autocorrelation is a single integral
problem and the off diagonal computation involves solving a double integral.

Notice that the numerator terms of the continuous integral Equation 5.33 look similar,
as we would expect, to the discrete summations. The denominator terms are different from
‘dividing’ by n (of Equation 5.27 and Equation 5.28). When we compute expectations in the
continuous domain, as commented above, we need to divide by the length of the interval (for
the 1-d case) and the area of integration for the 2-D case. Equation 5.33 can be solved for in
closed form with the autocorrelation defined as:
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[E(auto(Box(Ω)))]i j =


M3

i −m3
i

3(Mi−mi)
when i = j

M2
i M2

j +m2
i m2

j−m2iM2
j −M2

i m2
j

4(Mi−mi)(M j−m j)
when i ̸= j.

(5.34)

For the continuous case (integrating over the bounding hypercube) the estimated autocor-
relation is calculated as UE(auto(Box(Ω)))U⊺.

5.4.3 Integrating over a smaller hypercube

Suppose we calculate a scaled hypercube that is k times the size in each dimension

sBox(Ω,k) = {m,M} , where mi = k ·min(Ωi) and Mi = k ·max(Ωi) (5.35)

From Equation 5.34, it is easy to show that:

E(auto(sBox(Ω,k))) = k2E(auto(Box(Ω))) (5.36)

That is, by scaling the bounding coordinates of the hypercube the corresponding auto-
correlation also scales. From Equation 5.12 we know that least-squares colour correction is
independent of the magnitude of the autocorrelation. Moreover, and perhaps more impor-
tantly, we have shown that the terms in the autocorrelation scale to the square of the scaling
applied to the data.

5.5 Experiments

In this section, we will review the sampled reflectance datasets we are going to use in our
experiments. We then go on to consider how similar or different the sets are. After all,
researchers often ask "what reflectance dataset should I use to validate my algorithms?". One
prediction of our enclosing hypercube representation of reflectances is that post-enclosure
different reflectance sets should be more similar to one another. For the purposes of this
chapter – which is using colour correction as an exemplar application – we measure the
similarity of reflectance sets by comparing the similarity of their autocorrelations. We also
view the similarity question through the lens of information theory and ask how expensive
it is to code one distribution given the optimal code book of another. Finally, the practical
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import of our work is investigated in colour correction experiments. Importantly, the goal
here is not to beat least-squares (least-squares is least-squares optimal). Rather, a good result
would be if training on enclosing hypercube data led to competitive performance.

There are 9 Tables in this section. These correspond, broadly, to 3 classes of experiment
(autocorrelation similarity, bit-encoding and colour correction). In Figure 5.11 we provide a
quick crib sheet that describes how to interpret the numbers in the tables (we describe the
tables where they appear in the text but this reference may help in comparing the trends in
the data).

5.5.1 Reflectance Datasets

Hitherto in this chapter, we have considered the respectively 462, 170 and 120 reflectance
MUNsell, OBJect and DUPont reflectance sets. The Munsell reflectances are painted patches
designed to have a large colour gamut. The Object dataset contains spectral of typical objects
including bricks, wood and pavement. The Dupont set contains the spectra of colourful dyed
material. All of these datasets are similar in that they do not a priori place constraints on the
shape of spectra.

To these three exemplar measured reflectance datasets, we add two more. First is the
NATural dataset measured by Westland et al [92] which comprises 404 measured spectra of
plants, foliage and flowers. Second, we add a MODel that comprises 500 randomly selected
spectra from the bounding hypercube of the bounding hypercubes of the MUN, OBJ, DUP
and NAT datasets.

From the discussion in chapters 2 to 4, there are other natural relfectances we could
have used. We do not report results for those sets here because the trend in the data and the
conclusions we draw are the same. Indeed, we are conscious that we are, in this chapter,
presenting a large amount of experimental data. So, a priori, we are choosing to convey the
necessary set.

We do, however, actively reject the manufactured colour targets (e.g. Agfa IT8) because
they are printed. Consequently, every patch is a mix of 4 inks (CMYK) and all have a
characteristic smooth shape and all are naturally low-dimensional. We purposely do not
include experimental results for the printed datasets here (though the methods we have
developed do work for these colour targets).

Let us review the construction of the MOD dataset. Using the index k,
k ∈ {MUN,OBJ,DUP,NAT}, we calculate the enclosing hypercube – denoted by ENC – of
these sets (where as before the spectra are represented by their Ω coordinates with respect to
the Cosine Series Basis U):
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Fig. 5.11 Crib Sheet: Top, how to interpret the autocorrelation experimental tables. Middle
teaches the interpretation of Kullback Leibler divergence (viewing similarity by bit counting).
Bottom we descive the data in the Colour Correction Tables.

box(ΩENC) = {mENC,MENC}
mENC = mink mk

MENC = maxk Mk

(5.37)



102 Integrating the space of reflectance spectra

For the ith of 500 trials we select a vector σ i ∈ U (mENC MENC) (i.e. uniformly and
randomly from the hypercube) and the corresponding reconstructed spectrum is calculated as
Uσ i. In Figure 5.12, panel (a), we show 3 of the randomly generated reflectances in MOD.
Notice that they look like plausible spectra but there are – as expected – values less than 0
and greater than 1. Notice also that the reflectances are not completely smooth. This non
smoothness ‘local scale’ appears to occur in nature, especially in the spectra of flowers and
plants. Note, however, that, by construction, all the smooth spectra in Figure 5.4a (from the
Macbeth ColorChecker) are in box(ΩMOD).

Fig. 5.12 In a), 3 reflectances from the Model reflectance dataset. Note there can be values
larger than 1 and less than 0. Panels (b) and (c) show the autocorrelations for the NAT and
MOD spectral datasets

We evaluated the extent to which the bounding hypercube representation admits implau-
sible reflectance values i.e reflectances greater than 1 or less than 0. For out 5 data sets we
found that more than 85% of our data are physically realizable.

Finally, in Figure 5.12 in panels (b) and (c) we respectively show the autocorrelations of
NAT and MOD, see Figure 5.4 for the autocorrelations of the other reflectance sets.
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MUN OBJ DUP NAT MOD µ

MUN 0 0.38 0.26 0.35 1.00 0.51
OBJ 0.57 0 0.76 0.44 2.10 0.96
DUP 0.23 0.44 0 0.30 0.80 0.44
NAT 0.38 0.32 0.37 0 1.25 0.58
MOD 0.52 0.68 0.45 0.57 0 0.56
µ 0.42 0.45 0.46 0.42 1.29 0.76

Table 5.1 %
100 Reflectance Set Autocorrelation errors

5.5.2 Comparing the Autocorrelations of Reflectance Datasets

Let us begin by comparing directly all pairs of autocorrelations using a % error metric.

errA,B =
||auto(ΩA)−auto(ΩB)||

||auto(ΩA)||
(5.38)

Note, we represent the autocorrelations with respect to the Cosine Series Basis and the
coordinates with respect to this basis. This said this error does not change if the data is
mapped by an orthonornmal transform (so would be the same using the spectra themselves).
The % autocorrelation error is not commutative. See Figure 5.10 and associated discussion.

The results for the 5 data sets are summarized in Table 1. The autocorrelations A and B
from Equation 5.38 correspond to row and column respectively. The last column and row are
respectively the average errors of the first 5 rows and columns. Bottom right is the overall
average error.

Looking at the Table 5.1, errors range from 25% to over 200% with the overall average
as 76%. However, remembering that MOD, by construction is designed to be a superset
of the other 4 datasets, it is perhaps unsurprising that the comparisons that involve the
autocorrelation of MOD are the ones that have the highest errors. Indeed, the average of
the first 4 rows and columns is 40%. An interesting lesson we draw from the table is that
the Dupont data – that comprises man-made dyed textiles – actually, has the lowest errors
compared with the other data sets (see third row). That is, if we were to use only one of these
datasets to represent the others (in terms of their autocorrelations), then we would choose the
Dupont reflectances. This result is consistent with the colour correction experiments reported
in Chapter 4,

In Table 5.2 we repeat the experiment for the autocorrelations of the enclosing hypercubes
of the different datasets. Here, the datasets are labelled as MUNb, OBJb, DUPb, NATb and
MODb, the ‘b’ stands for ’box’ (i.e. the figures are for the autocorrelations of the enclosing
hypercube). The error is calculated as:
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MUNb OBJb DUPb NATb MODb µ

MUNb 0 0.22 0.17 0.25 0.10 0.18
OBJb 0.27 0 0.12 0.44 0.42 0.28
DUPb 0.20 0.12 0 0.31 0.23 0.21
NATb 0.25 0.34 0.27 0 0.19 0.26
MODb 0.10 0.24 0.19 0.19 0 0.18
µ 0.20 0.23 0.19 0.29 0.20 0.28

Table 5.2 % Enclosing hypercube of Reflectance set autocorrelation errors

errBox
A,B =

||E(auto(box(ΩA)))−E(auto(box(ΩB)))||
||E(auto(box(ΩA)))||

(5.39)

With one exception (NAT compared with OBJ) the autocorrelations calculated over
reflectance set’s bounding hypercube are closer to each other (and usually much closer).
Overall, the error is reduced from 76% to just 28% and the composite MOD set is now much
closer to all other sets. Either the MUN and MOD would seem to be the best choice to
represent all 5 datasets.

In the left of Figure 5.13 we show the autocorrelations of the sampled reflectance sets
and on the right for the corresponding enclosing hypercubes. According to our measure of
similarity the autocorrelations on the right are more similar than those on the left, on average.
They do look more similar: they appear flatter overall. Notice also that the characteristic
contours of the Munsell data (Figure 5.4) – are now replicated in the enclosing hypercube
autocorrelations for the Object and Dupont datasets.

5.5.3 Encoding Reflectance Datasets

We might wonder, of course, what the meaning of a 50 to 60% reduction in autocorrelation
error means? One way to answer this question is to think of the autocorrelation as a covariance
matrix that captures the statistics of an underlying distribution. Indeed, suppose we used
an autocorrelation to define a multivariate Gaussian (or Normal) distribution. By doing so
we will admit many reflectances that lie outside even the bounding hypercube that we have
laboured so long to develop. However, the reflectances that are drawn from this multivariate
Gaussian will – by construction – have a covariance matrix equal to the given autocorrelation.
Or, put another way reflectances distributed according to these implied Gaussian distributions
would result in the same least-squares solution to colour correction.

Even although multivariate Gaussians are continuous functions, there exist analytic
formulae that measure the number of bits on average – using an optimal encoding scheme
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Fig. 5.13 On the left the 4 autocorrelation matrices and on the right the corresponding
autocorrelation of the bounding box hypercubes



106 Integrating the space of reflectance spectra

– it would take to represent a sample (here, a reflectance) drawn from that distribution.
Remembering that a reflectance spectrum is a 31-dimensional vector, the ‘coding’ problem
is not easy. Indeed, if, for example, we encoded the reflectance at each wavelength with an
8-bit number and we admit all spectra in [0,1] to be equally likely then we would need to use
31*8=248 bits to represent a spectrum. Of course, the actual bit count will be much less than
this because reflectances are smooth (proximal wavelengths have similar values).

The average number of bits given an optimal encoding is called the entropy of a distri-
bution. The link to ‘bit counting’ in the continuous domain is not direct and the numbers
computed are only weakly related to entropies calculated for discrete measured data.

As commented earlier, for the purposes of colour correction the magnitude of the auto-
correlations are not important. We can scale the autocorrelation matrix arbitrarily safe in
the knowledge the scaling will cancel when we calculate the least-squares correction matrix.
However, the scale also matters when we consider the number of bits it takes to code a
Gaussian distribution. Henceforth the autocorrelation of the hypercube approximation is
scaled to have the same mean value as the underlying reflectance distribution.

The issue here is one of ‘units’. As a tangential example suppose we wished to compare
the distributions of the heights of children versus the heights of adults. Of course we
cannot (adults are much taller). However, if we normalised the distributions – for example,
computing the distribution z-scores[143] – we could compare the shape of the distributions.
We can answer questions like: “are the proportions of children taller than mean height the
same as for adults?” With the respect to the problem at hand, by matching the magnitude
of covariance we are, informally, mapping different distributions to the same range for
comparison.

In Table 5.3, we calculate the differential entropy in bits for distributions using our
computed autocorrelations as covariances for Gaussian distributions (and assuming a 0
mean). We use the formulae for differential entropy [144] directly with one caveat. Here,
we represent reflectances by the first 10 basis dimensions (which capture pretty much all the
variance in all the datasets). Denoting the 1st 10 columns of our cosine series basis U by
U10 and given a 31×31 auto-correlation (or an estimated autocorrelation) AA⊺ the 10×10
equivalent is equal to [U10]⊺AA⊺[U10]. We carry out this dimensionality reduction because
the differential entropy formula does not work well if the covariance matrix is rank deficient.
We found 10 basis functions sufficient to represent all the measured reflectance spectra

The numbers in Table 5.3 seem reasonable. For the raw data covariances we have
an average entropy (number of bits to code a spectrum) of 33-bits. When we admit all
reflectances in the enclosing hypercube then, intuitively, this should take more bits on
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MUN OBJ DUP NAT MOD µ

entropy 26.5 29.2 29.7 33.1 44.6 32.6
box entropy 33.5 35.6 36.7 36.8 44.8 37.4

Table 5.3 The differential entropy (in bits) of the reflectance sets and their hypercube
enclosures

MUN OBJ DUP NAT MOD µ

MUN 0 28.0 28.6 82.3 242.0 95.2
OBJ 9.2 0 9.4 7.3 73.7 24.9
DUP 35.5 14.5 0 32.4 210.4 72.5
NAT 11.5 3.4 6.9 0 41.4 15.8
MOD 12.6 9.7 10.3 6.8 0 8.8
µ 16.4 13.9 13.8 32.2 141.3 54.5

Table 5.4 The Kullback-Leibler divergences (all pairs reflectance sets).

average to encode. This is the case. To code the enclosing hypercube, on average takes 4.5
more bits than a direct coding of the underlying distribution.

Notice also that the MOD reflectance set has the highest entropy. This is expected as the
MOD reflectances are drawn from the enclosing hypercube of all the reflectance data. And,
of course because these reflectances are drawn uniformly and randomly.

The Kullback-Leibler divergence is one way of comparing distributions and complements
the idea of entropy. Indeed, given two distributions A and B (and their optimal encodings),
KL divergence measures the extra number of bits, on average, to code data from A using
the coding from B (compared with using A’s optimal encoding). Analogous to our %
autocorrelation error the KL divergence measure is not commutative.

The KL-divergences for all pairs of our reflectance sets are summarized in Table 5.4. To
orient the reader each row indicates the ‘reference’ distribution. As an example in position
row=5, column=2, we have a KLD of 3.40 bits. This is the coding error of using the best
codebook for the MOD data to encode the OBJ reflectance. As before, all computations
assume we use only the first 10 terms in the cosine series basis to represent our reflectance
data.

If we ignore the MOD data set, the coding error is in the range 3 to 80 bits . Of course
the MOD – by construction – has reflectances quite unlike those in the other sets. So, the
high coding errors are not surprising. Candidly, the numbers in Table 5.4 are a bit out of
kilter to the magnitude of entropies computed in Table 5.3. Even with our 10-dimensional
description our data is still rank deficient. The Munsells i particular are very smooth and so
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MUNb OBJb DUPb NATb MODb µ

MUNb 0 4.17 1.89 3.41 22.96 8.10
OBJb 2.47 0 2.21 3.41 12.10 5.04
DUPb 1.07 1.56 0 1.41 9.25 3.32
NATb 1.98 2.31 1.52 0 8.81 3.66
MODb 5.99 4.12 3.52 3.41 0 4.28
µ 2.88 3.06 2.29 2.91 13.26 6.10

Table 5.5 The Kullback-Leibler divergences (all pairs reflectance sets defined by their
bounding hypercubes)

the corresponding autocorrelation is somewhat rank deficient (concomitantly, the Munsell
codebook isn’t suitable to code the other distributions. Yet, if we go below 10 dimensions
then some reflectances have high fitting errors. Table 5.4., while far from preesnting a clear
narrative, represents a compromise between fairly representing all the datasets and mitigating
against the rank-deficiency problem.

Having made these caveats, the numbers for the Kullback-Leibler divergences broadly
make sense. We have an asymmetry between the coding error using MOD as a reference
(e.g. as the code book that is not optimal that we are using) and when MOD encoded with
another codebook. The row MOD teaches that this distribution can be used to encode other
distributions with low error. This is as we expect since by construction MOD is a superset of
the other data. Conversely, MOD attracts high errors when it is coded with the best codebook
for other reflectance sets (which are small subsets of MOD), see column 5.

Let us repeat the experiment for the enclosing hypercubes of the reflectance sets. Here
we look at the Kullback-Leibler divergence for all pairs of autocorrelations – deployed here
as covariance of multivariate Gaussians – for the enclosing hypercubes of our data. As before
b denotes ‘bounding hypercube’.

Results are reported in Table 5.5. The KLD numbers are much smaller. This teaches
both that in terms of coding the distributions are more similar and that they are more 10
dimensional (the KLD calculation is more stable).

5.5.4 Colour Correction Experiments

For a Nikon D300s camera we synthesised RGBs under D65. Similarly, we synthesized
XYZs for the XYZ colour matching functions. We then computed the least-squares fit taking
the RGBs to XYZs. Given the corresponding predicted and actual XYZs we calculated the
average ‘∆E∗

ab ’ error [33] for our 4 data sets (we ignore MOD because it has reflectances
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MUN OBJ DUP NAT µ

MUN 0.78 1.18 2.30 2.30 1.64
OBJ 1.45 1.11 2.47 1.79 1.70
DUP 1.28 0.94 1.71 1.44 1.34
NAT 2.00 1.25 2.23 1.28 1.69
µ 1.34 1.13 2.25 1.74 1.59

Table 5.6 Cross validated colour correction, mean ∆E∗
ab

MUN OBJ DUP NAT µ

MUN 2.66 3.53 6.30 5.11 4.40
OBJ 3.13 3.38 9.30 4.11 4.98
DUP 2.66 2.46 4.87 3.64 3.41
NAT 3.27 3.04 5.75 3.35 3.85
µ 2.91 3.19 7.05 4.19 4.16

Table 5.7 Cross validated colour correction, 95 percentile ∆E∗
ab

that are not realizable. Mean and 95 percentile errors are shown in Tables 5.6 and 5.7. Each
row ‘means’ we calculate the best 3×3 matrix using the autocorrelation for that surfaces
reflectance set. We then test with all the reflectance sets in turn (each testing dataset represents
a column).

The averages over columns are shown in the rightmost column. These averages encode
how well a reflectance set performs when it is used to determine the colour correction
transform. The average over rows speaks to the difficulty of correcting a given reflectance
test set.

Clearly, when we train and test with the same reflectance set we get the best results –
with the exception of OBJ to OBJ, due to the minimisation in XYZ and testing in LAB
(the diagonal term has the lowest error per column). Training with the DUP set gives the
lowest error overall, on average 1.34 ∆E∗

ab . Simultaneously the Dupont reflectances are the
hardest to colour correct (an average ∆E∗

ab , 2.25). Note, that the mean error – of the whole
table, shown bottom right is 1.59 – in general is fairly low (since 1 ∆E∗

ab is not perceptually
significant).

In Table 5.7, we repeat the same experiment but tabulate the 95% error. As expected the
95% errors are significantly larger. Indeed, they are sufficiently large that the colour error of
some patches could be noticeable in images. Note by a whisker using the DUP dataset to
compute the colour correction matrix leads to the lowest average 95 percentile error for the
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MUN OBJ DUP NAT µ

MUNb 0.87 1.18 2.39 2.24 1.67
OBJb 0.95 1.07 2.37 2.02 1.60
DUPb 0.89 1.21 2.39 2.39 1.72
NATb 0.93 1.09 2.51 2.13 1.67
MODb 0.90 1.10 2.39 2.16 1.64
µ 0.91 1.13 2.41 2.18 1.66

Table 5.8 Cross validated colour correction, using enclosing hypercube to train, Mean ∆E∗
ab

MUN OBJ DUP NAT µ

MUNb 2.86 3.86 5.99 5.03 4.43
OBJb 2.66 3.46 6.78 4.69 4.39
DUPb 2.79 3.81 6.47 5.49 4.64
NATb 2.54 3.76 8.80 5.14 5.06
MODb. 2.61 3.68 7.38 5.10 4.69
µ 2.62 3.71 7.08 5.09 4.64

Table 5.9 Cross validated colour correction, using enclosing hypercube to train, 95 percentile
∆E∗

ab

datasets (see third row). But, again, the Dupont reflectances themselves incur the highest
percentile error, on average.

We now repeat this experiment where we train on the autocorrelation of all reflectances
in the enclosing hypercube. We then test on the reflectance sets themselves. Here we do
include the MOD dataset for training. Returning to Figure 5.9, the bounding hypercube of a
reflectance set is many multiples in volume larger than the reflectances set itself (as defined
by the convex closure). So, we are training on many more reflectances than the samples
themselves. This said, we do not expect better colour correction results (certainly we must
do worse than when we train and test on the same data). But if we obtain competitive perfor-
mance then this means we can take a much more agnostic stance (about which reflectance
appear in the world and still get good colour correction).

The mean colour correction results – when we train on the autocorrelation of the re-
flectance autocorrelation – are encouraging, see Table 5.8. We obtain similar results (indeed
several are lower). On average (for corresponding entries) the error – already very low –
remains low (about 15% higher) than fitting with the actual reflectances. Eight of the entries
(there are 16 in common) are actually smaller).
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The 95% results are shown in Table 5.9. Again results are comparable to training on the
sample reflectance datasets (in this case we are better in 5 out of 16 cases). The penalty of
training using the enclosing hypercube is less than 1 ∆E∗

ab (visually not significant).
We repeated this experiment for all 28 cameras in [88] and all illuminants in the 102 light

set [97]. The trend of the data is the same as shown above.

5.6 Conclusion

In summary, in this chapter we have shown 3 results. First that the autocorrelations of two
reflectance distributions are more similar if they are calculated over the enclosing hypercube
(rather than just using the samples themselves). Second, similarity is also established
by considering autocorrelations as covariances and looking at similarity as coding error
(i.e. using the Kullback-Leibler divergence). Finally, we carried out a colour correction
experiment. Solving for a colour correction using the enclosing hypercube of reflectance sets
or the reflectance samples themselves leads to similar performance when evaluated on real
sampled data.





Chapter 6

Maximum Ignorance Polynomial Colour
Correction

6.1 Introduction

This chapter is an extended version of a published conference paper [145].
In the previous chapter (Chapter 5), we look at the question of reflectance dataset

similarity in great depth. We argued that a reflectance dataset is a subsample of a much larger
class of surfaces, and the convex closure of a reflectance set is possible. We then discussed
how the convex closure of a set can be represented, and how this can be approximated
by its enclosing hypercube. We finally show how we can integrate over our hypercube
representation to calculate linear colour correction transforms. In this chapter, we expanded
upon the idea of integration of the reflectance space further with an eye to using a more
general colour correction transform. We consider allowing all possible reflectances - the
Maximum Ignorance (MI) approach. The MI approach to colour correction assume that any
spectrum, including the spectrum with negative values is equally likely to occur. Relative
to this mathematical assumption it has been shown that the best colour correction matrix is
the mapping which best takes the device specific spectral sensitivity functions onto the CIE
XYZ colour matching functions [111]. This maximum ignorance transform is interesting
as it also relates to the ‘Luther’ conditions which specify when perfect colour correction is
possible. In particular, Horn [10] (and more recently Vora and Trussell [111]) has shown that
perfect colour correction for any colour stimulus is possible if and only the Luther conditions
are met, i.e. when the device sensitivities are a linear transform from the colour matching
functions.
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Arguably, however, for cameras that do not meet the Luther conditions, the MI assumption
is practically not useful because it does not make physical sense. Indeed, spectra with negative
power do not exist in nature, so making the assumption that they do exist has negative impact
on the performance of colour correction. Finlayson and Drew addressed this problem by
introducing the concept of maximum ignorance with positivity (MIP) [112]. Under this
assumption, all colour signals are assumed to be strictly positive and occur with equal
likelihood. The colour signal is drawn uniformly and randomly from the interval (where
is an upper bound on the power at any wavelength). Finlayson and Drew presented an
algorithm for MIP colour correction [112] which they showed depended only on the spectral
sensitivities of the sensors (RGB and XYZ) and the autocorrelation of the spectra (which they
computed in closed form for the MIP assumption). Experiments demonstrated that the MIP
approach delivered much better colour correction than the MI method. Indeed, the results
were found to be comparable to the physical target based approaches.

In this chapter, we revisit and extend the concept of MIP, we make two contribution. Our
first contribution is reformulating the computation of the colour correction matrix in terms of
sensor response rather than spectral correlations. The advantage of doing so is that it allows
us to consider non-linear correction schemes. In our second contribution, we show how
we can derive the polynomial regression matrix given maximum ignorance with positivity
assumptions (we call this MIPP). The practical importance of this work is also considered.

6.2 Theory

6.2.1 Maximum Ignorance with Positivity Colour Correction

Suppose a colour signal C(λ ) is represented by discrete samples in the visible spectrum –
between 400 nm to 700 nm at 10 nm intervals, with 31 discrete samples in total). Let C
denote the 31× n matrix containing a set of n calibration colour signal spectra (with one
colour signal per column). Let X and R denote the 31×3 matrices containing the CIE XYZ
standard observer colour matching function and device spectral sensitivities. The camera and
human observer response to the entire calibration set are captured by 3×n matrices P and Q
[146]:

P = R⊺C (6.1)

Q = X⊺C (6.2)
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In colour correction we wish to map mathematically P to Q. The least-squares solution
to colour correction finds 3×3 matrix M which minimises:

||MP−Q||F (6.3)

||.||F above denotes the Frobenius norm (the square root of the sum of squared differences
between MP and Q). The Matrix M which minimises Equation 6.3 is found in closed-form
using the Moore–Penrose pseudoinverse:

M = QP⊺(PP⊺)−1 (6.4)

By substituting Equation 6.1 and Equation 6.2 into Equation 6.4, we obtain:

M = X⊺CC⊺(R⊺CC⊺R)−1 (6.5)

We can see from Equation 6.5 that M depends only on the 31 × 3 device spectral
sensitivities R, the 31×3 CIE standard observer colour matching function X and the 31×31
spectral autocorrelation matrix CC⊺.

In MIP, the spectral autocorrelation matrix is artificially constructed to enforce positive
autocorrelation. Suppose we wish to represent all possible colour signal spectra in the interval
[0,P] , where P denotes the maximum spectral power per wavelength. Because the spectral
autocorrelation matrix and its inverse both appear in Equation 6.5, the magnitude of spectral
autocorrelation matrix is not important. Hence without losing generality, we can assume
spectra lie in the interval [0,1]. Under these conditions, according to [112] CC⊺ equals to:

[
CC⊺]

i j =


1
3
(i = j)

1
4
(i ̸= j)

, (6.6)

Our new formulation is based on the expectation of the sensor response correlation. In
order to tackle this problem, we first look at how to compute the expectation of the response
of a sensor with a single colour channel. Let r denote the 31-vector containing sensor
response curve from a single colour channel. Let c denote the 31-vector colour signal. The
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sensor response p is computed as a dot-product:

p = r⊺c

= r · c
= r1c1 + r2c2 + · · ·+ r31c31

(6.7)

Let us assume that each colour signal sample is an independent and identically distributed
random variable with values between 0 and 1. The expected value of p, E(p) is written as:

E(p)

=
∫ 1

0
r · c dc

=
∫ 1

0
· · ·
∫ 1

0
r1c1 + r2c2 + · · ·+ r31c31 dc1 · · ·dc31

(6.8)

We now need to apply the idea from Equation 6.8 to Equation 6.4. Now, let us explicitly
write the least-squares matrix calculation in terms of the correlations of sensor responses:

M = QP⊺(PP⊺)−1

=

Q1P⊺
1 Q1P⊺

2 Q1P⊺
3

Q2P⊺
1 Q2P⊺

2 Q2P⊺
3

Q3P⊺
1 Q3P⊺

2 Q3P⊺
3


P1P⊺

1 P1P⊺
2 P1P⊺

3

P2P⊺
1 P2P⊺

2 P2P⊺
3

P3P⊺
1 P3P⊺

2 P3P⊺
3


−1

(6.9)

In terms of Equation 6.9, we would like to compute the expected values of QP⊺ and PP⊺.
The terms in these two matrices can be computed if for arbitrary matrices X and Y we can
compute (XY)i j. Denoting the ith row of X as the vector ααα and the jth column of Y as βββ ,
E(XY)i j can be computed by solving the following equation:

E(XY)i j

= E((ααα · c)(βββ · c))

=
∫ 1

0
· · ·
∫ 1

0

( 31

∑
i=1

ciαi

)( 31

∑
i=1

ciβi

)
dc1 · · ·dc31

(6.10)
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To demonstrate our formula, for illustrative purposes, let us assume that our sensor takes
samples at two discrete wavelengths:

E((ααα · c)(βββ · c)

=
∫ 1

0

∫ 1

0
(c1α1 + c2α2)(c1β1 + c2β2) d1 d2

=
∫ 1

0

∫ 1

0
c2

1α1β1 +(α1β2 +α2β1)c1c2 +α2β2c2
2 d1 d2

=
α1β1

3
+

α2β1

4
+

α2β2

3

(6.11)

Equation (6.11) can be extended to include 31 wavelengths, the derivations are not
provided here.

6.2.2 Polynomial Maximum Ignorance with Positivity Colour Correc-
tion (MIPP)

In this section, we extend Maximum Ignorance colour correction, and so it can be ap-
plied second order polynomial colour correction. We achieve this by adding ‘squared’ and
‘cross’ terms to each RGB camera measurement: each input RGB is mapped to a 9-vector:
(r,g,b,r2,g2,b2,rg,rb,gb)⊺. We can then again use Moore-Penrose inverse to solve for the
colour transformation, although here QP⊺ and PP⊺ have the dimensions of 3×9 and 9×9
respectively.

The expectation for the cross-product terms between the linear terms and polynomial
terms in the 3×9 matrix QP⊺ are calculated using the following equation:

E((ααα · c)(βββ · c)(γγγ · c))

=
∫ 1

0
· · ·
∫ 1

0

( 31

∑
i=1

ciαi

)( 31

∑
i=1

ciβi

)( 31

∑
i=1

ciγi

)
dc1 · · ·d31

(6.12)

As an example, to compute E((r · c)(r · c)(x · c)), the ααα and βββ in Equation 6.12 are
redefined as the sensitivities of imaging sensor’s red channel, and γ is redefined as the X
channel of the CIE XYZ colour matching function.
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The expectation for the auto-product terms in the 9× 9 matrix PP⊺ can be computed
using the following equation:

E((ααα · c)(βββ · c)(γγγ · c)(δδδ · c))

=
∫ 1

0
· · ·
∫ 1

0

( 31

∑
i=1

ciαi

)( 31

∑
i=1

ciβi

)( 31

∑
i=1

ciγi

)( 31

∑
i=1

ciδi

)
dc1 · · ·d31

(6.13)

As an example, to compute E((c ·r)(c ·r)(c ·g)(c ·b)), we substitute ααα and βββ in Equation 6.13
with the spectral sensitivity of the red channel of the imaging sensor. We substitute γγγ and
δδδ with the spectral sensitivities of the green and blue channels of the imaging sensor
respectively.

6.3 Experiment

We performed colour correction experiments using a Nikon D5100 camera. The spectral
sensitivity measurement data for the camera can be found in [89]. Relative to this camera, we
computed the colour correction matrices for the following methods: Maximum Ignorance,
Maximum Ignorance with Positivity and Polynomial Maximum Ignorance with Positivity.
This includes two 3×3 matrices, and a 3×9 matrix.

6.3.1 Simulation experiment using synthetic colour signal

We generated colour signals using all pairs of 102 illuminant spectra and 1995 reflectances [97].
In total, there were over 200,000 spectra in our colour signal dataset. We calculated their
RGBs and corresponding XYZs by numerical integration. We applied each of the 3 Maximum
Ignorance colour correction matrices to the camera RGBs in order to obtain the estimated
XYZs. We then compared the estimated XYZs with true XYZs using CIELAB ∆E∗

ab . The
results are shown in Table 6.1.

Table 6.1 The CIELAB ∆E∗
ab for colour correction experiment using synthetic data

Method Mean Median 95%
Maximum Ignorance 5.25 3.54 13.02
Maximum Ignorance with Positivity 3.16 2.14 8.64
Polynomial Maximum Ignorance with Positivity 4.52 3.48 11.31



6.4 Conclusion 119

6.3.2 Experiment using real camera data

We also performed colour correction experiment using real camera data. We used a 24-patch
X-Rite ColorChecker Classic as our training target. Under cloudy daylight, the radiance
from each patch of the training target was measured using a Photo Research PR-670. By
numerically integrating the radiance with the CIE XYZ colour matching function, we obtained
the true XYZs of the target patches. Great care was taken with the measurement geometry
to ensure that each patch was measured in the same way. We used the raw images output
from Nikon D5100 as the RGB values for the colour patches. The effect of shading variation
across the ColorChecker was normalised by dividing the RGB values by brightness values
from an image of a flat matt-white reflector.

Table 6.2 The CIELAB ∆E∗
ab for colour correction experiment involving real world data

Method Mean Median 95%
Maximum Ignorance 5.32 4.46 12.22
Maximum Ignorance with Positivity 3.99 3.66 8.25
Polynomial Maximum Ignorance with Positivity 6.25 5.02 12.5

6.4 Conclusion

In linear colour correction, Maximum Ignorance with Positivity assumes that all possible
positive spectra are equally likely. Relative to this assumption, colour correction depends only
on the autocorrelation of the spectra and the device spectral sensitivities. However, to apply
the MIP assumption to non-linear colour correction is much more complex. One contributions
of this chapter is to show how we can solve the problem of polynomial regression under the
MIP assumption, by presenting the mathematics behind the modelling of the expected sensor
response.

Experiments, however, demonstrated that the polynomial maximum ignorance assump-
tion works less well than the antecedent methods. Speculatively, this underperformance can
be explained by the higher order terms for ‘unlikely’ sharp spectra dominating the regression.
Further investigation can be conducted by computing the autocorrelation matrix in subsec-
tion 6.2.1 without the positivity constraint and compare it to autocorrelation matrix with
the constraints. The comparison metrics can be Kullback Leibler divergence and encoding
entropy, similar to the approaches in subsection 5.5.3

The observation that we might examine performance for all spectra in terms of expected
sensor responses is one that can be extended to other colour correction scenarios which we
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are investigating. Overall, the derivation performed in this chapter might be of interest for
those who are interested in taking the integration approach for computing colour correction
further.



Chapter 7

Conclusion

In this thesis, we explored the topic of colour correction.
In Chapter 2, we started off by giving an overview of the Human Visual System and

digital cameras, with an emphasis on how colour responses are formed. Many of the
mathematical tools that we employed throughout the thesis – and in particular linear algebra
– are introduced.

In Chapter 3, we provided a review on various colour correction algorithms. We discussed
the ideas behind the algorithms and their advantages and disadvantages. A special emphasis
was placed on reviewing ‘exposure invariance’. This is the idea that if we simply change
the amount of light present in a scene some algorithms stop working. For general colour
correction we propose it is important to maintain exposure invariance (since we do not wish
an algorithm to stop working because the brightness has changed). Finally we evaluated the
empirical performances of the current state of the art in colour correction.

As a companion to Chapter 3 we developed a Matlab toolbox where many of the leading
colour correction algorithms have been implemented.

In Chapter 4, we provided a comparison of reflectance datasets. We attempted to address
the question of "which dataset should be used for training a colour correction algorithm?".
The fact that we ultimately failed to answer this question was both the motivation and
springboard for Chapter 5.

Chapter 4 presented results for commonly used measures of similarity in a cross-validation
sense, i.e. how well can one dataset be used to train the colour correction transform and
how well this transform works when applied to a different dataset. We also presented new
metrics. In work that is related to Chapter 5 we considered representing the colours produced
by a reflectance dataset by its convex closure. We also presented a novel application of the
Vora Value metric. The Vora Value measure is used to evaluate the similarity between two
sets of camera. Via a reflectance basis decomposition, we use it to compare two reflectance
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datasets. In complete alignment with previous unrelated studies our investigation of the Vora
Value measure led us to the conclusion that reflectances can be considered as living in 8 or 9
dimensional subspace.

Finally, in a surprising empirical result, we showed that the data set that is most difficult
to colour correct is simultaneously the one that leads to the best cross-validated colour
correction performance.

Chapter 5 presents a major contribution of this thesis. We revisited the convex closure idea
presented in Chapter 4. There, it was argued that because reflectances viewed in combination
(e.g. when viewed from distance) merge in proportion to their relative proportions, all the
reflectances in the convex closure of a reflectance set are possible.

However, computationally, a convex closure (even with a 9-dimensional basis representa-
tion) is an unwieldy structure. We therefore proposed to represent the convex closure by its
hypercube enclosure (or bounding box). However, we demonstrated that it was important
that the bounding box was calculated with respect to the correct coordinate system. Here the
idea of a common basis is important. We represented all reflectances by their expansion (by
their coordinates) with respect to the cosine series basis. The bounding box with respect to
the common basis is a closer fit compared to the bounding box of the reflectances themselves
(i.e. functions of wavelength).

The hypercube enclosure is a continuous representation of a reflectance set. Therefore
algorithms are developed to calculate a colour correction transform given our hypercube rep-
resentation. Experiments demonstrate that the hypercube enclosure of reflectance sets drives
good colour correction and also works under a cross-validation evaluation. Significantly, in
terms of impact on colour correction, the enclosing hypercubes of different reflectance sets
are much more similar than the reflectance datasets themselves. To some extent we answer
the question “what reflectance dataset should I use?” with the answer “it doesn’t matter so
long as you use its convex enclosure”. One of the disadvantages of Chapter 5 is that to use
the bounding hypercube idea for colour correction one has to use linear regression (it is the
only method that seems feasible given a continuous set of reflectances).

In Chapter 6, we expanded upon the idea of integration of the reflectance space further
with an eye to using a more general colour correction transform. We considered allowing
all possible reflectances. This is the so-called MIP: Maximum ignorance with Positivity
Assumption. Relative to this simple MIP assumption, we showed how colour correction
algorithm more advanced than linear least squared could be trained and used. This is a
theoretical contribution, however. The MIP assumptuon based polynomial colour correction
does not perform better than linear regression.
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7.1 Future work

The idea of reflectance space integration can be definitely explored further.
For training colour correction matrices, larger datasets are typically considered to be

better, as they cover a wider range of colours. In Chapter 5, when we calculated the
autocorrelation matrix by integration, the parameters we took into account were the limit of
the bounding box, and the basis of the reflectance space. One avenue of research would be
projecting the limits of the bounding box onto the basis, and using the resulting reflectances
to training colour correction matrix. We effectively resample a large reflectance dataset using
a small number of samples. It would be interesting to see the smaller reflectance dataset can
achieve similar performance as the larger reflectance dataset. This research could potentially
lead to a new compact colour checker.

Another limitation to our approach of calculating the reflectance dataset autocorrelation
is that we only take the range of the sampled reflectance within the reflectance space into
account. We do not take the distribution of sample dataset into account. It would be interesting
to incorporate the distribution statistics of the dataset when calculating the autocorrelation
matrix using integration. Statistics such as mean and variance affect the final shape of the
autocorrelation matrix.

It is not very clear why polynomial maximum ignorance colour correction has poor
real-world performance. Further investigation would be fruitful. It would be interesting to
derive the root-polynomial variant of the maximum ignorance colour correction algorithm.
Compared to polynomial colour correction, root-polynomial colour correction has the prop-
erty of being exposure invariant. Root-polynomial maximum ignorance colour correction
would therefore be useful in real-world conditions, assuming its performance is adequate.
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