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ABSTRACT: 

Multimode transmission of continuous wave 633 nm radiation and 1064 nm Q-switched 

Nd:YAG pulses using silver coated hollow core optical waveguides (HCWs) with bore 

diameters of 700 μm and 1000 μm is reported. The effect of launch conditions, input 

beam polarization and waveguide bore diameter on the pulse energy transmission and 

potential for focussing the beam effectively at the HCW exit is detailed. An optimal 

launch f-number range of 155-165 is identified for minimizing the exit angle. 
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1.  INTRODUCTION 

Transmission of laser pulses with high peak powers in the visible to near-infrared (VIS-

NIR) spectral range using hollow core waveguides (HCWs) has the potential for 

http://www.sciencedirect.com/science/article/pii/S0030402615015168


 

application in processes such as laser ignition, laser surgery, remote sensing and laser 

induced breakdown spectroscopy [1-3]. A key challenge in such applications is 

obtaining a beam of sufficient quality at the exit of a waveguide, as beam quality is 

intrinsically linked to the potential for focusing a beam to a small spot.  

HCWs comprise glass capillary tubes with reflective coatings, typically metallic, 

deposited on the inner surface, resulting in a flexible and durable waveguide which 

exhibits low attenuation losses. The effect of launch conditions on single and low order 

mode transmission via HCW was characterized by Nubling and Harrington [4]. Single 

and low order mode transmission via HCW is possible when the bore diameter is in the 

order of 30-50 times the wavelength of the laser radiation [5].  Nubling and Harrington 

reported f-numbers of 15, 22 and 30 as optimal for minimizing attenuation losses during 

single mode transmission of 10.6 μm laser radiation via 1m long HCWs with 320 μm, 

530 μm and 700 μm bore diameters, respectively. 

The attenuation loss and modal properties for low order mode transmission of 10.6 μm 

wavelength laser radiation via silver coated HCW was also investigated by Bledt et al. 

[5]. The number of modes propagating was shown to be dependent on bore diameter, 

with bore diameters equal to approximately 30 times the wavelength required to ensure 

single mode behaviour.  

Compared with low order mode infrared (IR) transmission, relatively little information 

regarding effect of launch conditions on HCW exit beam quality exists for multi-mode 

delivery when compared single and low order mode delivery. Joshi et al. reported 

delivery of high peak power radiation from a Q-switched Nd:YAG operating at 1064 

nm via a 2 m long cyclic olefin polymer coated HCW [6].  An f-number of 55 was 

identified as suitable, producing an exit beam with a beam quality factor (M2) of 15. It 

was noted that, as the f-number was increased or decreased relative to this value, the 

beam quality and transmission was degraded. However, Dumitrescu reported improved 

exit beam quality at a higher f-number for delivery of 1064 nm laser radiation via 

HCW, with an M2 of 12 obtained at an f-number of 83 [1]. 

In this work, a thorough experimental investigation into the multimode transmission of 

VIS-NIR laser radiation using silver coated HCWs with bore diameters of 700 μm and 

1000 μm is reported. The effects of launch conditions, input beam characteristics and 



 

HCW bore diameter on output beam quality are investigated. Optimal launch conditions 

for minimizing exit angle are presented. 

 

2.  EXPERIMENTAL SET-UP 

The experimental set-up is shown in Figure 1. Two laser sources were used in this 

investigation. The first was a Q-switched Nd:YAG TEM00 laser (Brilliant; Quantel, 

Ltd) with an M2 of 1.84, pulse duration of 4 ns, operating at 10 Hz repetition rate and 

1064 nm wavelength. The second was a HeNe TEM00 laser (R-30599; Research 

Electro-Optics, Inc) with an M2 of 1.1 operating in continuous wave mode at 633 nm 

wavelength. The HCWs were mounted in a 5-axis stage with 3 mm of coarse travel in x, 

y and z directions as well as ±3.5o and ±5.0o pitch and yaw, respectively. At both their 

input and output ends the HCW’s sat in a V-groove. At the input end the HCWs were 

lightly secured in place using a quick release clamp (HFF001, Thorlabs, Inc.). A free-

standing distance of 2 cm from the input face of the HCW to the quick release clamp 

was allowed to minimise stresses at the input face. A laser beam analysis (LBA) camera 

(Spiricon SP620U, Ophir Optronics Solutions Ltd) was used to determine the output 

angle at the HCW exit.   

 

 

Figure 1: Experimental set-up with (1) Nd:YAG laser source, (2) ½ wave plate, (3) 

polarizing beam splitting cube, (4) ¼ wave plate, (5) 2X beam expander, (6) 5-axis 

launch assembly, (7) beam-steering mirror(s), (8) beam dump(s), (9) HeNe laser source, 

(10) data acquisition and control computer, (11) HCW and (12) LBA camera. The 



 

dashed-dot line represents the optical path whereas the dashed line represents the 

optical path for back reflections. Greyed elements could be removed from the beam 

path when required. 

 

A polarization based optical attenuator was used to manipulate the laser power. This 

method of attenuation was preferred to changing the flashlamp/Q-switch delay time to 

manipulate the output power as the latter can lead to changes in the propagation 

characteristics of the beam [7,8]. A power meter (Maestro; Gentec Electro-Optics, Inc.) 

connected to a data acquisition and control computer was used to determine the 

transmission properties of the HCWs. An optical isolator, consisting of a ¼ wave plate 

placed after a polarizing beam splitting cube along the optical path, was used to protect 

the laser source from back reflections.  

 

3.  METHODOLOGY 

The effect of input angles θinput of up to 10 mrad on exit angle θexit (rad) for 1 m long 

HCWs (held roughly straight) was determined using the experimental set-up shown in 

Figure 1.  The HCWs consisted solely of quartz capillary tubing with a thin silver film 

deposited on the inner surface. The HCWs were developed by Matsuura et al. who 

published details of the manufacturing process [9]. Two HCW bore diameters α of 700 

μm and 1000 μm were utilized in this investigation, with outer diameters of 850 μm and 

1600 μm, respectively. Five spherical plano-convex lenses with focal lengths f of 150, 

200, 250, 300 and 500 mm were used in conjunction with a 2X beam expander to vary 

the launch angle at the input face of the HCWs. The optimal launch conditions for a 

given combination of launch angle and HCW were determined by manipulating each of 

the five axes individually to minimise the spot size incident on the LBA camera. Using 

the LBA camera’s on-board photodiode power meter, optimal coupling of the laser 

radiation into the HCW could also be ensured. A schematic diagram of the HCW 

launch assembly is shown in Figure 2. 

 



 

 

Figure 2: Schematic of HCW launch/exit configuration. The dashed lines represent the 

marginal rays whereas the dashed-dot line represents the optical axis. 

 

The input angle was calculated as the full divergent angle of the beam at a distance 

from the focal position equal to the Rayleigh range: 

𝑧𝑅 = 𝜋𝑑𝑚𝑚𝑚
2

4𝑀𝑚𝑚
2 𝜆

                                                                                                                       (1) 

where M2
in is the beam quality factor of the input beam, λ is the laser wavelength (nm) 

and dmin is the focal spot size prior to the input face of the HCW (m), which can be 

calculated using: 

𝑑𝑚𝑚𝑚 = 4𝑀𝑚𝑚
2 𝑓𝜆

𝜋𝑑𝑙𝑙𝑚𝑙
                                                                                                                 (2) 

where f is the focal length of the launch optic (m) and dlens is the beam diameter incident 

on the lens (m). The diameter of the beam at a distance from the focal position equal to 

zR can be calculated using Equation 3, with the input angle calculated using Equation 4. 

𝑑𝑧𝑅 = 𝑑𝑚𝑚𝑚 �1 + �4𝑀𝑚𝑚
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Care was taken to ensure that the diameter of the beam at a distance from the focal 

position equal to zR was smaller than the bore diameter for all launch configurations 

used.  

4  RESULTS AND DISCUSSION 

4.1 Effect of launch conditions  



 

Exit angle and M2
exit as a function of θinput is plotted in Figures 3 (a-d) for both bore 

diameters and wavelengths. Despite the multimode nature of the beam upon exiting the 

HCWs, the M2 factor was utilized as a useful means of quantifying the beam quality at 

the exit of the HCWs.  

 

 

Figure 3: Exit angle as a function of input angle for (a) 633 nm wavelength and 700 μm 

bore diameter, (b) 1064 nm wavelength and 700 μm bore diameter, (c) 633 nm 

wavelength and 1000 μm bore diameter and (d) 1064 nm wavelength and 1000 μm bore 

diameter. Data point labels are the corresponding M2
exit values. 

 

It was found that θexit was consistently smaller for the 1000 μm bore diameter over the 

range of input angles tested, revealing a dependence of output beam divergence for 

propagating modes on bore diameter which is consistent with theory [4]. A general 

trend revealed in Figures 3 (a-d) is exit angle decreasing as launch angle is reduced, 



 

which can be attributed to the propagation of fewer modes. A noticeable exception to 

this trend is observed over a launch angle range of 2 mrad to 4 mrad, with launch angles 

of approximately 2.6 mrad shown to result in optimal exit beam quality for both bore 

diameters and wavelengths, revealing an optimal launch angle for coupling to lower 

order modes. 

The exit beam mode profiles for the optimal launch angles with respect to beam quality 

are shown in Figures 4 (a-d) for both bore diameters and wavelengths, confirming the 

multimode nature of the beam. This is to be expected when considering the bore 

diameters used in this work, which far exceed the 30λ threshold required for single 

mode behaviour [5]. 

 

 

Figure 4: Mode profiles for (a) 633 nm wavelength, 700 μm bore diameter and 2.52 

mrad input angle, (b) 633 nm wavelength, 1000 μm bore diameter and 2.52 mrad input 



 

angle, (c) 1064 nm wavelength, 700 μm bore diameter and 2.62 mrad input angle, and 

(d) 1064 nm wavelength, 1000 μm bore diameter and 2.62 mrad input angle. 

 

At 1064 nm wavelength the pulse energy transmission for the optimal launch angle of 

2.62 mrad was found to be 89 % and 93 % for the 700 μm and 1000 μm bore diameter 

HCWs, respectively. This was based on input pulse energies in the order of 5 mJ. The 

relative reduction in pulse energy transmission for the 700 μm bore diameter is 

consistent with the experimental observations in literature, with waveguide losses 

exhibiting an inverse cubic relationship with α [10-12].  

The maximum transmitted pulse energy was approximately 45 mJ for both bore 

diameter HCWs at 1064 nm wavelength. This is comparable to maximum transmitted 

pulse energies reported for solid core silica step index fibers [13]. For transmitted pulse 

energies up to and including this damage threshold, no spark formation was observed at 

the input face of the HCW. Transmitted pulse energies above this value resulted in 

localized damage to the reflective inner coating, initially occurring approximately 3 cm 

downstream of the quick release clamp for both bore diameters. This can be attributed 

to strong absorption of the laser radiation in the reflective coating due to micro-bending 

as a result of manipulation of the 5-axis launch assembly [14]. This initial damage acted 

as a nucleation point for further damage, which proceeded intermittently by the process 

of ablation. It should be noted that isolated instances of damage occurred at distances of 

up to 7 cm downstream of the quick release clamp. 

The effect of input polarization at 1064 nm wavelength was determined for the optimal 

launch angle of 2.62 mrad. The beam exiting the optical isolator was circularly 

polarized. By rotating the ¼ wave plate on the optical isolator through 45o, varying 

degrees of elliptical polarization could be obtained. Furthermore, by removing the ¼ 

wave plate altogether, linear polarization could be obtained. No appreciable change in 

mode structure of the output beam or transmitted pulse energy was observed for any of 

the aforementioned polarization configurations. However, it should be noted that Parry 

et al. observed that linear polarization plays a key role in determining the transmission 

properties and laser induced damage threshold (LIDT) of HCWs when in a bent 

configuration [14]. It was shown that linear polarization parallel to the direction of bend 

reduced both the transmission and LIDT. Using this arrangement, a maximum 



 

transmitted pulse energy of 61 mJ at 1064 nm was reported for a HCW with a bore 

diameter of 1000 μm. 

4.2 Potential for focussing at the HCW exit 

In this case, focussing of the beam to diameter dfocus using a single a-spherical focussing 

optic with an effective focal length of 15 mm, placed 300 mm downstream of the HCW 

exit along the optical axis, is considered. The intensity (Equation 5) at the focal point 

for the two optimal configurations identified in Section 4.1 for the 700 μm and 1000 μm 

bore diameters, both of which correspond to an input angle of 2.62 mrad, is shown in 

Table 1 for an input pulse energy of 5 mJ.  

𝐼0 = 4𝑃
𝜋𝑑𝑓𝑓𝑓𝑓𝑙2

                                                                                                                      

(5) 

 

α (μm) M2
exit Transmission (%) dfocus (μm) I0 (MW/m2) 

700 8.50 89 34.65 47.18 

1000 11.50 93 48.89 24.76 

Table 1: M2
exit, pulse energy transmission, dfocus and I0 with varying bore diameter 

(1064 nm wavelength, 5 mJ pulse energy, 10 Hz repetition rate, 4 ns pulse duration 

2.62 mrad input angle). 

 

Table 1 reveals that higher focal intensities can be achieved by focussing light exiting 

the 700 μm bore diameter relative to the 1000 μm bore diameter. This is due to the 

higher beam quality, which is more than sufficient to compensate for the reduction in 

transmission. For the same focal configuration and considering the experimentally 

determined maximum pulse energy transmission of 45 mJ, corresponding focal 

intensities of 425 MW/m2 and 223 MW/m2 are calculated for the 700 μm and 1000 μm 

bore diameters, respectively. 

4.3 Optimal f-number for multimode VIS-NIR transmission  

A convenient parameter to use when describing launch conditions for HCWs is f-

number; that is, the ratio of the focal length of the focussing optic to the beam diameter 



 

incident on the lens, Equation 6. The f-number is particularly useful as it incorporates 

key laser parameters relevant to the focussing of the beam. Exit angle as a function of f-

number is shown in Figure 5 for both bore diameters and wavelengths used in this 

investigation. 

𝑓# =  𝜋𝑑𝑚𝑚𝑚
4𝑀𝑚𝑚

2 𝜆
= 𝑓

𝑑𝑙𝑙𝑚𝑙
                                                                                                         (6) 

 

 

Figure 5: Exit angle as a function of f-number. 

 

The smallest exit angles were achieved with f-numbers in the order of 155 for both bore 

diameters and wavelengths used in this investigation. Values for θexit over f-number 

range of approximately 80-90 are in good agreement with experimental observations of 

Dumitrescu, who reported an output half angle of 8 mrad for an input f-number of 83 

[1]. The closest corresponding f-number for this study of 86 produced an output half 

angle of 9.7 mrad. 

Optimal f-numbers of 158 and 165 were found for 1064 nm and 633 nm wavelengths, 

respectively. This suggests that there is negligible dependence on α or λ for optimal 

multimode transmission via HCW. The data for 633 nm suggests that there is potential 

for further reduction of θexit at higher f-numbers (> 450). However, such f-numbers 

would invariably yield focal spot diameters larger than the bore diameter of the HCWs 

and as such would be unsuitable for high power applications due to laser induced 

damage as a result of heat generation or ablation at the HCW input face [4]. 



 

 

5.  CONCLUSIONS 

Optimal launch conditions for multimode transmission of VIS-NIR laser radiation using 

silver coated hollow core waveguides (HCWs) with bore diameters of 700 μm and 1000 

μm have been identified. 

The effect of input angles of up to 10 mrad on the HCW exit angle and subsequent 

beam quality factor M2 were determined. It was found that the 1000 μm bore diameter 

consistently resulted in a smaller exit angle, consistent with theory. Conversely, the M2 

was consistently lower for the 700 μm bore diameter. Operating at 1064 nm, of the 

various optical configurations tested in this work, a launch angle of 2.62 mrad was 

found to give the highest pulse energy transmission (~90 %) and best beam quality for 

both HCW bore diameters. The mode profile and pulse energy transmission 

characteristics were shown to be ostensibly independent of changes in input beam 

polarization. A maximum transmitted pulse energy if approximately 45 mJ was 

determined for both HCW bore diameters, above which laser induced damage occurred. 

An optimal launch f-number range of 155-165 was identified for minimizing the exit 

angle and thereby achieving optimal beam quality at the exit of the HCW. Results 

suggest a negligible dependence on bore diameter or wavelength for optimal launch f-

number for multimode transmission of VIS-NIR laser radiation via HCWs. Further 

work is required to determine the effect of HCW length and bend configuration on 

optimal launch f-number. 

 

ACKNOWLEDGEMENTS: 

The authors would like to thank Siemens Industrial Turbomachinery Ltd (SITL) for 

funding this investigation as part of a wider investigation into laser ignition for gas 

turbines. 

 

 

 

 



 

REFERENCES: 

[1] Dumitrescu C, Puzinauskas P, Olcmen S, Buckley S, Joshi S, Yalin A. Fiber-optic 
spark delivery for gas-phase laser-induced breakdown spectroscopy. Applied 
Spectrocopy 2007;61(12):1338-1343.  

[2] Patimisco P, Spagnolo V, Vitiello MS, Scamarcio G, Bledt CM, Harrington JA. 
Low-Loss Hollow Waveguide Fibers for Mid-Infrared Quantum Cascade Laser 
Sensing Applications. Sensors 2013;13(1):1329-1340.  

[3] Yalin A. High power fiber delivery for laser ignition applications. Opt Express 
2013;21:A1102-A1112.  

[4] Nubling RK, Harrington JA. Launch conditions and mode coupling in hollow-
glass waveguides. Opt Eng 1998;37(9):2454.  

[5] Bledt CM, Harrington JA, Kriesel JM. Loss and modal properties of Ag/AgI 
hollow. Appl Opt 2012;51(16):3114-3119.  

[6] Joshi S, Yalin A, Galvanauskas A. Use of Hollow Core Fibers, Fiber Lasers, and 
Photonic Crystal Fibers for Spark Delivery and Laser Ignition in Gasses. Applied 
Optics 2007;46(19):4057-4064.  

[7] Mullett J, Dodd R, Williams C, Triantos G, Dearden G, Shenton A, et al. The 
influence of beam energy, mode and focal length on the control of laser ignition in an 
internal combustion engine. J Phys D 2007;40(15):4730.  

[8] Chen Y-, Lewis JWL, Parigger C. Spatial and temporal profiles of pulsed laser-
induced air plasma emissions. Journal of Quantitative Spectroscopy and Radiative 
Transfer 2000 10/16;67(2):91-103.  

[9] Matsuura Y, Tsuchiuchi A, Noguchi H, Miyagi M. Hollow fiber optics with 
improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers. Appl 
Opt 2007;46(8):1279-1282.  

[10] Doradla P, Joseph C, Kumar J, Giles R. Propagation loss optimization in 
metal/dielectric coated hollow flexible terahertz waveguides. SPIE Photonics West 
OPTO 2012;8261:82610P-82610P-10.  

[11] Kriesel JM, Hagglund GM, Gat N, Spagnolo V, Patimisco P. Spatial mode 
filtering of mid-infrared (mid-IR) laser beams with hollow core fiber optics. SPIE 
Photonics West 2015(8993).  

[12] Sampaolo A, Patimisco P, Kriesel JM, Tittel FK, Scamarcio G, Spagnolo V. 
Single mode operation with mid-IR hollow fibers in the range 5.1-10.5 µm. Opt 
Express 2015;23(1):195-204.  

[13] El-Rabii H, Gaborel G. Laser Ignition of Flammable Mixtures via a Solid Core 
Optical Fiber. Appl Phys B 2007;87:139-144.  



 

[14] Parry JP, Stephens T, Shephard J, Jones J, Hand DP. Analysis of optical damage 
mechanisms in hollow-core waveguides delivering nanosecond pulses from a Q-
switched Nd:YAG laser. Applied Optics 2006;45(36):9160-9167.  

 


