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ABSTRACT The accuracy of object-based computer vision techniques declines due to major challenges
originating from large scale variation, varying shape, perspective variation, and lack of side information.
To handle these challenges most of the crowd counting methods use multi-columns (restrict themselves to a
set of specific density scenes), deploying a deeper and multi-networks for density estimation. However,
these techniques suffer a lot of drawbacks such as extraction of identical features from multi-column,
computationally complex architecture, overestimate the density estimation in sparse areas, underestimating
in dense areas and averaging of feature maps result in reduced quality of density map. To overcome
these drawbacks and to provide a state-of-the-art counting accuracy with comparable computational cost,
we therefore propose a deeper and wider network: a Context-aware Scale Aggregation CNN-based Crowd
Counting method (CASA-Crowd) to obtain the deep, varying scale and perspective varying features. Further,
we include a dilated convolution with varying filter size to obtain contextual information. In addition, due to
different dilation rates, a variation in receptive field size ismore useful to overcome the perspective distortion.
The quality of density map is enhanced while preserving the spatial dimension by obtaining a comparable
computational complexity. We further evaluate our method on three well-known datasets: UCF_CC_50,
ShanghaiTech Part_A, ShanghaiTech Part_B.

INDEX TERMS Deep learning, convolutional neural networks, density estimation, crowd counting.

I. INTRODUCTION
Automated crowd counting refers to estimating the
number of individuals in unconstrained scenes depicted by
images and videos. It has applications in crowd management,
urban planning, congestion avoidance, flow analysis,
anomaly detection, video supervenience, public safety
management, defense, health-care, disaster management,
so on. Nonetheless, it is very challenging to accurately obtain
the count due to severe occlusion, clutter, irregular object
distribution and non-uniform object scale [1]–[4].

The number of people and their spatial distribution are two
significant measurements for understanding crowded scenes.
Detection, tracking and counting in low resolution images
and surveillance videos, where people are represented by
only few pixels tall, are issues that yet demand more inves-
tigation. Detection-based crowd counting performs well in
sparse crowd, however, the performance of both detection and
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counting degrades with increase in object density. In contrast,
regression-based crowd counting methods [1], [2] perform
well in very dense crowded environment. However, it faces
significant hurdles while adapting the scale variation and
preserving the spatial information. With the boost of convo-
lutional neural networks (CNN), various CNN-based crowd
counting algorithms have mushroomed for addressing the
difficulties of crowd counting. One of the most signifi-
cant advantages of CNN-based crowd counting is its abil-
ity to learn powerful features. Recently, [3] and [4] used
CNN-based crowd counting to obtain the estimated density
map. Despite the high performance, existing CNN-based
counting techniques suffer from algorithmic weaknesses.

First, some CNN-based crowd counting methods used
multi-column approach to tackle the scale variation. Most
of the previous works tackle the congested scene analy-
sis by using multi-scale architectures [4], [5]. Though they
achieved significant performance, these algorithms however,
suffer from major shortcomings such as large amount of
training time and ineffective branch structure. MCNN [6]
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FIGURE 1. Generic form of CNN-based Crowd Counting Technique, Motivations: 1) Parallel model of CNN-based crowd counting, Motivations:
2) Appended networks (pre-classification, attention-aware and crowd degree detection) with CNN-based crowd counting architecture,
Motivations: 3) Combination of convolution and deconvolution network foe density estimation.

used multi-column with different kernel sizes to regress the
input image and merge different feature maps to obtain the
density map. Whereas switch-CNN based crowd counting
approach [7] incorporates a switch classifier to forward a
patch to specific task-oriented column. While the core of
both the methods lies in taking the advantage of character-
istics of different receptive fields, the optimal size of column
and filter size is still an issue worth addressing. Besides
multi-column, the kernel size in each column is fixed which
means that column can only handle a specific set of den-
sity scenes. Further, three columns in MCNN learn simi-
lar type of features irrespective of different filter size [8].
In addition, by taking average of each column’s output
(density map) further reduces the resolution of final density
map (Motivation 1 in Fig. 1). Secondly, most CNN-based
crowd counting algorithms focus on the accuracy by
neglecting the complexity of overall network [9], [10].
Before CNN-based crowd counting model, different types
of complex networks have been appended to increase the
accuracy. For example, a pre-classification network classi-
fies the patches of different density level and rest of the
CNN-based crowd counting model is trained on specific
range of density levels. Attention-aware model also append
at the start of CNN-based crowd counting model to obtain the
attention region and apply detection or regression task based
on the output of earlier model. Moreover, the degree of crowd
is estimated to apply a suitable CNN-based crowd counting
model. For example, density-aware network that contains
multiple sub-networks pre-trained on scenarios with different
densities [11]. These supplementary models pre-dating the
actual counting architecture enhance the overall complexity,
increase the number of parameters, excessively exploit mem-
ory making them it impossible to monitor the real time
scenes (Motivation 2 in Fig. 1). Lastly, the combination of

convolution and deconvolution network in a crowd counting
model further enhance, the number of parameters, overall
complexity, andmemory usage [12], [13]. Instead of using the
deconvoluation network to enhance the resolution of density
map, a dilated convolution may be effective to obtain the con-
text information by increasing the density map (Motivation 3
in Fig. 1).

Based on these observations, we propose a deeper,
wider and more robust approach named Context-aware
Scale Aggregation CNN-based Crowd Counting Method
(CASA-Crowd). Our model comprises of two types of
networks, (i) deep feature extraction network (DFEN) and
(ii) scale aggregation module with dilated convolution
(SAD). DFEN is responsible for extracting low to complex
deep features, whereas, SAD is used to obtain the scale
varying features by using GoogLeNet [14] inspired network.
In addition, a dilated convolution with varying rates are
inserted in inception module [14] to obtain the context infor-
mation with enhanced resolution of estimated density map.
In summary, the main contribution of our research are as
follows:
• To the best of our knowledge, it is the first attempt to
design a deeper and wider CNN-based crowd counting
algorithm. Deeper network is used to capture the simple
to complex features, whereas a wider network is respon-
sible to handle scale varying features due to multi-size
kernel.

• Combination of DFEN with SAD enhances the ability
of network to obtain large scale contextual information,
handling the perspective distortion and expanding the
spatial sampling location.

• Extensive experiments are conducted on three challeng-
ing datasets depicted that our model achieves the state
of the art performance.
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II. RELATED WORK
With the rapid growth of CNN-based techniques in clas-
sification, recognition, and especially segmentation tasks,
the CNN-based methods are employed for the purpose of
density estimation and crowd counting. To address chal-
lenges such as scale-variation due to perspective distortion,
non-uniform density distribution, and high variation of den-
sity in crowd counting datasets, even at the image level,
a number of researchers have contributed to enhance the
counting accuracy.

Authors in [15] proposed a multi-column multi-task archi-
tecture for drastic scale variation and non-uniform density
distribution. Combined density map (Gaussian+human-
shaped) is used to obtain the density map. Highly discrim-
inative features are obtained by minimizing per scale loss.
However, due to multi-column network, similar type of fea-
tures are obtained in all columns irrespective of different filter
size [8]. Motivated by the success of GANs in an image for
image translation problems, authors in [16] employ GANs
for crowd counting. The GANs are used for translation of
the image and its patches into generated maps. The actual
GTD is compared with the generated map to find the best
resolution density map (high quality). A novel regularizer
adversarial cross scale consistency pursuit network (ACSCP)
has been proposed to maintain the parent (whole image) and
child (four patches) relationship for reducing the counting
loss (previously caused by averaging). By using adversarial
loss, the distance between parent density map and concate-
nated image density map is calculated for minimizing the
loss. Authors in [17] proposed a negative correlation learn-
ing to enhance the generalizable features. More specifically,
the method deeply learns a pool of de-correlated regres-
sors with sound generalization capabilities through managing
their intrinsic diversities. Later on, authors in [18] presented
residual regression approach to incorporate correlation infor-
mation among samples. Thus they enable to learnmore intrin-
sic characteristics to enhance the generalization capacity.

Authors in [19] proposed a detection framework for dense
crowd counting. They used the multi-column architecture to
localize each person in the crowd and spotted heads with
bounding box. The enhanced performance shown in terms
of localization and counting as well, however, the perfor-
mance degrades in highly dense and occluded environments.
Zhu et al. [20] proposed a dual path multi-scale fusion net-
work with attention mechanism. Out of two, one path is
responsible to obtain the attention map of crowded regions in
an image, whereas the other one is responsible for fusing the
scale-varying features and attention map to obtain the high
estimated density map. Whereas, VGG-16 network is used
as a backbone network to extract the multi-scale features.
Tian et al. [11] proposed the crowd density-aware network
to accurately count the number of people in varying density
scenes. It consist of density-aware network, feature enhance-
ment layer, and feature fusion network to improve the accu-
racy and increases the resolution of estimated density map.

To effectively obtain the information of diverse density level,
a density-aware network that further contains sub-networks
pre-trained on different densities, wherein, feature enhance-
ment layer is used to learn an enhancement rate/weight for
each feature maps. Finally, feature fusion network is used to
fuse all the feature map. Later on, authors in [21] proposed
a dense scale network which consist of pre-trained VGG-16
network as a front-end, where the key component consists of
three dense dilated convolution blocks with varying dilation
rate to preserve the information from continuously varied
scale. However, similar size of filters reduces the capability
to obtain large scale context information. Further, the smaller
filter size is used throughout the network which results in
low performance. As we go deeper into the convolutional
pipeline, the background features mix with and dominate the
salient features extracted by smaller filter size. In this way,
predicting at an earlier layer does not increase the small filter
performance as the semantic features are not strong enough
for an effective prediction [22].

III. THE PROPOSED APPROACH
The architecture of the proposed approach is shown in Fig. 2.
Firstly, CNN-based crowd counting method starts from
ground truth density (GTD) estimation as shown in Fig. 1
(top left). Due to varying density, shape, scale and perspective
variation in a given dataset, we used different techniques to
obtain GTD with varying standard deviation (σ ) as shown
in Table 1. Secondly, our proposed method employs deep
and wide network to obtain different types of features, low to
complex, multiple-scale features and contextual information.
Thirdly, a dilated convolution convolution is appended in
the inception layer benefit from the contextual information
while maintaining the quality of density map. In the next
sub-section, we explain the computation of ground truth
density followed by detailed description of density map
estimation.

A. GROUND TRUTH DENSITY ESTIMATION
It is quite difficult to train the CNN model by using the head
annotation which is marked as a corresponding dot on each
head of an image. Therefore, according to [6], ground truth
density is obtained by blurring each of head annotation with
Gaussian kernel which is normalized to sum equal to one.
In this manner, the sum of density map is equivalent to the
total number of objects in an image. Whereas, due to diversi-
fied density distribution in different datasets, the accuracy is
greatly effected as a result of scale and perspective distorion.
Therefore, geometry information is incorporated to reduce
the chances of performance degradation. The geometry adap-
tive kernel (GAK) to calculate the ground truth density can be
defined as:

F(x) =
N∑
i=1

δ(x − xi)× Gσi (x) (1)

σi = β (̄di) (2)
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FIGURE 2. (a) The overview of CASA-Crowd, The deep feature extraction network (DFEN), scale aggregation module with dilated convolution
(SAD), (b) The whole architecture consist of two parts: one is deep feature extraction network which consist of 4 blocks, the other is Scale
Aggregation Module with Dilated Convolution consist of three blocks. The convolutional layers parameters are denoted as ‘‘Conv-(kernel
size)-(number of filters)-(dilation rate)’’, max-pooling layers are conducted over a 2 × 2 pixel window with stride of 2.

For each object xi in the ground truth δ, we use d̄i as an aver-
age distance of k nearest neighbours. To obtain the density
map, δ(x−xi) convolves with 2-D Gaussian kernel with stan-
dard deviation σi. Gaussian spread is directly proportional to
d̄i and β which is set to 0.3. We used different values of σ in
different datasets as depicted in Table 1.

TABLE 1. The ground truth density generation technique for different
datasets.

B. DENSITY MAP ESTIMATION
1) CASA-CROWD:A CONTEXT-AWARE SCALE AGGREGATION
CNN-BASED CROWD COUNTING TECHNIQUE
A Context-aware Scale Aggregation CNN-based Crowd
Counting method (CASA-Crowd) is depicted in Fig. 2.

The proposed network employs two types of network: a net-
work with smaller and same size of filters (block 1- block
4) inspired from VGG-16 named as DFEN. This network is
capable of extracting the simple to complex deeper features.
When an input is fed to the architecture, it passed through
block 1 to block 4 successively. Here, block 5-7 are named
as SAD. In each block, an inception module is included with
varying dilation rate to obtain the scale and contextual-aware
features. With varying receptive field due to different dilation
rate, it is very helpful to cope up the perspective variation
issues.

a: DEEP FEATURE EXTRACTION NETWORK (DFEN)
One difficulty in crowd counting arises due to variation of
density level, background and lack of training data. A large
training dataset is required to apply deep learning, however,
the largest existing training set contains 1201 images. Due
to fewer number of images, it has been conducted by many
deep learning models [8], [24] to use pretrained models to
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avoid overfitting. Most popular backbones such as VGG-16
are trained on ImageNet [25], which is a classification
task, whereas crowd counting is a regression task, so the
backbone may not directly fit to our model. Meanwhile,
Yosinski et al. [26] revealed that front-end of the network
learns task-independent general features as similar to Gobar
filters and color blobs, whereas back-end of the network
learns task specified features. Hence, based on these con-
siderations, we choose the first ten convolutional layers of a
pretrained VGG-16 as backbone network. Our backbone net-
work is inspired by VGG-16 [27] as shown in Fig. 2 (middle).
The network comprises of four blocks, each of which consist
of several sequential operations convolution, ReLU and max
pooling. Pure convolutional layers are used in backbone to
maintain input images resolution. Instead of using the large
size filters used by ZFNet [28], combination of two 3 × 3
has the same effective receptive fields as of 5 × 5 [29]. This
results in reduced number of parameters with two non-linear
units instead of one. We deployed ten layers from VGG-16 in
order to extract the low to high level deeper features. Further,
the remaining layers are discarded to reduce the computa-
tional cost. Blocks 1-2 are responsible to obtain the very low
level features like lines, dots, curves etc. Block 3 is used to
obtain the complex features like corners, edges, and block 4 is
used to obtain the blobs. It is a kind of simple to complex
feature learning approach. Further, we choose VGG-16 as the
front end of CASA-Crowd due to its strong transfer learning
ability. In this way, it is a flexible architecture to concatenate
with SAD for density estimation.

b: SCALE AGGREGATION MODULE WITH
DILATED CONVOLUTION (SAD)
As shown in Fig. 2 (bottom side, we denote blocks 5 to 7 the
scale aggregation module with dilated convolution (SAD).
As we know, the pedestrian in the crowd scene usually
has contain different sizes due to perspective distortion.
Therefore, multi-size filters are necessary to capture features
from multiple scales. The SAD is built upon GoogLeNet
architecture [14] originally proposed to handle the multi-
ple scales objects simultaneously and provide computational
efficiency. The main component of each block consist of
an inception module [14] with different size of filter vary
from 3×3, 5×5, 7×7 with multiple dilation rate. The output
of each branch is concatenated and inserted into next block.
The filters are very helpful to convolve the input image
on different scales, starting from fine-grained level to the
coarse level. Further, filters with small filter size mainly
focus to target the small scale, whereas the large size filters
are supportive to model the larger targets. From block 5
to block 7, each block with inception module has three
branches with varying filter sizes and dilation rate. In this
way, SAD module can process feature maps at various scales
and aggregate them to the next stage simultaneously, which
has been generally proven to be effective in object recog-
nition [14] and image enhancement [30]. Further, varying
dilation rate in each branch of each block is helpful to obtain

the contextual information. Moreover, dilated convolution is
used to enlarge the receptive field. In short, the multi-scale
contextual information is aggregated to obtain the state of the
art accuracy. As a whole, the SAD deals the multiple-scale
variation, perspective distortion, and obtaining the contextual
information. In the next sub-section, we will describe the
dilated convolution in details.

c: DILATED CONVOLUTION
To address the problem of scale variation, context informa-
tion aggregation, and quality of density map enhancement,
dilated convolution plays a key role. Dilated convolution
can be describe as exponential increment of the network’s
receptive field without an exponential increase in parame-
ters. Further, coverage and resolution of estimated density
map is maintained. CNNs with dilated filters have proven
to provide competitive performance in image segmentation
where multi-scale analysis and contextual information is also
critical [31], [32]. Therefore, by incorporating the dilated
convolution in SAD, we greatly increase the ability of the
network to selectively aggregate multi-scale contextual infor-
mation, without the need for explicit perspective maps during
training and testing.

To perform the perspective-free crowd counting and
increasing the spatial sampling location, it is necessary to
extract the features from multiple scales. Further, instead of
using the larger kernel size which exponentially increase the
number of parameters to obtain the multi-scale contextual
information, we used the dilated convolution with reduced
parameters. Moreover, dilated convolutional layers have been
demonstrated in segmentation tasks with significant improve-
ment of accuracy [32] and it is a good alternative of pool-
ing layer. Although pooling layers (e.g., max and average
pooling) are widely used for maintaining invariance and con-
trolling overfitting, they also dramatically reduce the spatial
resolution meaning the spatial information of feature map is
lost.

By observing the above-mentioned benefits of dilated
convolution, we incorporate the dilated convolution in SAD
inspired from [31]. The traditional 2D convolution can be
defined as a real valued function F : Z2

→ R, an input
�r = [−r, r]2 ∈ Z2, and a filter function k : �r → R.
The discrete convolution operator ∗ can be defined as:

(F ∗ k)(p) =
∑
s+t=p

F(s)k(t) (3)

Let l be a dilation factor and let ∗l be defined as:

(F ∗l k)(p) =
∑
s+lt=p

F(s)k(t) (4)

We defined ∗l as a dilated convolution, whereas a simple
convolution ∗ is describe as 1-dilated convolution. The dilated
convolution is motivated by the fact of exponentially expan-
sion of receptive field without losing coverage or resolu-
tion. Let we define F0,F1, . . . . . . ,Fn−1 : Z2

→ R be
a discrete functions and let we consider a discrete filters
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FIGURE 3. The dilated convolution with different receptive fields. Filter size: 3×3, Receptive field: 3×3, 7×7, 15×15.

k0, k1, . . . . . . , kn−2 : � → R. By applying the filters with
exponential increment of dilation:

Fi+1 = Fi ∗2i ki for i = 0, 1, . . . , n− 2. (5)

The receptive field of an element p in Fi+1 as the set of
elements on F0 that modify the value of Fi+1(p). Suppose the
size of the receptive field of p in Fi+1 be the number of these
elements. The size of the receptive field of each element in
Fi+1 = (2i+2− 1)× (2i+2− 1). In this way dilation supports
exponential increment of the receptive field without effecting
resolution. Let us understand systematic dilation through an
example shown in Fig. 3. F1 is produced from F0 by a dilation
convolution and each element in F1 has a receptive field of
3 × 3. F2 is produced from F1 by a 2-dilated convolution,
such that each element in F2 has receptive field of 7 × 7.
Similarly F3 is produced from F2 by a 4 dilated convolution
with receptive field of size 15 × 15. In this way the number

of parameters remain constant with exponential increment of
receptive field.

IV. EXPERIMENTS
In this section, we describe the whole experiment details
starting from network architecture to evaluation of pro-
posed method. Moreover, this section is further sub-divided
into three sub-sections: implementation details, architecture
ablation and, comparison with state-of-the-art. In addition,
we explain the performance comparison of the proposed
CASA-Crowd on three well-known datasets.

A. IMPLEMENTATION DETAILS
1) NETWORK CONFIGURATION
The network configuration of CASA-Crowd is shown
in Table 2. From block1 to block 4, we used a modified form
of VGG-16 network [27], except the fully connected layers
(in order to reduce the complexity). Using smaller filter size

TABLE 2. The architecture of CASA-Crowd.
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with more convolutional layers is more efficient instead of
applying larger filter size in fewer layers [27]. In this way,
block 1 and block 2 have two convolutional layers, block 3
has three convolutional layers followed by a pooling layer
with same filter size of 3×3. Whereas, block 4 has only three
convolutional layers of similar size. Further, for the extraction
of scale-aggregation and contextual information, we append
three blocks to obtain perspective varying and context-aware
features. From block 5 to block 7, each block has four convo-
lution layers of size (3×3/5×5/7×7), padding (1/2/3) with
dilatation rate vary from (2, 3, 4) followed by concatenation
of four branches. The similar process is repeated from block 5
to 7 to extract the multi-scale, contextual information with
quality of density map.

2) COMPUTATIONAL COMPLEXITY
The redundancy of parameters in deep neural networks is
directly related to time and space complexity [33]. We pro-
vide a brief discussion on time complexity in terms of
the number of parameters. Fig. 4 shows that CASA-Crowd
has a comparable computational complexity against
[11], [19]–[21]. The reason of this performance is incorpora-
tion of SADmodules at the back-end which are based on light
weight inception network [34]. Further, DSNet [21] achieves
low computational complexity against [11], [19], [20]. This
is due to the usage of VGG-16 network only with different
dense dilation rate, while CASA-Crowd uses theVGG-16 and
inception based modules [14], [27].

FIGURE 4. Comparison of computational complexity.

3) TRAINING DETAILS
The Euclidean distance is used to measure the loss between
estimated and ground truth density map. The loss function is
given as follows:

L(2) =
1
N

N∑
i=1

‖Z (Xi,2)− Gi‖22 (6)

where, 2 is a set of parameters. Xi is the input and Gi
represents ground truth density. Z (Xi,2) is the output den-
sity map for any input Xi, where N is the size of training

images. The first 10 layers are fine-tuned from pre-trained
VGG-16 architecture [27]. For rest of the network, initial val-
ues are taken from a Gaussian initialization standard devia-
tion 0.01. TheCASA-Crowd is trained by Stochastic Gradient
Descent (SGD) with learning rate 1e-6 and momentum 0.9.
We used PyTorch platform [35] with NVIDIA GeForce GTX
1070 with 8GB memory.

4) DATA AUGMENTATION
During the training process, 9 patches are cropped from each
image at varying locations, whereas each patch is 1/4 size
of original image. The first 4 patches are non-overlapped
and it contains four quarter of an image, while the rest of
five patches are randomly cropped. To increase the size of
training data, we mirror the patches. Data augmentation is
not performed for test dataset.

TABLE 3. Results of the ablation study on ShanghaiTech Part_A dataset.

B. ARCHITECTURE ABLATION
This subsection is devoted to probing the capability of each
component of CASA-Crowd, which specifically indicate the
DFEN and SAD module. Due to large variations of crowd
density level, we conducted all ablations on ShanghaiTech
Part_A dataset. To validate effectiveness of CASA-Crowd,
we conduct experiments by adding components incremen-
tally as shown in Table 3. The ablation study consist of five
modules added sequentially.
• DFEN: VGG-16 based network.
• SAD+Without Dilation: SAD is an inception-based net-
work without any dilated convolution.

• DFEN+Dilation: VGG-16 based network with dilated
convolution as used by authors in [8].

• SAD: Inception-based network with varying dilation
convolution.

• DFEN+SAD: Combination of deep and wide network
with varying dilation rates.

We evaluate the proposed model by sequentially adding mod-
ules. Starting from first DFEN which is based on first 10 lay-
ers of VGG-16 network. It achieves MAE of 81.7. Further,
we added dilated convolution [8] to analyze the effectiveness
of CASA-Crowd. Whereas, we evaluate our next module
SAD by eliminating the dilated convolution by achieving a
comparable MAE of 84.5. By adding the dilated convolution
in SAD, we achieve a significant decrement in MAE. This
illustrates that the features with dense, varying scales and
large receptive fields caused by incremental dense dilated
convolution block are vital and valuable to count crowd accu-
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rately and robustly. Finally, by concatenating the DFEN and
SAD, we achieve a significant improvement in performance
due to scale diversity and enlarge receptive field of features
that can handle the issue of large scale variations to perform
well on counting the number of people.

C. COMPARISON WITH EXISTING ALGORITHMS
1) EVALUATION METRICS
We evaluate the CASA-Crowd on three well known datasets.
For total number of images in test dataset, the loss or count
error is obtained by using mean absolute error (MAE) and
mean square error (MSE) as given below:

MAE =
1
N

N∑
i=1

|yi − y′i| (7)

MSE =

√√√√ 1
N

N∑
i=1

(yi − y′i)
2 (8)

MAE and MSE are evaluation metrics used to estimate the
loss. Where N is the number of images in one test sequence,
yi is the estimated count and y′ is the corresponding ground
truth count.

2) SHANGHAITECH (PART-A)
The ShanghaiTech datasets Part_A [6] is taken from the
internet, large scale, largest in terms of number of anno-
tated people, large density as compared to (B), diverse
scene and varying densities. Further, Part_A has 482 images
(300 images are used for training and 182 used for testing)
with 241,677 total number of people, where the minimum,
maximum and average head count in an image is 33,
3139 and 501, respectively. We perform comparison with
the state-of-the-art algorithms as shown in Table 4. Table 4
shows that the performance in terms of MAE and MSE of
CASA-Crowd is comparable to the state-of-the-art meth-
ods [11], [19]–[21] when tested on ShanghaiTech (Part-A).
The reason is consideration of deeper and wider network

TABLE 4. Estimation errors on ShanghaiTech dataset.

FIGURE 5. Visualization of ShanghaiTech Dataset (Part_A), ground truth
density, estimated density.

to obtain the deep complex features. Further, multi-scale
contextual information is obtained to enhance the accuracy.
The qualitative results are shown in Fig. 5.

3) SHANGHAITECH (PART-B)
The ShanghaiTech datasets Part_B [6] contains total
716 images (400 images are used for training and 316 are
used for testing) with 88,488 total number of people with
minimum, maximum and average head count equal to 9,
578 and 123, respectively. Moreover, it is collected from
Shanghai with varying scale and perspective. Non-uniform
density level in many images make it tilt towards the low
density level. We compare CASA-Crowd with existing algo-
rithms [11], [19]–[21] on ShanghaiTech datasets Part_B. The
performance of CASA-Crowd in terms of MAE and MSE is
shown in Table 4. MAE andMSE of CASA-Crowd is compa-
rable to the state-of-the-art methods [20], [21] on Part_B. The
reason for such error enhancement is due to overestimation of
crowd density in sparse density areas. Further, the qualitative
results are shown in Fig. 6.

FIGURE 6. Visualization of ShanghaiTech Dataset (Part_B), ground truth
density, estimated density.

4) UCF_CC_50
UCF_CC_50 [23] is collected from various places like con-
certs, marathon, diverse scene with wide range of densities,
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TABLE 5. Estimation errors on UCF_CC_50 dataset.

challenging dataset as compared to ShanghaiTech. The
dataset consists of 50 images, where the number of people
per image start from 94 to 4543 with an average number
of 1279. Furthermore, 5-fold cross validation is performed
according to standard settings in [23]. Table 5 depicts that the
MAE of [11], [19]–[21] is high (low accuracy) as compared to
CASA-Crowd. Additionally, CASA-Crowd takes advantage
of larger receptive field to obtain the context information,
whereas perspective distortion is improved by extracting the
low to complex features by using DFEN and SADM. The
qualitative results are shown in Fig. 7.

FIGURE 7. Visualization of UCF_CC_50 Dataset, ground truth density,
estimated density.

V. CONCLUSION AND FUTURE WORK
In this work, we proposed a novel architecture called a
context-aware scale aggregation CNN-based crowd count-
ing method (CASA-Crowd) that is trained in an end-to-end
manner. Due to strong feature extraction property of deep
neural network, we used deeper and wider networks to
extract the deep and scale varying features. Furthermore,
a dilated convolution approach is included in inception mod-
ule to obtained the context-information. The performance of

CASA-Crowd is comparable to the state-the-art methods due
to varying receptive field and strong ability of handling the
perspective varying issues. Moreover, the quality of density
map is enhanced due to expanded spatial sampling. In this
way, our proposed approach is capable of learning the low
to complex, deeper and scale-aware features with enhanced
density map. In future, we intend to incorporate the segmen-
tationwith crowd counting to further observe different classes
within any scene to improve the accuracy of overall crowd
counting.
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