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1 Introduction

In structural macroeconometric analysis, local projection (LP) estimators of
impulse responses, as proposed by Jorda (2005), have become increasingly
popular despite some evidence that they may be inefficient in small samples if
the true underlying data generating process (DGP) is a vector autoregression
(VAR) (e.g., Meier (2005), Kilian and Kim (2011), Choi and Chudik (2019)).
LP estimators are based on linear regressions only, while VAR based impulse
responses are nonlinear functions of the VAR slope coefficients. Thereby
LP estimators can be defended as nonparametric estimators of impulse re-
sponses (Angrist, Jorda and Kuersteiner (2018), Stock and Watson (2018)).
They are sometimes regarded as more robust to model deficiencies, which
can excuse their small sample inefficiency in standard scenarios. Also, there
has been evidence that, in some small sample situations, the loss in effi-
ciency may be quite limited, depending on the choice of the VAR lag order
(Brugnolini, 2017). However, based on a large number of DGPs that do not
have a finite-order VAR representation, Li, Plagborg-Mgller and Wolf (2021)
conclude that impulse response estimates based on approximating VARs tend
to have much smaller variances than LP estimates but the latter may have
smaller bias in small samples. Plagborg-Mgller and Wolf (2021) present gen-
eral conditions for VAR and LP methods to be equivalent tools for impulse
response analysis in population.

In this study we focus on a structural VAR setup where the true DGP is a
finite-order VAR process and the structural shocks are linear transformations
of the reduced-form errors. We also assume that an external instrument or
proxy is used to estimate the impact effects of a shock and, thus, the struc-
tural parameters (see Stock and Watson (2012), Mertens and Ravn (2013),
Gertler and Karadi (2015)). In other words, we focus on a conventional proxy
VAR framework. If a suitable external instrument exists, it is also possible to
use LP estimators for the corresponding structural impulse responses (e.g.,
Breitung and Briiggemann (2019), Plagborg-Mgller and Wolf (2021)).

The potential small sample inefficiencies of LP estimators have moti-
vated research in modifications with better small sample properties. By now,
a number of alternative LP estimators have been proposed (e.g., Plagborg-
Mpgller and Wolf (2017), Stock and Watson (2018), Breitung and Briiggemann
(2019), and Lusompa (2021)). The objective of this study is to review and
compare the different LP estimators for proxy VAR models in our framework.
We derive similarities between the different estimators and even provide con-
ditions for some of them to be numerically equivalent. Some of these results
are not apparent from the previous literature. We also compare the small
sample properties of the various estimators in a Monte Carlo study.



Anticipating the results, we find that two generalized least squares (GLS)
projection estimators dominate the other LP estimators in terms of root
mean squared error (RMSE). A lag-augmented GLS version proposed by
Breitung and Briiggemann (2019) is the best performing estimator for smaller
processes and it is about as accurate in terms of RMSE as a competing LP
GLS estimator proposed by Lusompa (2021) for larger VAR models. The lag-
augmented GLS estimator also yields small confidence intervals which may;,
however, have coverage below the desired nominal coverage in small samples
if they are constructed with a moving-block bootstrap. For moderately large
samples, the estimator has similar properties to the standard VAR estimator
if the true DGP is a finite-order VAR process, as assumed in the following.

The study is structured as follows. In the next section the proxy VAR
model is presented which is the basis for the LP estimators included in our
comparison. In Section 3, the alternative estimators for structural impulse
responses are discussed. Section 4 reports small sample results and Section
5 concludes. A number of additional details and results are collected in the
Online Supplement which accompanies this paper.

2 Proxy VAR Models

2.1 The General VAR Setup
Consider a K-dimensional reduced-form VAR process of order p (VAR(p)),

y=v+Aya+ -+ Ay +u (2.1)

The reduced-form error, u; = (uy, ..., uky), is a serially uncorrelated, zero
mean white noise process with covariance matrix 3, i.e., u; ~ (0,%,). The
VAR(p) model can be written alternatively in the form used for LP estima-
tion,

Yern = vp + APDY, | 4 vt(ﬁ)h, (LP form) (2.2)

where v}, is a constant vector which depends on the integer h, Y/ ;| = (y;_4,
.5 Y;i_,) is a Kp-dimensional vector of lagged dependent variables,

vﬁh) =+ Pruy g+ + Ppuyp, (LP error) (2.3)

is a weighted sum of the reduced-form errors wuy, ..., u;_; and

AM = (AP A

Y ) D



is the (K x Kp) dimensional matrix consisting of the first K rows of the ht®
power of the companion matrix

Al Ay . A, A,
Ik 0 ... 0 0
A=| 0 I 0 0
0 0 ... Ix 0|

The (K x K) weighting matrices ®; in (2.3) are equal to the first K columns of
AW e, &, = Agi). They can be computed equivalently as ®; = Z;zl D,_;A;
from the VAR slope coefficients, using &, = Ix and A; = 0 for j > p (Liit-
kepohl (2005, Section 2.1.2) or Kilian and Liitkepohl (2017, Section 12.8)).

The vector of structural errors, w; = (wyy, ..., wky)’, is assumed to have
instantaneously uncorrelated components, i.e., its covariance matrix, >, is
diagonal. The structural errors are obtained from the reduced-form errors,
ug, by a linear transformation, u; = Bw;, where B is the matrix of impact
effects of the shocks on the observed variables y;. If the nonsingular (K x K)
matrix B is known, the structural impulse responses can be computed as
®,B for h=0,1,...,H.

Note that for stable, stationary VAR processes satisfying the condition

det(Ig — Ayz — -+ — Ap2P) #0 for |z] <1, (2.4)

i.e., the determinantal polynomial has no roots in and on the complex unit
circle, y; has moving average (MA) representations,

o0 oo
Y = p+ Z Qiup_; = p+ Z ®, Bw;_;. (2.5)

i=0 i=0
In the following we assume that the impulse responses of the first struc-
tural shock, wys, are of primary interest. If only one structural shock is of
interest, this choice does not entail a loss of generality because the shocks
can be reordered freely. Hence, we only need the first column, denoted by
b= (by,...,bk), of the structural matrix B to compute the impulse responses

to the first shock as ®,b, h =0,1,....

In line with much of the proxy VAR literature, we also assume that the
size of the shock is such that it increases one of the variables on impact by one
unit.? Without loss of generality, we assume that the first shock has a unit

’In the structural VAR literature, shocks of size one standard error are also quite
common. As the standard deviation of the shock of interest is typically unknown and has
to be estimated, that complicates inference and is perhaps one reason for considering a
shock of unit size in much of the proxy VAR literature. An exception is, e.g., the paper
by Mertens and Ravn (2013) who use shocks of size one standard deviation.
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impact effect on the first variable, possibly after rearranging the variables.
In other words, the first element of b is unity, by = 1. If structural impulse
responses up to a propagation horizon of H periods are of interest, we collect
them in the (K x (H + 1)) matrix

("‘) - [90,91, ce ,QH] - [b, (I)lb, .. .,(I)Hb], (26)

where the first element of 6, is 819 = b; = 1. In this study, we will consider
alternative estimators of O.

2.2 The Proxies

Suppose there are N external instrumental variables in the (IV x 1) vector z
(called proxies in the following) satisfying

E(wyz;) = #0 (relevance), (2.7)
E(wiz) =0, k=2,...,K (exogeneity). (2.8)

Here c is a fixed N-dimensional vector. These conditions imply that
E(usz;) = BE(w;z;) = bc'.

In other words, the proxies z; identify multiples of the first column of B.
If proxies are available that satisfy the relevance and exogeneity condi-
tions, then the impact effects can be obtained as

b= 6y = E(w2;) QE(zpury) JE(u1,2,) QE(z4u1s) (2.9)

for any positive definite (N x N) matrix Q). Once b has been recovered,
the matrix of structural impulse responses of interest, ©, can be determined
using the &, of the reduced-form VAR(p) model.

Stock and Watson (2018) also require the following lead-lag exogeneity
condition for some of their theoretical results to hold:

E(wiyiz;) =0 for i #0 (lead-lag exogeneity). (2.10)

Although this condition does not exclude serially correlated z;, the proxy
has to be such that it is not predictable from past y; because y; and its lags
depend on the shocks w;. However, what we have in mind in the follow-
ing are proxies that mimic the shock of interest and, hence, have no serial
correlation. This will also be reflected in the way we generate the proxies
in the simulations in Section 4. In some studies, serially correlated proxies
have been considered (e.g., Gertler and Karadi (2015), Angelini and Fanelli
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(2019)). Such proxies qualify as well for our purposes if they satisfy the
lead-lag exogeneity condition, which is, of course, possible (see Stock and
Watson (2018, p. 924)). Alternatively, one may construct a new proxy by
prewhitening the proxy, e.g., by using as proxy the residual of an AR process
fitted to the autocorrelated proxy series or the residuals of a regression on
own lags and lags of the VAR variables, as in Angelini and Fanelli (2019).
We have not explored these options in our simulations, however.

In applications it is not uncommon that there is only one proxy such that
N =1 and z; is a scalar variable. In that case, the impact effects of the first
shock are obtained as

b=0y=E(uz)/E(uysze).

Although N =1 is a common case in practice, we allow for the general case
of N > 1 proxies in our theoretical framework. However, we will present the
estimators of interest also for the case N = 1 to make the formulas easier to
digest.

One could also extend the framework such that more than one shock is
identified by a set of proxies. Typically that requires additional assumptions
for separately identifying the individual shocks and their impulse responses.
Once those assumptions are imposed, the shocks and their impulse responses
can be considered one by one. Therefore we focus on inference for impulse
responses of a single shock in the following.

In the next section, estimation of © is discussed. A standard estimator
based on estimating the ®;, from reduced-form estimators of the VAR slope
coefficients is presented in addition to alternative LP estimators.

3 Estimators of Structural Impulse Responses

We first present the standard proxy VAR approach for estimating struc-
tural impulse responses. It is our benchmark against which we compare
the alternative projection approaches discussed subsequently. The follow-
ing projection estimators will be covered: Section 3.2 extends the standard
LP approach proposed by Jorda (2005) to the proxy VAR context and also
presents a GLS version developed by Lusompa (2021). In Section 3.3, the
lag-augmented LP estimator of Montiel Olea and Plagborg-Mgller (2021) and
a numerically equivalent projection estimator of Breitung and Briiggemann
(2019) are presented. Moreover, an asymptotically more efficient GLS exten-
sion proposed by the latter authors is also discussed. Section 3.4 is devoted
to instrumental variables (IV) versions of the estimators with and without



control variables as suggested by Stock and Watson (2018). For complete-
ness, we show in Section 3.5 how to estimate the impulse responses directly
from the LP errors. In Section 3.6 the various estimators are summarized and
compared systematically. A range of further proposals is briefly mentioned
in Section 3.7.

To simplify the exposition, we will present the different estimators for
a scalar proxy first and mention the necessary modifications for a vector of
proxies at the end of each section. Thus, z; is now a scalar proxy variable if
not explicitly stated otherwise.

It is assumed that for estimation a gross sample size T' is available, in-
cluding all required presample and lead values of the observable variables.
For a fair small sample assessment of the different estimators, it is important
to consider the same gross sample size for each of them because the estima-
tors differ also in the number of presample and lead values needed in their
calculations and, hence, they differ in the net sample size they are using.

3.1 The Standard VAR Approach

Estimators of the ®; matrices may be obtained from estimators, Ai, of the
reduced-form VAR model in equation (2.1) using the recursions

qA)i:ZCi)i—jAja Zzl,,H
j=1

Thus, the reduced-form impulse responses are nonlinear functions of the VAR
slope coefficients. Nonlinear functions may magnify estimation errors due to
model misspecification. The estimators A; may simply be ordinary least
squares (OLS) estimators. Alternatively, one may want to use bias-corrected
OLS estimators as suggested by Kilian (1998), to improve inference for im-
pulse responses (see Section S2.1 of the Online Supplement for the precise
implementation). Such estimators were found to be superior for stable, sta-
tionary VAR processes in a number of small-sample investigations (e.g., Kil-
ian (1998), Liitkepohl, Staszewska-Bystrova and Winker (2015a, 2015b)).
The first column of ©, 6y, can be estimated using the proxy z;. Let

. T T
90 = Z ﬂtzt Z ﬂltzt, (31)

t:p+1 t:p+1

where the 4; are the estimated residuals of the reduced-form VAR(p). The
estimator ﬁ Z,:T:p 41 U2 18 a standard method-of-moments estimator which,

under general conditions, is asymptotically normal (see Newey and McFadden
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(1994)) and the last K — 1 components of 6, are a differentiable function of
that estimator. Thus, they are also consistent and asymptotically normal.
More details on asymptotics are given in the Online Supplement.

Combining the proxy VAR estimator 6, with the reduced-form impulse
response estimators gives a conventional VAR based estimator

Ovar = (00,01, ...,0u] = [By, D160, . .., Drbo] (3.2)

of the structural impulse responses ©.

In some of the related literature, the proxy is turned into an internal
variable of the VAR by adding it to the set of observed variables y; and a
VAR model for the augmented vector (z;,y;)" is considered (see also Section
S1.1 of the Online Supplement). Plagborg-Mgller and Wolf (2021) show
that an advantage of internalizing the proxy is that asymptotically valid
impulse response analysis becomes possible even if the shock of interest is
‘noninvertible’, that is, the shock cannot be recovered from past and present
forecast errors. As we assume that the shocks are linear transformations
of the reduced-form VAR errors, they are invertible and do not pose the
‘noninvertibility’ problem. If the proxy mimics the properties of wy, so
that it is white noise and there are no lags in the proxy equation in the
VAR process and also the y; equations contain no lags of the proxy, then
the impact effects of the first shock may be estimated by considering the
Cholesky decomposition of

T
1 ( Zt > (Zt ’&,)
—_— _ ,Uy).
T=p t=pr1 \ W

Dividing the first column of this matrix by the second element in that column,
the last K elements are an estimator éo of 6y which is numerically identical to
the estimator in expression (3.1) (see Section S1.1 of the Online Supplement).
In other words, if we fully take into account the more restrictive assumptions
for the proxy, we get the same estimator Oy 4z as from our standard setup.
Therefore we consider the latter setup in the following.

If z; is an N-dimensional vector of proxies, a possible estimator of 6y is

T T T T
0o = Z 'atZ;Qz Z Zylyg Z altzzQz Z LTS (3-3)

t=p+1 t=p+1 t=p+1 t=p+1

where (), is a positive definite matrix. We choose @, = (Z; z2)) "t to
improve the estimation efficiency. The other quantities are not affected by
using a vector of proxies.



3.2 The Standard Local Projection Estimator
Jorda’s (2005) LP estimator is based on the system of K H equations

Yorn = v+ APVY, 4o h=0,1,.. H - 1. (3.4)
Estimating this set of equations by OLS gives estimators ®LF = A where
/15“ denotes the first K columns of the estimator A®. Thus, the reduced-form
impulse responses, ®;, are estimated by linear regression techniques which is
sometimes regarded as an advantage because such estimators are robust to
some assumptions underlying the VAR model setup. The drawback is that
up to H lead values are needed which reduce the effective sample size and
many redundant parameters have to be estimated which may compromise
the efficiency of the LP estimators of the relevant parameters in the first K
columns of A®. The estimated ®; can be used to estimate the structural
impulse responses, O, as

@LP = [é07 (i)fpém cee 7(i)IL'{Pé0]7 (35)

where éo is the same estimator for the impact effects as in (:)V Ar- Note also
that, if OLS estimation is used, (inP = &, and is, hence, identical to the
standard VAR estimator. Thus, (inPéo = él as in é\/AR-

Jorda (2005) points out that, given that the error term vt(_’i)h is autocor-
related and heteroskedastic, GLS estimation can be used for inference. GLS
estimation is possible because the stochastic structure of the error term is
known if the DGP is a VAR process. Thus, the error covariance matrix can
be constructed and estimated from the VAR parameters. GLS estimation
can also be used for point estimation to improve the estimation efficiency. A
feasible GLS procedure has been proposed by Lusompa (2021) who uses an
iterative procedure which pre-cleans the left-hand side of the LP form of the
VAR using estimates ;1 p_1, ..., U 1. More precisely, reduced-form impulse
responses are obtained from

Gorn = vn + APVY, ) 4 e, (3.6)
where Uy 1 = Yrin —@?Lsﬂt%_l - -—@&Lfﬂtﬂ and @?LS, e Cﬁfff are ob-
tained from the regressions at horizons 1 through h—1 as the first K columns
of the estimator A®. In our estimations, Uprh_1,- .-, Uy are OLS or bias-

corrected OLS reduced-form errors, depending on the estimation method
used for the VAR. The full estimator of © corresponding to this GLS proce-
dure is

OFLS = (B, DL 6y, DGL50,, ..., DEL50,], (3.7)
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where 0, is again the estimator of the impact effects in @V AR- In other words,

the first two columns of @fﬁs , 5) Lp, and @V Ar are identical.

3.3 Lag-augmented Local Projection

Lag-augmentation to fix unit root asymptotics was proposed earlier in other
contexts by Toda and Yamamoto (1995) and Dolado and Liitkepohl (1996)
and in the context of impulse response analysis by Dufour, Pelletier and
Renault (2006). Breitung and Briiggemann (2019) and Montiel Olea and
Plagborg-Mgller (2021) propose to use that device in the present context as
well. They add an additional lag to the LP form of the VAR(p) process,

Yern = vp + APDY, e AN Yy h=0,1,.. . H 1. (3.8)

Note that AV is (K x Kp) dimensional while A;’fl” is a (K x K) matrix.
If the true DGP is a VAR(p), then the coefficient matrices of the additional
lag are known to be zero, i.e., A hH =0,h=0,1,..., H—1, and estimating
the lag-augmented model by OLS implies an inefficiency. However, Mon-
tiel Olea and Plagborg-Mgller (2021) show that the resulting lag-augmented
LP estimator is more robust to unit roots and near unit roots and therefore
has advantages for inference. We denote the corresponding impulse response
estimator by ®™ = A" The resulting estimator of © is

@;};ﬁ? = [é07 (i)cllugé(b ey ¢?9é0]7 (39)

where 6, is again the same estimator as in év AR-
The model (3.8) can be reparameterized as

Yith = Vph— 1+@hwt+A( Yi_ 1+Ut(h 1),

where A% is a (K x Kp) matrix (see Appendix A.1). To use this model
for estimation, the w; have to be replaced by estimates. As the components
of w; are uncorrelated, it is plausible to consider orthogonal regressors for
them. In that case, woy, ..., wg; can be dropped from the equations for OLS
estimation without affecting the estimators of the other parameters. Hence,
0y, the first column of ©y,, can be estimated by OLS using the model

yt+h—yh+9hw1t+A )Yt 1+U§h 2 for hzl,...,H, (310)

where wq; is an estimate of wq;. If we were to choose wq; such that the OLS
estimator of 6, which is obtained from the model (3.10) for A = 0, is identical

to the estimator 90, the first column of @v AR, We could compute the columns
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of the estimator ©2% by OLS estimation of model (3.10). In fact, the shocks
wy corresponding to a given 6y = b can be determined as

wyy = V'S, /6D (3.11)

(see Appendix A.1). Thus, using b = éo and substituting the OLS estimator
for 3, based on a VAR(p) gives a series of shocks wy; which yield the esti-
mator (:)'fﬁ. Of course, the extra step of computing wy; is not needed if an
estimate of 0 is already available and, hence, we do not use it for computing
e77.

Breitung and Briiggemann (2019) proceed in a different way. They con-
sider the model (3.10) and propose to estimate wy; directly based on esti-
mated reduced-form errors, 1y, ..., ur, such that the first element of ééBB is
1. In other words, the impulse responses are by construction standardized
such that the first shock has a unit impact effect on the first variable. They
first estimate the structural errors wy, ..., wg; recursively for k =2,... K,
from the system of K — 1 equations

Ugp = Y21U1¢ + Woy,

Ut = Vo1l + YroWar + -+ + Vep—1Wi—1¢ + Wi, k=3,..., K, (3.12)

by the instrumental variables (IV) method using z; as an instrument for ;.

The estimated errors are denoted by w@ = (Way, ..., W) In the next step,
the wy; are estimated as the errors of the OLS regression

g = o + wyy, (3.13)

where 7 is a (K — 1)-dimensional row vector. Substituting the estimator wy;
computed in this way for wy; in (3.10), an estimator of © is obtained which
we denote as

éBB: [éBB,O7"'7éBB,H]- (314)

Despite the differences in the computations, the estimator Op B,0 precisely
matches the estimator éo in (:)V AR, if OLS reduced-form VAR errors u; are
used, because both estimators fully exploit the information in the reduced
form errors and the proxy. Both estimators can be interpreted as general-
ized method of moments (GMM) estimators based on equivalent moment
conditions. This implies that ©pp is identical to 6% if OLS residuals are
used for 4, in the Breitung-Briiggeman approach for estimating wi;. In the
simulations reported in Section 4, we also consider the residuals of bias-

corrected OLS instead, which yields differences in the two estimators and,
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hence, the different notation is needed when the estimator is computed via
the Breitung-Briiggemann approach.

As the estimation equations in (3.10) have an autocorrelated error term,
Uii;l) = Uprp + Prugin_1 + -+ + Ppousio + Pp_1usq, Breitung and Briig-
gemann (2019) also propose a GLS estimator obtained by replacing the un-
observed quantities w s, Ugyp—1, .- ., U2 in the error term of (3.10) by esti-

mates and using the system of equations
yt-l—h_ﬁ/t-f—h = Vh+0hw1t+A(h+1)Yt_1+®1ﬂt+h_1+' N ’+¢h_2at+2+€§h) (315)

to estimate 6;, for h = 3,..., H. The Gy,p, ..., U o are estimated reduced-
form VAR errors and the estimates of wi; are obtained as in (3.13). We
denote the estimator of ), based on (3.15) by Qgéfh for h = 3,...,H. For

h = 2, the estimator égé% is determined by OLS estimation of

Yiro — U = 1 + Oxt01; + A(3)Yt—1 + eﬁz).

The full estimator of © corresponding to the GLS procedure is

égés = [éBB,Ov éBB,la égé%a e 7égé§H]> (3-16)

where for h = 0, 1, the estimators éBB,o and éBB,l based on (3.10) are used.
In other words, the first two columns of (:)gLBS and Opp are identical. Since
the GLS estimator accounts for the autocorrelation in the error term, it is
asymptotically more efficient than the lag-augmented LP estimator based on
OLS estimation of (3.8) for columns 6, h > 1.

Breitung and Briiggemann (2019) discuss also other variants of their es-
timators. We do not consider them in our comparison because they did not
seem to improve on the small sample performance of the present estimators

in their simulations.

3.4 An Instrumental Variables Approach

Stock and Watson (2018) assume that the proxies satisfy the relevance, the
exogeneity, and the lead-lag exogeneity conditions. For a scalar proxy z; and
mean-adjusted ¥, they note that, using z; as an instrument, the standard IV
estimator of the coefficient in the linear model

Yerh = Ony1e + Ul(t]}r)h, (3.17)

18

R T—h “Lr_n
On(1V) = (Z Zty1t> Z 2tYi+h- (3.18)



Clearly, the regressor in (3.17) is correlated with the error term and, hence,
simple OLS regression is inconsistent. In contrast, the IV estimator, éh(l V),
converges in probability to 6, because the instrument is uncorrelated with
the error term, uii)h, which contains leads and lags of u; and y; and, hence,
of wy. It can be shown that

T—h T—h
1

1
P D
ﬂ ; ZtY1t = ¢ and m ; Yt+h 2t — th,

where 2 signifies convergence in probability. Hence, as 6, is assumed to be
standardized such that the first component is one, 6,(IV) 2 6, and the
estimator is asymptotically normal under general conditions. We denote the
corresponding estimator for the (K x (H + 1)) matrix © by O,y

Stock and Watson (2018) note that adding control variables to the basic
model (3.17) may be necessary if, in their framework, the proxy does not
satisfy the relevance, exogeneity, and lead-lag exogeneity conditions with-
out the controls. Controls can also reduce the variance of the IV estimator.
Stock and Watson (2018) mention that lagged y; and leads of z; are possible
control variables that can improve the efficiency of IV estimation. There-
fore, in our simulations comparing different estimators in Section 4, we use
as control variables (1, ;,...,%; ;) when h =0 and (1,v; 4,...,¥;,) or
(L, %15+ Yi_ps 2641, - - - 2e4n)’ for b > 0. The corresponding estimators of

the impulse responses are denoted by (:)Z}V and (:)%, respectively, where y
and yz stand for the respective controls. Note that adding the additional
regressors may, of course, create degrees-of-freedom problems in the estima-
tion if the gross sample size T is small, given that computing ©Y;, requires p
presample and up to H lead values. Moreover, there are up to Kp + H +2
Iegressors. It may also be worth noting that the first column of @yv and
@%, i.e., the estimator of the impact effects, is identical to 0, in @V AR if
that estlmator is based on OLS residuals (see Appendix A.2).

As a final note on the IV estimators we mention that, if there is a vector
of proxies, z;, rather than just a scalar, an IV estimator of 6;, corresponding
to (3.18) may be chosen as

T—h T—h T—h T—h
On(IV) = unziQ: Yz | Y ynzQ: > 2, (3.19)
t=1 t=1 t=1 t=1

where Q. = (3.]_, z2/)™", as before, and an intercept should be added to the
regression equation (3.17) if the y, are not mean-adjusted. Adding control
variables is also straightforward and, of course, the lead values of the proxy
would become lead vectors so that the number of required degrees of freedom
for estimation will increase even further (see also Stock and Watson (2018)).
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3.5 Residual-Based LP-type Estimators

For completeness we now discuss two new estimators which are easy to com-
pute and asymptotically valid. However, our simulations show that they have
poor small sample properties relative to some of the other estimators. Con-

L . . (H) . i
sidering again a scalar proxy and using the LP error v, j;, a simple LP-type
estimator is obtained by noting that

E(vy 2 mr—n) /B gziam) = @ubl, (3.20)
for h =0,..., H. Here vﬁ}r g denotes the first component of Uéfl){ Hence,
we may estimate the LP form of the VAR model for h = H and use the

estimated residuals, ﬁfﬂl, to obtain an estimator of the structural impulse

responses as

T—H T-H
Qresi § ~(H E HH
@LPd = U§+])—](Zt+H7"'7zt>/ UitlH’zt‘i’H' (321)

t=p+1 t=p+1

For this estimator, the quantities @Efl){ are obtained by estimating a model

with K equations only and not K H equations as in LP estimation. Note,
however, that the estimator differs from ©y g even for 6y if H > 1. While
the estimator of 6y in ©y 4 is based on estimated errors 4; of the origi-
nal reduced-form VAR model, this is clearly not the case in (3.21), where
estimated LP errors @iﬂl are used.

It is easy to see that the residual-based estimator can be viewed as a dif-
ferentiable function of a two-step GMM estimator in the sense of Newey and
McFadden (1994) which has standard asymptotic properties under general
assumptions. In Section S1.2 of the Online Supplement we show that

T-H T-H

1 ~(H 1 I -
T—H-—-»p Z UIS'*‘I){ZH}L - T—H-—p Z Ulg—i-l)fzt-‘rh_'—op(T 1/2), (3.22)
t

t=p+1 =p+1

under general conditions. This result implies that the first column of @zeliid
has the same asymptotic distribution as 6y, the first column of Oy . In
small samples, the two estimators may differ substantially, however, because

égff’g is estimated from serially dependent observations and the correlation

between vﬁfl){ and z; is smaller than between u, and z; as vt(fl){ has a larger
variance than wu;. This reduced correlation may undermine the small sample

properties of our estimator. Moreover, 055 may even be based on fewer

observations than 6y, because the former estimator is based on 7' — H — P
observations only, while 6 is based on T"— p observations.
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The estimator @”md may be inefficient at least for H > p because, even
if ¥ vt v H is replaced by vtﬂl, the estimator is just a sample mean of serially
correlated observations which does not account for possible restrictions on
© that are due to the VAR structure. However, @Te“d is consistent under
general conditions and very easy to compute. Given the limited samples
available for some empirical studies, the small sample performance of the
estimator may be an issue, however. In Section 4 we also explore the finite
sample properties of this estimator.

To improve the estimator @T‘Z”d in small samples, one may want to con-
sider an estimator

T-H T
Ip= (Z U2y, Z thzt,..., Z @t(fl){zt> Z Uyeze. (3.23)

t=p+1 t=p+1 t=p+1 t=p+1

It requires estimating all the models v, = v, + APDY, | + vg?h for h =
0,1,..., H and, thus, the advantage of computational savings relative to the
standard LP estimator is lost. On the positive side, small sample efficiency
gains are conceivable. It follows from the result in equation (3.22) that the
asymptotic properties of C:) are the same as for @m“d Note, however, that
the impact effects (h = 0) of > are estimated exactly as in @V Ar- In other

words, the first column of @55 is the same as for @V Ar and it does not only
have the same asymptotic properties.

If there is an N-dimensional vector of proxies z;, the expression (3.20)
generalizes to

H H H)
E(UE—FI){’Z;Jerh)QE(Zt-FHUg tJ)rH)/E< 1tJ)rHZt+H)QE(Zt+HU§ t+H) P00,

for h = 0,...,H. Here ) is again an arbitrary positive definite (N x N)
matrix. The estimator @’”e“d of the structural impulse responses becomes

@reszd

T-H 5 (2 L 21)
t=p+1 Ve Bt ms -+ %

H) ~(H)
XIp ® (Qz Zt =p+1 Zt+HU1 t+H /Zt =p+1 ”1 t+HZt+HQZ Zt =p+1 2t HOp A H

with Q. = (321, 2:2)) %, as before. Furthermore, an estimator © 7°» may be
computed using the more general expression

ASS —
Lp =
ZT ~ ) T-1 (1) T—-H ~(H)
t=p+1 UtZt> 2 st=pt1 (DICEA t=p+1 (NS

T N T N T N
Xl ® (Qz Zt:pﬂ ZtU1t /Zt:p+1 ultZ{th Zt:pﬂ Ztu1t> .
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Table 1: Equality of Estimators Based on OLS Estimation

Ovar  Op  OFFS 61 6ps  O§F 6n Oy, ey et 6
@VAR all h
O;p |h=0,1 alh
O%LS | h=0,1 h=0,1 allh
e | h=0 h=0 h=0 alh
©pp | h=0 h=0 h=0 alh all h
O¢LS | h=0 h=0 h=0 h=0,1 h=0,1 allh
Orv - - - - - ~  allh
©% | h=0 h=0 h=0 h=0 h=0 h=0 - alh
e | h=0 h=0 h=0 h=0 h=0 h=0 - h=0 alh
oresid - - - - - - - - ~  allh
0% | h=0 h=0 h=0 h=0 h=0 h=0 - h=0 h=0 -  allh

Note: h denotes the propagation horizon.

3.6 Summary of Numerical Relations Between Esti-
mators

For assessing the small sample properties of the estimators, it is useful to keep
in mind that, based on plain OLS estimation, Oy ax, OLp, @LP , @aﬂf, Ops,
LS oY, @ZI"Z/, and 035, all have the same first column and, hence, yield
identical estimates of the impact effects. Moreover, Oy 4z, O p, and @fﬁs as
well as © gp and @GLS have identical first two columns by construction. Also,
1f bias- Corrected OLS estimation is used for the reduced-form VAR @v AR»
@Lp, @LP , @‘ﬁs", and ss share the same first column and for @BB and
@GLS the first two Columns are identical. All nine estimators @V ARs 6 LP,
@Eﬁs , @“ﬁf, Ops, C:)gés , @)?jv, @Iw and (:)SLSP should provide very similar
estimates for the impact effects also if bias-corrected OLS is applied, at least
for larger sample sizes for which the estimated bias tends to be small. Only
the estimators O and @"emd estimate the impact effects clearly differently
for both plain OLS and bias-corrected OLS estimation of the reduced-form
VAR parameters. R R

For propagation horizons h > 0, the estimators ©7/ and ©pp are iden-
tical for plain OLS estimation. For VAR(p) processes with little persistence,
also Opp and (:)a;ﬁ may be quite similar, in particular, if the lag order p is al-
ready large. In that case, adding an extra lag may not make much difference.
These relations may be useful to remember in the next section where we ex-
plore the performance of the different estimators in small samples. All exact
identities of the estimators based on plain OLS estimation are summarized
in Table 1 for easy reference.
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3.7 Other Proposals

Given the large number of parameters in the estimation equations underlying
some of the estimators, Bayesian and other shrinkage estimators have also
been used in the present context. In their study, Li et al. (2021) explicitly
consider also a Bayesian approach, a penalized LP approach which shrinks
the impulse responses to smooth functions, as proposed by Barnichon and
Brownlees (2019), and a model averaging approach which addresses the un-
certainty in the lag lengths to be considered in practice. Such modifications
can be used with most of the estimators considered in our study. They raise
issues such as Bayesian prior selection and selecting the degree of shrinkage
etc. which are not the focus of our study. Therefore we compare the esti-
mators in raw form as presented in the foregoing sections and we leave such
modifications to future research.

4 Monte Carlo Comparison

We conjecture that the sample size T', the dimension, the lag order and the
persistence of the VAR process as well as the correlation between the shock
of interest and the proxy, i.e., the strength of the proxy, are features that
have an impact on the small sample properties of the estimators for the
impulse responses. Therefore we choose data generating processes (DGPs)
accordingly.

We consider the RMSEs of the impulse response estimators as our main
performance criterion for estimator comparison. As confidence intervals of
impulse responses are often examined in empirical analysis, the coverage and
length of bootstrap confidence intervals for the impulse responses are also
important performance criteria. However, this raises the issue which boot-
strap method to use. Different bootstraps have been considered in related
contexts. For example, Stock and Watson (2018) and Breitung and Briig-
gemann (2019) use a parametric bootstrap (see Stock and Watson (2018,
Appendix A.2)) and Montiel Olea and Plagborg-Mgller (2021) recommend a
wild bootstrap to construct equal-tailed percentile-¢ intervals for the lag aug-
mented LP method. We decided to use a moving-block bootstrap (MBB) to
construct percentile confidence intervals (see Section S2.2 of the Online Sup-
plement for details). Jentsch and Lunsford (2019) show that the MBB yields
asymptotically valid confidence intervals for structural impulse responses in
proxy VAR analysis under general conditions. They also show that other
bootstraps such as the wild bootstrap, that have been used in structural
VAR analysis, do not yield confidence intervals with asymptotically correct
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coverage. Unfortunately, there is also evidence that the MBB may not be
very accurate in small samples (e.g., Bruns and Liitkepohl (2020)). As we are
primarily interested in the relative performance of the different estimators,
we prefer the asymptotically valid MBB and assume that it imposes a similar
small sample handicap on all estimators. It is well possible, however, that
some of the estimators perform better with alternative bootstraps in terms
of coverage and interval length. Therefore we give priority to the RMSE as
performance criterion. If an estimator results in small RMSEs it may be pos-
sible to construct a suitable bootstrap superior to the MBB. Constructing
better bootstraps is not the aim of this study, however.

To improve the small sample coverage rates of the MBB confidence in-
tervals, we also use bias-corrected OLS estimation in addition to plain OLS
estimation for the reduced-form VAR models (see Section 52.1 of the Online
Supplement) and we primarily report the results for bias-corrected OLS es-
timation, if not otherwise stated. Bias-corrected OLS estimation was shown
to improve small sample inference for impulse responses based on the stan-
dard VAR approach (see Kilian (1998)) and we confirmed that in unreported
simulations. The corresponding residuals of bias-corrected OLS are used for
generating the bootstrap samples for all other estimators as well. Moreover,
the estimators Opp, O, 3%, Opg, OFLY and OGL® are also based on the
residuals u; of bias-corrected reduced-form OLS estimators wherever these
residuals o, enter the estimator.

Breitung and Briiggemann (2019) and Li et al. (2021) also perform Monte
Carlo experiments to compare some of the estimators considered in the fol-
lowing. Breitung and Briiggemann (2019) use a DGP similar to DGP1 below
and their performance criteria are the bias and standard deviation of the es-
timators as well as coverage and length of bootstrap confidence intervals
based on their different bootstrap. As we will see later, their results are in
line with our results for those estimators and simulation designs considered
in their study. Li et al. (2021) consider a very large range of DGPs which are
not finite-order VARs but are approximated by finite-order VARs in their
study. They are specifically interested in the bias-variance trade-off of the
estimators and include some shrinkage estimators in their comparison. Our
results are roughly in line with their results for the overlapping estimators.
Our focus is more limited, however, given that we consider finite-order VARs
as DGPs and investigate the properties of the estimators in an idealized
setting.
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4.1 Monte Carlo Setup
4.1.1 DGP1

Our first DGP is a bivariate VAR(1), y; = Aijys—1 + w;, where y, is a 2-
dimensional vector of endogenous variables, A; is a matrix of autoregressive
slope coefficients, and w; is the white-noise reduced-form error term. The
VAR slope coefficients are chosen similar to Kilian and Kim (2011), Breitung
and Briiggemann (2019), Liitkepohl et al. (2015a) and other studies compar-
ing impulse response estimators for VAR processes, where such a DGP has
been considered. More precisely, we choose

_|an 0
A= {0.5 0.5} ’
with a;; = 0.1,0.5,0.9,0.95. The process is stable and its persistence depends
on ayi. If a1y is close to one, the persistence is high and it is low for ay; close

to zero.
The structural shocks are standard normal, w; ~ N (0, I5), and u; = Bwy,

with
1 0
B_{O.S 3]

In line with the related literature (e.g., Caldara and Herbst (2019), Liitke-
pohl and Schlaak (2021), Breitung and Briiggemann (2019)), a scalar proxy
z; is generated as

Zt = qbwlt ‘l— 77t7 (41)

where ¢ and the error 7, determine the strength of the correlation between
2z and wyy and, hence, the strength of the instrument. The error term 7 is
generated independently of w; as n, ~ N(0, og). Thus, the proxy not only
ensures that the relevance and exogeneity conditions (2.7) and (2.8) hold but
it also satisfies the lead-lag exogeneity condition (2.10).

Note that the strength of the relation between the instrument and the
shock wy; determines how well the impact effects of the shock can be es-
timated and these estimates are of central importance for estimating the
impulse responses. Therefore different scenarios are considered. The vari-
ance of z; is Var(z;) = ¢?Var(wy,) + a . Hence, the correlation between wy;

and z; is Corr(wyy, 2;) = ¢+/ Var(wy, /\/gb Var(wsy) + 02 We consider the

two different cases presented in Table 2. For Correlatlon 0.9, 2; is a strong
proxy while a correlation of 0.5 gives a proxy with intermediate strength.
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Table 2: Specifications Used for the Proxy for DGP1

Case ¢ o} Corr(wyy, 2t)
1 1 0.2346 09 Wt
2 1 3 0.5 Wt

As the residual-based estimation also depends on the propagation horizon
H, we consider an intermediate value of H = 20. As sample sizes we use
T = 100, 200, and 500. The former value represents the order of magnitude
used in macroeconometric studies based on quarterly data, whereas T" = 500
is hoped to reflect the properties of the estimators for larger samples and
T = 200 represents an intermediate sample size. The number of bootstrap
replications is N = 2000 and the number of Monte Carlo replications is 1000
for all reported simulation results.

4.1.2 DGP2

Our second DGP is linked to an empirical model from the proxy VAR lit-
erature. More precisely, DGP2 is based on a model by Mertens and Ravn
(2013), which employs seven variables at quarterly frequency from 1950Q1 -
2006Q4, giving T" = 228 observations. We fit a VAR(1) process including a
constant to their data and, after bias-adjustment, obtain the following set of
parameters:

088 0.01 003 0.00 0.00 —0.02 —-0.00
-0.11 083 —-0.02 0.02 -0.02 -0.03 0.00

0.14 —-0.08 085 0.02 —-0.01 0.11 0.01
—-147 -0.32 —-090 086 —-0.06 1.05 0.05
—-0.27 0.06 048 0.04 093 —-0.53 0.00
-0.09 —-0.08 0.04 0.01 —-0.01 092 0.00
-0.12 -0.19 -0.44 -0.07 0.03 049 1.01

A

and

.021  .004 .007 .003 .013 .005 -.010
004 286 .006 .002 —.024 .010 —.053
007 .006 .084 172  .022 .072  .006
Yy = 003 .002 .172 2.347 —.025 .328 —.007 | x 107°.

013 —.024 .022 —-.025 .789 .040  .077

005 .010 .072  .328  .040 .102  .011
—.010 —-.053 .006 -.007 .077 .011  .078
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The largest eigenvalue of A; has modulus 0.99995, implying a stable but very
persistent process. The constant is estimated as

v = (0.09, —0.60, —0.46, 0.08, —1.02, —0.41, 0.23)’.

The VAR(1) with these parameters is used to generate y; based on Gaussian
ug, up ~ N(0,%,). We generate 27" observations starting from
(

yo = (0.17,0.30, —15.15, —17.32, —14.66, —15.14, —15.86)’,

the unconditional mean of y;, and discard the first T observations to alleviate
the effect of the starting value.

A proxy is generated so as to have similar properties as the proxy for
shocks to personal income taxes in Mertens and Ravn (2013). More precisely,
we estimate the b vector of impact effects of the first shock giving

b = (1.00,2.07,0.09, —9.67,0.57, —1.11,0.66)’

and generate the first shock using equation (3.11). Then we estimate the
parameters ¢ and 0727 of the proxy model (4.1) using the full sample from
1950Q1 - 2006Q4. This yields estimates ¢ = 464.18 and O'% = 0.32. The
original proxy by Mertens and Ravn (2013) has a correlation with the iden-
tified shock of 0.19, i.e., the proxy is rather weak. Only 7% of its values
are non-zero. Instead, we employ a proxy with nonzero values for all sample
periods and a correlation of 0.90 with the shock of interest, implying a strong
Proxy.

To mimic the situation in the Mertens/Ravn study where the proxy has
many zero values, we follow Jentsch and Lunsford (2019) and also generate
a Proxy as

2 = Dy(owie +my), (4.2)

where D; is a series of independent, identically distributed Bernoulli 0-1
random variables with parameter d, 0 < d < 1, which signifies the probability
of a nonzero value. The random process D; is assumed to be stochastically
independent of wy; and the error term 7,. The latter term is again generated
to have mean zero and variance o7, i.e., n; ~ N(0,07), and it is distributed
independently of wy;. In this case, the correlation between wy; and z; is

Corr(wy, ) = ¢pvVdr/Var(wiy) /\/¢2Var(w1t) + 02

and we choose the same values for ¢ and 0'% as before (¢ = 464.18 and

02 = 0.32) and d = 0.3, which leads to a correlation of 0.5, implying a proxy
with intermediate strength.
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Note that the generation mechanism for DGP2 differs from that of DGP1,
where the structural shocks are generated directly and the reduced-form data
as well as the proxy are computed from the generated structural shocks and
the generated 7, series. In contrast, we generate the reduced-form errors for
DGP2, construct the first structural shock from the structural parameters b
and the error covariance matrix ¥, as in (3.11) and then generate z; as in
equation (4.1) or (4.2), depending on the strength of the considered proxy.

As for DGP1, we use a maximal propagation horizon of H = 20 but
consider sample sizes T" = 200 and 500 only. A sample size of T' = 100 leaves
insufficient degrees of freedom for some of the estimators for the higher-
dimensional DGP2. The number of bootstrap replications for this DGP is
again N = 2000 and the number of Monte Carlo replications is 1000.

4.2 Monte Carlo Results
4.2.1 Based on DGP1

A ﬁrst assessment of the various projection estimators has shown that © LP
and ©%% dominate the 1V estimators O, 6V Y, and @?V while ©FLS and
@GLS dominate @f}i’d, +°p, and Opp in terms of our _performance criteria.
Therefore we first compare the estimators © LP, @aﬁ?, @fﬁs , and @GLS with
the benchmark estimator @V Ar in Figure 1. Results for the other estimators
are collected in the Online Supplement and will be discussed subsequently.

In Figure 1, RMSEs, pointwise coverage rates of nominal 90% confidence
intervals, and average interval lengths for the responses of variable 2 to the
first structural shock are presented for selected simulation designs for DGP1.2
The selected results provide an overview of the overall results for DGP1.
We present results for simulation designs which vary the sample size T', the
proxy-shock correlation and the persistence (ay;) of the DGP.*

It can be seen in the figure that all five estimators yield the same RMSEs,
coverages, and interval lengths for the impact effects and are very smular for
small propagation horizons. Recall that Oy ap, ©rp, OFLY, and @ g yield
identical impact effects by construction and, as discussed in Sectlon 3.3, the

3The corresponding results for variable 1 are presented in Figure S.2 in the Online
Supplement. They confirm the conclusions drawn for variable 2. Note that, given the
importance of the impact effects, the results for variable 2 are presented in Figure 1
because for that variable the impact effects of the shock are estimated whereas they are
set to one for variable 1.

4Note that all average interval lengths are strictly positive. For some of the estimators
they are relatively small, however, so that they cannot be distinguished from zero in Figure
1 and similar figures.
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impact effects of @)g%s would be the same as well if plain OLS estimation
was used and they are very similar for bias-corrected OLS.

A striking result is that ©G%% and Oy 45 yield very similar RMSEs and
confidence intervals also for h > 0, which shows that @GLS is not only very
efficient asymptotically, as shown by Breitung and Briiggemann (2019), but
also in small samples. This result is fully in line with simulations reported
by Breitung and Briiggemann (2019). The @GLS estimator outperforms &) LP
and O but is still less efficient in terms of RMSE than ©¢4S | in particular
for processes with medium persistence (see Figure 1(a), (b), (e), (f)).

Given previous simulation results by Kilian and Kim (2011), it is, of
course, not surprising that @V Ar dominates o) JLp and ©° 7% for our simulation
designs. As @GLS performs about as well as @V AR, it is clearly the preferred
projection estimator for DGP1. We stress, however, that the good coverage
rates of confidence intervals associated with @GLS rely to some extent on the
use of bias-corrected OLS estimators for the reduced-form VAR. In Figure S.4
in the Online Supplement, we show the corresponding results obtained when
O%GLS and ©FLS are based on plain OLS estimation. Clearly, some coverage
rates for these estimators for the more persistent processes (a;; = .95) are
then far below the nominal 90% and much worse than with bias-correction
(see Figure S.4(c), (d)). We note that Breitung and Briiggemann (2019)
report better coverage rates for @GLS based on their alternative bootstrap
method. Thus, using other bootstrap methods rather than bias-corrected
VAR estimates may also improve the interval coverage associated with the
GLS estimators.

For all simulation designs, the coverage rates of the confidence intervals
associated with all estimators in Figure 1 are reasonably close to or larger
than 90%. Most coverage rates are above 80% and in many cases the coverage
rates are close to or at 100%. In other words, the estimators yield conservative
intervals. Only for more persistent processes (a;; = 0.95), the coverage rates
for O p and (:)‘f]bf are below 80% for some propagation horizons (Figure 1(c),
(d)). For some of the simulation designs the coverage rates of all estimators
are actually rather similar, e.g., for designs with medium persistence (a;; =
0.5) (see Figure 1(a), (b), (e), (f)). Generally, the interval lengths tend to
increase for processes with larger persistence, and if the proxy has lower
correlation with the first shock. Note, however, that the interval lengths
and RMSEs for ©,p and O} for longer propagation horizons are not much
affected by these features. As one would expect, for all five estimators,
interval lengths and RMSEs decline with increasing sample size.

To explore the impact of estimating models with larger lag orders, we
show the effect of increasing the lag length to p = 12 in Figure S.1 of the
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Online Supplement. A higher lag order leads to an increased RMSE for
Ovar, @BB , and @GLS at shorter horizons, while ©,p and O7p are less
affected. The ranking of the estimators is maintained, however. The coverage
rates remain acceptable for all estimators. In terms of average length, the
impact effect is estimated less precisely for all estlmators for small sample
size T' = 100. The average length for @VAR7 @ S and @GLS starts to
approach zero after horizon h = p = 12, while ) LP and Q! 7% do not share
this feature, owing to their horizon-specific estimation approach. Given the
limited impact of changing the lag order on the ranking of the estimators,
we have not explored the possibility of choosing the lag order by some model
selection criterion. R

Some results for the estimators © IV, QY v oV v @Eﬁiid, and O}’ are pre-
sented in Figure S.3 in the Online Supplement, where these estimators are
compared with Oy ar. Recall that @VAR, @IV, @Zﬁ/, and @ are identical
by construction for h = 0. For h > 0, it is obvious in Figure S.3 that (:)V AR
uniformly dominates the other five estimators in terms of RMSE. In other
words, it yields very similar or smaller RMSEs for all simulation designs pre-
sented in the figure. Compared to the results in Figure 1, ) v, oY 7v, and @@I/‘Z/
have higher RMSEs than ©,p and ©% 75. In addition, @’E}ﬁ’d, and O3 7°p are
dominated in terms of RMSE by 6955 and ©¢LS. As in Figure 1, the RM-
SEs of the estimators in Figure S.3 tend to increase with larger persistence
(larger a11) and smaller correlation between shock and proxy. Moreover, the
RMSEs decrease for increasing sample size. In terms of coverage, all estima-
tors in Figure S.3 are reasonably close to 90%. The average length for ©Y,,
and @fﬁid is much higher than for the other 4 estimators, especially when
the proxy has a lower correlation with the shock.

The overall takeaway from the simulations of the bivariate DGP1 is that
smaller samples, weaker instruments, and larger lag orders tend to increase
PA{MSES and the lengths of confidence intervals. The LP estimators ©p and
O} dominate the IV estimators and, among the projection estimators, the
lag-augmented GLS estimator, @g’}f , dominates all other estimators includ-
ing the residual-based LP-type estimators and the LP GLS estimator, @%’}%S ,
clearly in terms of RMSE. Thus, using (:)gés
DGPs such as DGP1.

would be the best choice for

4.2.2 Results Based on DGP2

In Figure 2, results for the seven-dimensional, very persistent DGP2 are pre-
sented. The estimators are grouped in the same way as in Figure 1 and we
again consider Monte Carlo designs with different sample sizes and proxy
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strengths. However, now we present responses of two different variables to
the first shock. There is some variation in the performance of the estima-
tors across the seven variables. Therefore we present impulse responses of
variables two and four, for which the performance is different. The results
for variable four are in fact a bit special. In Figure S.9b in the Online Sup-
plement, the original time series from Mertens and Ravn (2013) are plotted
which are the basis for our DGP2. In that figure, variable 4 (Corporate
income tax base) is seen to have rather distinct dynamics which may be re-
flected in our simulation results. The impulse responses of the remaining
variables are also presented in Figures S.5a - S.5¢ in the Online Supplement.
They display a similar overall picture and are mostly more similar to the
results for variable two.

Before we discuss the figures in more detail, it may be worth mentioning
that some crucial features are the same as for the bivariate DGP1. The
coverage rates improve and the average lengths of the confidence intervals
and the RMSEs tend to decline for all estimators with increasing sample
size. Also using a stronger proxy tends to improve the estimation precision
as measured by the RMSE. Note that the figures are scaled so as to bring out
clearly the differences between and similarities of the alternative estimators.
Therefore some RMSEs and average interval lengths in some of the figures in
the Online Supplement had to be truncated at the upper limit of the vertical
axis. N R N

In Figure 2 the four estimators ©,p, 0%, O¢LS and OFLS are com-
pared to the starldard VARAestimator év Ar- In contrast to what we found
for DGP1, now @GLS and @GLS are both very similar to Oy 4z in terms of
RMSE and interval coverage and length. These three estimators clearly dom-

inate © p and Qu 7% in terms of associated RMSE and interval length. Note,

however, that the coverage rates associated with ©F%S, 955 and Oy

for some intermediate propagation horizons leave room for improvement (see
Figure 2(e), (f), (g) and (h)).

Compared to the alternative estimators shown in Figure 5.7, the results
of DGP1 are broadly confirmed: For both Varlables ) v, QY 7v, and @ 7y are
dominated in terms of RMSEs by O.p and 64" 7% at all horizons. In addition,
@zeliid, and ©7°% are dominated by @GLS and @g}gs . When increasing the lag
length to p = 4 (see Figure S.6 in the Online Supplement), the RMSE is af-
fected only marginally, except for small samples (7" = 200) and weak proxies.
For this case, the RMSEs for all estimators increase for both variables (see
Figure S.6(b) and (f)).

To show that the strong performance of (:)%Lf and éfﬁs depends again
to some extent on the use of bias-corrected OLS estimation of the VAR
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reduced form, we compare the estimators @GLS and @GLS based on plain OLS
estimates in Figure S.8 in the Online Supplement to the VAR estimator with
bias-correction. As DGP2 is very persistent, the coverage rates associated
with ©§%% and ©%L° are very poor for most designs, while the impact of
avoiding bias-correction on interval lengths and RMSEs is rather limited.
Our recommendation is therefore to use O%5° and ©¢L with bias-correction
if a MBB is used for constructing confidence intervals. Again, one could argue
that the features of the MBB confidence intervals are less important than the
RMSE criterion because the former may reflect the properties of the MBB
rather than the properties of the estimators.

It is perhaps worth mentioning, however, that the maximal lag order
and propagation horizon ©%L% can handle even for a gross sample size of
T = 200 is, of course, a bit more limited than that of some of the other
estimators because it needs p presample values and up to H lead values and
it involves a rather substantial number of regressors. Thus, its net sample size
quickly exhausts the degrees of freedom needed for estimation when the lag
order or the propagation horizon increases for a model with many variables.
Therefore, it is not surprising that, for larger propagation horizons, @GLS
is occasionally marginally better in terms of RMSE than @GLS when the
lag order is increased to p = 4 (see Figure S.6(e) and (f) in the Online
Supplement).

In summary, the overall conclusion from the simulation results for DGP1
and DGP2 is that ©%E% is the best projection estimator in terms of RMSE
and @GLS comes in second. Apparently, for higher-dimensional processes the
superior performance of @g%s that we observed for the bivariate DGP1 may
decline relative to OFLS

5 Conclusions

This study compares a range of projection estimators for impulse responses
of proxy VAR models. Using LP estimators in this context has become in-
creasingly popular lately because these estimators are easy to apply and have
a reputation of being robust to some model deficiencies. On the other hand,
there is some evidence from simulation studies showing that the standard LP
estimators may be quite inefficient if the true DGP is a finite-order VAR pro-
cess. Such results have motivated researchers to look for modifications and
alternatives to classical LP estimators. We review a number of alternative
approaches and then compare them algebraically and in a simulation study.
We present conditions for some estimators to be identical in small samples.
In our simulation study, we use the RMSE as well as coverage rates and

26



interval lengths of bootstrap confidence intervals as performance criteria.

We find that generally the estimators behave as expected in that the
RMSEs and confidence intervals improve for increasing sample size and when
stronger proxies (proxies with higher correlation with the shock of interest)
are used. Moreover, estimation precision tends to decline when more heavily
parametrized models with larger lag orders are considered. Furthermore,
processes with higher persistence may lead to less precisely estimated impulse
responses.

Ranking our estimators, we find that overall a lag-augmented GLS ap-
proach proposed by Breitung and Briiggemann (2019) and a GLS approach of
Lusompa (2021) lead to the most precise projection estimators in small sam-
ples. All other estimators are typically less precise than the standard VAR
estimators if a finite-order VAR process is the true DGP. In contrast, for
moderately large samples the lag-augmented GLS approach performs about
as well as the standard VAR approach, if it is used with bias-corrected OLS
estimates of the reduced-form VAR model. As the Breitung and Briiggemann
(2019) GLS approach involves many regressors, it is not a suitable choice in
small samples if the number of variables in the model and/or the lag order
is large and the desired propagation horizon for the impulse responses is also
large because it quickly exhausts the degrees of freedom for estimation in
that case. The coverage rates of MBB confidence intervals can be improved
by using bias-corrected OLS estimation of the reduced-form VAR. Gener-
ally, it would be desirable to design bootstrap procedures that work well
asymptotically and in small samples with the GLS estimators because boot-
strap inference is quite common in structural VAR analysis. The fact, that
Breitung and Briiggemann (2019) obtained better coverage rates for their
lag-augmented GLS estimator by using an alternative bootstrap method in
their simulation study suggests that there is scope for future research in that
direction.

Our results suggest the following recommendations for empirical work if
a finite-order vector autoregression is likely to be a good approximation to
the true DGP and the proxy is a reasonably strong instrument. Given the
simulation setup, a conventional proxy VAR approach is a benchmark which
outperforms the alternative estimators. For these alternative estimators, our
results imply: (i) If the VAR lag order and impulse response propagation
horizon are such that the sample size is sufficiently large for estimation, then
GLS LP approaches are worth considering because they yield more precise
impulse response estimates than traditional proxy VAR LP estimators. (ii)
Bias-correction improves bootstrap inference for the two LP GLS estimators
if the MBB is used to construct confidence intervals for impulse responses.

It may also be worth noting that LP estimators based on a proxy VAR
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approach performed well in a large-scale simulation study by Li et al. (2021)
which is based on a very different Monte Carlo design where finite-order
VAR processes and LP estimators approximate more general DGPs. Thus,
our results may be relevant for more general settings as well. Li et al. (2021)
also consider shrinkage methods such as Bayesian methods and penalized
estimation which shrinks to smooth impulse response functions to cope with
the uncertainty induced by the large number of control variables in some of
the LP equations. They find that, in their simulation scenario, shrinkage
can indeed improve the bias-variance trade-off and, thus, it may reduce the
RMSE. Of course, shrinkage can also be applied in conjunction with the
estimators considered in the present study and is, hence, a topic that may
be worth exploring in future research.

A Appendix

A.1 Equivalence of Lag-augmented and Breitung-Briig-
gemann Projection Estimators

As shown in Section 3.3, the equivalence of the lag-augmented LP estimator
and the Breitung-Briiggemann estimator follows from the representation

Yern = Vn-1 + Onwy + AMY,_y + U,E_ﬁl) (A.1)

which can be obtained by first replacing in (3.8) ¢ by ¢ + 1 such that

h h
Yrrni1 = vp + APTVY, 4 A;J:El)yt—p + Uz$+)h+1

=vp + Pryprye + A;Z—H)Y;&—l + U,Si)hﬂ

n)

= vy, + Pppu; + APTVY, 4+ U§+h+1.

Using @ 1u; = Op11w; and then replacing h by h—1 gives the representation
(A.1).
The expression for computing the first shock when 6y = b is given,

Wit = b/Z,Jlut/b/Z;lb,

is obtained by noting that 3, = BYX,, B’ implies V'Y, u; = O/ (BX,B') tu; =
VB 'Y, B uy = wyy /o), , where B'~! = (1,0,...,0) has been used and
o denotes the variance of wy. Moreover, ¥ = B~'S 'B~! implies
V¥, 'b = 1/02 . Putting things together, we get the above relation (see

also Stock and Watson (2018, Footnote 6, p. 933)).
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A.2 An Equivalence Result for the IV Estimator

Let Y = (yl, e ,yT), Y1 = (yll; e ,le), Y_1 = (ZO, ey ZT_1)7 Where
Zia= Ly, 5¥,), U= (uy,...,ur), A= (v,A,..., 4,) and recall
that OLS estimation of the model

Y =AY 1 +U

results in OLS errors U = Y — AY_; = Y (I — Y/ (Y_,Y',)"'Y_1). Now
consider

Yz@oyl—l—AY_l—i—U.

Estimating the model by OLS conditionally on 6, gives an estimator A =
(Y — 6py1)Y”,(Y_1Y’;)~ . Replacing A in the model equation by this esti-
mator and rearranging terms gives

~

Y(Ip =Y (Y Y )W) =gy (I = Y (Y Y )WY )+ U
or
U = eoﬁl + (7,

where 117 is the first row of U. In other words, instead of the model with
controls, we can equivalently consider the model

U = Botyy + errory
so that an IV estimator with z; as an instrument for 4, is
T T
g Utz E U1t 2ty
t=p+1 t=p+1

the same as in (3.1).
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