
Developmental Science. 2019;22:e12747.	 wileyonlinelibrary.com/journal/desc  |  1 of 17
https://doi.org/10.1111/desc.12747

1  | INTRODUC TION

Prevalence rates of developmental disorders linked with learning dif-
ficulties, including attention deficit hyperactivity disorder (ADHD), 
dyslexia, dyscalculia, and specific language impairment (SLI), range 

from 3% to 8% (American Psychiatric Association, 2013; Norbury 
et al., 2016; Polanczyk, Willcutt, Salum, Kieling, & Rohde, 2014; 
Shalev & Gross-Tsur, 2001). However, the number of children who 
struggle at school is far higher. In the UK for example, around 30% 
of the school population fail to meet expected targets in reading or 
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Abstract
Our understanding of learning difficulties largely comes from children with specific 
diagnoses or individuals selected from community/clinical samples according to strict 
inclusion criteria. Applying strict exclusionary criteria overemphasizes within group 
homogeneity and between group differences, and fails to capture comorbidity. Here, 
we identify cognitive profiles in a large heterogeneous sample of struggling learners, 
using unsupervised machine learning in the form of an artificial neural network. 
Children were referred to the Centre for Attention Learning and Memory (CALM) by 
health and education professionals, irrespective of diagnosis or comorbidity, for 
problems in attention, memory, language, or poor school progress (n = 530). Children 
completed a battery of cognitive and learning assessments, underwent a structural 
MRI scan, and their parents completed behavior questionnaires. Within the network 
we could identify four groups of children: (a) children with broad cognitive difficul-
ties, and severe reading, spelling and maths problems; (b) children with age-typical 
cognitive abilities and learning profiles; (c) children with working memory problems; 
and (d) children with phonological difficulties. Despite their contrasting cognitive 
profiles, the learning profiles for the latter two groups did not differ: both were 
around 1 SD below age-expected levels on all learning measures. Importantly a child’s 
cognitive profile was not predicted by diagnosis or referral reason. We also con-
structed whole-brain structural connectomes for children from these four groupings 
(n = 184), alongside an additional group of typically developing children (n = 36), and 
identified distinct patterns of brain organization for each group. This study repre-
sents a novel move toward identifying data-driven neurocognitive dimensions under-
lying learning-related difficulties in a representative sample of poor learners.
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maths at age 11 (Department for Education United Kingdom, 2017). 
The long-term outcomes for children who struggle at school in-
clude continued educational underachievement, poor mental health 
(Roeser & Eccles, 2000), and underemployment (Bynner & Parsons, 
2005; de Beer, Engels, Heerkens, & van der Klink, 2014).

Our understanding of the causes of learning difficulties comes 
largely from studying children with a specific diagnosis (e.g., ADHD or 
SLI) or those selected from community or clinical samples on the basis 
of strict inclusion criteria (e.g., children with poor reading skills, but 
age-typical IQ and maths abilities). Most studies recruit children with 
“pure” problems (e.g., children with ADHD without comorbid dyslexia, 
or children with maths problems in the absence of reading problems 
or low IQ). There are practical advantages to this approach: it outlines 
clear criteria to inform practitioner decision-making about primary 
areas of weakness that can be used to identify intervention options.

However, this approach can fail to accommodate the high rates 
of comorbidity within developmental disorders (Coghill & Sonuga-
Barke, 2012; Kotov et al., 2017) and learning-related difficulties (e.g., 
Angold, Costello, & Erkanli, 1999). Over 80% of children with ADHD 
meet criteria for at least one additional diagnosis (e.g., Faraone & 
Biederman, 1998; Willcutt & Pennington, 2000) and 15%–45% 
have co-occurring reading difficulties (e.g., Biederman et al., 1991; 
Faraone et al., 1993; Semrud-Clikeman et al., 1992). Reading diffi-
culties also co-occur 50% of the time with maths (Moll et al., 2014) 
or language problems (McArthur et al., 2000).

Using strict exclusionary criteria also overemphasizes similari-
ties within groups, and the distinctiveness between groups (Coghill 
& Sonuga-Barke, 2012; Kotov et al., 2017). It is widely documented 
that symptoms vary between children with the same diagnosis. For 
example, performance on cognitive tasks within ADHD groups is no-
toriously variable (Castellanos et al., 2005; Nigg, Willcutt, Doyle, & 
Sonuga-Barke, 2005). Symptoms also co-occur across groups. For 
example, symptoms of inattention are common in children with poor 
literacy and maths skills (Hart et al., 2010; Loe & Feldman, 2007; 
Zentall, 2007), ADHD, autism spectrum disorder (ASD; Rommelse, 
Geurts, Franke, Buitelaar & Hartman, 2011), SLI (Duinmeijer, Jong 
& de Scheper, 2012), and dyslexia (Germano, Gagliano, & Curatolo, 
2010; Willcutt & Pennington, 2000). Finally, this approach of selec-
tively grouping children does not capture the majority of struggling 
learners—they often do not receive a diagnosis or are characterized 
by complex and comorbid difficulties that would rule them out of 
studies with strict inclusion criteria.

For these reasons a number of researchers have advocated em-
pirically based quantitative classification systems (Archibald, Cardy, 
Joanisse, & Ansari, 2013; Coghill & Sonuga-Barke, 2012; Ramus, 
Marshall, Rosen, & van der Lely, 2013; Sonuga-Barke & Coghill, 2014), 
although few studies have done this. The aim of this approach is to move 
away from identifying highly selective discrete groups and instead 
focus on identifying continuous dimensions that distinguish individuals 
and can be used as potential targets for intervention. Dimensions are 
derived through data-driven explorations of the data, with no a priori 
assumptions about group membership. For example, factor analysis, 
a statistical method that groups variables based on shared variance, 

is used most commonly to derive underlying dimensions from sets of 
symptoms or measures (e.g., Kotov et al., 2017). This technique has 
been used to identify dimensions of phonological and nonphonological 
skills in children with diagnosed SLI and dyslexia (Ramus et al., 2013) 
and separate latent constructs for inattention and hyperactivity in 
children with ADHD (Martel, Von Eye, & Nigg, 2010). An alternative 
approach, as yet rarely used, is to cluster children together according to 
shared profiles based on empirical data. In turn this can be used to in-
form classification systems, and consequently treatment approaches. 
Clustering algorithms have been used to identify groups of children 
with distinct learning (Archibald et al., 2013) and behavioral profiles 
(Bathelt, Holmes, the CALM Team, & Astle, in press).

In this study, we use a different data-driven approach—machine 
learning. Machine learning methods have rarely been applied to un-
derstanding developmental disorders (e.g., Fair, Bathula, Nikolas, & 
Nigg, 2012). Typical applications use supervised machine learning 
(Peng, Lin, Zhang, & Wang, 2013) in which the algorithm attempts 
to learn about predefined categories of children. Here, we use an 
unsupervised learning approach whereby the algorithm attempts to 
learn about the structure of the data itself rather than which data cor-
respond to predefined groups. Specifically, we used Self Organising 
Maps (SOMs; Kohonen, 1989), a type of artificial neural network. 
Due to their efficacy in visualizing multidimensional data, SOMs have 
been successfully applied to a variety of tasks including textual in-
formation retrieval (Lin, Soergel, & Marchionini, 1991), the interpre-
tation of gene expression data (Tamayo et al., 1999), and ecological 
community modeling (Giraudel & Lek, 2001). SOMs use an algorithm 
that projects the original data from a multidimensional input space 
onto a two-dimensional grid of nodes called a “map”, while preserving 
topographical information. This produces an intervariable represen-
tational space, wherein the geometric distance between nodes corre-
sponds to the degree of similarity in the input data. Within the current 
context, input data are individual children from our sample. The map 
will represent the cognitive profiles of the children; the closer the 
children are represented within the map, the more similar their cogni-
tive profiles. In this way, SOMs enable us to map the multidimensional 
space of our sample—the map will represent how different children 
group together because of their similar profiles, and in doing so it also 
learns about the dimensions that most reliably distinguish children.

We applied this technique to a large heterogeneous sample of 
struggling learners. Children were referred to a research clinic, the 

RESEARCH HIGHLIGHTS

•	 First study to apply machine learning to understand het-
erogeneity in struggling learners.

•	 Large sample of struggling learners that includes chil-
dren with multiple difficulties.

•	 Rich phenotyping with detailed behavioral, cognitive, 
and neuroimaging assessments.
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Centre for Attention Learning and Memory (CALM), by health and 
education professionals for ongoing problems in attention, mem-
ory, language, or poor school progress in reading and/or maths. 
Recruitment was deliberately broad to capture the wide range of 
poor learners in the school population. Children were accepted into 
the study irrespective of diagnosis or comorbidity: only non-native 
English speakers and those with uncorrected sight or hearing prob-
lems were excluded. Our first aim was to test whether the multidi-
mensional structure learnt by the map reflects in different sample 
characteristics, such as the primary reason for referral to the research 
clinic (e.g., problems in attention, learning, memory, or language).

A second aim of the current study was to use the information 
from the SOM to identify data-driven groups within the sample. 
Even though it is likely that the dimensions that distinguish chil-
dren are continuous, there may be important reasons to need 
to group children according to their shared cognitive profile: (a) 
to identify shared etiological mechanisms, which will be easier 
with data-driven homogenous groups; and (b) to identify groups 
for a particular intervention. To do this the SOM was combined 
with another form of machine learning, k-means clustering (Lloyd, 
1982). This combination identified groups of children with similar 
cognitive profiles. Having grouped the children with the cogni-
tive data, we then explored the learning and behavioral profiles 
of these groups. We also explored differences in white-matter 
connectivity between the data-driven groups. White matter mat-
uration is a crucial process of brain development that extends 
into the third decade of life (Lebel, Treit, & Beaulieu, 2017) and 
relates closely to cognitive development (Clayden et al., 2012; 
Stevens, Skudlarski, Pearlson, & Calhoun, 2009). The brain can 
be modeled as a network of brain regions connected by white 
matter, commonly referred to as a connectome (Hagmann et al., 
2008). We derived whole-brain connectomes and compared them 
across the groups produced by the machine learning. In short, our 
second aim was to use machine learning to identify groups of chil-
dren with shared cognitive profiles, and then test whether these 
groups differ on learning and behavioral measures, and in terms 
of brain organization.

This mapping process is intentionally exploratory, and given 
this novel application of the analytical approach alongside a 
unique sample, it is difficult to make clear predictions about what 
the algorithm will learn. The children attending the clinic com-
pleted assessments of the cognitive skills known to be impaired 
in children with learning-related problems including measures of 
phonological processing, short-term and working memory, atten-
tion and fluid reasoning (nonverbal IQ). Children with deficits in 
reading or language, or associated diagnoses of dyslexia or SLI 
often have phonological processing problems (Bishop & Snowling, 
2004; Joanisse, Manis, Keating, & Seidenberg, 2000; Ramus et al., 
2010; Vellutino, Fletcher, Snowling, & Scanlon, 2004). In contrast, 
those with specific problems in maths or diagnosed dyscalcu-
lia are typically characterized by more severe deficits in spatial 
short-term and working memory (Geary, 2004;  Holmes, Adams, & 
Hamilton, 2008; McKenzie, Bull, & Gray, 2003; McLean & Hitch, 

1999; Rasmussen & Bisanz, 2005; Simmons, Singleton, & Horne, 
2008; Swanson & Sachse-Lee, 2001) and broader executive func-
tions (Bull, Espy, & Wiebe, 2008; Bull, Espy, Wiebe, Sheffield, & 
Nelson, 2011; Szucs, Devine, Soltesz, Nobes, & Gabriel, 2013; Van 
der Ven, Kroesbergen, Boom, & Leseman, 2012). So, a reasonable 
prediction is that our large sample of struggling learners will in-
clude subgroups of children with either phonological problems or 
spatial short-term/working memory difficulties, and that these 
children will predominantly struggle with reading or maths re-
spectively. Below average nonverbal reasoning is common among 
individuals with reading (Duranovic, Tinjak, & Turbic-Hadzagic, 
2014; Gathercole et al., 2016; Pointus, 1981; Winner et al., 2001) 
and maths problems (Gathercole et al., 2016; Swanson & Beebe-
Frankenberger, 2004; Fuchs et al., 2005, 2006, Cirino et al., 2015), 
as well as those with ADHD (Holmes et al., 2013). So, another rea-
sonable prediction is that our sample of struggling learners will 
include a subgroup of children with low fluid reasoning skills, and 
this will be associated with problems in both reading and maths.

2  | METHOD

2.1 | Participants

Children were referred by practitioners working in educational or 
clinical services to the Centre for Attention Learning and Memory 
(CALM), a research clinic at the MRC Cognition and Brain Sciences 
Unit, University of Cambridge. Referrers were asked to identify the 
primary reason for referral, which could include ongoing problems 
in “attention”, “learning”, “memory”, or “poor school progress”. The 
only exclusion criteria were uncorrected problems in vision or hear-
ing and English as a second language.

The initial sample consisted of 550 children. Twenty children 
(3.6%) were subsequently removed because of missing data on 
any one of the seven tasks used for the machine learning. All sub-
sequent details refer to the remaining 530 children (see Figure 1 
for recruitment). Thirty three percent were referred for problems 
with attention, 11% for language difficulties, 10% for memory 
problems, and 43% for problems with poor school progress (for 3% 
of children referrers did not provide a primary referral reason). The 
final sample (mean age = 111 months, range = 65–215 months) 
contained 366 boys (69%). A high proportion of boys is consistent 
with prevalence estimates for different developmental disorders 
within cohort studies (e.g., Russell, Rodgers, Ukomunne, & Ford, 
2014).

Children were recruited with single, multiple or no diagnosis. 
The majority did not have a diagnosis (340, 64%). The prevalence 
of diagnoses were: ASD = 6%; dyslexia = 6%; obsessive compulsive 
disorder (OCD) = 2%. Twenty-two percent of the sample had a diag-
nosis of ADD or ADHD, and further 11% were under assessment for 
ADHD (on an ADHD clinic waiting list for a likely diagnosis of ADD 
or ADHD). Finally, 19% of the sample had received support from a 
Speech and Language Therapist (SLT) within the past 2 years, but did 
not typically have a diagnosis of SLI.
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Families attended the CALM clinic for the children’s cognitive 
and learning assessments. Testing lasted approximately 3 hr and was 
completed over multiple sessions where necessary. Parents/car-
ers were invited to complete multiple questionnaires assessing the 
child’s behavior and all children were invited for a subsequent mag-
netic resonance imaging (MRI) scan. Ethical approval was granted by 
the local NHS research ethics committee (Reference: 13/EE/0157). 
Written parental consent was obtained and children provided verbal 
assent.

2.2 | Measures

2.2.1 | Cognitive

A large battery of cognitive, learning, and behavioral measures are 
administered in the CALM clinic (full protocol: http://calm.mrc-cbu.
cam.ac.uk/protocol/). Seven cognitive tasks meeting the following 
criteria were used for the machine learning: (a) data were available 
for all 530 children; (b) accuracy was the outcome variable; and (c) 
age standardized norms were available. For all measures, age stand-
ardized scores were converted Z scores using the mean and standard 
deviation from the respective normative samples to put all meas-
ures on a common scale (original age norms were a mix of scaled, t, 
and standard scores). The following measures of fluid and crystal-
lized reasoning were included: Matrix Reasoning, a measure of fluid 
intelligence (Wechsler Abbreviated Scale of Intelligence [WASI]; 
Wechsler, 2011); Peabody Picture Vocabulary Test (PPVT; Dunn 
& Dunn, 2007). Phonological processing was assessed using the 
Alliteration subtest of the Phonological Awareness Battery (PhAB; 
Frederickson, Reason, & Firth, 1997). Verbal and visuo-spatial 
short-term and working memory were measured using Digit Recall, 
Dot Matrix, Backward Digit Recall, and Mr X subtests from the 
Automated Working Memory Assessment (AWMA; Alloway, 2007).

2.2.2 | Learning

Spelling, reading (Word Reading), and maths (Numerical Operations) 
measures were taken from the Wechsler Individual Achievement Test 
(WIAT; Wechsler, 2001). Educational assessments were available 

for 98% of the sample. The maths fluency subtest from Woodcock 
Johnson III Test of Achievement (WJ; Woodcock, Schrank, & Mather, 
2007) was administered to the first 68 children attending the CALM 
clinic, instead of the numerical operations measure. We had initially 
chosen this over the numerical operations subtest from the WIAT 
because the fluency measure is timed, and therefore quicker to ad-
minister. However, when the maths fluency scores were very low 
we switched to the WIAT—we wondered whether the timed nature 
of the maths fluency measure was underestimating children’s maths 
ability in this sample. Scores were slightly better with the WIAT, but 
not significantly so. A two sample Kolmogorov–Smirnoff test indi-
cated that the maths fluency scores from the first 68 participants 
and the numerical operations scores from the next 68 participants 
are drawn from the same continuous distribution ([D = 0.2144, 
p = 0.0874]). Age standardized scores were converted to z scores 
using the normative sample mean and standard deviation for all 
learning measures.

2.2.3 | Behavior

Parents/carers completed the Behavioural Rating Inventory of 
Executive Function (BRIEF; Gioia, Isquith, Guy, & Kenworthy, 2000). 
This is designed to assess behavioral skills associated with executive 
function on eight scales, including planning, working memory, inhibi-
tion, impulse control, and emotional regulation. Complete data were 
available for 99% of our 530 children.

The Children’s Communication Checklist (CCC-2; Bishop, 2003) 
was also administered. This consists of eight scales assessing a child’s 
structural language (e.g., speech, syntax, semantics), pragmatic com-
munication skills (e.g., turn taking, initiation, and use of context), and 
two additional scales to assess ASD-related dimensions (social rela-
tions and interests). Complete CCC-2 data were available for 99% of 
the sample.

2.3 | Statistical methods

A SOM consists of a predefined number of nodes laid out on a two-
dimensional grid plane; each node corresponds to a “node-weight 
vector” with the same dimensionality as the input data. In our case, 

F IGURE  1 CONSORT diagram 
showing recruitment avenues and 
exclusions

http://calm.mrc-cbu.cam.ac.uk/protocol/
http://calm.mrc-cbu.cam.ac.uk/protocol/
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each node will have seven weights associated with it (one for each 
cognitive task). A rule of thumb for determining map size, is to use 
a number of nodes equal to around 5 times the square root of the 
number of observations (Tian, Azarian, & Pecht, 2014). In this case, 
we used a 10 by 10 grid of nodes.

2.3.1 | Training the map

SOMs were trained using the neural network toolbox in MATLAB 
v2017a (MathWorks Inc., Natick, MA). SOMs consist of a prede-
fined number of nodes laid out on a two-dimensional grid plane. 
Each node corresponds to a weight vector with the same dimen-
sionality as the input data. We initialized the node weight vectors 
using linear combinations of the first two principal components of 
the input data. SOMs were then trained using a batch implementa-
tion, in which each node i is associated with a model mi and a “buffer 
memory”. One cycle of the batch algorithm can be broken down into 
the following: Each input vector x(t) is mapped onto the node with 
which it shares the least Euclidean distance at time t. This node is 
known as its Best Matching Unit (BMU). Each buffer sums the values 
of all input vectors x(t) in the neighborhood set belonging to node i 
and divides this by the total number of these input vectors to de-
rive a mean value. All mi are then updated concurrently according to 
these values. In this way, neighboring nodes become more similar to 
one another. This cycle is repeated, clearing all the buffers on each 
cycle and distributing new copies of the input vectors into them. The 
neighborhood size (ND) decreases as a function of t over n steps in an 
“ordering” phase, from the initial neighborhood size (INS) down to 1 
(Equation 1). In the “fine tuning” phase the neighborhood size is fixed 
at <1, meaning that the node weights are updated according only to 
the input vectors for which they are the BMU. This node adjustment 
process is the mechanism by which the SOM learns about the input 
data. In the current training process, we used 5 “ordering” runs and a 
single final fine tuning run.

At the end of the training process: (a) the weight vector for each 
individual node reflects the scores of the children for whom that 
node was the BMU; (b) neighboring nodes have similar weights, such 
that children with similar cognitive profiles are allocated to nodes 
that are near each other. In essence, the machine learning process 
generates a model of the multidimensional cognitive data set on 
which the SOM was trained.

2.3.2 | Exploring the distributions of different 
groups of children

Once the map had been trained we tested whether different groups 
of children cluster together. For example, if a child’s diagnosis pre-
dicts their cognitive profile, then children with the same diagnosis 

ought to cluster together. That is, they ought to sit on nodes that 
are near one another. However, if there is no systematic relation-
ship between this characteristic and a child’s cognitive profile then 
this group will be randomly scattered across the map. We tested this 
both for diagnosis (ASD, dyslexia and ADHD) and the referrer’s pri-
mary reason for sending the child to the CALM clinic (problems with 
attention, language, memory, or poor school progress).

To do this, the BMU was tested for each different group. The 
topographical distribution of this was tested statistically using a ver-
sion of the Kolmogorov–Smirnov test adapted for 2-dimensional data 
from two samples (Peacock, 1983). The statistic (D) tests whether 
the two samples are drawn from the same or different 2-dimensional 
distributions. In each case we compared the distribution of mem-
bers of a particular category (e.g., referred for language problems) 
with that of nonmembers (e.g., those not referred for language prob-
lems). A significant statistic indicates that the two distributions are 
not drawn from the same underlying population—i.e., that this par-
ticular way of categorizing children is significantly predictive of the 
cognitive profile that they have. Conversely a nonsignificant result 
indicates that the category’s members are equally likely to appear 
anywhere within the map.

2.3.3 | Data driven subgrouping

The artificial neural network maps cognitive profiles in a continu-
ous 2D plane of nodes, where space indicates similarity. We carved 
our map into sections and grouped the children who fell within that 
section, thereby clustering children with similar cognitive profiles. 
Clustering children who sit close together ought to yield groups with 
relatively homogenous cognitive profiles that are necessarily distinct 
from children in other clusters.

There is no clear theoretical rationale for how many clusters the 
map should be carved into. By definition, the map is fully continu-
ous without clear boundaries. One way to validate the clusters is 
to test whether they generalize to data not included in the initial 
machine learning—this could be other cognitive data, learning mea-
sures, behavioral questionnaires, or brain data. For example, if clus-
ters cannot be distinguished with unseen data then it suggests that 
the machine learning is over-fitting the data and/or the number of 
clusters is too high. In this case, the maps would need to be trained 
with fewer repetitions, a reduced set of nodes, or most likely a re-
duced number of clusters. To foreshadow our results, in the current 
sample we can identify four clusters of children. This is the max-
imum number of clusters that yield generalizable unique profiles. 
The Supplementary Materials includes a five cluster solution, which 
replicates the clusters from the four cluster solution, and a statisti-
cal comparison between the two. The Supplementary Materials also 
includes an alternative means of grouping children that is not reliant 
on machine learning—community detection via a network analysis 
(e.g., Bathelt et al. 2018).

To identify data-driven clusters the node weight values from the 
SOM were submitted to k-means clustering. Once the nodes were 
grouped according to the similarity of their weights, we identified 

(1)ND=1+

[

(INS)∗

(

1−

(

t

n

))]
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children assigned to each group of nodes. This provided us with clus-
ters of children based on nodes they were assigned to in the original 
mapping. This process was repeated 1,000 times, with the map re-
trained on every iteration and the k-means clustering recalculated, 
to check that the clusters were robust. Inevitably some children sit 
on the arbitrary cluster boundary within the map and thus fall in-
consistently into multiple different clusters on each iteration. Across 
the 1,000 iterations we were able to identify the children’s modal 
cluster, which was used for subsequent analyses. There was a clear 
modal cluster for 529 children (chi-squared test, ps < 0.05). To check 
the clustering, each cluster distribution was plotted on the original 
map. If the process had worked then all cluster members ought to sit 
on neighboring nodes within the original map.

The cognitive profiles of the clusters were compared to identify 
the ways in which they differ (it is necessarily the case that they 
will differ). Importantly the groups were then compared on other 
measures not included in the machine learning, namely learning and 
behavioral assessments and in terms of brain organization. For all 
of our assessments we corrected for multiple comparisons using a 
Bonferroni Correction within each data type (i.e., cognition, learning, 
and behavioral measures).

2.4 | Neuroimaging

2.4.1 | MRI participant sample

254 children participated in the MRI part of the study. 64 scans were 
not useable due to excessive motion (>3 mm movement during the 
diffusion sequence estimated through FSL eddy or visual inspection 
of T1-weighted images). The finally sample for MRI analysis consisted 
of 184 children (123 male, Age [months]: M = 117.62, SE = 1.938). 
The ratios of SOM-defined groups did not differ from the behav-
ioral sample (Cluster 1: n = 48, Cluster 2: n = 44, Cluster 3: n = 51, 
Cluster 4: n = 41, χ2 = 0.01, p > 0.999). There were no significant dif-
ferences between the groups in residual movement (see Table 1). For 
an additional comparison with a typically developing sample, we se-
lected children from a concurrent study about risk and resilience in 
education that shared many of the same cognitive assessments and 
used an identical neuroimaging protocol (Ethical approval number: 
Pre.2015.11). This sample included children attending mainstream 
school in the UK with normal or corrected-to-normal vision or hear-
ing and no history of brain injury who were recruited via local schools 
and through advertisements in public places (childcare and commu-
nity centers, libraries). Children were selected to use in the current 
analysis if they fell within the right age-bracket, had useable MRI 
data (i.e., good quality T1, movement during the diffusion sequence 
<3 mm and 69 diffusion-weighted volumes) and had cognitive scores 
within the normal range—scores above the 40th percentile for their 
age on assessments of fluid reasoning, vocabulary, verbal, and visu-
ospatial short-term and working memory were selected. This ad-
ditional comparison sample consisted of 36 children (18 male, Age 
[months]: M = 117.79, SE = 3.129, range: 83.02–150.05, mean fluid 
IQ = 53 [age expected = 50 ± 10 SD]).

2.4.2 | MRI data acquisition

Magnetic resonance imaging data were acquired at the MRC 
Cognition and Brain Sciences Unit in Cambridge, on the Siemens 3 
T Tim Trio system (Siemens Healthcare) using a 32-channel quad-
rature head coil. T1-weighted volume scans were acquired using a 
whole brain coverage 3D Magnetization Prepared Rapid Acquisition 
Gradient Echo (MP RAGE) sequence acquired using 1 mm isomet-
ric image resolution. Echo time was 2.98 ms, and repetition time 
was 2,250 ms. Diffusion scans were acquired using echo-planar 
diffusion-weighted images with an isotropic set of 60 noncollinear 
directions, using a weighting factor of b = 1,000s × mm−2, inter-
leaved with a T2-weighted (b = 0) volume. Whole brain coverage 
was obtained with 60 contiguous axial slices and isometric image 
resolution of 2 mm. Echo time was 90 ms and repetition time was 
8,400 ms.

2.4.3 | Structural connectome 
construction and comparison

First, MRI scans were converted from the native DICOM to com-
pressed NIfTI-1 format. Next, correction for motion, eddy currents, 
and field inhomogeneities was applied using FSL eddy (see Figure 2 
for an overview of processing steps). Furthermore, we submitted 
the images to nonlocal means de-noising (Manjon, Coupe, Marti-
Bonmati, Collins, & Robles, 2009) using DiPy v0.11 (Garyfallidis et al., 
2014) to boost signal-to-noise ratio. The diffusion tensor model was 
fitted to derive maps of fractional anisotropy (FA) using dtifit in FSL 
v.5.0.6 (Behrens et al., 2003). A constant solid angle (CSA) model 
was fitted to the 60-gradient-direction diffusion-weighted images 
using a maximum harmonic order of 8 using DiPy. Whole-brain prob-
abilistic tractography was performed with 8 seeds in any voxel with 
a General FA value higher than 0.1. The step size was set to 0.5 and 
the maximum number of crossing fibers per voxel to 2.

For ROI definition, T1-weighted images were submitted to nonlo-
cal means denoizing in DiPy, robust brain extraction using ANTs v1.9 
(Avants et al., 2011), and reconstruction in FreeSurfer v5.3 (http://
surfer.nmr.mgh.harvard.edu). Regions of interests (ROIs) were based 
on the Desikan-Killiany parcellation of the MNI template (Desikan 
et al., 2006) with 34 cortical ROIs per hemisphere and 17 subcorti-
cal ROIs. The cortical parcellation was expanded by 2 mm into the 

TABLE  1 Comparison of residual movement during the diffusion 
sequence between groups. The upper triangle of the table shows 
the p-value of an independent sample t-test. The lower triangle 
shows the corresponding t-value

C1 C2 C3 C4 C0

C1 0.119 0.668 0.401 0.208

C2 1.57 0.247 0.291 0.847

C3 0.43 −1.17 0.225 0.309

C4 −0.84 −1.69 −1.22 0.100

C0 1.27 0.19 1.02 1.66

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
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subcortical white matter. The parcellation was moved to diffusion 
space using FreeSurfer tools.

For each pairwise combination of ROIs, the number of stream-
lines intersecting both ROIs was calculated. A symmetric intersec-
tion was used, i.e., streamlines starting and ending in each ROI were 
averaged. The weight of the connection matrices represented the 
log10-transformed number of streamlines between the ROIs.

To investigate regional differences, we calculated the sum of 
all connections per region within the connectome. Regions that 
showed a significant difference between a deficit group (C1, C2, 
C4) and an age-appropriate performance group (C3) were se-
lected (t-test: puncorrected < 0.05) and further tested against the ex-
ternal comparison group (method adapted from Shen et al., 2017). 
Only regions that displayed a significant difference relative to 
the external comparison sample were included (FDR-corrected 
p < 0.05).

3  | RESULTS

3.1 | Comparison of the weight matrices

A good way to demonstrate how the SOM represents the cognitive 
data is to plot the values for each weight vector (i.e., the weights that 
correspond to each individual task) across the grid of nodes. This can 
be seen in Figure 3.

If tasks discriminate children in similar ways they should 
have similar node weight topographies. This was quantified by 
correlating the weight vectors. The resulting correlation matrix 
can be seen in the bottom right corner of Figure 2. There are 
some noteworthy relationships. For example, the two mea-
sures traditionally combined to produce a full-scale IQ score, 
the Matrix Reasoning and PPVT vocabulary measure, have 
very highly correlated weights. Tasks that share a phonological 
component have highly correlated weight matrices: alliteration, 
verbal STM, and verbal WM measures. Finally, spatial STM and 
WM measures are somewhat distinct from other measures, 
with weight matrices that are only moderately correlated with 
the other tasks.

F IGURE  2 Overview of processing steps to reconstruct a white 
matter connectome from diffusion-weighted and T1-weighted MRI 
data

F IGURE  3 Weight distributions from 
the self-organizing map, split by task. For 
each task the map depicts high weights 
(i.e., good performance) as yellow squares 
and low weights (i.e., poor performance) 
as black squares. The Pearson correlation 
between the weight distributions can be 
seen in the bottom-right matrix
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3.2 | Exploring distributions of different 
categories of children

To explore whether different sample characteristics (diagnostic sta-
tus, referral reason) are reflected within the map, the best matching 
node for different groups of children was selected. If category mem-
bership significantly predicts a child’s cognitive profile then these 
children should sit together in the map. Conversely, if membership 
is not predictive then the distribution of members should not differ 
significantly from that of nonmembers. Figure 4 shows the distribu-
tion of all children within our network, then for each category of 
primary referral reason and then each of the major diagnoses. The 
statistics are shown under each topography. None are significant. 
That is, children are evenly scattered regardless of the primary rea-
son for referral or diagnosis; each of these characteristics provides 
no information about a child’s cognitive profile on our measures.

3.3 | Common cognitive profiles

To identify children with common cognitive profiles, the map was 
carved into four sections by applying k-means clustering to the node 
weights of the SOM. Each cluster has a distinct spatial distribution 
within the map (Figure 5), as expected, and this is reflected in the 
distribution statistic.

Each group necessarily has a distinct cognitive profile. The first 
cluster includes children with broad and severe cognitive difficul-
ties—these children are around a standard deviation or more below 
the age-expected level on all cognitive measures. The third cluster 
includes children with age-typical cognitive abilities, performing 
close to age-expected levels on all tasks. These two clusters are sub-
sequently referred to as the “Broad Cognitive Deficits” and the “Age 
Appropriate” groups respectively. The remaining two clusters have 
intermediate profiles. They have similar moderate difficulties with 
Matrix Reasoning, but distinct profiles on the remaining measures. 
The second cluster has difficulties on the spatial STM, and verbal 
and spatial WM measures. This group is called the “Working Memory 
Deficits” group. The fourth cluster has difficulties tasks with a verbal 
component: vocabulary, phonological awareness, verbal STM, and 
verbal WM. This cluster is called the “Phonological Deficits” group.

The profiles of the four clusters can be seen in Figure 5, with 
scores and group comparisons presented in Table 2. All measures 
differed significantly across groups (all ps < 0.001). Post hoc Tukey 
tests were used to identify the underlying pairwise comparisons that 
produce these significant effects. For Matrix Reasoning all post hoc 
tests were significant at p < 0.001, except between clusters 2 and 4 
(Working Memory vs. Phonological Deficits groups). The Working 
Memory Deficits and Phonological Deficits groups have equiva-
lent Matrix Reasoning scores (p = 0.86). For Vocabulary, all post 
hocs were significant at p < 0.001. For the Phonological Awareness 
task, all post hocs were significant at p < 0.007. For Verbal STM, all 
post hocs were significant at p < 0.001. For Spatial STM, all post 
hocs were significant at p < 0.001, except between clusters 1 and 
2 (Broad Deficits vs. Working Memory deficits groups). The Broad 

Cognitive Deficits and Working Memory Deficits groups have equiv-
alent Spatial STM scores (p = 0.51). For Verbal WM, all post hocs 
were significant at p < 0.001, except for between cluster 2 and 4 
(Working Memory vs. Phonological Deficits groups). The Working 
Memory Deficits and Phonological Deficits groups had equivalent 
Verbal WM scores (p = 0.68). And finally, for Spatial WM all post 
hocs were significant at p < 0.001, except for between clusters 3 
and 4 (Age Appropriate vs. Phonological Deficits groups). The Age 
Appropriate and Phonological Deficits group had equivalent Spatial 
WM performance (p = 0.13).

The four groups are roughly equivalent in size, and although the 
children in the Phonological Deficits group tend to be younger, there 
are no significant age differences. The Broad Cognitive Deficit group 
contains a disproportionate number of girls, relative to the rest of 
the sample (χ2 = 6.12, p = 0.0133). Conversely the Age Appropriate 
group contains more boys than expected (χ2 = 6.80, p = 0.009). The 
Working Memory deficit and Phonological Deficit groups contain 
the proportions of boys and girls expected (χ2 = 0.01, p = 0.91; and 
χ2 = 0.01, p = 0.92 respectively).

Children referred primarily for problems with attention, poor 
learning, or memory were equally likely to be assigned to each group. 
Similarly, a diagnosis did not predict group membership. The only 
category predictive of group membership was whether the child 
was under the care of an SLT. These children were disproportion-
ately likely to be members of either the Broad Cognitive Deficits or 
Phonological Deficits groups. All of these statistics can be found in 
Table 2.

3.4 | Learning and behavioral profiles of the  
data-driven groups

The four clusters also have important differences on other meas-
ures not included in the machine learning, which are also shown in 
Table 2. Age Appropriate children had age appropriate learning skills 
across spelling, reading, and maths. Children in the Broad Cognitive 
Deficits group had severe problems on all learning outcomes, being 
more than 1.5 standard deviations below the age expected levels. 
The other two groups, despite their highly contrasting cognitive pro-
files did not differ in their learning profiles—moderate phonologi-
cal problems or working memory difficulties were associated with 
very similar learning profiles. This is reflected in the statistics—all 
measures show a significant group difference (all ps < 0.001), and all 
the post hoc tests are significant at p < 0.001, except between the 
Phonological and Working Memory deficit groups (spelling, p = 0.22; 
reading, p = 0.41; maths, p = 0.79).

The subscale scores for both BRIEF and CCC-2 questionnaires, 
split by group, can be seen in Table 2. Correlation matrices for both 
the BRIEF and CCC-2 can be found in Tables S1 and S2. Before 
comparing the groups a PCA was conducted separately for the sub-
scales of each questionnaire to reduce the number of comparisons. 
These analyses identified two factors in the BRIEF, which together 
explained 76.1% of the variance. The rotated factor solution and 
scale loadings can be found in Table S3. The first factor captured the 
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working memory, initiate, planning, organization, and monitor sub-
scales. The emotional control, shift, inhibit, and monitor subscales 
loaded most highly on the second factor. The first factor therefore 
corresponds to “Cold” executive functions associated with behav-
ioral regulation, while the second corresponds more closely to “Hot” 
cognitive aspects of executive function. Factor scores were saved 
and compared across groups: there were no significant differences 
in behavior across the clusters (all ps > 0.05).

There were also two factors within the CCC-2, explaining 
74% of the variance. The rotated factor solution can be found in 

Table S4. Subscales tapping pragmatic aspects of communication 
load most highly on Factor 1: coherence, inappropriate initiation, 
stereotyped language, context, nonverbal social skills, and interests 
subscales. Factor 2 was comprised of scales measuring structural 
language skills: speech, syntax, semantics, and coherence. These 
factors were labeled “Pragmatic Communication” and “Structural 
Language” respectively. There were no significant group differences 
in Pragmatic Communication factor scores. The groups did, however, 
differ significantly on Structural Language factor scores (p < 0.001). 
Post hoc tests revealed children in the Broad Cognitive Deficits 

F IGURE  4 The distributions of 
children’s best matching unit (BMU) 
within the map. This is first shown for all 
children and then for children categorized 
by referral reason and diagnosis. Beneath 
each plot the statistic indicates whether 
the BMUs are evenly scattered or grouped

F IGURE  5 The top panel shows the 
distributions of children assigned to 
each of the four clusters. Beneath each 
map the statistic indicates that all four 
clusters occupy a nonrandom set of 
nodes within the map. Beneath the maps 
the cognitive profile of each cluster is 
shown, ordered by cluster number. The 
scale indicates performance as a z score 
relative to age expected levels. The dots 
indicate individual children with the shade 
indicating the child’s consistency within 
that cluster over the 1,000 iterations—the 
darker the shade the more consistent the 
child
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TABLE  2 Cognitive, learning, and behavioral measures split by cluster

Label

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Broad deficits WM deficits Age appropriate Phon. deficits

Descriptives

N 146 121 132 131

Male 87 83 105 91

Female 59 38 27 40 F p value

Mean age 113 114 112 106 2.136 0.0947

Reason for referral Chi Sq pcorr

Attention 36 48 52 39 6.755 0.320

Memory 16 11 12 16 0.877 1.000

Language 25 7 12 15 8.321 0.159

Poor school 67 51 51 58 0.938 1.000

Diagnosis Chi Sq pcorr

ADD/ADHD 29 35 22 28 4.718 0.968

SLT 43 16 15 24 14.931 0.010

Dyslexia 11 9 5 5 3.186 1.000

ASD 9 6 11 6 1.850 1.000

Sus ADHD 15 14 18 10 2.312 1.000

Cognitive measures F Pcorr

Matrix reasoning −1.42 −0.71 0.04 −0.63 82.40 <0.001

Vocab −1.10 0.08 0.87 −0.47 157.13 <0.001

Phon. Aware. −1.17 −0.41 −0.17 −0.91 86.46 <0.001

Verbal STM −1.44 −0.19 0.44 −0.79 157.35 <0.001

Spatial STM −1.24 −1.12 0.29 −0.11 139.36 <0.001

Verbal WM −1.41 −0.55 0.18 −0.66 95.59 <0.001

Spatial WM −0.87 −0.45 0.45 0.23 73.48 <0.001

Learning measures F Pcorr

Spelling −1.58 −1.05 −0.47 −1.17 40.613 <0.001

Reading −1.60 −0.90 0.02 −1.09 65.932 <0.001

Maths −1.77 −1.02 −0.32 −1.13 55.957 <0.001

Behavioral measures

Exec. functions F Pcorr

Cold factor 0.05 0.03 0.01 −0.09 0.520 1.000

Hot factor 0.08 −0.01 −0.14 0.07 1.376 0.997

Inhibit 66.3 65.4 64.5 64.9

Shift 69.6 68.2 66.1 68.5

Emot. control 65.1 64.4 62.7 65.4

Initiate 68.1 66.2 65.9 66.6

WM 75.9 74.2 72.8 72.9

Planning 72.2 71.3 71.9 71.1

Organization 58.1 61.4 61.0 59.9

Monitor 66.5 66.4 64.2 65.1

Communication F pcorr

Pragmatic −0.10 −0.07 0.07 0.11 1.452 0.9076

Structural −0.53 0.28 0.55 −0.23 38.191 <0.001

Speech 3.6 6.6 7.1 4.6

(Continues)
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or Phonological Deficits groups were rated as having significantly 
greater structural language problems than either of the other two 
groups (all ps < 0.001). The respective Structural Language differ-
ence between the Age Appropriate and Working Memory Deficit 
groups was marginal (p = 0.043), as was that between the Broad 
Cognitive Deficits and Phonological Deficits groups (p = 0.043).

3.5 | White matter differences between the  
data-driven groups

Differences in white matter connections between the SOM-defined 
groups were investigated to uncover the neurobiological correlates 
of the grouping. Each of the deficit groups (Clusters 1, 2 and 4) was 
compared to the Age Appropriate group (Cluster 3) and an independ-
ent sample of typically developing children (TD). Statistical compari-
son of connection strengths by region indicate significantly lower 
connection strengths for frontal, temporal, parietal, and subcortical 
connections in Cluster 1 compared to Cluster 3 and TD (see Table 3 
and Figure 6). There was no significant difference in regional connec-
tion strength between Cluster 2 and Cluster 3 or between Cluster 2 
and TD. The comparison of Cluster 4 and Cluster 3 indicated sig-
nificantly lower strength of parietal connections and the comparison 
with TD indicated significantly different frontal connections.

Regional comparison indicated a significant reduction for 
Cluster 1 (Broad Deficits) compared to both comparison groups 
for the right inferior frontal gyrus (see Figure 6, C1: M = 0.59, 
SE = 0.027; C3: M = 0.65, SE = 0.025; C0: M = 0.72, SE = 0.028; 
t(82) = −3.19, pcorrected = 0.018), the right lateral orbitofrontal gyrus 
(C1: M = 0.66, SE = 0.021; C3: M = 0.72, SE = 0.021; C0: M = 0.75, 
SE = 0.025; t(82) = −2.91, pcorrected = 0.032), the left fusiform gyrus 
(C1: M = 0.69, SE = 0.017; C3: M = 0.76, SE = 0.017; C0: M = 0.79, 
SE = 0.021; t(82) = −3.69, pcorrected = 0.011), and the left precen-
tral gyrus (C1: M = 0.95, SE = 0.019; C3: M = 1.01, SE = 0.019; C0: 
M = 1.04, SE = 0.016; t(82) = −3.42, pcorrected = 0.013). The compar-
ison between Cluster 4 (Phonological Deficits) and both compari-
son groups indicated significantly lower connection strength in 
the left precentral gyrus (C4: M = 0.97, SE = 0.016; C3: M = 1.01, 

SE = 0.019; C0: M = 1.04, SE = 0.016; C4 vs. C0: t(75) = −3.03, pcor-

rected = 0.013) and left rostral anterior cingulate gyrus (C4: M = 0.30, 
SE = 0.009; C3: M = 0.33, SE = 0.01; C0: M = 0.35, SE = 0.009; C4 
vs. C0: t(75) = −3.51, pcorrected = 0.006). There were no significant 
differences between Cluster 2 (Working Memory Deficits) and the 
comparison groups, once controlling for multiple comparisons.

4  | DISCUSSION

We used machine learning to identify the cognitive profiles within a 
large heterogeneous sample of children with learning-related prob-
lems. These profiles were represented as topographical maps. None 
of the known characteristics of the children (e.g., diagnosis or re-
ferral route) were predictive of the cognitive profiles identified by 
the machine learning. To highlight the cognitive profiles that exist 
within the dataset, we subsequently carved the topographical maps 
into four sections. The children that correspond to these four sec-
tions will necessarily have distinct cognitive profiles, but they could 
also be distinguished in terms of learning and behavioral scores, and 
patterns of brain organization. The four groups cut across any tradi-
tional diagnostic groups that existed within the data.

More than half of the sample fell into two extreme groups, one 
with age-appropriate cognitive abilities and the other with wide-
spread cognitive deficits that were at least one standard deviation 
below age-typical levels across all tasks. There was no evidence that 
children with age-expected scores on the cognitive measures had 
learning difficulties. Their performance was in the age-typical range 
across all measures of learning and their structural communication 
skills were rated as normal for their age. But we should be very cau-
tious in regarding these children as typically developing; they have 
been referred by professionals in children’s services, and as a group 
they have elevated behavioral difficulties. For this reason in our neu-
roimaging analysis we used an additional external comparison group.

The learning scores of the broad deficit group place them within 
the bottom 5% of the population on measures of spelling, read-
ing, and maths, and they were rated as having difficulties in both 

Label

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Broad deficits WM deficits Age appropriate Phon. deficits

Syntax 3.0 6.0 7.3 4.2

Semantics 3.5 5.2 6.2 4.3

Coherence 3.3 4.6 5.3 4.3

Inappro. 
initiation

5.0 5.8 6.1 5.8

Stereo 4.1 5.5 6.6 5.3

Contex 2.7 4.0 5.4 3.7

Nonverbal 4.0 4.7 5.3 4.5

Social 4.1 4.7 5.2 5.2

Interest 5.3 5.5 5.8 5.7

TABLE  2  (Continued)
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structural and pragmatic aspects of communication. Generalized 
cognitive deficits therefore appear to constrain multiple aspects of 
learning. They also had behavioral problems related to executive 
function, although this was true for all four groups. Relative to both 

comparison groups, this group also had reduced structural connec-
tivity in the left precentral gyrus, right inferior frontal gyrus, right 
lateral occipital cortex, and the left fusiform. These areas have been 
previously identified as playing a key role in multiple higher order 

TABLE  3 Results of regional connection strengths between C3 and the other groups

C1 C2 C4 C3 C0

Median Mad Median Mad Median Mad Median Mad Median Mad

Frontal 0.68 0.053 0.70 0.047 0.69 0.058 0.72 0.069 0.72 0.038

Temporal 0.52 0.037 0.54 0.030 0.54 0.039 0.55 0.033 0.54 0.025

Parietal 0.66 0.052 0.67 0.045 0.67 0.042 0.70 0.067 0.68 0.050

Occipital 0.60 0.073 0.63 0.062 0.63 0.048 0.63 0.093 0.62 0.081

Subcortical 0.55 0.074 0.59 0.055 0.57 0.055 0.58 0.055 0.59 0.046

 

C1 vs. C3 C2 vs. C3 C4 vs. C3

U p pcorr. U p pcorr. U p pcorr.

Frontal 823 0.003 0.013 979 0.144 0.216 793 0.024 0.060

Temporal 772 0.001 0.006 1027 0.240 0.277 924 0.171 0.224

Parietal 758 0.001 0.006 890 0.042 0.090 715 0.005 0.018

Occipital 996 0.056 0.104 1064 0.334 0.358 889 0.110 0.184

Subcortical 916 0.016 0.047 1085 0.393 0.393 928 0.179 0.224

  C1 vs. C0 C2 vs. C0 C4 vs. C0

Frontal 520 0.001 0.010 657 0.196 0.321 505 0.012 0.034

Temporal 588 0.08 0.032 785 0.344 0.364 726 0.307 0.364

Parietal 577 0.004 0.032 694 0.327 0.364 567 0.022 0.056

Occipital 751 0.113 0.212 685 0.214 0.321 735 0.247 0.336

Subcortical 594 0.007 0.032 755 0.364 0.364 617 0.057 0.122

Bold text indicates significant effects at corrected p<0.05.

F IGURE  6 Regions with consistent 
significant differences in node degree 
between Cluster 1 and the control groups 
(blue) and Cluster 4 and the control 
groups (red)
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cognitive skills. For example, the right inferior frontal gyrus is im-
plicated in multiple different executive functions, most commonly 
measures of inhibitory control (Aron, Robbins, & Poldrack, 2014); 
the lateral occipital cortex has been found to be modulated by visual 
attention (Sprague & Serences, 2013); left premotor areas have been 
linked to language-related difficulties in both children and adults 
(Mayes, Reilly, & Morgan, 2015; Scott, McGettigan, & Eisner, 2009); 
and the fusiform gyrus has been suggested as a locus of immature 
processing of word forms in dyslexia (Tamboer, Vorst, Ghebreab, & 
Scholte, 2016). These general struggling learners are rarely studied, 
but our data suggest that they are common amongst those coming 
to the attention of children’s specialist services. Their relative under-
representation in studies of learning-related problems means that 
we have little understanding of the key underlying deficits, mecha-
nisms or potential routes to effective intervention. It is also interest-
ing to note that girls were disproportionately common in this group, 
relative to the sample as a whole or indeed relative to most studies 
of learning difficulties. Conversely very few girls appeared in the 
age-appropriate cognitive profile group. In short, the girls referred 
to the study tended to have more severe cognitive and learning dif-
ficulties. One possibility is that there is a gender bias in the reason 
for children coming to the attention of children’s specialist services, 
with boys being identified more commonly for behavioral difficulties 
(which may be less closely tied to cognitive and learning profiles), 
whereas more severe cognitive or learning difficulties are needed for 
girls to come to the attention of specialists.

Two intermediate groups, both with fluid reasoning scores in the 
low-average range, were also identified. One intermediate group was 
characterized by problems on tasks requiring phonological process-
ing, with performance around three quarters of a standard deviation 
below age-expected levels on measures of phonological awareness, 
and verbal short-term and working memory. These children had sig-
nificant problems with structural aspects of communication, mir-
roring the well-documented link between phonological processing 
difficulties and specific difficulties with language (Bishop & Norbury, 
2002; Bishop & Snowling, 2004; Ramus et al., 2013). However, the 
learning profile demonstrates equivalent and large deficits across 
measures of reading, spelling, and mathematics. Poor phonological 
processing is associated with both poor reading (Carroll & Snowling, 
2004; Snowling, 1995; Wagner & Torgesen, 1987) and mathematical 
development (De Smedt, Taylor, Archibald, & Ansari, 2010; Hecht, 
Torgesen, Wagner, & Rashotte, 2001; Swanson & Sachse-Lee, 2001). 
A consistent finding within the field of learning difficulties is that pho-
nological problems are linked selectively with reading. The majority 
of these findings come from studies that select poor readers, but this 
is not the same as demonstrating that phonological impairments will 
always result in selective reading difficulties. Our data suggest that 
children selected on the basis of phonological difficulties will actu-
ally have more widespread learning problems. Membership of the 
phonological deficit group was associated with reduced structural 
connectivity in the left precentral gyrus and rostral anterior cingu-
late, relative to both comparison groups. The precentral gyrus has 
been implicated in language processing and is thought to be involved 

in speech production and also decoding via articulatory simulation 
(Scott et al., 2009). This area has also been implicated in selective 
language impairment (Mayes et al., 2015). Furthermore, tracts of the 
perisylvian language network that connect temporal and frontal lan-
guage areas deficits are passing the precentral gyrus and may be sub-
stantially contributing the connectomics differences. Differences in 
white matter properties of these tracts have been repeatedly impli-
cated in language deficits (Rimrodt, Peterson, Denckla, Kaufmann, 
& Cutting, 2010; Roberts et al., 2014). This would also mirror the 
structural communication difficulties that these children demon-
strate. Indeed, this is the only behavioral measure that aligns well 
with the cognitive profiles—children who perform poorly on phono-
logical tasks are also rated as having significant structural language 
problems by their parents. Other behavioral measures of executive 
control do not align well with cognitive profiles.

The fourth group had a somewhat contrasting profile of cognitive 
deficit to the phonological deficit group. They were characterized 
by similar fluid IQ scores but had more pronounced difficulties in 
working memory. Their spatial short-term memory scores were over 
a standard deviation below age-expected levels, and half a standard 
deviation down on the verbal and spatial working memory measures. 
Their phonological abilities were less impaired, they were not rated 
as having the structural language difficulties reported for the phono-
logical deficit group, and their neural profile was less homogenous. 
One possibility is that multiple different etiological routes can result 
in this profile of difficulties.

Despite contrasting cognitive and neural profiles, the learning 
profiles of the working memory and phonological deficit groups were 
nearly identical. This diverges strongly from a preceding literature 
that emphasizes a marked association between phonological diffi-
culties and problems with literacy (Lyytinen et al., 2004; Snowling, 
Bishop, & Stothard, 2000; Tanaka et al., 2011), and an emerging liter-
ature that suggests strong associations between spatial short-term 
and working memory problems and numeracy difficulties (Bull et al., 
2008; Raghubar, Barnes, & Hecht, 2010; Szucs et al., 2013). These 
previous studies all recruit on the basis of highly selective learning 
profiles (e.g., maths problems in the absence of reading difficulties) 
or diagnostic group, which will have overestimated the distinctive-
ness of these impairments within the general population of strug-
gling learners.

Despite their utility, machine learning approaches to exploring 
cognitive profiles have limitations. The current combination of a mul-
tidimensional mapping method with a data-driven clustering algo-
rithm suffers from the drawback that the number of groups within 
the data is underspecified. The mapping process is continuous, with 
no obvious boundaries, which makes it difficult to have a clear ratio-
nale about the formation of groups. Inevitably some children will sit 
close to a group boundary within the map. Our approach was to add 
clusters until the clusters did not differ on measures not included in 
the machine learning. This is how we arrived at four clusters. This 
is a relatively conservative approach, since different cognitive pro-
files could exist that genuinely have identical learning, behavioral, 
and neural correlates. Furthermore, we suspect that datasets with 
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higher dimensionality, stemming from a more widespread battery of 
measures, could have greater success in identifying more widely dif-
fering cognitive profiles.

An alternative to machine learning is to use a network analysis 
with a community detection algorithm (e.g., Bathelt et al., 2018; Fair 
et al., 2012). An example of this approach applied to our data can 
be found in our Supplementary Materials section. This represents 
the children as nodes and the correlation between their profiles as 
edges. It is possible to use this approach to identify communities 
of clusters that maximize the correlation within cluster and the dis-
tinctiveness across clusters. This iterative process includes a quality 
of separation metric (Q) which the clustering algorithm is designed 
maximize. A major advantage of this approach is that no a priori as-
sumptions about the number of clusters need to be made. However, 
there are also drawbacks to this alternative. The primary limitation 
is that a network analysis clusters children on the basis of a correla-
tion matrix. As such it is blind to overall severity. The current sample 
contains a large number of children with relatively consistent poor 
scores across all cognitive measures and many children with stable 
age-appropriate scores. A network analysis would not be able to dis-
tinguish these two groups because the two profiles are highly cor-
related (this is indeed the case, see Supplementary Materials). The 
SOM uses Euclidean Distance as its primary means of locating chil-
dren within the 2D topographical space, and as such is able repre-
sent both selective cognitive impairments and overall differences in 
severity. A further limitation is sample size. Whilst we included 530 
children in the topographical mapping process, only 220 children 
were used in the structural neuroimaging comparison. This likely 
means that we only have sufficient power to detect the largest and 
most consistent group differences. More diffuse but equally import-
ant differences in whole brain connectome organization might exist, 
but a larger sample would be needed to identify them.

In summary, we used a machine learning approach that rep-
resents high-dimensional data as a 2D topography, to map the 
profiles of struggling learners. We combined this with a clustering 
algorithm to identify particular cognitive profiles represented within 
the map. Specifically, four profiles could be identified that comprise 
children with: (a) general and severe deficits, (b) age-appropriate 
performance, (c) working memory deficits, (d) phonological deficits. 
Furthermore, these data-driven groups are likely to align closely with 
underlying etiological mechanisms, as evidenced by differences in 
brain organization across two of the deficit groups, and provide the 
opportunity to devise interventions that more specifically target the 
cognitive difficulties faced by individuals with particular profiles.
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