
CDVT: a Cluster-based Distributed Video
Transcoding Scheme for Mobile Stream Services

Cheng Xu1, Wei Ren1,2,3,∗, Daxi Tu3, Linchen Yu4, Tianqing Zhu1, and Yi
Ren5

1 School of Computer Science, China University of Geosciences, Wuhan, P.R. China
2 Key Laboratory of Network Assessment Technology, CAS(Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, P.R. China 100093)
3 Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University,

Guiyang 550025, China
4 School of Cyber Science and Engineering, Huazhong University of Science and

Technology, Wuhan, P.R China
5 School of Computing Science, University of East Anglia, Norwich, NR4 7TJ, UK

* Corresponding Author: weirencs@cug.edu.cn

Abstract. Distributed video transcoding has been used to huge video
data storage overhead and reduce transcoding delay caused by the rapid
development of mobile video services. Distributed transcoding can lever-
age the computing power of clusters for various user requests and di-
verse video processing demands. However, it imposes a remaining chal-
lenge on how to efficiently utilize the computing power of the cluster as
well as achieve optimized performance through reasonable system pa-
rameters and video processing configurations. In this paper, we design a
Cluster-based Distributed Video Transcoding System called CDVT us-
ing Hadoop, FFmpeg, and Mkvmerge to achieve on-demand video split-
ting, on-demand transcoding, and distributed processing, which can be
applied to large scale video sharing over mobile devices. In order to fur-
ther optimize system performance, we conducted extensive experiments
on various data sets to find relevant factors that affect transcoding effi-
ciency. We dynamically reconfigure the cluster and evaluate the impacts
of different intermediate tasks, splitting strategies, and memory configu-
ration strategies on system performance. Experimental results obtained
under various workloads demonstrate that the proposed system can en-
sure the quality of transcoding tasks while reducing the time cost by up
to 50 percent.

Keywords: Distributed Transcoding · Hadoop · Video Processing · FFm-
peg.

1 Introduction

Nowadays, mobile devices with media playback capabilities are very common
in our daily life [1, 2]. The mobile devices can provide various services [3] and
applications, including video and audio[4]. People are getting used to watching

2 Cheng Xu et al.

videos on their mobile devices, e.g., smartphone, pad, etc. Terminals with diverse
Technological specifications and heterogeneous network environment raise new
challenges to streaming media services [5]. Various mobile devices needs videos of
different qualities, e.g., 240p, 1080p, to meet personalized user requirements [6].
So that video service providers need to prepare video data in multiple bitrates
and multiple packaging formats for the same video content on the server-side
[7]. In order to provide such services, video transcoding technology was pro-
posed which is now widely used in media services. Traditional video transcoding
methods are relatively inefficient and expensive, and it is difficult to support
the huge demand for multimedia traffic. Research on new and efficient video
transcoding methods has begun to attract attention.

Earlier research relies on multi-node computing power to process transcoding
tasks parallelly to reduce transcoding time [8–10]. These methods target special
user scenarios, which fail to provide theoretical guidelines and general recom-
mendation paradigms for different user tasks. In the case of a given system, it
is desirable to have general recommended configureations which can be friendly
adapted to different scenarios. Compared with usual parameter choices, finding
options that fit the characteristics of the distributed transcoding method will be
more likely to stimulate the system to achieve optimized performance.

In this paper, we propose a Hadoop-based distributed video transcoding sys-
tem. Our system can transcode a variety of video data according to user’s re-
quirements, such as encoding method, video bit rate, and packaging format. In
the system, huge volumn user-created video data are stored in the distributed
file system of the Hadoop cluster. Then, the video data are processed in a dis-
tributed manner, where FFmpeg [11] and Mkvmerge [12] are used for efficient
transcoding. Moreover, we conduct extensive experiments to determine the in-
sights and the key points, which have significant impacts on the transcoding
efficiency. Our experiment results help us to tune potential factors, process con-
trol, system parameter configuration, and segmentation strategies, of the system
for optimized system performance. Based on our findings, transcoding algorithms
and parameters are well tuned and configured. The experimental results show
that the system can obtain notable manifestation by using appropriate segmen-
tation strategy and parameter configuration under the condition of constant
cluster size. That is, traditional distributed transcoding increases the speed by
1.35 times compared to single machine transcoding, while our suggested strate-
gies can increase the transcoding rate to 2.06 times.

Based on the aforementioned introduction, the most significant contributions
we have made in this paper are as follows:

1) We proposed the architecture of a distributed video transcoding system
with optimized performances by evaluating various processing parameters such
as cluster size, split size, memory allocation to MapTask.

2) We implemented and extensively evaluated the system CDVT and obtain
design parameters and generally recommended transcoding configurations.

3) We designed and initially deployed two key algorithms to enable the user

CDVT 3

transcoding configuration to adaptively obtain the optimized transcoding per-
formance.

The rest of this paper is organized as follows: Section 2 surveys related work.
In Section 3, we introduces our system. Section 4 proposes the performance
analysis. Finally, Section 5 presents conclusions with some future work.

2 Related Work

In recent years, in order to provide users with a good viewing experience and
reduce costs for video service providers, distributed video transcoding has be-
come an effective measure to address this challenge [13, 14]. Video transcoding
based on distributed clusters can effectively solve the corresponding problems
of high hardware and time costs [15]. In this way, computing nodes are added
to the distributed computing environment, and the hardware cost of common
computing nodes is low, so as to enhance the parallelism of task processing and
achieve the purpose of improving transcoding efficiency [16, 17]. Hadoop, as a
distributed computing framework proposed by Apache [18], can provide a dis-
tributed computing capability by simply deploying it on computer clusters. It
has two important frameworks: Hadoop Distributed File System (HDFS) and
MapReduce. As a Distributed File System, HDFS has strong scalability and
high fault tolerance [19]; MapReduce, as a distributed programming framework,
can effectively screen out the underlying details and provide a good environment
for developers [20].

For example, Yang et al. [21] proposed a Hadoop-based distributed transcod-
ing system that transcodes video files in units of 32MB in size, and concluded
that parallel transcoding can reduce transcoding time by about 80%. This study
mainly explored the feasibility of a distributed transcoding scheme based on the
MapReduce framework, but failed to give more details in terms of system design.
Ryu et al. [22] designed a Hadoop-based scalable video processing framework
to parallelize video processing tasks in a cloud environment. By implementing
face tracking experiments, it has been shown that video processing speed can
be significantly improved in a distributed computing environment. Moreover, it
emphasizes that this video processing framework has good scalability. Kodavalla
et al. [23] proposesd a distributed transcoding scheme for mobile devices. By
using DVC and H.264 advanced video encoders to transcode in the network, the
transcoding method has met its key objective of low complexity encoder and
the decoder at both mobile devices of video conference application. In addition,
researchers such as Sameti et al. [17] still want to complete distributed video
transcoding on the Spark platform. As a successor of Hadoop, Spark may be
found to perform better on distributed transcoding.

While implementing distributed transcoding to reduce video transcoding
time, researchers have also begun to explore the factors that affect distributed
transcoding. For example, Chen et al. [24] proposed a transcoding system based
on MapReduce and FFmpeg, which can achieve efficient video transcoding work.
On the other hand, this work attempts to introduce a third-party file system in

4 Cheng Xu et al.

the system, and wants to further improve the transcoding efficiency by reducing
the disk I / O and network time overhead during the MapReduce process of the
cluster. Song et al. [25] also implemented a distributed video transcoding sys-
tem based on MapReduce and FFmpeg, and experimentally analyzed that the
system has different transcoding speed promotion rates for videos of different
sizes. It can achieve a speed increase of 1.38 times, 1.51 times, and 1.64 times
for 500MB, 1GB, and 2GB video processing respectively. In addition, the effect
of the number of cluster nodes on the improvement of transcoding efficiency is
demonstrated in a mathematical model. In some transcoding schemes, the video
is divided into chunks of equal size and the chunks are distributed across mul-
tiple virtual machines for parallel transcoding [26, 27]. However, Zakerinasab et
al. [28] analyzed the impact of chunk size on coding efficiency and transcoding
time. They [29] propose a distributed video transcoding scheme that exploits de-
pendency among GOPs by preparing video chunks of variable size. The scheme
effectively reduces bitrate and transcoding time. Kim et al. [30] also proposed a
Hadoop-based system that can transcode various video formats into the MPEG-
4 format. In the experimental part, the experimental scheme is designed for the
cluster size, HDFS block size, and backup factor size. Then the impact of the
three factors mentioned above on the cluster transcoding speed is evaluated.

In general, the above researches [17, 21, 22, 24, 25, 28–30] have proposed a va-
riety of ideas for the application of processing large-scale video data transcoding,
and revealed the advantages of distributed transcoding for traditional transcod-
ing methods when processing large-scale data. On the other hand, they did
not further explore the factors affecting the efficiency of distributed transcod-
ing under the proposed mechanism. Therefore, this paper proposes a distributed
transcoding system based on Hadoop, and tries to figure out the optimal strategy
to adapt the transcoding efficiency of the proposed mechanism while evaluating
the system performance through a set of experiments.

3 CDVT: Cluster-based Distributed Video Transcoding
System

In this section, we will introduce the overall architecture and workflow of the
proposed system in detail, which will include several core components of the
system and the functions of each component.

3.1 System Structure Design

Since the system we designed is based on the Hadoop cluster model, the working
mode of the cluster nodes is mainly the master/slave mode. When processing
video transcoding tasks, the core design of the system consists of placing tasks
into the MapReduce framework for processing and generating multiple subtasks
for parallel processing to improve the transcoding efficiency of the system.

As shown in Fig. 1, the system is divided into three main domains according
to different responsible functions, which are the Video Data Preprocessing and

CDVT 5

�����

�����	
���	������������	���	�������
�����

��������

���������	�
������

���������	�
���������

�

����������	�����������	����	
�����

���������������	�����������	
�����

������������	 ������������
 �������������

�������������

�

�������	�
���������

�������	�
������

�������	�

�������	�

�

�� ���	
�����������	���	!� ������	
�����

�

�������	"

�������	�

Fig. 1: The overall architecture of the proposed system

Merging Domain (VDPAMD), the Splits Distribution and Collection Domain
(SDACD), and the MapReduce-based Transcoding Domain (MTD). The solid
and dashed lines in the figure represent the transfer of source data and target
data respectively. The main components and functional domains of the proposed
system are explained as follow:

NameNode This role is the only global manager in the entire cluster, and its
functions include: job management, status monitoring, and task scheduling. More
specifically, it is responsible for processing submissions from users in the system,
which includes the original video data and XML parameter files that are eager
to transform the data. On the other hand, it will start the entire process after
accepting user submission as the main program entrance, which includes splitting
the original data according to XML content, generating the corresponding index
file for each segment, uploading the original segment set to HDFS, invoking the
deployed JAR package containing the MapReduce program, downloading the
target fragment set to the local, and finally merge the target fragment set and
store target data in the specified path.

DataNode This role stores files on HDFS in the form of data blocks in the
cluster. Its functions include responding to read and write requests to HDFS
and synchronizing data storage information with NameNode. Explaining in more
detail, it is responsible for receiving and centrally storing the original and target
segment sets in the proposed system. At the same time, when the MapReduce
program is invoked, the video fragment and their indexes on the DataNode will
be distributed in parallel to the task performers in the cluster. Then, after any

6 Cheng Xu et al.

task executor finishes transcoding the video fragments, the target fragments will
be returned to the DataNode for concentration.

TaskTracker This role is responsible for accepting each subtask job in the clus-
ter, starting and tracking task execution. In other words, after a Map Task is
generated, TaskTracker is responsible for executing the task, which includes read-
ing the corresponding splits according to the index file distributed to the task,
transcoding the read splits, and writing the transcoded data back to HDFS.

Video Data Preprocessing And Merging Domain The video data preprocessing
and merging domain will not only accept video data collection to be transcoded
from users such as video surveillance, video service providers, etc., but also col-
lect the transcoded video data collected from the distributed transcoding work
domain. Source video splits set and target video splits set, both types of them
need to be collected and stored in this domain. When the source data to be
transcoded is collected, VDPAMD will process those data according to the pa-
rameter submitted by the user. The processing work includes splitting the video
according to the configured size, extracting the transcoding parameters from the
XML file, and submitting related tasks to the Hadoop cluster. Similarly, when
the transcoded splits are collected, the area needs to complete the merging of
those splits.

Distributed Transcoding Work Domain The distributed transcoding work do-
main consists of two parts: the splits distribution and collection domain (SDACD)
and the MapReduce-based transcoding domain (MTD).

(1) One between the two, SDACD is implemented based on HDFS, and it will
collect the source video splits obtained by VDPAMD and the target video
splits completed by MTD. Simultaneously, SDACD also needs to allocate
solits for the Map Task on each transcoding node of the MTD according to
the index, which is the split distribution function of the domain.

(2) The other between the two, MTD is responsible for executing multiple
transcoding subtasks in parallel. Each computing node in the Hadoop clus-
ter will be set up with FFmpeg, then all the nodes with video processing
capabilities form MTD. During the execution of the entire MapReduce task,
every node of MTD will be assigned one or more Map Tasks, and then the
node will find the split that needs to be processed according to the previ-
ously generated index and download it to the local for transcoding. Finally,
what MTD needs to do is to upload the transcoded splits to SDACD after
the Map Task ends.

3.2 System Workflow

After elaborating on the system components and the main functions of each
component through the section 3.1, this section hopes to further introduce how
they work together through Fig. 2 in order to show the main workflow. Firstly,

CDVT 7

����

����	�

����

	��

���������	
�����

�
�����	��

���������

�
�����	��
�

���	��������

��
�	��������

���������������

�����	��������	
����
�

�	���������	���

�����������

��	
����

�����
�

��������

���	��������

���������������

�����	�����������
�

��
�	��������

����� ����

�
�����	��
�

������� ���

�	�	 ��!����	�����

 ���

"�
��	����	��

�	�#�

Fig. 2: The flowchart of the transcoding service

users can access the VDPAMD and submit the original video data that needs to
be transcoded to this domain. When the video data is submitted, the transcoding
options (including bit rate, spatial resolution, temporal resolution, compression
standard conversion, packaging format, etc.) selected by the user will be made
into the corresponding XML and submitted to VDPAMD together. Secondly, the
system processes the video in VDPAMD according to the user’s configuration,
which includes splitting the original video into multiple fragments and uploading
all the fragments to SDACD, and generating a corresponding index for every
video fragment. After that, when all the fragments are collected in SDACD, the
parameter configuration parsed from the XML submitted by the user will be
passed to the MapReduce task and submitted to the Hadoop cluster.

Subsequently, transcoding nodes in the MTD need to transcode the original
video fragments. Because of the MapReduce-based working mechanism, it allows
every transcoding node to receive one or more Map Tasks. Every Map Task will
be assigned an index and transcoding parameters, and they will read the video
segment from SDACD according to the data storage information in the index,
and then transcode according to the transcoding parameters. Afterwards, when
the transcoding task is finished in a distributed computing manner, all nodes
in MTD will upload the currently processed segments to SDACD, and then
delete all intermediate files. Immediately afterwards, all transcoded shards will
be collected on VDPAMD, and they will be cleared in SDACD after they are
collected. Finally, VDPAMD merges the fragments completed by the transcoding
task, deletes all the fragments after the merge phase is completed, and stores
the final target video file to the specified path to meet the needs of the user.

8 Cheng Xu et al.

3.3 Key Algorithm Design

Algorithm 1 : Algorithm for selecting optimized splitting size

Input:
α: cluster nodes size participating in MTD
β: HDFS block size in cluster pre-configuration
κ: user-configured split size in XML
ω: user submitted dataset size

Output:
µ: optimized split size for current systems

1: while system available do
2: if κ != null then
3: µ← κ

4: if dω
µ
e < α and dω

β
e < α then

5: µ← dω
α
e

6: end if
7: if dω

µ
e < α and dω

β
e ≥ α then

8: µ← min{µ, β}
9: end if

10: if dω
µ
e ≥ α and dω

β
e ≥ α then

11: µ← β
12: end if
13: if dω

µ
e ≥ α and dω

β
e < α then

14: µ← max{dω
α
e, β}

15: end if
16: else
17: µ← β
18: end if
19: end while
20: return µ

Regardless of the design parameter level or the transcoding configuration pa-
rameter level, the selection that is more in line with the system characteristics
can make the CDVT show optimized performance compared to selections that
are not suitable. So it should be noted that in terms of video splitting size in
VDPAMD and how much computing memory is allocated to each MapTask in
MTD, we proposed splitting strategies and memory allocation methods respec-
tively, ensuring CDVT performs as best as possible.

Algorithm 1 provides a pseudo-code to select the optimized split size which
was a general recommended configuration obtained through our extensive evalu-
ation of the system CDVT. This method is triggered when the user-defined split
size is parsed. The optimized split size for current systems µ are determined by
the combined influence of cluster nodes size participating in MTD α, the HDFS
block size β in the system configuration, the user-selected partition size κ, and
the submitted dataset size ω.

dω
µ
e < α and dω

β
e < α (1)

When condition (1) is satisfied, the computing nodes in current system cannot
be fully utilized no matter whether dataset is split by µ or β , which may be

CDVT 9

the reason why the dataset submitted by users are too small. Then, with the
destination of making the utmost of system resources, the video spliiting size at
this case is suitable to be adjusted to dω/αe.

dω
µ
e < α and dω

β
e ≥ α (2)

When condition (2) is satisfied, it is appropriate for current system that user
submitted the dataset at a suitable scale but the system’s available computing
nodes are underutilized. Correspondingly, it is necessary to properly straighten
out the split size so that it approaches β from a larger value.

dω
µ
e ≥ α and dω

β
e ≥ α (3)

When condition (3) is satisfied, it is the case that both the scale of user submis-
sion tasks and the utilization rate of the computing nodes are appropriate for
the current system. At this time, the optimized split size for current systems µ
be configured as β preferentially;

dω
µ
e ≥ α and dω

β
e < α (4)

When condition (4) is satisfied, a more extreme case is considered which the size
of dataset submitted by the user is small and the split size is also smaller than
expected. This situation is also a configuration that is not conducive to the full
advantage of current system. The split size needs to be properly corrected in
such circumstances so that it approaches β from a smaller value.

Algorithm 2 : Pseudo-Code for checking MapTak Memory Allocation

Input:
λ: configurable memory size for nodes in MTD
γ: memory the user wants to allocate for each MapTask in XML

Output:
ε: memory allocated to MapTask optimized for the current system

1: while system available do
2: if γ! = null and γ ≤ λ then
3: ε← γ parse and validate user configuration parameters
4: if λ mod ε! = 0 then
5: resize ε to take full advantage of configurable memory

6: p← dλ
γ
e maximum parallel MapTask numbers under γ

7: ε← λ

p
calculate final recommended allocation

8: end if
9: ε← λ

10: end if
11: end while

Algorithm 2 provides the pseudo-code for checking MapTask allocated Mem-
ory. The algorithm is triggered when the memory size γ defined by the user in
XML allocating for each MapTask is parsed. Assuming that the configurable

10 Cheng Xu et al.

memory of all nodes in the MTB is indiscriminate, if γ obtained from the con-
figuration is greater than λ, the configuration will lose efficacy unquestionably.
In such circumstances, the ε is adjusted to the maximum configurable mem-
ory by default. Conversely, the γ configurated by user is possibly effective when
γ ≤ λ. Then the algorithm needs to check whether the allocation ε can make
the available resources fully profitable by the corresponding method (line 4 in
Algorithm 2). When the configurable memory is not fully allotted, the strategy
(lines 5-7 in Algorithm 2) readjusts ε to allocate the largest possible memory for
each MapTask while each node obtains the maximum MapTask parallelism.

4 Experiments and Evaluation

4.1 Experimental Design

Under the premise of ensuring the integrity and validity of the transcoded data,
we focus on taking the task completion time and speedup as performance eval-
uation metrics. In experimental design, our main purpose is to evaluate the
performance of the proposed system and explore the configuration factors that
affect the transcoding efficiency of the system.

More detail, we will first verify the efficiency advantages of distributed transcod-
ing compared to single machine transcoding through experiment in Section 4.3.1,
and then compare distributed transcoding and distributed transcoding under dif-
ferent system configurations through Sections 4.3.2,4.3.3,4.3.4. The experiment
takes time as an observation variable, and uses the data set size, the number of
cluster slave nodes, each stage of the service process, video segmentation size,
and task memory allocation [31] as control variables.

Finally, we implemented and extensively evaluated the system CDVT, and
obtained design parameters and general recommended transcoding configura-
tions.

4.2 Experimental Setup

We set up a Hadoop cluster consisting of 5 computing nodes to conduct this
experiment. One of the computers can serve as the master (NameNode) and the
remaining 4 as slaves (DataNode and TaskTracker). Tables 1 gives these software
and hardware parameters.

In addition, in order to verify the performance of transcoding source video
data of different scales into target data, we give the source and target data
parameters used in this experiment in Table 2.

4.3 Experimental Results

In the following experiments, we took time as an observation variable, and uses
the data set size, the number of cluster slave nodes, each stage of the service pro-
cess, video segmentation size, and task memory allocation as control variables.

CDVT 11

Table 1: Configuration of Nodes
Components Configurations and Releases
OS Ubuntu 14.04 LTS
JDK Oracle JDK 1.8 Update 171
Hadoop Apache Hadoop 2.7.6 stable release
FFmpeg ffmpeg 3.3.8
MKVmerge mkvmerge v6.7.0 64bit
CPU Main frequency:3.20GHz, Intel Core i5 4460
RAM Capacity:4 GB, Kingston DDR3(800MHz)

Table 2: Parameters of Source and Target data
Parameter Source data Target data

Codec Avc1 MPEG-4
Resolution 1920x800 720x480
Container mkv avi
Frame rate 30 25

Aspect ratio 16:9 16:9

Table 3: Total transcoding time(s) and speedup(SU) with different cluster size
Nodes 1 2 3 4
Dataset(GB) Time(s) Time(s) SU Time(s) SU Time(s) SU
0.25 97.84 72.01 1.36 70.16 1.39 70.90 1.38
0.5 205.36 149.82 1.37 148.74 1.38 148.07 1.39
1 482.72 344.80 1.40 335.22 1.44 312.86 1.54
2 1030.54 682.48 1.51 599.15 1.72 551.09 1.87
4 1920.94 1178.49 1.63 1032.76 1.86 934.86 2.06

4.3.1 Experiment of Cluster Size Affecting Performance

In the first experiment, we took 0.25GB, 0.5GB, 1GB, 2GB, and 4GB video
files as inputs, and measured the time-consuming and speedup ratios for differ-
ent cluster sizes. The speedup is used to describe the increase in the processing
rate of distributed transcoding methods relative to single-point transcoding, so
it is defined as: Speedup(n) = transcoding time for single-node / transcoding
time for n nodes.

Table 3 reveals the transcoding time-consuming and speed-up ratios of dif-
ferent size datasets under different cluster sizes. For example, when the number
of slave nodes in the system is 4, it takes 934.86 seconds for 4GB of video data,
which has speedup as 2.06 times compared with the completion time of a single
machine transcoding of 1920.94 seconds. It also means a reduction in time costs
by more than 50%.

Fig. 3, 4 can visually illustrate the effect of various cluster nodes on transcod-
ing performance through the relationship between transcoding time and cluster
size. They also reveal as following: (1) when the source video size is constant, the
system can use more nodes to obtain less time-consuming and higher speedup;
(2) when the cluster size is constant, larger source video can be obtained better
transcoding efficiency.

12 Cheng Xu et al.

�

���

����

����

����

����

� � � �

�����	 ����	 ��	 ��	 ��	

�
��

�
��
�

����

Fig. 3: Transcoding time under different cluster nodes

�

���

�

���

�

���

� � � �

�����	 ����	 ��	 ��	 ��	

�
�
�
�
�
�
�

����

Fig. 4: Speedup under different cluster nodes

Table 4: Time consuming at each stage of the transcoding service

Task
Time(s)

0.25GB 0.5GB 1GB 2GB 4GB
Receive and parse XML configuration files 0.51 0.53 0.54 0.50 0.58
Split process of the source data in VDPAMD 0.89 8.97 22.66 41.95 73.47
Create a corresponding index for each split 0.03 0.02 0.03 0.03 0.03
Upload splits and indexes to specific folder in HDFS 11.90 23.93 59.52 121.06 221.66
Transcode on MapReduce-based Transcoding Domain 53.85 105.74 208.87 346.68 565.42
Download and collect all target segments in VDPAMD 3.84 8.55 20.40 39.17 72.13
Merge and get final target data 0.41 0.89 1.39 2.26 4.19
Total 70.90 148.07 312.26 551.09 934.86

4.3.2 Task analysis Experiment in Transcoding Service

In the second experiment, we start to disassemble the entire transcoding ser-
vice workflow into multiple stages, that is, multiple different tasks, according
to the system details described in System Structure Design (Section 3.1) and
System Workflow (Section 3.2). We also used 0.25GB, 0.5GB, 1GB, 2GB, and
4GB video files as input to measure the time consumption of tasks in each stage
of the transcoding process, and put the experimental data in Table 4.

CDVT 13

�

���

���

���

���

���

���

���

	��

��

����

����� ���� �� �� ��

�����

������

���������

��������

��� �

�
��

�
��
�

���������	��
����������

Fig. 5: Time cost for different tasks in transcoding services

For example, for the same task of receiving and parsing XML configuration
files, 0.25GB data takes 0.51 seconds, 0.5GB takes 0.53 seconds, 1GB takes
0.54 seconds, 2GB takes 0.50 seconds, and the last 4GB takes 0.58 seconds.
This means that throughout the workflow, the time it takes to process the task
of receiving and parsing the XML configuration is not much different, and it
does not fluctuate significantly due to changes in the size of the original data.
Similarly, the task with minimal time fluctuations throughout the workflow also
has the task of creating a corresponding index for each split.

In contrast, for the same task of transcoding on the MapReduce-based Transcod-
ing Domain, 0.25GB data takes 53.85 seconds, 0.5GB takes 105.74 seconds, 1GB
takes 208.87 seconds, 2GB takes 346.68 seconds, and the last 4GB takes 565.42
seconds. It means that throughout the workflow, the time it takes to process
the task of transcoding on the MapReduce-based Transcoding Domain is much
different, and it fluctuated significantly due to changes in the size of the origi-
nal data. Finally, according to Fig. 5, in the input data processing of all sizes,
the task of transcoding on the MapReduce-based Transcoding Domain has the
largest time-consuming component and the largest fluctuation. Therefore, we
can reduce the overall execution time by focusing on further improving the per-
formance of transcoding on the MapReduce-based Transcoding Domain, which
is also the most important work in the next section.

4.3.3 Experiment of Split Size Affecting Performance

In the third experiment, we are inspired by the second experiment, which will
mainly discuss the factors affecting the performance of transcoding on the MapReduce-
based Transcoding Domain. We also took 0.25GB, 0.5GB, 1GB, 2GB, and 4GB
video files as input and measured the time-consuming tasks of each stage in the
transcoding workflow, but we added a control variable: split size. Split size is the
unit of data processing during the video splitting phase, and it will also be the
bigness of each task processed by MapTask. Here, we performed five sets of tests
on each data set according to the XML file with the split sizes of 64MB, 100MB,
128MB, 150MB, and 256MB, and finally put the obtained data into Table 5.

14 Cheng Xu et al.

Table 5: Time cost for different tasks under different split sizes and viarous data
sizes

Dataset Main task
Time(s) cost at different split sizes

64MB 100MB 128MB 150MB 256MB

0.25GB

Split 1.42 1.39 0.89 1.12 0.89
Upload 20.13 16.47 11.90 10.51 9.78
Transcode 71.16 62.36 53.85 56.71 60.51
Download 7.87 6.27 3.84 3.57 1.96
Merge 0.20 0.18 0.41 0.19 0.18
Total 100.78 86.67 70.90 72.09 73.31

0.5GB

Split 6.38 7.83 8.97 9.25 8.86
Upload 45.04 28.89 23.93 21.86 19.99
Transcode 129.34 118.61 105.74 110.62 115.72
Download 17.97 10.74 8.55 8.25 7.18
Merge 0.99 0.67 0.88 0.90 0.67
Total 199.73 166.74 148.07 150.87 152.42

1GB

Split 34.24 26.07 22.67 19.61 21.31
Upload 98.40 70.03 59.53 52.69 51.10
Transcode 257.67 227.96 208.87 222.86 239.10
Download 40.20 25.15 20.40 18.77 11.08
Merge 1.55 1.42 1.40 1.34 1.55
Total 432.01 350.63 312.86 315.26 324.13

2GB

Split 43.65 41.85 41.95 45.00 45.79
Upload 189.46 137.58 121.04 112.06 98.97
Transcode 475.23 416.13 346.68 384.00 412.45
Download 74.24 47.76 39.16 33.53 20.24
Merge 2.58 2.29 2.26 2.25 2.58
Total 785.16 645.62 551.09 576.85 580.03

4GB

Split 81.35 75.97 73.47 73.27 74.77
Upload 352.15 267.26 221.66 206.52 188.21
Transcode 862.39 730.45 565.42 635.30 688.99
Download 119.91 94.63 72.13 57.87 41.82
Merge 4.99 4.23 4.19 4.45 4.15
Total 1420.79 1172.54 934.86 977.40 997.94

����

�����

�����

����

����

����	�

����

�
���

����

���

����

	
���

����

�����

�����

��	�

����

�����

����

�����

�
���

��
�

����

�����

����

��	�

����

����

����

�����

�

��

��

��

��

���

���

����� �����	
�����	� �������	 �����
����

�
��

�
��
�

�
����������������	������������

����

�����

�����

�	���

�	���

Fig. 6: Time cost for different tasks under different split sizes and 0.25GB data

For instance, for the same stage of transcoding with 4GB dataset (Transcode),
it takes 862.39 seconds under split size is 64MB, takes 730.45 seconds under
split size is 100MB, takes 565.42 seconds under split size is 128MB, takes 635.30
seconds under split size is 150MB and takes 688.99 seconds under split size is
256MB.

CDVT 15

����

�����

������

�	�
�

��
�

������

����

�	���

��	���

�
���

���

������

��
�

�����

�
����

	���

���

��	���

����

�����

��
���

	���

���

��
���

	���

�
�
�

������

����

���

������

�

��

���

���

���

���

�
��

�
��
�

����

�����

��	��

�����

�����

����� �����	
�����	� �������	 �����
����

����������������	��� ��������

Fig. 7: Time cost for different tasks under different split sizes and 0.5GB data

�����

�����

��	�	�

�
���

����

������

�����

	
�
�

����
�

�����

����

��
���

���	�

�����

�
����

�
���

����

������

�����

���	�

������

�����

����

������

�����

�����

������

�����

����

������

�

��

���

���

���

���

���

���

���

���

���

����� �����	
�����	� �������	 �����
����

���	

����	

��
�	

����	

����	

�
��

�
��
�

����������������	������������

Fig. 8: Time cost for different tasks under different split sizes and 1GB data

�����

����	�

��	�
�

���
�

���

��	�
�

�����

������

������

�����

���

��	���

�����

�
����

������

���
�

���

		����

�	���

��
���

������

���	�

���

	�����

�	���

�����

��
�	�

��
�

���

	�����

�

���

���

���

���

���

���

���

	��

��

���� ����� ��������� ������� ����� ����

�
��

�
��
�

����

�����

��	��

�����

�����

����������	
����������� ������

Fig. 9: Time cost for different tasks under different split sizes and 2GB data

Figs. 6-10 more vividly reflect the impact of split size on transcoding perfor-
mance. Taking Fig. 10 as an example for illustration, we find that as the split
size is changed, the time-consuming in the stages of Split and Merge jitter small
and this fluctuation has almost no effect on the transcoding time (Total). The
Upload and Download tend to decrease as split size increases. It is because the
larger the partition size, the smaller the number of data blocks and the smaller
the overhead of file transfer. And under various datasets, Fig. 11 shows the global
impact of different split sizes on the total transcoding time.

16 Cheng Xu et al.

�����

������

����	�

��
�
�

����

��	�����

����

�����

�����

	���

	���

�������

����

�����

����	�

����

	���

�	�
�

����

������

������

��
�

	���

�	�

	���

������

��
���

	����

	���

�
�

�

���

���

���

���

����

����

����

����

��	
� ��	�� �������� ���	�� ����� ���	

����

�����

�����

�����

�����

��
�
��
��

����������	
����������� ������

Fig. 10: Time cost for different tasks under different split sizes and 4GB data

�

���

���

���

���

����

����

����

����

���� ����� ����� �	��� �	���

������

��� ���

���

�����

���������	

��
��
���
��
	

��

Fig. 11: Transcoding time under different split sizes and various dataset

Most notably, however, as the split size changes, the jittering trend of the
transcoding task (Transcode) approaches the convex function and is similar to
the trend of total time consumption (Total). It means that the system can im-
prove the performance of the stage of transcoding on the MapReduce-based
Transcoding Domain through proper split size configuration, thereby minimiz-
ing the total time overhead. The reason why we choose to slice with 128MB of
data for the optimized performance may be that the default size of the HDFS
data storage unit is 128MB, which can be manually configured. Therefore, we
recommend configuring the split size configuration as much as possible to the
size of the distributed storage data block in the system design to obtain the
optimized system performance.

4.3.4 Experiment of MapTak Allocated Memory Affecting Perfor-
mance

To further discuss the impact of memory allocation on transcoding performance,
the last experiment will be performed with a fixed size of slave nodes (4 nodes)
and a splitting strategy of 128 MB. There are also five sizes of data sets to be
transcoded.

CDVT 17

Table 6: Total transcoding time(s) under various memory allocated to MapTask
Allocated Memory 1GB 2GB 3GB 4GB
Dataset(GB) Time(s) Time(s) Time(s) Time(s)
0.25 71.88 71.77 72.88 70.90
0.5 170.50 160.89 179.68 148.07
1 366.24 335.22 312.86 312.86
2 631.20 581.36 666.49 551.09
4 1051.20 1006.86 1125.33 934.86

Before discussing the experimental results, we want to introduce what is
allocated memory to MapTask. In the MapReduce working framework, there is
a parameter named mapreduce.map.memory.mb in its configuration file, which is
used to control the processing memory allocated to each MapTask. For example,
suppose that on a node with 4GB memory, if memory allocated to MapTask is
set to 1GB, then theoretically, at most four tasks can be run simultaneously; if
this value is set to 3GB, only one task can be run. Then, the dilemma is that
the smaller the allocation of memory, the more parallel the processing of tasks
on each node will be, but at the same time the ability to process the same tasks
will be weakened. In this case, getting the appropriate compromise is even more
important for computationally intensive video transcoding tasks.

�

���

���

���

���

����

����

��� ��� 	�� ���

���
�����������������

�
��
�
��
�

�����
���������
��
������

Fig. 12: Time cost under different allocated memory and various dataset

Table 6 and Fig. 12 show the results of transcoding makespan in the final
experiment with 0.25GB, 0.5GB, 1GB, 2GB, and 4GB video data as input under
different memory allocated to MapTask. It can be found that the transcoding
performance of the system is the worst when the allocated memory is 3GB. It
is because 3GB is not a factor of the system node memory (4GB), which results
in insufficient memory usage. When the memory is allocated to 1GB, 2GB, and
3GB respectively, the system transcoding performance fluctuates small. When
the size of the processed data is large, the allocation of memory as large as pos-
sible will make the system’s transcoding performance the best. It shows that

18 Cheng Xu et al.

in an effective parallel processing framework, equipping computing nodes with
stronger computing capabilities is more beneficial to system transcoding perfor-
mance.

5 Conclusion and Future Work

In this paper, we proposed the architecture of a distributed video transcoding
system that can efficiently transcode non-real-time large-scale video on users’ de-
mand, which can be applied to video-on-demand and video sharing over mobile
devices. In particular, we expounded the system design and workflow in detail,
and discussed the effect of cluster size, intermediate task flow, split strategy, and
memory allocation to MapTask on system performance through four sets of ex-
periments. Experimental results show that larger cluster size or befitting memory
allocation can produce the optimized system performance and shorter transcod-
ing completion time at the system design parameters level. At the transcoding
configuration level, users choose a larger dataset to be processed, or select split
size that is closer to the current system storage unit, which can maximize the
advantages of the proposed system and will enlighten subsequent applications.
In addition, the proposed system can ensure the quality of transcoding tasks
while reducing time-to-cost by up to about 50%, when the system is running
under optimized configuration parameters.

Future research includes implementing distributed processing of real-time
video data or combining transcoding tasks with crowdsourcing under limited
computing resources.

Acknowledgement

The research was financially supported by National Natural Science Foundation
of China (No. 61972366), the Foundation of Key Laboratory of Network Assess-
ment Technology, Chinese Academy of Sciences (No. KFKT2019-003), Major
Scientific and Technological Special Project of Guizhou Province (No. 20183001),
and the Foundation of Guizhou Provincial Key Laboratory of Public Big Data
(No. 2018BDKFJJ009, No. 2019BDKFJJ003, No. 2019BDKFJJ011).

References

1. S.-I. Hong, H.-S. Lyu, C.-G. In, J.-C. Park, C.-H. Lin, D.-H. Yoon, Development
of digital multimedia player based on mobile network sever, in: 2012 14th Inter-
national Conference on Advanced Communication Technology (ICACT), IEEE,
2012, pp. 1280–1283.

2. S. Petrangeli, N. Bouten, E. Dejonghe, J. Famaey, P. Leroux, F. De Turck, De-
sign and evaluation of a dash-compliant second screen video player for live events
in mobile scenarios, in: 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM), IEEE, 2015, pp. 894–897.

CDVT 19

3. D. Davis, G. Figueroa, Y.-S. Chen, Socirank: identifying and ranking prevalent
news topics using social media factors, IEEE transactions on systems, man, and
cybernetics: systems 47 (6) (2016) 979–994.

4. Y. Liu, A. Liu, N. N. Xiong, T. Wang, W. Gui, Content propagation for content-
centric networking systems from location-based social networks, IEEE Transactions
on Systems, Man, and Cybernetics: Systems 49 (10) (2019) 1946–1960.

5. C. Xu, W. Ren, L. Yu, T. Zhu, K.-K. R. Choo, A hierarchical encryption and key
management scheme for layered access control on h. 264/svc bitstream in internet
of things, IEEE Internet of Things Journal (2020).

6. A. I. Hentati, L. C. Fourati, O. B. Rhaiem, New hybrid rate adaptation algorithm
(hr2a) for video streaming over wlan, in: 2017 Sixth International Conference on
Communications and Networking (ComNet), IEEE, 2017, pp. 1–6.

7. Z. Li, Y. Huang, G. Liu, F. Wang, Z.-L. Zhang, Y. Dai, Cloud transcoder:
Bridging the format and resolution gap between internet videos and mobile de-
vices, in: Proceedings of the 22nd international workshop on Network and Op-
erating System Support for Digital Audio and Video, ACM, 2012, pp. 33–38.
doi:10.1145/2229087.2229097.

8. G. Gao, W. Zhang, Y. Wen, Z. Wang, W. Zhu, Y. P. Tan, Cost optimal video
transcoding in media cloud: Insights from user viewing pattern, in: 2014 IEEE
International Conference on Multimedia and Expo (ICME), IEEE, 2014, pp. 556–
571. doi:10.1109/ICME.2014.6890255.

9. H. Tan, L. Chen, An approach for fast and parallel video processing on apache
hadoop clusters, in: 2014 IEEE International Conference on Multimedia and Expo
(ICME), IEEE, 2014, pp. 1–6. doi:10.1109/ICME.2014.6890135.

10. H.-W. Kim, H. Mu, J. H. Park, A. K. Sangaiah, Y.-S. Jeong, Video transcod-
ing scheme of multimedia data-hiding for multiform resources based on intra-
cloud, Journal of Ambient Intelligence and Humanized Computing (2019) 1–
11doi:10.1007/s12652-019-01279-1.

11. FFmpeg, “a complete, cross-platform solution to record, convert and stream audio
and video.”, http://ffmpeg.org/ (Apr 2019).

12. Mkvmerge, “mkvtoolnix – matroska tools for linux/unix and windows.”,
https://mkvtoolnix.download/doc/mkvmerge.html (Apr 2019).

13. J. Huh, Y.-H. Kim, J. Jeong, Ultra-high resolution video distributed transcoding
system using memory-based high-speed data distribution method, in: 2019 34th
International Technical Conference on Circuits/Systems, Computers and Commu-
nications (ITC-CSCC), IEEE, 2019, pp. 1–4.

14. T.-H. Hsu, Z.-Y. Wang, A distributed shvc video transcoding system, in: 2017 10th
International Conference on Ubi-media Computing and Workshops (Ubi-Media),
IEEE, 2017, pp. 1–3.

15. X. Li, M. A. Salehi, Y. Joshi, M. K. Darwich, B. Landreneau, M. Bayoumi, Per-
formance analysis and modeling of video transcoding using heterogeneous cloud
services, IEEE Transactions on Parallel and Distributed Systems 30 (4) (2018)
910–922.

16. X. Li, M. A. Salehi, M. Bayoumi, N.-F. Tzeng, R. Buyya, Cost-efficient
and robust on-demand video transcoding using heterogeneous cloud services,
IEEE Transactions on Parallel and Distributed Systems 29 (3) (2017) 556–571.
doi:10.1109/TPDS.2017.2766069.

17. S. Sameti, M. Wang, D. Krishnamurthy, Stride: Distributed video transcoding in
spark, in: 2018 IEEE 37th International Performance Computing and Communica-
tions Conference (IPCCC), IEEE, 2018, pp. 1–8. doi:10.1109/PCCC.2018.8711214.

20 Cheng Xu et al.

18. Apache, “the apache hadoop project develops open-source software for reliable,
scalable, distributed computing.”, http://hadoop.apache.org/ (Dec 2018).

19. Apache, “hdfs architecture guide.”, http://hadoop.apache.org/docs/stable/hadoop-
project-dist/hadoop-hdfs/HdfsDesign.html (Dec 2018).

20. Apache, “mapreduce tutorial.”, http://hadoop.apache.org/docs/stable/hadoop-
mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html (Dec
2018).

21. F. Yang, Q.-W. Shen, Distributed video transcoding on hadoop, Computer Systems
& Applications 11 (2011) 020.

22. C. Ryu, D. Lee, M. Jang, C. Kim, E. Seo, Extensible video processing
framework in apache hadoop, in: 2013 IEEE 5th International Conference on
Cloud Computing Technology and Science, Vol. 2, IEEE, 2013, pp. 305–310.
doi:10.1109/CloudCom.2013.153.

23. V. K. Kodavalla, Transcoding of next generation distributed video codec for mo-
bile video, in: 2018 Second International Conference on Advances in Electronics,
Computers and Communications (ICAECC), IEEE, 2018, pp. 1–7.

24. M. Chen, W. Chen, L. Cai, Data-driven parallel video transcoding for content
delivery network in the cloud, in: 2018 5th IEEE International Conference on
Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International
Conference on Edge Computing and Scalable Cloud (EdgeCom), IEEE, 2018, pp.
196–199. doi:10.1109/CSCloud/EdgeCom.2018.00042.

25. C. Song, W. Shen, L. Sun, Z. Lei, W. Xu, Distributed video transcod-
ing based on mapreduce, in: 2014 IEEE/ACIS 13th International Confer-
ence on Computer and Information Science (ICIS), IEEE, 2014, pp. 309–314.
doi:10.1109/ICIS.2014.6912152.

26. A. Heikkinen, J. Sarvanko, M. Rautiainen, M. Ylianttila, Distributed multimedia
content analysis with mapreduce, in: 2013 IEEE 24th Annual International Sym-
posium on Personal, Indoor, and Mobile Radio Communications (PIMRC), IEEE,
2013, pp. 3497–3501.

27. M. Kim, S. Han, Y. Cui, H. Lee, H. Cho, S. Hwang, Clouddmss: robust hadoop-
based multimedia streaming service architecture for a cloud computing environ-
ment, Cluster Computing 17 (3) (2014) 605–628.

28. M. R. Zakerinasab, M. Wang, Does chunk size matter in distributed video transcod-
ing?, in: 2015 IEEE 23Rd international symposium on quality of service (IWQos),
IEEE, 2015, pp. 69–70.

29. M. R. Zakerinasab, M. Wang, Dependency-aware distributed video transcoding
in the cloud, in: 2015 IEEE 40th conference on Local computer networks (LCN),
IEEE, 2015, pp. 245–252.

30. M. Kim, Y. Cui, S. Han, H. Lee, Towards efficient design and implementation of
a hadoop-based distributed video transcoding system in cloud computing envi-
ronment, International Journal of Multimedia and Ubiquitous Engineering 8 (2)
(2013) 213–224. doi:10.1109/icce-tw.2015.7216972.

31. J. Yang, R.-F. Li, A container resource configuration method in hadoop transcoding
cluster based on requirements of a sample split, in: 2017 IEEE 2nd International
Conference on Cloud Computing and Big Data Analysis (ICCCBDA), IEEE, 2017,
pp. 108–112. doi:10.1109/ICCCBDA.2017.7951893.

