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1. General introduction 

1.1 Thesis Abstract 

 

Three loci contribute to resistance in barley against the non-adapted pathogen Puccinia 

striiformis f. sp. tritici: Rps6, Rps7 and Rps8. Using a high-resolution recombination screen, a 

forward genetic screen, natural variation, and transgenic complementation we identify two 

adjacent genes on the long arm of chromosome 4H which are both necessary for Rps8-

mediated resistance. These genes are in genetic coupling and are inherited together as part 

of a 546 kb In/Del polymorphism between Rps8 and rps8 haplotypes. These genes encode an 

Exo70 protein and an LRR-XII family receptor kinase protein; the Exo70 is a member of the 

Exo70FX clade which has only been identified in the Poaceae, and the receptor kinase is a 

member of the LRR-XII clade which is widely conserved across plants and includes the well-

studied resistance genes FLS2, EFR and Xa21. We perform an analysis of the Exo70FX clade in 

the Poales and identify the origins of Exo70FX in the graminid clade. We also catalogue 

extensive species-specific expansion of Exo70FX subclades throughout the Poaceae as well as 

sequence-level diversity within and between subclades. We identify the Exo70 at Rps8 as a 

member of a novel subclade: Exo70FX12, which is a recent innovation of the Pooideae. To 

facilitate this analysis, we sequenced and annotated the first genome of Ecdeiocolea 

monostachya, a wild Australian plant which is a close outgroup of the Poaceae, assembling a 

diploid genome of 1.33 Gbp, covering an estimated 87% of the genome with 84,700 gene 

annotations. 

 

1.2 Organisation 

This thesis is divided into five chapters. Chapter 1 is a broad introduction to the topics 

discussed in subsequent chapters, Chapters 2, 3, and 4 each contain an introduction, results, 

chapter specific-methods, and short discussion. and Chapter 5 is a final discussion. A 

bibliography follows Chapter 5. 

 

In Chapter 1, we provide a broad overview of immunity in plants with special emphasis on 

extracellular recognition mediated by receptor kinase proteins. We also discuss the life cycle 
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of Puccinia striiformis, and summarise its relationship with the grasses. Finally, we give an 

overview of the function of Exo70 proteins in exocytosis, as well as in other roles. 

 

In Chapter 2, we describe cloning of Rps8, a genetic module providing resistance to wheat 

stripe rust in barley. We fine-map Rps8 using a high resolution recombination screen derived 

from the SusPtrit x Golden Promise doubled-haploid population [Yeo 2012]. Natural diversity 

across a panel of barley accessions, and a forward genetic screen using an M6 population 

derived from the reference accession Morex demonstrate that Rps8 is two genes at a single 

locus: an Exo70 (Exo70FX12a) and an LRR-RK (LRR-RK-Rps8). Each of these genes is necessary 

for Rps8, and they are inherited together in a 546 kbp polymorphism. We demonstrate that 

stable transgenic expression of Exo70FX12a is sufficient to complement mutant phenotypes 

deficient in this gene, but insufficient in the absence of LRR-RK-Rps8. 

 

In Chapter 3, we describe the de novo whole genome sequencing of Ecdeiocolea 

monostachya. E. monostachya is one of three species in the Ecdeiocoleaceae, a family within 

the graminid clade of the order poales and a critical outgroup of the Poaceae. We assembled 

a genome with a haploid size of 0.77 Gbp and a heterozygosity of 2.5%. We annotate the E. 

monostachya genome using RNAseq derived from three tissue types: sheath, flower, and 

root. The annotated genome contains 84’700 gene models, and is 95% BUSCO complete.  

 

In Chapter 4, we investigate the origins of the Exo70FX clade in the Poales. In order to 

characterise Exo70FX12a more thoroughly, we analysed the predicted Exo70 genes of 45 

Poaceae, 16 Poales and two Commelinids, using a combination of reference genomes and 

transcriptomes. We identify the Exo70FX clade as emerging within the graminid clade, and 

substantially expanding and diversifying within the Poaceae, after the radiation of the 

Anomochlooideae. We develop a system for annotating Exo70FX subclades based on 

homology and synteny. We find that the Exo70FX12 subclade is a recent innovation of the 

Pooideae, and that the Exo70FX clade exhibits substantial inter-species variation in terms of 

subclade presence, subclade size, and protein identity. 

 

In Chapter 5 we summarise the results of the previous chapters, and discuss their 

implications with regards to the specialisation of P.striiformiis f.sp. tiritici and the evolution 
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and expansion of the Exo70FX clade of genes. We recommend experiments for future 

investigation of the Exo70FX clade, and specifically to explore the interactions between 

Exo70FX12 and LRR-RK-Rps8. We provide a brief personal summary of learning experiences 

over the course of the PhD project. 

 

 

1.3. The plant immune system 

1.3.1 Plants have innate immunity to most pathogens 

Any given plant has an innate immunity to the majority of potential pathogens. Unlike jawed 

vertebrates, they do not have an adaptive immune system, instead plants have evolved a 

diverse array of pre-configured mechanisms to both recognise and defend themselves against 

threats (Ellis, Dodds, and Pryor 2000; Dodds and Rathjen 2010; Jones and Dangl 2006). Plants 

can attenuate their response based on events occurring over their lifetime. They can 

recognise when they have been threatened and prepare a more effective defence against 

future attacks (Benhamou 1996; Galis et al. 2009; Crisp et al. 2016). They can signal to one 

another, and they can make decisions about when an interaction goes from benign, to 

neutral, to harmful and respond appropriately (García‐Garrido and Ocampo 2002; Schäfer et 

al. 2009). 

 

In the majority of cases, innate barriers to infection such as a waxy cuticle, a thick or 

toughened cell wall, and antimicrobial compounds combine with varying tissue and cellular 

organisation between species to prevent would-be pathogens from colonising a plant species 

to which they are not adapted (Jones and Dangl 2006). In a host system, a pathogen is capable 

of overcoming these obstacles and taking nutrients from the host plant in order to complete 

its life-cycle (Stahl and Bishop 2000). In host systems, whether the pathogen is successful will 

depend on a combination the interactions between the plant’s immune responses and the 

tools available to the pathogen to overcome or avoid that response. Resistance genes are 

genes which provide a plant with the ability to recognise and respond to specific molecular 

signals associated with pathogens such as extracellular pathogen-associated ligands, 

intracellular non-self molecules, or by monitoring for plant-derived molecules which have 
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been disturbed or damaged in some way (Tsuda and Katagiri 2010; Katagiri and Tsuda 2010; 

Dangl, Horvath, and Staskawicz 2013).  

 

1.3.2 Pathogens are specialised to overcome host immunity 

 

In order to infect a plant, pathogens must be able to overcome preformed barriers, to evade 

or suppress the plant immune response, and to extract nutrients from the plant in order to 

grow and reproduce. Plant pathogens are often classified according to their method of 

nutrient acquisition: biotrophic pathogens are parasitic and require a living host to extract 

nutrients from, necrotrophic pathogens kill host cells in order to feed on them directly, and 

hemi-necrotrophic pathogens switch from a biotrophic to a necrotrophic lifestyle when 

certain conditions are met (Panstruga 2003; Glazebrook 2005; Spoel, Johnson, and Dong 

2007). 

 

Some pathogens are capable of infecting one plant species under normal conditions, and 

another under a very limited set of conditions. This additional host can be described as a non-

adapted system, and this paradigm is a good descriptor of the interactions between the 

formae speciales of pathogens which are adapted to a particular host but not its close 

relatives. For example, the powdery mildew fungus Blumeria graminis f. sp. tritici is 

specialised to infect bread wheat (Triticum aestivum), but it is possible to generate lineages 

of barley (Hordeum vulgare) which are susceptible to infection (Aghnoum et al. 2010; Romero 

et al. 2018). Similarly, the rust fungi; Puccinia spp. Have been characterised as existing on a 

continuum, whereby they are specialised to infect a primary host, but can infect close 

relatives of that host under certain conditions (Niks et al. 2015; Niks 1983; Bettgenhaeuser et 

al. 2014; Bettgenhaeuser et al. 2018). 

 

Pathogens adapted to a plant species are able to form physical structures that are compatible 

with their host such as infection pegs or specialised intracellular hyphae, and they will also 

synthesise and deploy molecules such as toxins, catabolic enzymes and effectors which 

interact with their host to facilitate infection. Effectors are molecules generated by pathogens 

which perform some operation upon their host. This can include overcoming and supressing 

immunity, directing the flow of nutrients to the pathogen, otherwise manipulating the host 
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cell and facilitating the pathogen’s life-cycle (Mukhtar et al. 2011; Lo Presti et al. 2015; Ridout 

et al. 2006; Stergiopoulos and de Wit 2009). As effectors are translocated to the plant cell, 

they represent ideal candidates for recognition. The pathogen, it is assumed, cannot lose 

effectors without some penalty to fitness and common effector targets can be monitored by 

the plant (Montarry et al. 2010; Rouxel and Balesdent 2017). However, pathogens may adapt 

by evolving additional effectors that inhibit recognition of pre-existing effectors (Bourras et 

al. 2016). 

 

In the case of biotrophic pathogens, the detection of non-self molecules within the cell 

requires an immediate response, generally growth of the  pathogen is restricted by defence 

pathways associated with salicylic acid (SA) signalling, leading to a form of localised cell-death 

called the hypersensitive response (HR) (Jones and Dangl 2006). Host-specific necrotrophic 

pathogens, however, can exploit this system by mimicking the effectors or effects of 

biotrophic pathogens in order to induce HR and permit them to feed (Govrin and Levine 2000; 

Lorang, Sweat, and Wolpert 2007; Lorang 2019). In Arabidopsis thaliana, successful plant 

defence against broad-spectrum necrotrophs generally utilises jasmonic acid (JA) signalling 

and production of antimicrobials and cell-wall reinforcement, with a corresponding decrease 

in SA signalling and an inhibition of cell death via the hypersensitive response (Govrin and 

Levine 2002; Lai et al. 2011). 

 

 

1.4 Intracellular and extracellular recognition 

1.4.1 The plant immune response can be classified by where recognition occurs 

Recognition by the plant immune system is mediated by two major classes of immune 

receptors, which can be classified by the spatiotemporal properties of the interaction. 

Defence can either be initiated early; at the cell boundary, by membrane-localised receptors, 

or during infection within the cell by intracellular receptors (van der Burgh and Joosten 2019; 

Thomma, Nürnberger, and Joosten 2011; Tsuda and Katagiri 2010). This distinction is based 

on observed differences in both the signalling mechanisms and downstream responses 

between these interactions, however there is also interaction between these signalling 
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pathways (Thomma, Nürnberger, and Joosten 2011; Tsuda and Katagiri 2010; Navarro et al. 

2004; Ngou et al. 2020; Yuan et al. 2021). 

 

Membrane-bound immune receptors such as receptor kinases (RK), or receptor proteins (RP) 

recognise non-self molecular patterns associated with microbial activity via direct recognition 

of epitopes (Newman et al. 2013) such as the bacterial peptide fragment flg22 (Felix et al. 

1999), the chitin monomer N-acetylchitoheptaose (Roby, Gadelle, and Toppan 1987; Yamada 

et al. 1993) or plant-derived peptidoglycan cell wall fragments (Gust et al. 2007) This system 

permits a single receptor to recognise and respond to a variety of pathogen lineages. 

However, the approach is vulnerable to subversion by pathogens which take steps to avoid 

presenting these common epitopes, or to interfere with signalling mechanisms shared 

between receptors (Abramovitch and Martin 2004; Jones and Dangl 2006; Dodds and Rathjen 

2010). Given that plant surfaces are constantly exposed to microbes, insects, and other 

potential threats they must balance a broad recognition capacity with a moderated response 

(Huot et al. 2014). In several instances, membrane-bound receptors have been shown to 

require a co-receptor, which contributes to a multi-faceted downstream signalling response 

that enables the plant response to be fine-tuned depending on the type and intensity of the 

input (Felix et al. 1999; Cabrera et al. 2006; Ayres and Schneider 2012), as well as permitting 

interactions with mutualists that would otherwise trigger a defence response (García‐Garrido 

and Ocampo 2002; Kamel et al. 2017). 

 

1.4.2 Intracellular recognition is primarily mediated by NLR proteins 

The majority of cytoplasmic immune receptors belong to the nucleotide binding, leucine-rich 

repeat (NLR) class of receptor. The intracellular defence response is typically more rapid and 

intense than extracellular-based responses (Cui, Tsuda, and Parker 2015; Jones, Vance, and 

Dangl 2016). While the down-stream regulatory pathway of NLR proteins remains unknown, 

considerable work has established diverse accessory proteins involved in recognition and 

signal transduction. While some NLRs such as L (Dodds et al. 2006), RGA5 (Cesari et al. 2013), 

Pik-1 (Maqbool et al. 2015), and RPP1 (Krasileva, Dahlbeck, and Staskawicz 2010), have been 

shown to directly interact with a pathogen effector protein, others have been found to 

recognise perturbation of a guarded host protein such as RIN4 by RPS2 (Mackey et al. 2003), 

SUMM2 and CRCK3 (Zhang et al. 2012), or PBL2 by ZAR1 (Wang, Sun, et al. 2015). A subset of 
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NLRs may also contain one or more non-canonical integrated domains (ID), which are also 

hypothesised to act as targets of pathogen effectors by mimicking in planta targets (Kroj et 

al. 2016; Bailey et al. 2018). 

 

1.4.3 Physical properties and mechanisms of NLR proteins 

NLR protein structure can vary immensely. The most basic components are a central 

nucleotide binding (NB-ARC) domain followed by a tandem array of leucine-rich repeats (LRR), 

each generally 24 residues long (Liu, Du, et al. 2017). N-terminal variation may include a TIR 

or coiled coil domain, and may also include a full or partial integrated domain (ID) derived 

from another protein class, such as a WRKY, kinase, HMA, or Exo70 (Eitas and Dangl 2010; 

Takken and Goverse 2012; Jacob, Vernaldi, and Maekawa 2013; Bailey et al. 2018). In some 

cases, only one or two of these domains are detectable in the protein, although the majority 

will contain both an NB and LRR domain. 

 

 

Activation of NLRs is hypothesized to occur through a transition from inactive to primed state, 

where the inactive state is maintained through binding ADP, which prevents interaction with 

downstream signalling components (Tameling et al. 2002; Kim et al. 2005; Maekawa, Kufer, 

and Schulze-Lefert 2011; Williams et al. 2016). After activation, whether by directly binding a 

particular ligand or some other signal, the protein switches to an active configuration, 

releases ADP, binds ATP, and initiates an appropriate response, often induced cell death (HR) 

(DeYoung and Innes 2006; Collier and Moffett 2009; Wang, Hu, et al. 2019; Wang, Wang, et 

al. 2019). An alternative model, the equilibrium model, was proposed by Bernoux et al. 

(Bernoux et al. 2016), who observed that effector binding in the L-AvrL567 system was 

reduced in NLR isoforms with a preference for the ADP-bound state, but increased in isoforms 

with a preference for the ATP-bound state. In this model, NLRs exist in equilibrium between 

the active and inactive states, and pathogen detection stabilises; rather than induces, the 

active state, permitting downstream signalling.  
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1.4.4 Intracellular recognition prompts the hypersensitive response 

While HR is a common outcome in intracellular defence, there appear to be multiple 

mechanisms by which it can occur, and exhibits characteristics that overlap with several forms 

of programmed cell death (Dalio et al. 2020). There is evidence that TIR-NLRs execute HR in 

an autophagy-dependent manner (Hofius et al. 2009), and through a conserved system of 

oligomerisation along with helper molecules to form a porin-like structure known as a 

resistome (Wang, Hu, et al. 2019; Lapin et al. 2019). CC-NLRs also induce cell-death, but in a 

manner independent of autophagic machinery and without apparent formation of a 

resistome (Hofius et al. 2009). Other outcomes from NLR activation include Ca2+ signalling, 

transcriptional changes leading to upregulation of plant defences and intracellular signalling, 

especially through increased SA production, often in a way that amplifies or extends an earlier 

response driven by extracellular receptors (Abdul Malik, Kumar, and Nadarajah 2020; Pandey 

and Somssich 2009; Moscou et al. 2011; Maekawa et al. 2012; Jacob, Vernaldi, and Maekawa 

2013; Tsuda and Katagiri 2010). Numerous domain swap and truncation experiments indicate 

that the N-terminal (ie, TIR or CC) domain is necessary for HR in a full length NLR protein, and 

when present as a single domain can often induce HR without an elicitor (Collier, Hamel, and 

Moffett 2011; Bai et al. 2012; Cesari et al. 2013; Adachi et al. 2019; Horsefield et al. 2019; 

Wan et al. 2019). 

 

 

1.4.5 Receptor kinases in extracellular recognition 

Extracellular recognition occurs at the boundary to the cell, generally via membrane-bound 

receptor (RP) or receptor kinase (RK) proteins; which are classified based on whether the 

receptor has an integrated kinase domain for downstream signalling (van der Burgh and 

Joosten 2019; Zipfel and Oldroyd 2017). Epidermal and stomatal plant cells are exposed to 

the majority of microbes and other threats such as insects, and must be able to recognise and 

respond to their presence without overreacting to harmless or even beneficial organisms. 

 

1.4.6 Ectodomains of receptor proteins 

Membrane-bound receptor proteins are categorised by their exogenous domain. There are 

14 common exogenous domains found in green plants, as well as various noncanonical 
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integrations, and generally kinases and their ectodomains have evolved in tandem (Shiu et al. 

2004; Shiu and Bleecker 2003). The general mechanism of receptor proteins involves the 

binding of a particular ligand or ligands to the ectodomain, which can induce a conformational 

change in the receptor protein to permit co-receptor binding and signalling, or can permit 

binding to a co-receptor by presenting an appropriate binding interface (Zipfel and Oldroyd 

2017; Couto and Zipfel 2016).  

 

Classes of ectodomains are also specialised towards particular classes of ligand. For example, 

LRR domains primarily associate with peptide-derived ligands (Kobe and Kajava 2001), LysM 

domains with carbohydrate ligands (Buist et al. 2008) and lectins with lipopolysaccharides 

(Lannoo and Van Damme 2014). LRR-RK proteins are the largest single class of RK proteins in 

plants, and LRR domains have been identified in all five kingdoms of life, albeit with structural 

differences. Protein crystallization of plant receptor kinase LRR domains has found they form 

a superhelical, coiled, S-shaped structure, rather than the horseshoe structure commonly 

observed in bacteria and animals (Kobe and Deisenhofer 1994; Jones and Jones 1997; Kajava 

1998). The LRR domain in plants is generally composed of up to 30 leucine-rich repeats, which 

vary from 20 to 29 residues each, and a small ‘cap’. It also may contain a small ‘island domain’ 

without any leucine rich repeats, which aids in ligand binding (Matsushima and Miyashita 

2012; Torii 2004). Crystal structures obtained of LRR domains in complex with receptors 

indicate that the concave inner surface of the coil is the usual binding site, presumably as it 

permits the maximum number of possible side-chain interactions (Chakraborty et al. 2019). 

Glycosylation of LRR domains is likely a conserved feature across land plants (Chen 2021) and 

plays an important role in their activity, being essential for proper function in FLS2, (Trempel 

et al. 2016), EFR (Häweker et al. 2010) and the RLP Cf-9 (Piedras et al. 2000; van der Hoorn et 

al. 2005). It has also been shown to be important for non-LRR receptor kinases such as the 

LysM-RK NFP (Mulder et al. 2006). 

 

1.4.7 Extracellular recognition involves a co-receptor for downstream signalling 

Signal transduction from perception/binding in the extracellular domain to intracellular 

signalling vary depending on the protein and may encompass elements such as co-receptors, 

co-ligands, feedback loops or a requirement for a partner kinase to mediate signalling. For 

example, many RK proteins signal as part of a heteromeric complex with a co-receptor such 
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as BAK1 /SERK3 (Roux et al. 2011; Schwessinger et al. 2011), or CERK1 in Arabidopsis (Miya et 

al. 2007), (SERK1 and CEBiP1, respectively in rice). In these interactions, the receptor binds 

the ligand and then dynamically associates with the co-receptor, rather than the two being 

permanently in complex together. The formation of the heterodimer can be via direct 

interactions between all three components, or via ligand-induced conformational changes in 

the receptor enhancing binding affinity for the mediator (Sun et al. 2013; Wang, Li, et al. 

2015). 

 

The stoichiometry of this interaction permits a single co-receptor to interact with several 

receptors over its lifetime and modulate a response appropriate to the interacting receptor. 

It also permits RPs without kinase domains to signal via a co-receptor with a kinase domain, 

for example the Solanum lycopersicum RP genes Cf-2, Cf-4, Cf-5 and Cf-9 mediate signalling 

through association with SOBIR family members (van der Hoorn et al. 2005; Hammond-

Kosack, Jones, and Jones 1994; Liebrand et al. 2013). Finally, given the irreversible nature of 

ligand-receptor binding, it provides a mechanism whereby the receptor can be degraded after 

use without compromising the co-receptor, permitting co-receptor degradation to trigger an 

immune response similarly to an intracellular recognition event (Shan et al. 2008; Yamada et 

al. 2016). Conversely, signalling-deficient BAK1 mutants such as bak1-5 attenuate the 

immune response of their partner receptors without an increase in SA signalling or 

hypersensitivity (Yasuda, Okada, and Saijo 2017). BAK1 is regulated by a set of BRI proteins 

(BRI1 to BRI4) which compete with immune receptor proteins for BAK1 binding and are 

outcompeted by immune receptors that have bound a ligand  (Halter et al. 2014; Ma et al. 

2017; Imkampe et al. 2017). 

 

1.4.8 Extracellular recognition requires homeostatic regulation 

After receptor-ligand-co-receptor complex formation and signalling, the receptor is 

decoupled from the co-receptor via ubiquitination and reclamation of the receptor-ligand 

complex, and the co-receptor is “reset” such that it can accept another partner. In the 

FLS2/BAK1 interaction this proceeds via BAK1 mediated phosphorylation of the ubiquitin 

ligases PUB12 and PUB13 (Robatzek, Chinchilla, and Boller 2006; Lu et al. 2011)  as well as a 

PP2A-complex-mediated dephosphorylation of BAK1 (Segonzac et al. 2014; Couto and Zipfel 

2016). Other receptor/co-receptor pairs are believed to undergo similar events. The 
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reclamation of a given immune receptor (e.g. FLS2) also provides for a desensitisation of the 

plant cell towards its ligand, as at lower than homeostatic receptor concentrations, signalling 

will be attenuated (Smith et al. 2014). 

 

 

1.4.9 Kinase activity is required for downstream responses to extracellular recognition 

While RK signalling pathways are complex, two of the better described components are 

calcium-dependent protein kinase signalling (CDPK) (Romeis 2001), and mitogen-associated 

protein kinase cascades (MAPK) (Ichimura et al. 2002). The kinase domain in the receptor or 

its signalling partner is activated by auto- or reciprocal- phosphorylation upon formation of 

the holoenzyme complex, which then phosphorylates an appropriate intermediate such as 

BIK1 (Veronese et al. 2006; Ma et al. 2020). This is the first step of a “phosophorelay”, 

whereby phosphorylation serves to activate a protein kinase domain, which then 

phosphorylates and activates another kinase protein, and so on. A MAPK cascade is composed 

of a relatively conserved set of protein classes that signal in this manner: first phosphorylation 

activates a MAP-kinase-kinase-kinase (MAPKKK) protein, which may then activate a specific 

MAPKK (or set of MAPKKs), and from there a particular MAPK(s) which go on to phosphorylate 

regulators of transcription (Zhang and Klessig 2001; Asai et al. 2002; Ekengren et al. 2003; 

Meng and Zhang 2013). This arrangement permits a single receptor to effect multiple signals 

within the plant, allowing fine-tuning of the response to the threat presented (Asai et al. 

2002). Within the A. thaliana genome, for example, Ichimura et al. (Ichimura et al. 2002) 

identified 20 MAPK genes, 10 MAPKK genes, and at least 60 putative MAPKKK genes, with 

MAPK3, MAPK4 and MAPK6 being especially relevant to plant-pathogen interactions 

(Petersen et al. 2000; Asai et al. 2002; Colcombet and Hirt 2008). 

 

In CDPK signalling, the signalling pathway is less well understood but certain family I, III and 

IV CDPKs have each been found to play a role defence signalling (Boudsocq et al. 2010; 

Boudsocq and Sheen 2013). CDPKs have been shown to induce RBOHB-mediated ROS bursts, 

induce transcriptional reprogramming and hormone signalling (Ludwig, Romeis, and Jones 

2004; DeFalco, Bender, and Snedden 2010; Boudsocq and Sheen 2013), and to prepare the 

cell to initiate the hypersensitive response (Romeis 2001). Ca2+ influx to the cytoplasm is also 

one of the first signals deployed in response to contact with microorganisms (Keinath et al. 
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2015) whether pathogenic or mutualistic, although not all CDPK pathways are dependent on 

the degree of Ca2+ in the cytoplasm (Boudsocq and Sheen 2013). CDPKs have been found to 

work co-operatively with the MAPK pathway in the A. thaliana response to flagellin, as well 

in providing resistance to Cladosporium fulvum in Nicotiana benthamiana (Romeis 2001) 

 

1.4.10 LRR-XII is a subfamily of LRR-RK predominantly associated with defence 

LRR-RK proteins are the predominant class of extracellular recognition receptor  (Morillo and 

Tax 2006; Fischer et al. 2016) and can broadly be divided into two major categories based on 

their evolutionary history: Lineage-specific, expanded and orthologue-unambiguous, 

nonexpanded. These two classes are also associated with function: lineage-specific, expanded 

LRR-RKs are associated with immunity and tend to exist as tandem repeats at particular loci, 

whereas the more conserved, orthologue-unambiguous, nonexpanded class are associated 

with developmental functions (Shiu et al. 2004; Tang et al. 2010) although a minority of LRR-

RKs do not adhere to either classification. LRR-RKs can also be divided into specific clades 

although their diversity throughout the plant kingdom based on their protein kinase domain. 

Shiu et al. (Shiu and Bleecker 2003; Shiu et al. 2004; Lehti-Shiu et al. 2009) categorised the 

RLK / PELLE genes of Arabidopsis and Rice into over 60 families and subfamilies, of which 15 

families were LRR-RK-specific (LRR-I, LRR-II, LRR-III, LRR-IV, LRR-V, LRR-VI, LRR-VIIa, LRR-VIIb, 

LRR-VIII-1, LRR-VIII-2 LRR-IX, LRR-Xa, LRR-Xb, LRR-Xc, LRR-XI, LRR-XII, LRR-XIIb, LRR-XIIIa, LRR-

XIIIb, LRR-XIV, LRR-XV). Their proposed nomenclature for RK protein phylogeny has informed 

most further analyses. 

 

Of special note is the LRR-XII subfamily, which is dramatically expanded in Rice (>100 

members) compared to Arabidopsis (10 members), and which contains several of the most 

studied plant defence LRR-RK genes, including FLS2 and EFR in dicotyledonous plants and 

Xa21 in the Oryzoideae. Liu et al. (Liu, Du, et al. 2017) performed an expanded analysis of the 

LRR-RK proteins of an additional eight species including: Physcomitrella patens, Selaginella 

moellendorffii, Citrus clementina, Glycine max and Populus trichocarpa. They identified a 

phylogenetic structure which broadly agrees with that of Shiu and Bleecker, although certain 

clades were divided into multiple sub-clades, indicating that innovation generally progresses 

within these subclades, rather than through the generation of entirely novel, species-specific 

LRR-RK protein clades. They identified three classifications for subclades, describing the 
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degree of gene structure conservation: Category A, in which gene structure is conserved 

between vascular plants and brophytes, Category B; in which gene structure is conserved only 

within vascular plants, and Category C; in which gene structure is only conserved between 

homologues in more closely related plants. They also identified 16 LRR ‘motifs’, which varied 

from being universal across LRR-RK subclades to being entirely unique. They also found that 

related subclades tend to exhibit related LRR motifs, although LRR domains are too variable 

to provide an informative phylogenetic analysis of RK proteins as a whole. 

 

 

1.5. Barley and Puccinia striiformis 

1.5.1 Barley is a diploid cereal crop closely related to wheat 

Barley (Hordeum vulgare) is a member of the Triticeae, a tribe within the subfamily Pooideae 

in the family Poaceae and order Poales. It is estimated to be the world’s fourth most 

cultivated cereal crop after maize, rice, and wheat (FAO 2019) and is mainly used for animal 

feed and malting. It is inbreeding, diploid, and grows well in a variety of climates. The barley 

genome is approximately 5.1 Gbp in length and is highly repetitive (Mascher et al. 2021) and 

a pan-genome describing 20 accessions of barley was recently published (Jayakodi 2020). In 

addition to its role in agriculture, barley provides an excellent genetic resource for 

comparative studies within the Poaceae, due to its overall tractability and close relationship 

with wheat. 

 

1.5.2 Puccinia striiformis 

1.5.3 Life cycle of Puccinia striiformis, the causal agent of stripe rust 

P. striiformis, like many rusts, has a complex five stage lifecycle. When infecting the primary 

host (such as wheat), an urediniospore (2N), or aeciospore (2N) makes contact with and 

adheres to the leaf surface through a combination of hydrostatic forces and rapidly secreted 

cellulase enzymes (Stubbs, Roelfs, and Bushne 1985; Chen, Wellings, et al. 2014; 

Schwessinger 2017; Chen and Kang 2017). The spore then germinates, developing a germ 

tube which seeks out a stomata. If successful, the tip of the germ tube develops into a 

penetration peg. This structure forcibly enters the leaf through the stomatal opening, and 

once inside undergoes differentiation into a sub-vesicle from which hyphae grow between 
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the surrounding mesophyll cells. The hyphae will also generate specialised haustorial mother 

cells outside the cell wall of host mesophyll cells, which proceed to first eliminate a section of 

the plant cell wall, then invaginate the plant cell membrane to form a large and roughly 

spherical or tubular feeding structure called a haustorium on the other side of this neck 

through the plant cell wall. The haustorium is in close or direct contact with the host cell 

membrane and is the interface for nutrient exchange between the host and fungus. The 

fungus will also develop runner hyphae, which do not generate haustorial mother cells but 

instead travel perpendicularly to the leaf axis until they reach a vascular structure, then 

multiply within that structure to spread further across the leaf, giving rise to the characteristic 

striped patterning of the eventual uredinia. After 7-12 days of growth within the leaf in this 

manner, the fungus will begin to create one or more pustule beds: areas with a high 

concentration of mycelia that develop into uredinia – specialised structures just underneath 

the leaf epithelium (on either side of the leaf) which produce huge numbers of bright orange, 

clonally produced urediniospores. Each colony may produce several uredinia and each 

uredinium may produce tens of thousands of urediniospores (Katsuya and Green 1967). The 

optimum conditions for uredinial development and spore release are damp (e.g. light rain or 

dew) and between 7-12  ̊C, however adaption to other climates across the globe has been 

reported (Mboup et al. 2012). After 10-15 days the uredinia erupt from under the leaf 

epithelium  and begin to release their spores which may be carried by the air, in water 

droplets, or upon passing organisms, and which may repeat the process of infection on other 

leaves or other susceptible plants, sometimes hundreds of miles away if blown by a 

favourable wind. 

After a longer period of growth, or under higher growth temperatures the fungus will begin 

to develop telia. Telia generate teliospores, which are a dark brown or black colour and more 

rectangular than urediniospores. Crucially, teliospores are diploid and consist of two 

binucleate cells. The teliospores remain physically attached to the fungal colony, and can 

endure for several months, often upon leaf detritus after harvest. Under favourable 

environmental conditions the nuclei of the teliospores fuse, (N+N to NN) and undergo 

meiosis. The teliospores then germinate, giving rise to four haploid daughter basidiospores. 

These spores are specialised to the alternative or secondary host. In the case of P. striiformis 

the alternate hosts are Berberis spp. (barberry plant) (Jin, Szabo, and Carson 2010). Upon the 

alternative host, infection proceeds in a similar manner to the primary host (Rodriguez-Algaba 
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et al. 2014), except that colonies develop pycnia, rather than uredinia. Pycnia are specialised 

structures which generate a large number of pynciospores and secrete a nectar within which 

pycniospores may travel across or between leaves under external forces such as water 

splashes or via insects. When pycniospores are exposed to the receptive hyphae of a pycnium 

belonging to a colony of another mating type, they fuse together and the nuclei within 

undergo sexual recombination. The colony then develops dikaryotic mycelium, becoming a 

spore bed and eventually a single aecium, which erupts from the leaf in a similar manner to 

the uredinum and releases thousands of genetically identical aeciospores which may infect 

the primary host. 

 

1.5.4 The formae speciales of stripe rusts 

P. striiformis can be further divided into formae speciales which exhibit different degrees of 

species specificity. Jacob Erikkson (Eriksson 1894, 1898) first identified that rust 

urediniospores isolated from a given plant species did not germinate on other species. Since 

then, P. striiformis isolates have been categorised into a formae speciales depending on their 

primary host, although not all are limited to a single species. Puccinia striiformis f. sp. tritici is 

generally a pathogen of wheat and is rarely observed to infect cultivated barley. For example 

in Australia, while barley accessions known to be susceptible to Puccinia striiformis f. sp. 

hordei have been exposed to Pst inoculum for over 60 years, a host-jump event has not been 

recorded. Despite this, Pst is capable of infecting and reproducing on certain barley 

accessions, primarily landraces and wild barley, as well as the hypersusceptible line SusPtrit 

(Niks 1983; Jacobs 1989; Yeo et al. 2014; Niks et al. 2015; Dawson 2015). 

 

The formae speciales of species in genera such as Puccinia (rusts), Fusarium (scabs), and the 

order Erysiphales (mildews) are adapted to particular hosts. The resistance of related species 

to a non-adapted forma specialis is durable, meaning that it “remains effective during 

prolonged and widespread use in an environment favourable to the disease” (Johnson 1979; 

Bettgenhaeuser et al. 2014; Lee, Whitaker, and Hutton 2016; Panstruga and Moscou 2020) in 

contrast with the “boom and bust” cycle associated with gene-for-gene or race-specific 

resistance (Robinson 1976; McDonald and Linde 2002). However, it should be remembered 

that durability is defined by the dynamic relationships between plants and pathogens in their 

environment (Brown 2015; Morris and Moury 2019), in contrast to concepts like intracellular 
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recognition or adaptive immunity which are physical properties inherent to the components 

of an immune response.  This thesis will focus on the interactions between Puccinia striiformis 

f. sp. tritici and Hordeum vulgare. 

 

 

1.6 Exo70 proteins in eukaryotes 

1.6.1 Exo70 proteins facilitate localisation and tethering of vesicles to the plasma membrane  

 

The Exo70 class of proteins are members of the 8-member Exocyst complex along with Sec3, 

Sec5, Sec6, Sec8, Sec10, Sec15 and Exo84. Exocyst is conserved across eukaryotic life and is 

primarily responsible for localisation and tethering of secretory vesicles to the cell membrane 

before exocytosis. Within the complex, Exo70 interacts with Exo84, Sec10 and Sec15 via an 

N-terminal CorEx domain and with Sec5 via the C-terminal CAT-C and CAT-D domains (Mei et 

al. 2018). Exo70 also interacts with non-Exocyst partners such as PIP2, SNARE proteins (Xu et 

al. 2013), RHO GTPase proteins (Roumanie et al. 2005), RAB GTPase proteins (Robinson et al. 

1999; Koumandou et al. 2007), and Arp2/3 (Zuo et al. 2006) via C-terminal domains. Fusion 

with the membrane and secretion itself involves a variety of additional proteins, primarily 

components of the SNARE-complex (Sivaram et al. 2005; Yue et al. 2017). 

 

As Exo70 is a class of protein conserved across eukaryotes, it has been extensively 

characterised in model systems such as yeast and suspended animal cells. Work in plants is 

generally carried out in the model plants Arabidopsis thaliana and Nicotiana benthamiana 

(Žárský et al. 2019). While animal and fungal genomes encode a single copy of the Exo70 gene, 

plants have evolved numerous copies which can be further divided into ten conserved 

families: Exo70A, Exo70B, Exo70C, Exo70D, Exo70E, Exo70F, Exo70G, Exo70H, Exo70I, and 

Exo70FX (or Exo70F-like) (Cvrčková et al. 2012; Synek et al. 2006). These clades are non-

redundant and exhibit clear evidence of subfunctionalisation: they are expressed in different 

tissue types, can localise to different membrane domains, and carry different cargoes (Li et 

al. 2010b; Žárský et al. 2019; Žárský et al. 2013). 
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1.6.2 The molecular mechanisms of Exo70 proteins vary across kingdoms 

The process of membrane localisation and tethering varies between kingdoms. In yeast, 

either Exo70 or Sec3 can be responsible for recruiting the Exocyst to the membrane (Boyd et 

al. 2004), and there is evidence supporting the Exocyst complex assembling at the membrane 

around this seed protein, or existing as a stable octamer in the cytoplasm (Boyd et al. 2004; 

Heider et al. 2015). In yeast Exo70 or Sec3 are transported to the appropriate membrane 

domain by myosins along actin cables (Bendezu 2012). 

 

In animals, Exo70 is the only subunit which can recruit the complex to the membrane (Liu et 

al. 2007), and evidence suggests that the Exocyst as a whole may exist in the cytoplasm in a 

dynamic equilibrium between individual subunits, tetrameric subcomplexes, and the full 

octameric complex (Ahmed et al. 2018). The quarternary structure of the Exocyst as a whole 

may also vary between animals and fungi, based on differing pleiotropic effects of N- and C- 

terminal tags on different subunits of the complex (Nishida-Fukuda 2019). 

 

The assembly and recruitment of the plant Exocyst complex is not as well characterised as in 

yeast, but Arabidopsis thaliana Exocyst complex assembly is less attenuated following 

disruption of actin or microtubule disruption than in yeast or animal cells respectively, 

implying that plants may have alternative requirements for Exocyst complex assembly at the 

membrane (Fendrych et al. 2013). Plant Exocyst is also recruited to regions of the cell 

membrane in a polarised manner, depending on the Exo70 component of the complex, and 

the biochemical makeup of the membrane domain (Zarsky 2009; Zarsky 2013). 

 

In plants, the Exocyst is specific to plasma membrane tethering, and other complexes are 

involved in tethering vesicles to other membranes (Hickey et al. 2010; Vukašinović et al. 

2017). It is also not the only complex with this role, and TRAPPII (Drakakaki et al. 2012) and 

EXPO (Wang et al. 2010) have both been linked to PM trafficking and exocytosis. Interestingly, 

the EXPO body is associated with the Exo70E clade of proteins and sequesters Exocyst 

subunits upon accumulation, (Wang et al. 2010; Ding et al. 2014). Exocyst has also been 

associated with a number of other roles associated with the plasma membrane, such as 

polarised growth, cytokinesis, cell division, cilliogenesis (Gromley et al. 2005; Zhu, Wu, and 

Guo 2019; Žárský et al. 2019). 
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1.6.3 Plant genomes encode a variety of non-redundant Exo70 proteins  

The Exo70s of plants can be divided into three families: Exo70.1, Exo70.2, and Exo70.3, based 

on their intron/exon structure and inferred evolutionary history (Cvrčková et al. 2012; Synek 

et al. 2006). The ancestral family is Exo70.1, which only contains the clade Exo70A. Exo70G 

and Exo70I are within the Exo70.3 family, and the remainder are members of Exo70.2 

(Cvrčková et al. 2012; Elias et al. 2003; Synek et al. 2006). 

 

While clades Exo70A, Exo70B, Exo70C, Exo70D, Exo70E, and Exo70G are well-conserved, the 

remaining clades exhibit variation between species. Exo70I, which is required for the 

establishment of mycorrhizal symbioses is not present in species which do not form these 

associations. Exo70H, which is involved in trichome development and defence is expanded in 

dicots (6-8 copies) relative to monocots (1-3 copies) (Cvrčková et al. 2012; Kubátová et al. 

2019; Kulich et al. 2015; Kulich et al. 2013). Exo70F, conversely is expanded in monocots, and 

Exo70FX is unique to monocots (Cvrčková et al. 2012; Zhao et al. 2019). However, given the 

relative paucity of work characterising the Exo70 clades of monocot plants, the evolutionary 

history of the Exo70FX clade is largely unknown. The evolution of the Exo70FX clade in 

monocots will be discussed in more depth in Chapter 4. 
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2. Fine-mapping and cloning of Rps8 

 

2.1 Chapter Summary 

Three R gene loci designated Rps6, Rps7, and Rps8 provide resistance to Puccinia striiformis 

f. sp tritici across a variety of cultivated barley accessions (Dawson 2015; Dawson et al. 2016). 

Rps8 was previously mapped to the long-arm of chromosome 4H using a mapping population 

derived from SusPtrit x Golden Promise (Yeo et al. 2014; Dawson et al. 2016) we fine-map 

Rps8 to a 583 kb locus on chromosome 4H, which exists as a presence/absence variation 

across barley accessions. Forward genetic screens and transgenic complementation 

demonstrate that resistance is conferred by the concerted action of two genes at the locus, 

LRR-RK and Exo70FX12a, which are both necessary for Rps8-mediated resistance. 

 

2.2 Introduction 

2.2.1 Leucine-rich repeat receptor kinases in plants 

LRR-RK proteins are the predominant class of extracellular recognition receptor (Morillo and 

Tax 2006; Fischer et al. 2016). LRR-RK proteins are involved in regulating growth and abiotic 

stress responses, as well as extracellular recognition of pathogens (Shiu et al. 2004; Morillo 

and Tax 2006; Tang et al. 2010; Fischer et al. 2016). In some cases LRR-RK proteins are 

involved in multiple  signalling pathways that facilitate crosstalk between growth and defence 

pathways, exemplified by the dual roles of BAK1 in immune and brassinosteroid signalling 

(Nam and Li 2002; He, Gou, et al. 2007).  

 

LRR-RK proteins have been consistently found to experience species-specific, and subclade-

specific selective pressure, in some cases to purify and others to expand and diversify, in a 

manner consistent with subclade-specific roles in normal growth and stress responses, as well 

as immunity (Lehti-Shiu, Zou, and Shiu 2012; Fischer et al. 2016; Liu, Du, et al. 2017). This has 

led to the identification of 15 subfamilies of LRR-RK associated with particular roles (Shiu and 

Bleecker 2003). The LRR-XII family is associated with defence, and several of the best 

characterised LRR-RK genes involved in immunity are in this clade, including FLS2, EFR and 

Xa21. 
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2.2.2 LRR-XII family members associated with defence 

FLS2 is an LRR-RK of the LRR-XII family, identified by Gómez-Gómez and Boller (Gomez-Gomez 

and Boller 2000) and widely conserved across dicotyledonous plants. FLS2 recognises a 22 

amino acid epitope derived from bacterial flagellin (flg22) (Chinchilla et al. 2006). After ligand 

perception and binding, the protein-ligand complex is able to form a heterodimer with the 

LRR-II type RK BAK1 (Chinchilla et al. 2007; Schulze et al. 2010) which interacts with both the 

extracellular bound-ligand and the intracellular membrane-bound components of FLS2 (Sun 

et al. 2013). This induces BAK1 auto-phosphorylation (Schwessinger et al. 2011) and BAK1 

trans-phosphorylation of FLS2 (Chinchilla et al. 2007; Schulze et al. 2010), which promotes 

downstream signalling through BIK1 phosphorylation (Lin et al. 2014), subsequent RBOH-

mediated ROS burst (Yoshioka et al. 2015), CDPK signalling, and MAPK cascade signalling 

(especially MPK3, MPK4 and MPK6) (Asai et al. 2002; Droillard et al. 2004; Pitzschke, Schikora, 

and Hirt 2009; Li et al. 2010a; Lin et al. 2013). Importantly, abolishment of BAK1 signalling 

largely, but not completely, abolishes FLS2-mediated responses to flag22, indicating at least 

a partial redundancy in extracellular signalling, or a promiscuity on the part of FLS2 in the cell 

(Chinchilla et al. 2007). Brassinosteroid signalling also appears to be unaffected by BAK1 

mutations which compromise immune signalling (Schwessinger et al. 2011; Sun et al. 2013). 

 

EFR is another well-studied LRR-RK in the LRR-XII family, identified Zipfel et al. (Zipfel et al. 

2006), which recognises the bacterial elongation factor Ef-Tu, specifically the 18 amino acid 

peptide fragment elf18. EFR signals via the co-receptor BAK1 and the same downstream 

components as FLS2 (Zipfel et al. 2006; Meng and Zhang 2013), however upstream 

components of EFR signalling have also been more thoroughly elucidated than those of FLS2. 

Proper EFR activity is dependent on a number of post-translational processes collectively 

referred to as Endoplasmic Reticulum Quality Control (ERQC), and the proteins PSL1, PSL2, 

and STT3A (Saijo et al. 2009)  and SDF2, ERdj3B and BiP (Nekrasov et al. 2009). It is unknown 

if EFR has more extensive requirements for quality control and PTM than FLS2, or if the 

equivalent set of proteins have simply not been discovered. EFR has only been identified 

within the Brassicaceae, and is thought to be a relatively recent innovation, specific to the 

family. 



 30 

Xa21 is the third of the well-characterised LRR-RK receptors within the LRR-XII family, 

identified by Song et al. (Song et al. 1995; Wang et al. 2004) and only present within the 

Oryzoideae. Similarly to EFR, several ERQC components of Xa21 activity have been identified, 

including BiP3 (Park et al. 2010) and SDF2 (Park et al. 2013), as well as a number of negative 

regulators which directly interact with Xa21 at the cell membrane, such as XB15 (Park et al. 

2008), XB24 (Chen et al. 2010) and XB10 (Peng et al. 2008). The protein recognised by Xa21 is 

RaxX: a type-1 secreted peptide of 61 residues which may have effector activity as a mimic of 

plant growth hormones  (Pruitt et al. 2017). The specific minimal ligand is a 20 residue 

tyrosinated region designated RaxX21-sY (Pruitt et al. 2015). Unlike flagellin and Ef-Tu, RaxX 

is believed to be specific to Xanthomonas spp.  (Pruitt et al. 2015). Given that Xa21 has also 

been found to provide resistance to Pseudomonas spp. (Afroz et al. 2011; Holton et al. 2015), 

Xa21 may also have the capacity recognise other ligands mimicking PSY-family 

phytohormones. The co-receptor for Xa21 is the AtBAK1 paralogue OsSERK2 (Chen, Zuo, et 

al. 2014) and signalling occurs through a similar pattern of autophosphorylation and 

subsequent activation of downstream kinases (Chen, Zuo, et al. 2014). Finally, a fusion of the 

Xa21 ectodomain with the AtEFR transmembrane and signalling domains is able to provide 

defence against  Xanthomonas oryzae in rice (Thomas et al. 2018) indicating conservation of 

the general mechanism of action within the LRR-XII family of receptor kinases. 

 

2.2.3 Wheat stripe rust (Puccinia striiformis f.sp. tritici) resistance in barley 

The Pucciniales are an order of obligate biotroph fungal pathogens, and causal agents of rusts 

on a wide variety of host plants (McTaggart et al. 2016; Chen and Kang 2017). Particularly 

relevant to the cereal crops are P. striiformis (stripe rust), P. triticina (leaf rust), and P. 

graminis (stem rust) (Roelfs and Bushnell 1985). Rusts, like many obligate biotrophs, can be 

further divided into formae speciales: lineages of the fungus which have adapted towards a 

particular host plant, and into ‘races’: groups which describe the particular pattern of 

virulence and avirulence exhibited by a given isolate (Stubbs, Roelfs, and Bushne 1985; Roelfs 

and Bushnell 1985). Puccinia striiformis f. sp. tritici (Pst) primarily infects susceptible wheat 

varieties but has been observed to successfully colonise and infect a minority of barley 

accessions: mainly landraces and wild barley lineages (Dawson et al. 2016).  
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Previous work identified the genetic architecture of resistance to Pst in barley as being 

conferred by three R gene loci in the majority of tested germplasm (Dawson 2015; Dawson et 

al. 2016). These loci are designated Rps6, Rps7, and Rps8. Rps6 and Rps7 have been cloned 

and found to encode NLR-type resistance genes on chromosome 7H and 1H, respectively. 

Rps8 was identified in several diverse barley accessions and mapped to the long-arm of 

chromosome 4H using a mapping population derived from SusPtrit x Golden Promise (Yeo et 

al. 2014; Dawson et al. 2016) Unlike Rps6 and Rps7 identified in these studies, Rps8 has a 

minor effect on hyphal colonization, but prevented pustule formation (Figure 2.1). In this 

work, we set out to map-based clone Rps8. Rps8-mediated resistance is conferred by a 

genetic module, encompassing two genes: an LRR-RK and an Exo70, which are independently 

necessary, and together sufficient to provide resistance to Pst in barley. 
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Figure 2.1. Rps8 prevents pustule formation, but not colonization by wheat stripe rust 

(Puccinia striiformis f. sp. tritici) in barley. Top section indicates the resistance genes present 

in a panel of accessions derived from a Golden Promise x SusPtrit F1 doubled-haploid 

population. Bottom section displays a representative phenotype from a first leaf of that 

accession, challenged with Pst, at 14 dpi. Any of Rps6, Rps7 or Rps8 is sufficient to prevent 

development of orange pustules, however Rps6 and Rps7 permit colonisation and mycelial 

growth which leads to discolouration of the leaf. 

 

 

2.3 Results 

2.3.1 Fine mapping of Rps8 resolved the locus to a 900 kb region on chromosome 4H 

Rps8 is located on the long arm of chromosome 4H and prevents the development of pustules 

of wheat stripe rust, but not colonisation. Inheritance of Rps8 in an F2 population generated 

by crossing SxGP DH-21 (rps8) and SxGP DH-103 (Rps8) from the doubled-haploid SusPtrit x 

Golden Promise population (Yeo et al. 2014) found clear segregation for a single dominant 

gene (Figure 2.2). A high resolution recombination screen was performed using additional 
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markers generated in the Rps8 region, identifying 127 recombinants from 9,216 evaluated 

gametes, and mapping Rps8 to a 0.5 cM genetic interval. This interval corresponds to a 936 

kb physical interval in the genome of the reference accession Morex, which contains the Rps8 

haplotype (Mascher et al. 2020) (Figure 2.3). Markers co-segregating with Rps8 are spread 

across a 664 kb physical interval. Nine recombination events were identified proximal to the 

markers co-segregating with Rps8 and fifteen in the distal region (Figure 2.3). Despite these 

regions being much smaller than the Rps8 interval; 140 kb and 239 kb respectively, no 

recombinants were identified within the group of markers co-segregating with Rps8. To 

identify candidate genes in the region, RNAseq date derived from Morex and Golden Promise 

was aligned to the Rps8 physical region using hisat2 (IBGSC 2012). Gene models were 

predicted based on spliced alignments using Cufflinks and curated based on expression 

evidence and existing reference genome annotations. Several protein encoding genes were 

identified including DUF-1997 protein (DUF), Armadillo-repeat protein (ARM), Exo70 

(Exo70FX12), transmembrane receptor protein kinase (LRR-RK), a Pck-like kinase (Kinase), a 

truncated NLR (NLR), a zinc-finger transcription factor (Zinc-Finger) and a Myb transcription 

factor (Myb) (Figure 2.3). 

 

To evaluate the candidacy of individual genes in the interval: genetic, genomic, and 

transcriptomic data were evaluated for each gene model. Despite being the most promising 

initial candidate; the NLR was found to be expressed in roots but not leaves. Furthermore, 

the NLR was found to not have an intact open reading frame and instead encodes a truncated 

NLR. To evaluate other genes in the region, we leverage previous genetic analyses that 

determined the presence or absence of Rps8 in a panel of 17 barley accessions 

(Supplementary table 1.1). Alignment of RNAseq derived from the same panel of barley 

accessions revealed the Exo70 (Subsequently Exo70FX12a) and LRR-RK exist as an expression 

level polymorphism, where both genes are expressed in Rps8 containing accessions and 

absent in accessions without Rps8. No such pattern was observed for the other genes in the 

interval. Evaluation of SNPs in other genes in the interval found there were no SNPs relative 

to Morex and Golden Promise in either candidate gene in any accession known with an Rps8 

haplotype. 

 

 



 34 

 

Figure 2.2: Mendelization of Rps8 in SusPtrit x Golden Promise DH-21 x DH-103 F2 

population. The KASP marker K_48890 cosegregates with Rps8. F2 (n = 94) individuals 

homozygous for the Golden Promise allele (A) or heterozygous (H) exhibit near-complete 

resistance to wheat stripe rust, whereas individuals homozygous for the SusPtrit allele (B) are 

susceptible. Infection was scored using a 0 to 4 scale and reflects the percent of the leaf 

covered with pustules (range from 0 to 100%). 
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Figure 2.3: Genetic and physical maps of the Rps8 interval and sample phenotypes of 

families used in this recombination screen. A: Genetic map of the Rps8 interval. Numbers 

above the chromosome indicate individual recombinants obtained between the two adjacent 

markers and markers are connected to their position on the physical map. B: Physical map of 

the Rps8 interval in the 2019 Morex genome. Genes are represented with green arrowed 

boxes and labelled with their predicted protein class. Rps8 was previously mapped using the 

markers K_121084 and K_03232. 

 

2.2.3 Rps8 encompasses a 546 kb InDel 

To determine whether the expression polymorphism in Exo70FX12a and LRR-RK was due to 

structural variation in the Rps8 locus between Rps8 and rps8 haplotypes, the genomes of 

Morex (Rps8) (Jayakodi et al.  2020), Golden Promise (Rps8) (Schreiber et al. 2020), the wild 

barley accession AWCS276 (rps8) (Liu et al. 2020), and a de novo sequenced chromosome 4H 

of accession CI16139 (Rps8), assembled using chromosome flow sorting and Chicago-based 

library construction were compared for structural variation in the region. Sequence identity 

between the three Rps8 haplotypes (Morex, GP, CI16139) was extremely high, however a 

large (190 kb), repetitive area identified in Morex was a breakpoint in the assembly of the 

CI16139 and Golden Promise Rps8 locus. Comparing these three haplotypes to the wild barley 

accession AWCS276 found a 546 kb InDel that encompasses both the Exo70 and LRR-RK 

(Figure 2.4). The Rps8 insertion is flanked in both directions by a short duplicated region which 

is present in the rps8 haplotype at the location of the insertion. This suggests that the 

underlying variation observed in accessions lacking Rps8 involves a deletion of the interval. 
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Figure 2.4: Structural variation at the Rps8 locus between multiple accessions. Physical maps 

of the Rps8 locus in Morex, Golden Promise, CI16139, and the wild barley accession 

AWCS276. Genes are indicated by coloured circles across all four accessions, and labelled with 

their predicted protein class. Physical sequence is shaded light blue in the area proximal of 

the Rps8 InDel, sky blue in the Rps8 interval, and dark blue in the area distal to the Rps8 InDel. 

The yellow block indicates a sequence found at the borders of the Rps8 interval. The Golden 

Promise and CI16139 assemblies did not assemble the locus into a single contig, presumably 

due to the extensive repetitive sequence in the interval. The area of a contig shown is 

described adjacent to the contig. 

 

2.3.4 Natural and induced variation identifies loss-of-function mutants at Rps8 

Suppressed recombination in the Rps8 region, likely due to the presence of an InDel, made 

further map-based cloning of Rps8 futile. Next, we interrogated other sources of variation to 

evaluate candidate genes underlying Rps8. RNAseq data from a panel of 40 barley accessions 

was aligned to Rps8 and inspected (Supplementary table 1.1). Four accessions harboured 

SNPs in either Exo70FX12a or LRR-RK (Heils Franken, WBDC008, WBDC013, and WBDC085). 

Based on RNAseq data from leaf tissue, Heils Franken contains a single non-synonymous SNP 

in the CDS of Exo70FX12a (hereafter Exo70FX12-HF, in the haplotype rps8-HF) causing a 

E388K substitution. The wild accessions WBDC008, WBDC013, and WBDC085 each contain 2-

7 non-synonymous SNPs in both candidate genes compared to Morex. Whole genome 

sequencing of Heils Franken and k-mer analysis (k=31) of the Rps8 region identified only nine 

polymorphisms that differentiate the Morex and Heils Franken haplotypes. The only SNP 

identified in a gene was the previously identified non-synonymous polymorphism in 

Exo70FX12. 
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Heils Franken is resistant to Pst. To determine whether resistance is conferred by Rps8, Heils 

Franken x Manchuria F2 and BC1 populations were generated and inoculated with Pst isolate 

08/21. Interval mapping using 64 KASP markers identified a single major-effect locus on 

chromosome 1H providing resistance, and no QTLs on chromosome 4H (Figure 2.5). 

Phenotyping of the population with a marker for Rps8 and the peak marker identified on 

chromosome 1H indicates that the rps8-HF haplotype does not provide resistance to Pst 

(Figure 2.6), potentially due to the mutation present in Exo70FX12-HF allele. 

 

 

Figure 2.5: Interval mapping using a BC1 population derived from Heils Franken shows no 

association between resistance and Rps8. A. Interval mapping of the Heils Franken x 

Manchuria BC1 population; challenged with Pst isolate 08/21. Genetic map was constructed 

with 64 KASP markers and the phenotype was pCOL; a microscopic phenotype quantifying 

the proportion of leaf segments with hyphal growth(Dawson 2015), in a  BC1 (n = 94) population 

derived from an F1 cross between Heils Franken and Manchuria, backcrossed to Manchuria. B. 

Interval mapping in that same BC1 population using the phenotype pPUST. pPUST is a 

microscopic phenotype, where infection is measured by quantifying the proportion of leaf 

sections where pustules are visible (range from 0 to 1) (Dawson 2015). 
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Figure 2.6: The Heils Franken allele of Rps8 does not provide resistance to Pst. BC1 (n = 94) 

individuals homozygous for the Manchuria allele (A) of Rps7 exhibit susceptibility to wheat 

stripe rust, whereas individuals heterozygous for the Heils Franken allele (B) are resistant. The 

presence or absence of the Heils Franken allele of Rps8 confers no effect in the absence of 

Rps7. Rps7 is indicated by the KASP marker SCRI_RS_66630_159_R, Rps8 is indicated by the 

KASP marker 2_0974_120_F. pPUST is a microscopic phenotype, where infection is measured 

by quantifying the proportion of leaf sections where pustules are visible (range from 0 to 1) 

(Dawson 2015). 

 

 

The lack of further natural variation in the Rps8 locus indicated that a different approach 

would be required to generate additional evidence for the role(s) of Exo70FX12a and LRR-RK 

in Rps8-mediated resistance. In order to determine if Exo70FX12a is the sole requirement for 

Rps8-mediated resistance, a forward genetic screen was used to identify genes underpinning 

additional loss-of-function mutants. A mutant population had previously been generated 

using the reference accession Morex (TILLMore population), which harbours Rps8 in isolation 

from other loci providing Pst resistance. The TILLMore population was generated using 

sodium azide and has been advanced to the M6 stage (Talamè et al. 2008). Using this 

population, we screened 1,526 M6 families with Pst isolate 16/035 and identified 35 putative 

mutants with an infection phenotype (area showing pustule formation) of 1.0 or higher. 

Rps7-HF
Rps8-HF

Genotype
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Single seed descent of putative mutants and subsequent re-evaluation with Pst isolate 16/035 

confirmed 9 mutants were susceptible to Pst (Table 2.1)(Figure 2.7). RNAseq was performed 

on these mutants to identify polymorphisms in genes at the Rps8 locus as well as other 

candidate gene families. 

 

RNAseq of confirmed mutants identified two independent mutations in the LRR-RK CDS: rps8-

TM90 exhibits a G to A polymorphism at 1,409 bp causing a G432R variation in the LRR 

encoding region and rps8-TM98 exhibits a G deletion at 2,504 bp in the kinase encoding 

region that causes a frame shift and early stop codon. TM3535 was the only line that carried 

a mutation in the Exo70FX12a CDS (rps8-TM3535), exhibiting a C to T transition at 388 bp 

leading to an L130F variation in Exo70FX12a. Crosses were undertaken between mutants at 

the Rps8 locus in order to identify complementation groups (Figure 2.7), and TM 90 and 98 

were found to share a complementation group with each other, but not with TM3535. 

Six additional mutant lines were identified for which RNAseq did not identify any variation at 

the Rps8 locus. The genes mutated in these lines are subsequently referred to as Required for 

Stripe rust Resistance (Rsr1, Rsr2 etc.). These results show that mutation in either LRR-RK or 

Exo70FX12a at the Rps8 locus is sufficient to abolish Rps8-mediated resistance. Rps8 is 

therefore composed of two genes, which function together as a genetic module. 
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Table 2.1: TILLMore mutants identified as susceptible to Pst. A forward genetic screen of 

1,525 TILLMore mutants, generated by treating Morex with sodium azide and developed to 

the M6 generation, uncovered 9 mutants susceptible to Pst, and therefore without Rps8-

mediated resistance. Infection was scored using a 0 to 4 scale and reflects the percent of the leaf 

covered with pustules (range from 0 to 100%). 

Mutant Average infection score 

TM90 3.0 

TM98 3.4 

TM181 3.3 

TM343 1.5 

TM1781 1.5 

TM2907 4.0 

TM3013 1.8 

TM3535 3.9 

TM4087 1.1 
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Figure 2.7. Identification of TILLMore mutants with susceptibility to Pst, two of which are 

in the same complementation group. TILLMore mutants were challenged with Pst and 

phenotyped for susceptibility 10 days after inoculation. Mutants TM90, TM98, and TM3535 

were found to exhibit mutations in genes at the Rps8 locus and were crossed together to 

identify complementation groups. TM90 and TM98 form a complementation group with each 

other. Morex and Manchuria are included as controls. Infection was scored using a 0 to 4 scale 

and reflects the percent of the leaf covered with pustules (range from 0 to 100%). 

 

 

 

2.3.5 Transgenic complementation shows both LRR-RK and Exo70 are necessary and sufficient 

to confer Rps8-mediated resistance 

To confirm the role of LRR-RK and Exo70FX12a in Rps8-mediated resistance, several T-DNA 

constructs were designed to express LRR-RK and Exo70FX12a together and individually. Due 

to difficulties with cloning the LRR-RK gene into an appropriate plasmid, only a T-DNA 
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construct expressing Exo70FX12a under its native promoter and terminator was generated 

by the time of writing. 

 Agrobacterium-based transformation of the susceptible accession SxGP DH-47 was used to 

generate several independent transformed lineages for the construct (Hensel and Kumlehn 

2004). T1 families containing the insert were inoculated with Pst isolate 16/035, and found to 

be susceptible. This suggests that the Exo70FX12a is insufficient to confer Rps8-mediated 

resistance. To determine whether the T-DNA can complement mutants in Exo70FX12a, 

crosses were performed between homozygous, single-copy transgenics and either TILLMore 

mutant TM3535 or an rps8 homozygous backcrossed Heils Franken x Manchuria line (HFxM 

BC1S2) selected for susceptibility and the rps8-HF haplotype. All F1 progeny were resistant to 

Pst isolate 16/035, whereas the controls SxGP DH-47, TM3535 and HFxM BC1S2 were 

susceptible. Evaluation of F2 progeny of these crosses found that at least one copy of each 

gene was required for resistance (Figure 2.8). These results demonstrate that a T-DNA 

containing native Exo70FX12a is sufficient to complement both mutants. 
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Figure 2.8. Exo70FX12a under its native promoter and terminator is insufficient to provide 

resistance to Pst but complements TILLMore mutant M3535 and the rps8-HF allele. A. 

Transgenic SxGP DH-47 individuals with at least one copy of Exo70FX12a are susceptible to 

Pst. F1 progeny of crosses between these individuals and the susceptible mutant TILLMore 

M3535 and susceptible lines containing the rps8-HF haplotype are resistant to Pst. B. F2 

progeny of crosses between transgenic SxGP DH-47 containing Exo70FX12a and lines with the 

rps8-m3535 or rps8-HF haplotypes segregate for resistance such that both the transgene and 

a haplotype containing LRR-RK are required for resistance. Presence of T-DNA was verified by 

RT-PCR, Rps8 haplotypes were verified by KASP marker analysis. Infection was scored using a 

0 to 4 scale and reflects the percent of the leaf covered with pustules (range from 0 to 100%). 
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2.4 Chapter Discussion – co-operation between an Exo70 and RK in 

plant immunity. 

2.4.1 Rps8-mediated resistance is conferred by a genetic module: a receptor-kinase and Exo70 

The Rps8 locus, which provides resistance to Puccinia striiformis f. sp. tritici in barley has been 

fine mapped to a 583 kb locus on chromosome 4H, which exhibits presence/absence variation 

across barley accessions. Resistance is conferred by the concerted action of two genes at the 

locus, LRR-RK and Exo70FX12a, which are both necessary for Rps8-mediated resistance. 

Assembly and testing of a construct expressing both genes together; under the control of 

their native promoters is underway in order to more conclusively demonstrate that the gene 

pair is sufficient to provide Rps8-mediated resistance in an rps8 background (SxGP DH-47). 

 

2.4.2 Molecular function of LRR-RK in plants 

The LRR-RK at Rps8 belongs to the RLK Pelle LRR-XII family, which includes the bacterial 

resistance genes FLS2, EFR, and Xa21 (Shiu and Bleecker 2003; Shiu et al. 2004; Sun and Wang 

2011). This is the first example of an LRR-XII family RK identified as providing resistance in 

barley and the first example of an LRR-XII family member providing resistance to a fungal 

pathogen. The LRR-XII family is expanded in monocots, with >100 members identified in O. 

sativa and 45 in Morex (data not shown), relative to 10 in Arabidopsis (Shiu et al. 2004; Sun 

and Wang 2011).  

Given the LRR-XII clade is well-characterised, the major proteins within the clade are an 

excellent point of comparison for LRR-RK. FLS2 and EFR each recognise well-conserved 

epitopes found in most bacteria: flg22 and elf18 respectively (Gomez-Gomez and Boller 2000; 

Zipfel et al. 2004), whereas Xa21 recognises RaxX, a ligand derived only from X. oryzae (Pruitt 

et al. 2017).While the epitope of LRR-RK is unknown, the protein behaves similarly to Xa21 

given that it contributes to resistance against a particular formae speciales of a single species: 

Puccinia striiformis. One hypothesis to explain the large expansion of LRR-XII genes in 

monocots is a shift towards recognising ligands which are specific to a particular pathogen, in 

contrast with the characterised LRR-XII family members of dicots (Shiu et al. 2004; Morillo 

and Tax 2006). Another is that within the Poaceae, selection pressures have favoured 

functional redundancy in extracellular receptor proteins to maintain effective resistance 

against their respective pathogens.  
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Interestingly, LRR-RK exhibits the requirement for an Exo70 partner in order to function, 

analogously to FLS2 which requires Exo70B1 and Exo70B2 to function at full effectiveness 

(Stegmann et al. 2013; Wang et al. 2020). However neither Exo70B1 or Exo70B2 are in genetic 

coupling with FLS2, unlike LRR-RK and Exo70FX12a. Whether Xa21 and EFR also require a 

specific Exo70 to function is also unknown, however none have been reported in as close 

physical proximity to those genes as with the Rps8 locus. It is possible that Exo70 genes 

involved in other LRR-XII receptor signalling pathways remain to be identified, but have 

hitherto gone undetected either through functional redundancy, or by presenting with a 

lethal phenotype when rendered non-functional, given the extensive mutant screens 

performed using these genes. 

 

 

2.4.3 Exo70 in plant immunity 

The Exo70B clade has been repeatedly implicated in plant immunity, and contains between 

two and three members in most plants. OsExo70B1 has been shown to be involved in 

extracellular responses to Magnaporthe oryzae in rice, interacting directly with the co-

receptor CERK1 (Hou et al. 2020), although the biological role of the interaction is unknown. 

AtEXO70B1 and AtEXO70B2 have been implicated in resistance to diverse pathogens 

including Hyaloperonospora arabidposis Pseudomonas syringae, and Phytophthora infestans 

(Pečenková et al. 2011; Stegmann et al. 2013). AtEXO70H1 has also been found to contribute 

non-redundantly to this resistance and to interact directly with EXO70B2 (Pečenková et al. 

2011). AtEXO70B1 and EXO70B2 are essential for proper FLS2 homeostasis and trafficking to 

the membrane (Wang et al. 2020), and AtEXO70B2 is negatively regulated by PUB-18 and 

PUB-22 following extracellular immune signalling (Stegmann et al. 2013). AtEXO70B1 is also 

known to be targeted by pathogen effectors in order to disrupt immune signalling (Wang, Liu, 

et al. 2019; Michalopoulou et al. 2020) and is guarded by the NLR TN2 (Zhao et al. 2015), 

which initiates a defence response via CDPK signalling (Liu, Hake, et al. 2017). Finally, 

AtEXO70B1 has been associated with autophagy and transport of cellular components to the 

vesicle (Kulich et al. 2013; Pečenková et al. 2018), and may play a role in post-recognition 

reclamation of signalling components. 
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The Exo70 identified at Rps8 is a member of the Exo70FX clade. So far only one other member 

of the Exo70FX clade has been functionally characterised, Exo70FX11-2, which was identified 

as contributing towards penetration resistance against powdery mildew along with members 

of the COG complex (Ostertag et al. 2013). Interestingly, Exo70FX andExo70F are the only two 

Exo70 clades identified as integrated domains in NLR proteins (Bailey et al. 2018) where they 

take a role in defence as bait or decoy proteins, rather than through a conventional role in 

exocytosis. The crucial question regarding Exo70FX12a is whether its role is similar to most 

characterised Exo70 proteins; involved in exocytosis either via the Exocyst complex or 

another mechanism, or if it has neofunctionalised. 

 

2.5 Chapter-specific methods 

 

2.5.1 Plant maintenance and crosses 

Plants were grown in John Innes cereal mix, in glasshouses under a 8/16 Day-Night cycle, 

watered daily from below. 

Crossed were performed manually. At booting stage the spike was emasculated; immature 

anthers were manually removed, and the spike covered with a paper bag. After approximately 

5 days pollen was applied to mature stigma and the spike re-covered and allowed to develop. 

 

2.5.2 Puccinia striiformis infection protocol 

We used the methods described in (Dawson et al. 2016): 

 P. striiformis f. sp. tritici isolates 08/21 and 16/03 were collected in the United Kingdom in 

2008 and 2016 respectively, and maintained at the National Institute of Agricultural Botany 

(NIAB) on the susceptible wheat cultivar Solstice. Urediniospores were stored at 6°C after 

collection. Inoculations were carried out by sowing seeds in groups of eight seeds per family, 

and four families spaced equidistantly around the rim of a 1 L pots of John Innes peat-based 

compost. Plants were grown at 18°C day and 11°C night using a 16 h light and 8 h dark cycle 

in a controlled environment chamber at NIAB, with lighting provided by metal halide bulbs 

(Philips MASTER HPI-T Plus 400W/645 E40). Barley seedlings were inoculated at 14 days after 

sowing, where first leaves were fully expanded and the second leaf was just beginning to 

emerge. Urediniospores of P. striiformis were suspended in talcum powder, at a 1:16 ratio of 
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urediniospores to talcum powder based on weight. Compressed air was used to inoculate 

seedlings on a spinning platform. After inoculation, seedlings were placed in a sealed bag and 

stored at 6°C for 48 h to increase humidity for successful germination of urediniospores. 

Subsequently, plants were returned to the growth chamber for the optimal development of 

P. striiformis and phenotyped at 10 days post inoculation. 

 

2.5.3 Macroscopic phenotyping 

At 10 days post inoculation, plants were scored using a 9 point scale from 0 to 4, with 

increments of 0.5, for chlorosis (discoloration) and infection (pustule formation).  The scale 

indicates the percentage of leaf area affected by the corresponding phenotype where a score 

of 0 indicates asymptomatic leaves, i.e. no chlorosis, browning or pustules, and a score of 4 

indicates leaves showing the respective phenotype over 100% of the surface area. 

 

2.5.4 Microscopic phenotyping 

We use the methods described in (Dawson et al. 2016): 

Leaves were harvested at 14 dpi and placed in 1.0 M KOH with a droplet of surfactant (Silwet 

L-77) and incubated at 37°C for 12 to 16 h. Subsequently, the KOH solution was decanted and 

leaves were neutralised by washing three times in 50 mM Tris at pH 7.5. A 1.0 mL stain 

solution (20 μg/mL WGA-FITC in 50 mM Tris at pH 7.5) was applied to the leaves. Leaf tissue 

was incubated overnight, then washed with water, mounted, and observed under blue light 

excitation on a fluorescence microscope with a GFP filter. 

pCOL estimates the percent of leaf colonised and pPUST the percent of leaf harbouring 

pustules. Phenotyping was performed by evaluating the leaf surface in equally sized, adjacent 

portions. Within each field of view, the colonisation of P. striiformis was estimated to be less 

than 15%, between 15 and 50% or greater than 50% of the FOV area and given scores of 0, 

0.5, or 1, respectively. The final pCOL score was determined by averaging these scores based 

on the total number of FOVs evaluated and ranged from 0 to 100%. pPUST was evaluated in 

a similar manner, but for the clustering pattern of P. striiformis pustules. A 5x objective with 

a FOV of 2.72 mm x 2.04 mm was used. 
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2.5.5 Nucleic acid extraction 

DNA was extracted from leaf tissue using a CTAB based method. 

Approximately 6 cm2 of leaf tissue was harvested from plants, placed in a 96-well plate and 

lyophilised using a Heto PowerDry LL3000 freeze dryer and Edwards 60X vacuum pump. After 

lyophilisation, stainless steel balls were introduced to the leaves and a Spex 2010 

Geno/Grinder was used to pulverise tissue for approximately 2 minutes at 1500 rpm. Tissue 

was then immediately suspended in 300l of a CTAB solution comprising 1.0 g CTAB, 1 ml 

Beta-Mecarptoethanol, 2 ml 0.5M EDTA (pH 8.0), 14 ml 5M NaCl, 10 ml 1 M Tris (pH 8.0) and 

72.8 ml distilled water per 100 ml CTAB solution. Tissue was mixed thoroughly by inversion 

and then incubated at 65 °C for 45 minutes, with intermittent mixing, then left to stand for 5 

minutes at 4 °C. 100 uL of chilled potassium acetate was then added to each sample and 

mixed by inversion, then incubated on ice for 20 minutes. 150 uL of 24:1 Chloroform:Isoamyl 

alcohol was then added to each sample and mixed by continuous vigorous inversion for five 

minutes. The mixtures were then centrifuged for ten minutes at 10’000 RCF, to separate the 

mixture into two phases. The upper phase was then harvested and transferred to a fresh 

plate, along with 120 uL propan-2-ol, and mixed by inversion. Nucleic acids were pelleted by 

centrifugation for 20 minutes at 10’000 RCF and the liquid phase discarded. Pellets were re-

suspended in 200 µL of TE + 0.2 mg/mL RNAse and incubated at 65 °C for 10 minutes. Then 

300 uL of 7:1 propan-2-ol: 4.4M NH4Ac was added to the suspension, mixed by inversion and 

the DNA pelleted by centrifugation for ten minutes at 10’000 RCF. The liquid phase was 

discarded and the pellets washed in 250 µL 70% ethanol. DNA was re-pelleted by 

centrifugation for three minutes and the liquid phase discarded. Plates were dried, and 

incubated at 65 °C for 10 minutes to evaporate all remaining alcohol, before DNA was 

suspended in TE buffer. 

 

RNA was extracted from the first leaf of 10 day old plants. Tissue was harvested and  

immediately frozen in liquid nitrogen, before being ground to a fine powder using a mortar 

and pestle with grinding sand at -80 °C. Ground tissue was suspended in TRI reagent, allowed 

to incubate for 5 minutes at room temperature before centrifugation for 20 minutes at 10’000 

RCF to pellet the lysate. The supernatant was recovered and mixed with chloroform. This 

mixture was incubated at room temperature for 15 minutes before the phases were 

separated by centrifugation at 10’000 RCF and the lighter phase was recovered. Nucleic acids 
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were precipitated from the lighter phase with isopropanol, pelleted via centrifugation, then 

washed with 75% ethanol and resuspended in water. 

 

 

2.5.6 KASP Genotyping 

For KASP genotyping, SNPs were converted into Kompetitive Allele Specific PCR (KASP) 

markers using a custom python script (https://github.com/matthewmoscou/QKutilities). 

KASP primer mix was prepared by mixing 12 μL VIC primer (s1), 12 μL FAM primer (s2), 30 μL 

reverse primer (r), and 46 μL H2O. KASP PCR reactions contained 2μL gDNA (10-20 ng), 2 μL 

KASP V4.0 2x master mix, and 0.055 μL primer mix. KASP PCR cycling used an initial incubation 

at 95 °C for 15 minutes followed by touchdown PCR cycling: 94 °C for 20 seconds followed by 

ten 25 second cycles of touchdown PCR starting at 65 °C decreasing by 1 °C each cycle. 

Samples then cycled 30 times at 94 °C for 20 seconds and annealed at 57 °C for 1 minute 

before being held at 4 °C. KASP assays were performed at the John Innes Centre Genotyping 

Facility (Norwich, UK). 

 

2.5.7 T-DNA insert copy number testing 

T-DNA insert copy number testing was performed by iDna Genetics using a TaqMan Assay. 

Quantitative real time PCR analysis was used to estimate the numbers of transgene copies in 

individual plants, similarly to the approach taken by Bartlett et al. (Bartlett et al. 2008) An 

amplicon from the transgenic Hygromycin insert (with a FAM reporter) and an amplicon from 

the native Actin gene (with a VIC reporter) were amplified together in a multiplex reaction 

(15 minutes denaturation, then 40 cycles of 15 seconds 95C and 60 seconds 60C) in an 

QuantStudio 5 realtime PCR machine. Two replicate assays were run per sample.  

Fluorescence from the FAM and VIC fluorochromes was measured during each 60C step,  and 

the Ct values obtained. The difference between the Ct values for the Hygromycin and Actin 

(the DeltaCt) was used to allocate the assayed samples into groups with the same gene copy 

number. 
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2.5.8 Chicago sequencing 

Chromosome Flow sorting of CI16139 chromosome 4H was performed using the methods 

described by Doležel et al. (Doležel et al. 2012), after which Chicago Dovetail sequencing of 

the chromosome (Putnam et al. 2016) was performed by Dovetail Genomics, with initial 

assembly in Meraculous and final Scaffolding in HiRise. 

 

2.5.9 RNA sequencing 

After extraction, RNA was purified, and checked for quality as described in (Dawson et al. 

2016) RNA libraries were constructed using Illumina TruSeq RNA library preparation (Illumina; 

RS-122-2001). Barcoded libraries were sequenced using either 100 or 150 bp paired-end 

reads. Library preparation and sequencing was performed by Novogene.  

 

2.5.10 Rps8 fine-mapping 

Rps8 was previously mapped to the long arm of chromosome 4H by (Dawson 2015). 

Additional markers were designed in the Rps8 interval using the genomes of Barke, Bowman, 

Morex and Haruna Nijo (Supplementary table2.1). These markers (Supplementary table 2.4) 

were used to fine-map Rps8 using an F2 population derived from SxGP DH-21 and SxGP DH-

103 in a high-resolution recombination screen comprising 9,216 gametes, identifying 127 

recombinants in the interval.  

 

2.5.11 Genomic analysis of the physical sequence at the Rps8 locus 

The region delimiting Rps8  was identified in the 2019 Barley genome (Mascher et al. 2021) 

using NCBI Blast+. The physical sequence between the flanking markers K_4819 and 

K_079610_445 was extracted from this genome, and from the same region in Golden Promise 

2020 (Schreiber 2020), AWCS 276 (Liu 2020) and from the CI16193 chromosome 4H sequence. 

RNA from the 40 barley accessions described in Supplementary table 2.1 was aligned to the 

reference Morex haplotype using the Bowtie2 aligner, and used to generate de novo gene 

annotations in Cufflinks. The reference gene annotations were also incorporated, to identify 

gene models which were not expressed in any sequenced tissue type. 
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For analysis of gene content relative to Morex, paired-end RNAseq reads were aligned to the 

predicted CDS of high confidence gene annotations extracted from the Morex genome with 

Bowtie2 and converted into a consensus CDS using custom python scripts 

(https://github.com/matthewmoscou/QKgenome). The relevant subset of genes were then 

extracted for further analysis.  

 

2.5.12 Genetic map construction and interval mapping 

To assess whether Heils Franken Pst resistance was associated with Rps8, F1 progeny of Heils 

Franken and Manchuria were backcrossed to Manchuria, phenotyped and analysed by 

interval trait mapping. A genetic map of Heils Franken was constructed using 94 backcross 

progeny and 64 Kasp markers listed in Supplementary table 2.4 with the software JoinMap 

v4.1. and QtlCartographer v2.5. The phenotype of these individuals was used to map 

resistance to Pst using R/qtl v1.48. Individuals with the rps8-HF haplotype and no resistance 

to Pst were developed into a BC1S2 line homozygous for rps8-HF. 

 

2.5.13 Cloning of Exo70FX12 

PCR was generally performed by assembling a reaction mix containing 2.5 μl Phusion Master 

Mix (NEB), 2.5 μl dNTPs (200 μM), 1 μl forward and reverse primer (400 nM each), 1 μl DNA 

(100 ng gDNA or 10 ng plasmid DNA), and 0.2 μl Phusion Taq polymerase (NEB) per reaction 

vessel. PCR was performed using a BioRad G-Storm GS4 thermocycler, set to cycle through: 

1.5 minutes at 94 °C, then 35 repeats of 30s at 94 °C, 30s at 50 °C, 30s per kb at 72 °C. Finally 

5 minutes at 72 °C and a cooling stage of 10 °C. PCR products were run on a 1.5% w/v agarose 

gel, and excised with a sharp blade, before gel extraction using a Macherey-Nagel NucleoSpin 

Gel and PCR Clean-up Kit according to the manufacturer’s instructions. When desired, DNA 

was cloned into Oneshot Omnimax (Fischer) competent E. coli cells by heat shock: 2 μl of 

purified plasmid DNA was introduced to Oneshot Omnimax (Fischer) competent E. coli cells 

and incubated on ice for 30 minutes, then subjected to a 30 s heat shock at 42 °C for 30 

seconds and recovered on ice for another 2 minutes. 250 μl of L-broth was introduced to the 

cells, before incubation overnight at 37°C with an appropriate selective marker. The next day, 

colonies were verified to contain the region of interest by colony PCR, using a similar method 
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as before but with an initial denaturing step of 10 minutes. DNA was extracted from 

transformed E. coli using a QIAgen miniprep kit, according to the manufacturer’s instructions. 

 

Exo70FX12a and its native promoter and terminator were cloned by PCR using the Gibson 

method (Gibson et al. 2009). One set of primers were designed to bind 2 kb upstream of the 

predicted start of transcription, and 1.5 kb downstream of the predicted stop codon. Another 

set of primers was designed to amplify this region while adding an overhang compatible with 

a matching sequence in the acceptor vector.  A final set of primers designed to convert a 

plasmid vector into a linear sequence featuring compatible overhangs with the Exo70FX12a 

interval was also designed. PCR was performed using Golden Promise gDNA and the first set 

of primers to amplify the region of interest. PCR products were extracted and cloned into a 

TOPO XL-2 vector by adding 4.5 μl purified DNA to 1 μl provided salt solution and 0.5 μl of 

provided TOPO XL-2 vector, and incubating at room temperature for 30 minutes before 

cloning into E. coli. 

 

After plasmid DNA was extracted from E. coli, it was used as a template for Gibson cloning 

with the second set of primers. The barley-compatible T-DNA vector pBract202 was also used 

as a template to create an acceptor vector using the matching set of primers. Both amplicons 

were extracted from gel, and verified by sanger sequencing. 

To clone the modified Exo70 interval into the linearised pBract202, 4.6 μl pBract (69 ng) with 

0.4 μl Exo70 interval (62 ng) and 15 μl Gibson assembly mix (NEB) and incubated in a 

thermocycler at 50 °C for one hour. The mixture was then transformed into E. coli as before 

and the assembled plasmid extracted. The plasmid was verified by sanger sequencing, and 

transformed into electrompetent Agrobacterium tumifaciens. 1 μl of plasmid was introduced 

to 50 μl Agi1 cells, incubated on ice for 1 minute electroporated. Cells were immediately 

recovered using 500 μl L-media and incubated with shaking at 28 °C for 2 hours. then 

incubated overnight at 28 °C on L-media plates with appropriate selective markers. 

Agrobaterium-mediated transformation of the assembled construct into barley was 

performed by the TSL transformation team using the methods described by Hensel et al. 

(Hensel 2004) . 
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2.5.14 Additional services 

Sanger sequencing was performed by Eurofins Genomics 

Primers were synthesised by Integrated DNA Technologies 

 

1.5.15 Software used 

NCBI Blast+ v2.2.31 (Altschul et al. 1990) 

Geneious 

MUSCLE v3.8.31 (Edgar 2004) 

EMBOSS suite (Rice, Longden, and Bleasby 2000) 

JoinMap (Stam 1993) 

QTLcartographer (Basten, Weir, and Zeng 1999) 

BOWTIE2 (Langmead et al. 2009; Langmead and Salzberg 2012) 

Samtools v1.11 (Li et al. 2009) 

Cufflinks v2.2.1 (Trapnell et al. 2010) 

hisat2 v2.2.1 (Kim et al. 2019) 

Python v2.7 

Python v3.5.3 

R v3.7.0 (Team 2013) 

InterProScan v5.20-59.0 (Jones et al. 2014) 

 

 

2.6 Appendixes 

 

Supplementary Table 2.1: Barley accessions used in transcriptomic analyses. An in-house 

collection of barley accessions for which RNAseq data is available. Haplotype indicates 

whether the accession does (Rps8) or does not (rps8) express the two candidate genes at 

Rps8, or whether it has expresses the genes with accession-specific SNPs (Rps8-X). Rps8 

status indicates whether resistance is known to be provided by that Rps8 allele (+), known 

not to be provided (-), or unknown (blank) based on previous mapping work (Dawson 2015) 
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Accession Identifier Type 

 

Haplotype 

Rps8 

status 

Abed Binder 12 GGCM01000000 Transcriptome Rps8 + 

Aramir GGCO01000000 Transcriptome Rps8  

Barke GGCN01000000 Transcriptome Rps8  

Baronesse GGCP01000000 Transcriptome Rps8 + 

BCD12 GGCQ01000000 Transcriptome Rps8  

BCD47 GGCR01000000 Transcriptome Rps8  

Betzes GGCS01000000 Transcriptome Rps8 + 

Bowman GGCT01000000 Transcriptome Rps8  

CI 16139 GGCU01000000 Transcriptome Rps8 + 

CI 16147 GFJN01000000 Transcriptome rps8 - 

CI 16153 GFJL01000000 Transcriptome rps8 - 

CIho 4196 GFJK01000000 Transcriptome Rps8  

Commander GGCV01000000 Transcriptome Rps8  

Duplex GGCW01000000 Transcriptome Rps8 + 

Emir GGCX01000000 Transcriptome Rps8  

Finniss GGCY01000000 Transcriptome rps8  

Fong Tien GGCZ01000000 Transcriptome rps8 - 

Golden Promise GGDA01000000 Transcriptome Rps8 + 

G.Z. GGDB01000000 Transcriptome rps8 - 

Haruna Nijo GFJJ01000000 Transcriptome Rps8 + 

Heils Franken GGDC01000000 Transcriptome rps8-HF - 

Hindmarsh GGDD01000000 Transcriptome Rps8  

HOR 1428 GGDE01000000 Transcriptome rps8 - 

I 5 GGDF01000000 Transcriptome Rps8  

Igri GGDG01000000 Transcriptome rps8  

Manchuria GFJO01000000 Transcriptome rps8 - 

Maritime GGDH01000000 Transcriptome Rps8  

Morex 2017v1 Genome Rps8 + 

Pallas GGDI01000000 Transcriptome Rps8  
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Q21861 GGDJ01000000 Transcriptome rps8  

Russell GGDK01000000 Transcriptome rps8 - 

Sultan 5 GGDL01000000 Transcriptome Rps8 + 

SusPtrit GGDM01000000 Transcriptome rps8 - 

WBDC 008 GGDN01000000 Transcriptome Rps8-WBDC8  

WBDC 013 GGDO01000000 Transcriptome Rps8-WBDC13  

WBDC 085 GGDP01000000 Transcriptome Rps8-WBDC85  

WBDC 109 GGDQ01000000 Transcriptome rps8  

WBDC 110 GGDR01000000 Transcriptome rps8  

WBDC 172 GGDS01000000 Transcriptome rps8  

WBDC 259 GGDT01000000 Transcriptome rps8  

 

Supplementary table 2.2. Reference genomes used in this chapter. Reference genomes were 

used to compare the physical structure of the Rps8 interval as well as the coding sequence of 

candidate genes across barley accessions and wheat. They were also used to develop 

additional genetic markers in the Rps8 interval. 

Genome Species Publication 

Morex (2017) Hordeum vulgare (Beier et al. 2017) 

Morex (2019) Hordeum vulgare (Mascher et al. 2021) 

Golden Promise (2020) Hordeum vulgare (Schreiber et al. 2020) 

AWCS 276 Hordeum vulgare (Liu et al. 2020) 

Barke Hordeum vulgare 

(International Barley Genome Sequencing et al. 

2012) 

Bowman Hordeum vulgare 

(International Barley Genome Sequencing et al. 

2012) 

Haruna Nijo Hordeum vulgare 

(International Barley Genome Sequencing et al. 

2012) 

Chinese Spring 

Triticum 

aestivum (Appels et al. 2018) 
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Supplementary table 2.3: List of Primers used in this chapter  

 

Primer ID Sequence Role 

Exo70-pBract-p1f AGAGGTTTCTTGGGTTGAAAGATCCACTAGTTCTAGAGCG Gibson cloning of Exo70, along with native 

promoter and terminator to be compatible 

with right border of pBract vector 

Exo70-pBract-p1r CGCTCTAGAACTAGTGGATCTTTCAACCCAAGAAACCTCT Gibson cloning of pBract vector to be 

compatible with Exo70 region 

pBract-Exo70-p1f TAAGCTTGATATCGAATTCCCTACGAAACTGAATATTTAG Gibson cloning of pBract vector to be 

compatible with Exo70 region 

pBract-Exo70-p1r CTAAATATTCAGTTTCGTAGGGAATTCGATATCAAGCTTA Gibson cloning of Exo70, along with native 

promoter and terminator to be compatible 

with left border of pBract vector 

SH_12 1-1 GGAAGGGAATAACCAACTAG Forward primer for amplifying Exo70 interval, 

binds to promoter region 

SH_12 1-2 CCATCTGTGGCAATCAAGGA Reverse primer for amplifying Exo70 interval, 

binds to terminator region  

EXO_REGION_L1 CCGACCCAGCTTTCTTGTAC Forward primer for sequencing Exo70 interval 

EXO_REGION_L2 GCGTTTCCCCTAGCCATTTA Forward primer for sequencing Exo70 interval 

EXO_REGION_L3 ACCCATTATCAAGCCTTGCA Forward primer for sequencing Exo70 interval 

EXO_REGION_L4 TGTGGGTGTGTTTTGATCAGG Forward primer for sequencing Exo70 interval 

EXO_REGION_L5 CTTCTAAAGCCGGAGACCCC Forward primer for sequencing Exo70 interval 

EXO_REGION_L6 CGACCAGGACCAGCTAAAGA Forward primer for sequencing Exo70 interval 

EXO_REGION_L7 CGCTGACTCGAATTTAGCCA Forward primer for sequencing Exo70 interval 

EXO_REGION_L8 ACCGTGCTGTATATGGCCTT Forward primer for sequencing Exo70 interval 

EXO_REGION_L9 GATCTTCGTGAGCTCGTGAG Forward primer for sequencing Exo70 interval 

EXO_REGION_L10 GTCAACATGAAGTACCGGGG Forward primer for sequencing Exo70 interval 

EXO_REGION_L11 TCATAGAATACCTCGTACGACCA Forward primer for sequencing Exo70 interval 

EXO_REGION_L12 ATGCACAGACGTAGCCAGTA Forward primer for sequencing Exo70 interval 

EXO_REGION_L13 GCTTGGCGTAATCATGGTCA Forward primer for sequencing Exo70 interval 

EXO_REGION_R1 TCGTAGGGAATTCGATATCAAGC Reverse primer for sequencing Exo70 interval 

EXO_REGION_R2 ACTCCACTTACATCCCACCT Reverse primer for sequencing Exo70 interval 

EXO_REGION_R3 TGGTAGCTTCGAACTGACTGA Reverse primer for sequencing Exo70 interval 

EXO_REGION_R4 GACGGCGTCTTTAATTTGGC Reverse primer for sequencing Exo70 interval 

EXO_REGION_R5 AGAGGGTCGTGTCAGGTTAC Reverse primer for sequencing Exo70 interval 

EXO_REGION_R6 ACGAAACCGAATACCTCCGT Reverse primer for sequencing Exo70 interval 

EXO_REGION_R7 GTTCTCCAACTCCCCGACG Reverse primer for sequencing Exo70 interval 

EXO_REGION_R8 GGGACAACACTTCACACACC Reverse primer for sequencing Exo70 interval 

EXO_REGION_R9 AAACCCCAAAACCCCGAATC Reverse primer for sequencing Exo70 interval 

EXO_REGION_R10 ACCGGGGAATAATCTATGTGCA Reverse primer for sequencing Exo70 interval 

EXO_REGION_R11 TTTGCTTACCCGATCGATGT Reverse primer for sequencing Exo70 interval 

EXO_REGION_R12 CTTGTCAAGAAGCTACCAACGA Reverse primer for sequencing Exo70 interval 

EXO_REGION_R13 CTTCCGGCTCGTATGTTGTG Reverse primer for sequencing Exo70 interval 
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Supplementary table 2.4: List of KASP markers used in this chapter. 

KASP_ID Role Forward sequence 1 Forward sequence 2 

Reverse 

sequence 

1_0420_60_F HfxM BC1 Marker 1H 
GAAGGTCGGAGTCAACGGATTATTCCATTGAAATGGATGAG GAAGGTGACCAAGTTCATGCTATTCCATTGAAATGGATGAT TGAGTGATGATGACCCATAGC 

1_1223_120_R HfxM BC1 Marker 1H 
GAAGGTCGGAGTCAACGGATTAGAAGGGGCCAACACGGTAC GAAGGTGACCAAGTTCATGCTAGAAGGGGCCAACACGGTAT GTACAGAGGCGGTAGCGG 

SCRI_RS_66630_159_R HfxM BC1 Marker 1H 
GAAGGTCGGAGTCAACGGATTTATCCAGTTCACTGCCCTCC GAAGGTGACCAAGTTCATGCTTATCCAGTTCACTGCCCTCT GGCTCCATCCATACACCTCA 

2_1174_120_F HfxM BC1 Marker 1H 
GAAGGTCGGAGTCAACGGATTACCGGCGCTCGATTAAGTCA GAAGGTGACCAAGTTCATGCTACCGGCGCTCGATTAAGTCG GCATCGCCGGGTGATACA 

1_1038_71_F HfxM BC1 Marker 1H 
GAAGGTCGGAGTCAACGGATTCACTACACAGGCCCCCTTTA GAAGGTGACCAAGTTCATGCTCACTACACAGGCCCCCTTTG CCTCTGATGAAGGCTGGGC 

1_0854_120_F HfxM BC1 Marker 1H 
GAAGGTCGGAGTCAACGGATTCAGTGAACAAGAGAATGCTG GAAGGTGACCAAGTTCATGCTCAGTGAACAAGAGAATGCTT ACTGCCTTGACATACCAGGG 

2_0625_120_F HfxM BC1 Marker 1H 
GAAGGTCGGAGTCAACGGATTGGCTTGCATGTTGATCCACC GAAGGTGACCAAGTTCATGCTGGCTTGCATGTTGATCCACT AGCAAAGACCTGCCTGTGT 

2_0475_120_F HfxM BC1 Marker 1H 
GAAGGTCGGAGTCAACGGATTATGAGCTGTTGTGCTGTGTA GAAGGTGACCAAGTTCATGCTATGAGCTGTTGTGCTGTGTG AGATGCTGCGGTGCACTT 

1_1059_120_F HfxM BC1 Marker 1H 
GAAGGTCGGAGTCAACGGATTAGCTCAACGCGCCGCTTAAC GAAGGTGACCAAGTTCATGCTAGCTCAACGCGCCGCTTAAT ACGGGTAGTCGGTGTAACC 

1_0943_120_F HfxM BC1 Marker 2H 
GAAGGTCGGAGTCAACGGATTGTTATTACTCCTTGTCGCCC GAAGGTGACCAAGTTCATGCTGTTATTACTCCTTGTCGCCG GCACTTGTCACTCACAGCG 

2_1015_120_F HfxM BC1 Marker 2H 
GAAGGTCGGAGTCAACGGATTTTTGGAGAAGAGCAGGCCTA GAAGGTGACCAAGTTCATGCTTTTGGAGAAGAGCAGGCCTG CGCTAGTCGGTCCTCGAG 

1_0837_120_F HfxM BC1 Marker 2H 
GAAGGTCGGAGTCAACGGATTCCTACGACACTAAACCCAGG GAAGGTGACCAAGTTCATGCTCCTACGACACTAAACCCAGT TGCGTGCCCCTACCTTTG 
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1_0498_120_F HfxM BC1 Marker 2H 
GAAGGTCGGAGTCAACGGATTGTGGGTGGAGGCTTTGGAAC GAAGGTGACCAAGTTCATGCTGTGGGTGGAGGCTTTGGAAT GCTGCCATGTTGTTGCCC 

2_0500_120_F HfxM BC1 Marker 2H 
GAAGGTCGGAGTCAACGGATTTTCGATGCGAATGCGGTGGC GAAGGTGACCAAGTTCATGCTTTCGATGCGAATGCGGTGGT TCGGCGCACCAGAAAAGA 

1_0213_120_F HfxM BC1 Marker 2H 
GAAGGTCGGAGTCAACGGATTCAGGAACAGCCTCCTAGCAA GAAGGTGACCAAGTTCATGCTCAGGAACAGCCTCCTAGCAC GGGCACTTGGAGCTAAGCT 

1_1118_120_R HfxM BC1 Marker 2H 
GAAGGTCGGAGTCAACGGATTTTAATCTGTACTGATTTTTA GAAGGTGACCAAGTTCATGCTTTAATCTGTACTGATTTTTG ACACCTTTCGAGCTGCGAT 

2_1440_120_R HfxM BC1 Marker 2H 
GAAGGTCGGAGTCAACGGATTTTTAGTTGGTCTGTGGCTGC GAAGGTGACCAAGTTCATGCTTTTAGTTGGTCTGTGGCTGT CCAGGTGCACAGAGCCAC 

2_0895_120_R HfxM BC1 Marker 2H 
GAAGGTCGGAGTCAACGGATTAGATGGCAACACCTTAGAGC GAAGGTGACCAAGTTCATGCTAGATGGCAACACCTTAGAGT CACTGATGAGAAGGCAATGCA 

2_1008_120_F HfxM BC1 Marker 2H 
GAAGGTCGGAGTCAACGGATTGAACTGGCTCAGAGATTGTC GAAGGTGACCAAGTTCATGCTGAACTGGCTCAGAGATTGTT CCTTCACGCTTCCCACGT 

1_0867_120_F HfxM BC1 Marker 3H 
GAAGGTCGGAGTCAACGGATTGTGAGATGTGGAATCCGCTA GAAGGTGACCAAGTTCATGCTGTGAGATGTGGAATCCGCTG GCTCACAAGCCAACTGCA 

2_0023_120_F HfxM BC1 Marker 3H 
GAAGGTCGGAGTCAACGGATTTGGCATGGCTAACTTCCCCA GAAGGTGACCAAGTTCATGCTTGGCATGGCTAACTTCCCCG GAAGGTTAGGCGTGCCGT 

2_0659_120_F HfxM BC1 Marker 3H 
GAAGGTCGGAGTCAACGGATTGTAGCTATTGTACACTTCAC GAAGGTGACCAAGTTCATGCTGTAGCTATTGTACACTTCAT GCTGAACTGGAACATCCGC 

2_0115_120_F HfxM BC1 Marker 3H 
GAAGGTCGGAGTCAACGGATTTCTTCATGCATAATTCTTTC GAAGGTGACCAAGTTCATGCTTCTTCATGCATAATTCTTTT ACCTCCTTCAATGATCCCAGA 

2_0931_120_F HfxM BC1 Marker 3H 
GAAGGTCGGAGTCAACGGATTACGCTAACCTGTAATCCTAC GAAGGTGACCAAGTTCATGCTACGCTAACCTGTAATCCTAT CCCTTCAAGGCAGAGGTGG 

1_1124_120_F HfxM BC1 Marker 3H 
GAAGGTCGGAGTCAACGGATTCTAACCCAGGGTGCTCCAAC GAAGGTGACCAAGTTCATGCTCTAACCCAGGGTGCTCCAAT ACCATGGAAGGGCCCTTG 

2_1533_24_F HfxM BC1 Marker 3H 
GAAGGTCGGAGTCAACGGATTGAACGCATCGCCTGAGGCCC GAAGGTGACCAAGTTCATGCTGAACGCATCGCCTGAGGCCG AACGGCCCATCCAAGTGG 

2_0013_120_F HfxM BC1 Marker 3H 
GAAGGTCGGAGTCAACGGATTGTTTCAAGCCACGCGATTCC GAAGGTGACCAAGTTCATGCTGTTTCAAGCCACGCGATTCT GAAGCACCAACCCCGTCA 

2_0974_120_F HfxM BC1 Marker 4H 
GAAGGTCGGAGTCAACGGATTTGTCCTTGTAGGCGGTCAGA GAAGGTGACCAAGTTCATGCTTGTCCTTGTAGGCGGTCAGC TTTCAACGCCAGGACGCA 

1_0510_120_F HfxM BC1 Marker 4H 
GAAGGTCGGAGTCAACGGATTCGGATAGGCCAAAATCAATC GAAGGTGACCAAGTTCATGCTCGGATAGGCCAAAATCAATT CGCGATCTCAAGCCGGAA 

2_0454_120_F HfxM BC1 Marker 4H 
GAAGGTCGGAGTCAACGGATTCCACCCGCATCCCCGCCAGC GAAGGTGACCAAGTTCATGCTCCACCCGCATCCCCGCCAGT GGCGAAGTCGACCCTCTG 

1_0588_120_F HfxM BC1 Marker 4H 
GAAGGTCGGAGTCAACGGATTCTTTACTCTGGTCAGCAGCA GAAGGTGACCAAGTTCATGCTCTTTACTCTGGTCAGCAGCG GGAATGGATTGGACGGAGTGA 

2_0670_120_F HfxM BC1 Marker 4H 
GAAGGTCGGAGTCAACGGATTGAATCTCACTGATTGGTGCC GAAGGTGACCAAGTTCATGCTGAATCTCACTGATTGGTGCG CGGACGTGACACGGAGAA 

2_0451_120_R HfxM BC1 Marker 4H 
GAAGGTCGGAGTCAACGGATTAACCATACAACCATAGTGGC GAAGGTGACCAAGTTCATGCTAACCATACAACCATAGTGGT GGCCAACCAAGCGATCGA 

2_0482_120_F HfxM BC1 Marker 4H 
GAAGGTCGGAGTCAACGGATTCGTCCTGCTCCTGCTTTAGC GAAGGTGACCAAGTTCATGCTCGTCCTGCTCCTGCTTTAGT GCGGCGGCTAAAAAGAGG 

1_0480_120_F HfxM BC1 Marker 4H 
GAAGGTCGGAGTCAACGGATTGCAACTTTTTCTACCCAAAC GAAGGTGACCAAGTTCATGCTGCAACTTTTTCTACCCAAAG GATGCCACTCCAGTGCAGT 

2_1397_120_F HfxM BC1 Marker 4H 
GAAGGTCGGAGTCAACGGATTAAGAGCCGACGGTGCCCACC GAAGGTGACCAAGTTCATGCTAAGAGCCGACGGTGCCCACT CGCGCATCTCTTCAACGC 

1_0221_120_R HfxM BC1 Marker 4H 
GAAGGTCGGAGTCAACGGATTAAGAAGCAATACATTTTAAC GAAGGTGACCAAGTTCATGCTAAGAAGCAATACATTTTAAG AGCGGTTCAGCCTTCAGA 

2_0533_120_F HfxM BC1 Marker 4H 
GAAGGTCGGAGTCAACGGATTTGGGTGCATCTGGTGGGATC GAAGGTGACCAAGTTCATGCTTGGGTGCATCTGGTGGGATT TAAGCAGCGAGAGTGGCT 

1_0621_120_F HfxM BC1 Marker 5H 
GAAGGTCGGAGTCAACGGATTTCGCTCCATATGAGAAACGC GAAGGTGACCAAGTTCATGCTTCGCTCCATATGAGAAACGT TGGCGACCTTGAGTGCAC 

1_1128_50_F HfxM BC1 Marker 5H 
GAAGGTCGGAGTCAACGGATTTGACAAATCTAAATGCCTTC GAAGGTGACCAAGTTCATGCTTGACAAATCTAAATGCCTTT CTGAGGCAGGCTGTTCTGA 

2_1239_120_F HfxM BC1 Marker 5H 
GAAGGTCGGAGTCAACGGATTGCGCCAACAGGAACCATAGC GAAGGTGACCAAGTTCATGCTGCGCCAACAGGAACCATAGT CCCGATATCTTGTTGATGGCA 

2_0096_120_F HfxM BC1 Marker 5H 
GAAGGTCGGAGTCAACGGATTTCCAAGGGGTGAACTGTTGA GAAGGTGACCAAGTTCATGCTTCCAAGGGGTGAACTGTTGC CTCTGCAGCTCTCGGTGG 

1_0578_120_F HfxM BC1 Marker 5H 
GAAGGTCGGAGTCAACGGATTCTGGGCACTGGGCCTCGACA GAAGGTGACCAAGTTCATGCTCTGGGCACTGGGCCTCGACC AGGTGTGGGGTGCTTTGC 

2_1168_120_F HfxM BC1 Marker 5H 
GAAGGTCGGAGTCAACGGATTTGGCGAAGGTGAGGTTGTGA GAAGGTGACCAAGTTCATGCTTGGCGAAGGTGAGGTTGTGG CGGGTTCACGACGGAGTAC 

1_1200_120_F HfxM BC1 Marker 5H 
GAAGGTCGGAGTCAACGGATTGTGTTCAGCCCAGAGGGAGC GAAGGTGACCAAGTTCATGCTGTGTTCAGCCCAGAGGGAGT ACCTTTGTTTTGCTTGCAGGT 

1_1456_38_F HfxM BC1 Marker 5H 
GAAGGTCGGAGTCAACGGATTGAAGGCTAGAAGCCCCCCAC GAAGGTGACCAAGTTCATGCTGAAGGCTAGAAGCCCCCCAT TGCCATTTTGCGTTTGGACC 

1_0705_120_F HfxM BC1 Marker 5H 
GAAGGTCGGAGTCAACGGATTCCGAGAACAGATCAGTCTCC GAAGGTGACCAAGTTCATGCTCCGAGAACAGATCAGTCTCT CCGGAGGTCATGTCGAGC 

1_1532_120_F HfxM BC1 Marker 5H 
GAAGGTCGGAGTCAACGGATTCAACAAATGCCCATAACCTA GAAGGTGACCAAGTTCATGCTCAACAAATGCCCATAACCTG GGTCACTGCTTCTCTTGGCT 

2_0415_120_F HfxM BC1 Marker 5H 
GAAGGTCGGAGTCAACGGATTAATCAATTCGCTTCTCAGAC GAAGGTGACCAAGTTCATGCTAATCAATTCGCTTCTCAGAT GGCAAGGGAGGTCTCAGG 

1_0023_120_F HfxM BC1 Marker 6H 
GAAGGTCGGAGTCAACGGATTATTGGCTCCCCCTTCCAAAC GAAGGTGACCAAGTTCATGCTATTGGCTCCCCCTTCCAAAG ACGACGAGGACCATGACG 

1_0994_92_R HfxM BC1 Marker 6H 
GAAGGTCGGAGTCAACGGATTCCTTCGGGTTGGCCATCTCA GAAGGTGACCAAGTTCATGCTCCTTCGGGTTGGCCATCTCG CCCAAAACCCTAGCCCCG 

2_0465_120_R HfxM BC1 Marker 6H 
GAAGGTCGGAGTCAACGGATTTTGCCACGAGAATGGTTGCG GAAGGTGACCAAGTTCATGCTTTGCCACGAGAATGGTTGCT CCTTCACCGTCCAGTGGC 

1_0124_120_F HfxM BC1 Marker 6H 
GAAGGTCGGAGTCAACGGATTCTAAAGCAAGACTTCCCAAC GAAGGTGACCAAGTTCATGCTCTAAAGCAAGACTTCCCAAT GGTACCAAGGTTGTGGAGGA 

2_0379_120_F HfxM BC1 Marker 6H 
GAAGGTCGGAGTCAACGGATTGGAGGAAACCAAGGATGTGC GAAGGTGACCAAGTTCATGCTGGAGGAAACCAAGGATGTGG ACATGCTTGCCAGGGAGA 

1_0107_120_F HfxM BC1 Marker 6H 
GAAGGTCGGAGTCAACGGATTGTCGTGCAAGCTTTAATATC GAAGGTGACCAAGTTCATGCTGTCGTGCAAGCTTTAATATG ACCCTGCATGCGGGAATC 

2_0537_120_F HfxM BC1 Marker 6H 
GAAGGTCGGAGTCAACGGATTTAGATGGATAGATTGCCGTA GAAGGTGACCAAGTTCATGCTTAGATGGATAGATTGCCGTC CCACAACCGCTACAGCCA 

2_0365_120_F HfxM BC1 Marker 6H 
GAAGGTCGGAGTCAACGGATTAGGTCCAAGACAGAATCTCC GAAGGTGACCAAGTTCATGCTAGGTCCAAGACAGAATCTCG GACCGTCTACTGCCGCTC 

2_1104_120_F HfxM BC1 Marker 7H 
GAAGGTCGGAGTCAACGGATTTGCTCGAGTTGAAGTCCATA GAAGGTGACCAAGTTCATGCTTGCTCGAGTTGAAGTCCATT ACTGCTTCCGCCAGTCAG 

2_0247_120_F HfxM BC1 Marker 7H 
GAAGGTCGGAGTCAACGGATTCATTTCAAGGTTTTCCATAC GAAGGTGACCAAGTTCATGCTCATTTCAAGGTTTTCCATAG TGAATGTTGCGTGGATCCT 
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2_0103_120_F HfxM BC1 Marker 7H 
GAAGGTCGGAGTCAACGGATTTGGCGAGCGCCCTGGAGCAA GAAGGTGACCAAGTTCATGCTTGGCGAGCGCCCTGGAGCAG GTAGCCGCCGACATCCTC 

2_0485_120_F HfxM BC1 Marker 7H 
GAAGGTCGGAGTCAACGGATTGGGTGTTGCACAGCGCGTCC GAAGGTGACCAAGTTCATGCTGGGTGTTGCACAGCGCGTCT CTTCGGCAGCAAGGTCCA 

1_0773_120_F HfxM BC1 Marker 7H 
GAAGGTCGGAGTCAACGGATTAGGCACAAAACTTCATCCAA GAAGGTGACCAAGTTCATGCTAGGCACAAAACTTCATCCAG GGAGGTCGCTCGCTCAAG 

1_1098_120_F HfxM BC1 Marker 7H 
GAAGGTCGGAGTCAACGGATTAAATTGCAAGGCGTGTGATC GAAGGTGACCAAGTTCATGCTAAATTGCAAGGCGTGTGATT GATGGTAAGCGCTGGGCA 

2_1528_58_R HfxM BC1 Marker 7H 
GAAGGTCGGAGTCAACGGATTGGATAGTCCAGGTGTGCCTA GAAGGTGACCAAGTTCATGCTGGATAGTCCAGGTGTGCCTT TGTACAGAGTCCAGGCGC 

48149_3381_R Rps8 recombination screen 
GAAGGTCGGAGTCAACGGATTTGTAAGCACCACACAACAGA GAAGGTGACCAAGTTCATGCTTGTAAGCACCACACAACAGG TGTCATGAAACTTGTGCCGG 

134516_375_F Rps8 recombination screen 
GAAGGTCGGAGTCAACGGATTCATGTCCAACTCCTTTTCCA GAAGGTGACCAAGTTCATGCTCATGTCCAACTCCTTTTCCG ACAAGATTGGATTGCGACCA 

c7_1956_F Rps8 recombination screen 
GAAGGTCGGAGTCAACGGATTGGAGCATCAATCATCAATGC GAAGGTGACCAAGTTCATGCTGGAGCATCAATCATCAATGT TACAGCGTGCCTTACCGC 

48890_11948_F Rps8 recombination screen 
GAAGGTCGGAGTCAACGGATTAAGTAAAACTGGACCATACG GAAGGTGACCAAGTTCATGCTAAGTAAAACTGGACCATACT TCGCATTTCGTTTCTGCCA 

69195_5316_F Rps8 recombination screen 
GAAGGTCGGAGTCAACGGATTATGCATCTGTTGACCAGATC GAAGGTGACCAAGTTCATGCTATGCATCTGTTGACCAGATT ACACACAGAGGAGACAACCC 

49635_5088_R Rps8 recombination screen 
GAAGGTCGGAGTCAACGGATTGCCACTCGGTGTTCCTATAA GAAGGTGACCAAGTTCATGCTGCCACTCGGTGTTCCTATAC TGCACTTATGTTCGCATCAAC 

1626625_1054_R Rps8 recombination screen 
GAAGGTCGGAGTCAACGGATTTGCTGCTTTGGGGGTTATTC GAAGGTGACCAAGTTCATGCTTGCTGCTTTGGGGGTTATTT GGGGGAGGTGGTTTGTGG 

079610_445_F Rps8 recombination screen 
GAAGGTCGGAGTCAACGGATTAGCGCTCCGGACGAAATGCG GAAGGTGACCAAGTTCATGCTAGCGCTCCGGACGAAATGCT GCTAGCGTCGGAAGTGCT 

079620_185_R Rps8 recombination screen 
GAAGGTCGGAGTCAACGGATTTTAATAAAACTTGCGGTTTA GAAGGTGACCAAGTTCATGCTTTAATAAAACTTGCGGTTTT CTGGAAAACAACCGCAAAGGA 

079620_252_F Rps8 recombination screen 
GAAGGTCGGAGTCAACGGATTGAATCTTAATTCGCACATGC GAAGGTGACCAAGTTCATGCTGAATCTTAATTCGCACATGT AGGTTTGCGATCGGCCAT 

079620_2037_F Rps8 recombination screen 
GAAGGTCGGAGTCAACGGATTTGGCGGCTGGCCCCACACTA GAAGGTGACCAAGTTCATGCTTGGCGGCTGGCCCCACACTG TAAGCAATGGAGGGGGCG 

079620_219_F Rps8 recombination screen 
GAAGGTCGGAGTCAACGGATTATTAAATCAAGCAAATCGAA GAAGGTGACCAAGTTCATGCTATTAAATCAAGCAAATCGAT AGGTTTGCGATCGGCCAT 

079820_663_F Rps8 recombination screen 
GAAGGTCGGAGTCAACGGATTAAGAACCTTACTTCACCACA GAAGGTGACCAAGTTCATGCTAAGAACCTTACTTCACCACC TCCGTGCCCAACCAGTTC 

079820_1463_F Rps8 recombination screen 
GAAGGTCGGAGTCAACGGATTGGGCAAACTCTGTCCGGCCG GAAGGTGACCAAGTTCATGCTGGGCAAACTCTGTCCGGCCT CCTGGTGGTGAGGGTTGC 

121084_sp_1669_F Rps8 recombination screen 
GAAGGTCGGAGTCAACGGATTACAATGGACGTACTACTGCC GAAGGTGACCAAGTTCATGCTACAATGGACGTACTACTGCT CGCGAGGATTCAAAAGCGG 

121084_sp_2200_R Rps8 recombination screen 
GAAGGTCGGAGTCAACGGATTATGACTATGTCGGTCGGGTG GAAGGTGACCAAGTTCATGCTATGACTATGTCGGTCGGGTT CGATACCACTCTGGCGCC 
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3. A draft genome of Ecdeiocolea 

monostachya – a grass-like plant 

representing a closely related outgroup to 

the Poaceae 

 

3.1 Chapter Summary 

Ecdeiocolea monostachya is a wild perennial herb native to western Australia. It is one of 

three species within the Ecdeiocoleaceae; the family within the order Poales most closely 

related to the family Poaceae. Ecdeiocolea monostachya therefore represents an important 

outgroup for genomic studies of species within the Poaceae; a family which includes 

important crops such as wheat, rice, maize, barley, and millet. We used paired-end Illumina, 

long-read Nanopore sequencing, and the hybrid MaSuRCA genome assembler to assemble a 

draft genome of a wild accession of Ecdeiocolea monostachya designated EM_001. Gene 

annotations using RNAseq data from sheath, root and flower tissue predicted 84,7000 gene 

models with 95.2% complete BUSCO representation. The final assembly of the heterozygous, 

diploid Ecdeiocolea monostachya genome encompasses 1.3 Gbp over 3,605 scaffolds with 

N50=756 Kbp, and an estimated diploid genome coverage of 84%. 

 

 

3.2 Introduction 

3.2.1 The order Poales 

The Poales are an order of monocotyledonous plants which can be traced back to the mid-

Cretaceous period (approximately 115 Mya) in the Gondwanan region (present-day South 

America and Africa) (GPWG 2001; Bremer 2000). Poales are ecologically significant, being 

found on every continent, and are the defining feature of grasslands: the second largest 

biome (after oceans) on the planet. Especially notable are members of the family Poaceae; 
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which is known for species richness (Species Number >11,000) and includes all cereal crops, 

representing the primary source of calories utilised in human nutrition worldwide 

(Bouchenak-Khelladi, Muasya, and Linder 2014). Within the Poales, the Poaceae are a 

member of the Graminid clade, which also encompasses their nearest relatives the 

Ecdeiocoleaceae (3 species), Joinvilleaceae (4 species), and Flagellareaeceae (5 species). 

Although there have been many published genomes and transcriptomes within the Poaceae; 

the other families within the Poales are much less well-characterised (of the 481,639 SRA 

entries in NCBI classified under “Poales”, 479,420 were from the Poaceae, at the time of 

writing).  

 

3.2.2 Comparative genomics within the family Poaceae 

Traditional approaches to understanding the evolution of the Poaceae and their close 

relatives using morphological and archaeological evidence (Simon 2007) are now 

supplemented by comparative genomic analyses. Evolutionary relationships can be 

interrogated by comparing nucleotide sequences of conserved genes such as those found in 

the BUSCO database (Seppey, Manni, and Zdobnov 2019), as well as structural indicators of 

ancestral genomic events such as chromosome re-arrangements, syntenic regions, and gene 

duplications (Hilu 2004; Salse et al. 2009; Eric Schranz, Mohammadin, and Edger 2012). Our 

understanding of these species is also greatly enhanced by volumes of high-quality genetic 

information derived from reference genomes, transcriptomes from a variety of tissue types 

and environmental conditions, and pan-genomes of major species (Bayer et al. 2020) such as 

Hordeum vulgare (Jayakodi et al. 2020) Brachypodium distachyon (Gordon et al. 2017), Oryza 

spp. (Huang et al. 2012; Zhao et al. 2018; Wang et al. 2018), and Triticum aestivum 

(Montenegro et al. 2017). 

 

Comparative genomic studies within the Poaceae can identify agronomically relevant 

features which may not be found in wider monocots, or in dicot. However, the exact origin of 

these features can be difficult to determine due to the relative paucity of high-quality 

genomic information for their closest relatives in the graminid clade (Ware et al. 2002; Monat 

et al. 2019; Hochbach, Linder, and Röser 2018; Chase et al. 2006). Some well-studied features 

include expansions of MADS-box genes (Becker and Theißen 2003; Linder et al. 2018) such as 

the FRUITFULL genes FUL1/FUL2, and their loss in some lineages (Preston and Kellogg 2006; 
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Preston et al. 2009), C4 photosynthesis, which has evolved independently 10 to 24 times in 

the PACMAD clade of the Poaceae (Grass Phylogeny Working 2012), the development of gene 

clusters such the Bx gene cluster of maize (Dutartre, Hilliou, and Feyereisen 2012), 

specialisation of other CYP450 families (Li and Wei 2020), and the duplication of genes 

controlling ADP-glucose synthesis from the plastid genome into the plant genome, permitting 

increased cytosolic starch production (Wu et al. 2008; Tang et al. 2010; McKain et al. 2016). 

Several features are directly linked to the rho whole genome duplication event which 

occurred in the common ancestor to the Poaceae, prior to the radiation of the 

Anomochlooideae (Paterson, Bowers, and Chapman 2004; McKain et al. 2016). The 

Anomochlooideae are themselves an outgroup within the Poaceae, being the most basal 

lineage composed of the genera Anomochloae and Streptochaetae, and lacking signatures of 

the true grasses such as the spikelet, a single exon rpoC1 gene and a single bp deletion in the 

matK gene (Clark and Judziewicz 1996; Hilu, Alice, and Liang 1999; Morris and Duvall 2010) 

relative to other Poales. However, identifying the evolutionary origin of a trait found in a 

majority of Poaceae can be difficult, given the lack of high-quality reference data for their 

closest relatives in the Poales to provide a point of comparison. 

 

3.2.3 The Ecdeiocoleaceae represent a critical outgroup to the Poaceae 

Studies into the evolutionary history of the Poales have identified a number of metrics to 

evaluate their relationships. These include phylogenetic analysis of conserved single-copy 

gene families, identification of three signature inversions of the plastid genome, comparisons 

of chromosomal organisation and synteny across nuclear genomes, and genomic signatures 

associated with WGD events (Doyle et al. 1992; Duvall et al. 1993; Cummings, King, and 

Kellogg 1994; Bremer 2002; Paterson, Bowers, and Chapman 2004; Yu et al. 2005; McKain et 

al. 2016; Givnish et al. 2010; Givnish 2010; GPWG 2001; Michelangeli, Davis, and Stevenson 

2003; Givnish et al. 2018; Hochbach, Linder, and Röser 2018). Studies report minor 

inconsistencies between a subset of these methods, such as between nuclear and plastid 

genome organisation, which can make the phylogeny difficult to resolve (McKain et al. 2016; 

Saarela et al. 2018; Givnish et al. 2018). However, the Ecdeiocoleaceae and Joinvilleaceae are 

consistently placed as the two closest relatives to the Poaceae, either linearly or in their own 

sister clade depending on the method of analysis (Figure 3.1) (Bremer 2002; Hilu 2004; 

McKain et al. 2016; Givnish et al. 2018; Hochbach, Linder, and Röser 2018). Most of these 
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methods are limited by the degree of available sequence data, and historically the resolution 

of the graminid clade has been limited to methods using plastid genes or individual nuclear 

genes (Marchant and Briggs 2007; Givnish et al. 2018; Hochbach, Linder, and Röser 2018), 

which may have limitations at fully representing the species in question, as well as preventing 

more robust cross-species analysis of entire gene families. 

 

To contribute to the development of a series of high-quality genomes of species within the 

Poales for comparative genomics, we sequenced the genome of Ecdeiocolea monostachya – 

a wild species with limited publically available genomic data. E. monostachya represents one 

of the closest living outgroups to the Poaceae (Figure 3.1), and therefore an important species 

for comparative genomics (Bremer 2002; McKain et al. 2016). E. monostachya resists 

cultivation in laboratory or botanical settings and is a perennial herb native to western 

Australia (Linder, Briggs, and Johnson 1998) (Figure Beta). It is presumed to be an outcrossing 

species with conflicting reports indicating a basic chromosome number of either 11 or 12 

(Hanson et al. 2005; Tang et al. 2010). Flow cytometry has previously indicated a haploid 

genome size of approximately 0.8 Gbp. We assembled a diploid genome of 1.5 Gbp, with an 

estimated haploid size of 0.77 Gbp, containing 3,605 scaffolds with an N50 of 756 kbp, that is 

95% BUSCO complete with  84,700 gene models.  
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Figure 3.1 – Cladogram of selected commelinids  based on (McKain et al. 2016). The 

commelinids are a clade of plants within the monocots, and represented here are E. 

guineensis (order Arecales), M. acuminata (order Zingiberales), and a member of each family 

within the order Poales. Of note are the Flagelliaraceae, Ecdeiocoleaceae and Joinvillaceae, 

which together form the graminid clade. The Ecdeiocoleaceae and Joinvilleaceae together 

form a sister clade to the Poaceae, an agronomically important and extremely large family. E. 

monostachya represents a critical outgroup for comparative genomics within the Poaceae. 

The data this figure is based upon represent 234 single-copy gene orthogroups conserved 

across these species. 
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Figure 3.2. Field sampling of E. monostachya. A. The natural range of E. monostachya spans 

central and southern regions of western Australia. The sampling site for E. monostachya 

accession EM001 was 30°08'48.1"S 115°06'31.6"E (blue circle). B. Sampling site for E. 

monostachya accession EM001, facing east with Euclyptus groves (left). C. Map of sampling 
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site showing Cockleshell Gully Road, several Euclyptus groves, and the position of accessions 

of E. monostachya, Georgeantha hexandra, Banksia spp., and Acacia spp. 

 

 

3.3 Results 

3.3.1 Genome Assembly 

E. monostachya is found throughout sandy regions of western Australia, it is a perennial grass-

like shrub which resists cultivation in a laboratory and can grow to around 1 metre in height 

and width. An accession of E. monostachya was identified in a region that is suitable for future 

resampling (Figure 3.2). Plant tissue samples were taken of sheath, root tips, and fully 

developed flowers. Genomic DNA was extracted from sheath tissue of E. monostachya 

accession EM001 and sequenced using paired-end Illumina and single molecule Nanopore 

sequencing (Oxford Nanopore Technologies). RNAseq using paired-end Illumina sequencing 

was performed on RNA derived from sheath, root, and flower tissue. A k-mer based analysis 

of the raw Illumina gDNA data using Jellyfish and GenomeScope (k=27) predicted that 

accession E001 is diploid, with an estimated heterozygosity of 2.47% and estimated haploid 

genome size of 0.77 Gbp. This is a high degree of heterozygosity, suggesting substantial 

intraspecific variation. The hybrid assembly was performed with MaSuRCA (Maryland Super 

Read Cabog Assembler) using Illumina and Nanopore reads to assemble a draft diploid 

genome (Zimin et al. 2013). The total output size was 1.3 Gbp across 3,605 scaffolds, an 

amount predicted to cover approximately 84% of the diploid genome and with 50% of the 

genome spanning contigs of 756 kbp. 
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Table 5.1. Statistics summarising the de novo E. monostachya genome assembly. MaSuRCA 

was used to assemble a genome using Illumina reads and nanopore reads. 

Assembly statistic Result 

Total length 1.3 Gbp 

Number of scaffolds 3,605 

N50 756 kbp 

Shortest scaffold 1,673 bp 

Longest scaffold 12.1 Mbp 

Mean scaffold length 36 kbp 

Median scaffold length 18 kbp 

Total GC content 40.4% 

 

Using KAT, we assessed the relative distribution of k-mers (k=27) in the Illumina data relative 

to the assembly genome (Figure 3.3). By comparing multiplicity of k-mers in each dataset, we 

assess the proportion of the genome that is present or absent in the assembly. The k-mer 

distribution has two local maxima at 80 and 160 multiplicity, representing k-mers found in a 

single haploid genome versus k-mers found in both haploid genomes. Generally, absence of 

k-mers in the assembly (shown in black) are associated with sequencing errors, as observed 

by the skewed distribution for low k-mer multiplicity or as k-mers lost due to the collapsing 

of allelic regions between haploid chromosomes (black region under first maxima). In this 

assembly 224 Mbp of sequence was not present in the final genome, likely due to collapsed 

regions between the haploid genomes. Given a predicted diploid genome size of 1.54 Gbp, 

this indicates the majority of the genome is present in the assembly. The genome is also 

clearly split across two haplotypes; with 1.3E+8 distinct k-mers appearing twice in the finished 

genome compared with 5.9E+8 of k-mers appearing once in the genome, indicating that 

approximately 18% of total genome sequence is duplicated across two contigs.  
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Figure 3.3: E. monostachya k-mer distribution from Illumina sequencing reads relative to 

the assembled genome. The k-mer analysis toolkit (KAT) was used to assess the multiplicity 

of k-mers in the unassembled illumina reads and the finished genome. The x-axis shows the 

number of times a given k-mer occurs in the Illumina data and the y-axis shows the occurrence 

of distinct k-mers. k-mers are displayed as a stacked distribution, shaded by the number of 

times that k-mer appears in the assembled genome. 

 

3.3.2 Gene annotation 

To annotate the genome, we used an RNAseq-based gene annotation strategy. RNA was 

extracted and sequenced E. monostachya using three tissues: sheath, root and flower. We 

aligned these data to the genome using hisat2 and identified gene models using Cufflinks. 

Open reading frames were identified with TransDecoder with and without Pfam-based 

prediction (Table 3.2). We evaluated the overall quality of these assemblies and annotations 

using the benchmark universal single copy ortholog (BUSCO) set of genes, which is a curated 

collection of species-appropriate, conserved, single-copy genes in different kingdoms. Using 

transcripts of the predicted gene models found the presence of 95.1% of BUSCO genes 
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predicted intact, 2.4% fragmented, and 2.5% missing. Evaluation of proteins based on 

TransDecoder prediction with or without Pfam-based prediction found a small reduction in 

BUSCO genes, indicating that a minority of predicted transcripts were rejected by 

transdecoder or Pfam and not passed to BUSCO. This indicates a high-quality genome 

assembly, with the majority of gene models assembled and correctly annotated. These 

predicted gene models of E. monostachya are suitable for further use in comparative 

genomics, without the risk of missing or ignoring valuable data. However, as shown in (Table 

3.2), over half of genes which are considered single-copy in homozygous model genomes are 

multi-copy in all annotations the E. monostachya genome, reflecting the high level of 

heterozygosity (Figure 3.3). 
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Table 3.2: Gene representation of E. monostachya predicted transcripts and proteins based 

on a benchmark universal single copy ortholog (BUSCO) set of genes. BUSCO is a metric for 

describing the presence of conserved single-copy genes in a genome, used as a proxy for the 

overall quality of annotation. As the Ecdeiocolea monostachya EM001 genome is diploid with 

an overall heterozygosity of 2.5%, most single-copy BUSCO genes are expected to be detected 

with multiple copies, as each haplotype will be represented once.  

 RNAseq 

alignment, 

Cufflinks 

RNAseq 

alignment, 

Cufflinks and 

Transdecoder 

RNAseq 

alignment, 

Cufflinks, 

Transdecoder 

and Pfam 

Maker pipeline 

Predicted 

open reading 

frames 

84,700 62,132 90,736 539,444 

BUSCO 

complete 

95.1% 92.6% 93.5% 81.2% 

BUSCO single-

copy 

33.0% 35.4% 35.0% 26.3% 

BUSCO 

multiple copy 

62.2% 57.2% 58.5% 54.9% 

BUSCO 

fragment 

2.4% 3.3% 3.3% 9.7% 

BUSCO missing 2.5% 4.1% 3.2% 9.1% 

 

3.3.3 Distribution of GC content in E. monostachya genome and exons 

 

The relationship between genome size and overall GC content is complex, as GC base 

synthesis is more energy-intensive than AT synthesis, but also provides more stability and 

increased rates of recombination as well as allowing for more finely-tuned differential gene 

expression and epigenetic regulation (Singh, Ming, and Yu 2016; Šmarda et al. 2014). Unlike 
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the genomes of non-monocots the GC content of exons in Poaceae genomes outside the 

Anomochlooideae has been found to follow a bimodal distribution (Kuhl et al. 2004; Clement 

et al. 2015). The overall GC content of Ecdeiocolea monostachya is 40%, and the GC content 

of predicted exons follows a monomodal pattern with a peak at 45%. 

 

 

3.4 Discussion 

 

The genome presented here represents the first WGS available for a member of the 

Ecdeiocoleaceae, a close outgroup to the Poaceae. A hybrid assembly based on ONT long 

reads and Illumina reads, transcriptome-guided annotations providing high quality protein-

encoding gene coverage, and large contigs which should be a useful resource for the scientific 

community. The high levels of heterozygosity in this outcrossing species present some unique 

challenges, and for any given gene of interest to a researcher there are likely to be two 

complimentary loci present in the full genome. Without chromosome sorting in advance of 

sequencing, or chromosome conformation capture data coupled with a long-read sequencing 

technology such as PacBio Hi-C, the ability to resolve the two haploid genomes of E. 

monostachya was limited by the degree of heterozygosity at a given locus. As can be inferred 

from Figure 3.3: some areas of the genome are represented by a single contig into which the 

differing sequences have been collapsed, and others by two contigs representing the two 

different chromosomes. Additionally, while multiple contigs containing areas of the plastid 

genome could be identified, no single contig appeared to capture the entire circular 

chromosome. The unequal fragmentation of the genome in this manner presumably also 

complicates the assembly of large scaffolds from their smaller components, as for increasing 

lengths of physical nucleotide sequence, the assembler will eventually alternate between 

being able to construct two separate phased contigs, or a single merged one, thus reducing 

the overall ability to create long, accurate scaffolds.  

 

 Attempts to phase the E. monostachya genome using Purge Haplotigs (Roach, Schmidt, and 

Borneman 2018) and redundans (Pryszcz and Gabaldón 2016) were made, however these 

resulted in a drop in BUSCO complete genes (to around 91%) without a significant reduction 
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in BUSCO duplicated genes (to around 40%). However, the level of heterozygosity in the 

genome also presents the opportunity to investigate multiple allelic variants of many genes 

of interest within E. monostachya, and only poses a minor obstacle to analyses which strictly 

require a single gene model.  

 

The sequenced genome of E. monostachya has a predicted haploid size of 0.77 Gbp, and a 

predicted diploid size of 1.54 Gbp. The assembled diploid genome is 1.3 Gbp (84% Coverage) 

with an N50 of 756 kbp, 84,700 annotated genes and a BUSCO complete score of 95%. 

Compared to other reference genomes this is a high-quality genome, and we predict it will be 

an extremely useful resource for those working in the Poales, particularly as an outgroup for 

comparative genomic studies in the Poaceae, or for comparisons within the graminid clade. 

A phylogenetic analysis of the BUSCO genes of E. monostachya, as well as 15 other Poales 

places it as a sister to the Joinvilleaceae, in a subclade sister to the Poaceae. Sequencing of 

additional Ecdeiocoleaceae genomes, particularly of the other species in the family: 

Ecdeiocolea rigens and Georganthia hexandra, may further elucidate the relationships 

between the graminid species, as will the continued work of the Joint Genome Institute 

sequencing additional genomes from within understudied families of the Poales.  

Assemblies of the E. monostachya genome were also performed using alternative assemblers 

– notably canu and miniasm, as well as illumina-only assemblers, but were of notably poorer 

quality than the hybrid assembly with MaSuRCA, or even of Trinity assemblies relying on 

mRNA rather than gDNA (https://github.com/matthewmoscou/Emo).  

 

Future assemblies of E. monostachya or other wild outcrossing Poales species will 

undoubtedly benefit from the increasing prevalence of cheap and comparatively accurate 

long read sequence technologies such as Oxford Nanopore, but care must be taken to 

evaluate whether the additional complexities of these genomes, especially if they are 

expected to be large, heterozygous, or repetitive, will require additional investment in 

techniques such as CCS PacBio, chromosome flow sorting, HiC or even small breeding 

programmes to reduce heterozygosity in order to assemble the best possible genome. 

 

 

https://github.com/matthewmoscou/Emo
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3.5 Materials and Methods 

3.5.1 Sampling and nucleic acid extraction 

 

A number of E. monostachya accessions were identified at SITE A in western Australia. A single 

individual was selected (EM001) sampled for sheath, flower and root tissue. DNA was 

extracted from sheath tissue of sample EM001 using a method adapted from (Stewart and 

Via 1993). Tissue was harvested on site, frozen using liquid nitrogen, stored in dry ice during 

transport to a -80 C freezer. Frozen tissue was ground into a fine powder using mortar and 

pestle with grinding sand at -80 °C. Ground tissue was incubated in an extraction buffer (2% 

W/V CTAB, 100 mM Tris-HCL pH 8.0, 20 mM EDTA pH 8.0, 1.4 M NaCl, 1% W/V BME) at 55°C 

for 45 minutes. A ratio of 24:1 chloroform:isoamyl alcohol was added to the solution and 

mixed thoroughly to form an emulsion. The phases of the emulsion were separated by 

centrifugation and the lighter phase recovered. Nucleic acids were precipitated using 95% 

Ethanol. Nucleic acids were recovered and re-suspended in TE buffer. Resuspended DNA was 

incubated with RNase A for 2 hours at 37 °C. DNA was then re-precipitated using 24:1 

chloroform:isoamyl alcohol and 95% ethanol as before. Finally, DNA was washed in 70% 

ethanol and re-suspended in TE buffer. 

 

RNA was extracted from three tissue types: sheath, root and flower. Tissue was harvested on 

site, frozen in liquid nitrogen and transferred to the laboratory. Flower buds were excised 

from the petals before extraction to prevent tissue cross-contamination. For each tissue type, 

that tissue was ground to a fine powder using a mortar and pestle with grinding sand at -80 

°C. Ground tissue was suspended in TRI reagent, allowed to incubate for 5 minutes at room 

temperature before centrifugation to pellet the lysate. The supernatant was recovered and 

mixed with chloroform. This mixture was incubated at room temperature for 15 minutes 

before the phases were separated by centrifugation and the lighter phase was recovered. 

Nucleic acids were precipitated from the lighter phase with isopropanol, pelleted via 

centrifugation, then washed with 75% ethanol and resuspended in water. 
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3.5.2 Whole genome sequencing 

Short read sequencing of genomic DNA was performed using Illumina technology. Illumina 

paired-end libraries were generated using inserts of 250bp (DSW66921) and 350bp 

(DSW66909-V) and sequencing performed using a HiSeq 2500 platform 

In total, 173.5 Gb of raw sequencing data was obtained. This data was cleaned using 

Trimmomatic v0.36, with a minimum final size requirement of 36 bp.  

Sequencing was performed by Novogene 

 

 

Long read sequencing of genomic DNA was performed using Oxford Nanopore technology. 

Genomic DNA was passed to a Nanopore PromethION platform, and sequenced to a depth of 

103X. 

Sequencing was performed by Novogene 

 

Supplementary Table 5.1: Summary of Nanopore sequencing data. Assuming a haploid 

genome size of 0.78 Gbp, this translates to an average read coverage of 103X.  

Number of reads 12835463 

Maximum read length 849,007 bp 

Median read length 4,652 bp 

Total bp 7.96 Gbp 

 

 

3.5.3 RNA sequencing 

After extraction, RNA was purified, and QCd as described by (Dawson et al. 2016) RNA libraries 

were constructed using Illumina TruSeq RNA library preparation (Illumina; RS-122-2001). 

Barcoded libraries were sequenced using either 150 bp paired-end reads. Library preparation 

and sequencing was performed by Novogene.  
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Supplementary Table 5.2: Summary of Illumina RNAseq data. RNA was extracted from three 

tissue types, and sequenced by Novogene. Read length was 150 bp 

Tissue Total raw read length Total trimmed read length 

Sheath 85,068,573 bp 83,905,372 bp 

Flower 87,661,519 bp 86,853,603 bp 

Root 86,948,423 bp 86,071,563 bp 

 

3.5.4 Genome assembly and analysis 

The E. monostachya EM001 genome was assembled on Amazon AWS EC2 using SUSE Linux 

using MaSuRCA-3.3.0  with default configuration settings. Jellyfish  was used to identify the 

distribution of k-mers using lengths of 17, 24, 27, and 31 and default parameters. Genome 

size was estimated using GenomeScope, which also provides estimates of heterozygosity and 

repetitive content. KAT 2.4.2 was used to assess the quality of the genome, and the relative 

distribution of k-mers in the raw and assembled genome. The output from KAT was visualised 

in R and analysed using custom Python scripts (https://github.com/matthewmoscou/QKkat). 

The full pipeline can be accessed at (https://github.com/matthewmoscou/Emo). 

 

3.5.5 Gene annotation 

To annotate the E. monostachya EM001 genome, RNAseq reads were aligned to the genome 

using hisat2 with a maximum intron length of 20 kb and no soft clipping. Samtools was used 

to convert .sam files into .bam files and sort reads with default parameters. Genes were then 

annotated and merged using the cufflinks pipeline, and passed through gffread. 

For further assessment, putative protein models were generated using transdecoder, and 

interrogated for known protein domains using InterProScan (v3.20-59.0). 

 

3.5.6 BUSCO assessment 

To assess the overall quality of annotations, BUSCO, software which compares the presence 

of conserved single-copy genes over a variety of species was called on the total predicted 

transcripts using the lineage embryophyta_odb9, and default parameters. 
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3.5.7 Software used 

NCBI Blast+ v2.2.31 (Altschul et al. 1990) 

Trimmomatic v0.39 (Bolger, Lohse, and Usadel 2014) 

Samtools v1.11 (Li et al. 2009) 

Cufflinks v2.2.1 (Trapnell et al. 2010) 

hisat2 v2.2.1 (Kim et al. 2019) 

MaSuRCA v3.3.0 (Zimin et al. 2013) 

Jellyfish v1.1.12 (Zimin et al. 2013) 

GenomeScope (Vurture et al. 2017) 

Transdecoder v5.5.0 

KAT v2.4.2 (Mapleson et al. 2017) 

BUSCO v3 (Seppey, Manni, and Zdobnov 2019) 

Geneious v9.1.8  

MUSCLE v3.8.31 (Edgar 2004) 

RaxML v8.2.10 (Stamatakis 2014) 

Python v2.7 

Python v3.5.3 

R v3.7.0 (Team 2013) 

InterProScan v5.20-59.0 (Jones et al. 2014) 
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4. Expansion of the Exo70FX clade in the 

Poaceae 

 

4.1 Chapter summary 

 

Plants are endowed with several Exo70 families that exhibit substantial variation in copy 

number and sequence. A systematic gene family analysis by Cvrčková et al. (Cvrčková et al. 

2012) demonstrated that Exo70 paralogues from eight gymnosperm species can be grouped 

into 10 distinct clades, the majority of which are conserved between monocots and dicots. 

However, among these clades, Exo70H, Exo70F, and Exo70FX exhibit substantial interspecific 

variation. Further studies have shown subfunctionalisation of Exo70 genes, based on 

observing tissue-specific expression and diverse biological functions including development, 

symbiosis, and immunity. To date, the majority of functional analysis of Exo70 in plants has 

been focused on dicot model systems, therefore we initiated a comprehensive analysis of 

interspecific and intraspecific variation between Exo70 genes in the monocot order Poales 

using a dataset encompassing RNAseq and genomic data from 37 Poaceae, 15 Poales species, 

and one Commelinid outgroup. While the majority of Exo70 are well-conserved between 

species, we show that the Exo70FX clade is originates within the graminid clade of the order 

Poales and exhibits remarkable intraspecific and interspecific variation in sequence and copy 

number – ranging from one copy in Streptochaeta angustifolia to 31 in the Triticum aestivum 

B subgenome. The rapid expansion and diversification of this gene family is analogous to the 

diversity observed in plant immune receptors (NLRs). Furthermore, two members of the clade 

are required for defence against biotrophic pathogens of barley, and no other roles have been 

associated with the clade. We hypothesise that the unusual diversity of this clade is due to a 

newly-acquired role in plant immunity, resulting in strong evolutionary pressures to maintain 

this function in tandem with the development of other components of plant immunity. 
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4.2. Introduction 

4.2.1 Exo70 proteins and the Exocyst complex 

Exo70 is one of eight proteins which comprise the Exocyst complex along with Sec3, Sec5, 

Sec6, Sec8, Sec10, Sec15, and Exo84 (Novick, Field, and Schekman 1980; TerBush et al. 1996; 

Hsu et al. 2004). The primary role of the Exocyst complex is tethering secretory vesicles to the 

plasma membrane in concert with soluble N-ethylmaleimide-sensitive factor attachment 

protein receptor (SNARE) proteins (Heider and Munson 2012). Unlike SNARE proteins, the 

Exocyst complex is specific to the plasma membrane, and separate multisubunit tethering 

complexes (MTCs) exist which localise to additional membranes such as the endoplasmic 

reticulum and the membranes of organelles (Ravikumar, Steiner, and Assaad 2017). The 

Exocyst complex is essential to polarised secretion, cell division, and cell growth (He, Xi, et al. 

2007; He and Guo 2009). It has been implicated in roles as diverse as motility, cilliogenesis, 

autophagy, and defence against pathogens (Wu and Guo 2015). All eight subunits are 

essential for proper exocytosis and yeast cells deficient in any component either die, or 

accumulate a surfeit of un-secreted vesicles (Zhang et al. 2016) 

 

Mei et. al. recently described a structure of the yeast Exocyst complex at 4.4 Å resolution by 

combining Cryo-EM data with established crystal structures and established crosslinking data 

(Mei et al. 2018). In this model, the eight subunits form pairs of heterodimers which are 

themselves joined into two complexes of four subunits. This model also describes the 

structure of the Exo70 protein, illustrated in (Figure 4.1), which is divided into five 

subdomains. In this model, the N terminal CorEx domain is intertwined with the CorEx domain 

of the Exo84 protein to create the first-level heterodimer. These domains are themselves part 

of a four-helix bundle with the CorEx domains of Sec10 and Sec15. The CAT-C and CAT-D 

domains of Exo70 also interface with the CAT-B and CAT-C domains of Sec5. Other work 

indicates that a conserved motif within the CAT-D domain is responsible for binding the 

phospholipid bilayer, specifically phosphatidylinositol 4,5-bisphosphate (PIP2) (He, Xi, et al. 

2007; Liu et al. 2007). This motif is generally conserved across eukaryotes, although its role in 

phospholipid binding has not been experimentally verified in plants, and not all plant Exo70 

copies exhibit this motif. 
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Figure 4.1. Physical structure of Exo70. Proposed crystal structure of ScExo70 with atoms 

represented as balls, shaded according to their domain. Exo70 domains are shown to scale in 

cartoon form beneath. This figure is a visualisation of PDB entry 5YFP (Mei et al. 2018) using 

PyMol. 

 

Mechanistic differences have been observed between the Exo70 proteins of fungi, animals, 

and plants. A Rho3 interacting domain has been identified within the N-terminus in mammals, 

the C terminus in yeast, and is absent in plants (He, Xi, et al. 2007; Inoue et al. 2003). In plants, 

Y2H (Pečenková et al. 2011) assays have shown that the Exo70B2 and Exo70H1 proteins of 

Arabidopsis thaliana are capable of forming homomeric and heteromeric complexes outside 

of the Exocyst complex, an activity which is unique to plant isoforms of Exo70. Furthermore, 

in plants it has been observed that some Exo70 isoforms may localise to unique membrane 

domains other than PIP2, an observation supported by the variation in the conserved PIP2 

binding motif in these proteins (Sekereš et al. 2017; Žárský et al. 2009; Kubátová et al. 2019). 

 

4.2.2 Exo70 genes in plants have proliferated and diversified 

The multi-copy Exo70 genes of land plants can be grouped into Clades: Exo70A, Exo70B, 

Exo70C, Exo70D, Exo70E, Exo70F, Exo70G, Exo70H, Exo70I, Exo70FX, and Exo70BNG 
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(Cvrčková et al. 2012; Synek et al. 2006). Clades Exo70A, Exo70B, Exo70C, Exo70D, Exo70E, 

and Exo70G are highly conserved between monocot and dicot plants, clade Exo70F is 

expanded in monocots, clade Exo70H is expanded in dicots, and clade Exo70FX is the most 

divergent in terms of sequence (as represented by branch lengths) and is unique to monocots. 

Clade Exo70I is specific to plants which form mycorrhizal symbioses (Zhang et al. 2015). Clade 

Exo70BNG is specific to basal non-angiosperms (ie, mosses), which only exhibit Exo70s in 

clades Exo70BNG, Exo70A, Exo70G, and Exo70I. On a wider scale, the Exo70 clades can be 

grouped into three major families: Exo70.1 consists of the Exo70A clade, and is most closely 

related to the Exo70s of animals and fungi (Synek et al. 2006). Exo70s in this group are 

observed to have multiple exons, while the remaining families are usually single-exon, or 

single-intron. Exo70.2 includes the Exo70B, Exo70C, Exo70D, Exo70E, Exo70F, Exo70FX, 

Exo70H, and Exo70BNG clades. Exo70.3 includes the Exo70G and Exo70I clades (Synek et al. 

2006). 

 

Within these clades, individual Exo70 genes are known to exhibit tissue and stimulus-specific 

expression patterns (Li et al. 2010a; Žárský et al. 2009). It has been found that the 

proliferation of Exo70 isoforms and expression patterns has allowed for regulatory fine-

tuning of exocytosis in plants, and that certain Exo70 isoforms have acquired novel roles, and 

do not participate in the same functions as the ancestral isoforms (Synek et al. 2006). These 

explanations are not mutually exclusive, and a large body of work exists elucidating functions 

particular to certain Exo70 isoforms and species, some of which is summarised in (Table 1.1) 
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Table 1.1: Selected Exo70s associated with particular roles. A brief overview of Exo70 genes 

in for which a role has been ascertained. These roles are not exclusive, as in some cases 

multiple Exo70s may provide redundancy to a role, and many Exo70 proteins appear to have 

multiple functions. For more complete overviews see (Žárský et al. 2013; Žárský et al. 2019; 

Wu and Guo 2015) 

Gene Species Role Reference 

EXO70A1 Arabidopsis thaliana Cytokinesis (Fendrych et al. 2010) 

EXO70A1 Arabidopsis thaliana Xylem 

differentiation 

(Li et al. 2013) 

EXO70A1 Arabidopsis thaliana Pollen 

compatibility 

(Samuel et al. 2009) 

EXO70B1 Arabidopsis thaliana Immunity (Stegmann et al. 2013) 

EXO70B2 Arabidopsis thaliana Immunity (Pečenková et al. 2011) 

EXO70E Arabidopsis thaliana Non-Exocyst 

secretion 

(Ding et al. 2013) 

EXO70H1 Arabidopsis thaliana Immunity (Pečenková et al. 2011) 

EXO70H4 Arabidopsis thaliana Trichome 

development 

(Kulich et al. 2015) 

(Kubátová et al. 2019) 

EXO70I1 Medicago truncatula Arbuscule 

development 

(Zhang et al. 2015) 

Exo70FX8 Hordeum vulgare Immunity (Ostertag et al. 2013) 

Exo70E1 

 

Oryza sativa Immunity (Zhao et al. 2016) 

Exo70F2 Oryza sativa Immunity (Fujisaki et al. 2015) 

Exo70D3 Oryza sativa Immunity (Fujisaki et al. 2015) 

Exo70 Homo sapiens Immunity (Nichols and Casanova 

2010) 

 

To identify the evolutionary origin of the Exo70FX clade and assess the extent of diversity 

within the Exo70FX clade, we characterised Exo70 in eight genomes and 29 transcriptomes 

from species within the Poaceae, a family which includes all the major cereal crop plants but 
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has not been the focus of work characterising the Exocyst complex or its components. We 

also included the genomes of Joinvillea ascendans (order poales, graminid clade) Ananas 

comosus (order Poales), Elaeis guineensis (order Arecales), and Musa acuminata 

(Zingiberales), as well as transcriptomes from 14 species representing the major families 

within the Poales. To more conclusively place the emergence of the Exo70FX subclade, we 

sequenced the genome of Ecdeiocolea monostachya: a species in the Ecdeiocoleaceae; a 

sister order to the Poaceae. We found that the Exo70FX clade is present in E. monostachya, 

but dramatically expanded after the radiation of Streptochaeta angustifolia in the Poaceae. 

We found high levels of interspecific and intraspecific diversity in the Exo70FX subfamily 

compared to other subfamilies for both nucleotide and amino-acid sequence and 

presence/absence variation within individual subclades. We find that extreme examples of 

subclade expansion in the Exo70FX clade are driven predominantly by tandem repeats at the 

locus of the ancestral subclade members. These results collectively indicate that the Exo70FX 

clade first evolved within the Poales, and subsequently diversified within the Poaceae. 

 

4.3 Results 

4.3.1 The Exo70 gene at the Rps8 locus is a member of the Exo70FX clade, which exhibits 

species-specific expansions in the Poaceae 

The genomes of land plants encode multiple copies of the Exo70 gene, which can be grouped 

into distinct clades. The Exo70FX clade has only been observed in Poaceae and exhibits 

unusual variation in copy-number and amino acid sequence (Cvrčková et al. 2012). We aimed 

to catalogue this diversity, as well as identify the evolutionary origin of this unusual clade. We 

mined the genomes of nine species within the Poaceae, Joinvillea ascendans (order poales) 

Ananas comosus (order Poales), Elaeis guineensis (order Arecales), and Musa acuminata 

(Zingiberales). We also investigated the transcriptomes of 29 species within the Poaceae and 

of 14 species representing the major families within the Poales. Our initial work focused on 

the species Hordeum vulgare, Triticum aestivum, Brachypodium distachyon, Oryza sativa, 

Setaria italica, Sorghum bicolor, Oropetium thomaeum, and Zea mays. These species each 

have at least one high-quality reference genome as well as transcriptomic data available to 

support gene annotations. After obtaining genome annotations and performing de novo 

transcriptome assembly, we interrogated all open reading frames for the Exo70 Pfam motif 
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(PF03081). Once identified, Exo70 genes were extracted manually from each dataset and 

curated to a single reference transcript per gene. Predicted protein sequences were then 

aligned, trimmed to relevant sites, and used to develop a maximum likelihood phylogenetic 

tree (Figure 4.2). We annotated these proteins based on the previously annotated proteins 

of Oryza sativa and Brachypodium distachyon  (Cvrčková et al. 2012). For all clades but 

Exo70FX, the original nomenclature was preserved and proteins from other species were 

annotated based on their relationships to existing clades and subclades. In the Exo70FX 

subclade, we discarded the existing protein subclades (eg, Exo70FX1, Exo70FX2…) as we could 

not reconcile them with the orthology we identified between species. 

 

The putative Exo70FX subclades identified through sequence similarity and phylogenetic tree 

of the gene family are shown in (Figure 4.2). Putative subclades were not well supported by 

bootstraps due to higher levels of sequence divergence between species than in other clades. 

However, when we inspected the genomes of these species, we discovered that members of 

putative Exo70FX subclades were usually found at syntenic loci across the majority of species, 

and in tandem repeats if they are multi-copy. We therefore adopted synteny as a criterion for 

delineating Exo70FX subclades. The Exo70 at the Rps8 locus (Chapter 2) was designated as 

Exo70FX12a, a single-copy subclade exhibiting strong sequence similarity with subclade 

Exo70FX11 but existing as a trans-species presence/absence polymorphism on Triticeae 

chromosome 4 rather than at the Exo70FX11 locus on Triticeae chromosome 2. A partial copy 

(409 bp vs 509 bp in barley) was identified in the Triticum aestivum B genome, but not the 

other genomes of wheat. (In total, we identify 14 subclades within the Exo70FX clade. 
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Figure 4.2. The Exo70FX clade exhibits species-specific subclade diversity. Maximum 

likelihood tree of the Exo70 proteins of Hordeum vulgare, Triticum aestivum, Brachypodium 

distachyon, Oryza sativa, Setaria italica, Sorghum bicolor, Oropetium thomaeum, and Zea 

mays with (A) species-based or (B) Exo70FX subclade-based colour-coding (see respective 

legends). The phylogenetic tree was generated using MUSCLE-based multiple sequence 

alignment of full-length protein sequence and RAxML using polymorphic amino acid sites with 

40% coverage and 1000 bootstraps. Visualisation was performed using EMBL-iTOL. The 

outgroup is Saccharomyces cerevisiae Exo70. 

 

 

4.3.2 The Exo70FX clade emerged shortly before the radiation of the Poaceae 

To determine whether the Exo70FX clade is an innovation of the Poaceae, we sequenced and 

annotated the genome of Ecdeiocolea monostachya: a member of the closest extant sister 

family to the Poaceae. We then interrogated the genomes of Streptochaeta angustifolia, E. 

monostachya, M. acuminata, E. guineensis, Ananas comosus and the transcriptomes of 31 

Poaceae and 15 Poales for Exo70 genes as previously described and used our existing Poaceae 

annotations as a guide for annotating these proteins.  

 

Within the Poaceae, all species had Exo70FX genes distributed between the subclades 

previously identified, although we were only able to identify a single Exo70FX (Exo70FX5) in 

the genome of S. angustifolia, which is the most basal member of the Poaceae. In E. 

monostachya, three Exo70FX genes were identified, and all three were located at a single 

locus. These genes grouped into the Exo70FX4 and Exo70FX5 families and exhibited clear 

heterozygosity between the two haplotypes of the locus present in the sequenced individual. 
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One gene (Exo70FX4-1) was located immediately adjacent to an NLR gene, however no single 

ORF encoding an integrated NLR/Exo70FX4-1 protein could be identified based on RNAseq 

read mapping. Exo70FX genes are absent in the genomes of Musa acuminata, Elaeis 

guineensis, and Ananas comosus. No Exo70FX transcripts were identified in the remaining 

Poales transcriptomes, however we cannot exclude the possibility that genes are present but 

not expressed under the sampling conditions, or low expression level and/or insufficient 

sequencing depth was used. These results are summarised in Figure 4.3. 

 

Exo70FX12a (Chapter 2) was additionally identified in Agrostis stolonifera (Figure 4.3)., 

however it was not expressed in this dataset. Exo70FX12a is known to exist in an accession-

dependent manner in H. vulgare, and analysis of additional accessions within the Pooideae 

may identify additional members of this, or other subclades. 
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Figure 4.3. The Exo70FX subfamily emerged in the Poales and is expanded in the Poaceae. 

(A) Phylogenetic relationship between these species using codon-based alignment of BUSCO 

genes with 40% coverage, concatenation of alignments, and maximum likelihood using 

RAxML. Three letter species abbreviations from Table Beta are shown at the base of the tree. 

Whether sequence was derived from genomes and transcriptomes (G), or only 

transcriptomes (T) is shown below the species abbreviation. Major taxonomic groups are 

labelled at the corresponding node, along with hexagons indicating the hypothesised 

emergence of Exo70FX subclades, coloured according to the key in the top left (B) Coloured 
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hexagons represent presence of a gene encoding a member of that Exo70FX subclade in the 

corresponding species. For Hordeum vulgare, the reference accession Morex was used. 

 

 

4.3.3 Variation in conserved Exo70 domains is clade and dependant 

It has previously been observed that the greatest amount of variation in Exo70 sequences in 

plants occurs within the first 300 bases (100 residues) of the N-terminus (Cvrčková et al. 

2012). This region includes the CorEx domain and the beginning of the CAT-A domain (Figure 

4.1). The model for Exo70 integration into the Exocyst complex proposed by Mei et al. (Mei 

et al. 2018) features the CorEx domains of Exo70 and Exo84 interacting to form a pair of 

intertwined coiled coils (Mei et al. 2018). It is unclear how variation in the N-terminal region, 

especially in the form of large deletions, impacts the integration of Exo70 into the Exocyst 

complex. To assess variation in subdomain composition among Exo70, we constructed an 

alignment of Exo70 proteins from B. distachyon, H. vulgare, and O. sativa with ScExo70. Mei 

et al define the Exo70 domains in ScExo70 by the following residues: CorEx: 5-67, CAT-A: 74-

190, CAT-B: 194-340, CAT-C: 341-513, CAT-D: 514-623. Gaps are due to disordered regions. A 

domain was considered present in the plant Exo70 if at least 30 total residues were present 

over the alignment region corresponding to that domain in ScExo70. (Table 4.2). We observe 

that among Non Exo70FX clades, the CAT-A and CorEx domains were almost always present, 

with the exception of the Exo70D and Exo70E clades, where the CorEx domain was only 

present in in 17% (1/6) and 0% (0/3) of proteins respectively. In the Exo70FX clade, however, 

the reverse is true, and CorEx domains were only found in 17% (5/30) of Exo70FX proteins. 

Primarily those of the Exo70FX4 and Exo70FX5 clades, which appear to be the most ancestral 

(Figure 4.3). Similarly, the CAT-A domain, which is almost always present in non-Exo70FX 

clades is only present in 12/30 (40%) of proteins. 
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Table 4.2. Presence/absence variation in Exo70 CAT-A and CorEx subdomains in three 

Pooideae species. A domain was considered present in the plant Exo70 if at least 30 total 

residues were present corresponding to that domain. Numbers given indicate the percent of 

proteins with that domain present, as well as the number of proteins examined. 

Other domains were always present, with one exception: OsExo70FX7 has neither an intact 

CAT-C or CAT-D domain. 

 Non-Exo70FX proteins Exo70FX proteins 

Species CAT-A domain CorEx domain CAT-A domain CorEx domain 

B. distachyon 100% (19/19) 79% (15/19) 67% (4/6) 17% (1/6) 

H. vulgare 100% (20/20) 70% (14/20) 20% (2/10) 10% (1/10) 

O. sativa 90% (19/21) 66% (14/21) 42% (6/14) 21% (3/14) 

 

We also investigated the canonical PiP2 (K-X-X-K) and Arp2/3 (K-E-X(53)-K-N-P) binding sites 

identified in Exo70 (He, Xi, et al. 2007; Zuo et al. 2006). Zarsky et al. (Žárský et al. 2009) 

previously observed clade-specific variation in these domains within A. thaliana Exo70 

proteins, implying a diversity of membrane localisation specificities. Using the aligned Exo70 

proteins of B. distachyon, H. vulgare, and O. sativa with ScExo70, we interrogated that 

position. The PIP2 binding site was described as intact if both amino acids were of the same 

polarity as those in yeast, and the Arp2/3 binding site was described as intact if only one or 

fewer of the five amino acids were different to those in yeast (Table 4.3). Overall, amongst 

non-Exo70FX proteins Arp2/3 binding sites were frequently disrupted in clades Exo70B, 

Exo70G, Exo70H, and Exo70I, and PIP2 binding sites were frequently disrupted in clades 

Exo70B, Exo70D, Exo70H and Exo70I. In the Exo70FX clade, no intact Arp2/3 binding sites 

were identified, and only 36% (11/30) of proteins exhibited an intact PIP2 site. These results, 

and those in (Table 4.2) strongly suggests that Exo70FX clade members have unusual 

localisation and binding specificities compared with the ancestral Exo70A clade. 
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Table 4.3. Sequence variation in Exo70 Arp2/3 and PIP2 binding sites in three Pooideae 

species. Binding sites were aligned with the ScExo70 protein sequence, and examined for 

polarity. A binding site was considered present if each amino acid agreed with the polarity of 

its matching amino acid in ScExo70 for PIP2 binding, and if up to one amino acid did not match 

the polarity of ScExo70 for Arp2/3 binding. Numbers given indicate the percent of proteins 

with that domain present, as well as the number of proteins examined. 

 Non-Exo70FX protenis Exo70FX proteins 

Species Arp2/3 site PIP2 site Arp2/3 site PIP2 site 

B. distachyon 63% (12/19) 68% (13/19) 0% (0/6) 17% (1/6) 

H. vulgare 55% (11/20) 65% (13/20) 0% (0/10) 60% (6/10) 

O. sativa 61% (13/21) 61% (13/21) 0% (0/14) 29% (4/14) 

 

 

4.4 Discussion 

In this chapter we describe the origin and expansion of the Exo70FX clade in monocots, 

specifically their origin in the Poales, either at or before the radiation of the Ecdeiocoleaceae 

and their subsequent diversification in the Poaceae after the radiation of Streptochaeta 

angustifolia. When present, this unusual gene family is often the largest of all Exo70 families. 

Furthermore, it exhibits the highest levels of diversity of all Exo70 families in the species we 

studied, by the metrics of overall sequence diversity (branch length), N-terminal domain 

presence/absence, subclade copy number and presence/absence variation between species 

and intra-specific sequence (branch length), and presence/absence variation in Hordeum 

vulgare transcriptomes. These results are congruent with previous analyses using alternative 

datasets within the Poaceae (Cvrčková et al. 2012; Zhao et al. 2019). 

 

The origin of the Exo70FX clade appears to be in the graminid clade, being found in the 

genomes of Ecdeiocolea monostachya (Chapter 3) and Joinvillea ascendans. However, the 

dramatic expansion of the subclade after the radiation of Streptochaeta monostachya is a 

source of interest, as it coincides with the speciation and expansion of the “true grasses”, 

which make up the remainder of the Poaceae, which are extremely diverse comprising over 
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11,000 species (Soltis et al. 2009). Other traits of the Poaceae include bimodal GC distribution, 

the spikelet, cytoplasmic ADP synthesis, and an expanded LRR-XII receptor kinase family 

(Lehti-Shiu, Zou, and Shiu 2012; Preston et al. 2009; McKain et al. 2016)  

 

Given that conserved clade or isoform-specific roles have been identified for many Exo70s, 

we find the expansion of the Exo70F and Exo70FX clades in Poaceae particularly intriguing. 

Where present, the Exo70FX clade often includes over half of all Exo70s within a plant 

genome, and this dramatic increase in gene content is not associated with expansions of the 

other clades, or with increased diversity in those clades. To our knowledge only two genes in 

the Exo70FX clade have been characterised, and both are involved in plant immunity to fungal 

pathogens Rps8 / Exo70FX12a (Chapter 2) and Exo70F-like / Exo70FX11-3) (Ostertag et al. 

2013). Furthermore, the Exo70 proteins which have formed chimeric fusions with nucleotide-

binding, leucine-rich repeat proteins (NLRs) in the Poaceae all originate within these clades 

(Brabham et al. 2018).  

 

Based on the separation of biological roles for the other established clades of Exo70 in plants, 

we hypothesise that members of the Exo70FX clade also share a role in the species where 

they are present. We propose that this role is likely one which places the clade under a 

selective pressure to expand and diversify, leading to the high number of recent (<70 Mya) 

species-specific expansions and contractions of the Exo70FX clade in the Poaceae (Cvrčková 

et al. 2012; Zhao et al. 2019; Kellogg 2001), we speculate that this is congruent with a Clade-

wide role in plant immunity.  

 

 

 

4.5 Materials and Methods 

 

4.5.1 Identification of Exo70 genes and transcriptome assembly 

De novo assemblies of transcriptomes were performed using Trinity (v2.4.0). Open reading 

frame prediction and translations were performed using TransDecoder (v2.0.1), putative 

Exo70-encoding genes identified using HMMer (v3.2.1) with the Pfam motif (PF03081), and 



 91 

all other domains identified using InterProScan (v5.20-59.0). Genes containing putative Exo70 

domains (Pfam PF03081 or Superfamily SSF74788) were manually inspected for length and 

the presence of other domains. When a fragment was identified, it was retained and recorded 

as a fragment. NCBI BLAST v.2.2.31+ was used with default parameters. For genomes with 

annotations, Exo70s were identified using InterProScan and compared to any relevant 

transcripts for additional verification. When the sequence of an Exo70 gene was in question 

and both genomic and transcriptomic data were available, RNAseq data was aligned to the 

appropriate region of the genome using Bowtie2 or Hisat2. The aligned reads were sorted 

and converted to bam format using samtools, and visualised in Geneious to curate the gene 

model. 

 

4.5.2 Phylogenetic tree construction 

Alignments were performed using MUSCLE v3.8.31 using default parameters. The 

QKphylogeny set of scripts (https://github.com/matthewmoscou/QKphylogeny) was used to 

process alignments of DNA or protein sequences to remove entries which do not meet a 

length criterion of 40% the total alignment length and alignment positions which do not meet 

a depth criterion of 40% coverage. Maximum likelihood trees were constructed from these 

processed alignments using RAxML (v8.2.10) using the PROTGAMMAJTT AA substitution 

model, the rapid bootstrap analysis with either 100 or 1000 bootstraps, and search for 

bestscoring ML tree. 

 

4.5.3 Genome-based Exo70 annotation and curation 

Full length Exo70 protein sequences from O. sativa, B. distachyon, H. vulgare, and Arabidopsis 

thaliana were aligned and parsed to remove sequences with a total length of less than 100 

amino acids and alignment positions with a coverage of less than 40%. The curated alignment 

was used to construct a maximum likelihood tree in RaxML. Proteins comprising each clade 

(as defined by the previously annotated previously annotated Exo70s of O. sativa, B. 

distachyon and A. thaliana proteins) were partitioned and this approach was repeated to 

produce clade-specific trees and alignments. Alignments and trees were manually inspected 

to identify (1) proteins with multiple predicted gene models and (2) proteins with significant 

deviation from others in their clade. In the latter case, this includes areas of complete 
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sequence mismatch or large insertions/deletions, which may indicate a poorly annotated 

protein, a pseudogene, or a true deviation in protein sequence compared to other Exo70. 

Gene models were validated using transcriptomic data and manual inspection of genomic 

sequence where available. When several gene models existed and manual curation did not 

resolve the issue, the version which most closely matched a verified homologue in an 

appropriate species was retained. Curated Exo70 proteins were used to construct a maximum 

likelihood phylogenetic tree using RAxML as described previously, and reclassified based on 

their phylogenetic relationship. 

 

The following naming strategy was adopted: 

[Xy]Exo70[Z][α]-[β].[γ] 

[Xy] is the two letter abbreviation for the species (as seen in table Beta) 

[Z] is the letter-based clade identifier. Clades include 10 distinct groups formed by the first 

order branches of a maximum likelihood tree of Exo70s (eg figure 4.2).  

[α] is a number-based subclade identifier. Members of a subclade from different species are 

more closely related to one another than other members of the same clade from the same 

species. 

[β] is a number referring to variants. When there are multiple members of a subclade from 

the same species these are assigned an arbitrary number. 

[γ] is a letter referring to alleles, where sequence from multiple accessions of a species 

indicates that there is allelic variation for a given Exo70. 

 

For non-Exo70FX clades, the designations by Cvrčková et al. (Cvrčková et al. 2012) were 

retained and used as a guide to name the previously undescribed H. vulgare Exo70s. For 

example, an H. vulgare Exo70 protein more similar to OsExo70A1 than to any other protein 

in H. vulgare would be classified as HvExo70A1. A hypothetical novel H. vulgare protein which 

was in the Exo70A clade but not orthologous to any of the existing four subgroups would be 

named HvExo70A5. A hypothetical novel H. vulgare protein which was more similar to 

OsExo70A1 than to any H. vulgare protein except HvExo70A1 would prompt a renaming of 

these proteins HvExo70A1-1 and HvExo70A1-2. 
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For the Exo70FX clade, subclades were named by manually inspecting the groups of proteins 

with above 70% bootstrap support for protein identity and synteny between their respective 

genomic positions, as well as by performing reciprocal blasts to identify closely related 

sequences. These additional parameters were required due to the overall lack of conservation 

within the Exo70FX clade, where far more subclades are present with multiple variants and 

greater intra- and inter-specific diversity than non-Exo70FX clades. The original designations 

were not retained for the Exo70FX family, as the inclusion of additional species generated 

subclades which could not be reconciled with the existing designations. 

 

The approach was repeated using the annotated genomes of S. italica, O. thomaeum, S. 

bicolor, Z. mays, and the three subgenomes of T. aestivum (A, B and D). The curated Exo70s 

of H. vulgare, O. sativa and B. distachyon were included in the alignment and used to provide 

a guide for classifying the Exo70 complements of these species. 

 

For the genomes of species outside the Poaceae in Supplementary Table 4.1, the same 

approach was used, but this time with all curated Poaceae Exo70 proteins included in the 

alignment and used as a guide for classifying the Exo70 complements of these species. 

 

4.5.4 Transcriptome-based Exo70 annotation and curation 

For the remaining species in Supplementary Table 4.1, Exo70s were identified from de novo 

assembled transcriptomes using the same method as before. An alignment was constructed 

using the genome-derived Exo70s of the Poaceae and the Exo70s of that species and used to 

construct a phylogenetic tree as before. For each transcriptome, individual protein sequences 

were compared to Exo70s with genomic support using Blast+. The Blast+ results, alignment 

and phylogenetic tree were cross-referenced in order to place the Exo70FX proteins within 

an existing clade and subclade, or into a new subclade. Proteins which could not be 

conclusively placed into a subclade or a new subclade, were placed into “subclade 0”, to 

indicate a lack of significant homology with any other Exo70FX protein. This was commonly 

observed for truncated transcripts from species which are evolutionarily distant from the 

Poaceae. As many transcripts were not full length, multiple transcripts from the same species 

were often placed in the same subclade and may represent partial reads from the same full-
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length transcript. When possible, these were merged into a single transcript. The 

implementation of this was as follows: 

(1) partial transcripts aligning to the same reference transcript, which overlapped with no 

polymorphisms between them were candidates for merging into a single transcript 

(2) partial transcripts aligning to a transcript does not exhibit multiple variants in related 

species, and with no polymorphisms between them were candidates for merging 

(3) if transcripts overlapped but exhibited polymorphisms then they were never merged 

(4) if the subclade in question exhibited multiple variants in related species then transcripts 

were not merged without overlap between their sequences. 

This approach refined the alignments by removing several truncated proteins, which contain 

limited information and are disruptive to the overall alignment, as well as preventing an over-

estimation of the diversity in Exo70s by falsely presenting multiple transcripts of a single full-

length protein as multiple proteins. 

 

4.5.5 Physical structure of Exo70s 

Predicted protein sequences of Saccharomyces cerevisiae Exo70 and plant Exo70s with 

genomic support (as described above) were aligned in MUSCLE, and the protein domains of 

ScExo70 were used as a scaffold to annotate the protein domains of the plant Exo70s 

Mei et al define the Exo70 domains in ScExo70 by the following residues: CorEx: 5-67, CAT-A: 

74-190, CAT-B: 194-340, CAT-C: 341-513, CAT-D: 514-623. Gaps are due to disordered regions. 

A domain was considered present in the plant Exo70 if at least 30 total residues were present 

over the alignment region corresponding to that domain in ScExo70. The annotated ARP2/3 

binding site and PIP2 binding site in ScExo70 were also used to identify those same sites in 

plant Exo70 proteins. A binding site was considered present if each amino acid agreed with 

the polarity of its matching amino acid in ScExo70 for PIP2 binding, and if up to one amino acid 

did not match the polarity of ScExo70 for ARP2/3 binding.  

 

4.5.6 Software used 

NCBI Blast+ v2.2.31 (Altschul et al. 1990) 

Bowtie2 v2.1.0 (Langmead et al. 2009) 

Trimmomatic v0.39 (Bolger, Lohse, and Usadel 2014) 
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Samtools v1.11 (Li et al. 2009) 

Cufflinks v2.2.1 (Trapnell et al. 2010) 

Transdecoder v5.5.0 

hisat2 v2.2.1 (Kim et al. 2019) 

Geneious v9.1.8  

MUSCLE v3.8.31 (Edgar 2004) 

RaxML v8.2.10 (Stamatakis 2014) 

Python v2.7 

Python v3.5.3 

R v3.7.0 (Team 2013) 

R v3.7.0 (Team 2013) 

InterProScan v5.20-59.0 (Jones et al. 2014) 

 

4.6 Appendix  
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Supplemental Table 4.1: Species and accessions from which sequencing data was obtained 

in this chapter. 

 

Species Acronym Accession Identifier Type 

Achnatherum splendens Acs 
 

v3 Transcriptome 

Agropyron desertorum Agd 
 

v3 Transcriptome 

Agrostis stolonifera Ags Penncross v3 Transcriptome 

Aphelia sp. Asp 
 

v3 Transcriptome 

Arabidopsis thaliana At Col-0 v10 Genome 

Avena sativa Avs Victoria GGDX01000000 Transcriptome 

Brachypodium distachyon Bdi Bd21 v3.1 Genome 

Centrolepis monogyna Cmo 
 

v3 Transcriptome 

Cyperus alternifolius Cal 
 

v3 Transcriptome 

Dactylis glomerata Dgl Sparta v3 Transcriptome 

Ecdeiocolea monostachya Emo 
 

v3 Transcriptome 

Elegia fenestrata Efe 
 

v3 Transcriptome 

Eleocharis dulcis Edu 
 

v3 Transcriptome 

Festuca pratensis Fpr Westa v3 Transcriptome 

Flagellaria indica Fin 
 

v3 Transcriptome 

Holcus lanatus Hla 
 

v3 Transcriptome 

Hordeum vulgare Hvu Abed Binder 12 GGCM01000000 Transcriptome 

Hordeum vulgare Hvu Aramir GGCO01000000 Transcriptome 

Hordeum vulgare Hvu Barke GGCN01000000 Transcriptome 

Hordeum vulgare Hvu Baronesse GGCP01000000 Transcriptome 

Hordeum vulgare Hvu BCD12 GGCQ01000000 Transcriptome 

Hordeum vulgare Hvu BCD47 GGCR01000000 Transcriptome 

Hordeum vulgare Hvu Betzes GGCS01000000 Transcriptome 

Hordeum vulgare Hvu Bowman GGCT01000000 Transcriptome 

Hordeum vulgare Hvu CI 16139 GGCU01000000 Transcriptome 

Hordeum vulgare Hvu CI 16147 GFJN01000000 Transcriptome 

Hordeum vulgare Hvu CI 16153 GFJL01000000 Transcriptome 
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Hordeum vulgare Hvu CIho 4196 GFJK01000000 Transcriptome 

Hordeum vulgare Hvu Commander GGCV01000000 Transcriptome 

Hordeum vulgare Hvu Duplex GGCW01000000 Transcriptome 

Hordeum vulgare Hvu Emir GGCX01000000 Transcriptome 

Hordeum vulgare Hvu Finniss GGCY01000000 Transcriptome 

Hordeum vulgare Hvu Fong Tien GGCZ01000000 Transcriptome 

Hordeum vulgare Hvu Golden Promise GGDA01000000 Transcriptome 

Hordeum vulgare Hvu G.Z. GGDB01000000 Transcriptome 

Hordeum vulgare Hvu Haruna Nijo GFJJ01000000 Transcriptome 

Hordeum vulgare Hvu Heils Franken GGDC01000000 Transcriptome 

Hordeum vulgare Hvu Hindmarsh GGDD01000000 Transcriptome 

Hordeum vulgare Hvu HOR 1428 GGDE01000000 Transcriptome 

Hordeum vulgare Hvu I 5 GGDF01000000 Transcriptome 

Hordeum vulgare Hvu Igri GGDG01000000 Transcriptome 

Hordeum vulgare Hvu Manchuria GFJO01000000 Transcriptome 

Hordeum vulgare Hvu Maritime GGDH01000000 Transcriptome 

Hordeum vulgare Hvu Morex 2017v1 Genome 

Hordeum vulgare Hvu Pallas GGDI01000000 Transcriptome 

Hordeum vulgare Hvu Q21861 GGDJ01000000 Transcriptome 

Hordeum vulgare Hvu Russell GGDK01000000 Transcriptome 

Hordeum vulgare Hvu Sultan 5 GGDL01000000 Transcriptome 

Hordeum vulgare Hvu SusPtrit GGDM01000000 Transcriptome 

Hordeum vulgare Hvu WBDC 008 GGDN01000000 Transcriptome 

Hordeum vulgare Hvu WBDC 013 GGDO01000000 Transcriptome 

Hordeum vulgare Hvu WBDC 085 GGDP01000000 Transcriptome 

Hordeum vulgare Hvu WBDC 109 GGDQ01000000 Transcriptome 

Hordeum vulgare Hvu WBDC 110 GGDR01000000 Transcriptome 

Hordeum vulgare Hvu WBDC 172 GGDS01000000 Transcriptome 

Hordeum vulgare Hvu WBDC 259 GGDT01000000 Transcriptome 

Joinvillea ascendens Jas 
 

v1.1 Genome 

Juncus effusus Jef 
 

v3 Transcriptome 
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Lachnocaulon anceps Lan 
 

v3 Transcriptome 

Leersia perrieri Lpe 
 

v3 Transcriptome 

Mayaca fluviatilis Mfl 
 

v3 Transcriptome 

Melica nutans Mnu 
 

v3 Transcriptome 

Musa acuminata Mac 
 

v1 Genome 

Nardus stricta Nst 
 

v3 Transcriptome 

Neoregelia carolinae Nca 
 

v3 Transcriptome 

Oropetium thomaeum Ot 
 

v1.0 Genome 

Oryza australiensis Oau 
 

v3 Transcriptome 

Oryza barthii Oba 
 

v3 Transcriptome 

Oryza coarctata Oco 
 

v3 Transcriptome 

Oryza glaberrima Ogla 
 

v3 Transcriptome 

Oryza glumipatula Oglu 
 

v3 Transcriptome 

Oryza meridionalis Omer 
 

v3 Transcriptome 

Oryza meyeriana Omey 
 

v3 Transcriptome 

Oryza minuta Omi 
 

v3 Transcriptome 

Oryza nivara Oni 
 

v3 Transcriptome 

Oryza officinalis Oof 
 

v3 Transcriptome 

Oryza punctata Opu 
 

v3 Transcriptome 

Oryza rufipogon Oru 
 

v3 Transcriptome 

Oryza sativa Os Nipponbare 7.0 Genome 

Phalaris arundinacea Par 
 

v3 Transcriptome 

Phyllostachys edulis Ped 
 

v3 Transcriptome 

Poa annua Pan 
 

v3 Transcriptome 

Poa pratensis Ppr 
 

v3 Transcriptome 

Setaria italica Si 
 

2.2 Genome 

Sorghum bicolor Sb 
 

3.1.1 Genome 

Stegolepis ferruginea Sfe 
 

v3 Transcriptome 

Stipa lagascae Sla 
 

v3 Transcriptome 

Streptochaeta 

angustifolia 
San  V1 Genome 
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Triticum aestivum TaA Chinese Spring A v1.0 Genome 

Triticum aestivum TaB Chinese Spring B v1.0 Genome 

Triticum aestivum TaD Chinese Spring D v1.0 Genome 

Typha latifolia Tla 
 

v3 Transcriptome 

Xyris jupicai Xju 
 

v3 Transcriptome 

Zea mays Zm B73 2010-01 Genome 
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5. General discussion 

5.1 Summary 

 

In this thesis we present evidence that Rps8, a locus providing resistance to wheat stripe rust 

in barley requires two genes: Exo70FX12a and LRR-RK, which are inherited together in a large 

In/Del polymorphism on chromosome 4H of barley. We sequence a genome of Ecdeiocolea 

monostachya, a close outgroup of the Poaceae and assemble a diploid genome of 1.3 Gpb, 

with 84,700 gene models that is 95% BUSCO complete, and use it to analyse the evolutionary 

history of the Exo70FX clade – a clade of Exo70 genes unique to the monocots, and find that 

it originated in the Graminid clade, but drastically expanded in Poaceae after the radiation of 

the Anomochlooideae. We further catalogue extensive species-specific variation in Exo70 

genes amongst the Poaceae and identify the origins of the Exo70FX12 subclade in the 

Pooideae. 

 

5.2 Evolution of a genetic module providing resistance to Pst in barley 

5.2.1 Background of resistance to Pst in barley 

The resistance of barley to the non-adapted pathogen Puccinia striiformis f. sp tritici is 

primarily derived from a Natural Stack of three R-genes, each capable of providing resistance 

to the pathogen, although minor effect QTLs have also been reported (Dawson 2015; Dawson 

et al. 2016). In the field, distinguishing between the formae speciales of stripe rusts can only 

be accomplished with molecular evidence, however to our knowledge there are no reports of 

wheat stripe rust infecting cultivated barley and none of Rps6, Rps7 or Rps8 has been 

identified as providing resistance to Puccinia striiformis f. sp hordei. The strongest evidence 

to support the durability of these genes is in Australia, where geographic isolation has 

prevented Puccinia striiformis f.sp hordei from taking hold. Wheat and barley have been 

grown in the same parts of the country for over 60 years, and while wheat stripe rust is a 

perennial issue, the Australian Department of Agriculture, Water and the Environment 

reports that barley grown in the country does not suffer from stripe rust.  
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5.2.2 Similarities between Rps8 and other well characterised R-genes 

Both Rps6 and Rps7 encode NLR proteins, which are a common class of protein involved in 

intracellular recognition of pathogen-specific effectors. This accounts for the strength of 

resistance provided by these genes, as well as their specificity towards a particular formae 

speciales rather than to a broad-spectrum of Puccinia striiformis lineages. In Chapter 2 we 

show that Rps8 requires two genes: an LRR-RK and Exo70, suggesting that it recognises an 

extracellular ligand. LRR-RK is a member of the LRR-XII family, and combines traits identified 

in other members with certain unique properties. Similarly to Xa21, LRR-RK does not provide 

resistance to as broad an array of pathogens as FLS2 or EFR, which recognise epitopes widely 

conserved across bacteria. Similarly to FLS2, LRR-RK requires an Exo70 gene in order to 

function. However this gene is from the Poales-specific Exo70FX clade, rather than the widely-

conserved Exo70B clade. Proper FLS2 function is associated with both EXO70B1 and EXO70B2, 

and EXO70B1 is required for proper membrane localisation of FLS2. No Exo70 genes have 

been associated with the proper functioning of EFR or Xa21, however there is still a possibility 

that an uncharacterised Exo70 or set of Exo70s are required for their proper localisation and 

function. Exo70FX12a shares some features with EXO70B2; both have a disrupted ARP2/3 and 

PIP2 binding site, although EXO70B2 has a complete N-terminal region including a CorEx 

domain, and Exo70FX12a does not.  

 

The fact that Rps8 requires an LRR-RK indicates that recognition is provided by an extracellular 

ligand; the ligand is likely to be a peptide as LRR-domains preferentially recognise peptides.  

Rps8 does not limit mycelial growth within the leaf as strongly as Rps6 and Rps7 (Dawson 

2015) which could indicate either a weaker overall defence response or that the ligand is not 

detected until a later stage of infection. The downstream signalling components of LRR-RKs 

in barley have not been well characterised, however they are likely to be similar to those in 

Rice and so LRR-RK is predicted to have a co-receptor, within the SERK family. In rice, OsCERK2 

is known to be required for Xa21 mediated resistance, and in barley HvSERK2 is expressed in 

response to Blumeria graminis f. sp. hordei (Li et al. 2018). Investigation of LRR-RK co-

receptors should therefore focus on whether HvSERK family mutants are compromised in 

Rps8-mediated resistance, or whether LRR-RK colocalises with or phosphorylates these 

proteins in planta. Downstream signalling components involved in Rps8 mediated defence 
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could also be investigated by a phosphoprotemic approach, comparing the overall status of 

phosphorylated proteins in the cell, before and after stimulation by Pst, as well as  between 

mutant alleles of LRR-RK (Reinders and Sickmann 2005; Thingholm, Jensen, and Larsen 2009). 

The mutant allele derived from accession TM98, which has an early stop codon inside the 

kinase domain will be an excellent resource for this kind of investigation.  

 

5.2.3 Hypotheses regarding the mechanism of Rps8  

In order to further understand the interactions between Exo70FX12a and LRR-RK it will be 

important to characterise their behaviour in planta. Little is currently known about the 

behaviours of Exo70FX12a inside the cell, but some predictions can be made based on the 

established behaviours of other Exo70 proteins. 

There are three hypotheses as to how these genes might be co-operate: 

 

1. Exo70FX12a localises LRR-RK to an appropriate domain of the plasma membrane 
with the involvement of other members of the Exocyst complex. In this case we 
would expect mutants deficient in Exo70FX12a but not LRR-RK (eg, m3535 and 
Heils Franken haplotypes) to express LRR-RK but for the protein to accumulate in 
the cytoplasm, and not be delivered to the cell membrane. This could be tested by 
transient expression of tagged variants of the protein in a heterologous system, or 
by stable expression of tagged variants in barley. We would also expect that 
Exo70FX12a can localise to the plasma membrane, and interact with other 
members of the Exocyst complex, especially Sec3 and Exo84, which could be 
tested using yeast-2-hybrid assays, or by co-immune precipitation of candidate 
subunits. We would also expect that mutations in other Sec genes would also 
inhibit Rps8 function, and that this might be identified in the uncharacterised 
mutants in Chapter 2. 

2. Exo70FX12a localises LRR-RK to an appropriate domain of the plasma membrane 
in an unconventional manner. Again, we would expect not to see localisation of 
the LRR-RK protein to the plasma membrane in plants without Exo70FX12a. 
However in this case we would not expect to see Exo70FX12a interact with other 
members of the exocyst complex. We would expect that induced inhibition of the 
Exocyst complex has no effect on Rps8 localisation or function, which could be 
tested by disruption of Exocyst assembly as in (Vukašinović et al. 2017) or (Huang 
et al. 2019). 

3. Exo70FX12a is not involved with localisation of LRR-RK. In this hypothesis 
Exo70FX12a may be involved somehow in signal transmission, or in elicitor binding 
rather than trafficking. Exo70FX12a could also be involved in post-recognition 
autophagic processes, either directly interacting with LRR-RK or with cytoplasmic 
proteins. Exo70 genes have been implicated in a number of diverse roles. Although 
the mechanisms for these roles is largely unknown, there is currently no 
information to exclude the possibility Exo70FX12a has a role outside of polarised 
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exocytosis. In this case we would expect that Exo70FX12a is not required for LRR-
RK to localise at the membrane, which would be detectable either in a 
heterologous system or through expression of tagged LRR-RK in barely. We would 
also expect Exo70FX12a to associate with downstream components of defence, or 
a pathogen ligand. 

 

In all of these cases, the two identified mutant alleles of Exo70FX12a (Chapter 2) as well as 

the Triticum aestivum B genome Exo70FX12 gene (Chapter 4) may provide crucial insights 

into the role of Exo70FX12a. Mutant TM3535 exhibits an L130F polymorphism in the CAT-A 

domain and Heils Franken exhibits an E33K polymorphism in the CAT-C domain. The 

TaBExo70FX12 gene has an N-terminal truncation; reducing its size to 409 amino acids 

compared to 508 in barley, as well as 36 amino acid polymorphisms (91% protein identity). 

When investigating the localisation and interactors of Exo70FX12a, as well as its effect on the 

localisation and function of LRR-RK, mutant variants of Exo70FX12a which are known to be 

expressed but non-functional will aid in establishing its mechanism. Furthermore, the 

presence of an orthologous Exo70FX12 gene, as well as an orthologous LRR-RK (84% protein 

identity) in the B genome of bread wheat, raises the questions of whether these genes 

provide resistance to any lineage of stripe rust in wheat, whether these genes interact in the 

same manner in planta as those at the Rps8 locus, and whether expression of the barley Rps8 

genes in wheat can provide resistance to Pst. 

 

 

 

5.3 Evolution of the Exo70FX12 subclade 

In order to better understand Rps8, we decided to investigate the evolutionary history of the 

Exo70 gene at the locus; Exo70FX12a, and the Exo70FX clade more generally. Historically the 

Exo70FX clade has not been the focus of much research, and it was only identified in the 

Poaceae (Cvrčková et al. 2012; Žárský et al. 2019; Zhao et al. 2019). In order to accomplish 

this we assessed the Exo70 gene complement of genomes belonging to eight Poaceae, three 

Poales, Elaeis guineensis (order Arecales), and Musa acuminata (Zingiberales) as well as 29 

transcriptomes within the Poaceae and 14 from within the Poales (Chapter 4). We identify 

the emergence of the Exo70FX clade within the graminid clade, and a subsequent expansion 

and innovation within the Poaceae, transitioning from two subclades in E. monostachya and 
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J. ascendans to 14 across the Poaceae as a whole, and up to 10 in a single species (O. sativa). 

The Exo70FX subclade exhibits extremely long branch lengths compared to other Exo70 

clades, and a rich species-specific diversity. Certain families, notably Exo70FX2, Exo70FX11, 

Exo70FX13, and Exo70FX14 can be extremely large, with up to 20 members of the Exo70FX2 

clade in the B subgenome of wheat (Chapter 4). Where this kind of species-specific subclade 

expansion occurs, it is almost always in the form of tandem repeats at a single locus. 

 

Exo70 genes in plants are subfunctionalised, relative to the animal and fungal Exo70 gene, 

with individual Exo70 proteins associated with particular roles ((Žárský et al. 2009; Žárský et 

al. 2019; Li et al. 2010b). The diversity of the Exo70FX clade may indicate that additional 

subfunctionalisation has taken place in the Graminids. Given that only two Exo70FX proteins 

have been characterised (Chapter 4) (Ostertag et al. 2013), and both are involved in defence 

it seems likely that this expansion is connected to an overall role in immunity. Plant immune 

genes such as receptor kinases and NLRs are also under pressure to expand and diversify in 

order to counteract the rapid evolution of pathogens in a phenomenon sometimes described 

as a “Molecular arms race” (Stahl and Bishop 2000) or “the Red Queen hypothesis” (Pearson 

2001). The mechanisms of Exo70FX clade members are still unclear, but it is possible that 

each Exo70FX has evolved to localise a particular cargo, or to do so under a particular 

condition and that this gene expansion provides additional control over PM localisation for 

defence, or additional resilience to disruption by pathogens. 

 

Exo70FX12 is a comparatively recent innovation in the Exo70FX clade. We were able to 

identify an Exo70FX12 subclade member in Barley, Wheat, and Agrostis stolonifera, and 

therefore place Exo70FX evolution within the Pooideae, after the radiation of the 

Brachypodieae. Notably, in Chapter 2, we identified that Exo70FX12a exhibits 

presence/absence polymorphism across a panel of 40 barley accessions. It is therefore 

possible that Exo70FX12 exists as a pan-species presence-absence polymorphism within a 

wider set of Pooideae, and was simply undetectable in the accessions chosen for study in 

Chapter 4. 

Exo70FX12 was also placed within the Exo70FX11 subclade in the phylogenetic tree (Figure 

4.2) based on amino acid sequence. However due to the difficulties resolving subclades with 

little bootstrap support, we adopted synteny as a secondary metric of subclade placement. 



 105 

Given that Exo70FX11 is a subclade containing up to 12 members at a single locus, the unique 

translocation of Exo70FX12 to chromosome 4H, rather than 1H warranted its placement in a 

unique subclade. There is little doubt, however, that Exo70FX12 is derived from Exo70FX11 

given its sequence similarities and appearance subsequent to the emergence of Exo70FX11 

at the base of the Pooideae. 

 

 

 

 

 

 

5.5 Recommendations for future work 

• Validate the role of LRR-RK in Rps8. A transgenic construct encoding LRR-RK under 
the control of its native promoter and terminator has already been designed and 
assembled, along with a construct encoding both Exo70FX12a and LRR-RK. Both 
constructs have been used to generate primary transgenics in the rps8 accession 
SxGP DH-47, and testing of transgenic plants for resistance to Pst should be 
completed at the soonest possible time. This will validate the requirement for both 
genes, acting together to provide Rps8-mediated resistance against wheat stripe 
rust in barley 

 

• Investigate the physical effects of Rps8. Previous work (Dawson 2015) found that 
while Rps6 and Rps7 have a strong effect on colonisation of the leaf (ie, hyphal 
growth) and pustule formation, Rps8 only prevents the formation of pustules and 
has little to no effect on leaf colonisation. Preliminary results indicate that Rps8 
does, in fact, slow the development of hyphae between the mesophyll through an 
unknown mechanism. As Rps6 and Rps7 encode NLR proteins, it is likely that 
defence is provided through the hypersensitive response at an early stage of 
infection (Dalio et al. 2020). Investigating whether Rps8 provides a hypersensitive 
response, and what stage of infection defence is stimulated at will assist in 
determining how to evaluate the mechanism of LRR-RK in planta. 

 

• Investigate the signalling partners of Rps8. LRR-RK is likely to signal through a co-
receptor from the SERK family of receptor kinases (Chinchilla et al. 2009; Gust and 
Felix 2014; Chen, Zuo, et al. 2014; Li et al. 2018). To our knowledge, identifying a 
co-receptor will provide the first evidence for this kind of interaction in barley. An 
initial step towards identifying this partner, or additional signalling partners will 
be to characterise the remaining 6 Rrs mutants obtained in Chapter 2. This can be 
achieved through an F2 recombination screen to rough-map a mutant gene of 
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interest coupled with RNAseq analysis to identify SNPs or other polymorphisms in 
the candidate regions, as well as crosses to determine additional 
complementation groups. Special attention should be paid to orthologues of 
genes identified as being required for other LRR-XII family genes such as SERK 
family members, chaperonins such as PSL1, PSL2, STT3A, SDF2, ERdj3B, and BiP (Saijo 
et al. 2009; Nekrasov et al. 2009)., and downstream signalling components such as 
MAPK family members and BIK1 (Lin et al. 2014).  
 

• Investigate the interaction partners of Exo70FX12a. The mechanism of 
Exo70FX12a is still unknown. Determining where it localises within the plant cell, 
whether it interacts directly with LRR-RK, and which members of the Exocyst 
complex and other secretion machinery it interacts with in planta as discussed in 
5.2.3 will be greatly beneficial towards understanding the role of the Exo70FX 
family as a whole, as well as the mode of action of LRR-XII RK family members in 
monocots. 

 

5.6 Lessons Learned 

No PhD project goes entirely according to plan. Many experiments only succeeded after 

numerous tries, others were never successful at all. However an experiment that doesn’t 

produce a positive result is not necessarily a total failure – it is important to learn from 

mistakes, and to take into account negative data when considering hypotheses and 

experimental design for future experiments. 

The most important lesson I learned over this project was to value your time. It is very simple 

to think “I will keep trying until this goes perfectly”. Tenacity can be a great virtue, but as 

touched on in Section 2.3.5 I was unable to clone the LRR-RK-Rps8 gene and surrounding 

promoter and terminator for use in subsequent experiments. In fact I attempted to clone the 

gene for almost 9 months, before ordering a synthetic copy of the locus from a commercial 

provider. In the end, I was unable to include the results from experiments using the LRR-RK-

Rps8 gene in this thesis as they were conducted after the conclusion of my PhD project!  It is 

important not to get so caught up in a task that you lose sight of your long-term goal, and not 

to treat your own time as disposable simply because it is yours. 

 

Another important lesson was to take multiple approaches to solving a problem. Often there 

exist a number of specialist tools for a particular analysis, and deciding which one to use can 

be daunting. It’s usually simplest to go with a tool you, or a colleague is familiar with, and 

once you have a result to simply move on. However, during the processes of assembling the 
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E. monostachya genome, and especially during Exo70FX annotation I often discovered that it 

wasn’t until after I had done an analysis that the limitations of the approach I had chosen 

became clear. Should I base my alignments on nucleotide or protein sequence? How much 

noise is it appropriate to filter out? Which software produces the highest quality annotations? 

Eventually it became clear that a more comprehensive approach: trialling multiple methods 

and comparing them was often best in the long run, and that planning this from the start 

rather than retroactively “bolting on” additional analyses helped me to plan better 

experiments, and also to really think about what data I had, and what I would need to get the 

most out of it.  

 

Finally Actively Listen. Many times over the course of my project I came across an idea for an 

experiment or analysis and only discovered after beginning that somebody I knew could have 

given me useful advice, if I had asked. Sometimes it’s not enough just to take in what someone 

tells you, but instead you need to ask them for more – more information, more explanation, 

more advice, sometimes even just to explain it one more time! I am incredibly grateful for all 

of the assistance given to me by my friends and colleagues at TSL and further afield, but if I 

could go back in time and tell myself one thing at the start of my PhD it would be to ask more 

questions of all of them. 
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