
 
 

 

Identifying genes underlying Fusarium 

and mycotoxin susceptibility in 

Brachypodium distachyon 

 
 

 

 

Elizabeth Anna Bankes-Jones 

 
 

 

 

Doctor of Philosophy (PhD) 

 

University of East Anglia (UEA) 

 

Department of Crop Genetics, John Innes Centre 

 

March 2021 

 

 

 
© This copy of the thesis has been supplied on condition that anyone who consults 

it is understood to recognise that its copyright rests with the author and that use of 

any information derived therefrom must be in accordance with current UK Copyright 

Law. In addition, any quotation or extract must include full attribution. 

 

 

  



 
 

 



i 
 

Abstract 

Fusarium head blight (FHB) is a widespread fungal disease of temperate, small-grain 

cereals. Infection leads to reduced yield and mycotoxin accumulation in grain. 

Chemical controls have limited effect and genetic resistances are typically 

quantitative and environmentally sensitive. Brachypodium distachyon (Bd) has been 

demonstrated as a model for cereal-Fusarium interactions and is a powerful genetic 

tool due to having a small, diploid genome, high recombination rate and a pan-

genome sequence of 54 diverse accessions.  

These Bd accessions were characterised for variation in susceptibility to FHB, 

flowering time, height and trichomes. A recombinant inbred line (RIL) population, 

ABR6 x Bd21, was characterised for susceptibility to FHB and lemma trichome 

phenotype. A coincident QTL for FHB resistance and absence of trichomes was 

identified on Bd chromosome four. It was hypothesised that trichome basal cells are 

exploited as points of infection for Fusarium species. Fine mapping refined the 

position of the trichome trait to a physical region containing five annotated genes in 

Bd21. Expression and sequence analysis identified an ATP-dependent CLP protease 

as the best candidate gene. CRISPR mutagenesis was unsuccessful, without which 

it was not possible to determine whether the relationship between FHB and trichomes 

is causative or pleiotropic. 

Concentration dependent root elongation and inhibition in response to deoxynivalenol 

(DON) had been previously observed in Bd. DON sensitivity of Bd accessions was 

characterised using root assays. A novel root branching phenotype was identified in 

accession Bd2-3, and the Bd2-3 x Bd21 RIL population characterised at two DON 

concentrations. A region on Bd chromosome 1 was identified to be associated with 

DON sensitivity, refined to a region of 56 genes using bulked segregant analysis and 

RNAseq among which four were differentially DON-responsive between the two 

accessions indicating that one or more may be responsible for the observed 

difference in DON response. 
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Figure 4-6 Refinement of lemma trichome candidate region using F4-5 lines 

unresolved in F8 map. A, Approximate locations of KASP markers to 

delineate the location of unresolved recombination events in ABR6 x Bd21 

RILs. B, Summary of genotype and phenotype allocations for ABR6 x Bd21 
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between F4 and F8 genetic maps. Only RIL F1-97 (F5 progeny) were 
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Figure 4-7 Bd21v3.1 gene content for refined lemma trichome candidate interval by 

resolution of F5 heterozygous RIL 94, relative to the region fine-mapped 

through collaboration between Jan Bettgenhaeuser and Daniel Woods. 

Arrows indicate annotated genes. ....................................................... 105 

Figure 4-8 Relative expression of five genes within a refined lemma trichome 

candidate region on Bd chromosome 4, of leaf and floral meristem tissues 

from qPCR. Values are relative to housekeeping gene BdUBC18. Error 

bars = ±1 SE ....................................................................................... 107 

Figure 4-9 Tissue specific expression data for genes in lemma trichome candidate 

interval on Bd chromsome 4, adapted from EMBL Expression Browser, 

data from (Davidson et al., 2012). Expression values in transcript per 

million (TPM) overlaid. Bradi4g22641 and Bradi4g22645 were absent from 

(Davidson et al., 2012) data set, so are not presented......................... 108 

Figure 4-10. Dotplot Collinearity between Bd21 reference (Illumina, v3.1) and ABR6 

nanopore Flye assembly for trichome candidate region. ...................... 112 

Figure 4-11 Alignment of protein sequences annotated in Bradi4g22650 Bd21v3.1 

with orthologous peptide sequences obtained from ABR6 nanopore 

assembley and Bd1-1 (v1.1) PacBio assembley, with peptide sequence 

predicted using FGENESH tool. Domain 1, highlighted green= Double 

CLP-N Motif (protease domain), domains two and three, highlighted red = 

P-loop containing nucleoside triphosphate hydrolase domains ............ 116 

Figure 4-12 Loci of homozygous sodium azide mutations in Bradi4g22650 equivalent 

gene, BdiBd21-3.4G0316600 in Bd21-3. Derived from phytozome (V12) 

JBrowse function. ................................................................................ 117 

Figure 4-13 Image of gel electrophoresis analysis on amplified products of 

hygromycin resistance for seven T1 Bd plants. Sample 1-7= T1 lines 1-7, 

left to right. Well 8 = vector pICSL11099 containing HYG resistance 

cassette as positive control. 100bp ladder (New England Biosciences).
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Figure 4-14 Sequencing results file for Bradi4g22650 CRISPR T2 lines, highlighting 

target edit site in red and polymorphisms in yellow. Top row for each clip is 

Bd21v3.1 reference sequence. ............................................................ 119 

Figure 5-1 Setup of root assays in 1.2 mL tubes, a) Bd21 at 4 days LHS four seedlings 

in media contains 10 µM DON, RHS four seedlings in control media 
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(ethanol amended only agar), b) Bd21 seedlings removed from tubes at 6 

days, suitable for root length measurement ......................................... 133 

Figure 5-2 Variation in root length of Bd accessions when grown in agar 

supplemented with DON (10 µM), after 5 days. SE = ±5.58 to 23.90. 

Accessions highlighted in grey, Bd2-3 and Bd21 that vary in phenotype, 

are parents of a biparental mapping population ................................... 141 

Figure 5-3 Photographs showing the differential responsiveness to growing in agar 

supplemented with 10 µM DON between Bd21 and Bd2-3 accessions of 

Brachypodium distatchyon................................................................... 142 

Figure 5-4 Bd2-3 and Bd21 DON sensitivity in floral tissues. A, Representative images 

of Bd2-3 and Bd21 typical browning symptoms in response to application 

of DON. Point of treatment (DON or mock) application indicated by white 

triangle marker. Scale = 1 cm. B, Plots of predicted mean (derived from 

GLM analysis) spread of DON associated browning symptoms as number 

of florets above point of application for Bd21 and Bd2-3 for seven and ten 

days post treatment. Error bars = ±1SE ............................................... 143 

Figure 5-5 Phenotypes of roots grown in supplemented 0.4% agar for five days. 

TIBA=triiodobenzoic acid, an auxin-transport inhibitor. Anisomycin and 

cycloheximide are protein-synthesis inhibitors, the latter described as most 

closely sharing cellular mechanism with DON. .................................... 145 

Figure 5-6. Differential phenotypes of roots of two accessions, Bd21 and Bd2-3 when 

grown in 10 µM DON supplemented agar for 6 days, compared to no-

treatment controls. Below: Roots grown in agar supplemented in 10 µM 

DON for six days, demonstrating the three typical phenotypes observed, in 

comparison to control treated roots. .................................................... 147 

Figure 5-7 Proportional distribution of Bd2-3-like and Bd21-like roots for each of 154 

Bd2-3 x Bd21 F7 RILs when grown in agar supplemented with 10 µM DON. 

Overlaid lines represent assignment of RILs as Bd2-3-like (to the right of 

dashed vertical line), Bd21-like (to the left of the vertical dotted line), or 

intermediate (between the two vertical lines) Four replicate roots per RIL. 

Dead roots excluded, resulting in >4 possible Bd2-3:Bd21 ratios ........ 148 

Figure 5-8 Proportional distribution of Bd2-3-like and Bd21-like roots for each of 154 

Bd2-3 x Bd21 F7 RILs when grown in agar supplemented with 20 µM DON. 

Overlaid lines represent assignment of RILs as Bd2-3-like (to the right of 

dashed vertical line), Bd21-like (to the left of the vertical dotted line), or 
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intermediate (between the two vertical lines). Eight replicate roots per RIL. 

Dead roots exlcuded, resulting in >8 possible Bd2-3:Bd21 ratios ........ 149 

Figure 5-9 Illustration of KASP markers and single marker association results for 

association with DON sensitivity at for Bd2-3xBd21 population 

characterised in media supplemented with 10 µM DON. P-values for 

associated are presented with marker names, for 10µM DON upper, 20µM 

DON red, italisied and below. Greyed out, unlabelled markers were 

unsuccessful and omitted from analyses. ............................................ 150 

Figure 5-10 Physical map of Bd1L overlaid with region of significantly associated 

KASP markers with DON sensitivity in root development in Bd2-3xBd21 

RIL F6 populatio. For 10 µM DON, area highlighted in green, for 20 µM 

DON, area highlighted in purple = p-values<0.05. Total map size = 60.07 

cM ....................................................................................................... 152 

Figure 5-11 Quality scores for BSA variants for Bd2-3xBd21 F7 RIL DON sensitivity, 

A, prior to filtering of variants, B, with filtering to remove all variants with 

quality <1500 score. ............................................................................ 154 

Figure 5-12 Bulked segregant analysis for DON sensitivity in Bd2-3 x Bd21 F7 high-

cionfidence RILs. Thirty RILs per extreme phenotype pool. B, Physical map 

showing previous KASP mapping of DON sensitivity on Bd1L (Figure 

5-12), overlaid with BSA Bd1L peak (purple), variants with bulk frequency 
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Figure 5-13 Multi-Dimensional Scaling (MDS) plot, describing the variance between 

DON treated root Bd21vsBd2-3 RNAseq samples. Generated using 

Degust (v4.1.1) .................................................................................... 161 

Figure 5-14 Venn diagrams assigning commonality of up- and down- regulation of 

genes between Bd21 and Bd2-3 in roots, responsive to DON at 5 µM & 20 

µM, from RNAseq data. ....................................................................... 163 

Figure 5-15 Venn diagram containing gene expression in comparison between Bd2-

3 relative to Bd21, at 5 µM and 20 µM DON RNAseq data. ................. 164 

Figure 5-16 Genotypes of Bd2-3xBd21 high-confidence DON sensitivity RILs for fine-

mapping of Bd1L BSA peak.Marker names are derived from Bd21v2.1 

reference genome differentiating SNP locus. Purple=Bd21 genotype, 

green=Bd2-3 genotype, grey=not genotyped Faded markers are within the 
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1 Chapter 1 - General Introduction 

1.1 Cereal Crops 

Cereals form the staple for much of the global population’s diet, contributing 

approximately 60 % of calories and 20 % of protein consumed (Cassman et al., 2003). 

Wheat (Triticum aestivum) is the third most produced cereal crop yet in 2013 occupied 

more land than any other, has the greatest world trade index and is therefore of huge 

economic and social importance (Food and Agricultural Organisation, 2014). Global 

population growth, predicted to reach 9.7 billion by 2050, and changing dietary habits 

will create pressure on food production capabilities, equating to a required increase 

in food production of 50 percent by 2050 (Gregory and George, 2011, Alexandratos 

and Bruinsma, 2012). Furthermore, globally arable land is under threat as a result of 

soil degradation, economic development, climate change, as well as from change of 

crop use, with grasses becoming increasingly important as lignocellulosic biomass 

for biofuels, furthering the demands for increasing yields by occupying high-quality 

land previously designated for food production (Prăvălie et al., 2021). Disease related 

crop losses account for one of the greatest challenges to achieving maximal 

sustainable food production. Pathogens are estimated to cause losses of up to 20 % 

of potential yield for the three major cereals (wheat, rice and maize) at a huge loss 

economically (Oerke, 2005). There is therefore a need to increase the control of such 

pathogens, with genetic resistance considered the most appropriate and sustainable 

approach. 

 

1.2 Fusarium Head Blight and other Fusarium diseases of cereals  

Fusarium head blight (FHB) is an economically devastating fungal disease of 

temperate small-grain cereals such as wheat (Triticum spp.) and barley (Hordeum 

vulgare). Causal agents are predominantly Fusarium species, most significantly 
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Fusarium graminearum and Fusarium culmorum. Head blight can also occur on oats 

(Avena sativa), rye (Secale cereale) and rice (Oryza spp.), and as stalk and ear rot in 

maize (Zea mayes) (Goswami and Kistler, 2004). 

 

1.3 Economic Cost 

FHB is considered a relatively modern disease, having re-emerged in the USA in the 

1990’s after being first described by Smith (1884). It is becoming an increasing 

problem in the UK. Losses of $2.7 billion worth of wheat were recorded to be 

associated with FHB in the USA between 1998-2000 (Bai and Shaner, 2004). Wilson 

et al. (2018), using data for 2015/2016 harvests calculated the total annual cost to US 

wheat and barley through loss of yield to be $1.47 billion, with a further $211 million 

incurred in cost of fungicides. Along with limiting yields by typically between 10-50 % 

due to reduced kernel set and kernel weight, and cost of fungicide application, the 

fungus produces mycotoxins that accumulate in the kernels rendering them 

unsuitable for sale or consumption (Snijders, 2004). Disease pressure is described to 

be a function of natural inoculum supply, genetic resistance level of the host and 

climatic conditions; of these three factors, only genetic resistance is a plausible 

candidate for manipulation for the control of FHB. 

 

1.4 Infection, symptoms, and tissues affected 

FHB is present in all major cereal growing regions of the world, with contaminated 

crop residue remaining in the soil post-harvest and surviving saprophytically over 

winter to serve as inoculum for the crop in following years (Figure 1-1) (Leslie and 

Logrieco, 2014, Trail, 2009, Bai and Shaner, 2004). 

An extensive taxonomic split of F. graminearum within the previous decade means 

that F. graminearum is now considered as a complex of species (O'Donnell et al., 
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2004, Starkey et al., 2007). F. culmorum is not known to produce ascospores and 

therefore spreads only through the production and dispersal of asexual conidia 

(Wagacha and Muthomi, 2007) whereas F. graminearum can spread through wind 

dispersal of sexually produced ascospores (Figure 1-1). F. culmorum conidia are 

produced more readily under laboratory conditions than F. graminearum making the 

former a more amenable model. 

 

 

FHB infection occurs during grain development, spreading through the kernels 

causing necrosis and toxin accumulation. Moisture content is the most vital factor for 

successful infection, followed by temperature, host resistance level and chemical 

treatment (such as fertilisation and fungicide application). Susceptibility to infection 

Figure 1-1 Life-cycle summary of F. graminearum (sexual stage, Gibberella zeae). F. culmorum is limited 
to asexual reproduction only Taken from publication: (Trail, 2009) 
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by conidia peaks during the short period of mid-anthesis (Wagacha and Muthomi, 

2007). Host penetration occurs through a combination of degradation and pressure 

through secretion of cell wall degrading enzymes and formation of a penetration peg. 

Typically, natural recesses high in humidity are targeted as weak areas of tissue; for 

example, where the palea of one kernel meets the lemma of the next, particularly at 

floret base, and stomata. In a compatible interaction, hyphae spread intercellularly 

followed by intracellular growth once host cells have been compromised by pathogen 

colonisation (Beccari et al., 2011). Transition from biotrophic to necrotrophic phase is 

associated with increased biosynthesis of trichothecene mycotoxins and cell-wall 

degradation enzymes (Kang and Buchenauer, 2000). Symptoms typically appear as 

discolouration and subsequent premature bleaching of infected kernels, which are 

often underdeveloped and degraded in starch content (Brown et al., 2010). Symptoms 

of infection of barley in the field are often less readily apparent than in wheat 

(Goswami and Kistler, 2004). 

Other diseases associated with the same Fusarium causal agents include root and 

stem rots (Figure 1-2). Although considered less devastating than FHB, these 

diseases are still damaging, leading to restricted vasculature, reduced vigour, and 

limited yields. When infection occurs early in seedling development death of the plant 

is likely as coleoptiles and immature roots are rapidly colonised. The infection 

mechanisms vary from that of FHB; fundamentally the inoculum is mycelium as 

opposed to germinating spores. Symptoms appear as browning associated with 

necrosis in roots, whilst also manifesting in general reduced vigour and grain 

development (Beccari et al., 2011). 
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1.5 Causal species & mycotoxins  

Several species are known to cause FHB, from the Fusarium and Microdochium 

genera. Predominate species varies between geographical locations, determined 

mostly by temperature and humidity. Multiple Fusarium species can be present in a 

single environment, forming an FHB disease complex; symptoms of FHB infection 

are highly similar between causative species (Nicholson, 2009). Formerly recognised 

within the Fusarium genus, Microdochium nivale and M. majus are known to cause 

FHB but do not produce mycotoxins and are therefore of lesser overall significance 

(Nielsen et al., 2013). Of the Fusarium spp., F. graminearum and F. culmorum are 

the most significant; F. graminearum, associated with warmer and more humid 

conditions, is the major global pathogenic species (Xu et al., 2005). 

The major challenge that FHB presents in cereals is the production and accumulation 

of mycotoxins, secondary metabolites produced by the fungus during host 

colonisation. As with the range of causative agents of FHB, there are many diverse 

mycotoxins produced, with each species producing a signature combination. 

Figure 1-2 Symptoms of Fusarium infection; A, bleached heads resulting from vasculature damage by 
root or stem rot; B, pink disscoloration of basal nodes in stem infection, taken from publication (Scherm 
et al., 2013) 

B A 
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Trichothecenes are the most significant of these mycotoxins in terms of economic 

and industrial damage. There are approximately 170 trichothecenes identified the 

most significant of which is deoxynivalenol (DON), a type B trichothecene, also known 

as vomitoxin (Bai & Shaner, 2008). They all share a common tetracyclic 

sesquiterpenoid 12,13-epoxytrichothec-9-ene ring system and are grouped into four 

types (A-D) with types A and B found in cereals. Type A trichothecenes are typically 

produced by F. sporotrichioides, F. langsethiae, F. acuminatum, and F. poae and are 

represented by T-2 and HT-2; they are generally of higher toxicity but less widespread 

and produced in smaller quantities than DON. Type B, most important to this project 

and most widely found in wheat, are represented by DON, acetyl-DON (ADON) and 

nivalenol (NIV) (Marin et al., 2013, Kulik et al., 2017). F. graminearum and F. 

culmorum, the two species on which this project focusses, produce DON and its 

acetylated forms, or nivalenol (NIV), the latter of which is also produced by F. poae 

(Nazari et al., 2018). DON acts as a virulence factor in wheat, rendering these species 

more aggressive in infection than competitors (Ilgen et al., 2008). Secretion of these 

toxins is characterised as aiding fungal colonisation through inhibition of host protein 

synthesis leading to membrane degradation (Cundliffe et al., 1974, Cundliffe and 

Davies, 1977). This enhances host susceptibility and infection success, but is not 

fundamental to infection or strictly correlated with visual symptoms (Kimura et al., 

2006). During colonisation of wheat, DON elicits the production of reactive-oxygen 

species (ROS), manipulating the host defence system and inducing cell death 

allowing spread of the pathogen within the host (Desmond et al., 2008, Bai et al., 

2002). The role of mycotoxins during early infection of wheat is not known (Boenisch 

and Schafer, 2011). DON accumulation in the grain is intimately related to disease 

development and therefore strategies for DON management focus on control of FHB 

(Yuen and Schoneweis, 2007). Trichothecenes are highly stable compounds, with 

storage, milling, cooking and high temperatures resulting in little degradation (Marin 

et al., 2013). As well as directly decreasing yields through mediating infection severity, 
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ingestion of toxins can lead to toxicosis in both humans and livestock (Escriva et al., 

2015). Therefore, DON concentration for grain entering the food chain is controlled, 

restricted to 1ppm for humans in the USA, higher for livestock (up to 30 ppm for beef 

cattle) (FDA, 2011). The European Community limits DON levels to 1.5 mg kg-1 for 

wheat grain except for durum wheat and oats where it is 1.75 mg kg-1 (Trail, 2009). 

However, a survey of exposure levels of DON by Mishra et al. (2020) concluded that 

current DON levels in the food chains of many regions pose a risk to human health, 

especially in children. It is not uncommon for harvest batches to exceed these levels, 

leading to the destruction of grain at the loss to both the grower and the chain of 

demand. 

 

There are many other classes of mycotoxins produced by Fusarium species, not all 

relevant to FHB or cereal diseases (Marin et al., 2013). Particularly notable are the 

oestrogenic compounds zearalenones; these are known to be produced by Fusarium 

graminearum, F. culmorum, F. cerealis, F. equiseti, F. verticillioides, and F. 

incarnatum. In animals, these compounds bind to oestrogen receptors and elicit 

aberrant responses with implications during pregnancy, presenting a major issue 

upon contamination of grain for human or livestock consumption (Hueza et al., 2014). 

 

1.6 Control measures for FHB  

1.6.1 Chemical controls 

It is widely accepted that the application of chemical fungicides is a vital part of FHB 

control, however they cannot be relied upon for complete control. A typical reduction 

of 40-50 % in FHB index for the best performing fungicides when applied within a 

limited efficacy window during anthesis, still only achieves relatively poor FHB control, 

particularly in high disease pressure situations where mycotoxin levels remain above 

the legislative thresholds (Madden et al., 2014). Of the fungicides most widely tested, 
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triazole-based compounds appear to be the most effective and consistent across 

studies (Paul et al., 2008). 

The diversity of inoculum species present within the field means that upon treatment 

with fungicides that are only partially effective species balances are typically disrupted 

(Xu and Nicholson, 2009). More aggressive species will therefore become 

predominant, potentially increasing the proportion of DON producing pathogen such 

as F. graminearum and F. culmorum. Treatment with fungicides therefore, notably 

strobilurin, can fail to reduce DON contamination to acceptable levels and can even 

increase DON contamination (Scarpino et al., 2015, Madden et al., 2014). 

 

1.6.2 Alternative controls 

The ubiquitous nature of Fusarium spp. renders pathogen exclusion futile; the 

pathogen is already resident in all major cereal growing regions of the world and 

inoculum can be aerially disseminated between fields (Yuen and Schoneweis, 2007). 

Other control strategies, such as those based on targeting the pathogen in the soil, 

crop rotation, burial and burning of residues all present greater challenges than the 

one they aim to solve; coupled with limited successes at controlling the fungus they 

are inefficient and uneconomical (Yuen and Schoneweis, 2007). Extensive research 

has also been conducted into the use of biological control agents, but these require 

high inputs and are less sustainable in the long term than engineering durable 

resistance (Tian et al., 2016). Reduced tillage, a soil conservation practice in which 

soil is not turned over between crops, increases severity of FHB in comparison to 

ploughed soil during which inoculum carrying wheat residues are buried (Dill-Macky 

and Jones, 2000). The sequence of crop rotation can also have a significant effect on 

the incidence and severity of FHB and affects the balance of causal species; 

specifically, the inclusion of maize or sugar beet preceding winter wheat can increase 
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the risk of FHB, to an even greater extent than wheat following wheat (Tillmann et al., 

2017). 

 

1.6.3 Genetic resistance  

Genes for stable control of FHB in wheat are rare, with most studies identifying 

polygenic FHB resistance with a large influence of environment on efficacy. 

Resistance to F. graminearum and F. culmorum has been shown to be closely 

correlated (Leslie and Logrieco, 2014). There is no evidence for race structure of 

either F. graminearum or F. culmorum adapted to different wheat genotypes, unlike 

in powdery mildew species for example, simplifying resistance breeding by rendering 

resistance to one species also conferring resistance to all others (Snijders, 2004). 

Resistance types can be classified into those that limit occurrence of initial infection, 

Type I, and those that limit the spread of fungus through tissues following infection, 

Type II (Schroeder and Christensen, 1963). Barley has inherent high levels of Type 

II resistance that prevents infection from spreading along the rachis, from spikelet to 

spikelet (McMullen and Stack, 2011). Other modes of resistance that do not fit within 

these classifications often involve interruption of mycotoxin accumulation in infection. 

The main driver for genetic resistance is to reduce contamination of mycotoxins to 

limit the amount entering the food chain (Kimura et al., 2006). Type V resistance is 

described as resistance to toxin accumulation; and is further separated into class I, 

which includes mechanisms for the degradation or detoxification of trichothecenes, 

and class II which mechanisms to inhibit trichothecene biosynthesis (Boutigny et al., 

2008). Lemmens et al (2005) described the co-localisation of a QTL for type II FHB 

resistance in wheat with an ability to detoxify DON. 

 

Stability of resistance in wheat depends largely on the level of resistance; the higher 

the level of resistance, the more stable it appears in trials across different years, 
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environments and disease pressures (Mesterhazy, 1995, Buerstmayr et al., 2008). 

Lower levels of resistance are typically therefore generally less stable. Resistances 

are often negatively associated with agronomic phenotypes including early flowering 

time, height and yield (Buerstmayr et al., 2008). Susceptibility to FHB at initial 

infection is associated with the Rht-B1b and Rht-D1b semi-dwarfing alleles in wheat 

(Srinivasachary et al., 2008a). Such trade-offs between resistance and crop 

performance often limit applications within a breeding program for crop improvement 

due to costs that would result from reduced marketability (Brown, 2002). 

 

Fhb1 is a major quantitative trait locus (QTL) associated with Type II FHB resistance 

originating from Chinese spring wheat cultivar Sumai 3, a variety commonly used in 

breeding programs to provide FHB resistance, and was fine mapped to a region of 

3BS (Cuthbert et al., 2006). Additional sources of resistance from Sumai 3, Fhb2 and 

Fhb3, have been localised to chromosomes 6BS and 7AL respectively (Cuthbert et 

al., 2007). Attempts to clone the gene behind the Fhb1 QTL have been complex and 

controversial but focus on a histidine-rich calcium binding protein (TaHRC) and 

conversely a separate report of the cloning of a pore forming toxin-like gene (Rawat 

et al., 2016, Su et al., 2019). Both loss-of-function and gain-of-function of TaHRC 

have been reported to be responsible for resistance (Su et al., 2019, Li et al., 2019, 

Lagudah and Krattinger, 2019, Su et al., 2018b). 

 

1.7 Brachypodium distachyon as a model 

The genetics of many crops, especially cereals, are notoriously difficult to study with 

wheat arguably being the most complex. This is due to their large genome sizes, 17 

Gb in wheat, multiple highly similar genomes in polyploid species, large expanses of 

repetitive regions along with practical considerations such as long lifecycles and 

relatively large physical size. All of these factors can be theoretically overcome by 
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using a laboratory model species (Flavell, 2009). Historically Arabidopsis thaliana or 

rice (Oryza spp.) have been used for this purpose, however both present significant 

disadvantages. Although Arabidopsis is arguably the most convenient laboratory 

model for many applications, any information obtained has little practical relevance to 

cereal genetics and pathology and therefore doesn’t satisfy the remit of a model for 

wheat (Draper et al., 2001). Rice in contrast is more relevant to the Pooideae and 

Triticeae yet is not as convenient to work with, having demanding growth 

requirements and relatively large size. Both Arabidopsis and rice are more distantly 

related to wheat than Brachypodium distachyon (Bd), a small temperate 

monocotyledonous species in the Poaceae family, subfamily Pooideae. With a short 

stature, a rapid life cycle as short as 10 weeks and morphology comparable with 

wheat it appears a more feasible experimental species than alternatives (Peraldi et 

al., 2011). Most importantly in terms of genetic relevance it shows high homology with 

wheat and barley and has a fully sequenced, gold-standard, diploid genome of 

approximately 272 Mb in size, with the genome for reference accession Bd21 

available in its third, improved, version (Huo et al., 2009, International Brachypodium, 

2010). Having diverged just prior to the core pooid clade in which most modern cereal 

crops are classified, strong synteny qualifies Bd as a useful tool for preliminary 

functional genomics with an aim of application in wheat, barley or maize (Figure 1-3) 

(Huo et al., 2009, Vain, 2011). Increasingly the value held within a model species is 

the ease and availability for the applications of the ‘-omics’ age. (Draper et al., 2001). 
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Bd has been used as an intermediate between fundamental research in Arabidopsis 

to practical relevance in wheat (Girin et al., 2014). Emphasis of the Brachypodium 

research community initially focussed on the investigation of cell wall and lignin 

biosynthesis, as a model for the development of sustainable and renewable biofuels 

of other grasses. It has previously been used to characterise and model grain 

development, and most importantly for this project, host-pathogen interactions 

(Fitzgerald et al., 2015). The root system morphology is highly similar between wheat 

and Brachypodium compared to Arabidopsis, making it a much more relevant tool for 

root-based assays (Figure 1-4). There are several species within the Brachypodium 

genus with a variety of specialist applications. 

Figure 1-3 LHS, divergence times of cereal crop species sorghum, wheat rice and model genus 
Brachypodium. WGD, whole-genome duplication. The numbers refer to the predicted divergence times 
measured as Myr ago; RHS, Orthologous gene relationships between Brachypodium and hexaploid bread 
wheat defined by 5,003 ESTs mapped to wheat deletion bins. Each set of orthologous relationships is 
represented by a band that is evenly spread across each deletion interval on the wheat chromosomes. 

Figure adapted from publication: International Brachypodium Initiative (2010) 
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1.7.1 Brachypodium as a pathosystem 

Bd has been used to study a variety of fungal, bacterial and viral pathogens. These 

fungal pathogens include compatible interactions with, for example, Fusarium, 

Blumeria, Puccinia and Magnaporthe species (Fitzgerald et al., 2015, 

Bettgenhaeuser et al., 2018, Della Coletta et al., 2019, Su et al., 2018a). Work by 

Peraldi colleagues (2011) demonstrated the successful infection of Bd with F. 

graminearum and F. culmorum across floral, leaf and root tissues, representative of 

the range of Fusarium diseases on cereals. Figure 1-5 shows the development of 

disease symptoms upon inoculation with Fusarium conidia and the visual similarity 

that is shared with wheat FHB. Since this introduction of Bd as a model pathosystem 

for Fusarium diseases, additional studies have continued to characterise Bd-

Fusarium interactions, including the effect of phytohormones on F. graminearum in 

Bd heads and roots, demonstration of reduced FHB susceptibility of Bd when primed 

with DON, host-induced gene silencing of F. graminearum genes to enhance 

Figure 1-4. Comparison of wheat, Brachypodium distachyon and Arabidopsis thaliana root 
systems. Horizontal line represents soil level. Abbreviations: CNR, coleoptile node axile root; 
LNR, leaf nod axile root; PR, primary axile root;, SNR, scutella node axile root. (Catalan et al., 
2014). 
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resistance and characterisation of Fusarium species on different Bd natural 

genotypes (Haidoulis and Nicholson, 2020, Dinolfo et al., 2020, He et al., 2019, 

Blümke et al., 2015). The complexity of host-pathogen interactions necessitates the 

use of large-scale studies to account for inherent variability; the use of Brachypodium 

as a small, amenable pathosystem is therefore particularly useful to overcome these 

hindrances. 

 

 

1.7.2 Brachypodium resources 

The most useful model organisms are built upon extensive, openly accessible 

resources, and Bd is no exception to this. These resources aim to capture and 

generate extensive genetic variation in the form of germplasm collections and mutant 

populations, the latter playing a vital role in the functional characterisation of genes, 

facilitating diverse research strategies and approaches (Girin et al., 2014). Several 

collections have been made of diverse, wild germplasm across the native range of 

Bd, surrounding the Mediterranean (Figure 1-6), composing multiple separate 

collections each characterised separately (Filiz et al., 2009, Gordon et al., 2014, Tyler 

Figure 1-5. Visual comparison of Fusarium head blight symptoms between wheat and Brachypodium 
disatchyon. (Peraldi et al., 2011) 

Wheat Bd spray inoculation Bd point 

inoculation 

Bd spray 

inoculation 
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et al., 2016). Complete, high quality genome sequences and associated data are 

currently available for fifty-two accessions under the Brachypan-genome project 

(Gordon et al., 2017). Sequencing, de novo assembly and analysis is currently in 

progress to achieve a total of 90 sequenced accessions (Gordon et al., 2014). The 

publication of the pan-genome in late 2017 provides a powerful tool for exploring 

genetic variation between accessions which can be employed in the use of map-

based cloning for in-depth comparison of candidate loci (Gordon et al., 2017). 

Inbred lines and mapping populations have been generated from these germplasm 

collections, mainly in the form of recombinant inbred line populations (RILs) but more 

recently include collections of accessions for Genome Wide Association Studies 

(GWAS) (Garvin et al., 2008, Tyler et al., 2016, Dell’Acqua et al., 2014). GWAS was 

first demonstrated as a key tool for the identification of loci associated with agronomic 

traits using leaf architecture in maize; however it is most appropriate for traits of 

simple inheritance and genetics (Tian et al., 2011). The ABR6 x Bd21 RIL population 

has been utilised for the mapping of quantitative trait loci associated with vernalisation 

and flowering time (Bettgenhaeuser et al., 2017). Della Coletta et al. (2019) used the 

Bd2-3 x Bd21 RIL population to elucidate loci associated with non-host resistance to 

wheat steam rust (Puccinia graminis f. sp. Tritici) using bulked segregant analysis 

(BSA). 

 

Figure 1-6 Geographical distribution of Brachypodium germplasm collection sites, from a representation 

of the native range. Colour of marker described clade of origin (Gordon, Contreras-Moreira et al. 2017) 
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Several extensive mutant populations have been generated for both forward and 

reverse genetic approaches. The BRACHYTAG collection generated at and held by 

the John Innes Centre is a resource of approximately 5000 T-DNA insertion lines 

(Bd21 source material) (Thole et al., 2012). A recent report on the status of another 

T-DNA tagged collection describes a total of 21,165 T-DNA insertion lines (containing 

21,078 unique insertion sites, 9,754 within genes), with flanking regions sequenced, 

generated from accession Bd21-3 (Hsia et al., 2017, Bragg et al., 2012). 

A TILLING platform for Bd, BRACHYTIL has been developed by Dalmais et al. 

(2013a). TILLING is a non-transgenic reverse genetics approach requiring a 

reference genome sequence for the detection and location of induced mutations 

(Barkley and Wang, 2008). It is possible to obtain a variety of mutant phenotypes, 

from modification of- to loss-of-function, within a single locus, potentially allowing a 

more detailed examination of gene function (Stephenson et al., 2010). The 

BRACHYTIL resource of 5,731 families was generated through sodium azide 

mutagenesis of accession Bd21-3 by Institut National de la Recherche Agronomique 

(INRA, Versailles, France), with a mutations rate predicted to be one per 396 kb, with 

an average of 680 mutations per line (Dalmais et al., 2013b). Phenotypes along with 

sequence data are freely available to the community via an online phenotypic tree 

and a database (UTILLdb) searchable through a BLAST tool and mutations listed as 

a track on Bd21-3 and Bd21 JBrowse (Phytozome). The utility of the platform was 

originally validated by the investigation of seven genes belonging to a multi-gene 

family of the lignin biosynthesis pathway (Dalmais et al., 2013b). An additional, non-

redundant sodium azide mutagenized resource has evolved with the advancements 

in sequencing technology, with all mutations on Bd21-3 being fully characterised by 

whole genome sequencing, and therefore is no longer designated as TILLING, 

instead designated ‘sequenced lines’ (INRA). 
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EcoTILLING populations were also generated to exploit natural variation within B. 

distachyon. EcoTILLING has been described as a beneficial tool for species with 

large, complex genomes or long generation times (Banik et al., 2008) and therefore 

it is likely that alternative methods such as genotyping by sequencing may be more 

efficient and cost effective for a model such as Brachypodium for which these factors 

are not an issue. These mutant populations, suitable for a reverse genetics approach, 

provide the opportunity for the investigation of genes playing a putative role in 

Fusarium – Brachypodium interactions. 

 

1.8 Research objectives  

The overarching aim of this project is to better understand the interaction between F. 

graminearum and F. culmorum with wheat during infection of floral tissues, FHB, 

through the utilisation of Bd as a laboratory model. Primarily, this will focus on the 

identification of possible sources of genetic resistance to FHB in Bd. The specific 

objectives being: 

i) To characterise natural diversity in Bd, focussing on FHB. Agronomic traits 

including height, flowering time, and lemma trichome presence will be 

assessed in relation to FHB. Existing mapping populations from the Bd 

research community will be used to map genetic loci associated with 

variation in resistance to FHB between natural Bd accessions. This work 

is described in Chapters 2, 3 & 4. 

 

ii) To investigate the function and mechanism of DON in planta by 

characterising natural variation in the DON sensitivity of Bd accessions. 

This follows previous work by colleagues that identified a concentration 

dependent response of Bd root development. Again, mapping populations 
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will be used to delineate, and fine-map loci associated with DON 

responsive root development. This work is described in Chapter 5, in 

which bulked segregant analysis and RNAseq are applied to delineate loci 

associated with DON sensitivity. 
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2 Chapter 2 - Assessing natural variation in Fusarium 

head blight susceptibility of Brachypodium 

distachyon 

 

2.1 Introduction 

Many of the complexities of studying FHB in wheat, be they physical, genetic, or 

practical may be overcome by use of a model plant system. Arabidopsis thaliana is 

not a natural host of FHB causing Fusarium species, with incomparable floral 

anatomy to wheat, and displays different symptoms when infected (Urban et al., 

2002). Brachypodium distachyon (Bd) was first introduced as a model pathosystem 

for FHB amongst other fungal pathogens by characterisation of accessions Bd21 and 

Bd3-1 (Peraldi et al., 2011, Peraldi, 2012). Studies by Blümke et al. (2015) and 

Pasquet et al. (2014) have reported corroboration of F. graminearum infection 

symptoms in Bd that are comparable to wheat. The application of Bd as a model 

pathosystem has since expanded to include studying of Puccinia striiformis, 

Cochliobolus sativus, Rhizoctonia solani causing root rot and Claviceps purpurea 

(Bettgenhaeuser et al., 2018, Gilbert et al., 2018, Schneebeli et al., 2015, Zhong et 

al., 2015, Kind et al., 2018). Variation of FHB-Bd interactions within the species has 

not yet been evaluated. 

The publication of a Bd pan-genome, Brachypan, which includes the genome 

sequence of 54 accessions provides a powerful foundation for investigating the 

genetic diversity underlying FHB susceptibility within the species that had previously 

been characterised in only a handful of accessions (Gordon et al., 2017, Peraldi et 

al., 2011). The work undertaken in this chapter was done so in the anticipation of the 

publication of Brachypan genomic sequences. A high rate of recombination is one of 

the major benefits of using Bd as a genetic model, along with rapid cycling time, self-
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fertility, short stature and a small genome sequenced to a high reference standard in 

Bd21, rapidly expanding to more accessions (Draper et al., 2001). Especially for 

genetic studies, the availability of high-quality genomic data combined with the 

simple, diploid genetics of Bd means that this model can be a powerful tool. 

A panel of 54 Bd accessions was obtained for characterisation under glasshouse 

conditions. Accessions were selected from a wider pool of more than 100 lines, on 

the basis that; 48 accessions selected were undergoing sequencing for the 

Brachypan genome sequencing project, whilst the remaining accessions were 

described to have beneficial characteristics that would make them ideal candidates 

for laboratory based experiments (Filiz et al., 2009). It was not possible to include all 

Brachypan project accessions due to limited availability of seed. This diverse panel 

of inbred lines derived from diverse Bd germplasm was assessed for susceptibility to 

FHB (by spray inoculation of F. culmorum) and other key traits typically implicated 

with susceptibility of cereal crops in the field, namely height, flowering time, and 

trichome presence-absence. It was hypothesised that susceptibility to FHB varied 

within the Bd species and this variation would be reflected within the Brachypan 

collection of diverse accessions. 

2.1.1 Chapter aims 

In this chapter, Bd accessions are characterised across two experiments, undertaken 

under glasshouse and CER conditions in Winter-Spring 2017. Susceptibility to FHB 

is characterised in 54 Bd accessions and the correlations between FHB, height, 

flowering time, and lemma trichome phenotype are investigated. Five accessions that 

are parents of known existing bi-parental mapping populations in the research 

community are characterised in greater detail with the aim of identifying populations 

that could be later used in identification of genetic loci associated with these traits 

through mapping. 
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2.2 Methods 

2.2.1 Characterisation of Bd accessions under glasshouse conditions 

 Plant lines and growth conditions 

Brachypodium accessions used were originally collected by (Filiz et al., 2009) (all 

BdTR prefixed accessions) and (Vogel et al., 2009). The Nicholson group obtained 

the seed from The Sainsbury Laboratory Collection, supplied by Matt Moscou, after 

which they were bulked for use in pathology experiments. The list of the 54 

accessions prepared for characterisation is given in Supplementary Table 1. 

Following the removal of glumes, seeds were stratified in the dark at 4 oC for 5 days 

between filter paper discs on Petri dishes with 3 mL sterile distilled H2O, before a 24 

hr incubation at 22 oC with light excluded. Germinated seeds were planted one to a 

cell (224 cell tray) in a soil mix of 1:1, cereal mix: peat and sand (Supplementary 

Table 2). 

Seedlings were grown for 8 days under winter glasshouse conditions at 16 hr day-

length before being transferred to controlled environment for 6 weeks vernalisation at 

4oC, 16hr daylength (Norwich, UK, winter-spring 2017). Following vernalisation plants 

were grown for a further 9 days under glasshouse conditions, and then transferred to 

FP8 square pots (8x8x8 cm), two individuals of the same accession per pot. The 

same soil mix was used. A total of eight plants per accession (across four pots) were 

used for characterisation, with the exception of accessions ABR6 and Uni2 which had 

only six and four replicate plants respectively. Plants were staked and tied as 

appropriate. Pots were arranged in a randomised incomplete block design, twelve 

blocks (trays) of nineteen pots, generated by Design Computing Gendex DOE Toolkit 

8.0 (Module IBD, http://designcomputing.net/) and randomised within blocks using 

Microsoft Excel RANDBETWEEN list sorting function Supplementary Figure 1. 
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 Pathology – inoculum preparation, inoculation, incubation, and assessment 

Conidia of F. culmorum isolates Fc2037 and Fc2076 combined were grown on sterile 

barley kernels and harvested by Andrew Steed to a stock concentration of 2.5 x 106 

conidia per mL in water. Aliquots of 1.5 mL were stored at -20 oC until use. On the 

day of inoculation defrosted stocks were diluted 1:20, conidia: sterile distilled water, 

to a final concentration of approximately 1.25 x 105 conidia per mL and amended with 

Tween 20 (0.05%). 

Individual pots were selected for inoculation once three heads on each plant had 

reached mid-anthesis stage. Three dominant heads per plant were tagged and 

numbered for identification and tracking. Each plant was spray inoculated with c. 2 

mL of conidia solution using a 50 mL atomiser, focussed on dominant tillers. 

Inoculated plants were incubated in a raised humidity chamber for three days, and 

the inoculation/humidity treatment was repeated. Plants were then returned to a 

glasshouse bench, under standard 16hr conditions. 

 

Figure 2-1 Brachypodium tiller spray inculated with F. culmorum conidial suspension. To 
illustrate the saturation of floral tissues during inoculation. 
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Six inoculation batches were used to span the developmental range of flowering 

within the diverse accessions (Table 2.1). Batches were colour coded by tagging for 

ease of scoring (Table 2.1). Accessions BdTR7a and ABR8 did not flower in time for 

inoculation. The initial inoculation of the first two batches appeared to have failed, 

with no disease symptoms observed after 10 days; an additional inoculation was 

applied. 

Table 2.1 Details of inoculation batches for glasshouse characterisation trial of diverse Brachypodium 
accessions, in chronological order. *Inoculations failed, an extra inoculation was applied 

Order 
Batch 

identifier 

Number of 

accessions 

Inoculation date 

First Second Third 

1 A 19 07 Feb* 10 Feb 21 Feb 

2 B 25 10 Feb* 13 Feb 21 Feb 

3 C 27 14 Feb 17 Feb - 

4 D 9 21 Feb 24 Feb - 

5 E 5 24 Feb 28 Feb - 

6 F 6 28 Feb 03 Mar - 

 

Three infected heads for each plant, tagged with a number for tracking, were scored 

for percentage of infected florets/floral tissue at three time intervals (4, 6 and 10 days 

post inoculation (dpi) for batches A and B; 6-, 10- and 14- dpi for batches C-F). 

 

 Phenotyping of developmental and morphological traits 

Heading date was scored as the emergence date of the immature primary tiller from 

the leaf sheath per plant, recorded daily. Height at flowering, excluding awns, of the 

primary, secondary and tertiary tillers was measured from soil level ten days post mid-

anthesis, and once senesced, for all experiments. Presence and absence of lemma 

trichomes on source seed was recorded by eye and confirmed at flowering. 
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 Data analysis and statistics 

Genstat (19th edition) was used to carry out statistical analyses on all glasshouse 

experimental data. Visual analysis of residues was undertaken for all analyses to 

assess normality of data. FHB percentage 10 dpi data were log10 transformed then 

analysed using linear mixed model (REML) with inoculation batch as a fixed effect, 

and tray, pot and rep nested within the random effects model together with accession. 

Best linear unbiased predicted (BLUP) means were generated from the model for 

accessions overall and within inoculation batches. Additionally, area under disease 

progress curve (AUDPC) was calculated across three time points for each head 

scored. REML analysis was carried out as for 10 dpi FHB, using the same statistical 

model. For presentation, predicted means were back transformed to the original 

scales. 

Height and flowering time data were analysed using generalised linear modelling 

(GLM), with replicate, tray and accession included within the statistical model. 

Residuals were visualised to assess normality, and predicted means were calculated 

for each accession. 

 

2.2.2 Further characterisation of a subset of Bd accessions under controlled 

conditions 

 Plant lines and growth conditions 

A subset of accessions was selected for further characterisation under controlled 

environment conditions; Bd21, Bd21-3, Bd3-1, Bd2-3, Koz-3, ABR6, Bd1-1, Bd18-1, 

Foz-1, Luc-1. Plants were prepared as described above (Chapter 2.2.1.1) until after 

vernalisation, whereby they were maintained at 22 oC, 70 % relative humidity and 

16hr/8hr light/dark cycle in a controlled environment cabinet. Preparation of plants 

was staggered to synchronise mid-anthesis based on flowering time of accessions 
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under 16hr glasshouse conditions (Winter-Spring 2017); two germination batches 

were prepared, separated by one week. Batch one contained ABR6, Bd21, Foz-1, 

Bd1-1, Luc-1. Batch two, containing all other lines (Bd21-3, Bd3-1, Bd2-3, Koz-3, Bd1-

1, Bd18-1) failed due to loss of plants caused by root rot, therefore no data is available 

for accessions that were exclusively in batch two. 

 

 Pathology – inoculum preparation, inoculation, incubation, and assessment 

Spray inoculation was performed at approximately mid-anthesis with F. culmorum 

conidia at a concentration of 1x105 conidia per mL amended to 0.05 % Tween 20 

prepared as described above. Trays were sprayed at a rate of c. 2 mL per plant and 

whole trays bagged for 3 days to raise humidity to promote infection. FHB was scored 

for three tagged predominant tillers after 11- and 17- dpi; total number of infected 

(brown discolouration or bleached) and uninfected florets were counted, and the 

percentage of infected florets calculated per head scored. 

 

 Data analysis 

Genstat (19th edition) was used for statistical analyses of CER data. Visual analysis 

of residues was undertaken to assess normality of data. Score dates (11- and 17- 

dpi) were analysed separately using GLM following log10 transformation. Predicted 

means and standard errors were generated for accessions along with t-probability of 

pairwise differences using Bonferroni method. For presentation, predicted means 

were back transformed to the original scale. 
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2.3 Results 

2.3.1 Characterisation of Bd accessions under glasshouse conditions 

 Fusarium head blight susceptibility 

Variation in FHB was characterised within a panel of Bd accessions using a spray 

inoculation experiment under glasshouse conditions (Winter 2016-Spring 2017, JIC). 

Sprayed heads were scored for FHB symptoms at 4-, 6-, 10- and 14- dpi on a modified 

percentage scale. 

Browning of floral tissues was the predominant symptom of infection with FHB, first 

visible on lemma tissues from 4 dpi and demonstrated by sample Bd spike images in 

Figure 2-2. In some spikes, symptoms were limited to within a single floret and did 

not spread over time, whilst most plants displayed spread of browning symptoms but 

only above the point of infection. Bleaching symptoms occurred in the minority of 

infected heads. Figure 2-2b shows browning and bleaching of individual florets within 

a spikelet; it was common for browning symptoms to progress to bleaching locally 

between 6-10 dpi score dates. Spread of FHB symptoms was always restricted to 

individual spikelets, therefore a single infecting spore could not lead to infection of a 

whole spike, as Bd morphology is more similar to rice and oats than to wheat in this 

sense. Notably, the accession Jer-1 developed small brown circular lesions generally 

restricted to lower florets that did not spread over time (Figure 2-2d). There were no 

evident symptoms of infection in any other tissues, namely leaves and roots. 
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FHB susceptibility was scored on an adaptive percentage scale for the number of 

florets with browning or bleaching symptoms. Symptoms were scored across multiple 

days post inoculation (dpi) and initially analysed separately for each inoculation batch. 

Results presented subsequently are simplified and presented either as the single 

score date 10 dpi, or as AUDPC as a measure for spread of FBH symptoms over 

time. Mean FHB susceptibility was shown to vary significantly between the six 

inoculation batches (F(5,179.8)=80.07, p-value<0.001). Figure 2-3 presents the mean 

percentage FHB susceptibility for each inoculation batch at 10 dpi, together with the 

mean FHB scores for accessions within the batch. Each sequential inoculation batch 

had a lower mean susceptibility score than the previous (in sequential order, 46.51, 

23.35, 11.34, 5.17, 3.29 & 2.51). There are more data points overall than accessions 

due to some accessions being present across multiple inoculation batches; for 

example, Koz-5 spans batches A, B and C, with mean scores of 26.01, 18.28 and 

3.37 % respectively. 

There was evidence that FHB susceptibility of accessions varied significantly at a 

95% significance level within inoculation batches (F(53,243.0)=4.40, p-value<0.001; 

Figure 2-3, Figure 2-4). There was greatest range in FHB scores within the inoculation 

Figure 2-2 Example Fusarium infection phenotypes from accessions characterised under glasshouse 
conditions. Accessions left-right: ABR6, ABR7, BdTR12C and Jer-1. D, arrow highlights non-spreading 
browning lesion. 

A       B       C             D 
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batch C, which contained the largest number of accessions. Variation of mean FHB 

scores within batches is greatest in earlier inoculated batches; a small proportion of 

extreme early flowering accessions (Bd21-3, Bd3-1, Bd21, Bis1 and Bd2-3) have a 

mean score greater than 60 % in batch A, perhaps contributing the greatly inflated 

mean FHB for batch A. Most accessions were present only in a single inoculation 

batch and therefore inoculation batch could not be suitably applied as a blocking 

factor to account for these differences for statistical analysis. 

 

 

Figure 2-3 Variation in mean FHB susceptibility between inoculation batches for 2017 glasshouse spray 
experiment. Bars = Mean FHB percentage score at 10 dpi for each inoculation batch in date order. Points 
= Mean FHB score per accession, within an inoculation batch. Number of replicate plants per accession 
varied between batch depending on the number at correct developmental stage. 
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Statistical analysis using linear mixed models was undertaken on LOGIT transformed 

AUDPC FHB data to obtain adjusted mean FHB scores for each Bd accession 

characterised (Figure 2-5). Statistically adjusted FHB susceptibility scores ranged 

from 4.23 % (SE= +0.74, -0.65) for the line Jer-1 to 18.50 % (SE=+3.08,-2.66) for 

Bd21-3 (Figure 2-5), whereas raw mean FHB scores for these lines were 3.50 % 

(±1.74) and 91.25 % (±2.02) respectively. These values demonstrate a typical 

contraction in scale described for the output of linear mixed model analyses. 

Accessions Bd21 and Bd21-3 are significantly more susceptible than the majority of 

others; both of these lines are parents of mapping populations. 

Figure 2-4 Mean FHB susceptibility (10 dpi) of Bd diverse accessions within inoculation batches of 2017 
glasshouse experiment. Error bars = ± 1 SE 
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 Is height correlated with FHB susceptibility in Bd? 

In wheat, typically there is a negative association in the field between height and 

susceptibility to FHB. Therefore, the relationship between height and susceptibility to 

FHB was examined in the panel of diverse Bd accessions. Within the glasshouse 

experiment previously described, height of each plant was measured at the point of 

FHB scoring and later following senescence at mature height (Figure 2-6). No 

evidence for significant difference between these two heights was found (p-value= 

0.68), therefore for the purposes of analysis are considered equivalent, and only 

mature height data is shown. 

There was extensive variation in mature height of Bd accessions (Figure 2-7), with 

lines shown to differ significantly (p-value<0.001). Heights of primary spike at maturity 

ranged from 34.88 cm (SE=2.04) for Bd21-3 to 59.50 cm (SE=2.04) for Mig3, a 

difference of 24.62 cm. 

5cm 

Figure 2-6 Brachypodium distachyon accessions vary in height, example photographs (Left = Adi-9, 
Right=BdTR13C) 
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A negative correlation was identified between height at flowering and mean FHB 

score (AUDPC) within the natural Bd accessions characterised (Figure 2-8); the taller 

the plant the less susceptible to FHB upon inoculation. Six accessions (BdTR9K, 

BdTR13B, BdTR13C, Bd2-3, Bd3-1, and Bis-1) showed a greater susceptibility than 

predicted under this statistical trend (Figure 2-8a). No correlations were identified 

between mature height and FHB susceptibility within any individual inoculation batch 

(Figure 2-8b). 

Figure 2-8 Correlation between height at flowering and mean FHB score (AUDPC, BLUPs) for a panel 
of 54 Bd accessions characterised under glasshouse conditions. A, Trendline prepared using Loess 
method, grey area = 95 % confidence interval, B, Points coloured by inoculation batch, each with trend 
line prepared using Linear Model method. There are >1 data point for accessions in multiple batches.  

A 

B 
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 Flowering time vs FHB 

To allow the examination of flowering time-FHB relationship, the panel of Bd 

accessions was characterised for flowering time following a six-week period of 

vernalisation, under glasshouse conditions (16-hour daylength). The date of 

emergence of the first immature floral spike was recorded for each replicate plant 

(Figure 2-9). 

Flowering time was shown to be significantly different between accessions (p<0.001). 

The earliest flowering accessions were Bd21-3 and Bd21, with mean emergence of 

19.62 and 20.5 days respectively (SE=0.59). Conversely, the accession flowering 

latest was ARB4 with a mean emergence time of 41.43 days post vernalisation (SE 

=0.63). This difference of just under 22 days, represents a differential of 211 % 

between the early- and late- flowering extremes of Bd21-3 and ABR4. 

Within the glasshouse experiment, the earlier the flowering time of an accession, the 

higher the susceptibility to FHB; susceptibility declined exponentially with later 

flowering (Figure 2-10). Spread of the heading date – FHB relationship curve 

observed within the central flowering-time period is a result of the greater 

representation within the population scored; there are a limited number of accessions 

showing extreme flowering times, either early or late (Figure 2-10). Mature height and 

flowering time of the Bd accessions were also found to be positively correlated (Figure 

2-11). 
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The flowering time-FHB correlation is similar to the height-FHB correlation; it is not 

clear the causative extent of influence each of these factors may be having on 

susceptibility to FHB. This similarity is demonstrated by visualising the correlation 

between flowering time – height, presented in Figure 2-11. 

Figure 2-10 Correlation between flowering time and FHB susceptibility for a panel of 54 Bd accessions 
characterised under glasshouse conditions. Flowering time is presented as the mean number of days 
post vernalisation that emergence of immature floral spikes was observed, per accession. Trendline 
prepared using Loess method, grey area = 95 % confidence interval 

Figure 2-11 Correlation between mature height (of primary spike) and flowering time of a panel of 54 
Bd accessions under glasshouse conditions (16hr day length, 6 weeks vernalisation). Trendline 
prepared using Loess method, grey area = 95% confidence interval. 
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 FHB and trichomes 

Previous studies have highlighted trichomes microscopically as potential points of 

infection for F. graminearum in Bd, maize and barley (Peraldi et al., 2011, Imboden 

et al., 2018, Nguyen et al., 2016b). Under this hypothesis, susceptibility of 

Brachypodium accessions lacking lemma trichomes would possess type I resistance 

to initial infection relative to trichomed lines. 

Lemma trichome presence/absence was recorded for the panel of 54 Bd accessions. 

A clear trichome presence/absence variation was observed on the lemmas between 

Bd accessions (Figure 2-12). 

 

 

FHB susceptibility was shown to be associated with trichome presence; accessions 

lacking lemma trichomes were shown on average to be more resistant to FHB than 

accessions with lemma trichomes present (means=6.02 and 26.95 respectively, p-

value<0.001). This difference observed based upon raw arithmetic mean FHB 

susceptibility scores was diminished following application of mixed modelling 

Figure 2-12 Photographs of Bd floral heads differing in lemma trichome phenotype. A, Bd21, B, ABR6 
Taken by Phil Robinson (JIC photography service). 
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statistical analysis that adjusted predicted means (Figure 2-13). The mean FHB 

difference observed between trichomed and non-trichomed accessions may reflect 

flowering time, as lemma trichome phenotype is confounded by this factor; the mean 

difference between trichome phenotypes is greatly reduced in FHB susceptibility 

values that account for flowering time Figure 2-13b. 

 

 

For Brachypan accessions only (48 of the 54 tested), phenotype is highlighted 

according to phylogeny (Figure 2-14). Trichome phenotype was largely associated 

with population structure, the patterns of which were suggestive of three 

separate/independent evolution events resulting in the disruption of functional 

trichome development spatially limited to lemma tissue. These events, highlighted in 

Figure 2-14, are thought to be located at the divergence of the ‘extreme-delayed 

flowering’ clade, the divergence of the clade of accessions of Spanish origin (plus 

Bd18-1), and divergence of the single accession Koz-3, of Turkish origin. 

Figure 2-13 FHB susceptibility by lemma trichome phenotype of Brachypodium distachyon panel of 
diverse accessions. Means presented as bars, individual accession means presented as points within 
each lemma trichome phenotype. Data: A, raw arithmetic means of FHB. B, FHB AUDPC BLUP, adjusted 
by REML analysis. 

A B 
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Figure 2-14. Lemma trichome absence overlaid on phylogeny of Brachypan accessions. Adapted from 
Brachypan. Crossed through accessions (red) were not phenotyped due to being unobtainable. 
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2.3.2 Further characterisation of a subset of Bd accessions under controlled 

conditions 

For the validation of the glasshouse experiment, and more detailed comparison of a 

subset of Bd accessions, characterisation under controlled environment room 

conditions was undertaken. The aim of this experiment was to identify differential FHB 

susceptibility between accessions that were parental lines in a panel of available Bd 

mapping populations (Bd21 x Bd1-1, ABR6 x Bd21 and Foz-1 x Luc-1). 

Germination of accessions was staggered according to glasshouse flowering time 

data (Figure 2-9), aiming to synchronise occurrence of mid-anthesis between the 

subset of accessions. Bd21, an accession shown to be hyper-susceptible, was sown 

across a range of dates as an internal control. This was successful overall, however 

differences in photoperiod and light levels of the CER (compared to the glasshouse) 

led to further variation in flowering time manifesting in non-concurrent mid-anthesis; 

five accessions flowered in synchronisation and were inoculated together in a single 

inoculation batch. Accessions that flowered more than one week later were excluded 

from the experiment. All plants from some lines (Bd21-3, Bd2-3, Bd3-1, Jer-1, Bd18-

1) were heavily affected by root rot and therefore could not be scored for FHB and 

included in the data presented. Correlations between height, flowering time and FHB 

were not calculated due to too few accessions being characterised. Symptoms of 

FHB infection were scored by the counting of symptomatic vs asymptomatic florets, 

reported as a percentage of total florets. 

Infection levels for the CER experiment were high; the most susceptible accession 

was Bd21, with 46.0 % of florets infected at 11 dpi (Figure 2-15). Accessions Bd1-1 

(mean= 30.7 %, p=0.018), ABR6 (mean= 14.7 %, p<0.001) and Foz-1 (mean= 19.5 

%, p-value<0.001) were significantly less susceptible than Bd21 at 11 dpi. Luc-1 

(mean=39.5 %, p-value=0.334) was not significantly different in FHB susceptibility to 

Bd21. 
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Three mapping populations exist with parental lines included among the five 

accessions shown in Figure 2-15, Bd21 x Bd1-1, ABR6 x Bd21 and Foz-1 x Luc-1. 

FHB susceptibility varied significantly after 11 dpi for all three populations: Bd21 x 

Bd1-1 (means=46.0 and 30.7 % respectively, p-value=0.018), ABR6 x Bd21 

(means=14.7 and 46.0 % respectively, p-value<0.001) and Foz-1 x Luc-1 (19.5 and 

39.5 % respectively, p-value<0.001). 

Of the Bd RIL populations available for characterisation, ABR6 x Bd21 showed the 

greatest parental differential in FHB susceptibility across both time points scored 

Figure 2-16. Bd21 showed a greater percentage (46 %) of necrotic lesions and 

bleaching than ABR6 (14.7 %, p-value<0.001). ABR6 and Bd21 also vary in lemma 

trichome phenotype. The difference in FHB susceptibility between ABR6 and Bd21 

was maintained at 17 dpi (Figure 2-16). FHB symptoms in Bd21 did not progress 

between 11- and 17- dpi (means =46.0 and 45.3 % respectively, p-value=0.911). FHB 

disease symptoms ABR6 progressed between 11- and 17- dpi but this increase was 

not statistically significant (means=14.7 and 21.1 % respectively, p-value=0.032). 

This significant differential in FHB is the first known to be identified between Bd RIL 

parental lines and provided a promising opportunity to characterise any contributing 

resistance or susceptibility factors. 
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Figure 2-15 Percentage of infected florets for five Bd accessions after 11dpi with F.culmorum spray 
inoculation, ordered by relatedness. Error bars=±1 SE. Below: mapping populations available with 
parents, Bd1-1, Bd21, ABR6, Luc-1 and Foz-1 arranged to span dendrogram (arm size not 
representative of genetic distance). 
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Figure 2-16. ABR6 and Bd21 differential FHB susceptibilty under controlled conditions a, Photograph of 
ABR6 (left) and Bd21 (right) infected with FHB after 17 dpi, and disease scores at 11- and 17- dpi. Bd21 
shows greater coverage of bleaching and lesions. b: 11 dpi and 17 dpi, GLM predicted means cabinet 
FHB, Error bars= ±1 SE. 
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Foz-1 and Luc-1 also differed significantly in FHB susceptibility at both 11- and 17-

dpi (Figure 2-17). Luc-1 had significantly higher FHB symptom coverage than Foz-1 

at both 11- (18.24 and 39.35 %, p-value <0.001) and 17- dpi (29.77 and 56.4 %, p-

value <0.001 The difference in susceptibility between Foz-1 and Luc-1 increased 

slightly over time from 21.11 % at 11 dpi to 26.63 % 17 dpi. Both accessions lack 

trichomes, so the difference in susceptibility must be independent from trichome 

phenotype. 
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Figure 2-17 Foz-1 x Luc-1 differential FHB infection when characterised under controlled conditions, 
scored at 11- and 17- dpi. Error bars = ± 1 SE. 
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2.4 Discussion 

A panel of 54 diverse Bd accessions was characterised under glasshouse conditions 

for susceptibility to FHB, height, flowering time, and lemma trichome phenotype. 

Variation was found within all traits assessed, and negative correlations between FHB 

and both height and flowering time were observed. Confounding variation in flowering 

time meant that conclusions that could be made from the glasshouse experiment 

alone were extremely limited. Most accessions characterised in the glasshouse 

experiment were sequenced as part of the Brachypan project (Gordon et al., 2017), 

the data available from which could mediate fine-scale genotype by phenotype 

relationships to be determined and compared in later work. 

The main driver behind the selection of accessions for more detailed characterisation 

was the availability of mapping populations from the Bd research community; the 

direction and the aim of the overall project, once differential susceptibility was 

identified, was to exploit these phenotypic differences for the identification of linked 

genetic loci. Therefore, subsequent characterisation of a subset of lines was 

undertaken under controlled conditions. The ABR6 x Bd21 population was identified 

to be the best candidate population for the fulfilment of these requirements. These 

parental accessions differed significantly in FHB susceptibility in both the glasshouse 

and CER experiments. 

 

2.4.1 Natural variation of FHB susceptibility in Bd 

Peraldi et al. (2011) compared and characterised variation between Bd21 and Bd3-1 

compatible interactions with FHB. More extensive variation was anticipated across a 

wider panel of accessions. Symptoms of infection observed within the glasshouse 

experiment, browning and bleaching spreading above infection points, were 

comparable to those described by (Peraldi et al., 2011), who highlighted the 
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similarities that are shared with symptoms of infection in wheat (Parry et al., 1995). 

Overall, other than in the quantitative extent, symptoms did not differ extensively 

across the accessions. Jer-1 was the predominant exception; extremely localised, 

small brown spots of infected lemma tissue, developed soon after inoculation with no 

development over time, with the complete absence of bleaching (Figure 2-2). These 

lesions looked typical of a hypersensitive, extreme resistance response of plant 

defence (Morel and Dangl, 1997). This is suggestive of a strong resistance response 

resulting in the extreme limitation of spread before infection even reaches the rachilla 

and spreads to adjacent florets within a spikelet. 

Su et al. (2018a) published an FHB characterisation study using a similar germplasm 

resource after the completion of the experiments presented in this chapter, but before 

the submission of thesis. Only a few accessions overlap between the work of Su et 

al. (2018a), and the experiments described in this chapter, and the data is not 

comparable as widescale quantitative susceptibility scoring was not included for any 

lines; only example images are included for a subset of lines, three of which are 

present in my set of accessions. The focus of their study was on type II resistance, 

so plants were maintained at low humidity, whereas I wanted to gain insight into 

overall resistance levels and identify potent sources of resistance through achieving 

the maximum infection levels possible. 

 

2.4.2 FHB and Flowering time 

Flowering time varied extremely widely in the set of diverse accessions; accessions 

Tek-2 and Tek-4 had to be excluded from the experiment as they had not flowered 

even 10 weeks after vernalisation, with the earliest flowering within three weeks. All 

Bd accessions received six weeks of vernalisation which may not have been sufficient 

for Tek-2 and Tek-4. Flowering time is a highly complex trait, with vernalisation and 
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photoperiod mainly controlling development prior to anthesis, in response to 

environmental stimuli (Kamran et al., 2014). Orthologues of key wheat and barley 

VERNALIZATION (VRN) and FLOWERING LOCUS T (FT) genes have conserved 

roles in Bd (Ream et al., 2014). Woods et al. (2017b) further characterised 

vernalisation requirement in Bd, identifying an additional factor upstream of VRN1, 

RERESSOR OF VERNALIZATION 1 (RVR1). Natural variation in flowering time and 

vernalisation response has previously been characterised, on many of the same 

accessions that I used in this chapter (Schwartz et al., 2010, Ream et al., 2014). Two 

biparental Bd populations, Bd21 x Bd1-1, and ABR6 x Bd21, have been used to 

identify genetic loci associated with flowering time, both confirming conserved control 

of VRN genes, and identifying additional quantitative trait loci suggesting additional 

complexity (Woods et al., 2017a, Bettgenhaeuser et al., 2017). 

FHB infection of floral tissues is highly dependent on floral development stage in 

wheat, with susceptibility to infection peaking at mid anthesis following the extrusion 

of anthers, but rapidly declining thereafter (Goswami and Kistler, 2004, Sutton, 1982, 

Parry et al., 1995). The relationship with FHB and flowering time is typically highly 

complex and relates to how conducive the environmental conditions are to infection 

at varying times of mid-anthesis, most importantly humidity and temperature. Due to 

extensive variation in flowering time between the Bd accessions, it was necessary to 

separate inoculations of accessions across batches (labelled A to F, A being the first 

and F being the last), depending on which plants had reached mid-anthesis on a given 

inoculation day, and therefore introducing additional variation. This resulted in some 

accessions being split across multiple inoculation batches. The first inoculation of 

batch A (earliest) failed due to low humidity and was repeated, therefore the flowering 

stage of these plants was advanced relative to other inoculation batches. It is 

unavoidable under glasshouse conditions that other factors, particularly humidity and 

temperature, are not constant between the batches. However, such a continuous 
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decreasing trend, reflected in the negative correlation between flowering time and 

FHB, is unlikely to be explained by random variation of these factors. Some 

accessions are present in two or more inoculation batches and provide evidence that 

the association between inoculation batch and FHB susceptibility may instead be an 

artefact of the experiment, rather than a genuine reflection of the effect of flowering 

time. It is possible that inoculum viability decreased over time, and over batches, 

resulting in the lower disease levels of the later inoculation batches. Within the three 

inoculation batches containing the largest number of accessions (A, B and C), large 

differences in FHB susceptibility were observed; the flowering time effect is therefore 

most probably an artefact of the experiment. Mean FHB scores for Koz-5 decreased 

across three sequential inoculation batches, which suggests a decline in mean FHB 

score due to experimental conditions independent of flowering time of an accession 

(Figure 2-4). This is highly suggestive that the correlation between susceptibility and 

flowering time is at least in part an artefact of the experimental conditions. Flowering 

time data obtained from this experiment can be used to synchronise flowering in later 

experiments, to account for and avoid these limiting problems. 

Flowering time alone is linked with population structure, with accessions in the clades 

of Spanish origin and ‘extreme-delayed flowering’ taking longer to flower, and 

requiring vernalisation, compared to most accessions of Turkish origin including 

Bd21, the reference accession. Higher confidence FHB scores for individual 

accessions would be required before investigating whether population structure is 

associated with susceptibility to FHB. Under glasshouse conditions, with 6 weeks of 

vernalisation, Mon3 was amongst the most rapid flowering accessions. However, 

within the Brachypan project, Mon3 is classified with the extreme-delayed flowering 

clade. Other accessions classified into this clade, Bd1-1, ABR7, Tek-2 and Tek-4 

were some of the latest flowering in my experiment, and Bd1-1 in both the glasshouse 

and CER 20-hour conditions. It is possible that the Mon3 seed held at JIC and used 
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for our experiment was genetically distinct from that sequenced for the Brachypan-

genome project, and therefore the reference sequence cannot safely be assumed to 

be relevant for further work. 

Overall, there are some conclusions that can be made from the glasshouse 

experiment (Winter-Spring 2017). There is evidence for variation in susceptibility to 

FHB within the 54 Bd accessions within the diversity panel. Many confounding factors 

in the glasshouse experimental setup limit the power of any conclusions, specifically 

for the direct comparisons between individual accessions that cannot be determined 

outside of the confounds of an individual inoculation batch. Therefore, these 

glasshouse data are insufficient alone for the assignment of relative FHB 

susceptibility of accessions, and by extension the identification of Bd mapping 

populations for the purpose of elucidating genetic factors influencing susceptibility to 

FHB. Replication of characterisation of the whole set of accessions, staggering 

germination and potting to standardise flowering time to best attempt to remove 

flowering time as a confounding factor, was setup as a glasshouse experiment but 

unfortunately this failed most likely due to the extreme heat of the summer glasshouse 

(2017) resulting in failure of Fusarium infection. 

 

2.4.3 FHB and Height  

Accessions varied dramatically in height, with the tallest accession, Mig3, almost 

double the height of the shortest, Bd21 and Bd21-3. Extensive variation in height is 

not unexpected given the highly diverse nature of the germplasm collection, and Bd 

being a non-cultivated species, not subject to breeder selection. 

Plant height in modern wheat varieties is much more limited, with semi-dwarf varieties 

dramatically reduced in height compared to the genetic diversity existing in landraces. 

The inclusion of reduced height (Rht) genes in hexaploid wheat formed the basis of 
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the Green Revolution, breaking a historic positive correlation of plant height with grain 

yields, and allowing for increased fertiliser application with reduced risk of lodging, for 

an overall rapid increase of grain yields. 

Both height and flowering-time traits are reported to be associated with FHB in wheat 

in the field, so the evidence provided within this experiment furthers work by (Peraldi 

et al., 2011) examining the suitability of Bd as a model pathosystem for the wheat-

FHB interaction. Height was negatively correlated with FHB susceptibility in the 

accessions characterised under glasshouse conditions. It is often assumed that the 

effect of height is due to differences in microclimate with humidity levels around heads 

being greater in shorter plants. However, as the experiments used the artificial 

conditions of inoculation and incubation in humidity chambers, height should not have 

had a direct effect on FHB; it is much more likely a consequence of the height-

flowering time correlation, and interaction with population structure. This is supported 

by the evidence provided by Figure 2-8b, which shows no correlation between height 

and FHB score within inoculation batches, therefore does not support a direct 

pleiotropic effect of height on FHB independent of environment. 

Alternatively, pleiotropic effects of genes controlling height, such as phytohormone 

related genes, could influence the Bd-Fusarium interaction. Susceptibility to FHB at 

initial infection is associated with the Rht-B1b and Rht-D1b semi-dwarfing alleles in 

wheat (Srinivasachary et al., 2008a). For example, Saville et al. (2012) characterised 

the effects of Rht DELLA gain- and loss-of function in barley in relation to susceptibility 

to FHB and obligate biotrophic pathogens. The genetic nature of height differences 

within the Bd diversity panel is unknown, but if it is related to gibberellic acid signalling 

and metabolism, as may be expected, then this could account for the negative 

correlation between height and FHB. Saville et al. (2012) also discuss the effect that 

DELLA proteins have on cell death, and as FHB is a hemi-biotrophic pathogen with a 

necrotrophic stage that derives nutrients from dead cells, this could also plausibly 
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affect Fusarium-host interactions. Such trade-offs between resistance and crop 

performance often limit applications within a breeding program for crop improvement 

due to costs that would result from reduced marketability (Brown, 2002). 

 

2.4.4 FHB and Trichomes 

Presence – absence variation in lemma trichomes was widespread in the accessions 

characterised and shown to be closely linked to population structure. Lemma trichome 

absence is associated with accessions in clades of Spanish origin and ‘extreme-

delayed flowering’, with the exception of Koz-3, as classified by (Gordon et al., 2017). 

It is possible from this population structure – phenotype overlay that three 

independent loss-of-function events occurred to result in the loss of trichomes in these 

three distinct population groups. Accessions that lacked lemma trichomes were on 

average more resistant to FHB than those with lemma trichomes present. 

Relationship between FHB and trichome could not be examined within inoculation 

batches due to confounding of trichomes and flowering time, for example all 

accessions in the earliest flowering inoculation batch possess trichomes and all 

accessions in the final inoculation batch lack trichomes. Reports of physical 

association of infecting Fusarium hyphae with trichomes have been made across 

Brachypodium and cereal species (Peraldi et al., 2011, Imboden et al., 2018, Jansen 

et al., 2005, Liu and Liu, 2016, Wang et al., 2015, Nguyen et al., 2016a). Accessions 

that vary in both lemma trichome phenotype, and FHB susceptibility provide an 

opportunity to explore genetic factors that may link the two traits. However, the 

glasshouse data alone is not of sufficient quality to assign FHB phenotypes of 

individual lines, especially as trichome phenotype is confounded within inoculation 

batches due to population structure. 
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2.4.5 Further characterisation of a subset of Bd accessions under controlled 

conditions 

Following the uncertainty of results from the confounding factors in the glasshouse 

experiments, a subset of accessions was selected to be characterised under 

controlled conditions. These accessions were selected due to being parents of 

publicly available mapping populations. Therefore, characterisation under controlled 

conditions could serve two purposes, firstly to assess the quality of glasshouse 

experiment data, and secondly to identify mapping populations that could be used to 

identify genetic loci associated with FHB, and other traits. 

Characterisation under controlled conditions showed maintenance of high 

susceptibility in Bd21, in line with the glasshouse assay, whereas late flowering 

accessions Luc-1 and Bd1-1, showed dramatically higher susceptibility compared to 

the glasshouse experiment whilst being significantly reduced compared to Bd21. This 

suggests that issues with reduced disease levels over time were overcome in this 

experiment compared to the glasshouse experiment. 

Glasshouse flowering time data was used to stagger preparation of plant material, 

which was generally successful in synchronising flowering and mid anthesis therefore 

allowing fewer inoculation batches. Deviation from predicted flowering time, likely 

resulting from the daylength and light intensity differing between the experiments, 

resulted in the grouping of accessions into two batches. Variation in plant age 

presented a complication in scoring of FHB symptoms with senescence in rapid 

flowering lines masking both browning and bleaching symptoms at later score dates. 

Data could not be presented for all lines as some had to be excluded due to root rot 

infection or flowering earlier than expected. A different scoring method was 

developed, compared to the glasshouse experiment, that accounted for variation in 

floret and spikelet number between the accessions. It worked well for this experiment, 
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but was significantly more time-consuming, restricting it’s use to small trials with few 

lines. 

Two populations stood out with parents differing significantly in FHB susceptibility, 

ABR6 x Bd21 and Foz-1 x Luc-1. Bettgenhaeuser et al. (2018) have since published 

the utilisation of Foz-1 x Luc-1 and ABR6 x Bd21 to investigate resistance to Puccinia 

striiformis, stripe rust. 

Foz-1 and Luc-1, maternal and paternal parents of the mapping population 

respectively, were shown to differ significantly in FHB susceptibility at both 11- and 

17- dpi. The FHB difference increases marginally over time, but it remains unclear as 

to whether a Type I or Type II resistance or susceptibility is responsible for the 

differential FHB scores from this data. No significant difference in FHB susceptibility 

between Foz-1 and Luc-1 was detected in the glasshouse experiment, even when 

both accessions were present in the same inoculation batch. Perhaps the resistance 

or susceptibility is more environmentally sensitive and unstable. Both Foz-1 and Luc-1 

lack lemma trichomes, so any difference in susceptibility must be independent of this 

trait. Foz-1 and Luc-1 are very closely related relative to other accessions in the 

species, especially compared with the genetic distance between Bd21 x ABR6. At the 

time of lab work, Foz-1 x Luc-1 was in early stage of development and had not been 

sufficiently stabilised through single seed descent to utilise for mapping. At the time 

of writing, the population has been advanced to a stage that could be effectively 

utilised in future work. Characterisation of FHB in the Foz-1 x Luc-1 RIL population 

would likely explore a different source of resistance or susceptibility than the ABR6 x 

Bd21 population. 

Parental accessions for the ABR6 x Bd21 population had an FHB difference at 11- 

and 17- dpi. The difference between ABR6 and Bd21 at 17 dpi was less than at 11 

dpi; this suggests the primary factor is likely to be a Type I resistance, as over time 

the difference in susceptibility does not increase. ABR6 was also significantly more 
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resistant to FHB than Bd21 in the glasshouse experiment, showing that the difference 

is stable across environments. ABR6 and Bd21 also differ extensively in height and 

flowering time, and whilst ABR6 lacks lemma trichomes Bd21 has high trichome 

density on lemmas. Therefore, this population provides the perfect opportunity to 

investigate the genetic architecture of not only FHB, but the possible interactions of 

these loci with those of height and trichome. 
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3 Chapter 3 - Identification of QTL associated with 

FHB, height, and lemma trichome in ABR6 x Bd21 

 

3.1 Introduction 

Identification of quantitative trait loci (QTL) is the predominant course of research into 

genetic components of FHB in wheat due to the quantitative nature and environmental 

sensitivity of host responses (Steiner et al., 2017, Buerstmayr et al., 2009). Extensive 

independent studies have been undertaken in wheat, cumulatively resulting in the 

detection of more than 52 QTL, varying in repeatability and stability (Buerstmayr et 

al., 2009). 

Chapter 2 described the identification of three Bd RIL bi-parental populations with 

parents that differ in susceptibility to FHB. The population with the greatest differential 

in susceptibility between the parents was between Bd accessions Bd21, susceptible, 

and ABR6, resistant. These accessions were also shown to vary in a lemma trichome 

presence/absence phenotype, and height. A study by Bettgenhaeuser et al. (2017) 

utilised the ABR6 x Bd21 population to identify QTL associated with vernalisation and 

flowering time in Bd; an additional F8 genetic map was provided by the authors for 

use in this chapter. 

Method of inoculation typically determines resistance type under investigation; spray 

inoculation is used to analyse Type I, resistance to initial infection, and point 

inoculation is used to assess Type II, resistance to spread of infection within the head 

(Gosman et al., 2005, Draeger et al., 2007, Saville et al., 2012). To allow the 

investigation of the hypothesis that lemma trichomes provide a point of infection, 

spray inoculation is here applied for the analysis of Type I resistances in ABR6 x 

Bd21. 
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The aim of this chapter was to explore the following questions that were raised from 

the results of Chapter 2: firstly, could resistance or susceptibility factors be identified 

and localised in the ABR6 x Bd21 population, after which the relationships of FHB 

with height and lemma trichome phenotype (a possible mechanism of Type I 

resistance) could be examined. This chapter therefore describes the characterisation 

of the ABR6 x Bd21 F9 RIL population for Type I FHB susceptibility by spray 

inoculation, lemma trichome presence/absence and height, and the subsequent 

genetic mapping to identify associated genetic loci. 
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3.2 Methods 

3.2.1 Plant materials 

Seed of 104 lines from the ABR6 x Bd21 RIL population (F9) was obtained from Matt 

Moscou (TSL, Norwich). Plants were prepared as described in Chapter 2, grown 

within a CER maintained at 22 oC, 20/4 hr day/night length and 70 % relative humidity 

and planted two replicate RILs within a 7x7x7 cm pot. To synchronise flowering and 

mid-anthesis, progeny lines were grouped into staggered germination batches 

according to flowering time data obtained from Bettgenhaeuser et al. 2017, allowing 

for a single inoculation date to be applied to each replicate experiment. All preparation 

of plant material, for each germination batch, was carried out one day later than the 

previous germination batch. 

RILs were spatially arranged in an Alpha lattice design in order to best account for 

uncontrollable variation in conditions between trays and replicate experiments 

Supplementary Figure 2. Four replicate experiments were carried out between 

September 2017 and March 2018, each containing two replicate plants per line. Two 

replicate plants of each parent, ABR6 and Bd21, were included per tray. Replicate 

experiment four was excluded from analysis due to low infection levels. 

 

3.2.2 Fusarium inoculation 

F. culmorum conidial inoculum was prepared from the same batch as described in 

Chapter 2. Following the tagging of the predominant three tillers, plants were spray 

inoculated at mid-anthesis with F. culmorum conidia at an approximate concentration 

of 1x105 conidia per mL amended to 0.05 % Tween 20. Trays were sprayed at a rate 

of c. 2 mL per plant. Humidity chambers were placed over the inoculated plants, each 

covering two trays, and the benches flooded with water to maintain maximal humidity. 
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A repeat inoculation was carried out three days later, for all reps, and the humid 

chamber removed at the time of the first score date. 

 

3.2.3 Phenotyping 

FHB symptoms were scored as macroscopic browning of florets, partial or complete, 

or bleaching. Each tagged tiller was scored for FHB susceptibility on a modified 

percentage scale; heads were scored 1 for signs only of initial infection, 2 for 

spreading of browning symptoms within but not covering a floret, and 5 for a floret 

completely browned by infection. For heads with two or more browned or bleached 

florets, percentage cover of symptoms was approximately calculated to the nearest 5 

%. Area under disease progress curve (AUDPC) was calculated using the formula 

described by (Jeger and Viljanen-Rollinson, 2001). 

Height at flowering, excluding awns, of primary, secondary and tertiary tillers was 

measured from soil level ten days post mid-anthesis and following senescence, for 

all experiments. Presence and absence of lemma trichomes was recorded by eye at 

flowering for experiment plants and source seed. 

 

3.2.4 Data analysis, statistics, and QTL mapping 

ABR6 x Bd21 characterisation data was analysed using linear mixed modelling 

(REML) to obtain Best linear unbiased predictions (BLUP) across three replicate 

experiments (Genstat 21st edition). RIL (line) was included in the model as an effect 

in the fixed model along with germination batch and replicate experiment; rep, tray, 

pot, and plant were nested in the random model. Residuals were visually assessed 

for normality of the data, and independence from fitted values. FHB AUDPC values 

were transformed using the Logit+ formula: 
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𝐿𝑜𝑔𝑖𝑡 + 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛; = ln
𝑥 + 0.5

(𝑀𝑎𝑥𝐴𝑈𝐷𝑃𝐶 + 0.5) − 𝑥
 

Multiple comparisons between lines were made using Fisher’s unprotected LSD test. 

Predicted means (BLUP) obtained from analyses were back transformed (using 

Expit+ formula specific to AUDPC) to obtain predictors on the AUDPC scale for further 

analysis. All plots were generated using the ggplot2 package of R (3.5.2), in Rstudio 

(version 1.2.1335). 

𝐵𝑎𝑐𝑘𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛;  𝑥 =  𝑀𝑎𝑥𝐴𝑈𝐷𝑃𝐶 (
𝑒𝑥

1 + 𝑒𝑥) − 0.5 

Additionally, FHB data was analysed within replicate experiment using GLM (Genstat 

19th edition), and predicted means obtained for a score time point (data not shown). 

Height data was analysed using GLM using Genstat, with replicate experiment, tray 

and line included in the model. Predicted means were calculated and pairwise 

comparisons were performed using the RPAIR function, with parameters 

combinations=estimable, and adjustment=equal. 

QTL mapping was carried out using the R/QTL package (Broman et al., 2003) on R 

version 3.5.2 and Rstudio (version 1.2.1335), using an F8 genetic map and genotype 

files for 169 markers obtained from Bettgenhaeuser (Unpublished). Functions 

‘plotMap’, ‘plotRF’ and ‘plotMissing’ were used to interrogate the map. Interval 

mapping was performed using the ‘scanone’ function (SIM) and multiple imputation 

method (Sen and Churchill, 2001); FHB and height used parametric model, binary 

lemma trichome trait used non-parametric model, ‘np’. Conditional genotype 

probabilities were calculated using the Kosambi mapping function and genotypes 

simulated with fixed-step distance of 2 cM, error probability of 0.001% and 128 

simulation replicates. A permutation test was used to determine statistical 

significance of QTL, using 1000 permutations and α=0.05 (Churchill and Doerge, 
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1994). Composite interval mapping (CIM) was performed for FHB and trichome traits, 

using the ‘cim’ function using the imputation method, Kosambi map function and 

number of marker covariates = 5. A 95 % Bayes credible interval (BCI) was calculated 

for each QTL using the ‘bayesint’ function expanded to the closest flanking markers. 

Percentage variance explained (PVE) was calculated for all statistically significant 

QTL peaks, dependent on the number of lines in the map (n): 

𝑃𝑉𝐸 = (1 − 10
−2 × 𝐿𝑂𝐷

𝑛 ) × 100, 𝑛 = 117. 
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3.3 Results 

3.3.1 Characterisation of ABR6 x Bd21 F9 for FHB susceptibility 

A genetic mapping approach was undertaken to identify quantitative trait loci (QTL) 

associated with FHB (by spray inoculation), height and lemma trichome phenotype. 

Characterisation of the Bd ABR6 x Bd21 F9 RIL population was undertaken under 

controlled environment room (CER) conditions. Severity of FHB symptoms were 

scored on a modified percentage scale across a time course (6, 9, 13 and 17 dpi) for 

three spikes per plant and two plants per RIL, as described in Chapter 2. Susceptible 

symptoms were observed as macroscopic necrotic brown lesions that developed 

within a floret and subsequently spread to and within adjacent florets (Figure 3-1). 

Bleaching symptoms were observed in florets terminal to necrosis within a spikelet 

(Figure 3-1). Some spikes showed no symptoms of infection after 17 dpi. 

1 cm 

ABR6 (R) Bd21 (S) 

Disease severity Low High 

Figure 3-1 Representative FHB phenotypes for ABR6 x Bd21 RIL population (replicate experiment 1). 
Upper; typical symptoms of resistant parent, ABR6, and susceptible parent, Bd21. Lower; example 
disease scale composed of images of progeny lines, ranging from no visible symptoms, through 
increasing numbers of necrotic florets, to bleaching spikelets above infection points. 
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When analysed using REML there was evidence for differences in FHB susceptibility 

between the parental accessions at a 95 % significance level (F(104,699.4)=3.33, p-

value<0.001). The scale obtained for FHB susceptibility is derived from back-

transformation of predicted means based upon AUDPC FHB data. The parental 

difference in FHB susceptibility was maintained when screening the ABR6 x Bd21 F9 

population across all four replicate experiments; ABR6 (means = 8.04, 29.47, 45.25 

and 5.23) showed consistently significantly lower percentage FHB score than the 

hypersusceptible accession Bd21 (means = 16.56, 57.19, 85.25, 11.02) (Figure 3-2). 

Under the same model, there was evidence for substantial differences between 

replicate experiments (F(3,19.2)=10.40, p-value<0.001), suggesting a large effect of 

environmental variation. To account for this, replicate experiment was maintained in 

the statistical model as a nuisance blocking factor. Experiment 4 was excluded from 

the dataset for further analysis due to a lower infection rate and high proportion of 

missing values (Figure 3-2). 

 

 

Figure 3-2 Histogram, mean FHB susceptbility of ABR6 and Bd21 in four replicate experiments for the 

characterisation of ABR6 x Bd21 F8 RIL population. FHB susceptibility score = means of back-

transformed BLUPs obtained from analysis of AUDPC data. Error bars= ±1 SE. 
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Combined analysis of the three replicate experiments was undertaken to produce a 

single predicted mean FHB susceptibility score for each RIL, and the parent 

accessions ABR6 and Bd21 (Figure 3-3, Figure 3-4). Using REML analysis there was 

evidence for differences between RILs across the three replicate experiments, at a 

95 % significance threshold (F(104,699.4)=3.33, p-value<0.001). Bd21 was 

significantly more susceptible than ABR6 (FHB scores, 31.60 and 15.78 respectively, 

p-value<0.001) across the three experiments average (Figure 3-4). 

Twenty-nine out of 104 accessions (proportionally 28 %) were more resistant than the 

resistant parent ABR6. Of these, two lines, 24 and 100 were significantly more 

resistant than ABR6, with scores of 4.95 and 5.52 respectively (p-values = 0.0245 

and 0.0369 respectively). Thirty out of 104 accessions (proportion 29 %) had greater 

susceptibility than the susceptible parent, Bd21, with three accessions, 5, 88 and 51 

significantly more susceptible than Bd21 (p-values =0.439, 0.0371 and 0.435). RIL 

51 showed the greatest susceptibility with a score of 58.61 (p-value=0.435). The 

remaining 45 lines showed susceptibility intermediate between the parents (43 %). 

The distribution in the range of FHB susceptibility of the population RILs is typical of 

a trait under transgressive segregation with multiple genes contributing to the 

phenotype. 
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Figure 3-3 FHB distribution of 104 ABR6 x Bd21 RILs of combined AUDPC data from three replicate 
experiments (1-3, 4 excluded). Mean score highlighted by dashed line. 
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3.3.2 Height distribution, and correlation with FHB 

Height was measured at maturity for the RILs in the ABR6 x Bd21 population; height 

ranged from 14.23 cm for RIL 126 to 32.45 cm for RIL 141 (Figure 3-5). Mean height 

in the population was 25.16 cm (SE=3.00). Height of the parents differed significantly 

but marginally compared to the variation identified in Chapter 2 (Bd21 mean=25.42, 

ABR6 mean=27.78, p-value=0.005). No significant correlation was found between 

height and FHB susceptibility for the ABR6 x Bd21 F9 RILs (R2=0.0042, Figure 3-5b). 

Figure 3-5 Mature height summary for ABR6 x Bd21 F9 RIL population. Above: Distribution of height 
(cm) BLUPs. Dashed line is height mean=25.16 (SE=3.00). Below: Correlation between BLUP mature 
height (cm) and BLUP FHB AUDPC data for ABR6 x Bd21 F9 RIL population. Fit of line by linear 
method, R2=0.0042 (y=0.0173x+24.738), grey= 95% confidence interval. 

A 

B 
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3.3.3 QTL mapping of ABR6 x Bd21 population 

Variation within the ABR6 x Bd21 population was demonstrated to be of sufficient 

magnitude and significance, with minimal error, that QTL mapping could be applied 

with confidence. A genetic map consisting of SNP marker genotype data for the 104 

lines of the ABR6 x Bd21 (from F8 generation) was obtained from Jan 

Bettgenhaeuser (unpublished). A summary of the genetic map and genotype dataset 

are presented in Figure 3-6. The set of 169 markers are spread evenly across the five 

Bd chromosomes in centimorgan (cM) distances providing even, genome-wide 

representation. 

Figure 3-6 Summary of ABR6 x Bd21 F8 genetic map, genotype by Jan Bettgenhaeuser 
(Unpublished). A, Centimorgan based location of each of the 169 spread over five Bd chromosomes, 
B, Missing genotypes per marker, C,Matrix of size (tot.mar x tot.mar); the diagonal contains the 
number of typed meioses per marker, the lower triangle contains the estimated recombination 

fractions, and the upper triangle contains the LOD scores (testing rf = 0.5) 
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Missing genotypes are also well spread, with no individual markers or RILs lacking 

sufficient data for exclusion in the mapping set, therefore all were retained for 

analysis. There are no prominent regions of extreme recombination fractions between 

pairwise markers (Figure 3-6c). 

 

 Identifying genetic loci associated with FHB in ABR6 x Bd21 

Genome scan (SIM) and composite interval mapping (CIM) were carried out using 

the FHB susceptibility data obtained for the population (Figure 3-7a&b). Specifically, 

AUDPC predicted means (BLUPs) obtained by applying linear mixed models to 

LOGIT+ transformed AUDPC data, described above in Figure 3-4, were used as input 

data for the mapping analysis. 

A single highly significant QTL was observed on chromosome 4 with a log of the odds 

(base 10, LOD) score of 8.98. There were no other peaks, or markers, associated 

with FHB susceptibility at a 95 % significance level (above a LOD permutation 

threshold of 3.31). Two small peaks on chromosome three did not breach this 

significance threshold under the conditions of this experiment (Figure 3-7b). The FHB 

AUDPC QTL is located in the centromeric region on the long arm of chromosome 

four. For the peak marker, Bd4_27278128, increased susceptibility is contributed by 

the B allele, Bd21; as expected considering Bd21 is the susceptible parent in the 

population under analysis. Percentage variation explained (PVE) is 29.77 %; there is 

still a lot of variation within the FHB scores for AA and BB genotypes of this peak 

marker (Figure 3-7c). This suggests that there may be other genes involved in 

controlling this trait and corroborates the transgressive segregation of FHB 

susceptibility observed in the population (Figure 3-4). A single RIL had a 

heterozygous genotype for the FHB QTL peak marker Bd4_27278128 (Figure 3-7c). 
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Figure 3-7 FHB susceptibility QTL summary for ABR6 x Bd21 F9 population summary. A: QTL plot of 

FHB SIM from AUDPC back transformed BLUPs. B: QTL plot of FHB CIM from AUDPC back 

transformed BLUPs. C: GxP plot for FHB QTL peak marker Bd4_27278128, showing mean FHB AUDPC 

scores for AA (ABR6 allele), AB (heterozygous) and BB (Bd21 allele) for ABR6 x Bd21 F9 RIL population. 

A 

B 

C 
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A Bayes credible interval (BCI) was calculated for the Bd4 FHB QTL as a 22.9 cM 

region defined by markers Bd4_24653785 and Bd_29530471 (names derived from 

bp loci according to Bd21 reference sequence v2), a physical distance of 4.88 Mb. 

The Bd21 v3.1 reference sequence equivalent loci for the SNPs that these markers 

are designed around are Bd4_24523423 and Bd4_29421905 respectively. Each 

marker sits intergenic, within Bradi4g21277 and Bradi4g24390 respectively. There 

are 404 annotated genes within the confidence interval in Bd21 v3.1 (98 of these 

genes were novel annotations in Bd21 v3.1 compared to Bd21 v2.1 reference 

annotation). 

 

 Identifying genetic loci associated with lemma trichome presence-absence 

Under the hypothesis that the presence of lemma trichomes acts as a susceptibility 

factor for FHB, I also characterised lemma trichome phenotype within the population. 

Bd21 possesses a dense, hairy coat of trichomes on the lemma, with no evident 

macroscopic differences on other tissues of the plant; a small number of trichomes 

are present at the tip of the palea tissue, with leaves appearing evenly trichomed as 

expected for this wild grass species (Figure 3-8b). Conversely, ABR6 lacks all visible 

trichomes to the naked eye exclusively on lemma tissue, with all other tissues 

appearing equivalent to Bd21 and other trichomed accessions (Figure 3-8a). As 

described in Chapter 2, this phenotypic difference is strongly tied to population 

structure, with accessions of Spanish origin, and those categorised as ‘Extreme 

delayed flowering’ lacking lemma trichomes (Figure 2-14). 
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The ABR6 x Bd21 population was characterised for lemma trichome phenotype, being 

assigned macroscopically as either lacking or possessing lemma trichomes. 

Distribution of the phenotype in the population was 51:53, lemma trichomes absent: 

present (Figure 3-9). The bimodal distribution is suggestive of a single major gene 

controlling a simple Mendelian trait. 

 

 

 

Figure 3-9 Distribution of lemma trichome presence-absence in ABR6 x Bd21 F9 population (104 RILs) 

Figure 3-8. Photographs of ABR6 and Bd21 seeds displaying difference in lemma trichome phenotype. 

A, ABR6, B, Bd21. Courtesy of Jan Bettgenhaeuser. 

A B 
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A conservative, non-parametric QTL mapping algorithm was applied to trichome data 

for the 104 lines to account for bimodal distribution of trichome phenotype. A single, 

highly significant QTL, with LOD score of 35.43, was associated with lemma trichome 

presence-absence, which is well over the permutation threshold of 3.31. The peak 

marker associated with lemma trichome presence-absence is Bd4_27278128, the 

same peak marker for the QTL associated with FHB (Figure 3-7). The Bayes credible 

interval for the trichome QTL was calculated to be a 7.6 cM region (130.2 to 137.8 

cM) between markers Bd_24653785 and Bd_27278128 on Bd chromosome four. 

Bd21 contributes the allele conferring presence of lemma trichomes (Figure 3-10a). 

A single heterozygous RIL has trichome phenotype of 0 (lacking lemma trichomes) 

suggestive that it is not a dominant trait (Figure 3-10c). Relatively few homozygous 

genotypes, for both AA and BB individuals, on the genotype x phenotype plot do not 

align with the phenotype (Figure 3-10c). This indicates that the gene underlying the 

trait is linked to, but located away from, the peak marker; recombination events in 

these lines could be used to define a smaller peak interval. 
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Figure 3-10 Lemma trichome QTL summary for ABR6 x Bd21 F9 RIL population. A: QTL plot, SIM, 

non-parametric model, B: Lemma trichome QTL by CIM, non-parametric model. C: Genotype x 

Phenotype plot for lemma trichome phenotype at QTL peak marker Bd4_27278128 for ABR6 x Bd21 

F9 RIL population, for AA (ABR6 allele), AB (heterozygous) and BB (Bd21 allele) for ABR6 x Bd21 F9 

RIL population. 

A 

B 

C 
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There are two QTL for height in the ABR6 x Bd21 population over the LOD 

significance threshold of 3.29 (Figure 3-11a); a QTL peak on marker Bd1_47377165 

with a LOD score of 3.92, and on marker Bd5_25818174 with a LOD score of 3.60. 

PVE for the QTL on Bd1 and Bd5 are 14.3 and 12.975 respectively. GxP plots for 

both markers show lower mean height for Bd21 marker allele than for ABR6, but with 

a relatively small effect for each allele (Figure 3-11b&c). 

Figure 3-11 Height (cm, BLUP) SIM QTL summary in ABR6 x Bd21 F9 RIL population. Above: QTL 
peaks in association with height, of 169 markers. Below: GxP plots for peak markers Bd1_47377165 
and Bd5_25818174, genotypes: AA= ABR6, BB=Bd21, AB = heterozygous. 

A 

B C 



75 
 

A summary of the QTL identified to be associated with FHB, lemma trichome and 

height within the ABR6 x Bd21 population is presented in Table 3-1. 

 

Table 3-1 Summary of QTL identified through the characterisation of ABR6 x Bd21 population (F9) using 
composite interval mapping. *PT= permutation threshold, BCI= Bayes credible interval 

Trait 
Chromosome: 

Locus, bp 
(cM) 

High 
value 
allele 

LOD PT* 
PVE 
(%) 

p-value BCI* 

FHB 
Bd4:27278128 

(138cM) 
Bd21 8.98 3.31 29.77 <0.004 

Bd4_24653785.. 
Bd4_29530471 
(130.2 .. 153.1 

cM) 

Lemma 
trichome 

Bd4:27278128 
 (136cM) 

Bd21 35.43 3.33 75.21 <0.004 

Bd4_24653785.. 
Bd4_27278128 
(130.2 .. 137.8 

cM) 

Height 
Bd1:47377165 

 (362 cM) 
ABR6 3.92 3.29 14.30 0.014 

Bd1_49940174..
Bd_55510069 

 (71.6..386.0 cM) 

Height 
Bd5:25818174 

 (150 cM) 
ABR6 3.60 3.29 12.97 0.023 

Bd5_26472136..
Bd5_22654106  

(118.6..170.2 cM) 
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3.4 Discussion 

The ABR6 x Bd21 Bd F9 RIL population was characterised for FHB susceptibility to 

identify associated genetic loci through QTL mapping. A single QTL was identified 

centromeric on the long arm of chromosome four. A coincident QTL was identified in 

the same population, associated with the presence/absence of lemma trichomes. 

Coincidence of these QTL loci is suggestive that trichome phenotype on the floral 

tissues contributes to resistance/ susceptibility to FHB. This is consistent with the 

evidence that trichome structures provide points of infection to Fusarium. The findings 

allow the hypothesis to be tested through fine mapping to establish whether the 

relationship is causal (pleiotropic) or due to linkage. 

 

3.4.1 Is there a genetic link between lemma trichomes and FHB? 

A number of studies have identified and highlighted trichome structures playing a role 

in Fusarium infection of grasses. Peraldi et al. (2011) demonstrated accumulation of 

F. graminearum hyphae on trichome structures, and apparent penetration of trichome 

basal cells in B. distachyon. No further cytological studies have been reported for 

Brachypodium-Fusarium infection. A similar interaction was characterised in barley 

(Imboden et al., 2018), initially highlighted by (Jansen et al., 2005). This study 

observed deposition of lignin and cellulose at trichome cells in response to infection 

and described a difference in susceptibility between two- and six-row barley, which 

also differ in trichome morphology. Also in barley, Liu and Liu (2016) identified a 

positive correlation between trichome length and density with biomass of Fusarium 

pseudograminearum during crown rot infection. Studies of maize have described F. 

graminearum successfully penetrating three distinct trichome morphologies of maize 

leaves, bicellular, prickle cells and macro-hairs (Nguyen et al., 2016b, Nguyen et al., 

2016a). A study of wheat by Wang et al. (2015) described leaf colonization (variety 

Florence-Aurore) by F. graminearum hyphae exploiting trichome structures and 
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localised within and beneath trichome cells. Furthermore, F. graminearum has been 

demonstrated to penetrate and invade host tissues through prickle cells on detached 

wheat glumes (Rittenour and Harris, 2010). Silica rich cells, such as trichome basal 

cells, have been described as sites of hyphal differentiation, penetration and 

mycotoxin producing infection structures (Rittenour and Harris, 2010, Imboden et al., 

2018). Boenisch and Schafer (2011) observed that preferred sites of penetration of 

Tri5-GFP tagged F. graminearum colocalised with silica cells in wheat. 

It is hypothesised that trichome structures provide sites for attachment, anchorage 

and penetration leading to infection by vasculature access. It is possible that the 

chemistry or structure of trichome basal cells is particularly amenable to infection 

penetration of Fusarium species. 

The concurrence of FHB and lemma trichome QTL in the ABR6 x Bd21 population 

adds weight to these hypotheses and provides a method by which the genetics behind 

the traits can be compared. ABR6 x Bd21 is the perfect population to question the 

hypothesised interaction between trichome and FHB, as the parental lines differs in 

both FHB susceptibility and trichome presence /absence. 

 

3.4.2 Characterisation of ABR6 x Bd21 

When characterising the population, differential susceptibility of parents ABR6 and 

Bd21 was stable across all four replicate experiments, even the fourth in which 

infection levels were very low. Confounds of the experimental design, resulting in 

limited number of replicate plants within replicate experiments, meant that genetic 

analyses were also limited. When I did QTL mapping within replicate experiments, 

from individual reps, no significant QTL were identified. This is normal for wheat 

genetic analyses where it is accepted that there has to be replicated multivariate trials 

to see QTL. 
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There is evidence that lines in the F9 ABR6 x Bd21 population vary in susceptibility 

to FHB, independently of infection pressure. This variation was sufficient to be used 

for genetic analysis by QTL mapping. 

Bd21 and ABR6 do not lie at the extremes of the population distribution for FHB 

susceptibility; this was the case for all three replicate experiments included in the 

analysis. It was most extreme for replicate experiment two, which had the highest 

disease pressure in which the parents ranked 19th and 45th (ABR6 and Bd21 

respectively) in the order of FHB score for the population; 22 of 104 RILs were 

significantly more susceptible than Bd21 (data not shown). 

The distribution of susceptibility of the 104 RILs is suggestive of a trait exhibiting 

transgressive segregation. Conventionally, transgressive phenotypes are controlled 

by the combinations of multiple genetic factors and mechanisms; these include 

additive alleles conferring positive or negative effects, epistatic interactions of 

parental genetic factors or the resolution of parental heterozygosity resulting in 

functional recessive alleles (de los Reyes, 2019). However, the apparent 

transgressive segregation distribution may instead reflect the large errors in FHB 

score for RILs resulting from complexity and difficulty in phenotyping; only two RILs 

(24 and 100) were significantly more resistant than ABR6 and only three RILs (5, 88 

and 51) were significantly more susceptible than Bd21, out of a total of 104 lines. 

Although only a single FHB QTL was identified, it is highly likely that other FHB-

influencing factors segregated within the ABR6 x Bd21 population, if the distribution 

of FHB score in the population was reflective of transgressive segregation and not 

phenotyping complexities and errors. The substantial statistical power required to 

identify such minor effects means that they often go unaccounted for, especially using 

the conventional bi-parental mapping approach used in this chapter. PVE for the FHB 

QTL was 29 %, which although high compared to many published FHB QTL in cereals 

also supports the idea that a remaining 71 % of variance in FHB may be unaccounted 
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for elsewhere in the genome. This likely has the effect of quantitatively complicating 

the accurate assessment of FHB phenotype when it comes to fine mapping the FHB 

trait; the RILs do not have uniform, equivalent background genomes in terms of 

overall FHB susceptibility. 

 

3.4.3 Height 

Height varied extensively within the ABR6 x Bd21 population, varying from 14.23 cm 

for RIL 126 to 32.45 cm for RIL 141 (Figure 3-5), and to a much greater extent than 

the parents (Bd21= 25.42 cm, ABR6= 27.78 cm). This is a much more plausible case 

of transgressive segregation within the population than for FHB as discussed. 

Most importantly for the focus of the thesis, characterisation of the FHB factor, no 

evidence was found for a correlation between height and susceptibility or resistance 

to FHB (Figure 3-5). This supports the rationale that the height-FHB relationship 

identified in Chapter 2 was in fact a confounded manifestation of the height-flowering 

time correlation. Two QTL were identified in associating with height, only marginally 

significant, with low PVE values, each independent of FHB QTL. These two pieces of 

evidence eliminate focus on Bd height in this thesis. 

 

3.4.4 FHB QTL 

Genetic mechanisms of Fusarium resistance in wheat are largely unknown due to the 

highly complex, quantitative, polygenic, and environmentally sensitive nature of the 

trait. Consequently, very few large effect QTL have been identified against FHB. 

Therefore, a single, highly significant FHB QTL in Bd, which explains a high proportion 

of variation, provides a potential source to identify novel genetic factors associated 

with FHB resistance. 
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At this point in the mapping process, a broad QTL peak (defined by the BCI) of 4.88 

Mb physical distance has an extensive list of candidate genes, 404 in total (based on 

Bd21v3.1 annotation). This is far too great a number to warrant investigation into 

individual genes without further refinement of the physical interval. However, the most 

notable gene annotated within the FHB QTL region is Bradi4g22656, the orthologue 

of TaFROG. This orphan gene, restricted to within the Pooideae subfamily of grasses, 

has been reported to enhance resistance to FHB causing species, especially those 

producing deoxynivalenol mycotoxin (Perochon et al., 2015). 

Bd21 contributed the high value (susceptible) allele in the population (Figure 3-7). A 

single RIL with AB genotype for the peak marker (Bd4_27278128) has an FHB score 

that sits closer to the mean of the AA genotype RILs, suggesting dominance of the 

resistant A allele on the basis of this one event; however the range of susceptibility of 

the BB genotype RILs extends to below the score of the AB RIL, so the dominance 

of the QTL cannot be confidently concluded. 

The significant peak in association with FHB on chromosome four is close to, but not 

co-incident with, a region of segregation distortion on Bd4 identified by 

(Bettgenhaeuser et al., 2017). The region of segregation distortion is centromeric on 

the short arm of chromosome four while the FHB QTL is centromeric on the long arm, 

so the two are physically distinct. This is a plausible reason behind the upstream 

shoulder on the FHB QTL peak. 

The FHB QTL Bd region is approximately syntenic with regions on group 4 

chromosomes of wheat; corresponding orthologues in Chinese Spring wheat 

identified by BLASTP of the flanking genes Bradi4g21277 and Bradi4g24378, and a 

range of genes within the QTL interval were used to define syntenic regions. Non-

contiguous regions were identified as follows: a 42 Mb region on 

4A(L):492527576..534546838, a 26 Mb region on 4B(S):89518545..116209591 and 

a 23 Mb region on 4D(S):62465720..85588218 (IWGSCv2 loci). The most notable 
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characterised FHB related factor of chromosome 4BS is Rht-B1, shown to confer 

Type 1 susceptibility to FHB, which lies as the designated gene within an extensive 

list of FHB QTL identified on 4BS (Steiner et al., 2019, Chu et al., 2011, Liu et al., 

2013, Lu et al., 2013, He et al., 2016, Buerstmayr et al., 2012, Prat et al., 2017); 

however, Rht-B1 lies outside of the syntenic region of my QTL. The Bd Chr4 FHB 

QTL orthologous region does overlap with a region of 4D in wheat to which an FHB 

susceptibility factor has recently been mapped in the reported factor affects Type 2 

resistance rather than Type 1 as observed in this Bd population (Hales et al., 2020b, 

Hales et al., 2020a). 

 

3.4.5 Trichome QTL 

Lemma trichome phenotype is a binomially segregated macroscopic trait in the ABR6 

x Bd21 population; it is characteristic of such a trait with, as one would expect, no or 

very little environmental influence on this development trait. This is reflected in the 

LOD association score of 35.43, and PVE of 75 %. Consequently, a much smaller 

BCI was calculated for lemma trichome than for FHB, of 2.62 Mb (compared to 4.88 

Mb for FHB), due to the simplicity of the trait leading to cleaner genotype by 

phenotype association. This physical interval contains 163 genes in Bd21v2, from 

Bradi4g21257 to Bradi4g22690. 

A high number of aberrant RILs from the GxP plot (Figure 3-10) provide opportunities 

to define the candidate region and fine-map the gene controlling trichome 

development based on location of recombination events in the population. A single 

heterozygous RIL has trichome phenotype of 0 (lacking lemma trichomes), 

suggestive that the presence of trichomes is a recessive trait; as only a single 

individual, it is possible that this is a result of genotyping error and additional lines 

need assessing before concluding that this is so. Assessment of ABR6 x Bd21 F4 
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heterozygous RILs, presented in Chapter 4, confirmed that trichome presence is 

indeed a dominant trait. 

Arabidopsis has been the primary model of trichome research, an extensive field, 

which can largely be divided into trichome patterning and trichome differentiation. Bd 

orthologues of Arabidopsis genes described in the literature as controlling trichome 

development are located away from the QTL in Bd (Vadde et al., 2019, Cox and 

Smith, 2019) (Table 3-2). A chromosome four gene, Bradi4g23967 is orthologous to 

both trichomeless TCL1 and TCL2 genes, at Bd21 v2 locus of Bd4_28860348 which 

lies outside of the right boundary of the trichome QTL BCI of Bd4_27278128. 

 

Table 3-2 Brachypodium distachyon genes orthologous to key trichome development in Arabidopsis 

Arabidopsis Trichome 
Related Gene 

Bd orthologue (Bd21v2) 

Top BLAST hit(s) 
(Ensembl Plants) 

Locus 

TRICHOMELESS 1 & 2 
(TCL1 & TCL2) 

Bradi1g60106 Bd1: 59599498-59601441 

Bradi4g23967 Bd4: 29038530-29039517 

Bradi2g47367 Bd2: 47762586-47763462 

GLABRA1 (GL1) Bradi3g51820 Bd3: 52883784-52884839 

GLABRA2 (GL2) Bradi3g15327 Bd3: 13621558-13625805 

GLABRA3 (GL3) Bradi1g54070 Bd1: 52719687-52724721 

TCP4 Bradi2g06890 Bd2: 5303550-5304989 

 

Gramene lists 19 Bd genes annotated with GO:0010090 biological process term, 

named for ‘trichome morphogenesis’. None of them are anywhere near the fine-

mapped candidate interval. The closest is Bradi4g29250, a gene annotated with 

phosphopyruvate hydratase activity (Phytozome v12, Bd21 v3.1), does not sit within 

the BCI for either trichome or FHB QTL. 

Therefore, as no genes contained have been annotated as being involved with 

trichome morphogenesis, and there are no orthologous of known Arabidopsis 
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trichome genes within the region, the lemma trichome QTL on Bd chromosome four 

is thought to be a novel locus. 

 

3.4.6 Concluding remarks 

In conclusion, this chapter identified a single significant QTL co-localised for FHB 

susceptibility and lemma trichome phenotype in the ABR6 x Bd21 population. 

Collaborators have also twice independently identified the lemma trichome QTL. The 

lemma trichome phenotype is a clear major gene effect. These findings will be used 

to fine-map the causative factor(s) within the lemma trichome QTL as a proxy for FHB, 

under the assumption of a causative relationship; this will be detailed in Chapter 4. 
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4 Chapter 4 - Fine mapping of lemma trichome as a 

potential FHB susceptibility trait 

4.1 Introduction 

Chapter 3 described the localisation of QTL for FHB susceptibility and lemma specific 

trichome absence to a coincident marker on chromosome four of Brachypodium 

distachyon in the ABR6 x Bd21 RIL population. 

Preliminary work towards the fine mapping of lemma trichome phenotype was 

previously undertaken under a collaboration between Jan Bettgenhaeuser (Matt 

Moscou group, TSL) and Daniel Woods (University of Wisconsin, Madison) using the 

ABR6 (trichomeless) x Bd21 (trichomed) and Bd21 (trichomed) x Bd1-1 

(trichomeless) populations respectively (Bettgenhaeuser et al., Unpublished). Figure 

4-1 illustrates the overlapping candidate regions from these two mapping populations, 

resulting in a consensus candidate region approximately 125 Mb in size and 

containing 13 genes, the right border being defined by recombinants within ABR6 x 

Bd21 and the left border being defined by recombinants within Bd21 x Bd1-1. 

 

 

Figure 4-1 Illustration to summarise status of fine-mapping of B. distachyon chromosome four 
undertaken previously by collaborators, Jan Bettgenhaeuser, Matthew Moscou and Daniel Woods 
(Unpublished) 



85 
 

Most studies concerning trichome development focus on Arabidopsis as a model, and 

therefore also dominate trichome literature; hugely elaborate gene regulatory 

networks have been delineated controlling trichome development in Arabidopsis 

(Pattanaik et al., 2014). Three major classes of transcription factors typically control 

trichome development: R2R3 MYB, basic helix-loop-helix (bHLH), and WD40 repeat 

(WDR) proteins (Pattanaik et al., 2014). Phytohormones, particularly gibberellic acid, 

jasmonates and cytokinins, also play significant roles through modulating the 

expression of many regulatory genes (Qi et al., 2011, Maes et al., 2008). In Bd leaves, 

Peraldi et al. (2011) described voluminous unicellular macro-hair and prickle cells 

localised to rib structures overlaying vascular bundles. 

As described in Chapter 3, multiple studies in Bd, barley, wheat and maize have 

highlighted trichome structures and cells as potential points of infection for Fusarium 

species (Peraldi et al., 2011, Imboden et al., 2018, Jansen et al., 2005, Liu and Liu, 

2016, Nguyen et al., 2016a, Nguyen et al., 2016b, Wang et al., 2015, Rittenour and 

Harris, 2010). It is therefore hypothesised that the trichome projection and basal cell 

are exploited by pathogenic Fusarium species as a point of entry during infection. 

Under the assumption of a causative relationship between lemma trichome presence 

and susceptibility to Fusarium culmorum, this Chapter describes the continuation of 

fine mapping the lemma trichome phenotype as a proxy for the more complex, 

quantitative FHB trait. 
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4.2 Methods 

4.2.1 Plant material and growth conditions 

Brachypodium distachyon seeds were stratified for 5 days following the removal of 

glumes, between filter paper discs on Petri dishes saturated with three mL H2O. 

Primed seeds were transferred into a mix of 50 % cereal mix, 50 % peat and sand 

(Supplementary Table 2), pot size depending on experiment. If vernalisation was 

required, seven-day old seedlings underwent six-weeks incubation at 4 oC and 

16hr/8hr light/dark cycle. Seedlings were transferred to conditions of 22 oC, 20/4 hr 

day/night length and 70 % relative humidity in a controlled environment room or 

glasshouse at 16hr/8hr light/dark cycle. 

 

4.2.2 Refinement of interval – exploiting F4-5 heterozygous families 

Five F4 seed from six RILs identified as being heterozygous within the interval at F4, 

but unresolved at F8 (F1-x, F4-1, x=14, 47, 94, 97, 102, 117, Figure 4-2a, genotype 

data from Bettgenhaeuser et al. (2017)), were grown under conditions as previously 

described in Chapter 2. Lemma trichome phenotype was recorded for F4-5 Bd lines 

generated. Kompetitive Allele Specific PCR (KASP) markers were designed around 

intergenic SNPs identified by alignment of ABR6 and Bd21 for genes selected across 

the candidate interval using EMBL-EBI CLUSTAL OMEGA online multiple alignment 

tool (Madeira et al., 2019). Approximate locations of markers are illustrated in Figure 

4-2, noting gene names. Bradi4g22630 was selected as containing the closest high-

confidence SNP upstream of Bradi4g22651 and the left interval border. 
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Leaf material was harvested from F4-5 plants and DNA extracted in deep 96 well 

plates (1.2 mL) using a protocol adapted from (Pallotta et al., 2003). Samples were 

ground to a fine powder using the Spex GenoGrinder 2000 at 160 strokes (20 Hz) for 

2 min, one tungsten bead per well. Following 5 min centrifugation at 2232 x g, 500 µL 

extraction buffer (0.1 M Tris-HCl (pH 7.5), 0.05 M EDTA (pH 8.0), 1.25 % SDS, in 

dH2O) was added to each well, shaken and incubated at 65 oC for 60 min, with 

occasional shaking. After cooling, 250 µL ammonium acetate (6 M) was added to 

each well, the plate centrifuged at 2916 x g for 15 mins and 600 µL of the supernatant 

transferred to ice-cold 360 µL propan-2-ol in a new plate and mixed. Following 

incubation at 4 oC overnight and centrifugation at 2916 x g for 15 min, the supernatant 

was disposed and 500 µL ethanol (70 %) was added to each sample. After mixing, 

Figure 4-2 Approximate locations of KASP markers to delineate the location of unresolved recombination 
events in ABR6 x Bd21 F4 RILs. A, Genotype data from Bettgenhaeuser et al. (2017) for markers 
surrounding the candidate region . B, loci of new markers designed within the region. 

A 

B 
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further centrifugation at 2916 x g for 15 min and disposal of supernatant, remaining 

pellets were dried prior to resuspension in 100 µL dH2O. DNA samples were diluted 

to 5-40 ng/µL for KASP assays. 

Sequences for allele-specific and common primers are listed in Table 4-1. Following 

resuspension of oligonucleotides (Sigma) in dH2O to 100 µM, for each marker a 

primer master mix was made containing 12 µL of each allele-specific primer (F1 and 

F2), 30 µL of common primer and 46 µL dH2O. A reaction master mix was made for 

each marker assay allowing for 2 µL of KASP master mix (v4.0, LGC Genomics) and 

0.07 µL primer mix per reaction, plus 20 % excess. Assays were assembled in 384 

well plates, each reaction containing 2 µL DNA and 2 µL reaction master mix; no-

template control reactions were setup with 2 µL dH2O instead of DNA, and plates 

sealed with an optically clear adhesive film. PCR reactions were performed on 

Eppendorf MasterCycler Pro 384 machine using the following PCR conditions: 15 min 

at 94 °C; 10 cycles of 20 s at 94 °C, 60 s at 65–57 °C (decreasing 0.8 °C per cycle); 

and 26–35 cycles of 20 s at 94 °C, 60 s at 57 °C (Burt et al., 2015). Fluorescence 

readings were read after forty amplification cycles using a PHERAstar microplate 

reader (BMG LABTECH). Relative VIC and FAM values were visualised and analysed 

using KlusterCaller software (LGC Biosearch®). Parental controls included in each 

reaction plate were used to assign the genotype of each sample based on the pooling 

of samples relative VIC and FAM fluorescence intensity. 
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Table 4-1 KASP primers used for the genotyping of ABR6 x Bd21 F4-5 RILs. Polymorphism listed in lower case. 5’ tags are F1 = VIC, F2 = FAM 

Marker Gene Identifier Primer Sequence 5’-3’ Tm 

Bradi4g22630 

Bradi4g22630F1 GAAGGTCGGAGTCAACGGATTGGAGCATCAAGGATTATTGGC 64.8 

Bradi4g22630F2 GAAGGTGACCAAGTTCATGCTGGAGCATCAAGGATTATTGGT 62.1 

Bradi4g22630R CGAATCTACTGGCATTCAGG 62.6 

Bradi4g22651 

Bradi4g22651F1 GAAGGTCGGAGTCAACGGATTCTGCAGAATGGCCCTCAA 65.6 

Bradi4g22651F2 GAAGGTGACCAAGTTCATGCTCTGCAGAATGGCCCTCAC 65.1 

Bradi4g22651R GACTGCTGAAAATGATATCCG 61.5 

Bradi4g22658 

Bradi4g22658F1 GAAGGTCGGAGTCAACGGATTAACCAATTAATGGCATCCAAC 62.7 

Bradi4g22658F2 GAAGGTGACCAAGTTCATGCTAACCAATTAATGGCATCCAAT 62.1 

Bradi4g22658R TAAAGCGACGGCCATGTACT 64.8 

Bradi4g22681 

Bradi4g22681-1F1 GAAGGTCGGAGTCAACGGATTTTCATGGAGGCTAATCGTGAA 64.7 

Bradi4g22681-1F2 GAAGGTGACCAAGTTCATGCTTTCATGGAGGCTAATCGTGAC 64.3 

Bradi4g22681-1R TGGATGGAGCTACTCGCAA 65 

Bradi4g22730 

Bradi4g22730F1 GAAGGTCGGAGTCAACGGATTCTGCTGGAGTAGGCAAGAGC 64.6 

Bradi4g22730F2 GAAGGTGACCAAGTTCATGCTGCTGCTGGAGTAGGCAAGAGT 65.2 

Bradi4g22730R TCGTAGCTTCTGTACCTGGG 62.3 

Bradi4g22653 

Bradi4g22653F1 GAAGGTCGGAGTCAACGGATTTCCAAGAAGAGGCATCGG 64.5 

Bradi4g22653F2 GAAGGTGACCAAGTTCATGCTTCCAAGAAGAGGCATCGA 62.7 

Bradi4g22653R CCACTCTTCTTCCCCTCCTC 64.5 

Bradi4g22656 

Bradi4g22656F1 GAAGGTCGGAGTCAACGGATTATCAATTCCCCTTCCATGA 62.2 

Bradi4g22656F2 GAAGGTGACCAAGTTCATGCTATCAATTCCCCTTCCATGC 64 

Bradi4g22656R TCTTCAGCAGAATCAGCCGT 65.4 
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4.2.3 Expression analysis of candidate genes 

Transcription of the five genes within the refined fine-mapped trichome interval was 

quantified in leaf and floral meristem tissue for Bd21, ABR6 and Bd1-1 accessions 

using quantitative reverse transcription PCR (qRT-PCR). 

At weekly intervals, a total of six plant batches were prepared for the dissection of 

floral meristem material; ten seed of Bd21, ABR6 and Bd1-1 were prepared using 

standard Brachypodium protocol described previously, including a vernalisation 

period of 5 weeks. Using a dissecting microscope, floral meristem at approximate 

awn initiation stage according to electron micrograph images from Derbyshire and 

Byrne (2013) were dissected at a stage before which trichome primordia were visible 

in Bd21, and the equivalent stage in the two trichome-less accessions. 

 

 

Immediately following detachment, material was flash frozen in liquid nitrogen and 

stored at –80 oC. Leaf material was collected equivalently. Samples were pooled into 

three replicates per tissue, per accession. RNA extraction was carried out using the 

Figure 4-3. Brachypodium floral meristem; A: Image showing example floral meristem dissected from 
ABR6 of typical developmental stage harvested for expression analysis. B: Electron micrograph showing 
awn initiation stage in wild type Bd21 with floral organ growth in the terminal spikelet more advanced in 
basal florets compared with apical florets (Derbyshire and Byrne, 2013). 

 

A B 
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Qiagen RNeasy Mini Kit following manufacturers protocol (eluting in 30 µL water). 

Following DNAse treatment using Ambion® TURBO DNA-free™ kit, RNA content 

was quantified using Nanodrop (v2). The Invitrogen™ SuperScript™ III First-Strand 

Synthesis System was used to convert 1.2 µg per sample of RNA to cDNA, using the 

reaction components described in Table 4-2. 

 

Table 4-2 Reaction components for cDNA synthesis 

Component Amount 
Final 

Concentration 

RNA to 1.2 µg 60 ng/µL 

50 µM oligo(dT)20 primers 0.5 µL 1.25 uM 

50 ng/µL random hexamer 
primers 

0.5 µL 1.25 ng/µL 

10 mM dNTP mix 1 µL 0.5 mM 

10X RT buffer 2 µL 1X 

25 mM MgCl2 4 µL 5 mM 

0.1 M DTT 2 µL 10 mM 

RNaseOUTTM(40 U/µL) 1 µL 2 U 

Superscript® III RT (200 u/µL) 1 uL 10 U 

DEPC-treated water To 20 µL 

 

qRT-PCR half-volume reactions (10 µL) were assembled in ‘4titude Framestar480’ 

384 well plates, containing 2 µL cDNA diluted 1:4, 0.25 µL forward and reverse primer, 

5 µL Luna ® Universal qPCR Master Mix (5X, New England Biolabs® Inc.) and 2.5 

µL nuclease-free H2O. A Roche LightCycler480 instrument was used to carry out 

reactions in 384 well plates with optically clear seals. All samples had minimum two 

technical repetitions, most having three. qRT-PCR cycle conditions are described in 

Table 4-3, fluorescence for each well was read immediately following each cycle. 
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Table 4-3 Reaction conditions for qPCR expression quantification of lemma trichome candidate 
genes 

Step Sub-step Temp (oC) Time 

 Pre-incubation 95 5 min 

45 cycles of: 

Denaturation 95 10 s 

Annealing 60 10 s 

Extension 72 10 s 

Fluorescence acquisition, 
single 

75 2 s 

Melting curve 

Denaturation 95 5 s 

Cooling 65 1 min 

Incremental heating 
Fluorescence acquisition, 

continuous 

To 97 
(0.11 oC/s) 

Cooling - 40 30 s 

 

Primers were designed to span exons where possible, to avoid the effect of DNA 

contamination on transcript quantification. This was not possible for single exon 

genes (Table 4-4). Specificity to targets was confirmed in silico based on sequence 

alignments across accessions in case of variation disrupting efficiency and 

quantification. 

A concentration curve for each gene primer pair was generated from pooled cDNA at 

a range of dilutions to confirm primer specificity through melt-curve analysis; a 

suitable cDNA dilution factor was determined for each gene. Three technical replicate 

qPCR reactions were prepared for quantification of target transcripts in each sample. 
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Table 4-4 qPCR primers used for the specific amplification of lemma trichome candidate genes 

Gene target/ primer 
name 

Primer sequence (5’ to 3’) 
Length of 
amplicon 

(bp) 

Exons 
spanned 

Tm 
(oC) 

Bradi4g22637_qF3 ATATGCTGACGCCAAACCC 

210 1 only 
65.2 

Bradi4g22637_qR3 TCGGACGAATTCAGCTCATC 65.7 

Bradi4g22641_qF1 GCACGTAGGAGAGGAACAGG 

49 1 only 
63.8 

Bradi4g22641_qR1 AGACGGCTCTTTATGCTGGA 63.8 

Bradi4g22645_qF1 TGATTTGGTGGCTGATCTTG 

41 1 & 2 
63.7 

Bradi4g22645_qR1 CTCCCACTTGCGGATAGTTC 63.5 

Bradi4g22650_qF1 GAAGCTCGGCCATAACAAAC 

99 3 & 4 
63.4 

Bradi4g22650_qR1 GTGAGCTCCGTGAATTTTGG 64.5 

Bradi4g22651_qF1 ACGCGGAAATAACGAGATTG 

87 1 & 2 
63.8 

Bradi4g22651_qR1 CTTCATTGATGTGCTTCTCCA 62.8 

UBC18_F GGAGGCACCTCAGGTCATTT 

73 1 only 
65.3 

UBC18_R ATAGCGGTCATTGTCTTGCG 65.0 

 

Arithmetic means of Cq are equivalent to the mean concentration of cDNA transcript 

in a sample (Orton et al., 2017). LinRegPCR software was used to calculate 

amplification efficiency of individual samples (Ruijter et al., 2009); mean efficiency per 

primer pair was used for relative expression quantification calculations. Target 

transcript quantity within each sample was calculated relative to UBC18 (Hong et al., 

2008), using the following formula. 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  
𝐸𝑓𝑓𝐺𝑒𝑛𝑒

−𝐶𝑞 𝐺𝑒𝑛𝑒

𝐸𝑓𝑓𝑈𝐵𝐶18
−𝐶𝑞 𝑈𝐵𝐶18

 

 

Expression data was then analysed using GLM modelling (Genstat 19th edition) for 

individual gene-tissue combinations to obtain predicted means, standard errors, and 

significance values. 
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4.2.4 Comparison of candidate regions in silico 

Annotated functions of candidate genes were obtained from Phytozome (v12) for 

Bd21v3.1. The closest orthologous genes in Arabidopsis thaliana and Hordeum 

vulgare were identified using the BLAST tool from Ensembl Plants. 

 

 Nanopore sequencing of ABR6 

ABR6 plants were prepared as described in Chapter 2. Approximately 3 g (fresh 

weight) leaf material was harvested and ground using liquid nitrogen in a pestle and 

mortar prior to DNA extraction using Cytiva Nucleon™ Phytopure™ Genomic DNA 

Extraction kit (1 g). Genomic DNA underwent size-selection using a BluePippin (Sage 

Science) electrophoresis unit to remove fragments ≤ 15 kb. A sequencing library was 

prepared, from the fraction containing fragments >15 kb, using the Genomic DNA by 

Ligation Kit (SQK-LSK109, Oxford Nanopore Technologies, protocol version 

GDE_9063_v109_revQ_14Aug2019) using KAPA Pure Beads (Roche Sequencing 

Solutions) in substitution for AMPure XP. The library (756 ng) was sequenced on a 

single MinION flow cell using a GridION. 

 

 Tissue-specific expression (eFP) 

The EMBL-EBI Expression Atlas resource (Papatheodorou et al., 2019) used to 

access tissue-specific expression data for Brachypodium distachyon Bd21 originating 

from a study by Davidson et al. (2012), including transcript per million (TPM) values. 

 

 Sequence comparison between parental accessions 

The BLAST tool from brachypan.jgi.doe.gov (Phytozome) was used to identify 

equivalent ABR6 and Bd1-1 (both v1) loci for the five genes within the trichome 

candidate interval in Bd21 (v3.1). Alignments of Bd21 v3.1 mRNA annotated 
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sequences and BLAST targets were made using EMBL-EBI CLUSTAL-OMEGA and 

viewed using Jalview. Additionally, our ABR6 nanopore scaffold (see above, Chapter 

0 & 4.3.3.3) covering the candidate region was searched as the target sequence using 

NCBI BLASTN using default parameters, along with Bd1-1 (v1.1) PACBIO based 

assembly, for comparison of gene sequences (Zhang et al., 2000). FGENESH was 

used to annotate exons in ABR6 nanopore and Bd1-1 (V1.1), and to predict peptide 

sequences (Solovyev et al., 2006). 

 

4.2.5 Community Bd mutant materials  

Seed from a Bd21-3 mutant collection containing NaN3, EMS and fast neutron 

radiation treated lines described to contain mutations in the genes within the 

candidate trichome interval, Bradi4g22637-Bradi4g22651 were identified within the 

Jbrowse feature of Phytozome v12 on the Bd21-3 v1.1 reference genome. Glumes of 

seed were visually assessed by Richard Sibout (Institut National de la Recherche 

Agronomique) for lemma trichome presence/absence phenotype. 

 

4.2.6 Disruption of candidate gene Bradi4g22650 using CRISPR in Bd21 

For disruption using CRISPR-Cas9, a pair of guide RNAs were designed targeting 

within exon 2 of Bradi4g22650, positions illustrated in Figure 4-4. Off target effects of 

sgRNAs were assessed using BLAST to the Bd21 v3.1 reference genome using a 

local database (Born Again database, Martin Trick) with short sequence settings. 

Targets with off-target hits with greater than 80 % match within the seed region (3’ 

terminal) were excluded. 
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Each target sequence was introduced into a sgRNA scaffold (pICSL70001, Addgene 

#46966) by PCR in separate reactions using the primers detailed in (Figure 4-6), Q5 

High-Fidelity DNA Polymerase (New England Biolabs) reaction components (Table 

4-6) and reaction conditions listed in Table 4-7. 

 

Table 4-5 Primers for CRISPR Level 0 sgRNA plasmid construction. sgRNA1 and sgRNA2 relate to the 

two target sites. 

Identifier Sequence 

sgRNA1 tgtggtctcacttgGTAAGCTAGGGGTACTCGTAgttttagagctagaaatagcaag 

sgRNA2 tgtggtctcacttgGAATGCTGTTTGAGGAGCGTgttttagagctagaaatagcaag 

sgREV TGTGGTCTCAAGCGTAATGCCAACTTTGTAC 

 

ATCGAGCTAGCCATACGAGTACCCCTAGCTTAGCCATAGCTAACATGCAGCTCACAGCAGCAGCTG
GTCCGGAGGAGGAAGCCGCGGCGGGGTCGTTGGTGGCGCAGGCGAGGAACCTGGCGTCGCGGCG
AGGCCACGCGCATGTCACCCCGCTCCACATCGCCAGCGCCATCCTCTCCGCTTCGCCCGCTCTCCTCC
TACGCTCCTCAAACAGCATTCACAACAACGACAACATCGACGCGCTGGCGCTCTCCCTGGGCGCCGC
GCTCGACGGCCTCCCCGTCGTGACGACGACGTCCCCGTCCCCGGCCCCGGCCCCGGCGGCAGCGCC
TTCGAACGCGTTCCTGGCAGCGCTGAAGCGGGCGCGGAAGAAGCGCCGGCGTCGTAGCAGCAGGG
CAGCAGCGGGCAGCAGCGAGGTCGAGCGGCTCGTGGCCTCCGTCCTCCTCGACCCCAGCGTGGACC
GCGCCCTGCGCTCCGCCGCCAGCTTATTACTACGACCGTCGTCTGATCCTGATCCTGTTCCTGATCGT
GGGACGAAGCAGCTGGCACGTCGGCACCAACGACCAGCTGCAGTCGTCCCCAATGGAAG 

Figure 4-4 Loci of sgRNA designed for the disruption of Bradi4g22650 as a candidate for lemma trichome 
related factor. A; Illustration of sgRNA loci (pink) on Bradi4g22650. B; Genomic sequence of 
Bradi4g22650.1 (Bd21 v3.1 reference) exon 2 with highlighted protospacer adjacent motifs (PAMs, 
grey), guide (teal) and target cleavage site (grey). 

A 

B 
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Table 4-6 Reaction components for Level 0 assembly. A separate reaction 
was prepared for each guide/target. Final reaction volumes = 25 µL 

Component 
Final 

concentration 

5X Q5 Reaction Buffer 1 X 

10 mM dNTPs 200 µM 

10 µM Forward primer 0.5 µM 

10 µM Reverse primer (SgREV) 0.5 µM 

Template DNA (pICSL70001) 10 ng 

Q5 High-Fidelity DNA Polymerase 0.02 U/µL 

Nuclease free water N/A (to 25 µL) 

 

Table 4-7 Level 0 construction cycle conditions for Bradi4g22650 CRISPR plasmid construction using 
Q5 High-Fidelity DNA Polymerase 

Step Temperature (oC)  Duration 

Initial denaturation 98 30 s 

35 cycles 

98 10 s 

60 15 s 

72 20 s 

Final extension 72 2 min 

 

The PCR product (with the addition of 125 µL buffer PB) was purified using a Qiagen 

PCR Purification Kit according to manufacturer’s protocol and 5 µL of each product 

was confirmed to contain a single product of the correct approximate size using gel 

electrophoresis (50 mL TE buffer, 0.8 % agarose, 2 µL EtBr). 

Nanodrop™ 2000 microvolume spectrophotometer (Thermo Fisher Scientific) was 

used to quantify sgRNA1 and sgRNA2 Level 0 products, as 42.8 ng/µL and 32.9 ng/µL 

respectively. 

Golden Gate Digestion-Ligation (DigLig, long protocol) 15 µL reactions were setup to 

combine a BdU6 promoter and each guide (Level 0) within an acceptor plasmid (Level 

1). Guide 1 was inserted into pICH47751 and guide 2 into pICH47761. The BdU6 

promoter was synthesised from the sequence obtained from (van der Schuren et al., 

2018). A 2:1 parts promoter:acceptor ratio of components was used, specifically 100 

ng acceptor, 7 ng guide Level 0, 125 ng BdU6, based on plasmid sizes. Reactions 
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were composed as described in Table 4-8 and carried out under the conditions 

described in Table 4-9. 

 

Table 4-8 Digestion-Ligation reaction components for assembly of Level 
1 plasmids for Bradi4g22650 CRISPR 

Component Volume per reaction 

Acceptor plasmid (100 ng/µL) 1 µL 

Level 0 sgRNA (7ng/µL)  1 µL 

BdU6 (125 ng/µL) 1 µL 

T4 Ligase buffer  1.5 µL 

T4 Ligase (400 U/µL) 0.5 µL 

Bovine Serum Albumin (10x) 1.5 µL 

Bsa1 20 U/µL 0.25 µL 

Nuclease free water N/A (to 15 µL) 

 

Table 4-9 Digestion-Ligation reaction conditions for 

assembly of Level 1 plasmids for Bradi4g22650 CRISPR 

No. of 

cycles 
Temperature (oC) Duration 

1 37 20 s 

26 
37 3 min 

16 4 min 

1 50 5 min 

1 80 5 min 

1 16 5 min 

 

Guide Level 1 plasmids were transformed into Top10 competent E. coli cells (Oneshot 

Top10, Invitrogen). On ice, 5 µL of Level 1 DigLig reaction was added to 25 µL 

competent cells and incubated on ice for 30 mins. A 1 min heat-shock treatment at 

42 oC was applied followed by a further 2 mins on ice. A 250 µL volume of SOC 

medium (super optimal broth with catabolite repression, Sigma S1797) was added to 

each sample and incubated at 37 oC for 1 hour with shaking; aliquots of 75 µL and 
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150 µL were spread onto two Petri dishes of LB agar supplemented with ampicillin, 

X-gal and IPTG for blue/white selection. 

A single white (transformed) colony was selected for guide 1, and three were selected 

for guide 2. Each colony was removed using a sterile toothpick into 5 mL volume of 

LB broth (+ ampicillin, 200 mg/mL) and incubated at 37 oC overnight with shaking. 

Samples were centrifuged and 2 mL used to extract Level 1 constructs using 

QIAprep® Spin Miniprep kit (Qiagen), eluting in 30 µL water. 

To confirm the sequence of Level 1 constructs, constructs were digested with 1 µL 

BpiI, 1 µL Buffer G and 6 µL water (for 2 µL construct) with incubation at 37 oC for two 

hours. Digestion of samples was confirmed using gel electrophoresis (50 mL TE 

buffer, 0.8 % agarose, 2 µL EtBr). Purified Level 1 constructs were sequenced using 

standard primers described in Table 4-10. 

Table 4-10 Primers used for sequencing Level 1 and Level 2 construct vectors for disruption of 
Bradi4g22650 by CRISPR/Cas9 

Primer Name Sequence (5’- 3’) 

Level 1 Forward F(0229) GAACCCTGTGGTTGGCATGCACATAC 

Level 1 Reverse R(0230) CTGGTGGCAGGATATATTGTGGTG 

Level 2 Forward F(0231) GTGGTGTAAACAAATTGACGC 

Level 2 Reverse R(0232) GGATAAACCTTTTCACGCCC 

 

 

Figure 4-5 Schematic of binary vector (Level 2) delivered to Bd21. Transcriptional units were assembled 
into backbone x using Golden Gate Cloning. A hygromycin resistance cassette (hygromycin 
phosphotransferase II, hptII) was driven by ZmUbi promoter and terminated by ZmNosT. Cas9=ProUbi-
WheatCas9-Porcine2A-Histone2A-GFP-NosT. Endlinker=pELE-4 Addgene #48019 from Icon Genetics. 
Guide 1 & 2 refer to sgRNA1 and sgRNA2. 
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For the construction of Level 2 binary vectors into an acceptor with reporter system 

included (Figure 4-5), a digestion-ligation reaction was used with the components 

listed in Table 4-11, under the conditions described in Table 4-9. The reaction product 

was transformed into Top10 competent cells as described above and grown on LB 

agar (supplemented with kanamycin 100 µg/µL) at 37 oC overnight. No red/orange 

colonies were present therefore it was concluded that all colonies were transformed. 

A white colony was selected, amplified in LB broth supplemented with kanamycin 

overnight with shaking at 37 oC. The Level 2 construct was extracted from culture 

using QIAprep® Spin Miniprep kit (Qiagen), eluting in 30 µL water. The construct was 

sequenced (Eurofins, Sanger) using the primers listed in Table 4-10 and analysed to 

confirm correct position and sequence of each component. 

 

Table 4-11 Digestion-Ligation reaction components for assembly of Level 2 
plasmids for Bradi4g22650 CRISPR 

Component Volume per reaction 

Acceptor plasmid pICSL4723 (100 ng/uL) 1 µL 

HYG donor pICSL11099 (125 ng/uL)  1 µL 

Cas9 donor pICSL11086 (194 ng/uL) 1 µL 

Endlinker pICH41780 (51 ng/uL) 1 µL 

T4 Ligase buffer  1.5 µL 

T4 Ligase (400 U/uL) 0.5 µL 

Bovine Serum Albumin (10x) 1.5 µL 

Bpi1 10U/uL 0.5 µL 

Level 1 sgRNA1 (82 ng/uL) 1.11 µL 

Level 1 sgRNA2 (82 ng/uL) 1.33 µL 

Nuclease free water N/A (to 15 µL) 

 

 

Transformation into Agrobacterium and plant transformation was carried out by 

Inmaculada Hernandez-Pinzon of The Sainsbury Laboratory (TSL) and Matthew 

Smoker (TSL Tissue Culture and Transformation), respectively. Seven T1 plants were 
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recovered, and twenty-seven seed from each of these were planted to generate T2 

lines for phenotyping and mutation analysis. 

 

4.2.7 Assessment of CRISPR lines to identify transformants (HYG) and 

target-site edits 

DNA was extracted from freeze dried leaf material of seven T2 lines (27 plants per 

line) using the plate extraction method previously described in Chapter 0. PCR was 

used to detect the presence of hygromycin (HYG) resistance gene for a single T2 per 

T1 line, using the following primers: F= GGATTTCGGCTCCAACAATG, R= 

TATTGGGAATCCCCGAACA. The HYG donating construct (pICSL11099) 

containing HYG was used as a positive control. Amplified products were analysed by 

gel electrophoresis (1.5 % agarose, 1 µL EtBr, 50 mL). 

CRISPR target sites within Bradi4g22650 for 27 T2 lines per T1 plant, were amplified 

and sequenced using primers ACTGCTAGCTCCTCCGATCC and 

CTGCCCTGCTGCTACGAC (5’ to 3’, forward and reverse respectively). A 

touchdown PCR protocol was applied to increase specificity of amplification; GoTaq® 

Green Master Mix (Promega®) standard 15 µL reactions were prepared and 

amplification performed on an Eppendorf MasterCycler Pro according to the 

conditions described in Figure 4-11. 
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Table 4-12 PCR conditions for the amplification of Bradi4g22650 CRISPR target-edit sites in T2 
transformed lines. *annealing temperature decreasing 0.5 oC per cycle for 16 cycles. 

Step Sub-step Temp (oC) Time 

Pre-incubation 95 4 min 

45 cycles 

Denaturation 95 45 s 

Annealing 66-58* 1 min 

Extension 72 45 s 

20 cycles 

Denaturation 95 45 s 

Annealing 61 1 min 

Extension 72 45 s 

Final Extension 72 5 min 

 

Four T2 lines per T1 family were analysed to confirm a single PCR product by gel 

electrophoresis. Three of these lines per T1 family were sequenced using the 

amplification primers (Eurofins) and assessed for edits by aligning to the Bd21 v3 

reference sequence for Bradi4g22650. 
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4.3 Results 

4.3.1 Exploiting F4-5 heterozygous families to refine candidate region 

Previous work, described in Chapter 3, identified a QTL for lemma trichome 

phenotype on Bd4L using the ABR6 x Bd21 F8 RIL population, peaking at 

Bd4L_27278128. A collaboration between Jan Bettgenhaeuser and Daniel Woods, 

prior to my work, defined a candidate interval of thirteen genes. I undertook further 

fine mapping of the candidate interval. For this purpose, six heterozygous F4 RILs 

with unresolved recombination events were identified by comparison of genotype 

data from F4 and F8 maps ((Bettgenhaeuser et al., 2017). Seeds were obtained for 

these lines (F1-x, F4-1, x=14, 47, 94, 97, 102 and 117) and five F4-5 lines were 

generated for each. Phenotypic assessment of lemma trichome was undertaken on 

these F4-5 lines. For genotyping, intragenic KASP markers were designed using 

SNPs identified by alignment of gene sequences from ABR6 and Bd21 and were used 

to characterise the F4-5 lines (Figure 4-6). 

Parental lines, Bd21 and ABR6, genotypes and phenotypes match as expected for 

all markers tested. No evidence was identified for recombination events in four RILs 

(F1-x F4-5, x=14, 47, 97, 102 and 117), with phenotype and genotype as expected; 

ABR6 genotype associated with trichome absence and Bd21 genotype with trichome 

presence. Heterozygous lines always possessed trichomes. Evidence of an 

unresolved recombination event within RIL 94 was identified in four (of five) F4-5 

lines, initially localised between markers Bradi4g22651 and Bradi4g22656; all five 

individuals had lemma trichomes present. The only marker consistently matching 

genotype and phenotype was Bradi4g22651. Therefore, all regions downstream of 

Bradi4g22658, where the genotype is no longer associated with the phenotype, were 

excluded from the candidate interval. 



104 
 

 

ABR6

Bd21

Het

Figure 4-6 Refinement of lemma trichome candidate region using F4-5 lines unresolved in F8 map. A, 
Approximate locations of KASP markers to delineate the location of unresolved recombination events in 
ABR6 x Bd21 RILs. B, Summary of genotype and phenotype allocations for ABR6 x Bd21 F4-5 RILs for 
six lines with previously unresolved recombination events between F4 and F8 genetic maps. Only RIL 
F1-97 (F5 progeny) were genotyped with marker Bradi4g22653, following identification of recombination 
event between Bradi4g22651 and Bradi4g22656. 
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An additional KASP marker was designed within Bradi4g22653 to further delineate 

the new right-border of the new candidate region; only RIL F1-94, F4-5 progeny were 

genotyped with marker Bradi4g22653. This redefined the right border of the interval 

to the marker within Bradi4g22651, in total excluding eight genes downstream from 

the candidate interval (Figure 4-7). The left border of the candidate region remained 

defined by the Bd21 x Bd1-1 population (Bettgenhaeuser et al., Unpublished). 

The refined candidate region of 51.4 kb contained five genes annotated in Bd21v3.1; 

Bradi4g22637, Bradi4g22641, Bradi4g22645, Bradi4g22650 and Bradi4g22651 

(Figure 4-7). 

 

 

4.3.2 Expression analysis of candidate genes 

A causal gene for lemma trichome development would likely vary in expression 

between trichomed and non-trichomed accessions. A qRT-PCR experiment was 

undertaken to compare expression of the five candidate genes between trichomed 

(Bd21) and trichomeless (ABR6 and Bd1-1) parental accessions in developing floral 

tissue. Expression of the causal gene would be expected to occur during development 

of the floral tissues, in the floral meristem, at a stage before trichomes are visible (in 

Figure 4-7 Bd21v3.1 gene content for refined lemma trichome candidate interval by resolution of F5 
heterozygous RIL 94, relative to the region fine-mapped through collaboration between Jan 
Bettgenhaeuser and Daniel Woods. Arrows indicate annotated genes. 
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trichomed genotypes). Therefore, RNA samples were obtained from flash-frozen 

floral meristem dissected from Bd21 (trichomed), ABR6 and Bd1-1 (both non-

trichomed) just prior to the awn initiation stage (Figure 4-3). As the phenotype is tissue 

specific (leaf trichomes are unaffected), leaf material was sampled as a control for 

each line. qRT-PCR was used to quantify mRNA transcripts (converted to cDNA) and 

expression was quantified relative to BdUBC18, a constitutively expressed ubiquitin 

gene described to be stable across development and a range of environmental 

variables (Hong et al., 2008). 

Graphic representations of expression of the five candidate genes in floral meristem 

and leaf tissue are presented in Figure 4-8. Overall expression for all candidate genes 

was low compared to the housekeeping gene. Bradi4g22637, Bradi4g22641 and 

Bradi4g22651 showed no evidence of significantly different expression between 

accessions in either leaf or floral meristem tissues (F-values presented in full, 

Supplementary Table 3). Bradi4g22645 was significantly more highly expressed in 

floral tissues of Bd21 (trichomed) than in ABR6 and Bd1-1 (non-trichomed). Bd1-1 

appears to be more highly expressed than other accessions in leaf samples, but this 

is due to a single high value replicate (outlier). Bradi4g22650 was not expressed in 

foliar tissue of any of the three accessions. Bradi4g22650 was not expressed in floral 

tissue of ABR6 or Bd1-1 and was only expressed in Bd21. This pattern of expression 

makes Bradi4g2650 an excellent candidate for the gene controlling trichome 

development in Bd21. 
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Figure 4-8 Relative expression of five genes within a refined lemma trichome candidate region on Bd 
chromosome 4, of leaf and floral meristem tissues from qPCR. Values are relative to housekeeping 
gene BdUBC18. Error bars = ±1 SE. 
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4.3.3 Comparison of Bd21, ABR6 and Bd1-1 candidate region in silico 

The availability of Brachypan genomic data allowed for the comparison of the 

candidate region between the parents, Bd21 and ABR6. These data were explored 

for differences in gene content, sequence identity, and tissue specific expression. 

 Expression browser data for candidate genes 

Due to the tissue specificity of the trichome trait, the EMBL-EBI expression browser 

was used to search published RNAseq datasets for expression specific to floral 

tissues (Sibout et al., 2017, Davidson et al., 2012). Bradi4g22651 is expressed across 

many tissues to a varying degree (Figure 4-9). Both Bradi4g22637 and Bradi4g22650 

are expressed in early and emerging inflorescences with low expression of 

Bradi4g22637 also reported in the plant embryo (Figure 4-9). No expression data 

were available for Bradi4g22641 and Bradi4g22645 as they were not annotated in 

the reference version (Bd21v2.1) used for the contributing RNAseq experiment. 

Based on the published eFP expression data, Bradi4g22650 tissue specific 

expression profile best fits that expected of the lemma-specific trichome phenotype. 

Figure 4-9 Tissue specific expression data for genes in lemma trichome candidate interval on Bd 
chromsome 4, adapted from EMBL Expression Browser, data from (Davidson et al., 2012). Expression 
values in transcript per million (TPM) overlaid. Bradi4g22641 and Bradi4g22645 were absent from 
(Davidson et al., 2012) data set, so are not presented. 
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 Annotation of candidate genes 

The predicted function of the five annotated genes, and that of an Arabidopsis 

thaliana (At) and barley (Hordeum vulgare, Hv) orthologue were identified from 

Phytozome12 (Goodstein et al., 2012) based on v3.1 of genome assembly and 

annotation for Bd, or Ensembl Genomes (Plants) for orthologues (Kersey et al., 

2017)(Table 4-13). 

Three genes were annotated only as hypothetical protein in Bd, Bradi4g22641, 

Bradi4g22645 and Bradi4g22651 (Table 4-13). Bradi4g22641 is orthologous to a 

lipoxygenase gene in barley but has no orthologues in Arabidopsis. Bradi4g22645, 

has no orthologues in either barley or Arabidopsis, fitting the profile of an orphan 

gene. Bradi4g22651, has orthologues in Arabidopsis and barley as AtAUR2, a 

serine/threonine kinase and a PRA1 family protein respectively. Bradi4g22637 is 

annotated in Bd21v3.1 as a MYB transcription factor, supported by similarly 

annotated orthologues in both Arabidopsis and barley. Bradi4g22650 is annotated as 

an ATP-dependent CLP protease in Bd21v3.1; its closest orthologues in Arabidopsis 

are SMXL3 and in barley HORVU3Hr1G093470, a gene with no annotated function. 
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Table 4-13 Annotated function of trichome candidate genes and orthologues in Arabidopsis thaliana and 
Hordeum vulgare. *Top hit BLASTP orthologue using EnsemblPlants, assembly TAIR10 for At and 
IBSC_v2 for Hv. “-“= no BLAST hits  

Gene 
Brachypodium 

annotation 

Arabidopsis 

orthologue* 
Barley orthologue* 

Bradi4g22637 MYB transcription 

factor 

AtMYB96 

(MYBCOV1) 

HORVU4Hr1G023510 

(HTH myb-type 

predicted protein) 

Bradi4g22641 Hypothetical protein - HORVU7Hr1G050680 

(Lipoxygenase) 

Bradi4g22645 Hypothetical protein - - 

Bradi4g22650 ATP-dependent CLP 

protease 

SMXL3 (Protein 

SMAX1-LIKE) 

HORVU3Hr1G093470 

Bradi4g22651 Hypothetical protein AtAUR2 (Ser/Thr 

Kinase) 

HORVU3Hr1G088130 

(PRA1 family protein) 

 

Loci of BLAST results of candidate gene searches suggested a translocation of part 

of the candidate region in ABR6 to pseudomolecule 2, including Bradi4g22637, 

Bradi4g22641 and Bradi4g22645 (Table 4-14). Genes up- and down-stream of these 

genes BLAST onto ABR6 pseudomolecule 3 along with the orthologue for 

Bradi4g22651. No other sequenced Bd accessions shared the putative translocation 

event. An improved, PacBio based genomic assembly was available for Bd1-1, 

whereas no long-read based alternative genome assembly was available for ABR6. 

 



111 
 

Table 4-14 Loci of lemma trichome candidate genes in ABR6 and Bd1-1 Brachypan-genomes. Locus for non-annotated genes were identified using BLAST (Phytozome) 

Bd21 Gene 

Name 
Bd21 (v3.1) Gene Locus ABR6 (v1) Gene Name and Locus Bd1-1 (v1) Gene Locus and Locus  

Bradi4g22637 Bd4:26932692..26934398 Brdisv1ABR6_r1023025m pseudomolecule_2: 
52633649..52635281 

Brdisv1Bd1-11041363m 
pseudomolecule_6:17006114..17007388 

Bradi4g22641 Bd4:26945541..26946833 Brdisv1ABR6_r1023024m 
pseudomolecule_2:52621099..52622858  

Not annotated* 
pseudomolecule_4:13665662..13666902 

Bradi4g22645 Bd4:26948081..26949191 Not annotated* 
pseudomolecule_2:52619600..52618490 

Not annotated* 
pseudomolecule_6:17005859..17007572 

Bradi4g22650 Bd4:26958903..26964917 Brdisv1ABR6_r1023022m 
pseudomolecule_2:52596370..52597197  

Brdisv1Bd1-11032095m 

pseudomolecule_4:13679916..13685625 

Bradi4g22651 Bd4:26980048..26983247 Brdisv1ABR6_r1027243m 
pseudomolecule_3:23306626..23311919  

Brdisv1Bd1-11032097m 
pseudomolecule_4:13699325..13703398  



112 
 

 Nanopore re-sequencing of ABR6 

In order to obtain an accurate sequence for the physical candidate region in ABR6; 

therefore, long read nanopore sequencing of ABR6 was carried out in collaboration 

with Richard Leggett’s group at Earlham Institute. Genomic assembly of sequencing 

data was carried out by Matt Moscou using Flye (Kolmogorov et al., 2019, Schmidt et 

al., 2017). The translocation reported in the ABR6 Brachypan genomic sequence (v1) 

was not identified; a 72 kb scaffold covering the Bd4L candidate region was 

assembled to confirm the physical structure of the region in ABR6; no translocation 

event is present between Bd21 and ABR6 in the candidate region. Significant 

differences between the ABR6 material that we are using and the JGI Brachypan 

Illumina ABR6 sequence (which was utilised for hybrid assembly) were observed. A 

sequence approximately 9-10 kb in length is present in the ABR6 scaffold, but absent 

in the equivalent region of Bd21 resulting in a 70 kb region in ABR6 compared with 

60 kb in Bd21 (Figure 4-10). The insertion in ABR6 is upstream of Bradi4g22650. 

There is no evidence of gene content in the extra region based when using the 

Augustus gene predicter tool (Stanke and Morgenstern, 2005). 

1
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Figure 4-10. Dotplot Collinearity between Bd21 reference (Illumina, v3.1) and ABR6 nanopore Flye 

assembly for trichome candidate region. 



113 
 

Comparison of the five gene region between ABR6 and Bd21 could now proceed 

under the knowledge that the overall architecture of the region is consistent between 

the parental accessions. Where possible, from here on in, ABR6 nanopore 

sequencing data was used for analysis in preference over the Brachypan Illumina 

references, including for comparison of gene sequences between accessions. 

Likewise, a PacBio based assembly of Bd1-1 (v1.1) is used in preference to the 

Brachypan Bd1-1 v1 pseudomolecule based genomic sequence. 

 

 Sequence variation of five candidate genes - Bd21, ABR6 and Bd1-1 

Bradi4g22637 

Alignment with Bd21 showed that Bd1-1 differed in two major ways: a six bp deletion 

153 bp from the start of gene, and alignment, in the 5’ untranslated region (UTR) and 

a 12 bp insertion 894 bp from gene start in the intron. A total of 16 SNPs were 

identified between Bd1-1 and Bd21, and a further single bp insertion in the intron; of 

these, one SNP was in the first exon, five were in the second exon, one in each of 

the 5’ and 3’ UTRs and the remaining 8 found in the only intron. ABR6 had two single 

bp deletions compared to Bd21, one in the 3’ UTR and the other in the intron. Neither 

would be expected to affect the final transcript. 

Bradi4g22641 

Alignment with the ABR6 nanopore scaffold covering the region finds no evidence for 

disrupted sequence of the Bradi4g22641 equivalent gene in ABR6; the sequences 

are highly similar, with 100 % identity in the coding sequence, and a single three bp 

deletion in the 3’ UTR at position 645 from gene start. Alignment of Bradi4g22641 

with Bd1-1 (v1.1, PacBio) showed many polymorphisms with Bd21, including total 

gaps in Bd1-1 of 64/1273 bp, leaving 1207 identical compared with Bd21 and a large 

deletion in Bd1-1 (position 648-704) 56 bp in length. Additionally, a 3 bp insertion at 
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position 1219 is present in Bd1-1 and many SNPs are spread across the gene, with 

7 in the coding sequence and 21 in the 3’ UTR. 

Bradi4g22645 

For the 1111bp length mRNA sequence of Bd21 Bradi4g22645, 100 % identity was 

found with the equivalent sequence in our ABR6 Nanopore scaffold. Conversely, Bd1-

1 has a large deletion relative to Bd21 73 bp in length within the intron, in alignments 

with both Brachypan (v1) and PacBio (v1.1) assemblies (for the latter, coverage of 93 

% of query, 98.22 % identity). Most polymorphisms are within the intron, but four 

SNPs are located within the second exon. 

Bradi4g22650 

Alignment of DNA sequences shows that the promoter region and start of 

Bradi4g22650 are present in Bd21, ABR6 (nanopore scaffold) and Bd1-1 (v1.1). No 

variation was identified in the first 3 exons of Bradi4g22650, but 16 SNPs were 

present in exon 4 compared to Bd21. Alignment of the coding sequence with Bd1-1 

shows a large 304 bp deletion within exon two of Bradi4g22650 at positions 358 to 

662 from the annotated gene start, and an overall identity with Bd21 of 99 %. 

Alignment with ABR6 nanopore scaffold spanning the region, with an overall 

sequence identify of 91.18 %, shows a 29 bp deletion in ABR6, located in an intron 

between exons 2 and 3 of Bradi4g22650, with one SNP present in exon 3 and a 

further 16 SNPs present within exon 4; the remaining non-identity percentage 

between Bd21 and ABR6 is due to intronic SNPs. 

Bradi4g22651 

Three SNPs were identified in the first exon of Bradi4g22651 between ABR6 

(nanopore) and Bd21, and a further one bp deletion in the second exon at position 

1727 (Bd21 transcript). Alignment of Bd1-1 (v1.1) with Bradi4g22651 from Bd21 had 

98.72 % identity, with one large deletion, 2  bp in length in the 3’ UTR, but no variation 

in coding sequence between Bd21 and Bd1-1. 
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Summary of identify between Bd21 and the trichomeless lines Bd1-1 and ABR6 are 

presented in Table 4-15, along with summary of expression for the five candidate 

genes from both published datasets in developing floral tissues and my qPCR data. 

 

Table 4-15 Summary of sequence comparison and expression analysis of five Bd21 v3.1 genes 
annotated in candidate region for lemma trichome phenotype, between Bd21, ABR6 and Bd1-1 
accessions. 
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Bradi4g22637 
MYB transcription 

factor 
Yes No No Yes 

Bradi4g22641 
Hypothetical protein 

(Lipoxygenase) 
- No No Yes 

Bradi4g22645 Hypothetical protein  - Yes No No 

Bradi4g22650 
ATP-dependent 
CLP protease 

Yes Yes Yes Yes 

Bradi4g22651 
Hypothetical protein 
(AtAUR2, Ser/Thr 

kinase) 
Yes No Yes No 
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4.3.4 ABR6 and Bd1-1 orthologues of Bradi4g22650 are predicted to have 

truncated proteins 

Alignment of protein sequence for Bradi4g22650 of the parental lines showed an N-

terminal absence of 198 and 245 amino acids for ABR6 (nanopore) and Bd1-1 (v1.1, 

PacBio) respectively, relative to Bd21 (Figure 4-11). The amino acid sequence 

missing in the trichomeless accessions contains the Double CLP-N Motif protease 

domain. Sequence identity with Bd21 for the retained protein sequence, including the 

P-loop containing nucleoside triphosphate hydrolase domains, is high for both ABR6 

(95.3 %) and Bd1-1 (100%); the (Figure 4-11). 

 

Figure 4-11 Alignment of protein sequences annotated in Bradi4g22650 Bd21v3.1 with orthologous 
peptide sequences obtained from ABR6 nanopore assembley and Bd1-1 (v1.1) PacBio assembley, with 
peptide sequence predicted using FGENESH tool. Domain 1, highlighted green= Double CLP-N Motif 
(protease domain), domains two and three, highlighted red = P-loop containing nucleoside triphosphate 
hydrolase domains. 
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Based on the expression profiles, combined with in silico analysis of genomic and 

protein sequences, Bradi4g22650 is the best candidate causative gene for lemma 

trichome presence/ absence observed between Bd21, ABR6 and Bd1-1. 

 

4.3.5 Other Bd mutant material  

From a resource of sodium-azide (NaN3) treated Bd21-3 sequenced lines, three 

homozygous mutant lines were identified that were reported to contain mutation 

events within Bradi4g22650 (BdiBd21-3.4G0316600); 

NaN235_Bd4_26999500_Hom, NaN1620_Bd4_26999637_Hom and 

NaN1977_Bd4_26999841_Hom (Figure 4-12). All mutations were in the final exon, 

which encodes a P-loop containing nucleoside triphosphate hydrolase domain (or 

even the segment of the protein 3’ to this domain). The glumes of all three lines where 

phenotyped and found to possess visible trichomes. No lines were identified with 

mutations in the protease domain (Figure 4-12). 

 

 

  

Figure 4-12 Loci of homozygous sodium azide mutations in Bradi4g22650 equivalent gene, BdiBd21-
3.4G0316600 in Bd21-3. Derived from phytozome (V12) JBrowse function. 
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4.3.6 Disruption of Bradi4g22650 using CRISPR/Cas9 

Bradi4g22650 was identified as the primary candidate gene. Expression was 

identified only in Bd21, and I showed it to be a dominant trait therefore disruption of 

Bradi4g22650 in Bd21 using CRISPR Cas9 was undertaken for functional analysis.  

Two guide RNAs were designed to target editing within the first exon of 

Bradi4g22650. A construct containing both guides was generated using Golden Gate 

cloning and transformed into Bd21 inbred line. Transformation was confirmed by 

amplification of HYG resistance gene from all seven plants regenerated from 

transformed callus (Figure 4-13). 

Twenty-seven T-2 lines were generated for each T-1 line, and the target edit site 

sequenced; no evidence of edits was identified from either of the target sites (Figure 

4-14). All individuals were phenotyped and were found to possess lemma trichomes. 

 

Figure 4-13 Image of gel electrophoresis analysis on amplified products of hygromycin resistance for 
seven T1 Bd plants. Sample 1-7= T1 lines 1-7, left to right. Well 8 = vector pICSL11099 containing HYG 
resistance cassette as positive control. 100bp ladder (New England Biosciences).  
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Figure 4-14 Sequencing results file for Bradi4g22650 CRISPR T2 lines, highlighting target edit site in 
red and polymorphisms in yellow. Top row for each clip is Bd21v3.1 reference sequence. 



120 
 

4.4 Discussion 

4.4.1 Trichome candidate interval refined to five genes 

Two independent studies of collaborators identified a region of Bd chromosome four 

associated with lemma trichome presence/absence (Bettgenhaeuser et al., 

Unpublished). The resultant consensus region, containing 13 genes, was confirmed 

in the ABR6 x Bd21 population, using KASP markers (data not shown). 

Through chance during the development of the F8 population, it is inevitable that 

progeny selected for some lines did not contain the recombination events identified 

in earlier generations due to subsequent segregation and selection through single 

seed descent. This was exploited by identifying six RILs for which this was the case 

and, returning to the F4 families of these six RILs (14, 47, 94, 97, 102 and 117) before 

the locus had become fixed homozygous, and generating new progeny. This 

effectively increased the size of the population in a targeted way, focussing on lines 

that provided a high chance of containing an unresolved recombination event. 

These segregating progenies were then genotyped to assess whether they were 

homozygous for either ABR6 or Bd21 parent, or heterozygous, for a number of new 

markers designed within the candidate region, allowing recombination events within 

the interval to be identified. 

A single F4-5 RIL, 94, was found to have a recombination event within the candidate 

interval; in combination with lemma trichome phenotyping data for the new RIL94 F4-

5 families, the region downstream of, and including, Bradi4g22658 was excluded from 

the candidate interval. This was further refined to exclude all genes downstream of 

Bradi4g22651 after an additional marker was designed. The candidate interval was 

therefore refined to a 53.4 kb physical region, containing five genes annotated in Bd21 

(v3.1). It is possible that a non-gene sequence that sits within the region, such as a 

regulatory element for a gene outside of the physical interval, could be responsible 

for controlling the lemma trichome phenotype. 
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All F5 progeny that were heterozygous for markers across the candidate interval 

possessed lemma trichomes. It is therefore concluded that the causative gene is 

dominant in function, with Bd21 containing a dominant positive regulator of trichome 

development in lemma tissue. 

Loci of recombination events from lines 14,102 and 97 were not identified. It is 

possible that the region could be further refined by advancing heterozygous F5 plants 

to a further generation and continuing the genotyping and lemma phenotyping. This 

was considered unnecessary following the identification of the RIL 94 recombinant, 

that reduced the candidate region from 13 to 5 genes but could provide validation for 

the current findings if carried out in future work. 

The five genes annotated in Bd21 (v3.1) within the physical candidate region were 

assessed for tissue specific expression in Bd21, ABR6 and Bd1-1, and the sequences 

compared between accessions. 

 

4.4.2 Bradi4g22651 

The recombination event that defined the right border of the trichome candidate 

interval has been localised to between markers within Bradi4g22651 and 

Bradi4g22653; it is therefore possible that the recombination event actually lies within 

the Bradi4g22651, therefore if this gene appeared to be a promising candidate, further 

localisation of the recombination event would be required to confirm that the whole 

gene is contained within the interval. 

The closest Arabidopsis orthologue to Bradi4g22651 is AtAUR2, an aurora kinase. 

These serine/threonine kinases have highly conserved functions in eukaryotes during 

mitotic cell division and maintenance of meristematic tissues; in Arabidopsis AtAUR2 

specifically plays a key role in vascular cell differentiation (Lee et al., 2018). 

Conversely the closest barley orthologue is described as PRA1 (PHENYLATED RAB 
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ACCEPTOR PROTEIN 1), a small transmembrane protein involved in the regulation 

of vesicle meditated transport and intracellular trafficking. As Bradi4g22651 is simply 

annotated as a hypothetic protein with unknown function, it is unclear the role that 

this gene is playing in Bd without further functional characterisation. 

Variation in coding sequence was identified between Bd21 with both ABR6 and 

Bd1-1; a single SNP between Bd21 and Bd1-1 was present in the final exon of 

Bradi4g22651, whereas ABR6 contained three SNPs in the first exon and a one bp 

deletion in exon two, which is likely to cause a frameshift in transcript relative to Bd21. 

Data from the Bd expression browser (EMBL-EBI) showed expression across all 

tissues sampled, with the highest expression values in early and emerging 

inflorescence tissues. From my qPCR experiments, expression was identified in both 

leaf and floral meristem tissues, with no significant differences between accessions 

in leaves. ABR6 had significantly less expression in floral meristem tissue compared 

to Bd21 but it is still clearly expressed. No difference was detected between the other 

trichomeless accession, Bd1-1, and trichomed Bd21. Therefore, it is concluded to be 

unlikely that Bradi4g22651 plays a role in trichome development. 

 

4.4.3 Bradi4g22641 

Bradi4g22641 is annotated as a hypothetical gene with unknown function. No 

orthologous genes in Arabidopsis were identified, with a single lipoxygenase 

orthologous gene found in barley. Then again, based on BLASTP results 

Bradi4g22641 also appears to be an orphan gene, extremely taxonomically restricted, 

with no BLASTP hits in any grass species available (Ensembl Plants) with the 

exception of Eragrostis curvula, a warm season C4 grass, for which two BLAST hits 

to hypothetical proteins were identified (Arendsee et al., 2014). Along with the fact 

that Bradi4g22641 had not been annotated in any previous versions of the Bd21 

genome, it was considered that Bradi4g22641 had been mis-annotated and is not a 
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functional gene. However, I confirmed the presence of expression by measuring the 

transcript by qPCR, so it is concluded to be a gene with a potentially important 

function. From my qPCR experiments, expression was identified in both leaf and floral 

meristem tissues, with no significant differences between trichomed and trichomeless 

accessions. Additionally, no variation between the coding sequence of ABR6 and 

Bd21 was identified in Bradi4g22641. Based on these data, Bradi4g22641 is an 

unlikely candidate for controlling lemma trichome development in Bd. 

 

4.4.4 Bradi4g22645 

Bradi4g22645 is annotated to be a hypothetical gene with unknown function and no 

orthologous genes were identified in either Arabidopsis or barley by either BLASTP 

or BLASTN searches. The taxonomic restriction of this gene is similar to that for 

Bradi4g22641, with no orthologous genes identified in related grass species, this time 

with the exception of Saccharum spontaneum in addition to Eragrostis curvula, all 

hypothetical proteins (Arendsee et al., 2014). 

No variation in coding, or in fact genomic, sequence was identified between 

trichomeless ABR6 and trichomed Bd21. Conversely, four SNPs were present in 

trichomeless Bd1-1 in the second exon. Expression was identified, by qPCR, in both 

leaf and floral meristem tissues for all accessions tested. Both trichomeless 

accessions, ABR6 and Bd1-1, had significantly lower expression of Bradi4g22645 

than Bd21 in floral meristem but this gene was evidently expressed in both 

accessions. Even with the lack of functional annotation, this warrants future 

characterisation of loss-of-function mutants, from publicly available collections as this 

expression pattern is suggestive that Bradi4g22645 may be playing a causative role 

in trichome development in Bd21. 
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4.4.5 Bradi4g22637 

Bradi4g22637 is annotated as a MYB transcription factor in Bd (Phytozome). The 

closest orthologous MYB gene in Arabidopsis is AtMYB96, a transcription factor that 

influences abscisic acid (ABA) signalling via interactions with both negative and 

positive regulators of ABA (Lee and Seo, 2019). The closest orthologous gene in 

barley, HORVU4Hr1G023510, is a MYB-type predicted protein with gene ontology 

(GO) annotation predicting a role in response to auxin and cell differentiation 

(GO:0009733 & GO:0030154), both roles that could plausibly affect cellular and 

tissue patterning such as trichome development. 

Transcription factors are often key regulators of developmental and metabolic 

processes and hormonal pathways. TRANSPARENT TESTA GLABRA2 (TTG) is a 

WRKY transcription factor in Arabidopsis that is a positive regulator of trichome 

development (Johnson et al., 2002). Many single repeat R3 MYB transcription factors 

have been identified in Arabidopsis that directly influence trichome initiation and 

development. Arabidopsis MYB transcription factors that are positive regulators of 

trichome initiation include GL1, an R2-R3 domain containing MYB, and AtMYB23 

(Machado et al., 2009). Additionally, acting in competition with GL1 and therefore 

negatively regulating trichome initiation is TRICHOMELESS2 (TCL2), an R3 MYB 

transcription factor (Gan et al., 2011). ENHANCER OF TRY AND CPC1,2 and 3 

(ETC1, ETC2 and ETC3), CAPRICE (CPC) and TRIPTYCHON (TRY) are also MYBs 

that act as negative regulators of trichome development (Schnittger et al., 1999, 

Schellmann et al., 2002, Wester et al., 2009). MYBs with functions in trichome 

development have also been identified in other plant species, including GhMYB25 in 

cotton, SlTRY and SlGL3 in tomato (Machado et al., 2009, Tominaga-Wada et al., 

2013). Therefore, based purely on the annotation of Bradi4g22637 orthologues, this 

is a good candidate for controlling lemma trichome development. 
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Published tissue specific RNAseq data in Bd21 showed that Bradi4g22637 is 

exclusively expressed in the plant embryo and early and emerging inflorescence, with 

the latter two relevant to our lemma specific trichome phenotype. However, no 

variation was found between Bd21 and ABR6 coding sequence, or that of the 1000bp 

preceding the transcriptional start. The Bd1-1 coding sequence contained six SNPs 

compared to the Bd21 reference. Additionally, expression did not vary in floral 

meristem tissue between Bd21 and ABR6, with the higher expression observed in 

Bd1-1 considered to be due to a single outlier replicate (Figure 4-8). 

The annotated MYB function, coupled with tissue specific expression in Bd21, would 

warrant future work to investigate the effect of induced mutation on trichome 

phenotype; this could be achieved by exploiting the sodium azide, EMS mutant or T-

DNA collections of Bd21-3, an accession that also possesses lemma trichomes, so 

that loss of function could theoretically be observed. 

 

4.4.6 Bradi4g22650 

Bradi4g22650 is annotated to encode a protein that contains an ATP-dependent CLP 

protease domain in Bd21. The SMAX-1-LIKE 3 (SMXL3) orthologue (Uniprot) 

description indicates that this gene in Arabidopsis may function in a transcriptional 

corepressor complex and interact with TOPLESS/TOPLESS-RELATED (TPL/TPR) 

in an ethylene response factor (ERF)- associated amphiphilic repression (EAR)-motif 

dependent manner (Causier et al., 2012); however, sequence identity is low between 

Bd and Arabidopsis, with 45-65 % identity for the closest BLAST results. 

Proteases, proteolytic enzymes, play a vital role in many aspects of plant physiology 

and development. These functions range from the general recycling of protein 

constituents to the highly specific post-translational modification of proteins required 

for enzyme maturation, subcellular localisation and specific activities (Schaller, 2004). 

An example of this highly-specific function in plants is the action by a subtilisin-like 
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protease (SLP1) that is required to cleave the pro-peptide form of REGULATOR OF 

AWN ELONGATION 2 (RAE2) to a mature peptide, in rice, a process that is required 

for awn elongation (Bessho-Uehara et al., 2016). Loss of RAE2 function leads to 

disrupted awn development in rice. RAE2 is a member of the EPIDERMAL 

PATTERNING FACTOR-LIKE (EPFL) family. Jin et al. (2016) presented another 

member of the EPFL family in rice, GRAIN NUMBER, GRAIN LENGTH AND AWN 

DEVELOPMENT1 (GAD1), to be a small secretory, highly mobile peptide that also 

requires cleavage by a specific protease for maturation to a functional protein. These 

examples provide evidence and biological relevance to the idea that the loss of the 

Bradi4g22650 protease function could lead to a loss of trichome phenotype, perhaps 

indirectly through a role in the maturation of a peptide vital to trichome development. 

Bradi4g22650 is the only gene within the five gene interval for which the tissue-

specific expression is fully relevant to the lemma specific trichome phenotype. 

Expression data from Davidson et al. (2012) showed that Bradi4g22650 was 

exclusively expressed in early and emerging inflorescence. From my qPCR 

experiments of tissue specific expression, between trichomed and trichomeless 

accessions, Bradi4g22650 was also the only gene tested that was expressed 

exclusively in floral meristem tissue and was undetectable in leaf tissue. Furthermore, 

expression was significantly, and dramatically, higher in trichomed Bd21 compared 

with both trichomeless accessions, ABR6 and Bd1-1. This pattern of expression is 

highly suggestive that Bradi4g22650 may be playing a coordinating role in the 

observed lemma trichome phenotype. 

Variation was detected between the genomic sequences of ABR6 and Bd1-1 relative 

to Bd21, in which the gene is assumed to be functional. A large 304 bp deletion was 

identified in exon 2 Bd1-1 (PacBio) compared to Bd21; this deletion is highly likely to 

result in loss of function, with the deletion of a large portion of the encoded protease 

functional domain in the final protein, and frameshift of downstream codons. 
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Alignment of peptide sequences, obtained from Bd21 annotation (v3.1) and predicted 

from my ABR6 nanopore and Bd1-1 (v1.1) genomic data, shows the absence of a 

large segment at the beginning of the protein, including the functional protease 

domain, in the trichomeless accessions compared to Bd21 (Figure 4-11). This cannot 

be due to loss of transcriptional start, as this has been shown to be present for all 

three accessions, from additional sources of sequencing data. Absence of the 

functional protease domain would be expected to result in loss-of-function. 

Coincidentally, annotated protein sequences derived from Brachypan-genomic 

project data, when aligned also show the absence of predicted peptide sequence 

including the protease domain, in both ABR6 and Bd1-1. This is further evidence for 

Bradi4g22650 being the strongest candidate gene within the fine-mapped interval. 

 

 Bradi4g22650 - CRISPR and other mutants 

Public collections of mutants of Bd21-3, a different accession that possesses lemma 

trichomes, are available in the form of EMS, fast neutron sodium azide and T-DNA 

mutants. Four homozygous sodium azide mutations were identified within 

Bradi4g22650, all in the fourth exon encoding the hydrolase domain, that is conserved 

between the trichomed and trichomeless lines. All four homozygous mutants were 

reported to possess lemma trichomes. Sodium azide mutations are typically highly 

localised, with low incidence of clustering (Olsen et al., 1993). Mutation would not 

therefore be expected to have a direct effect on the protease domain function of the 

gene. As a result, this data does not exclude Bradi4g22650 as the predominant 

candidate gene for lemma trichome absence in ABR6. 

Bradi4g22650 (intron) and Bradi4g22651 (exon) both have T-DNA insertion, single 

gene mutants available in Bd21-3 (Bragg et al., 2012, Hsia et al., 2017). We were 

unable to obtain seed for these lines during the timeframe of this project. For future 
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work, this material could provide rapid confirmation of Bradi4g22650 as the causal 

gene for lemma trichome difference in Bd21, ABR6 and Bd1-1. 

Following the exhaustion of the publicly available mutant resources, I undertook gene-

editing of Bradi4g22650 in Bd21 by CRISPR-Cas9. The first reported successful 

disruption of a gene in Bd using CRISPR-Cas9 gene editing was carried out by on 

the target of BdAUX1 by van der Schuren et al. (2018); we used the Bd specific U6 

promoter derived from this study. Two guide RNAs were designed within the second 

exon of Bradi4g22650, which encodes part of the protease domain. Depending on 

efficiency, it would be expected to obtain edits at either or both target sites, or more 

rarely deletion of the sequence between the two target sites. Bd21 was transformed 

with the CRISPR-Cas9 construct containing the two guide RNAs. Twenty-seven T2 

families for each of the seven T1 plants regenerated from transformed callus were 

confirmed to contain the hygromycin resistance selection gene, indicating that all T1 

plants were successfully transformed. All plants possessed lemma trichomes. 

However, upon sequencing, it was found that no plants contained any modifications 

in sequences at either of the edit sites to which the sgRNAs were designed to target, 

within the second exon of Bradi4g22650. The attempt to obtain a loss-of-function 

mutation, through genome editing, was therefore unsuccessful. A comprehensive 

guide to performing CRISPR/Cas9 mutagenesis in Bd has been published since the 

completion of lab work for this thesis providing a potential avenue for successful 

disruption of Bradi4g22650 in the future (Hus et al., 2020). 

Without obtaining a loss-of-function mutant, it was not possible to assess whether the 

relationship between lemma trichome phenotype and FHB susceptibility was due to 

linkage, or whether trichomes on the floral tissue provide a causative Type I 

mechanism of infection for FHB causing Fusarium species. 
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4.4.7 Concluding remarks and future work 

To summarise, building upon results from earlier chapters and the work of 

collaborators, who had begun fine-mapping of the lemma trichome trait, a candidate 

interval was reduced to a region encoding five annotated genes in Bd21 by exploiting 

unresolved recombination events in the ABR6 x Bd21 population. The five candidate 

genes were compared for tissue specific expression, including between accessions, 

and sequence variation assessed between Bd21, ABR6 and Bd1-1. For this purpose, 

whole genome re-sequencing of ABR6 was completed using long-read nanopore 

sequencing. Bradi4g22650, an ATP-dependent CLP protease appears to be the most 

promising candidate gene; expression is specific to developing floral tissue and only 

identified in trichomed accession Bd21, whilst variation was identified between ABR6 

and Bd1-1 compared to Bd21, including the predicted absence of protease domain in 

ABR6 and Bd1-1, expected to result in loss of function. After mutant resources for the 

gene proved to be inconclusive, disruption of Bradi4g22650 by CRISPR-Cas9 gene 

editing was initiated, but recovery of edited mutants was not successful. Without loss 

of function mutations, it is not possible to fully examine the genetic relationship 

between lemma trichomes and susceptibility to FHB. Therefore, future work should 

be focussed on repeat of the generation of loss of function mutation, ideally using 

CRISPR. 
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5 Chapter 5 - Characterisation and mapping of DON 

responsive root development in Brachypodium 

distachyon 

 

5.1 Introduction 

Deoxynivalenol (DON) is produced only by FHB causing species F. graminearum and 

F. culmorum, and is globally one of the most common grain contaminants reducing 

food and feed quality, rendering these species the most economically damaging 

(Foroud et al., 2012). DON acts as a virulence factor in wheat, mediating the spread 

of infection throughout host tissues, but the mechanism of virulence is unclear; loss 

of function of DON biosynthetic pathway genes (Tri genes) results in reduced ability 

to infect, and successfully spread within, the wheat host (Langevin et al., 2004, 

Desjardins et al., 1996, Kazan et al., 2012). Symptoms of DON in floral tissues during 

FHB infection of wheat are typically bleaching above the point of infection, followed 

by necrosis extending below the point of infection as the fungus colonises down 

through the rachis. Peraldi et al. (2011) observed similar bleaching symptoms in Bd 

when inoculated with F. graminearum and F. culmorum, and I confirmed this in the 

characterisation of diverse Bd accessions in Chapter 2 and in ABR6 x Bd21 RILs in 

Chapter 3. The primary toxicity of DON across eukaryotes is facilitated by protein 

synthesis inhibitor action, but DON also inhibits RNA and DNA synthesis, damages 

cell membranes and organelles particularly mitochondria, inhibits mitosis and can 

induce rapid apoptosis (Rocha et al., 2005). Kang and Buchenauer (1999) 

characterised subcellular localisation of DON In Planta describing that DON was 

found on ribosomes but by no means exclusively, suggesting that DON might be 

influencing additional aspects of host metabolism beyond protein synthesis, 

especially during early stages of infection. 
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5.1.1 Previous work 

Previous unpublished work by Steed and Nicholson (Unpublished), described by 

Peraldi (2012), identified differential phenotypes of Arabidopsis roots when grown on 

the surface of DON containing low, and high, concentrations of DON; at low 

concentration the roots were not significantly different in length to controls, whereas 

at higher concentration roots were significantly shorter than controls and exhibited an 

altered gravitropic, waving growth pattern of roots. Peraldi (2012) further identified a 

concentration dependent response of Bd root development in Bd21 to DON, with 

elongation of primary roots at low concentrations and reduced root primary length at 

high concentrations of DON, and universally reduced root hair length. These DON 

induced phenotypes are not attributed to inhibition of protein synthesis suggesting 

that DON is playing an additional role within the plant host cell during the 

establishment of infection. 

5.1.2 Chapter Aims 

This chapter describes a genetic based approach to identify factors associated with 

response to DON, utilising the effects of DON on Bd root development as a rapid, low 

cost, non-destructive and high-throughput tool to investigate natural variation in Bd 

continuing upon the previous work by Peraldi and Steed to explore DON sensitivity in 

Bd roots. 

The Brachy-pan-genome natural accessions were characterised for DON responsive 

root development, and a novel phenotype identified. The Bd2-3 x Bd21 population 

was obtained and characterised for DON sensitivity, and genetic loci identified 

through association with genetic markers and bulked segregant analysis by next 

generation sequencing. DON responsive gene expression analysis in Bd2-3 and 

Bd21 accessions was undertaken using RNAseq. 
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5.2 Methods 

5.2.1 Plant materials 

Seed of 48 diverse Bd accessions was obtained as described in Chapter 2. Seed of 

a Bd2-3xBd21 recombinant inbred line (RIL) population (F6) was obtained from David 

Garvin (USDA ARS). In preparation for all experiments described seeds from 153 

RILs, and/or parental lines Bd21 and Bd2-3, were stratified for five days and 

germinated at 22 oC in the dark for 24 hrs as described in Chapter 2. 

5.2.2 Characterisation of Bd accessions; DON responsive root development 

Seeds from forty-eight Bd accessions (previously described in Chapter 2) were 

stratified at 4 oC in the dark for four days, following the removal of glumes, in Petri 

dishes containing 3 mL sterile distilled water between filter paper discs. Seeds were 

incubated at 22 oC (dark) for 24 hrs to initiate root growth before being placed in 

Qiagen 1.2 mL collection tubes containing 1 mL of 0.4 % agar, either control or 

supplemented with 10 µM DON, both containing 0.03 % ethanol. Four seedlings were 

used per treatment per accession. Assays were maintained in a growth cabinet as 

described above. Photographs were taken at 24 hr intervals and following removal of 

roots from medium after 6 days. Root lengths were measured using the semi-

automated SMARTROOT plugin for ImageJ (FIJI)(Lobet et al., 2011). Statistically 

adjusted predicted means were obtained for root length (5 day) data using GLM in 

Genstat (18th ed.), with block, replicate treatment and accession included in the 

statistical model. Percentage of predicted mean DON treated roots was calculated 

compared to controls, per accession. 
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5.2.3 DON head assay 

Twenty-five Bd2-3 and Bd21 plants were grown to heading, as described in Chapter 

3. At mid-anthesis, a single floret per head (three per plant) was cut to remove the 

top half and filled with 3 µL of 10 µM DON supplemented with Tween20 (0.05 %). 

Control florets were filled with water supplemented with Tween20 (0.05 %). 

Symptoms of DON toxicity were scored by counting the number of affected florets at 

7- and 10- days post-treatment and photographed 12 days post-treatment. Statistical 

analysis was undertaken using REML in R, as described in Chapter 3 (fixed effects 

model= Rep+Pot.Tray, random effects model = Line) to obtain BLUP predicted means 

and standard errors for each line. 

 

5.2.4 Induction of Bd2-3 root branching phenotype by other compounds? 

Bd accession Bd2-3 was stratified and germinated as previously described; after 24 

hrs at 22 oC, seeds were transferred to individual Qiagen collection tubes containing 

1 mL of supplemented 0.4 % agar, prepared to concentrations described in Table 5-1. 

Figure 5-1 Setup of root assays in 1.2 mL tubes, a) Bd21 at 4 days LHS four seedlings in media contains 
10 µM DON, RHS four seedlings in control media (ethanol amended only agar), b) Bd21 seedlings 
removed from tubes at 6 days, suitable for root length measurement 

A B 
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Seedlings were maintained at 22 oC, photographed daily and at experiment 

completion (7 days) when they were removed from tubes. 

Table 5-1 Chemical treatments and concentrrations to 

assess stress resposnses of Bd2-3 root development 

Treatment 
Final 

concentration 
(µM) 

Final 
[EtOH] 

(%) 

Control n/a 0.033 

DON 10 0.033 

IAA 0.5 0.033 

TIBA 0.01 0.033 

Anisomycin 0.5 0.033 

Cycloheximide 0.5 0.033 

 

5.2.5 Characterisation of Bd2-3 x Bd21 population for DON sensitivity in roots 

Seeds of the Bd2-3 x Bd21 RIL population (ten seeds per line at F6) were obtained 

from David Garvin (USDA ARS, St. Paul Minnesota). Eight seeds from 153 progeny 

lines, and parental lines, were stratified for six days and germinated at 22 oC in the 

dark for 24 hrs. Germinated seeds were transferred to individual, racked 1.2 mL 

Qiagen collection tubes containing 1 mL of 0.4 % agar (Foremedium, Cas No. 

009002-18-0) amended with DON. For phenotyping at 10 µM DON, four seedlings 

were used per treatment; control (ethanol amended to 0.03 %) and DON (10 µM). 

Placed in a propagator tray with clear lid containing water to maintain humidity, 

seedlings were incubated in a growth cabinet at 22 oC under 16hr/8hr light/dark cycle. 

Roots were photographed after six days for the visual scoring of DON response type. 

A subset of roots showing typical phenotypes were removed from tubes and 

photographed after a further four days. 

Two seedlings grown under control treatment were further used for bulking seed, 

potted two per 8x8x8 cm pot and grown under winter glasshouse conditions; resultant 

seed was used for screening root development response at a higher DON 

concentration. The experiment was constructed equivalent to above with the following 
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exceptions: 20 µM DON supplemented media was used, eight seedlings were 

prepared for DON treatment, and control treatments (ethanol amended to 0.03 %) 

were included for parental lines only, not RILs. 

For characterisation at 10- and 20- µM, individual roots were assigned a phenotype 

of like-Bd21, like-Bd2-3 or intermediate (showing both elongation and branching) from 

photographs; intermediate roots were excluded from analysis. The proportion of 

Bd21-like and Bd2-3-like roots was calculated and plotted for each concentration of 

DON, 10- and 20- µM. 

 

5.2.6 KASP mapping of DON root sensitivity 

Leaf material from Bd2-3 x Bd21 F6 RIL population was harvested, freeze dried and 

DNA extracted using the plate extraction method described in Chapter 4. Martin Trick 

(Computational Biology, JIC) prepared a high-confidence SNP file for Bd2-3 vs 

Bd21(v2) using sequencing read data from Phytozome (v12), from which two KASP 

markers were designed to each Bd chromosome arm. KASP markers were run on the 

Bd2-3 x Bd21 population using the protocol described in Chapter 4; the sequences of 

successful markers are listed in Supplementary Table 4. Single marker association 

analysis was undertaken (Genstat, GLM) to identify markers significantly associated 

with the DON root phenotyping data from experiments Chapter 5.2.5. For fine-

mapping, iterative rounds of additional KASP markers were designed (from the same 

SNP resource) and run on the Bd2-3 x Bd21 F7 population and aligned with 

phenotype data; (Supplementary Table 5). Using these fine-mapping marker data, 

MapDisto was used to generate a physical map (loci specific to Bd21v2). 

5.2.7 Bulked Segregant Analysis by Next-Generation Sequencing 

Thirty RILs showing consensus phenotypes, elongatory like Bd21 or inhibitory like 

Bd2-3, were selected for analysis by bulked segregant analysis (BSA) by next 
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generation sequencing (NGS). Three pools of ten individual RILs (Table 5-2), a total 

of 30 per phenotype, were grown for leaf material as previously described. Leaves 

were pooled prior to DNA extraction; equal representation of leaf material from 

individuals within each pool was ensured by measuring 50 mg of freeze-dried 

material, approximately equivalent to two leaves per RIL per pool. 

Table 5-2 Pools of Bd21xBd2-3 RILs F1-x, F7-1 used for bulked segregant analysis of DON sensitivity 
in Brachypodium distachyon roots. 

Bd21-like 

Pool1 

Bd21-like 

Pool2 

Bd21-like 

Pool3 

Bd2-3-like 

Pool1 

Bd2-3-like 

Pool2 

Bd2-3-like 

Pool3 

22 26 51 7 21 32 

23 27 79 18 30 36 

107 41 100 42 31 37 

108 109 124 47 50 76 

127 116 125 92 71 82 

128 117 126 93 73 85 

129 130 132 94 96 105 

149 131 134 122 102 115 

155 158 146 138 154 120 

156 162 173 147 157 159 

 

DNA was extracted from pooled leaves, ground under liquid nitrogen, using a CTAB 

method: CTAB buffer (0.8 % cetyl-trimethylammonium bromide, 1 % polyvinyl 

pyrrolidone, 34 mM sarkosyl, 137 mM sorbitol, 0.8 M NaCl, 27 mM EDTA in water) 

was heated to 65 oC and 4 mL added to 50 mg per sample leaf material, then 

incubated at 65 oC for 2 hours. One volume chloroform: isoamyl alcohol (24:1) was 

added, vortexed and centrifuged at 4226 x g for 10 mins. The upper aqueous phase 

was removed to a fresh tube, 100 U of RNaseA added and incubated at 37 oC for 45 

mins. One volume of isopropanol (-20 oC) was added, gently mixed and incubated 

overnight at -20 oC to precipitate DNA, then centrifuged at 4226 x g for 10 mins. The 

resultant DNA pellet was washed with 70 % ethanol, allowed to dry and dissolved in 

TE buffer. Analysis by gel electrophoresis confirmed absence of RNA in samples. 

DNA was quantified using Qubit™ dsDNA HS kit (Thermo Fisher Scientific), read on 
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a Qubit™ 2.0 Fluorometer, and 1500 ng of each sample prepared for submission to 

Novogene (HK) Company Ltd. for quality control, library preparation and DNA 

sequencing by Illumina HiSeq to generate c. 40X coverage (12 Gb data per sample) 

150 bp paired-end (PE) reads. 

The three replicate pools were grouped by phenotype for final analysis. Quality control 

of samples was executed using fastQC (version 0.11.8, Andrews (2010)). 

Trimmomatic (version 0.33) was used to clip reads of any remaining Illumina 

Truseq2adapter sequences, and to clean reads using a sliding window (size 10, 

quality 20) and to a minimum read length of 50 base-pairs (Bolger et al., 2014). Reads 

were aligned, per merged sample, to the Bd21 v3.1 reference sequence using BWA 

(v.0.7.5) then sorted and indexed using Samtools (v1.9)(Li et al., 2009). Freebayes 

(v.1.3.1) was used to call variants in parallel for the Bd21-like and Bd2-3-like samples 

using the following parameters: quality >20, coverage >20 and mapping quality >42. 

VCFtools was used to remove variants with mean depth below 60 and quality score 

below 1500 (Danecek et al., 2011); the resultant .vcf file was converted to .txt using 

the ‘query’ command from BCFtools. 

Calculations for bulk frequency ratio of variants (BFR) were undertaken using R, and 

Rstudio, following the principals described by Trick et al. (2012). The ratio of 

frequencies between the bulks of the alternative, informative allele (AO) was 

calculated for each variant, Bd2-3-like/Bd21-like, and plotted by Bd21 v3.1 genomic 

position using R (Rstudio, ggplot2 package (Wickham, 2016)). 

 

5.2.8 Fine mapping of Bd1L BSA interval 

DNA material previously described in Chapter 5.2.5 was used for KASP analysis for 

fine mapping of Bd1L BSA peak, for high-confidence RILs only (Table 5-2). Primers 

used are listed in Supplementary Table 6. KASP reactions analysis was carried out 
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as previously described. Relationships between KASP genotypes, and DON induced 

phenotypes at 10- and 20- µM were assessed. 

 

5.2.9 RNAseq analysis of Bd2-3 and Bd21 in response to DON  

Germinated seeds of Bd21 and Bd2-3 were transferred to open Petri dishes 

containing a filter paper disc moistened with water (seven seedlings per plate). Four 

replicate Petri dishes were prepared for each treatment (Mock control, 5 µM DON and 

20 µM DON), per accession (Bd2-3 and Bd21), arranged in a propagator tray with 

clear lid to maintain humidity. Seedlings were incubated at 22 oC, 16 hr daylength for 

five days until roots were c. 4-5 cm in length. 

Treatments, prepared as described in Chapter 5.2.2 to 0-, 5- and 20-µM DON, were 

applied to roots in 10 mL volumes, incubated for 6 hrs then root tissue was harvested 

and flash frozen in liquid nitrogen. Four replicate samples were prepared per 

treatment. Samples were ground using a pestle and mortar under liquid nitrogen and 

total RNA extracted using RNeasy® Plant Mini Kit (Qiagen) following manufacturers 

protocol (eluting in 30 µL water). Following DNase treatment by TURBO DNA-free™ 

kit (Ambion®), RNA content was quantified using Nanodrop (v2). All samples had an 

RNA-integrity number >6. At least 500 ng of RNA for 18 samples (three out of four 

replicates per treatment) was submitted to Genewiz (UK) for quality control, library 

preparation and RNA sequencing by Illumina HiSeq to generate 15-20 million 150 bp 

paired-end reads per sample. 

Quality control of samples was executed using fastQC (version 0.11.8). Trimmomatic 

(version 0.33,) was used to clip reads of remaining Illumina adapter sequences and 

clean to the same parameters described in Chapter 5.2.7 (Bolger et al., 2014). 

Resultant reads were mapped to the Brachypodium distachyon v3.1 reference, 

sequence available from Phytozome (12th edition (International Brachypodium, 
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2010)) using HISAT2 (version 2.1.0) (Kim et al., 2015) and sorted using Samtools 

(version 1.9). A python script obtained from Burkhard Steuernagel (Computational 

Biology, JIC) was used to calculate non-normalised read counts for each sample 

(gene count matrix). Differential expression values, and plots (MA, Multi-Dimensional 

Scaling (MDS) and volcano plots) were generated using Degust (v4.1.1), an 

interactive online tool (Powell et al., 2019). Venn diagrams were produced using the 

webtool Venny v2.1, and used to obtain lists of shared up- and down-regulated genes 

with a false-discovery-rate cut off of 0.05 and a log fold-change >2 (Oliveros, 2007-

2015). 
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5.3 Results 

5.3.1 Brachypodium accessions vary in response/sensitivity to DON 

A set of 48 diverse Bd accessions, previously described in Chapter 2 (and listed in 

Supplementary Table 1), was characterised for DON responsive root development; 

seedlings were grown in agar supplemented with 10 µM DON a concentration that 

induces root elongation in Bd21. After five days root length was measured and 

calculated relative to control roots (Figure 5-2). The majority of accessions showed 

an elongatory response to DON; twenty-seven accessions had a significantly greater 

root length compared to controls (Adi-10 to BdTR13A, Figure 5-2). Three accessions 

had significantly reduced root length in response to DON: Bd2-3, Koz-1 and Luc-1 

(means=59.6, 63.7 and 73.4 % respectively). Luc-1 roots were simply reduced in 

length whereas accession Bd2-3 and Koz-1 roots showed inhibition of the primary 

root meristem and induction of branching secondary roots immediately above the 

inhibited root tip. Assuming that elongation is a representation of lesser DON 

sensitivity, and inhibition is a manifestation of greater DON sensitivity, accessions 

could be selected that vary significantly in sensitivity to DON. Representative images 

of two accessions of interest are shown (Figure 5-3) and highlighted in Figure 5-2, 

Bd21 and Bd2-3; the former showed an elongatory effect typical in this experiment at 

10 µM DON, increased gravitropism, and reduced root hairs. In contrast Bd2-3 

showed an extreme inhibition of primary root growth and the development of 

branching roots in response to a low concentration of DON; all four replicate roots 

showed the same phenotype and this novel phenotype in response to DON was 

reproducible over three replicate experiments. This varies from previously published 

accounts of DON-induced root inhibition that have typically reduced root hairs and 

are unbranched in wheat (Eudes et al., 2000). 
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Figure 5-2 Variation in root length of Bd accessions when grown in agar supplemented with DON (10 µM), after 5 days. SE = ±5.58 to 23.90. Accessions highlighted in grey, Bd2-
3 and Bd21 that vary in phenotype, are parents of a biparental mapping population 
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5.3.2 DON sensitivity in floral tissues (Bd2-3 vs Bd21) 

To assess whether the differential response to DON is root tissue specific, and 

relevance of the differential response in root DON sensitivity to Fusarium head blight, 

response to DON in the floral tissues was characterised for Bd2-3 and Bd21. A DON 

head-based point application experiment was carried out under controlled 

environment conditions, and the results shown in Figure 5-4. Symptoms appeared as 

browning of florets and spread only to tissues above the point of application. The 

production of symptoms above the point of DON application is also observed in wheat 

(Lemmens et al., 2005). Browning symptoms were observed to spread within the 

treated spikelet and to above spikelets, never below; this was a deviation from 

expected bleaching phenotype yet browning resulting from contamination is unlikely 

as the mock treated controls showed no browning symptoms. At both seven- and ten-

days post application, DON resulted in symptoms spreading to a greater number of 

florets in Bd2-3 (means=1.98 and 2.48) compared with Bd21 (means=1.12 and 1.38, 

p-value<0.001). The greater DON sensitivity of Bd2-3 compared to Bd21 indicates 

Figure 5-3 Photographs showing the differential responsiveness to growing in agar supplemented with 10 
µM DON between Bd21 and Bd2-3 accessions of Brachypodium distatchyon. 
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that the differential observed in root tissue may reflect greater DON sensitivity of 

Bd2-3 in both tissues (Chapter 5.3.1). 

 

 

 

 

 

Figure 5-4 Bd2-3 and Bd21 DON sensitivity in floral tissues. A, Representative images of Bd2-3 and 
Bd21 typical browning symptoms in response to application of DON. Point of treatment (DON or mock) 
application indicated by white triangle marker. Scale = 1 cm. B, Plots of predicted mean (derived from 
GLM analysis) spread of DON associated browning symptoms as number of florets above point of 
application for Bd21 and Bd2-3 for seven and ten days post treatment. Error bars = ±1SE 
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5.3.3 Do other stress treatments induce root branching in Bd2-3? 

Bd2-3 seedlings were grown on agar treated to simulate a variety of stress conditions 

to assess whether the inhibited, branched-root phenotype shown in response to DON 

was general, or specific to DON. Treatments included auxin, auxin transport inhibitor 

(triiodobenzoic acid, TIBA) and protein-synthesis inhibitors (anisomycin and 

cycloheximide). Images from stress treated roots at 7 days following removal from 

growth medium are shown in Figure 5-5. Roots grown in control and DON treated 

media were typical for Bd2-3; DON treated Bd2-3 roots were inhibited and produced 

lateral roots, as described above. Auxin (IAA) at 0.5 µM had no major visible effect 

on root development (Figure 5-5). One (out of four) roots treated with TIBA (10 nM) 

and protein synthesis inhibitors anisomysin and cycloheximide (both 0.5 µM) was 

branched at a point that is similar to that in which Bd2-3 roots are inhibited and branch 

with DON, and three roots appeared to be unaffected (Figure 5-5); the primary 

difference in these phenotypes is that for DON the primary root ceases to elongate 

while the other three treatments show the primary root continuing to extend (Figure 

5-5). 
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5.3.4 Characterisation of Bd2-3xBd21 population for DON sensitivity 

An F6-7 Bd2-3 x Bd21 population of 154 recombinant inbred lines (RILs) was 

assessed for DON sensitivity manifesting as differential root development. The 

population was first phenotyped at a concentration of 10 µM DON; parental 

phenotypes were typical to those previously observed, with Bd2-3 primary roots 

inhibited and emergence of lateral branching and Bd21 roots elongated and exhibited 

hyper-gravitropic growth (Figure 5-6a). Control treated roots varied between the 

accessions; Bd2-3 roots were longer in length and coiled less within the growth tubes 

than Bd21 (Figure 5-6a). 

Control DON 10 µM IAA (0.5 µM) 

TIBA (10 nM) 

Anisomycin 

 (0.5 µM) 

Cycloheximide  
(0.5 µM) 

Figure 5-5 Phenotypes of roots grown in supplemented 0.4% agar for five days. TIBA=triiodobenzoic 
acid, an auxin-transport inhibitor. Anisomycin and cycloheximide are protein-synthesis inhibitors, the 
latter described as most closely sharing cellular mechanism with DON. 
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In response to growth in media supplemented with 10 µM DON, progeny of the 

population segregated between the two phenotypes at approximately equal 

proportions Figure 5-7 Proportional distribution of Bd2-3-like and Bd21-like roots for 

each of 154 Bd2-3 x Bd21 F7 RILs when grown in agar supplemented with 10 µM 

DON, Bd2-3-like:Bd21-like, with some lines showing an intermediate sensitivity 

phenotype in which lateral roots were produced but growth of the root tip was not 

inhibited, instead continuing to grow with hyper-gravitropism. Individual progeny roots 

were assigned a phenotype as Bd2-3-like, Bd21-like or intermediate, plotted in Figure 

5-7 with intermediate roots excluded from subsequent analysis. 

The experiment was repeated at the higher DON concentration of 20 µM, under the 

expectation that a greater proportion of lines would exceed a DON sensitivity 

threshold and develop branching instead of elongation. The proportion of roots 

showing each parental phenotype for each RIL is shown in Figure 5-8. A greater 

proportion of RILs have a Bd2-3-like phenotype compared to the equivalent histogram 

for 10 µM DON. From these data, RILs were designated as Bd2-3-like or Bd21-like in 

DON sensitivity. Sixty-five RILs had the same phenotype at both concentrations: 30 

Bd21-like, 30 Bd2-3-like and 5 intermediate in both assays (Supplementary Table 7). 

Sixty-four RILs appeared more DON sensitive at 20 µM, tending towards a Bd2-3-like 

phenotype: 21 were Bd21-like at 10 µM and Bd2-3-like at 20 µM, 25 RILs were Bd21-

like at 10 µM to intermediate at 20 µM and 18 RILs were intermediate at 10 µM and 

Bd2-3-like at 20 µM (Supplementary Table 7). However, 23 lines appeared less 

sensitive at 20 µM DON than 10 µM: 16 were either Bd2-3-like to intermediate, or 

intermediate to Bd21-like with 7 RILs Bd2-3 like to Bd21 like. 
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Control  DON  
(10 µM)  

Control  DON  
(10 µM)  

Control  DON 
(10 
µM)  

1 cm  

Bd2-3 like Intermediate Bd21 like 

Figure 5-6. Differential phenotypes of roots of two accessions, Bd21 and Bd2-3 when grown in 10 µM 
DON supplemented agar for 6 days, compared to no-treatment controls. Below: Roots grown in agar 
supplemented in 10 µM DON for six days, demonstrating the three typical phenotypes observed, in 
comparison to control treated roots. 
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Figure 5-7 Proportional distribution of Bd2-3-like and Bd21-like roots for each of 154 Bd2-3 x Bd21 F7 RILs when grown in agar supplemented with 10 µM DON. Overlaid 
lines represent assignment of RILs as Bd2-3-like (to the right of dashed vertical line), Bd21-like (to the left of the vertical dotted line), or intermediate (between the two vertical 
lines) Four replicate roots per RIL. Dead roots excluded, resulting in >4 possible Bd2-3:Bd21 ratios 
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Figure 5-8 Proportional distribution of Bd2-3-like and Bd21-like roots for each of 154 Bd2-3 x Bd21 F7 RILs when grown in agar supplemented with 20 µM DON. Overlaid lines 
represent assignment of RILs as Bd2-3-like (to the right of dashed vertical line), Bd21-like (to the left of the vertical dotted line), or intermediate (between the two vertical lines). 

Eight replicate roots per RIL. Dead roots exlcuded, resulting in >8 possible Bd2-3:Bd21 ratios 
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5.3.5 Identification of region associated with DON sensitivity  

Once the Bd2-3 x Bd21 population had been characterised for DON sensitivity 

through assessment of root development, identification of associated genetic loci 

could be initiated. However, no genetic map, or any other genotypic data, was 

available for the Bd2-3 x Bd21 RIL population. Therefore, a set of KASP markers was 

designed, two to each chromosome arm, for single marker association analysis using 

the 10 µM and 20 µM DON sensitivity phenotype data. RILs were assigned a 

phenotype, as like parent A, B or intermediate according to Figure 5-7 & Figure 5-8. 

Figure 5-9 illustrates the approximate positions, and p-values for association with 

DON sensitivity, of each marker. Bd1LD was the only significantly associated marker 

with DON-sensitivity at 10µM (p<0.001) (Figure 5-9). The Bd1L marker was not 

Figure 5-9 Illustration of KASP markers and single marker association results for association with DON 
sensitivity at for Bd2-3xBd21 population characterised in media supplemented with 10 µM DON. P-
values for associated are presented with marker names, for 10µM DON upper, 20µM DON red, italisied 

and below. Greyed out, unlabelled markers were unsuccessful and omitted from analyses. 
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significantly associated with DON sensitivity at 20 µM by a small margin (p=0.069), 

whereas marker Bd4SD was (p=0.038). 

Bd1LD was found to be the closest associated marker with DON sensitivity in Bd2-3 

x Bd21 between 10 µM and 20 µM datasets, genotyping focus was refined to the long 

arm of chromosome Bd1. Iterative rounds of KASP markers were designed and 

applied to genotype the population for enrichment of the Bd1L chromosome arm and 

single marker analysis was again undertaken on a total of 23 markers on the Bd1L 

chromsome arm. Figure 5-10 highlights eleven markers that were significantly 

associated with DON sensitivity (p-values<0.05), covering a region of 2.4 Mb, and 8.7 

cM) (or 3.3 Mb and 16.2 cM to the non-significant flanking markers). However, no 

complete segregations were clear when analysing the genotype and phenotype data; 

for all markers there were many lines where phenotype and genotype did not 

associate; the agreement was best for RILs with Bd2-3 phenotype suggesting there 

are roots escaping the sensitivity phenotype. Between the flanking markers of 

Bd1L_68688411 and Bd1L_72052958 are 487 genes annotated in Bd21v2, from 

Bradi1g69940 to Bradi1g74580. This remained much too large a region to warrant 

investigations into the plausibility of individual genes being involved in a DON 

sensitivity mechanism. 
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5.3.6 Bulked segregant analysis for extreme DON sensitivity RILs of Bd2-3 x 

Bd21 

Bulked segregant analysis (BSA) by whole genome re-sequencing was carried out to 

identify genomic loci associated with DON sensitivity (Michelmore et al., 1991). Based 

on consensus phenotypes at 10- and 20-µM DON treatments (Supplementary Table 

7), high-confidence subsets of RILs at the extremes of low- and high-sensitivity to 

DON, each containing 30 RILs, were pooled (Table 5-2). Illumina sequencing was 

carried out on pooled DNA from leaf material to obtain 65.7 and 81.1 million paired 

end 150 base pair reads for Bd21-like and Bd2-3-like pools once merged. Initially 

three replicate pools were prepared per extreme phenotype, each containing ten 

unique RILs, providing the possibility to remove anomalous replicates from analysis 

to insure against any mis-phenotyped RILs skewing differential allele frequencies 

Figure 5-10 Physical map of Bd1L overlaid with region of significantly associated KASP markers with 
DON sensitivity in root development in Bd2-3xBd21 RIL F6 populatio. For 10 µM DON, area highlighted 
in green, for 20 µM DON, area highlighted in purple = p-values<0.05. Total map size = 60.07 cM. 
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between Bd21- and Bd2-3- like pools. Sequencing read fastq-files for all replicate 

pools were merged after initial analysis did not reveal any evidence of mis-

assignment. Following alignment to the Bd21v3.1 reference genome sequence 1.08 

million short sequence variants, specifically single nucleotide polymorphisms (SNPs), 

insertions and deletions (INDELs) and other (marked ‘complex’), were identified in 

parallel between the merged Bd21 and Bd2-3-like pools using Freebayes (Garrison 

and Marth, 2012). Following plotting of quality frequency score for the variants called 

for each Bd chromosome (Figure 5-11a), a filtering threshold was determined and 

applied to exclude the lowest quality variants likely resulting from mis-calling and low 

read depth, with 801,145 variants remaining (Figure 5-11b). 

The frequency of variants between the pools was calculated and is presented as a 

bulk frequency ratio in Figure 5-12a (Trick et al., 2012). A major peak on Bd1L was 

identified, peaking at 69782472 bp with a maximum bulk frequency ratio of 21.1 

(Figure 5-12a). The peak borders were defined to include the physical distance in 

which bulk frequency ratio was greater than seven; a total of 74 variants with a bulk 

frequency ratio >7 were identified between loci 69579665 to 69969275, of which 55 

were intergenic and 19 were intragenic across eight annotated genes (Table 5-3). 

The physical distance contains 56 genes in Bd21v3.1 sequentially from Bradi1g71373 

to Bradi1g71820, listed in Table 5-4 with Bd2-3 equivalent loci and At orthologues. 

The Bd1L BSA peak lies centrally within the previous KASP-mapped significance 

interval (Figure 5-12b). 

A smaller, secondary well-defined peak was identified on chromosome 2, at 

47356029 and 48094910 bp with a bulk frequency ratio maximum of 16.69 at 

Bd2_47356029; nine variants were present in the range with a bulk frequency ratio 

>7, of Bd chromosome 2 which contains 94 genes annotated in Bd21v3.1, from 

Bradi2g47240 to Bradi2g47960 (Figure 5-12a). Two, less well defined and structured 

peaks were also identified on the long arm chromosome 4. 
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Eleven genes out of the 56 within the Bd1L BSA interval are annotated to play roles 

in RNA binding and processing, five have links to plant hormone pathway regulation 

of response, with a final gene of note Bradi1g71465 related to a casparian strip 

regulatory gene (Table 5-4). 

 

Figure 5-11 Quality scores for BSA variants for Bd2-3xBd21 F7 RIL DON sensitivity, A, prior to filtering 
of variants, B, with filtering to remove all variants with quality <1500 score. 

B 

A 
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A 

Figure 5-12 Bulked segregant analysis for DON sensitivity in Bd2-3 x Bd21 F7 high-confidence RILs. Thirty RILs per extreme phenotype pool. B, Physical map showing 
previous KASP mapping of DON sensitivity on Bd1L (Figure 5-10), overlaid with BSA Bd1L peak (purple), variants with bulk frequency ratio >7. 

B 
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Table 5-3 Genes in BSA chromosome Bd1 peak and the variants within each with bulk frequency ratio (BFR) >7 for DON sensitivity in Bd2-3xBd21 F7 high-confidence Bd21-
like and Bd2-3-like pools. Bd1 position applies to Bd21v3.1 bp locus on chromosome one. 

Gene  BFR (AO, Bd2-3/Bd21) Reference allele Alternative allele Bd1 position (bp) 

Bradi1g71373 7.13 G A 69616104 

Bradi1g71390 
9.90 TCAC TTACTCAGACAG 69623640 

9.84 ACAC CCAGCCACCCTCAAC 69623634 

Bradi1g71420 7.16 TT TAGG 69639005 

Bradi1g71513 

18.20 T C 69736632 

11.84 G C 69738506 

8.54 G C 69736605 

8.38 GAA AAG 69738525 

8.36 A G 69736663 

7.39 C T 69736957 

7.08 A G 69738714 

7.019 TGGGGCGGT TGGGGGCGGT 69738542 

Bradi1g71530 7.81 G A 69746863 

Bradi1g71611 7.83 G A 69798745 

Bradi1g71760 

15.77 TGA TGGA 69914641 

8.92 G T 69914594 

8.75 T A 69912656 

7.08 C T 69914670 

Bradi1g71820 8.92 GTTATTTTTATTTTGA GTTATTTTTATTTTTATTTTTATTTTGA 69969275 
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Table 5-4 Genes annotated in Bd21 v3.1 within the 56 gene BSA candidate interval in association with DON sensitivity from high-confidence Bd2-3 x Bd21 RILs 

Gene ID  
(Bd21 v3.1) 

Bd2-3(v1) Gene Bd annotation (Bd21v3.1) At orthologue & (Annotation) 

Bradi1g71373 Brdisv1Bd2-31010836m 
NOGO-B receptor, Rer2p Z-
prenyltransferase 

AT1G11755.1 (LEW1 (Undecaprenyl pyrophosphate 
synthetase family protein)) 

Bradi1g71377 Brdisv1Bd2-31010839m 
RNA recognition motif. (a.k.a. RRM, RBD, or 
RNP domain) (RRM_1) 

AT2G21660.1 (AtGRP7,CCR2,GR-RBP7,GRP7 (cold, 
circadian rhythm, and RNA binding 2)) 

Bradi1g71383 Brdisv1Bd2-31010840m n/a n/a 

Bradi1g71390 Brdisv1Bd2-31010841m Hypothetical Protein AT1G20460.1 (n/a) 

Bradi1g71400 Brdisv1Bd2-31010842m 
Transcription initiation factor IIB-related, zinc 
ion binding 

AT4G36650.1 (n/a) 

Bradi1g71410 Brdisv1Bd2-31010846m Mitochondrial carrier protein AT1G34065.1 (SAMC2, S-adenosylmethionine carrier 2) 

Bradi1g71420 Brdisv1Bd2-31010847m Alpha/beta-hydrolases superfamily protein AT1G29840.1 (Alpha/beta-Hydrolases superfamily protein) 

Bradi1g71425 Brdisv1Bd2-31010848m 37S ribosomal protein S10, mitochondrial AT3G13120.1 (Ribosomal protein S10p/S20e family protein) 

Bradi1g71430 Brdisv1Bd2-31010849m Serine O-acetyltransferase AT1G55920.1 (AtSERAT2;1, serine acetyltransferase 2;1) 

Bradi1g71450 Brdisv1Bd2-31010853m Hypothetical Protein 
AT2G18910.1 (Hydroxyproline-rich glycoprotein family 
protein) 

Bradi1g71460 Brdisv1Bd2-31010855m F-Box AT5G48170.1 (SLY2, F-box family protein) 

Bradi1g71465 Brdisv1Bd2-31010856m 
Nitrate, fromate, iron dehydrogenase // 
subfamily not named 

AT2G35760.1 (CASPL2B1, CASP-LIKE PROTEIN 2B1) 

Bradi1g71470 Brdisv1Bd2-31037589m Ribosomal protein L2 ATCG00830.1 (Ribosomal protein L2) 
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Table 5-4 continued Genes annotated in Bd21 v3.1 within the 56 gene BSA candidate interval in association with DON sensitivity from high-confidence Bd2-3 x Bd21 RILs 

Gene ID  
(Bd21 v3.1) 

Bd2-3(v1) Gene Bd annotation (Bd21v3.1) At orthologue & (Annotation) 

Bradi1g71475 Brdisv1Bd2-31045608m 
Small subunit ribosomal protein S19 (RP-
S19, rpsS) 

ATCG00820.1 (Ribosomal protein S19) 

Bradi1g71480 Brdisv1Bd2-31010857m n/a n/a 

Bradi1g71490 Brdisv1Bd2-31010858m n/a AT2G34250.1 (SecY protein transport family protein) 

Bradi1g71495 Brdisv1Bd2-31010859m 
PPR repeat (PPR) // PPR repeat family 
(PPR_2) 

AT5G65560.1 (Pentatricopeptide repeat (PPR) superfamily 
protein) 

Bradi1g71500 Brdisv1Bd2-31010860m Sulfate transporter AT1G22150.1 (SULTR1;3, sulfate transporter 1;3) 

Bradi1g71510 Brdisv1Bd2-31010863m Sulfate transporter 2.1-related AT5G10180.1 (AST68,SULTR2;1, sulfate transporter 2;1) 

Bradi1g71513 n/a n/a n/a 

Bradi1g71517 Brdisv1Bd2-31010864m Pre-rRNA-processing protein TSR3 (TSR3) AT5G10070.2 (RNase L inhibitor protein-related) 

Bradi1g71530 Brdisv1Bd2-31010865m 
LL-diaminopimelate aminotransferase 
(E2.6.1.83) 

AT2G13810.1 (ALD1, AGD2-like defence response protein 1) 

Bradi1g71540 Brdisv1Bd2-31010866m Eukaryotic cytochrome B561 AT3G25290.2 (Auxin-responsive family protein) 

Bradi1g71560 Brdisv1Bd2-31010867m 
Protein of unknown function (DUF568) 
(DUF568) 

AT3G59070.1 (Cytochrome b561/ferric reductase 
transmembrane with DOMON related domain) 

Bradi1g71570 Brdisv1Bd2-31010871m 
Mitochondrial import inner membrane 
translocase subunit TIM22 

AT4G26670.1 (Mitochondrial import inner membrane 
translocase subunit Tim17/Tim22/Tim23 family protein) 

Bradi1g71575 Brdisv1Bd2-31010872m N-acetyltransferase 9 
AT2G04845.1 (Acyl-CoA N-acyltransferases (NAT) 
superfamily protein) 

Bradi1g71580 Brdisv1Bd2-31010874m 
Predicted membrane protein, contains DoH 
and Cytochrome b-561 

AT2G04850.1 (Auxin-responsive family protein) 

Bradi1g71590 Brdisv1Bd2-31010877m C2 domain 
AT5G55530.3 (Calcium-dependent lipid-binding (CaLB 
domain) family protein) 
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Table 5-4 continued Genes annotated in Bd21 v3.1 within the 56 gene BSA candidate interval in association with DON sensitivity from high-confidence Bd2-3 x Bd21 RILs 

Gene ID  
(Bd21 v3.1) 

Bd2-3(v1) Gene Bd annotation (Bd21v3.1) At orthologue & (Annotation) 

Bradi1g71600 Brdisv1Bd2-31010880m 
26S proteasome non-ATPase regulatory 
subunit 3/COP9 signalosome complex 
subunit 3 

AT1G20200.1 (EMB2719,HAP15, PAM domain (PCI/PINT 
associated module) protein) 

Bradi1g71611 Brdisv1Bd2-31010881m 
Polyamine oxidase (propane-1,3-diamine-
forming) / MPAO 

AT5G13700.1 (APAO,ATPAO1,PAO1, polyamine oxidase 1) 

Bradi1g71620 Brdisv1Bd2-31010882m FRIGIDA-like protein AT5G48385.1 (FRIGIDA-like protein) 

Bradi1g71624 Brdisv1Bd2-31010883m RNA binding protein pumilio-related AT2G29200.1 (APUM1,PUM1, pumilio 1) 

Bradi1g71626 Brdisv1Bd2-31010884m n/a n/a 

Bradi1g71630 Brdisv1Bd2-31010885m RNA binding protein pumilio-related AT4G25880.2 (APUM6,PUM6, pumilio 6) 

Bradi1g71635 Brdisv1Bd2-31010886m n/a n/a 

Bradi1g71637 Brdisv1Bd2-31010887m n/a AT2G29200.1 (APUM1,PUM1, pumilio 1) 

Bradi1g71640 Brdisv1Bd2-31010888m Peptidyl-prolyl cis-trans isomerase AT1G53720.1 (ATCYP59,CYP59, cyclophilin 59) 

Bradi1g71650 Brdisv1Bd2-31010890m 
Small subunit ribosomal protein S17 (RP-
S17, MRPS17, rpsQ) 

AT3G18880.1 (Nucleic acid-binding, OB-fold-like protein) 

Bradi1g71660 Brdisv1Bd2-31010892m 
Splicing factor 3B subunit 5 (SF3B5, 
SF3B10) 

AT4G14342.1 (Splicing factor 3B subunit 5/RDS3 complex 
subunit 10) 

Bradi1g71667 Brdisv1Bd2-31010893m Myo-inositol-1-phosphate synthase AT2G22240.1 (MIPS2, myo-inositol-1-phosphate synthase 2) 

Bradi1g71673 Brdisv1Bd2-31010894m n/a n/a 

Bradi1g71680 Brdisv1Bd2-31010895m 
Bifunctional inhibitor/lipid-transfer 
protein/seed storage 2S albumin 
superfamily protein-related 

AT5G64080.2 (functional inhibitor/lipid-transfer protein/seed 
storage 2S albumin superfamily protein) 

Bradi1g71690 Brdisv1Bd2-31010896m Protein phosphatase 2C AT4G33500.1 (Protein phosphatase 2C family protein) 

Bradi1g71700 Brdisv1Bd2-31010897m 
NADH dehydrogenase ubiquinone 1 alpha 
subcomplex subunit 13, GRIM-19 protein 

AT2G33220.1 (GRIM-19 protein) 
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Table 5-4 continued Genes annotated in Bd21 v3.1 within the 56 gene BSA candidate interval in association with DON sensitivity from high-confidence Bd2-3 x Bd21 RILs 

Gene ID  
(Bd21 v3.1) 

Bd2-3(v1) Gene Bd annotation (Bd21v3.1) At orthologue & (Annotation) 

Bradi1g71710 Brdisv1Bd2-31010899m PROTEIN UPSTREAM OF FLC AT3G46110.1 (Domain of unknown function (DUF966)) 

Bradi1g71720 n/a Serine carboxypeptidase AT1G28110.1 (SCPL45, serine carboxypeptidase-like 45) 

Bradi1g71730 Brdisv1Bd2-31010900m PHP domain protein AT2G13840.1 (Polymerase/histidinol phosphatase-like) 

Bradi1g71735 Brdisv1Bd2-31010901m F-box domain 
AT3G49450.1 (F-box and associated interaction domains-
containing protein) 

Bradi1g71740 Brdisv1Bd2-31010902m EREBP-like factor, AP2 domain AT4G39780.1 (Integrase-type DNA-binding superfamily protein) 

Bradi1g71760 Brdisv1Bd2-31010903m Pumilio homolog 11-related AT1G78160.1 (APUM7,PUM7, pumilio 7) 

Bradi1g71770 Brdisv1Bd2-31010904m n/a 
AT5G21130.1 (Late embryogenesis abundant (LEA) 
hydroxyproline-rich glycoprotein family) 

Bradi1g71781 Brdisv1Bd2-31010906m RAS-related protein RABH1C-related 
AT2G44610.1 (ATRAB6A,ATRABH1B, Ras-related small GTP-
binding family protein) 

Bradi1g71790 Brdisv1Bd2-31041817m 
BOMB/KIRA protein, E3 ubiquitin-protein 
ligase 

AT1G78170.1 (E3 ubiquitin-protein ligase) 

Bradi1g71800 Brdisv1Bd2-31010908m Mitochondrial carrier protein AT5G64970.1 (Mitochondrial substrate carrier family protein) 

Bradi1g71810 Brdisv1Bd2-31010909m 
Calmodulin-binding transcription activator 
CAMTA 

AT5G09410.2 (CAMTA1,EICBP.B, ethylene induced calmodulin 
binding protein) 

Bradi1g71820 Brdisv1Bd2-31010910m Uncharacterised transmembrane protein AT1G34630.1 (n/a) 
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5.3.7 RNAseq - analysis of Bd2-3 and Bd21 response to DON  

Developing roots of Bd2-3 and Bd21 were exposed to 5 µM and 20 µM of DON for 

six hours, RNA collected, sequenced, and mapped to reference genome Bd21 (v3.1) 

for analysis. Variance between the sample matrix of accessions and DON 

concentrations, was visualised using an MDS plot (Figure 5-13); clear separation 

between accessions was evident along the y-axis. Further proportional separation 

between concentrations of the DON treatments was also evident across the x-axis 

(Figure 5-13). 

 

 Genome wide RNAseq DON response 

Degust was used to obtain genome wide lists of high confidence up- and down-

regulated genes with a log fold-change greater than 2 in different combinations 

(between accessions and treatments), numbers of which are presented in Figure 

5-14. A greater number of genes were up- or down-regulated at the higher 

 0.2  0.1 0.0 0.1 0.2 0.3

MDS Dimension 1

10.0 

05.0 

00.0

05.0

10.0

M
D
S
 D
im
e
n
s
io
n
 2

              

             

             

            

Figure 5-13 Multi-Dimensional Scaling (MDS) plot, describing the variance between DON treated root 

Bd21vsBd2-3 RNAseq samples. Generated using Degust (v4.1.1). 
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concentration of DON treatment (Figure 5-14a&b). Conservation of regulation is 

generally very high; only a single gene at 5 µM DON, Bradi4g29939, was up-regulated 

in Bd21 and downregulated in Bd2-3 (Figure 5-14a). Conversely at 20 µM DON a 

single gene, Bradi1g57885, was upregulated in Bd2-3 and down-regulated in Bd21 

(Figure 5-14b). 

A greater number of genes were differentially expressed in response to treatment with 

DON at 20 µM than at 5 µM; this is to be expected from the stronger chemical 

stimulus. Bd2-3, the more DON-sensitive accession, had a greater number of up- and 

down-regulated genes than Bd21 in response to DON indicating that Bd2-3 is 

experiencing greater perturbation at both ‘stimulatory’ and ‘inhibitory’ concentrations. 

Ratios between the two accessions varied at the two DON concentrations; at lower 

concentration c. 2:1 are down-: up-regulated. The difference is amplified at 20 µM, to 

an approximate 5:1 ratio. 

There were 85 genes upregulated in both accessions at 5 µM DON, and 407 

upregulated in both accessions at 20 µM DON; 84 of these genes were upregulated 

in common between the accession at both concentrations, with 323 exclusively at 20 

µM and one gene exclusively at 5 µM (Figure 5-14c). 

Eight and 225 genes were downregulated in both accessions for 5 µM and 20 µM 

DON treatments respectively; of these genes, only 7 were downregulated at both 

concentrations, with 217 downregulated exclusively at 20 µM and one gene 

exclusively at 5 µM (Figure 5-14d). 
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C 

Figure 5-14 Venn diagrams assigning commonality of up- and down- regulation of genes between Bd21 
and Bd2-3 in roots, responsive to DON at 5 µM & 20 µM, from RNAseq data. 

A 

B 

D 
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 RNAseq DON response for Bd1L 56 gene DON interval 

RNAseq gene expression data from the 56 genes in the candidate DON sensitivity 

interval were analysed; genes in the interval that were either up- or down-regulated 

in Bd2-3 relative to Bd21, at 5 µM, 20 µM, or both, are presented in Figure 5-15, with 

differential expression detailed in Table 5-5. Three genes, Bradi1g71465, 

Bradi1g71530 & Bradi1g71624 are upregulated in Bd2-3 relative to Bd21 at 5 µM and 

20 µM DON, with only Bradi1g71410 downregulated in Bd2-3 at both concentrations. 

A further six genes were downregulated exclusively at a single concentration; 

Bradi1g71390, Bradi1g71630, Bradi1g71740 and Bradi1g71760 were exclusively 

downregulated at 5 µM DON, with Bradi1g71510and Bradi1g71710 exclusively 

downregulated at 20 µM DON (Table 5-5) Finally, Bradi1g71640 and Bradi1g71790 

were exclusively upregulated at 5 µM DON, with Bradi1g71560 and Bradi1g71673 

exclusively upregulated at 20 µM DON (Table 5-5). Six genes within the 56 gene 

candidate interval were up- or down-regulated in Bd2-3 relative to Bd21 with >2 Log2 

fold change (Table 5-5). 

Figure 5-15 Venn diagram containing gene expression in comparison between Bd2-3 relative to Bd21, 
at 5 µM and 20 µM DON RNAseq data. 
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Table 5-5 RNAseq data for comparison of Bd2-3 relative to Bd21, genes included have a Log2 fold 
change >1, from within the 56 gene candidate DON interval on Bd1L. FDR = false discovery rate 

 

 

 

 

 

  

Treatment(s)  Gene ID 
Comparison 

(Bd21 vs 
Bd2-3) 

RNAseq 
Fold 

Change 
(Log2) 

FDR p-value 

Up in Bd2-3 
relative to Bd21 at 
5 µM and 20 µM 

Bradi1g71465 
5 µM 1.34 0.028557 0.001881 

20 µM 1.66 0.010676 0.000676 

Bradi1g71530 
5 µM 5.33 0.000694 1.78E-05 

20 µM 3.40 0.007711 0.000443 

Bradi1g71624 
5 µM 2.24 0.095239 0.01015 

20 µM 5.39 0.001286 4.51E-05 

Down in Bd2-3 
relative to Bd21 at 
5µM and 20µM 

Bradi1g71410 
5 µM -1.44 0.000123 2.37E-06 

20 µM -1.42 0.000215 5.03E-06 

Up exclusively at 
5 µM 

Bradi1g71640 5 µM 1.95 0.404362 0.111665 

Bradi1g71790 5 µM 3.20 0.148767 0.020019 

Up exclusively at 
20 µM 

Bradi1g71560 20 µM 5.01 0.046201 0.015724 

Bradi1g71673 20 µM 3.07 0.064484 0.008018 

Down exclusively 
at 5 µM 

Bradi1g71390 5 µM -1.07 0.00612 0.000255 

Bradi1g71630 5 µM -1.73 0.013495 0.000709 

Bradi1g71740 5 µM -1.05 0.534059 0.188127 

Bradi1g71760 5 µM -1.18 0.665602 0.296136 

Down exclusively 
at 20 µM 

Bradi1g71510 20 µM -1.17 0.094712 0.013819 

Bradi1g71710 20 µM -2.96 0.199425 0.041135 
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 Fine mapping of DON sensitivity on Bd1L 

The closest existing flanking KASP markers to the Bd1L BSA peak were 

Bd1L_69245412 and Bd1L_70039898 (Bd21v2 locus nomenclature). Additional 

KASP markers were designed to further delineate the candidate region associated 

with DON sensitivity in the Bd2-3 x Bd21 population. The high-confidence set of 60 

Bd2-3 x Bd21 F7 RILs used for BSA experiment was genotyped using new KASP 

markers. Figure 5-16 presents these genotypes and corresponding DON sensitivity 

phenotypes, spanned by markers previously used for single marker analysis on Bd1L 

(Figure 5-10). 

As described in earlier mapping (Chapter 5.3.5), there were RILs where genotype 

and phenotype did not match as expected assuming association with DON sensitivity; 

RILs 51, 108, 126, 131, 134 and 158 have Bd21-like phenotype but Bd2-3 genotype 

and RILs 18, 42, 76 and 93 have B2-3-like phenotype but Bd21 genotype. These 10 

RILs make up a high proportion, 17 % of the 60 high-confidence RILs. Therefore, the 

following further fine-mapping is presented under a cautious caveat considering these 

apparent aberrant lines. 

A recombination event was identified in RIL 128, localised between markers 

Bd1L_69696725 and Bd1L69743518. RIL 128 is Bd21-like in phenotype so this 

recombinant could redefine, under caveat, the left border of the DON sensitivity 

candidate interval to Bd1L_69696725. Bd21-like RILs 41 and 117 also have 

recombination events supporting the refinement of the left border to at least 

Bd1L_69674361 (Figure 5-16). An additional recombination event was identified in 

Bd2-3-like RIL 120, localised between markers Bd1L_69718309 and 

Bd1L_69743518; this event could redefine the right-border of the DON sensitivity 

interval to Bd1L_69743518. Therefore, a proposed refined candidate interval for DON 

sensitivity under the caveat described above, between markers Bd1L_69696725 and 

Bd1L_69743518 contains six annotated genes in Bd21 v3.1 (Table 5-6). Two genes, 
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Bradi1g71470 and Bradi1g71475, have an annotated function involved with RNA 

synthesis, binding, or transport. Bradi1g71465 relates to CASP-like proteins involved 

in casparian strip development and certain family members in Arabidopsis are 

expressed at point of lateral root growth (Roppolo et al., 2014). Bradi1g71460 is 

annotated as an F-box gene, with Arabidopsis orthologue SNEEZY/SLEEPY2, a 

gene with a role in the regulation of the gibberellic acid pathway (Ariizumi et al., 2011). 

 

 

Figure 5-16 Genotypes of Bd2-3xBd21 high-confidence DON sensitivity RILs for fine-mapping of Bd1L 
BSA peak.Marker names are derived from Bd21v2.1 reference genome differentiating SNP locus. 
Purple=Bd21 genotype, green=Bd2-3 genotype, grey=not genotyped Faded markers are within the 
Bd1L single-marker analysis significant region. 
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Table 5-6 Genes annotated in Bd21 v3.1 in fine-mapped candidate region for DON sensitivity in Bd2-3xBd21 F7 RIL population, defined by fine-mapping markers Bd1L_69696725 
and Bd1L_ (Bd21v2 bp nomenclature). At = Arababidopsis thaliana 

Gene ID  
(Bd21 v3.1) 

Bd2-3 Gene Bd annotation 
At orthologue (type, % identity) & 

annotation 

Bradi1g71450 Brdisv1Bd2-31010853m Unknown Protein 
AT2G18910.1 (1-1, 13.3%) 

hydroxyproline-rich glycoprotein family protein 

Bradi1g71460 Brdisv1Bd2-31010855m F-Box 
AT5G48170.1 (1-1, 38.6%) 

F-box family protein (SNE/SLY2) 

Bradi1g71465 Brdisv1Bd2-31010856m 
NITRATE, FROMATE, IRON 

DEHYDROGENASE 
AT4G16442.1 (56.0%) 

CASP-LIKE PROTEIN 2B1 (UPF0497) 

Bradi1g71470 Brdisv1Bd2-31037589m 
Large subunit ribosomal protein L2 (RP-L2, 

MRPL2, rplB) 
ATCG01310.1 (81.8%) 
ribosomal protein L2 

Bradi1g71475 Brdisv1Bd2-31045608m Small subunit ribosomal protein S19 
ATCG00820.1 (M-1, 80.5%) 

ribosomal protein S19 

Bradi1g71480 Brdisv1Bd2-31010857m Unknown Protein n/a 
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The equivalent physical region in Bd2-3 contains an additional gene, Brdisv1Bd2-

31010854m, that is not annotated in Bd21 v3.1, nor is identifiable through BLAST 

search, with only short fragment hits to hypothetical proteins. Brdisv1Bd2-31010854m 

has a coding sequence of 117 bp, with no annotated function. BLASTX resulted in no 

orthologues being identified in either T. aestivum or H. vulgare (Ensembl Plants). 

SNPs, INDELs and complex variants were identified between Bd21 and Bd2-3 from 

the RNAseq data, listed in Table 5-7. 

 

Table 5-7 Intragenic variants within DON sensitivity candidate interval identified 
from RNAseq experiment comparing Bd21 and Bd2-3 response to DON at 6 hrs. 
Locus is bp position Bd21 v3.1 chromosome 1. Variant effect position applied to 

Bd21 v3.1 annotated protein 

Gene Type 
Variant 
Detail 

Locus Exon 
Variant 
Effect  

Bradi1g71450 SNP G to A 69652320 Exon 1 Synonymous 

Bradi1g71460 

SNP C to T 69671423 5’ UTR Synonymous 

SNP G to C 69671999 Exon 1 Synonymous 

SNP G to C 69672140 Exon 1 Synonymous 

Deletion 6bp 
69672188-
69672193 

Exon 1 
Loss of Gly 

& Ala at pos. 
123 

SNP C to G 69672295 3' UTR Synonymous 

SNP C to A 69672326 3' UTR Synonymous 

SNP G to A 69672355 3' UTR Synonymous 

Bradi1g71465 

SNP T to C 69681692 5' UTR Synonymous 

SNP C to T 69681661 5' UTR Synonymous 

SNP A to G 69677453 3' UTR Synonymous 

Bradi1g71470 n/a 

Bradi1g71475 n/a 

Bradi1g71480 

SNP C to T 69693097 Exon 1 Synonymous 

SNP A to G 69693237 Exon 1 
Leu to Ser, 

pos. 61 
(L61S) 

SNP A to G 69693563 3' UTR Synonymous 
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Visual inspection of RNAseq coverage data, and comparison between treatments in 

my Bd2-3 and Bd21 material illustrates SNPs and a 6bp-deletion in Bd2-3 relative to 

Bd21 in Bradi1g71460 (Figure 5-17a). Five out of the six SNPs in Bradi1g71460 are 

evident in both RNAseq and BSA data sets (Figure 5-17b). Visual analysis of 

coverage data between the treatments shows some samples decline in coverage in 

a central portion of the single exon of Bradi4g17460, mainly in response to DON 

(Figure 5-17b); however, this is variable between replicates within treatment. 

Alignment of Bradi1g71460 with Brachypan Bd2-3 homologue 

Brdisv1Bd2-31010855m DNA and protein (Figure 5-17c) sequences suggests that a 

central portion of the gene is missing in Bd2-3 relative to Bd21. This is not supported 

by the coverage observed in my RNAseq and BSA experiments (Figure 5-17a&b). 
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Figure 5-17 Variation in Bradi1g71460 between Bd2-3 and Bd21 (A and C), and Bd2-3-like and Bd21-
like RIL pools. A, RNAseq coverage (SNPs indicated by colours), B, BSA coverage aligned to 
Bradi1g71460 reference, C, peptide alignment, sequences obtained from gene annotations from 
Bd21v2.1 (lower track) and Bd2-3v1 (upper track) (Phytozome). 

A 

B 

C 
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5.4 Discussion 

5.4.1 Why map a DON induced root branching phenotype in a model grass 

species? 

Whilst the primary toxicity of DON has long been explained by its role as a protein 

synthesis inhibitor (McLaughlin et al., 1977), the mechanism by which it functions as 

a virulence factor in the infection of wheat with DON producing Fusarium species, is 

unclear. The clear manifestation of difference in sensitivity response to DON between 

two parents of an existing Bd mapping population provided a new opportunity to 

investigate possible mechanistic functions of DON in the plant host. 

 

5.4.2 There is natural variation in DON responsive root development in Bd 

Contrary to the elongatory response I observed in Bd, Masuda et al. (2007) described 

inhibition of Arabidopsis and wheat roots when grown on the surface of media 

containing DON. Packa (1991) also reported reduction of mitotic index as a result of 

DON application to roots in wheat, amongst other plant species, concurrent with such 

inhibition. Additionally, work by Steed and Nicholson (Unpublished) identified root 

waving phenotype in Arabidopsis seedlings grown on the surface of DON-containing 

media. Arabidopsis root waving does not occur in aux1 mutants with mutated auxin 

transporter function; this ties in with the Bd alteration in gravitropism. Bd does exhibit 

root growth inhibition, like Arabidopsis. Arabidopsis and Brachypodium auxin 

networks are fundamentally different, so if the DON response was auxin related this 

might explain why the phenotypes differ so much between the species (Pacheco-

Villalobos et al., 2016; Pacheco-Villalobos et al., 2013). Peraldi (2012) identified 

concentration dependent root length in response to DON; it is possible that previous 

studies have focussed exclusively on characterisation of high-toxicity, high-

concentration DON. Therefore, by using low DON concentrations I may be able to 
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identify the most sensitive elements in response to give insight into potential 

mechanisms. It is also possible that Bd is less sensitive to DON, and therefore the 

lower toxicity, elongatory response is more likely to occur. This possibility is supported 

by an experiment by Santos et al. (Unpublished) in which equivalent DON assays to 

mine were conducted on wheat, which was found to be much more sensitive to DON, 

with root inhibition occurring at lower concentrations in wheat. 

DON induces a concentration dependent effect on Bd roots, causing elongation and 

enhanced gravitropism at low concentrations and root growth inhibition at high 

concentrations. Elongation of primary roots, observed in all accessions tested with 

exception of Bd2-3 and Koz-3, is thought to be a less sensitive manifestation in 

response to DON. Microscopic comparison of cells would be required to determine 

whether this is the result of an increase in cell division ergo cell number, or an 

increase in cell length, or a combination of factors. Relative to elongation, inhibition 

of the primary root and the induction of lateral root formation, observed in Bd2-3 and 

Koz-3 only, is thought to reflect greater sensitivity to DON. The accessions in the 

middle of the distribution showing very limited alteration in root growth may be either 

less sensitive to DON as they are not stimulated to elongate, or they may be more 

sensitive to DON with root growth beginning to be inhibited. All accessions would 

have to be tested with a range of DON concentrations in order to differentiate between 

these possibilities. Overall, the quantitative distribution suggests multiple factors 

influencing the trait. It is assumed that loss, or modification, of function in Bd2-3 is 

responsible for the altered phenotype compared to almost all other accessions. 

 

5.4.3 Bd2-3 and Bd21 vary in response to DON in a non-tissue-specific way 

The inhibition of primary root growth, and bifurcating formation of lateral roots seen in 

Bd2-3 and Koz-3 Bd accessions is a novel phenotype. A transition from proliferating 

to differentiating cells is required for the development of lateral root primordia 
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(Fernández-Marcos et al., 2017); division of primordia cells is dependent on strict 

auxin controls (Marhavý et al., 2016). It is unclear why, but highly interesting, that 

these accessions undergo complete inhibition of the root apical meristem, or primary 

root, at a conserved point, approximately one centimetre in root length in Bd2-3 and 

all Bd2-3-like accessions, across all experiments and DON treatments. Across 

multiple experiments, I observed development of green colouration in some 

individuals exclusively in Bd2-3-like, branching roots. The high light environment that 

the roots were maintained in is likely a key factor, but still curious that the roots of 

Bd21 like plants do not appear green. Auxin and cytokinin have been shown to 

regulate chlorophyll biosynthesis and chloroplast biogenesis in Arabidopsis roots 

(Kobayashi et al., 2012); perhaps this suggests that the difference between Bd2-3 

and Bd21 might be auxin, or cytokinin, related. Koz-3, the only other accession to 

show the branching phenotype, could provide a useful opportunity to cross-compare 

variation in candidate genes in future work. 

 

 Bd2-3 branching response is specific to DON 

Anisomycin and cycloheximide were included within the experiment to determine 

whether the branching phenotype is attributed to DON’s well characterised molecular 

function as a protein-synthesis inhibitor; although there was some initiation of lateral 

roots, the phenotype of these treatments does not mimic that of DON and therefore it 

is concluded that a secondary function of DON may be in play. 

Based on similarities in the concentration dependent inhibitory-elongatory 

relationship, hyper-gravitropic and reduced root hair DON induced phenotypes to 

those described in response to auxin (Overvoorde et al., 2010), the effect of auxin 

pathway disruption was investigated; an auxin-transport inhibitor, TIBA, was tested 

for effects on Bd root development. The phenotype of TIBA exposed roots are not 

equivalent to those of DON; it could be argued that combining the protein-synthesis 
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inhibitory and auxin-transport inhibitory phenotypes best mimics the DON-responsive 

root development. This could therefore be suggestive that DON is acting in both 

cellular roles. 

Bd2-3 was found to be more sensitive than Bd21 to DON when applied to floral 

tissues. Symptoms of DON in floral tissues of wheat and barley are classically 

described as premature bleaching of spikelets above the point of infection with 

Fusarium (Parry et al., 1995, Lemmens et al., 2005). However, in my Bd DON head 

experiments, symptoms exclusively consisted of browning that spread from the point 

of application. The water-control treated Bd heads did not develop browning. This 

browning symptom could be due to cell death, or the accumulation of phenolic 

compounds; the latter have been associated with FHB resistance in wheat (Boutigny 

et al., 2008). Either way, the symptoms spread further over time in Bd2-3 than Bd21 

indicating that as in roots, Bd2-3 is more sensitive to DON in floral tissues than Bd21. 

Concluding that the sensitivity is non-tissue-specific makes the findings of this chapter 

more likely to be relevant to FHB. 

 

5.4.4 Characterisation of Bd2-3xBd21 population to DON sensitivity  

The Bd2-3 x Bd21 population, obtained from David Garvin (USDA, St. Paul 

Minnesota), was characterised for DON sensitivity at two concentrations, initially at 

10 µM and later at 20 µM. The F7 Bd2-3 x Bd21 progeny segregated largely in a 

50:50 ratio for the parental DON phenotype; this would suggest that a single gene 

controls the branching trait in this population. However, there are intermediate 

phenotypes, which develop the branching production of lateral roots at the point 

typical of Bd2-3, but the root meristem persists in growth to become elongated like 

Bd21. This intermediate phenotype was not observed during the characterisation of 

natural accessions. This contradicts the likelihood of a single gene controlling the trait, 

instead suggesting that other factors are acting in addition to modify the phenotype. 
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For the purposes of analysis and mapping, RILs developing intermediate roots were 

considered to have a DON sensitivity between those of the robust classes of Bd21-

like and Bd2-3-like RILs. 

There were extensive differences in phenotypes between the two concentrations 

used to characterise the Bd2-3 x Bd21 population. Many RILs (42.2 %) had the same 

phenotype when grown at 10- and 20- µM DON, with a further 41.5 % of RILs 

displaying a higher-sensitivity phenotype at 20 µM DON than 10 µM. These lines are 

thought to be escapes at the lower concentration, not showing a true reflection of their 

DON sensitivity phenotype. This data supports a hypothesis that a threshold of DON 

sensitivity is required to induce the branching phenotype. Under this hypothesis, it 

would be expected that all lines would branch eventually on an increasing DON 

concentration treatment scale, once a DON sensitivity threshold has been reached 

before overall toxicity results in non-viability of root growth. It should be possible to 

test this experimentally but was not yet completed on a population wide level due to 

time constraints. 

Most lines that differed between 10 and 20 µM went from intermediate to Bd2-3-like. 

However, 23 lines (8.38 %) appear less sensitive at the high DON concentrations, 

which is not concurrent with this hypothesis. It is unlikely that this switch in phenotype 

is due to the effects of additional modifier genes or loci, more likely that the identity of 

some RILs is incorrect. Could these be a result of under-exposure to DON due to 

variations in the tubes? This is a downside of growing the roots in individual tubes, as 

there is no way to account for tube-tube variation and exclude this possibility. 
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5.4.5 Identification of loci associated with DON sensitivity using mapping 

(KASPs) 

Initial mapping, using the two datasets obtained by characterisation of the population 

at 10- and 20- µM DON, identified two large scale genomic loci associated with DON 

sensitivity, Bd1L and Bd4S; only the former was identified at both DON 

concentrations. The phenotype-genotype relationship was closest in association for 

the Bd2-3-like phenotype RILs. 

Bd has an extremely high rate of recombination. This means that it is not unlikely that 

statistical association of a locus with any trait is lost through single marker analysis 

with such sparsely spread markers. It is possible therefore that there are other loci 

significantly associated with the trait that were missed by this approach if high 

recombination rate results in reduction of linkage disequilibrium, and would require a 

map of much greater density. As it was originally anticipated that a single major gene 

was responsible for the Bd21 versus Bd2-3 differential DON response, the skeleton 

map for the entire genome was not advanced. Even with the sparse map generated, 

a second locus was identified on Bd4 at 20 µM DON; this locus could account for 

variation in the genotype-phenotype association. 

Additional markers were iteratively designed on Bd1L, and the relationship with DON 

sensitivity phenotype examined by association statistics and examination of 

recombination events. Markers between, and including, Bd1L68992730 and 

Bd1L71418888 were significantly associated with sensitivity to 10 µM DON, a region 

of 2.43 Mb. A smaller region of 1.42 Mb within this, between markers Bd1L69245412 

and Bd1L70657141 was also significantly associated with sensitivity to 20 µM DON. 

There were no markers that allowed a clear separation of lines into Bd21 and Bd2-3 

phenotype classes based on their genotype. For this reason, a genome wide 

approach was undertaken through BSA to identify potential additional loci. 
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5.4.6 Bulked segregant analysis for extreme DON sensitivity RILs of Bd2-3 x 

Bd21 population identifies 56-gene candidate region 

Bulked segregant analysis by next generation sequencing is a powerful tool for the 

rapid identification of genome wide analysis to identify variation associated with a 

specific phenotype (Michelmore et al., 1991, Trick et al., 2012). The higher density of 

data obtained by BSA makes it much less likely that positive trait-variant associations 

would be missed due to breakdown of linkage disequilibrium (especially an issue in 

Bd due to high recombination frequency), compared with a marker-based map. A 

wide range of variants, from SNPs to insertions and deletions can be identified by this 

approach. Gilbert et al. (2018) used BSA for the rapid localisation of Yrr1 in Bd using 

the Bd2-3xBd21 population that I have characterised in this chapter. Bd21 and Bd2-

3 are very closely related, limiting the number of non-causative variants to complicate 

analysis and published reference genomic sequences were available for both 

parents, although of varying quality and completeness. Only RILs with equivalent 

phenotypes when tested at both 10 µM and 20 µM were included in pools for BSA 

analysis. 

For my BSA analysis, statistical significance threshold for peaks could not be obtained 

due to the excessive computing time and power required for bootstrap analysis or 

permutation test (Watanabe et al., 2017). Peaks were therefore arbitrarily defined, 

based on a BFR at which a peak appeared clearly distinct from background noise. 

The largest peak identified in association with DON sensitivity in the panel of 60 high-

confidence RILs was located on the long arm of Bd chromosome one. There are 56 

genes within this peak defined by flanking genes with a BFR >7. For the high-

confidence RILs, within the 56 gene candidate interval there remained a number of 

lines with an aberrant genotype-phenotype relationship; several lines appear to have 

the ‘wrong’ genotype for their phenotype class. Careful reanalysis of the individual 

RILs revealed that a number of the lines had been incorrectly grouped. Given that 
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such a clear, well defined locus of association on Bd1 was still observed under the 

presence of mis-associated lines makes it even more convincing that it is significant 

and genuine. 

Additional peaks are present on Bd2S and Bd chromosome four. Several KASP 

markers were designed within, and flanking, the Bd2S BSA peak and genotyping data 

used to see if the Bd2S status explained any of the apparently aberrant variation in 

the Bd1L phenotype by genotype relationship (data not shown), which it did not. The 

peaks on chromosome four were not investigated, mainly due to the relatively low 

BFR, presence of multiple less well-defined peaks with few variants breaching a BFR 

>7. The secondary peaks were close to regions that original single-marker 

association markers were located. If these were of major impact on the trait, we might 

expect some effect on the significance of association; this was the case at 20 µM but 

not at 10 µM. This may be evidence enough to warrant future investigation into the 

peaks on chromosome four. 

 

5.4.7 Genes of most interest in the Bd1L candidate interval 

Inhibition of protein synthesis is suggested to be the primary toxicity mechanism of 

trichothecenes in eukaryotes (McLaughlin et al., 1977). DON specifically, as a Type 

II trichothecene, inhibits the elongation-termination step of protein synthesis, by non-

competitive inhibition of the active site of peptidyl transferase on ribosomes (Rocha 

et al., 2005). Eleven genes within the 56 gene interval have a functional annotation 

(Phytozome v.13) related to RNA; Bradi1g71924, Bradi1g71630, Bradi1g71760 and 

Bradi1g71495 are RNA binding proteins, whilst Bradi1g71425, Bradi1g71470, 

Bradi1g71475 and Bradi1g71650 encode components of ribosomal subunits, 37S, 

L2, S19 and S17 respectively (Table 5-5). Bradi1g71377 is annotated to have an RNA 

recognition motif, Bradi1g71517 is a pre-mRNA processing protein TSR3, and finally 

Bradi1g71660 encoding RNA splicing factor 3B subunit 5 (Table 5-4). Two of these 
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RNA processing-related genes, Bradi1g71470 and Bradi1g71475 are present after 

the proposed fine-mapping refinement of the candidate interval, but neither were 

found to differ in expression in response to DON for any treatment comparisons, and 

no variants were identified between Bd2-3 and Bd21 in the RNAseq data. 

Bradi1g71475 BLASTs to a region away from the other genes in the interval (Table 

5-6); however, Bd2-3 has a lower quality genome assembled to pseudomolecule 

scale only, so it cannot be determined whether these genes are physically separated 

from the others in Bd2-3, compared to Bd21 without experimental assessment. 

Five genes in the Bd1L BSA interval have annotated functions (Phytozome v.13) 

associated with plant hormones (Table 5-4). Bradi1g71740 is an ethylene responsive 

element binding protein (EREBP)-like factor with AP2 domain that in cotton play roles 

in stress response (Liu and Zhang, 2017). Bradi1g7140 was marginally 

downregulated only in response to 5 µM DON, with a log2 fold change of -1.05 (in 

Bd2-3 relative to Bd21). 

Three cytochrome B561 genes Bradi1g71540, Bradi1g71560 and Bradi1g71480 are 

described to be auxin responsive in Arabidopsis orthologues (Preger et al., 2009). 

Auxin, known to play a role in plant growth almost universally, has particularly been 

implicated in a bimodal effect on primary root length, dose-dependent effect on lateral 

root primordia and gravitropic responses in Arabidopsis (Overvoorde et al., 2010, 

Marhavý et al., 2016); all of these phenotypes are affected by treatment with DON. It 

could therefore be plausible that DON responsive Bd root phenotypes may be a 

reflection of DON interacting with or manipulating auxin pathways. Brauer et al. (2019) 

characterised an association between auxin and susceptibility to FHB (F. 

graminearum) in wheat; furthermore, TaTIR1, that mediates Aux/IAA degradation and 

auxin‐regulated transcription, has also been implicated in susceptibility to FHB (Su et 

al., 2021). A study by Pacheco-Villalobos et al. (2013) revealed that auxin cross-talk 

in Bd varies fundamentally from Arabidopsis, in which most auxin pathways have 
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been elucidated; moreover, loss of function in TAA1- RELATED2-LIKE (BdTar) genes 

result in root elongation and reduced root hair length, profoundly similar to the Bd21-

like DON phenotypes I observed. BdTar proteins function in the seminal root 

elongation zone of cell differentiation and elongation, with mutants showing elevated 

levels of IAA leading to dramatic elongation of cells (Pacheco-Villalobos et al., 2016). 

Taken together with the previously observed Arabidopsis root waving, these 

independent pieces of evidence suggest a likely secondary role of DON as interacting 

with auxin pathways. Haidoulis and Nicholson (2020) described increased resistance 

to FHB as a result of application of exogenous auxin. F. graminearum has been 

shown to produce indole-3-acetic acid (IAA), which accumulates during early stages 

of infection in wheat (Luo et al., 2016). Neither Bradi1g71480 nor Bradi1g71540, 

however, were detected to have DON responsive expression in my RNAseq 

experiment. Bradi1g71480 contains three SNPs relative to Bd21, two silent whilst the 

final SNP exonic results in an amino acid change from leucine to serine at position 

61. With no annotated domains, the effect of this substitution on protein function is 

unclear. Bradi1g71480 did not show any alteration in expression in the DON RNAseq 

experiment. 

Bradi1g71460 is an F-box gene with the Arabidopsis orthologue SNEEZY/SLY2, 

described as a positive regulator of gibberellic acid (GA) signalling(Ariizumi and 

Steber, 2011, Strader et al., 2004). SNE/SLY2 does this by ubiquitination and 

subsequent degradation of DELLA proteins, which are negative regulators of GA 

signalling; SNE/ SLY2 interacts with CUL1, forming an essential part of the SCF 

(Skp1, Cullin, F-box) complex (Fu et al., 2004). Unlike SLY1, SNE/ SLY2 cannot 

interact directly with DELLA protein RGL2 (Ariizumi et al., 2011). Baluška et al. (1993) 

presented evidence for GAs affecting root growth and final cell size in maize, by 

directly controlling the arrangement of cortical microtubules. Furthermore, a family of 

Gibberellic Acid Stimulated Transcript-like (GAST-like) proteins have been described 
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in rice and maize with a suggested role in early lateral root formation, regulated by 

GA (Zimmermann et al., 2010). Both of these pieces of evidence suggest a plausible 

connection of Bradi1g71460 resulting in the DON-induced root phenotypes in Bd, 

potentially accounting for both the elongatory response common amongst Bd 

accessions and the branching response of Bd2-3. 

The pattern of RNAseq coverage of Bradi1g71460 between treatments was 

interesting (Figure 5-17). For some samples treated with 5 µM DON, no coverage 

was present in the central portion of the only exon, whereas for all samples at 0 µM 

and 20 µM DON the coverage did not reduce. Additionally, several SNPs and a 6 bp 

deletion were evident from both the RNAseq and BSA sequencing data; the deletion 

resulted in the loss of a G and A residue from the peptide sequence in Bd2-3 (visible 

in Figure 5-17c). No evidence was found for presence/absence variation of transcript 

expression in the RNAseq data. Alignment of Bd21 and Bd2-3 reference genomic and 

peptide sequences show a large deletion in the intron of Bd2-3 relative to Bd21 in 

Bradi1g71460. Targeted re-sequencing of Bradi1g71460 in our Bd2-3 and Bd21 

material is required to confirm the deletion, especially as coverage from my RNAseq 

and BSA would suggest that it is not genuine. Additionally, there is a discrepancy in 

annotation between reference versions of Bd21, with version 2 reporting a c. 800 bp 

gene, and v3.1 reporting a c. 1200 bp gene. 

Rht semi-dwarfing genes in wheat are homologous with Arabidopsis GAI (GA 

insensitive) and these are DELLA proteins that function as repressors of GA signalling 

(Hedden, 2003). Rht gain of function semi-dwarfing genes have been shown to be 

associated with both decreased Type I resistance to FHB and increased Type II 

resistance (Rht-B1b only) in wheat (Srinivasachary et al., 2009). Saville et al. (2012) 

further investigated the role of DELLA in pathogen interactions in barley and wheat 

and showed with gain-of-function mutants an increase in Type II resistance to FHB. 

This GA-FHB connection supports the hypothesis of a role for DON in GA signalling 
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manipulation during Fusarium infection, and hence Bradi1g71460 as a promising 

candidate gene. 

Bradi1g71465, whose Arabidopsis orthologue At2G35760.1 is CASP-LIKE PROTEIN 

2B1, described in regulation of casparian strip development and therefore plausibly 

involved in influencing root development and architecture (Roppolo et al., 2014). The 

casparian strip is essential for stress resistance and homeostasis. In Gossypium 

arboretum and Arabidopsis, loss of function mutants of the GaCASP27 gene resulted 

in significant increase in lateral root number (Wang et al., 2020). This gene is retained 

in the proposed six gene candidate interval. Bradi1g71465 was also marginally 

upregulated in Bd2-3 relative to Bd21 at both 5 µM and 20 µM treated roots, with Log2 

fold changes of 1.34 and 1.66 respectively (Table 5-6). Three variants in Bd2-3 

detected by RNAseq were silent, with no effect on the peptide sequence. Differential 

DON sensitivity was also observed in floral tissues; no evidence of differential 

regulation of Bradi1g71465 in data from Pasquet et al. (2014), in which Bd heads 

were infected with a deoxynivalenol producing strain of Fusarium graminearum. 

Therefore, based on current evidence, Bradi1g71465 does not fit the DON sensitivity 

phenotype profile. 

A final gene of note in the Bd1L BSA interval is Bradi1g71530, the Arabidopsis 

orthologue of which, an ALD1 (AGD2-LIKE DEFENCE RESPONSE PROTEIN) has 

been described in Lotus japonicus to influence plant development and nodulation and 

a role in plant-pathogen interactions all by regulating the salicylic acid pathway (Chen 

et al., 2014). Haidoulis and Nicholson (2020) described increased susceptibility to 

initial infection of Bd roots with F. graminearum in response to exogenous application 

of salicylic acid. Song et al. (2004) described an antagonistic role of ALD1 and 

Arabidopsis thaliana aberrant growth and death2 (AGD2), in which mutation of ALD1 

leads to increased susceptibility to bacterial pathogen infection, concluding that ALD1 

is important in the activation of defence signalling in Arabidopsis. Bradi1g71530 was 
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the most upregulated gene in Bd2-3 compared with Bd21, with Log2 fold changes of 

5.33 at 5 µM and 3.40 at 20 µM (Table 5-6). 

 

5.4.8 RNAseq for comparison of DON responsive genes in Bd21 and Bd2-3 

An RNAseq experiment was undertaken to identify DON responsive genes in Bd21 

and Bd2-3, with a particular focus on the Bd1L region. The RNAseq data is compatible 

with the proposal that the Bd2-3 phenotype is a result of increased sensitivity than 

Bd21, as a greater proportion of genes were either up- or down-regulated in Bd2-3 

compared with Bd21, in both 5 µM and 20 µM treatments. For future work, the 

RNAseq data provides the perfect material for the assessment of sequence variation 

between Bd2-3 and Bd21, without the uncertainty resulting from the relatively poor-

quality sequence of the current published Bd2-3 reference genomic data. 

There are six genes within the 56 gene candidate interval with a Log2 fold change 

>2: Bradi1g71530, Bradi1g71560, Bradi1g71624, Bradi1g71673, Bradi1g71710 and 

Bradi1g71790. For three of these, Bradi1g71673, Bradi1g71710 and Bradi1g71790, 

the coverage was very low (< 10 transcripts per position). Of the remainder, 

Bradi1g71530 is annotated to be an LL-diaminopimelate aminotransferase, an 

orthologue of AtALD1 discussed above in connection with defence response, and 

contains three exonic SNPs. Bradi1g71560 is annotated as a cytochrome b561 

described above to have auxin responsive orthologues, contains five SNPs within 

exons and finally Bradi1g71624 is a pumilio gene, previously discussed, that contains 

two SNPs in the coding sequence in Bd2-3 relative to Bd21. My expression analysis 

was done in root tissue only; none of these genes, or the CASP related gene 

Bradi1g71465 and the F-box gene Bradi1g71460, were found to be differentially 

regulated in an RNAseq study of F. graminearum infection in Bd heads by Pasquet 

et al. (2014). 
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5.4.9 Fine mapping of Bd1L candidate interval 

The following work is discussed with extreme caution based on the high proportion, 

even of high-confidence RILs (17 %), for which phenotype and genotype are not in 

agreement for the markers within the candidate interval. Additional genotype data 

from new markers within the 56 gene interval identified several recombination events 

in the region in Bd2-3 x Bd21 RILs. If used exclusively to define the candidate region, 

it could be refined to contain six candidate genes. Two of these genes are of unknown 

function (Bradi1g71450 and Bradi1g71480) and two encode ribosomal subunits 

(Bradi1g71470, L2, and Bradi1g71475, S19) discussed previously. The final two 

genes, Bradi1g71460, an F-box gene related to GA regulation, and Bradi1g71465, a 

CASPL protein, both offer credible candidates for causation of the DON induced root 

development phenotypes. The only gene within the 6 gene interval found to be DON 

responsive, Bradi1g71465, was up-regulated in Bd2-3 compared to Bd21 at both 5- 

and 20-µM DON. From RNAseq data, only Bradi1g71460 and Bradi1g71480 contains 

variants that affect peptide sequence in Bd2-3 relative to Bd21. Bd2-3 contains an 

additional annotated gene, with no known function or orthologues; however, it is 

expected that the Bd2-3 phenotype is due to the loss of-, not gain of-function 

compared to Bd21. I must reiterate and highlight caution due to the lines that have an 

‘incorrect’ genotype across all markers within the interval. Future work to confirm the 

genotype and phenotype of these aberrant RILs should be able to either dismiss, or 

add confidence to, the refinement of the candidate interval by fine mapping. 

 

5.4.10 Concluding Remarks 

In this chapter, natural variation of DON sensitivity in Bd, reflected in differential 

elongatory and inhibitory root development, was identified. The Bd2-3 x Bd21 

population was utilised to map the genetic basis of the extreme branching and 

inhibition of primary root seen in Bd2-3. A region on Bd1L was identified using two 
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independent methods, KASP based mapping and BSA to result in a 56 gene 

candidate region for DON sensitivity in Bd21. Several genes that offer plausible 

mechanisms for interaction with DON, across a wide range of functional classification, 

are included in the 56 gene candidate interval, including Bradi1g71530 (ALD1 

orthologue) and Bradi1g71624, an RNA binding protein pumilio-related gene. 

Cautious fine mapping with a caveat on quality of phenotype or genotype data 

identified a potential refinement of the candidate region to six genes, of which only 

Bradi1g71465 was differentially expressed between Bd2-3 and Bd21 in response to 

DON. These candidates merit further investigation. 
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6 Chapter 6 - General Discussion 

FHB in cereal crops presents a global challenge as an economically damaging 

disease caused predominantly by hemibiotrophic Fusarium species. Mycotoxins, 

particularly trichothecenes such as DON, are responsible for increased virulence in 

wheat and directly causing loss of quality and quantity of grain upon infection. Even 

given extensive protocols for the management of DON within food and feed 

processing and manufacturing industries, contamination remains a global threat to 

human health (Mishra et al., 2020). Control methods aimed at reducing the impact of 

FHB, including application of triazole fungicides and cultural practices including crop 

rotation are only moderately effective at controlling the disease and limiting crop 

losses. The improvement of genetic resistance in commercial wheat varieties is 

considered the most sustainable method by which to reduce the impact of FHB 

(Marburger et al., 2015). 

Wheat based research concerning the genetic improvement of resistance to FHB is 

extremely complex. The use of model a pathosystem can alleviate some of these 

complexities as first demonstrated in Bd by Peraldi et al. (2011). Early in the PhD 

project, Brachypan was published and the genomes of 52 accessions made available 

providing a fantastic resource for exploring intra-species genetic variation in Bd. This 

material was the foundation of the thesis, with characterisation of natural variation 

being the starting points for both avenues of research explored, variation in FHB 

susceptibility and DON sensitivity. Bd diversity being a previously untapped resource 

in terms of FHB, the overarching aim focussed on identifying factors associated with 

FHB susceptibility in Bd, exploiting Bd’s simple genetics and expansive genetic 

resources, looking towards translation into cereal crops to be of agronomic benefit. 
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Quantitative variation in susceptibility to FHB was identified across the 52 accessions 

characterised in Chapter 2. The wide diversity in Bd, reflected in extreme variation in 

flowering time amongst other traits, rendered flowering-time dependent pathology 

challenging. Therefore, the direction of work was dictated by FHB susceptibility data 

obtained under controlled conditions for a much smaller subset of accessions 

selected as parents of mapping populations. Two populations, ABR6 x Bd21 and Foz-

1 x Luc-1, were identified with parents varying in FHB susceptibility. The aim of this 

thesis was to identify the genetic architecture underlying such variation in 

susceptibility or resistance to FHB in Bd that was initially described in Chapter 2. 

 

6.1 Extensive FHB resistance variability in Bd 

Extensive variation in FHB resistance was observed across Bd accessions, mainly 

quantitative but with a single accession, Jer-1 showing a typical hypersensitive 

response phenotype with highly restricted browning lesions that did not spread over 

time (Morel and Dangl, 1997). No such extreme, qualitative, hypersensitive response 

has been characterised in association with FHB, and therefore this warrants further 

investigation in the future. This would require the development of a population, by 

crossing with a susceptible accessions such as Bd21, because such a rare phenotype 

will not be detected using association genetics approaches such as GWAS (Li et al., 

2013). 

Whilst it is hard to compare this observed wide variation in Bd with that of 

domesticated wheat, where population structure is vastly different as a result of 

breeding practises, it is clear that most major, stable sources of resistance in wheat 

are limited in provenance to landraces, particularly Asian spring wheat including 

‘Sumai-3’, ‘Wangshuibai’ and ‘Nyu Bai’ (Buerstmayr et al., 2020). With this relatively 

narrow pool of resistance, there is plausible benefit to exploring external variation 
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existing in related species and translating back into elite wheat varieties via induced 

mutagenesis platforms such as TILLING, or targeted CRISPR generated mutations 

where regulations allow. Although there are as of yet no examples of direct translation 

from Bd to wheat or barley, Goddard et al. (2014) described conservation of the effect 

of mutation of the gene brassinosteroid insensitive-1 (BRI1) on disease response 

between wheat and Bd. 

 

6.2 No association of height with FHB 

 The effects of Rht genes in wheat are widely reported with Rht-B1b and Rht-D1b 

alleles, conferring insensitivity to GA, associated with increased susceptibility to FHB 

(Srinivasachary et al., 2008b, He et al., 2016). Little evidence for FHB-height 

relationship in Bd was observed; an association between height of Bd accessions and 

FHB susceptibility was the results of confounding flowering-time relationship, and no 

major height QTL were found to associate with the QTL for FHB on chromosome four. 

A similar finding was recently reported in wheat, in which none of the major height 

QTL were identified associated with FHB QTL in two wheat populations (Goddard et 

al., 2021). The reasons behind this lack of associations, observed in Bd and some 

wheat varieties is unclear, however Goddard et al. (2021) highlighted that the large 

increase in FHB susceptibility attributed to Rhb-D1b in wheat is not directly the result 

of differential plant height, instead being caused by linkage with deleterious genes 

(Buerstmayr and Buerstmayr, 2016, Srinivasachary et al., 2008b). Additionally, wheat 

lines carrying Rht-B1b and Rht-D1b have shorter anther filaments, whilst such 

resultant incomplete extrusion of anthers is associated with increased susceptibility 

to FHB (Buerstmayr and Buerstmayr, 2016). As the floral architecture of Bd is more 

closed, anthers are typically not extruded at all, therefore this additional factor of Rht 

contributing to FHB susceptibility observed in wheat would not be expected in have 

an effect in Bd. 
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6.3 Major FHB effect identified on Bd4 

In wheat, resistance is generally polygenic and the result of minor individual 

contributing effects. I identified a single major FHB effect on Bd chromosome four. 

Buerstmayr et al. (2020) reviewed wheat FHB QTL studies to date, reporting almost 

500 unique QTL, of which 20 % were described as major QTL by publishing authors. 

Major QTL in wheat located on 3BS and 6BL, have been Mendelised to Fhb1 and 

Fhb2 respectively, both derived from Sumai-3 (Cuthbert et al., 2007, Cuthbert et al., 

2006). Fhb2, Fhb4 and Fhb5 QTL have been refined to 2.2, 0.14 and 0.09 cM intervals 

respectively, with Wangshuibai the source of resistance (Jia et al., 2018). The major 

QTL here identified on Bd4 is therefore extremely rare compared to the situation in 

wheat. 

 

6.4 Association of FHB with lemma trichomes 

Chapter 3 described the identification of coincident QTL on the long arm of Bd 

chromosome four, associated with both a major effect FHB susceptibility and lemma 

trichome presence/ absence, and highly suggestive of a causal relationship. This 

observed genetic association adds significance to previous reports of physical 

interaction of infecting Fusarium hyphae with trichome projections and basal cells 

across a range of monocot species, including Bd, barley and wheat (Peraldi et al., 

2011, Imboden et al., 2018, Jansen et al., 2005, Liu and Liu, 2016, Nguyen et al., 

2016b, Nguyen et al., 2016a, Wang et al., 2015). In the Bd material assessed, lack of 

lemma trichomes is assumed to directly result in lower susceptibility to FHB, therefore 

lemma trichomes are acting as a Type I susceptibility factor. 

No orthologues of known Arabidopsis genes within the highly studied trichome 

initiation or development pathways were localised near to the QTL in Bd. It is likely 

therefore that the trichome locus is novel. Fine-mapping of the trichome QTL identified 
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on the long arm of Bd chromosome four was continued from work by Jan 

Bettgenhaeuser and Daniel Woods, who together using two independent RIL 

populations, ABR6 x Bd21 and Bd21 x Bd1-1, had defined a physical region 

containing 17 candidate genes associated with the presence/ absence of lemma 

trichomes. I refined this to a 53.4 kb interval containing five annotated genes in Bd21 

(v3.1), by resolving historical recombination events in the ABR6 x Bd21 population, 

described in Chapter 4. In doing so, with all plants heterozygous across the interval 

possessing lemma trichomes, it was clear that the presence of lemma trichomes is a 

dominant trait, with loss-of-function in ABR6 resulting in lemma trichome absence. 

As part of the project, it was clear that higher quality sequence data was required for 

accession ABR6. To this end, I carried out long-read based nanopore re-sequencing 

of the whole ABR6 genome, and in doing so advanced the sequence quality for ABR6. 

The long reads obtained allowed confident structural assembly whilst the small 

genome size meant that high coverage could easily be obtained to overcome any 

shortfalls in read call accuracy (Leggett and Clark, 2017). The power created from 

this data was invaluable for confidently comparing gene content and sequence 

variation between ABR6 and Bd21. It was complemented by the availability of long-

read based genome assembly for Bd1-1 (v1.1) and together these datasets 

demonstrate the potential weakness of reliance upon Illumina style sequencing data. 

A critical loss of protein domain in the ATP-dependent CLP protease (Bradi4g22650) 

was identified, which lies within the physical candidate interval, and was supported 

by expression analysis by qPCR in which no transcript was detected within the 

protease domain for either of the trichomeless accessions, ABR6 and Bd1-1. 

Furthermore, tissue specificity of expression of Bradi4g22650, being completely 

absent in leaf tissue, is compatible with the observed lemma-specific trichome 

phenotype. Bessho-Uehara et al. (2016) describe a protease SLP1 that is required to 

cleave and mature RAE2, a process that is required for awn development in rice. Also 
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in rice, Jin et al. (2016) described a similar processing pathway required for 

maturation of developmental proteins. Bradi4g22650 could therefore play a 

biologically plausible role in trichome development in Bd. 

No mutants were available within the protease domain of Bradi4g22650, either from 

functional genomics resources or CRISPR mutagenesis, which was unsuccessful. 

Validation of the putative role of Bradi4g22650 in lemma trichome development is 

required and could be achieved by pursuing T-DNA mutants, or through repeating 

CRISPR mutagenesis. A thorough guide to CRISPR-Cas9 mutagenesis in Bd has 

since been published (Hus et al., 2020). 

Without obtaining functional mutants that result in the loss of lemma trichomes in Bd, 

it was not possible to assess the hypothesis that the absence of lemma trichomes 

provides a level of Type I resistance to FHB. Cultivated wheat varieties do not 

possess lemma trichomes in the way that Bd does. Instead, wheat lemmas possess 

smaller prickle cells. It is possible that prickle cells are also providing points of 

infection, independent of the well characterised entry route via reproductive organs, 

therefore acting as a susceptibility factor. Peraldi (Unpublished) observed that Bd 

lemma prickle cells were points of infection in detached lemma inoculations. This 

observation indicates that understanding of the genes involved in the initiation and 

development of trichome/prickle cells in Bd may provide a route for translation into 

wheat. 

Looking beyond the project, translation of this work exploring trichome FHB 

relationship into wheat is the ultimate aim. Orthologues of highest identity for the most 

promising candidate, ATP-dependent CLP protease gene (Bradi4g22650) were 

identified and listed in Table 6-1, although identity was low at the protein level, only 

29-43%. The wheat TILLING resource can be used to assess the effect of loss-of-

function of these orthologues on interaction with FHB; this would require backcrossing 

to reduce background mutations and crossing of TILLING lines depending on 
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redundancy. For the putative role of trichomes as FHB infection points, this will involve 

the examination of the effect of loss-of-function in trichome precursor genes, to 

identify any pleiotropic effects, as well as any direct change in lemma anatomy. 

 

6.5 DON sensitivity 

The greatest potential for preventing DON contamination of grain lies in the field, by 

limiting accumulation through reducing Fusarium infection. The greatest opportunity 

for this can be found in the potential for generating genetically resistant varieties and 

cultivars. The most widely studied mechanism of protection against DON is 

glucosylation to produce DON-3-O-glucoside by UDP-glucosyltransferase (UGT) 

proteins (Poppenberger et al., 2003). Overexpression of a wheat UGT gene has been 

shown to increase resistance to FHB and reduce grain DON content (Xing et al., 

2018). Gaining understanding into molecular mechanisms by which DON 

manipulates plant host defences on a cellular level would allow for more targeted 

approaches to the development of control methods. This ideal approach would 

require better understanding of the role that DON plays during infection and 

colonisation, of which very little is known. Previously only noted to accumulate at later 

stages of infection, Boenisch and Schafer (2011) demonstrated that the DON 

biosynthetic pathway is induced in hyphal infection structures but is not required for 

their development or success of initial infection. 

Previous work within the Nicholson group suggested a putative function of DON as 

an auxin transport inhibitor, a hypothesis based upon observations of alterations in 

root development, root hair development and gravitropism in response to DON 

treatment in both Arabidopsis and Bd (Steed and Nicholson, Unpublished). Auxins 

and abscisic acid are essential regulators of plant responses to stress, with 

exogenous auxin shown to prime plant defences and decrease susceptibility to FHB 
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(F. culmorum) (Petti, Reiber et al. 2012). Haidoulis and Nicholson (2020) confirmed 

an increased resistance to FHB and Fusarium root rot upon exogenous application of 

auxin in Bd. Limiting the transport of this defensive signal might therefore be a 

plausible strategy of Fusarium to evade the initiation of systematic defence response. 

There are many sources of evidence suggestive of a putative role of auxin in DON 

sensitivity, but the mechanism is unclear. 

Exploitation of natural diversity formed the initial basis for characterising DON 

sensitivity, leading to the use of the Bd2-3 x Bd21 mapping population for the 

identification of loci associated with DON responsiveness and was described in 

Chapter 5. Root assays were used to assess DON sensitivity of Bd accessions in a 

high-throughput manner whilst allowing non-destructive monitoring of roots over time. 

In planta studies characterising the role of DON as a protein synthesis inhibitor have 

typically used higher concentrations of DON (McLaughlin et al., 1977, Rocha et al., 

2005). Most accessions showed a quantitative elongation in response to a low 

concentration of DON, relative to controls. Accessions Bd2-3 and Koz-3 exhibited 

inhibition of the primary root and induction of secondary, branching roots in response 

to DON; this response is highly unusual and no there are no prior reports of similar 

responses. No other chemical agents tested fully mimicked the DON phenotype in 

Bd2-3, but much more expansive investigation is required to confirm the specificity of 

the phenotype. The techniques developed in this thesis will allow this question to be 

addressed in future studies. 

 

6.6 Major DON sensitivity effect identified on Bd1 

This differential response, for which the Bd2-3 x Bd21 RIL population had segregated, 

was used to identify genetic loci associated with DON sensitivity. A locus on the long 

arm of Bd chromosome one was identified by two independent methods, by 
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conventional mapping and bulked segregant analysis by sequencing, as having a 

major impact on DON response. Phenotyping of DON sensitivity within the Bd2-3 x 

Bd21 was not as straightforward as initially expected or stable as might be assumed 

for an apparent simple, single gene trait. Whilst this presented a constant challenge 

during analysis of experiments, the power of any associations, especially those 

resulting from BSA analysis, are made even more compelling, with the understanding 

that, had the phenotyping been completely accurate, the associations would be that 

much greater as the genotyping pools would have been pure (Trick et al., 2012). 

A high-confidence candidate interval of 56 genes was defined using BSA data. DON 

responsive RNAseq data was used to identify those genes exhibiting differential DON 

responsiveness in Bd21 and Bd2-3 in the associated region. The most plausible of 

these candidate genes for underlying DON sensitivity are listed in Table 6-1. Within 

the 56 gene interval, no genes were present that were related to glucosyltransferases, 

or other genes previously identified as affecting the phytotoxicity of DON (Walter and 

Doohan, 2011). Therefore, my data identifies a potentially novel, tissue independent, 

mechanism for DON sensitivity. 

It may also be possible to further refine the physical region associated with the DON 

sensitivity trait through exploitation of the remaining SNP variation present to 

delineate the locations of recombination events in Bd2-3 x Bd21 RILs that provide the 

left and right borders of the candidate interval. KASP markers designed for this 

purpose were inconclusive, therefore direct sequencing of markers in the three Bd2-3 

x Bd21 RILs containing recombination events between markers Bd1L_69696725 and 

Bd1L_69743518 could be used to limit the number of candidate genes. 

As with the trichome factor, once validated in Bd, the next steps for investigating the 

role of the DON sensitivity factor should then focus on assessment of any orthologous 

genes in wheat, using the TILLING platform. Similar methodology for root assays in 

wheat has been successfully adapted from those here used. This work would first 
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require further refinement of candidate genes, as described. Wheat orthologues for 

were identified for the most promising current candidate genes: F-box (SNEEZY 

orthologue), CASP-like protein ALD-1 (defence related) and RNA binding protein 

pumilio-related (Bradi1g71460, Bradi1g71465, Bradi1g71530 and Bradi1g71624 

respectively, Table 6-1). There is an extremely high level of synteny between the 

candidate interval in Bd chromosome one with the loci of orthologues on group four 

chromosomes of wheat (Table 6-1). Similar assessment of DON sensitivity should be 

made in mutant material for these orthologues using adaptation of root assays and 

well established DON point application head assays, for example as described by 

Hales et al. (2020b). 

Since the inception of this project rapid advances in wheat genetic resources have 

been made; TILLING mutant resources are available in tetraploid durum wheat cv 

‘Kronos’ and hexaploid bread wheat cv ‘Cadenza’. By the end of this PhD project, 

chromosome level, high quality reference genome for bread wheat cv ‘Chinese 

Spring’ as well as reference-quality genome sequences for multiple wheat lines also 

becoming available (Walkowiak et al., 2020, Alonge et al., 2020, Appels et al., 2018, 

Clavijo et al., 2017). These genetic resources will greatly improve the ease of 

translation of the findings of this thesis into crop species. 
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Table 6-1 Wheat orthologues of Bd candidate genes 

Candidate 

gene 
Gene Type Trait 

Wheat Orthologues 

(IWGSC) 

Bradi4g22650 
ATP-dependent 

CLP protease 

Lemma 

Trichome 

TraesCS3A02G422900 

TraesCS3B02G458500 

TraesCS3D02G418100 

Bradi1g71460 
F- box, SNEEZY 

orthologue 
DON 

TraesCS4A02G042900 

TraesCS4B02G263400 

TraesCS4D02G263600 

Bradi1g71465 CASP-like protein DON 

TraesCS4A02G043000 

TraesCS4B02G263500 

TraesCS4D02G263800 

Bradi1g71530 
ALD-1, defence 

related 
DON 

TraesCS4A02G043800 

TraesCS4B02G264500 

TraesCS4D02G264500 

Bradi1g71624 

RNA binding 

protein pumilio-

related 

DON 

TraesCS4A02G039400 

TraesCS4B02G266100 

TraesCS4D02G266000 

  



198 
 

References 

Alexandratos, N. & Bruinsma, J. 2012. World agriculture towards 2030/2050: the 2012 

revision. ESA Working paper Rome, FAO. 

Alonge, M., Shumate, A., Puiu, D., Zimin, A. V. & Salzberg, S. L. 2020. Chromosome-

Scale Assembly of the Bread Wheat Genome Reveals Thousands of 

Additional Gene Copies. Genetics, 216, 599-608. 

Andrews, S. 2010. FastQC: a quality control tool for high throughput sequence data 

[Online]. Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc 

[Accessed October 24, 2019]. 

Appels, R., Eversole, K., Stein, N., Feuillet, C., Keller, B., Rogers, J., Pozniak, C. J., 

Choulet, F., Distelfeld, A., Poland, J., Ronen, G., Sharpe, A. G., Barad, O., 

Baruch, K., Keeble-Gagnère, G., Mascher, M., Ben-Zvi, G., Josselin, A.-A., 

Himmelbach, A., Balfourier, F., Gutierrez-Gonzalez, J., Hayden, M., Koh, C., 

Muehlbauer, G., Pasam, R. K., Paux, E., Rigault, P., Tibbits, J., Tiwari, V., 

Spannagl, M., Lang, D., Gundlach, H., Haberer, G., Mayer, K. F. X., 

Ormanbekova, D., Prade, V., Šimková, H., Wicker, T., Swarbreck, D., 

Rimbert, H., Felder, M., Guilhot, N., Kaithakottil, G., Keilwagen, J., Leroy, P., 

Lux, T., Twardziok, S., Venturini, L., Juhász, A., Abrouk, M., Fischer, I., Uauy, 

C., Borrill, P., Ramirez-Gonzalez, R. H., Arnaud, D., Chalabi, S., Chalhoub, 

B., Cory, A., Datla, R., Davey, M. W., Jacobs, J., Robinson, S. J., Steuernagel, 

B., van Ex, F., Wulff, B. B. H., Benhamed, M., Bendahmane, A., Concia, L., 

Latrasse, D., Bartoš, J., Bellec, A., Berges, H., Doležel, J., Frenkel, Z., Gill, 

B., Korol, A., Letellier, T., Olsen, O.-A., Singh, K., Valárik, M., van der Vossen, 

E., Vautrin, S., Weining, S., Fahima, T., Glikson, V., Raats, D., Číhalíková, J., 

Toegelová, H., Vrána, J., Sourdille, P., Darrier, B., Barabaschi, D., Cattivelli, 

L., Hernandez, P., Galvez, S., Budak, H., Jones, J. D. G., Witek, K., Yu, G., 

Small, I., et al. 2018. Shifting the limits in wheat research and breeding using 

a fully annotated reference genome. Science, 361, eaar7191. 

Arendsee, Z. W., Li, L. & Wurtele, E. S. 2014. Coming of age: orphan genes in plants. 

Trends in Plant Science, 19, 698-708. 

Ariizumi, T., Lawrence, P. K. & Steber, C. M. 2011. The role of two f-box proteins, 

SLEEPY1 and SNEEZY, in Arabidopsis gibberellin signaling. Plant Physiol, 

155, 765-75. 

Ariizumi, T. & Steber, C. M. 2011. Mutations in the F-box gene SNEEZY result in 

decreased Arabidopsis GA signaling. Plant Signal Behav, 6, 831-3. 

Bai, G. & Shaner, G. 2004. Management and resistance in wheat and barley to 

fusarium head blight. Annu Rev Phytopathol, 42, 135-61. 

Bai, G. H., Desjardins, A. E. & Plattner, R. D. 2002. Deoxynivalenol-nonproducing 

fusarium graminearum causes initial infection, but does not cause disease 

spread in wheat spikes. Mycopathologia, 153, 91-98. 

Baluška, F., Parker, J. S. & Barlow, P. W. 1993. A role for gibberellic acid in orienting 

microtubules and regulating cell growth polarity in the maize root cortex. 

Planta, 191, 149-157. 

Banik, M., Liu, S., Yu, K., Poysa, V. & Park, S. J. 2008. Molecular TILLING and 

EcoTILLING: effective tools for mutant gene detection in plants. Genes 

Genomes Genomics, 1, 123-132. 

Barkley, N. A. & Wang, M. L. 2008. Application of TILLING and EcoTILLING as 

Reverse Genetic Approaches to Elucidate the Function of Genes in Plants 

and Animals. Current Genomics, 9, 212-226. 

Beccari, G., Covarelli, L. & Nicholson, P. 2011. Infection processes and soft wheat 

response to root rot and crown rot caused by Fusarium culmorum. Plant 

Pathology, 60, 671-684. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc


199 
 

Bessho-Uehara, K., Wang, D. R., Furuta, T., Minami, A., Nagai, K., Gamuyao, R., 

Asano, K., Angeles-Shim, R. B., Shimizu, Y., Ayano, M., Komeda, N., Doi, K., 

Miura, K., Toda, Y., Kinoshita, T., Okuda, S., Higashiyama, T., Nomoto, M., 

Tada, Y., Shinohara, H., Matsubayashi, Y., Greenberg, A., Wu, J., Yasui, H., 

Yoshimura, A., Mori, H., McCouch, S. R. & Ashikari, M. 2016. Loss of function 

at RAE2, a previously unidentified EPFL, is required for awnlessness in 

cultivated Asian rice. Proceedings of the National Academy of Sciences, 113, 

8969. 

Bettgenhaeuser, J. Unpublished. F8 genetic map for ABR6 x Bd21 recombinant 

inbred line population. 

Bettgenhaeuser, J., Corke, F. M., Opanowicz, M., Green, P., Hernandez-Pinzon, I., 

Doonan, J. H. & Moscou, M. J. 2017. Natural variation in Brachypodium links 

vernalization and flowering time loci as major flowering determinants. Plant 

Physiol. 

Bettgenhaeuser, J., Gardiner, M., Spanner, R., Green, P., Hernandez-Pinzon, I., 

Hubbard, A., Ayliffe, M. & Moscou, M. J. 2018. The genetic architecture of 

colonization resistance in Brachypodium distachyon to non-adapted stripe 

rust (Puccinia striiformis) isolates. Plos Genetics, 14. 

Bettgenhaeuser, J., Woods, D. P. & Moscou, M. Unpublished. Fine mapping of 

trichomeless phenotype in ABR6 x Bd21 and Bd21 x Bd1-1 recombinant 

inbred line populations of Brachypodium distachyon. 

Blümke, A., Sode, B., Ellinger, D. & Voigt, C. A. 2015. Reduced susceptibility to 

Fusarium head blight in Brachypodium distachyon through priming with the 

Fusarium mycotoxin deoxynivalenol. Molecular plant pathology, 16, 472-483. 

Boenisch, M. J. & Schafer, W. 2011. Fusarium graminearum forms mycotoxin 

producing infection structures on wheat. Bmc Plant Biology, 11. 

Bolger, A. M., Lohse, M. & Usadel, B. 2014. Trimmomatic: a flexible trimmer for 

Illumina sequence data. Bioinformatics, 30, 2114-20. 

Boutigny, A. L., Richard-Forget, F. & Barreau, C. 2008. Natural mechanisms for 

cereal resistance to the accumulation of Fusarium trichothecenes. European 

Journal of Plant Pathology, 121, 411-423. 

Bragg, J. N., Wu, J., Gordon, S. P., Guttman, M. E., Thilmony, R., Lazo, G. R., Gu, 

Y. Q. & Vogel, J. P. 2012. Generation and Characterization of the Western 

Regional Research Center Brachypodium T-DNA Insertional Mutant 

Collection. PLOS ONE, 7, e41916. 

Brauer, E. K., Rocheleau, H., Balcerzak, M., Pan, Y., Fauteux, F., Liu, Z., Wang, L., 

Zheng, W. & Ouellet, T. 2019. Transcriptional and hormonal profiling of 

Fusarium graminearum-infected wheat reveals an association between auxin 

and susceptibility. Physiological and Molecular Plant Pathology, 107, 33-39. 

Broman, K. W., Wu, H., Sen, S. & Churchill, G. A. 2003. R/qtl: QTL mapping in 

experimental crosses. Bioinformatics, 19, 889-90. 

Brown, J. K. 2002. Yield penalties of disease resistance in crops. Curr Opin Plant 

Biol, 5, 339-44. 

Brown, N. A., Urban, M., van de Meene, A. M. & Hammond-Kosack, K. E. 2010. The 

infection biology of Fusarium graminearum: defining the pathways of spikelet 

to spikelet colonisation in wheat ears. Fungal Biol, 114, 555-71. 

Buerstmayr, H., Ban, T. & Anderson, J. A. 2009. QTL mapping and marker-assisted 

selection for Fusarium head blight resistance in wheat: a review. Plant 

Breeding, 128, 1-26. 

Buerstmayr, H., Lemmens, M., Schmolke, M., Zimmermann, G., Hartl, L., Mascher, 

F., Trottet, M., Gosman, N. E. & Nicholson, P. 2008. Multi-environment 

evaluation of level and stability of FHB resistance among parental lines and 



200 
 

selected offspring derived from several European winter wheat mapping 

populations. Plant Breeding, 127, 325-332. 

Buerstmayr, M. & Buerstmayr, H. 2016. The semidwarfing alleles Rht-D1b and Rht-

B1b show marked differences in their associations with anther-retention in 

wheat heads and with Fusarium head blight susceptibility. Phytopathology, 

106, 1544-1552. 

Buerstmayr, M., Huber, K., Heckmann, J., Steiner, B., Nelson, J. C. & Buerstmayr, H. 

2012. Mapping of QTL for Fusarium head blight resistance and morphological 

and developmental traits in three backcross populations derived from Triticum 

dicoccum × Triticum durum. Theoretical and Applied Genetics, 125, 1751-

1765. 

Buerstmayr, M., Steiner, B. & Buerstmayr, H. 2020. Breeding for Fusarium head blight 

resistance in wheat-Progress and challenges. Plant Breeding, 139, 429-454. 

Burt, C., Steed, A., Gosman, N., Lemmens, M., Bird, N., Ramirez-Gonzalez, R., 

Holdgate, S. & Nicholson, P. 2015. Mapping a Type 1 FHB resistance on 

chromosome 4AS of Triticum macha and deployment in combination with two 

Type 2 resistances. Theoretical and Applied Genetics, 128, 1725-1738. 

Cassman, K. G., Dobermann, A., Walters, D. T. & Yang, H. 2003. Meeting cereal 

demand while protecting natural resources and improving environmental 

quality. Annual Review of Environment and Resources, 28, 315-358. 

Catalan, P., Chalhoub, B., Chochois, V., Garvin, D. F., Hasterok, R., Manzaneda, A. 

J., Mur, L. A. J., Pecchioni, N., Rasmussen, S. K., Vogel, J. P. & Voxeur, A. 

2014. Update on the genomics and basic biology of Brachypodium 

International Brachypodium Initiative (IBI). Trends in Plant Science, 19, 414-

418. 

Causier, B., Ashworth, M., Guo, W. & Davies, B. 2012. The TOPLESS interactome: 

a framework for gene repression in Arabidopsis. Plant physiology, 158, 423-

438. 

Chen, W., Li, X., Tian, L., Wu, P., Li, M., Jiang, H., Chen, Y. & Wu, G. 2014. 

Knockdown of LjALD1, AGD2-like defense response protein 1, influences 

plant growth and nodulation in Lotus japonicus. Journal of Integrative Plant 

Biology, 56. 

Chu, C., Niu, Z., Zhong, S., Chao, S., Friesen, T. L., Halley, S., Elias, E. M., Dong, 

Y., Faris, J. D. & Xu, S. S. 2011. Identification and molecular mapping of two 

QTLs with major effects for resistance to Fusarium head blight in wheat. 

Theoretical and Applied Genetics, 123, 1107. 

Churchill, G. A. & Doerge, R. W. 1994. Empirical threshold values for quantitative trait 

mapping. Genetics, 138, 963-71. 

Clavijo, B. J., Venturini, L., Schudoma, C., Accinelli, G. G., Kaithakottil, G., Wright, J., 

Borrill, P., Kettleborough, G., Heavens, D., Chapman, H., Lipscombe, J., 

Barker, T., Lu, F.-H., McKenzie, N., Raats, D., Ramirez-Gonzalez, R. H., 

Coince, A., Peel, N., Percival-Alwyn, L., Duncan, O., Trösch, J., Yu, G., 

Bolser, D. M., Namaati, G., Kerhornou, A., Spannagl, M., Gundlach, H., 

Haberer, G., Davey, R. P., Fosker, C., Palma, F. D., Phillips, A. L., Millar, A. 

H., Kersey, P. J., Uauy, C., Krasileva, K. V., Swarbreck, D., Bevan, M. W. & 

Clark, M. D. 2017. An improved assembly and annotation of the allohexaploid 

wheat genome identifies complete families of agronomic genes and provides 

genomic evidence for chromosomal translocations. Genome Research, 27, 

885-896. 

Cox, N. & Smith, L. M. 2019. A Novel Upstream Regulator of Trichome Development 

Inhibitors. Plant Physiology, 181, 1398-1400. 



201 
 

Cundliffe, E., Cannon, M. & Davies, J. 1974. Mechanism of inhibition of eukaryotic 

protein synthesis by trichothecene fungal toxins. Proc Natl Acad Sci U S A, 

71, 30-4. 

Cundliffe, E. & Davies, J. E. 1977. Inhibition of Initiation, Elongation, and Termination 

of Eukaryotic Protein Synthesis by Trichothecene Fungal Toxins. 

Antimicrobial Agents and Chemotherapy, 11, 491-499. 

Cuthbert, P. A., Somers, D. J. & Brulé-Babel, A. 2007. Mapping of Fhb2 on 

chromosome 6BS: a gene controlling Fusarium head blight field resistance in 

bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 114, 

429-437. 

Cuthbert, P. A., Somers, D. J., Thomas, J., Cloutier, S. & Brulé-Babel, A. 2006. Fine 

mapping Fhb1, a major gene controlling fusarium head blight resistance in 

bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 112, 

1465. 

Dalmais, M., Antelme, S., Ho-Yue-Kuang, S., Wang, Y., Darracq, O., d'Yvoire, M. B., 

Cézard, L., Légée, F., Blondet, E., Oria, N., Troadec, C., Brunaud, V., Jouanin, 

L., Höfte, H., Bendahmane, A., Lapierre, C. & Sibout, R. 2013a. A TILLING 

Platform for Functional Genomics in Brachypodium distachyon. PloS one, 8, 

e65503-e65503. 

Dalmais, M., Antelme, S., Ho-Yue-Kuang, S., Wang, Y., Darracq, O., d’Yvoire, M. B., 

Cézard, L., Légée, F., Blondet, E., Oria, N., Troadec, C., Brunaud, V., Jouanin, 

L., Höfte, H., Bendahmane, A., Lapierre, C. & Sibout, R. 2013b. A TILLING 

Platform for Functional Genomics in Brachypodium distachyon. PLOS ONE, 

8, e65503. 

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., 

Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, 

R. & Group, G. P. A. 2011. The variant call format and VCFtools. 

Bioinformatics, 27, 2156-2158. 

Davidson, R. M., Gowda, M., Moghe, G., Lin, H., Vaillancourt, B., Shiu, S.-H., Jiang, 

N. & Robin Buell, C. 2012. Comparative transcriptomics of three Poaceae 

species reveals patterns of gene expression evolution. The Plant journal : for 

cell and molecular biology, 71, 492-502. 

de los Reyes, B. G. 2019. Genomic and epigenomic bases of transgressive 

segregation – New breeding paradigm for novel plant phenotypes. Plant 

Science, 288, 110213. 

Dell’Acqua, M., Zuccolo, A., Tuna, M., Gianfranceschi, L. & Pè, M. E. 2014. Targeting 

environmental adaptation in the monocot model Brachypodium distachyon: a 

multi-faceted approach. BMC Genomics, 15, 801. 

Della Coletta, R., Hirsch, C. N., Rouse, M. N., Lorenz, A. & Garvin, D. F. 2019. 

Genomic Dissection of Nonhost Resistance to Wheat Stem Rust in 

Brachypodium distachyon. Mol Plant Microbe Interact, 32, 392-400. 

Derbyshire, P. & Byrne, M. E. 2013. MORE SPIKELETS1 Is Required for Spikelet 

Fate in the Inflorescence of Brachypodium. Plant Physiology, 161, 1291-1302. 

Desjardins, A. E., Proctor, R., Bai, G., McCormick, S., Shaner, G., Buechley, G. & 

Hohn, T. 1996. Reduced virulence of trichothecene-nonproducing mutants of 

Gibberella zeae in wheat field tests. 

Desmond, O. J., Manners, J. M., Stephens, A. E., MaClean, D. J., Schenk, P. M., 

Gardiner, D. M., Munn, A. L. & Kazan, K. 2008. The Fusarium mycotoxin 

deoxynivalenol elicits hydrogen peroxide production, programmed cell death 

and defence responses in wheat. Molecular Plant Pathology, 9, 435-445. 

Dill-Macky, R. & Jones, R. 2000. The effect of previous crop residues and tillage on 

Fusarium head blight of wheat. Plant disease, 84, 71-76. 



202 
 

Dinolfo, M. I., Martínez, M., Nogueira, M. S., Nicholson, P. & Stenglein, S. A. 2020. 

Evaluation of interaction between Brachypodium distachyon roots and 

Fusarium species. European Journal of Plant Pathology. 

Draeger, R., Gosman, N., Steed, A., Chandler, E., Thomsett, M., Srinivasachary, 

Schondelmaier, J., Buerstmayr, H., Lemmens, M., Schmolke, M., Mesterhazy, 

A. & Nicholson, P. 2007. Identification of QTLs for resistance to Fusarium 

head blight, DON accumulation and associated traits in the winter wheat 

variety Arina. Theoretical and Applied Genetics, 115, 617-625. 

Draper, J., Mur, L. A. J., Jenkins, G., Ghosh-Biswas, G. C., Bablak, P., Hasterok, R. 

& Routledge, A. P. M. 2001. Brachypodium distachyon. A new model system 

for functional genomics in grasses. Plant Physiology, 127, 1539-1555. 

Escriva, L., Font, G. & Manyes, L. 2015. In vivo toxicity studies of fusarium mycotoxins 

in the last decade: A review. Food and Chemical Toxicology, 78, 185-206. 

Eudes, F., Comeau, A., Rioux, S. & Collin, J. 2000. Phytotoxicity of eight mycotoxins 

associated with the fusariosis of wheat spikelets. Canadian Journal of Plant 

Pathology, 22, 286-292. 

Fernández-Marcos, M., Desvoyes, B., Manzano, C., Liberman, L. M., Benfey, P. N., 

del Pozo, J. C. & Gutierrez, C. 2017. Control of Arabidopsis lateral root 

primordium boundaries by MYB36. New Phytologist, 213, 105-112. 

Filiz, E., Ozdemir, B. S., Budak, F., Vogel, J. P., Tuna, M. & Budak, H. 2009. 

Molecular, morphological, and cytological analysis of diverse Brachypodium 

distachyon inbred lines. Genome, 52, 876-890. 

Fitzgerald, T. L., Powell, J. J., Schneebeli, K., Hsia, M. M., Gardiner, D. M., Bragg, J. 

N., McIntyre, C. L., Manners, J. M., Ayliffe, M., Watt, M., Vogel, J. P., Henry, 

R. J. & Kazan, K. 2015. Brachypodium as an emerging model for cereal-

pathogen interactions. Annals of Botany, 115, 717-731. 

Flavell, R. 2009. Role of model plant species. Methods Mol Biol, 513, 1-18. 

Foroud, N. A., Ouellet, T., Laroche, A., Oosterveen, B., Jordan, M. C., Ellis, B. E. & 

Eudes, F. 2012. Differential transcriptome analyses of three wheat genotypes 

reveal different host response pathways associated with Fusarium head blight 

and trichothecene resistance. Plant Pathology, 61, 296-314. 

Fu, X., Richards, D. E., Fleck, B., Xie, D., Burton, N. & Harberd, N. P. 2004. The 

Arabidopsis mutant sleepy1gar2-1 protein promotes plant growth by 

increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein 

substrates. Plant Cell, 16, 1406-18. 

Gan, L., Xia, K., Chen, J.-G. & Wang, S. 2011. Functional characterization of 

TRICHOMELESS2, a new single-repeat R3 MYB transcription factor in the 

regulation of trichome patterning in Arabidopsis. BMC Plant Biology, 11, 176. 

Garrison, E. & Marth, G. 2012. Haplotype-based variant detection from short-read 

sequencing., arXiv preprint arXiv:1207.3907 [q-bio.GN]. 

Garvin, D. F., Gu, Y.-Q., Hasterok, R., Hazen, S. P., Jenkins, G., Mockler, T. C., Mur, 

L. A. & Vogel, J. P. 2008. Development of genetic and genomic research 

resources for, a new model system for grass crop research. Crop Science, 48, 

S-69-S-84. 

Gilbert, B., Bettgenhaeuser, J., Upadhyaya, N., Soliveres, M., Singh, D., Park, R. F., 

Moscou, M. J. & Ayliffe, M. 2018. Components of Brachypodium distachyon 

resistance to nonadapted wheat stripe rust pathogens are simply inherited. 

Plos Genetics, 14. 

Girin, T., David, L. C., Chardin, C., Sibout, R., Krapp, A., Ferrario-Méry, S. & Daniel-

Vedele, F. 2014. Brachypodium: a promising hub between model species and 

cereals. Journal of Experimental Botany, 65, 5683-5696. 

Goddard, R., Peraldi, A., Ridout, C. & Nicholson, P. 2014. Enhanced disease 

resistance caused by BRI1 mutation is conserved between Brachypodium 



203 
 

distachyon and barley (Hordeum vulgare). Mol Plant Microbe Interact, 27, 

1095-106. 

Goddard, R., Steed, A., Scheeren, P. L., Maciel, J. L. N., Caierão, E., Torres, G. A. 

M., Consoli, L., Santana, F. M., Fernandes, J. M. C. & Simmonds, J. 2021. 

Identification of Fusarium head blight resistance loci in two Brazilian wheat 

mapping populations. Plos one, 16, e0248184. 

Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, 

T., Dirks, W., Hellsten, U., Putnam, N. & Rokhsar, D. S. 2012. Phytozome: a 

comparative platform for green plant genomics. Nucleic acids research, 40, 

D1178-D1186. 

Gordon, S. P., Contreras-Moreira, B., Woods, D. P., Marais, D. L. D., Burgess, D., 

Shu, S. Q., Stritt, C., Roulin, A. C., Schackwitz, W., Tyler, L., Martin, J., Lipzen, 

A., Dochy, N., Phillips, J., Barry, K., Geuten, K., Budak, H., Juenger, T. E., 

Amasino, R., Caicedo, A. L., Goodstein, D., Davidson, P., Mur, L. A. J., 

Figueroa, M., Freeling, M., Catalan, P. & Vogel, J. P. 2017. Extensive gene 

content variation in the Brachypodium distachyon pan-genome correlates with 

population structure. Nature Communications, 8. 

Gordon, S. P., Priest, H., Des Marais, D. L., Schackwitz, W., Figueroa, M., Martin, J., 

Bragg, J. N., Tyler, L., Lee, C.-R., Bryant, D., Wang, W., Messing, J., 

Manzaneda, A. J., Barry, K., Garvin, D. F., Budak, H., Tuna, M., Mitchell-Olds, 

T., Pfender, W. F., Juenger, T. E., Mockler, T. C. & Vogel, J. P. 2014. Genome 

diversity in Brachypodium distachyon: deep sequencing of highly diverse 

inbred lines. The Plant Journal, 79, 361-374. 

Gosman, N., Chandler, E., Thomsett, M., Draeger, R. & Nicholson, P. 2005. Analysis 

of the relationship between parameters of resistance to Fusarium head blight 

and in vitro tolerance to deoxynivalenol of the winter wheat cultivar WEK0609 

®. European Journal of Plant Pathology, 111, 57-66. 

Goswami, R. S. & Kistler, H. C. 2004. Heading for disaster: Fusarium graminearum 

on cereal crops. Molecular Plant Pathology, 5, 515-525. 

Gregory, P. J. & George, T. S. 2011. Feeding nine billion: the challenge to sustainable 

crop production. Journal of Experimental Botany, 62, 5233-5239. 

Haidoulis, J. F. & Nicholson, P. 2020. Different effects of phytohormones on Fusarium 

head blight and Fusarium root rot resistance in Brachypodium distachyon. 

Journal of Plant Interactions, 15, 335-344. 

Hales, B., Steed, A., Giovannelli, V., Burt, C., Lemmens, M., Molnar-Lang, M. & 

Nicholson, P. 2020a. Type II Fusarium head blight susceptibility conferred by 

a region on wheat chromosome 4D. Journal of Experimental Botany, 71, 

4703-4714. 

Hales, B., Steed, A., Giovannelli, V., Burt, C., Lemmens, M., Molnár-Láng, M. & 

Nicholson, P. 2020b. Type II Fusarium head blight susceptibility factor 

identified in wheat. bioRxiv, 2020.02.06.937425. 

He, F., Zhang, R., Zhao, J., Qi, T., Kang, Z. & Guo, J. 2019. Host-Induced Silencing 

of Fusarium graminearum Genes Enhances the Resistance of Brachypodium 

distachyon to Fusarium Head Blight. Frontiers in Plant Science, 10. 

He, X., Singh, P. K., Dreisigacker, S., Singh, S., Lillemo, M. & Duveiller, E. 2016. 

Dwarfing Genes Rht-B1b and Rht-D1b Are Associated with Both Type I FHB 

Susceptibility and Low Anther Extrusion in Two Bread Wheat Populations. 

PLOS ONE, 11, e0162499. 

Hedden, P. 2003. The genes of the Green Revolution. Trends in Genetics, 19, 5-9. 

Hong, S. Y., Seo, P. J., Yang, M. S., Xiang, F. & Park, C. M. 2008. Exploring valid 

reference genes for gene expression studies in Brachypodium distachyon by 

real-time PCR. BMC Plant Biol, 8, 112. 



204 
 

Hsia, M. M., O'Malley, R., Cartwright, A., Nieu, R., Gordon, S. P., Kelly, S., Williams, 

T. G., Wood, D. F., Zhao, Y., Bragg, J., Jordan, M., Pauly, M., Ecker, J. R., 

Gu, Y. & Vogel, J. P. 2017. Sequencing and functional validation of the JGI 

Brachypodium distachyon T-DNA collection. The Plant Journal, 91, 361-370. 

Hueza, I. M., Raspantini, P. C. F., Raspantini, L. E. R., Latorre, A. O. & Górniak, S. 

L. 2014. Zearalenone, an Estrogenic Mycotoxin, Is an Immunotoxic 

Compound. Toxins, 6, 1080-1095. 

Huo, N., Vogel, J. P., Lazo, G. R., You, F. M., Ma, Y., McMahon, S., Dvorak, J., 

Anderson, O. D., Luo, M. C. & Gu, Y. Q. 2009. Structural characterization of 

Brachypodium genome and its syntenic relationship with rice and wheat. Plant 

Mol Biol, 70, 47-61. 

Hus, K., Betekhtin, A., Pinski, A., Rojek-Jelonek, M., Grzebelus, E., Nibau, C., Gao, 

M. J., Jaeger, K. E., Jenkins, G., Doonan, J. H. & Hasterok, R. 2020. A 

CRISPR/Cas9-Based Mutagenesis Protocol for Brachypodium distachyon 

and Its Allopolyploid Relative, Brachypodium hybridum. Frontiers in Plant 

Science, 11. 

Ilgen, P., Maier, F. J. & Schafer, W. 2008. Monitoring the induction of trichothecene 

mycotoxins of Fusarium graminearum using GFP during wheat head infection 

and in culture. Cereal Research Communications, 36, 503-505. 

Imboden, L., Afton, D. & Trail, F. 2018. Surface interactions of Fusarium graminearum 

on barley. Molecular Plant Pathology, 19, 1332-1342. 

International Brachypodium, I. 2010. Genome sequencing and analysis of the model 

grass Brachypodium distachyon. Nature, 463, 763-8. 

Jansen, C., von Wettstein, D., Schäfer, W., Kogel, K.-H., Felk, A. & Maier, F. J. 2005. 

Infection patterns in barley and wheat spikes inoculated with wild-type and 

trichodiene synthase gene disrupted Fusarium graminearum. Proceedings of 

the National Academy of Sciences of the United States of America, 102, 

16892-16897. 

Jeger, M. J. & Viljanen-Rollinson, S. L. H. 2001. The use of the area under the 

disease-progress curve (AUDPC) to assess quantitative disease resistance in 

crop cultivars. Theoretical and Applied Genetics, 102, 32-40. 

Jia, H., Zhou, J., Xue, S., Li, G., Yan, H., Ran, C., Zhang, Y., Shi, J., Jia, L. & Wang, 

X. 2018. A journey to understand wheat Fusarium head blight resistance in 

the Chinese wheat landrace Wangshuibai. The Crop Journal, 6, 48-59. 

Jin, J., Hua, L., Zhu, Z., Tan, L., Zhao, X., Zhang, W., Liu, F., Fu, Y., Cai, H., Sun, X., 

Gu, P., Xie, D. & Sun, C. 2016. GAD1 Encodes a Secreted Peptide That 

Regulates Grain Number, Grain Length, and Awn Development in Rice 

Domestication. Plant Cell, 28, 2453-2463. 

Johnson, C. S., Kolevski, B. & Smyth, D. R. 2002. TRANSPARENT TESTA 

GLABRA2, a Trichome and Seed Coat Development Gene of Arabidopsis, 

Encodes a WRKY Transcription Factor. The Plant Cell, 14, 1359-1375. 

Kamran, A., Iqbal, M. & Spaner, D. 2014. Flowering time in wheat (Triticum aestivum 

L.): a key factor for global adaptability. Euphytica, 197, 1-26. 

Kang, Z. & Buchenauer, H. 1999. Immunocytochemical localization of fusarium toxins 

in infected wheat spikes by Fusarium culmorum. Physiological and Molecular 

Plant Pathology, 55, 275-288. 

Kang, Z. & Buchenauer, H. 2000. Ultrastructural and Cytochemical Studies on 

Cellulose, Xylan and Pectin Degradation in Wheat Spikes Infected by 

Fusarium culmorum. Journal of Phytopathology, 148, 263-275. 

Kazan, K., Gardiner, D. M. & Manners, J. M. 2012. On the trail of a cereal killer: recent 

advances in Fusarium graminearum pathogenomics and host resistance. 

Molecular Plant Pathology, 13, 399-413. 



205 
 

Kersey, P. J., Allen, J. E., Allot, A., Barba, M., Boddu, S., Bolt, B. J., Carvalho-Silva, 

D., Christensen, M., Davis, P., Grabmueller, C., Kumar, N., Liu, Z., Maurel, T., 

Moore, B., McDowall, M. D., Maheswari, U., Naamati, G., Newman, V., Ong, 

C. K., Paulini, M., Pedro, H., Perry, E., Russell, M., Sparrow, H., Tapanari, E., 

Taylor, K., Vullo, A., Williams, G., Zadissia, A., Olson, A., Stein, J., Wei, S., 

Tello-Ruiz, M., Ware, D., Luciani, A., Potter, S., Finn, R. D., Urban, M., 

Hammond-Kosack, K. E., Bolser, D. M., De Silva, N., Howe, K. L., Langridge, 

N., Maslen, G., Staines, D. M. & Yates, A. 2017. Ensembl Genomes 2018: an 

integrated omics infrastructure for non-vertebrate species. Nucleic Acids 

Research, 46, D802-D808. 

Kim, D., Langmead, B. & Salzberg, S. L. 2015. HISAT: a fast spliced aligner with low 

memory requirements. Nature Methods, 12, 357-360. 

Kimura, M., Takahashi-Ando, N., Nishiuchi, T., Ohsato, S., Tokai, T., Ochial, N., 

Fujimura, M., Kudo, T., Hamamoto, H. & Yamaguchi, I. 2006. Molecular 

biology and biotechnology for reduction of Fusarium mycotoxin contamination. 

Pesticide Biochemistry and Physiology, 86, 117-123. 

Kind, S., Schurack, S., Hinsch, J. & Tudzynski, P. 2018. Brachypodium distachyon 

as alternative model host system for the ergot fungus Claviceps purpurea. 

Molecular plant pathology, 19, 1005-1011. 

Kobayashi, K., Baba, S., Obayashi, T., Sato, M., Toyooka, K., Keränen, M., Aro, E.-

M., Fukaki, H., Ohta, H., Sugimoto, K. & Masuda, T. 2012. Regulation of Root 

Greening by Light and Auxin/Cytokinin Signaling in Arabidopsis  The Plant 

Cell, 24, 1081-1095. 

Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. 2019. Assembly of long, error-

prone reads using repeat graphs. Nature Biotechnology, 37, 540-546. 

Kulik, T., Abarenkov, K., Busko, M., Bilska, K., van Diepeningen, A. D., Ostrowska-

Kolodziejczak, A., Krawczyk, K., Brankovics, B., Stenglein, S., Sawicki, J. & 

Perkowski, J. 2017. ToxGen: an improved reference database for the 

identification of type B-trichothecene genotypes in Fusarium. Peerj, 5. 

Lagudah, E. S. & Krattinger, S. G. 2019. A new player contributing to durable 

Fusarium resistance. Nature genetics, 51, 1070-1071. 

Langevin, F., Eudes, F. & Comeau, A. 2004. Effect of Trichothecenes Produced by 

Fusarium graminearum during Fusarium Head Blight Development in Six 

Cereal Species. European Journal of Plant Pathology, 110, 735-746. 

Lee, H. G. & Seo, P. J. 2019. MYB96 recruits the HDA15 protein to suppress negative 

regulators of ABA signaling in Arabidopsis. Nature Communications, 10, 

1713. 

Lee, K.-H., Utku, A., Qi, L. & Wang, H. 2018. The α-Aurora Kinases Function in 

Vascular Development in Arabidopsis. Plant and Cell Physiology, 60, 188-

201. 

Leggett, R. M. & Clark, M. D. 2017. A world of opportunities with nanopore 

sequencing. Journal of Experimental Botany, 68, 5419-5429. 

Lemmens, M., Scholz, U., Berthiller, F., Dall'Asta, C., Koutnik, A., Schuhmacher, R., 

Adam, G., Buerstmayr, H., Mesterhazy, A., Krska, R. & Ruckenbauer, P. 

2005. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a 

major quantitative trait locus for fusarium head blight resistance in wheat. 

Molecular Plant-Microbe Interactions, 18, 1318-1324. 

Leslie, J. F. & Logrieco, A. 2014. Mycotoxin Reduction in Grain Chains, Wiley. 

Li, B., Liu, D. J. & Leal, S. M. 2013. Identifying rare variants associated with complex 

traits via sequencing. Current protocols in human genetics, Chapter 1, 

10.1002/0471142905.hg0126s78-1.26. 



206 
 

Li, G., Zhou, J., Jia, H., Gao, Z., Fan, M., Luo, Y., Zhao, P., Xue, S., Li, N. & Yuan, Y. 

2019. Mutation of a histidine-rich calcium-binding-protein gene in wheat 

confers resistance to Fusarium head blight. Nature Genetics, 51, 1106-1112. 

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., 

Abecasis, G. & Durbin, R. 2009. The sequence alignment/map format and 

SAMtools. Bioinformatics, 25. 

Liu, C. & Zhang, T. 2017. Expansion and stress responses of the AP2/EREBP 

superfamily in cotton. BMC Genomics, 18, 118. 

Liu, S., Griffey, C. A., Hall, M. D., McKendry, A. L., Chen, J., Brooks, W. S., Brown-

Guedira, G., Van Sanford, D. & Schmale, D. G. 2013. Molecular 

characterization of field resistance to Fusarium head blight in two US soft red 

winter wheat cultivars. Theoretical and Applied Genetics, 126, 2485-2498. 

Liu, X. & Liu, C. 2016. Effects of Drought-Stress on Fusarium Crown Rot 

Development in Barley. PloS one, 11, e0167304-e0167304. 

Lobet, G., Pagès, L. & Draye, X. 2011. A Novel Image-Analysis Toolbox Enabling 

Quantitative Analysis of Root System Architecture. Plant Physiology, 157, 29-

39. 

Lu, Q., Lillemo, M., Skinnes, H., He, X., Shi, J., Ji, F., Dong, Y. & Bjørnstad, Å. 2013. 

Anther extrusion and plant height are associated with Type I resistance to 

Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theoretical 

and Applied Genetics, 126, 317-334. 

Luo, K., Rocheleau, H., Qi, P. F., Zheng, Y. L., Zhao, H. Y. & Ouellet, T. 2016. Indole-

3-acetic acid in Fusarium graminearum: Identification of biosynthetic 

pathways and characterization of physiological effects. Fungal Biol, 120, 

1135-45. 

Machado, A., Wu, Y., Yang, Y., Llewellyn, D. J. & Dennis, E. S. 2009. The MYB 

transcription factor GhMYB25 regulates early fibre and trichome development. 

The Plant Journal, 59, 52-62. 

Madden, L., Bradley, C., Dalla Lana da Silva, F. & Paul, P. Meta-analysis of 19 years 

of fungicide trials for the control of Fusarium head blight of wheat.  

Proceedings of the 2014 National Fusarium Head Blight Forum. US Wheat & 

Barley Scab Initiative, East Lansing, MI, 2014. 17-18. 

Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, 

P., Tivey, A. R. N., Potter, S. C., Finn, R. D. & Lopez, R. 2019. The EMBL-EBI 

search and sequence analysis tools APIs in 2019. Nucleic acids research. 

Maes, L., Inzé, D. & Goossens, A. 2008. Functional Specialization of the 

TRANSPARENT TESTA GLABRA1 Network Allows Differential Hormonal 

Control of Laminal and Marginal Trichome Initiation in Arabidopsis Rosette 

Leaves. Plant Physiology, 148, 1453-1464. 

Marburger, D. A., Conley, S. P., Esker, P. D., Lauer, J. G. & Ané, J. M. 2015. Yield 

response to crop/genotype rotations and fungicide use to manage Fusarium‐
related diseases. Crop Science, 55, 889-898. 

Marhavý, P., Montesinos, J. C., Abuzeineh, A., Van Damme, D., Vermeer, J. E., 

Duclercq, J., Rakusová, H., Nováková, P., Friml, J. & Geldner, N. 2016. 

Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root 

initiation. Genes & development, 30, 471-483. 

Marin, S., Ramos, A. J., Cano-Sancho, G. & Sanchis, V. 2013. Mycotoxins: 

Occurrence, toxicology, and exposure assessment. Food and Chemical 

Toxicology, 60, 218-237. 

Masuda, D., Ishida, M., Yamaguchi, K., Yamaguchi, I., Kimura, M. & Nishiuchi, T. 

2007. Phytotoxic effects of trichothecenes on the growth and morphology of 

Arabidopsis thaliana. Journal of Experimental Botany, 58, 1617-1626. 



207 
 

McLaughlin, C., Vaughn, M., Campbell, J., Wei, C., Stafford, M. & Hansen, B. 1977. 

Mycotoxins in human and animal health. 

McMullen, M. P. & Stack, R. W. 2011. Fusarium head blight (scab) of small grains. 

Mesterhazy, A. 1995. Types and components of resistance to Fusarium head blight 

of wheat. Plant breeding, 114, 377-386. 

Michelmore, R. W., Paran, I. & Kesseli, R. V. 1991. Identification of markers linked to 

disease-resistance genes by bulked segregant analysis: a rapid method to 

detect markers in specific genomic regions by using segregating populations. 

Proceedings of the National Academy of Sciences, 88, 9828-9832. 

Mishra, S., Srivastava, S., Dewangan, J., Divakar, A. & Rath, S. K. 2020. Global 

occurrence of deoxynivalenol in food commodities and exposure risk 

assessment in humans in the last decade: a survey. Critical Reviews in Food 

Science and Nutrition, 60, 1346-1374. 

Morel, J.-B. & Dangl, J. L. 1997. The hypersensitive response and the induction of 

cell death in plants. Cell Death & Differentiation, 4, 671-683. 

Nazari, L., Pattori, E., Manstretta, V., Terzi, V., Morcia, C., Somma, S., Moretti, A., 

Ritieni, A. & Rossi, V. 2018. Effect of temperature on growth, wheat head 

infection, and nivalenol production by Fusarium poae. Food microbiology, 76, 

83-90. 

Nguyen, T., Dehne, H. W. & Steiner, U. 2016a. Maize leaf trichomes represent an 

entry point of infection for Fusarium species. Fungal Biology, 120. 

Nguyen, T. T. X., Dehne, H. W. & Steiner, U. 2016b. Histopathological assessment 

of the infection of maize leaves by Fusarium graminearum, F. proliferatum, 

and F. verticillioides. Fungal Biology, 120, 1094-1104. 

Nicholson, P. 2009. Fusarium and Fusarium–cereal interactions. eLS. 

Nielsen, L., Justesen, A. & Jensen, J. 2013. Microdochium nivale and Microdochium 

majus in seed samples of Danish small grain cereals. Crop protection, 43, 

192-200. 

O'Donnell, K., Ward, T. J., Geiser, D. M., Corby Kistler, H. & Aoki, T. 2004. 

Genealogical concordance between the mating type locus and seven other 

nuclear genes supports formal recognition of nine phylogenetically distinct 

species within the Fusarium graminearum clade. Fungal Genet Biol, 41, 600-

23. 

Oerke, E. C. 2005. Crop losses to pests. The Journal of Agricultural Science, 144, 

31-43. 

Oliveros, J. C. 2007-2015. Venny. An interactive tool for comparing lists with Venn's 

diagrams. [Online]. Available: 

https://bioinfogp.cnb.csic.es/tools/venny/index.html [Accessed]. 

Olsen, O., Wang, X. & von Wettstein, D. 1993. Sodium azide mutagenesis: 

preferential generation of A.T-->G.C transitions in the barley Ant18 gene. 

Proceedings of the National Academy of Sciences of the United States of 

America, 90, 8043-8047. 

Orton, E. S., Rudd, J. J. & Brown, J. K. M. 2017. Early molecular signatures of 

responses of wheat to Zymoseptoria tritici in compatible and incompatible 

interactions. Plant Pathology, 66, 450-459. 

Overvoorde, P., Fukaki, H. & Beeckman, T. 2010. Auxin Control of Root 

Development. Cold Spring Harbor Perspectives in Biology, 2. 

Pacheco-Villalobos, D., Diaz-Moreno, S. M., van der Schuren, A., Tamaki, T., Kang, 

Y. H., Gujas, B., Novak, O., Jaspert, N., Li, Z. N., Wolf, S., Oecking, C., Ljung, 

K., Bulone, V. & Hardtke, C. S. 2016. The Effects of High Steady State Auxin 

Levels on Root Cell Elongation in Brachypodium. Plant Cell, 28, 1009-1024. 

Pacheco-Villalobos, D., Sankar, M., Ljung, K. & Hardtke, C. S. 2013. Disturbed Local 

Auxin Homeostasis Enhances Cellular Anisotropy and Reveals Alternative 

https://bioinfogp.cnb.csic.es/tools/venny/index.html


208 
 

Wiring of Auxin-ethylene Crosstalk in Brachypodium distachyon Seminal 

Roots. Plos Genetics, 9. 

Packa, D. 1991. Cytogenetic changes in plant cells as influenced by mycotoxins. 

Mycotoxin Research, 7, 150-155. 

Pallotta, M., Warner, P., Fox, R., Kuchel, H., Jefferies, S. & Langridge, P. Marker 

assisted wheat breeding in the southern region of Australia.  Proceedings of 

the 10th international wheat genetics symposium, Paestum, Italy, 2003. 

Istituto Sperimentale per la Cerealicultura Roma, Italy, 789-791. 

Papatheodorou, I., Moreno, P., Manning, J., Fuentes, A. M.-P., George, N., Fexova, 

S., Fonseca, N. A., Füllgrabe, A., Green, M., Huang, N., Huerta, L., Iqbal, H., 

Jianu, M., Mohammed, S., Zhao, L., Jarnuczak, A. F., Jupp, S., Marioni, J., 

Meyer, K., Petryszak, R., Prada Medina, C. A., Talavera-López, C., 

Teichmann, S., Vizcaino, J. A. & Brazma, A. 2019. Expression Atlas update: 

from tissues to single cells. Nucleic Acids Research, 48, D77-D83. 

Parry, D. W., Jenkinson, P. & McLeod, L. 1995. Fusarium ear blight (scab) in small 

grain cereals—a review. Plant Pathology, 44, 207-238. 

Pasquet, J. C., Chaouch, S., Macadre, C., Balzergue, S., Huguet, S., Martin-

Magniette, M. L., Bellvert, F., Deguercy, X., Thareau, V., Heintz, D., 

Saindrenan, P. & Dufresne, M. 2014. Differential gene expression and 

metabolomic analyses of Brachypodium distachyon infected by 

deoxynivalenol producing and non-producing strains of Fusarium 

graminearum. Bmc Genomics, 15. 

Pattanaik, S., Patra, B., Singh, S. K. & Yuan, L. 2014. An overview of the gene 

regulatory network controlling trichome development in the model plant, 

Arabidopsis. Frontiers in Plant Science, 5. 

Paul, P., Lipps, P., Hershman, D., McMullen, M., Draper, M. & Madden, L. 2008. 

Efficacy of triazole-based fungicides for Fusarium head blight and 

deoxynivalenol control in wheat: A multivariate meta-analysis. 

Phytopathology, 98, 999-1011. 

Peraldi, A. 2012. Brachypodium distachyon as a genetic model pathosystem to study 

resistance against fungal pathogens of small grain cereals. PhD, University of 

East Anglia. 

Peraldi, A. Unpublished. Infection of Brachypodium distachyon detached lemma with 

Fusarium graminearum. JIC. 

Peraldi, A., Beccari, G., Steed, A. & Nicholson, P. 2011. Brachypodium distachyon: a 

new pathosystem to study Fusarium head blight and other Fusarium diseases 

of wheat. Bmc Plant Biology, 11. 

Perochon, A., Jia, J. G., Kahla, A., Arunachalam, C., Scofield, S. R., Bowden, S., 

Wallington, E. & Doohan, F. M. 2015. TaFROG Encodes a Pooideae Orphan 

Protein That Interacts with SnRK1 and Enhances Resistance to the 

Mycotoxigenic Fungus Fusarium graminearum. Plant Physiology, 169, 2895-

2906. 

Poppenberger, B., Berthiller, F., Lucyshyn, D., Sieberer, T., Schuhmacher, R., Krska, 

R., Kuchler, K., Glössl, J., Luschnig, C. & Adam, G. 2003. Detoxification of the 

Fusarium Mycotoxin Deoxynivalenol by a UDP-glucosyltransferase from 

Arabidopsis thaliana. Journal of Biological Chemistry, 278, 47905-47914. 

Powell, D., Milton, M., A., P. & Santos, K. 2019. drpowell/degust 4.1.1. Zenodo. 

Prat, N., Guilbert, C., Prah, U., Wachter, E., Steiner, B., Langin, T., Robert, O. & 

Buerstmayr, H. 2017. QTL mapping of Fusarium head blight resistance in 

three related durum wheat populations. Theoretical and Applied Genetics, 

130, 13-27. 

Prăvălie, R., Patriche, C., Borrelli, P., Panagos, P., Roșca, B., Dumitraşcu, M., Nita, 

I.-A., Săvulescu, I., Birsan, M.-V. & Bandoc, G. 2021. Arable lands under the 



209 
 

pressure of multiple land degradation processes. A global perspective. 

Environmental Research, 194, 110697. 

Preger, V., Tango, N., Marchand, C., Lemaire, S. D., Carbonera, D., Di Valentin, M., 

Costa, A., Pupillo, P. & Trost, P. 2009. Auxin-responsive genes AIR12 code 

for a new family of plasma membrane b-type cytochromes specific to flowering 

plants. Plant Physiol, 150, 606-20. 

Qi, T., Song, S., Ren, Q., Wu, D., Huang, H., Chen, Y., Fan, M., Peng, W., Ren, C. & 

Xie, D. 2011. The Jasmonate-ZIM-Domain Proteins Interact with the WD-

Repeat/bHLH/MYB Complexes to Regulate Jasmonate-Mediated 

Anthocyanin Accumulation and Trichome Initiation in Arabidopsis thaliana. 

The Plant Cell, 23, 1795-1814. 

Rawat, N., Pumphrey, M. O., Liu, S., Zhang, X., Tiwari, V. K., Ando, K., Trick, H. N., 

Bockus, W. W., Akhunov, E. & Anderson, J. A. 2016. Wheat Fhb1 encodes a 

chimeric lectin with agglutinin domains and a pore-forming toxin-like domain 

conferring resistance to Fusarium head blight. Nature genetics, 48, 1576-

1580. 

Ream, T. S., Woods, D. P., Schwartz, C. J., Sanabria, C. P., Mahoy, J. A., Walters, 

E. M., Kaeppler, H. F. & Amasino, R. M. 2014. Interaction of Photoperiod and 

Vernalization Determines Flowering Time of Brachypodium distachyon. Plant 

Physiology, 164, 694-709. 

Rittenour, W. R. & Harris, S. D. 2010. An in vitro method for the analysis of infection-

related morphogenesis in Fusarium graminearum. Mol Plant Pathol, 11, 361-

9. 

Rocha, O., Ansari, K. & Doohan, F. M. 2005. Effects of trichothecene mycotoxins on 

eukaryotic cells: A review. Food Additives & Contaminants, 22, 369-378. 

Roppolo, D., Boeckmann, B., Pfister, A., Boutet, E., Rubio, M. C., Dénervaud-Tendon, 

V., Vermeer, J. E. M., Gheyselinck, J., Xenarios, I. & Geldner, N. 2014. 

Functional and Evolutionary Analysis of the CASPARIAN STRIP MEMBRANE 

DOMAIN PROTEIN Family. Plant Physiology, 165, 1709-1722. 

Ruijter, J. M., Ramakers, C., Hoogaars, W. M., Karlen, Y., Bakker, O., van den Hoff, 

M. J. & Moorman, A. F. 2009. Amplification efficiency: linking baseline and 

bias in the analysis of quantitative PCR data. Nucleic Acids Res, 37, e45. 

Santos, M. A., Gonzalez-Penades, L. & Nicholson, P. Unpublished. RNAseq dataset 

of DON responsive genes at 6 h and 24 h post application in root tissue of 

wheat variety Hobbit Sib.  John Innes Centre. 

Saville, R. J., Gosman, N., Burt, C. J., Makepeace, J., Steed, A., Corbitt, M., 

Chandler, E., Brown, J. K., Boulton, M. I. & Nicholson, P. 2012. The 'Green 

Revolution' dwarfing genes play a role in disease resistance in Triticum 

aestivum and Hordeum vulgare. J Exp Bot, 63, 1271-83. 

Scarpino, V., Reyneri, A., Sulyok, M., Krska, R. & Blandino, M. 2015. Effect of 

fungicide application to control Fusarium head blight and 20 Fusarium and 

Alternaria mycotoxins in winter wheat (Triticum aestivum L.). World Mycotoxin 

J, 8, 499-510. 

Schaller, A. 2004. A cut above the rest: the regulatory function of plant proteases. 

Planta, 220, 183-197. 

Schellmann, S., Schnittger, A., Kirik, V., Wada, T., Okada, K., Beermann, A., 

Thumfahrt, J., Jürgens, G. & Hülskamp, M. 2002. TRIPTYCHON and 

CAPRICE mediate lateral inhibition during trichome and root hair patterning in 

Arabidopsis. The EMBO journal, 21, 5036-5046. 

Scherm, B., Balmas, V., Spanu, F., Pani, G., Delogu, G., Pasquali, M. & Migheli, Q. 

2013. Fusarium culmorum: causal agent of foot and root rot and head blight 

on wheat. Molecular Plant Pathology, 14, 323-341. 



210 
 

Schmidt, M. H. W., Vogel, A., Denton, A. K., Istace, B., Wormit, A., van de Geest, H., 

Bolger, M. E., Alseekh, S., Maß, J., Pfaff, C., Schurr, U., Chetelat, R., 

Maumus, F., Aury, J.-M., Koren, S., Fernie, A. R., Zamir, D., Bolger, A. M. & 

Usadel, B. 2017. De Novo Assembly of a New Solanum pennellii Accession 

Using Nanopore Sequencing. The Plant cell, 29, 2336-2348. 

Schneebeli, K., Mathesius, U. & Watt, M. 2015. Brachypodium distachyon is a 

pathosystem model for the study of the wheat disease rhizoctonia root rot. 

Plant Pathology, 64, 91-100. 

Schnittger, A., Folkers, U., Schwab, B., Jürgens, G. & Hülskamp, M. 1999. Generation 

of a spacing pattern: the role of TRIPTYCHON in trichome patterning in 

Arabidopsis. The Plant Cell, 11, 1105-1116. 

Schroeder, H. W. & Christensen, J. J. 1963. Factors affecting resistance of Wheat to 

scab caused by Gibberella zeae. Phytopathology, 53, 831-838. 

Schwartz, C. J., Doyle, M. R., Manzaneda, A. J., Rey, P. J., Mitchell-Olds, T. & 

Amasino, R. M. 2010. Natural Variation of Flowering Time and Vernalization 

Responsiveness in Brachypodium distachyon. Bioenergy Research, 3, 38-46. 

Sen, Ś. & Churchill, G. A. 2001. A Statistical Framework for Quantitative Trait 

Mapping. Genetics, 159, 371-387. 

Sibout, R., Proost, S., Hansen, B. O., Vaid, N., Giorgi, F. M., Ho‐Yue‐Kuang, S., 

Legée, F., Cézart, L., Bouchabké‐Coussa, O., Soulhat, C., Provart, N., Pasha, 

A., Le Bris, P., Roujol, D., Hofte, H., Jamet, E., Lapierre, C., Persson, S. & 

Mutwil, M. 2017. Expression atlas and comparative coexpression network 

analyses reveal important genes involved in the formation of lignified cell wall 

in Brachypodium distachyon. New Phytologist, 215, 1009-1025. 

Smith, W. G. 1884. Diseases of field and garden crops: Chiefly such as are caused 

by fungi, Macmillan and Company. 

Snijders, C. 2004. Resistance in wheat to Fusarium infection and trichothecene 

formation. Toxicology Letters, 153, 37-46. 

Solovyev, V., Kosarev, P., Seledsov, I. & Vorobyev, D. 2006. Automatic annotation of 

eukaryotic genes, pseudogenes and promoters. Genome Biol, 7 Suppl 1, 

S10.1-12. 

Song, J. T., Lu, H. & Greenberg, J. T. 2004. Divergent Roles in Arabidopsis thaliana 

Development and Defense of Two Homologous Genes, ABERRANT 

GROWTH AND DEATH2 and AGD2-LIKE DEFENSE RESPONSE 

PROTEIN1, Encoding Novel Aminotransferases. The Plant Cell, 16, 353-366. 

Srinivasachary, Gosman, N., Steed, A., Hollins, T. W., Bayles, R., Jennings, P. & 

Nicholson, P. 2009. Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ 

significantly in their influence on resistance to Fusarium head blight. 

Theoretical and Applied Genetics, 118, 695-702. 

Srinivasachary, Gosman, N., Steed, A., Simmonds, J., Leverington-Waite, M., Wang, 

Y., Snape, J. & Nicholson, P. 2008a. Susceptibility to Fusarium head blight is 

associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet, 

116, 1145-53. 

Srinivasachary, Gosman, N., Steed, A., Simmonds, J., Leverington-Waite, M., Wang, 

Y., Snape, J. & Nicholson, P. 2008b. Susceptibility to Fusarium head blight is 

associated with the Rht-D1b semi-dwarfing allele in wheat. Theoretical and 

Applied Genetics, 116, 1145-1153. 

Stanke, M. & Morgenstern, B. 2005. AUGUSTUS: a web server for gene prediction in 

eukaryotes that allows user-defined constraints. Nucleic acids research, 33, 

W465-W467. 

Starkey, D. E., Ward, T. J., Aoki, T., Gale, L. R., Kistler, H. C., Geiser, D. M., Suga, 

H., Toth, B., Varga, J. & O'Donnell, K. 2007. Global molecular surveillance 



211 
 

reveals novel Fusarium head blight species and trichothecene toxin diversity. 

Fungal Genet Biol, 44, 1191-204. 

Steed, A. & Nicholson, P. Unpublished. Characterising the effect of low 

concentrations of DON on the growth of Arabidopsis roots. JIC. 

Steiner, B., Buerstmayr, M., Michel, S., Schweiger, W., Lemmens, M. & Buerstmayr, 

H. 2017. Breeding strategies and advances in line selection for Fusarium head 

blight resistance in wheat. Tropical Plant Pathology, 42, 165-174. 

Steiner, B., Buerstmayr, M., Wagner, C., Danler, A., Eshonkulov, B., Ehn, M. & 

Buerstmayr, H. 2019. Fine-mapping of the Fusarium head blight resistance 

QTL Qfhs.ifa-5A identifies two resistance QTL associated with anther 

extrusion. Theoretical and Applied Genetics, 132, 2039-2053. 

Stephenson, P., Baker, D., Girin, T., Perez, A., Amoah, S., King, G. J. & Ostergaard, 

L. 2010. A rich TILLING resource for studying gene function in Brassica rapa. 

BMC Plant Biol, 10, 62. 

Strader, L. C., Ritchie, S., Soule, J. D., McGinnis, K. M. & Steber, C. M. 2004. 

Recessive-interfering mutations in the gibberellin signaling gene SLEEPY1 

are rescued by overexpression of its homologue, SNEEZY. Proc Natl Acad 

Sci U S A, 101, 12771-6. 

Su, P., Zhao, L., Li, W., Zhao, J., Yan, J., Ma, X., Li, A., Wang, H. & Kong, L. 2021. 

Integrated metabolo-transcriptomics and functional characterization reveals 

that the wheat auxin receptor TIR1 negatively regulates defense against 

Fusarium graminearum. Journal of Integrative Plant Biology, 63, 340-352. 

Su, P. S., Guo, X. X., Fan, Y. H., Wang, L., Yu, G. H., Ge, W. Y., Zhao, L. F., Ma, X., 

Wu, J. J., Li, A. F., Wang, H. W. & Kong, L. R. 2018a. Application of 

Brachypodium genotypes to the analysis of type II resistance to Fusarium 

head blight (FHB). Plant Science, 272, 255-266. 

Su, Z., Bernardo, A., Tian, B., Chen, H., Wang, S., Ma, H., Cai, S., Liu, D., Zhang, D. 

& Li, T. 2019. A deletion mutation in TaHRC confers Fhb1 resistance to 

Fusarium head blight in wheat. Nature genetics, 51, 1099-1105. 

Su, Z., Jin, S., Zhang, D. & Bai, G. 2018b. Development and validation of diagnostic 

markers for Fhb1 region, a major QTL for Fusarium head blight resistance in 

wheat. Theoretical and Applied Genetics, 131, 2371-2380. 

Sutton, J. C. 1982. Epidemiology of wheat head blight and maize ear rot caused by 

Fusarium graminearum. Canadian Journal of Plant Pathology, 4, 195-209. 

Thole, V., Peraldi, A., Worland, B., Nicholson, P., Doonan, J. H. & Vain, P. 2012. T-

DNA mutagenesis in Brachypodium distachyon. J Exp Bot, 63, 567-76. 

Tian, F., Bradbury, P. J., Brown, P. J., Hung, H., Sun, Q., Flint-Garcia, S., Rocheford, 

T. R., McMullen, M. D., Holland, J. B. & Buckler, E. S. 2011. Genome-wide 

association study of leaf architecture in the maize nested association mapping 

population. Nat Genet, 43, 159-162. 

Tian, Y., Tan, Y. L., Liu, N., Liao, Y. C., Sun, C. P., Wang, S. X. & Wu, A. B. 2016. 

Functional Agents to Biologically Control Deoxynivalenol Contamination in 

Cereal Grains. Frontiers in Microbiology, 7. 

Tillmann, M., von Tiedemann, A. & Winter, M. 2017. Crop rotation effects on incidence 

and diversity of Fusarium species colonizing stem bases and grains of winter 

wheat. Journal of Plant Diseases and Protection, 124, 121-130. 

Tominaga-Wada, R., Nukumizu, Y., Sato, S. & Wada, T. 2013. Control of plant 

trichome and root-hair development by a tomato (Solanum lycopersicum) R3 

MYB transcription factor. PLoS One, 8, e54019. 

Trail, F. 2009. For blighted waves of grain: Fusarium graminearum in the 

postgenomics era. Plant physiology, 149, 103-110. 

Trick, M., Adamski, N. M., Mugford, S. G., Jiang, C.-C., Febrer, M. & Uauy, C. 2012. 

Combining SNP discovery from next-generation sequencing data with bulked 



212 
 

segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant 

Biology, 12, 14. 

Tyler, L., Lee, S. J., Young, N. D., DeIulio, G. A., Benavente, E., Reagon, M., 

Sysopha, J., Baldini, R. M., Troia, A., Hazen, S. P. & Caicedo, A. L. 2016. 

Population Structure in the Model Grass Brachypodium distachyon Is Highly 

Correlated with Flowering Differences across Broad Geographic Areas. Plant 

Genome, 9. 

Urban, M., Daniels, S., Mott, E. & Hammond-Kosack, K. 2002. Arabidopsis is 

susceptible to the cereal ear blight fungal pathogens Fusarium graminearum 

and Fusarium culmorum. The Plant Journal, 32, 961-973. 

Vadde, B. V. L., Challa, K. R., Sunkara, P., Hegde, A. S. & Nath, U. 2019. The TCP4 

Transcription Factor Directly Activates TRICHOMELESS1 and Suppresses 

Trichome Initiation. Plant Physiology, 181, 1587-1599. 

Vain, P. 2011. Brachypodium as a model system for grass research. Journal of Cereal 

Science, 54, 1-7. 

van der Schuren, A., Voiniciuc, C., Bragg, J., Ljung, K., Vogel, J., Pauly, M. & Hardtke, 

C. S. 2018. Broad spectrum developmental role of Brachypodium AUX1. New 

Phytologist, 219, 1216-1223. 

Vogel, J. P., Tuna, M., Budak, H., Huo, N., Gu, Y. Q. & Steinwand, M. A. 2009. 

Development of SSR markers and analysis of diversity in Turkish populations 

of Brachypodium distachyon. BMC Plant Biol, 9, 88. 

Wagacha, J. M. & Muthomi, J. W. 2007. Fusarium culmorum: Infection process, 

mechanisms of mycotoxin production and their role in pathogenesis in wheat. 

Crop Protection, 26, 877-885. 

Walkowiak, S., Gao, L., Monat, C., Haberer, G., Kassa, M. T., Brinton, J., Ramirez-

Gonzalez, R. H., Kolodziej, M. C., Delorean, E., Thambugala, D., Klymiuk, V., 

Byrns, B., Gundlach, H., Bandi, V., Siri, J. N., Nilsen, K., Aquino, C., 

Himmelbach, A., Copetti, D., Ban, T., Venturini, L., Bevan, M., Clavijo, B., Koo, 

D.-H., Ens, J., Wiebe, K., N’Diaye, A., Fritz, A. K., Gutwin, C., Fiebig, A., 

Fosker, C., Fu, B. X., Accinelli, G. G., Gardner, K. A., Fradgley, N., Gutierrez-

Gonzalez, J., Halstead-Nussloch, G., Hatakeyama, M., Koh, C. S., Deek, J., 

Costamagna, A. C., Fobert, P., Heavens, D., Kanamori, H., Kawaura, K., 

Kobayashi, F., Krasileva, K., Kuo, T., McKenzie, N., Murata, K., Nabeka, Y., 

Paape, T., Padmarasu, S., Percival-Alwyn, L., Kagale, S., Scholz, U., Sese, 

J., Juliana, P., Singh, R., Shimizu-Inatsugi, R., Swarbreck, D., Cockram, J., 

Budak, H., Tameshige, T., Tanaka, T., Tsuji, H., Wright, J., Wu, J., 

Steuernagel, B., Small, I., Cloutier, S., Keeble-Gagnère, G., Muehlbauer, G., 

Tibbets, J., Nasuda, S., Melonek, J., Hucl, P. J., Sharpe, A. G., Clark, M., 

Legg, E., Bharti, A., Langridge, P., Hall, A., Uauy, C., Mascher, M., Krattinger, 

S. G., Handa, H., Shimizu, K. K., Distelfeld, A., Chalmers, K., Keller, B., 

Mayer, K. F. X., Poland, J., Stein, N., McCartney, C. A., Spannagl, M., Wicker, 

T. & Pozniak, C. J. 2020. Multiple wheat genomes reveal global variation in 

modern breeding. Nature. 

Walter, S. & Doohan, F. 2011. Transcript profiling of the phytotoxic response of wheat 

to the Fusarium mycotoxin deoxynivalenol. Mycotoxin Research, 27, 221-230. 

Wang, Q., Vera Buxa, S., Furch, A., Friedt, W. & Gottwald, S. 2015. Insights Into 

Triticum aestivum Seedling Root Rot Caused by Fusarium graminearum. 

Molecular Plant-Microbe Interactions, 28, 1288-1303. 

Wang, X., Zhang, Y., Wang, L., Pan, Z., He, S., Gao, Q., Chen, B., Gong, W. & Du, 

X. 2020. Casparian strip membrane domain proteins in Gossypium arboreum: 

genome-wide identification and negative regulation of lateral root growth. 

BMC genomics, 21, 1-16. 



213 
 

Watanabe, S., Tsukamoto, C., Oshita, T., Yamada, T., Anai, T. & Kaga, A. 2017. 

Identification of quantitative trait loci for flowering time by a combination of 

restriction site-associated DNA sequencing and bulked segregant analysis in 

soybean. Breeding science, 67, 277-285. 

Wester, K., Digiuni, S., Geier, F., Timmer, J., Fleck, C. & Hülskamp, M. 2009. 

Functional diversity of R3 single-repeat genes in trichome development. 

Development, 136, 1487-1496. 

Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New 

York. 

Wilson, W., Dahl, B. & Nganje, W. 2018. Economic costs of fusarium head blight, 

scab and deoxynivalenol. World Mycotoxin Journal, 11, 291-302. 

Woods, D. P., Bednarek, R., Bouche, F., Gordon, S. P., Vogel, J. P., Garvin, D. F. & 

Amasino, R. M. 2017a. Genetic Architecture of Flowering-Time Variation in 

Brachypodium distachyon. Plant Physiology, 173, 269-279. 

Woods, D. P., Ream, T. S., Bouche, F., Lee, J., Thrower, N., Wilkerson, C. & 

Amasino, R. M. 2017b. Establishment of a vernalization requirement in 

Brachypodium distachyon requires REPRESSOR OF VERNALIZATION1. 

Proceedings of the National Academy of Sciences of the United States of 

America, 114, 6623-6628. 

Xing, L., Gao, L., Chen, Q., Pei, H., Di, Z., Xiao, J., Wang, H., Ma, L., Chen, P. & Cao, 

A. 2018. Over-expressing a UDP-glucosyltransferase gene (Ta-UGT 3) 

enhances Fusarium Head Blight resistance of wheat. Plant Growth 

Regulation, 84, 561-571. 

Xu, X.-M., Parry, D., Nicholson, P., Thomsett, M., Simpson, D., Edwards, S., Cooke, 

B., Doohan, F., Brennan, J. & Moretti, A. 2005. Predominance and association 

of pathogenic fungi causing Fusarium ear blightin wheat in four European 

countries. European Journal of Plant Pathology, 112, 143-154. 

Xu, X. & Nicholson, P. 2009. Community ecology of fungal pathogens causing wheat 

head blight. Annu Rev Phytopathol, 47, 83-103. 

Yuen, G. Y. & Schoneweis, S. D. 2007. Strategies for managing Fusarium head blight 

and deoxynivalenol accumulation in wheat. International journal of food 

microbiology, 119, 126-130. 

Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. 2000. A greedy algorithm for aligning 

DNA sequences. J Comput Biol, 7, 203-14. 

Zhong, S., Ali, S., Leng, Y., Wang, R. & Garvin, D. F. 2015. Brachypodium 

distachyon-Cochliobolus sativus Pathosystem is a New Model for Studying 

Plant-Fungal Interactions in Cereal Crops. Phytopathology, 105, 482-9. 

Zimmermann, R., Sakai, H. & Hochholdinger, F. 2010. The Gibberellic Acid 

Stimulated-Like Gene Family in Maize and Its Role in Lateral Root 

Development. Plant Physiology, 152, 356-365. 

 

  



214 
 

Appendix  

P
o

t 
p

o
si

ti
o

n
 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0

 
1

1
 

1
2

 

1
 

B
d

TR
1

1
A

 
Fo

z1
 

B
d

TR
1

3
b

 
A

d
i-

1
0

 
B

d
TR

1
2

c 
B

d
TR

1
1

I 
K

ah
-6

 
B

d
2

-3
 

B
d

TR
1

1
A

 
G

az
-8

 
A

d
i-

2
 

Si
g2

 

2
 

A
d

i-
4

 
A

d
i-

1
2

 
Si

g2
 

B
d

TR
1

0
C

 
K

o
z-

3 
B

d
1

-1
 

B
d

TR
1

3
a 

A
d

i-
1

2
 

Te
k-

4
 

B
d

TR
1

1
I 

A
d

i-
1

2
 

B
d

TR
1

0
C

 

3
 

K
o

z-
1 

B
d

TR
5

I 
B

d
3

-1
_r

 
B

d
3

-1
_r

 
G

az
-8

 
B

is
-1

 
B

d
3

-1
_r

 
B

d
TR

1
3

n
 

B
d

1
8

-1
 

K
o

z-
5 

B
d

TR
1

0
d

 
B

d
TR

5
a 

4
 

B
d

1
8

-1
 

A
B

R
7

 
G

az
-8

 
B

d
TR

1
3

b
 

B
d

2
-3

 
Te

k-
4

 
G

az
-2

 
U

n
i2

 
B

d
2

1
C

o
n

tr
o

l 
M

ig
3

 
B

d
TR

3
m

 
Te

k-
4

 

5
 

G
az

-2
 

U
n

i2
 

B
d

2
-3

 
K

ah
-1

 
B

d
TR

1
0

d
 

B
d

TR
1

i 
A

d
i-

2
 

B
d

TR
1

1
e 

B
d

TR
3

m
 

B
d

TR
5

I 
P

er
1

 
B

d
TR

1
i 

6
 

G
az

-1
 

A
B

R
8

 
B

is
-1

 
A

B
R

8
 

A
d

i-
4

 
Lu

c1
 

B
d

TR
9

m
 

B
d

TR
1

0
d

 
A

B
R

8
 

A
B

R
7

 
A

d
i-

9
 

A
d

i-
1

5
 

7
 

K
o

z-
5 

K
ah

-1
 

A
B

R
4

 
B

d
TR

5
I 

B
d

TR
3

m
 

A
d

i-
1

5
 

G
az

-8
 

B
d

TR
2

B
 

A
B

R
7

 
B

d
TR

2
G

 
K

ah
-6

 
K

ah
-1

 

8
 

B
d

TR
3

m
 

M
ig

3
 

B
d

TR
1

2
b

 
B

d
TR

1
1

G
 

Je
r1

 
A

B
R

2
 

M
o

n
3

 
B

d
TR

7
a 

B
d

TR
1

2
c 

B
is

-1
 

A
B

R
6

_r
 

B
d

3
-1

_r
 

9
 

B
d

TR
7

a 
B

d
2

1
C

o
n

tr
o

l 
B

d
TR

1
1

G
 

P
er

1
 

A
B

R
6

_r
 

A
B

R
4

 
A

d
i-

1
0

 
B

d
TR

1
1

I 
B

d
1

-1
 

Je
r1

 
U

n
i2

 
B

d
TR

1
2

c 

1
0

 
B

d
TR

1
0

d
 

K
o

z-
3 

B
d

TR
1

3
C

 
B

d
TR

1
2

b
 

B
d

TR
7

a 
A

d
i-

1
2

 
K

ah
-5

 
A

B
R

4
 

B
is

-1
 

A
d

i-
4

 
B

d
2

1
C

o
n

tr
o

l 
A

d
i-

1
0

 

1
1

 
B

d
TR

1
3

a 
K

ah
-6

 
A

B
R

2
 

B
d

TR
2

B
 

K
ah

-5
 

K
o

z-
5 

A
B

R
2

 
K

ah
-1

 
A

B
R

6
_r

 
B

d
TR

1
1

A
 

B
d

TR
1

1
G

 
B

d
TR

1
3

n
 

1
2

 
P

er
1

 
B

d
TR

2
G

 
B

d
1

-1
 

B
d

1
8

-1
 

B
d

TR
1

3
n

 
B

d
TR

5
a 

Je
r1

 
A

d
i-

1
5

 
A

d
i-

9
 

B
d

TR
2

B
 

Lu
c1

 
K

ah
-5

 

1
3

 
B

d
TR

1
1

I 
B

d
TR

1
1

e 
A

d
i-

1
0

 
G

az
-1

 
A

d
i-

9
 

U
n

i2
 

P
er

1
 

B
d

TR
1

2
b

 
B

d
TR

1
3

b
 

B
d

TR
1

3
C

 
B

d
TR

7
a 

A
B

R
4

 

1
4

 
B

d
TR

9
m

 
B

d
TR

1
2

c 
Je

r1
 

B
d

TR
1

3
a 

B
d

TR
1

1
e 

B
d

TR
2

G
 

B
d

TR
9

K
 

G
az

-1
 

A
d

i-
4

 
B

d
TR

1
3

a 
B

d
TR

1
2

b
 

K
o

z-
1 

1
5

 
B

d
2

1
-3

 
Te

k-
4

 
A

d
i-

1
5

 
G

az
-2

 
B

d
TR

1
3

C
 

B
d

2
1

-3
 

B
d

2
1

-3
 

B
d

TR
1

1
G

 
B

d
TR

1
i 

B
d

1
-1

 
B

d
TR

9
K

 
K

o
z-

3 

1
6

 
Lu

c1
 

M
o

n
3

 
B

d
TR

1
i 

A
B

R
7

 
B

d
TR

9
m

 
B

d
TR

9
K

 
K

o
z-

3 
B

d
TR

1
0

C
 

Si
g2

 
A

B
R

8
 

B
d

TR
1

3
b

 
B

d
1

8
-1

 

1
7

 
B

d
TR

1
3

n
 

K
ah

-5
 

A
d

i-
9

 
Si

g2
 

B
d

2
1

C
o

n
tr

o
l 

K
ah

-6
 

Fo
z1

 
B

d
TR

5
a 

Lu
c1

 
G

az
-1

 
M

o
n

3
 

B
d

TR
1

1
e 

1
8

 
B

d
TR

5
a 

B
d

TR
1

0
C

 
A

d
i-

2
 

M
o

n
3

 
A

d
i-

2
 

K
o

z-
1 

K
o

z-
5 

B
d

TR
1

3
C

 
B

d
TR

5
I 

Fo
z1

 
A

B
R

2
 

B
d

TR
9

m
 

1
9

 
B

d
TR

2
B

 
B

d
TR

9
K

 
A

B
R

6
_r

 
Fo

z1
 

M
ig

3
 

B
d

TR
1

1
A

 
B

d
TR

2
G

 
M

ig
3

 
K

o
z-

1 
B

d
2

-3
 

G
az

-2
 

B
d

2
1

-3
 

 

S
u

p
p

le
m

e
n

ta
ry

 F
ig

u
re

 1
 E

x
p

e
ri
m

e
n

ta
l 
d

e
s
ig

n
 f
o

r 
g

la
s
s
h

o
u
s
e
 c

h
a

ra
c
te

ri
s
a
ti
o
n

 e
x
p

e
ri

m
e

n
t 
o

f 
5

4
 d

iv
e

rs
e
 B

ra
c
h
y
p

o
d
iu

m
 d

is
ta

c
h

y
o

n
 a

c
c
e
s
s
io

n
s
. 
In

c
o

m
p
le

te
 B

lo
c
k
 D

e
s
ig

n
 

g
e

n
e

ra
te

d
 u

s
ig

n
 G

e
n
d

e
x
 s

o
ft

w
a

re
 (

IB
D

 m
o
d

u
le

) 



215 
 

 

 

Tray1 Tray2 Tray3 Tray4 Tray5 Tray6 Tray1 Tray2 Tray3 Tray4 Tray5 Tray6 Tray1 Tray2 Tray3 Tray4 Tray5 Tray6
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Supplementary Figure 2 Alpha experimental design for characterisation experiment of ABR6 x Bd21 
RIL population. Experimental replicate four used the layout for Rep1. 0 = Blank 
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Supplementary Table 1 Brachypodium distachyon accessions characterised by glasshouse 
trial. Source ID refers to number given in The Sainsbury Laboratory collection database; 
Rep refers to source plant after bulking of original material (‘-‘ were sourced directly from 
TSL collection). *Detailed latitude/longitude location listed in (Filiz et al., 2009), (Gordon et 
al., 2017). 

 

 

Accession 
Source ID 
(TSL) 

Geographic origin of 
collection 

Bulking Rep/ Source 

ABR2 00563 Hérault, France 3 

ABR4 00575 Arén, Huesca, Spain 4 

ABR6 00588 
Los Arcos, Navarra, 
Spain 

2 

ABR7 02332 
Otero, Valladolid, 
Spain 

4 

ABR8 02340 Siena, Italy - 

Adi-10 00311 Adiyaman, Turkey 3 

Adi-12 00323 Adiyaman, Turkey 2 

Adi-15 00343 Adiyaman, Turkey 3 

Adi-2 00263 Adiyaman, Turkey 3 

Adi-4 00275 Adiyaman, Turkey 3 

Adi-9 00305 Adiyaman, Turkey 2 

Bd1-1 02251 
Soma, Manisa, 
Turkey 

4 

Bd18-1 02254 
Kaman, Kirşehir, 
Turkey 

3 

Bd21-3 00253 near Salakudin, Iraq 2 

Bd21 00246 near Salakudin, Iraq 2 

Bd2-3 02252 Iraq 4 

Bd3-1 02253 Iraq 3 

BdTR10C 01931 Turkey* 3 

BdTR10d 01932 Turkey* 2 

BdTR11A 01943 Turkey* 2 

BdTR11e 01947 Turkey* 3 

BdTR11G 01949 Kirklareli, Turkey* 2 

BdTR11I 01951 Turkey* 1 

BdTR12c 01954 Turkey* 3 

BdTR13a 01955 Ankara, Turkey* 1 

BdTR13b 01956 Turkey* 3 

BdTR13C 01988 Ankara, Turkey* 3 

BdTR13n 01998 Turkey* 3 

BdTR1i 01866 Aydin, Turkey* 3 

BdTR2B 01872 Turkey* 2 

BdTR2G 01877 Ankara, Turkey* 3 

BdTR3m 01896 Turkey* 1 
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Supplementary Table 2 (continued) Brachypodium distachyon accessions characterised 
by glasshouse trial. Source ID refers to number given in The Sainsbury Laboratory 
collection database; Rep refers to source plant after bulking of original material (‘-‘ were 
sourced directly from TSL collection). *Detailed latitude/longitude location listed in (Filiz 
et al., 2009), (Gordon et al., 2017). 

Accession 
Source 
ID (TSL) 

Geographic origin of 
collection 

Bulking Rep/ Source 

BdTR5a 01903 Turkey* 4 

BdTR5I 01911 Turkey* 4 

BdTR7a  Yozgat, Turkey* - 

BdTR9K 01927 Eskişehir, Turkey* 2 

BdTR9m 01928 Turkey* 2 

Bis-1 00366 Bismil, Turkey 4 

Foz1 00683 
Foz de Lumbier, 
Navarra, Spain 

1 

Gaz-1 00372 Gaziantep, Turkey 4 

Gaz-2 00377 Gaziantep, Turkey 4 

Gaz-8 00413 Gaziantep, Turkey 4 

Jer1 00695 Huesca, Spain 2 

Kah-1 00425 Kahta, Turkey 3 

Kah-5 00450 Kahta, Turkey - 

Kah-6 00455 Kahta, Turkey 2 

Koz-1 00461 Kozluk, Turkey 4 

Koz-3 00475 Kozluk, Turkey 3 

Koz-5 00485 Kozluk, Turkey 4 

Luc1 00701 
Ermita de Santa Lucía, 
Berdún, Huesca, Spain 

3 

Mig3 00707 Huesca, Spain 4 

Mon3 00725 Zaragoza, Spain 4 

Per1 00743 Navarra, Spain 2 

Sig2 00779 Zaragoza, Spain 4 

Uni2 00791 Huesca, Spain 2 
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Supplementary Table 2 Standard compost mixes used by Horticultural Services at the John Innes centre, 
used in a 1:1 ratio in the preparation of potting medium for Brachypodium distachyon 

Cereal mix Peat and Sand 

40 % Medium Grade Peat 85 % Fine Peat 

40 % Sterilised Soil 15 % Grit 

20 % Horticultural Grit 
2.7 kg/m³ Osmocote 3-4 

months 

1.3 kg/m³ PG Mix 14-16-18 + Te Base 

Fertiliser 
Wetting Agent 

1 kg/m³ Osmocote Mini 16-8-11 2mg + Te 

0.02 % B 
4 kg/m³ Maglime 

Wetting Agent 1 kg PG Mix 

3 kg/m³ Maglime  

300 g/m³ Exemptor  

 

 

 

 

 

Gene Tissue F-value 

Bradi4g22637 
Leaves 0.331 

Head 0.503 

Bradi4g22641 
Leaves 0.148 

Head 0.073 

Bradi4g22645 
Leaves 0.132 

Head 0.035 

Bradi4g22650 
Leaves n/a 

Head 0.022 

Bradi4g22650 
Leaves 0.728 

Head 0.146 

Supplementary Table 3 F-test statistics for qPCR expression for trichome 

candidate genes fine mapped on Bd4L 
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Supplementary Table 4 Primer sequences for KASP markers used for initial mapping of DON sensitivity trait to chromosome arm by single marker association 

Chromosome arm Marker Identifier Primer Sequence 5’-3’ Tm 

Bd1S 

Bd1sD3477318 

Bd1sD3477318F1 GAAGGTCGGAGTCAACGGATTTCAGTCTCTCGGAAGTGC 59.8 

Bd1sD3477318F2 GAAGGTGACCAAGTTCATGCTTCAGTCTCTCGGAAGTGG 59.6 

Bd1sD3477318R ACTCATCCCTATGAACGCA 61.2 

Bd1sP25660244 

Bd1sP25660244F1 GAAGGTCGGAGTCAACGGATTAAAGCATCATGGTCCCGG 66.3 

Bd1sP25660244F2 GAAGGTGACCAAGTTCATGCTAAAGCATCATGGTCCCGA 64.7 

Bd1sP25660244R CCTGTCTGAGCTCCTGGA 62.4 

Bd1L Bd1L 70039898 

Bd1L70039898F1 GAAGGTCGGAGTCAACGGATTGCGACGTAGATCCACCCTC 65.1 

Bd1L70039898F2 GAAGGTGACCAAGTTCATGCTGCGACGTAGATCCACCCTT 64.4 

Bd1L70039898R TCCATCCAGAGAATCGGC 64.4 

Bd2S Bd2SD3043237 

Bd2SD3043237F1 GAAGGTCGGAGTCAACGGATTTGTGGCTGTGGAACTGGC 66.8 

Bd2SD3043237F2 GAAGGTGACCAAGTTCATGCTTGTGGCTGTGGAACTGGT 63.6 

Bd2SD3043237R CCCTACTACATGCCCTCTGC 63.9 

Bd2L Bd2LP39624921 

Bd2LP39624921F1 GAAGGTCGGAGTCAACGGATTTGTCCCAGATGGATCTGT 59.5 

Bd2LP39624921F2 GAAGGTGACCAAGTTCATGCTTGTCCCAGATGGATCTGC 63 

Bd2LP39624921R ATCGTGTGGATGGAGTTG 60.1 

Bd3S Bd3SD25709812 

Bd3SD25709812F1 GAAGGTCGGAGTCAACGGATTCACCTGTGGCTCGAAGGA 65.8 

Bd3SD25709813F2 GAAGGTGACCAAGTTCATGCTCACCTGTGGCTCGAAGGC 67.6 

Bd3SD25709814R TGCTACATGGGTCATCGC 64 

Bd3L 

Bd3LP36863202 

Bd3LP36863202F1 GAAGGTCGGAGTCAACGGATTGGTGCAGGCTCTGGAGAG 64.5 

Bd3LP36863202F2 GAAGGTGACCAAGTTCATGCTGGTGCAGGCTCTGGAGAA 64.8 

Bd3LP36863202R TCAAGCAGATCGACAGTTGG 64.5 

Bd3LD51834867 

Bd3LD51834867F1 GAAGGTCGGAGTCAACGGATTCTCCAAAGGAACTGGACC 60.2 

Bd3LD51834867F2 GAAGGTGACCAAGTTCATGCTCTCCAAAGGAACTGGACA 59.3 

Bd3LD51834867R CCAGCTTGACTCTTCGAG 59.4 

 



220 
 

Supplementary Table 4 Continued Primer sequences for KASP markers used for initial mapping of DON sensitivity trait to chromosome arm by single marker association 

Chromosome arm Marker Identifier Primer Sequence 5’-3’ Tm 

Bd4(S) Bd4SD2701106 

Bd4SD2701106F1 GAAGGTCGGAGTCAACGGATTTTGCTTCTCTTCGCCCAT 64 

Bd4SD2701106F2 GAAGGTGACCAAGTTCATGCTTTGCTTCTCTTCGCCCAC 64.7 

Bd4SD2701106R TTTATGGGCCCCAAATGTAA 64 

Bd4(S) Bd4SP10040253 

Bd4SP10040253F1 GAAGGTCGGAGTCAACGGATTGAACAGGTCTGGACTTCA 56.6 

Bd4SP10040253F2 GAAGGTGACCAAGTTCATGCTGAACAGGTCTGGACTTCG 58.9 

Bd4SP10040253R CTTACCCACTCAACTGAATG 57.7 

Bd4(L) Bd4LD43365030 

Bd4LD43365030F1 GAAGGTCGGAGTCAACGGATTTTAATGACGCTCCTTGTC 56.8 

Bd4LD43365030F2 GAAGGTGACCAAGTTCATGCTTTAATGACGCTCCTTGTT 56.3 

Bd4LD43365030R GAGCTCCACAGTTGCAAC 60.2 

Bd5(S) Bd5SP2052726 

Bd5SP2052726F1 GAAGGTCGGAGTCAACGGATTGCATAATGCATTGGCGAG 63.3 

Bd5SP2052726F2 GAAGGTGACCAAGTTCATGCTGCATAATGCATTGGCGAA 63.7 

Bd5SP2052726R GTCCCACTGCCTGTCAGAAT 64.6 

Bd5(L) 

Bd5LP17775550 

Bd5LP17775550F1 GAAGGTCGGAGTCAACGGATTGGAACAGCGAACCTTCAG 61.6 

Bd5LP17775550F2 GAAGGTGACCAAGTTCATGCTGGAACAGCGAACCTTCAC 61.4 

Bd5LP17775550R GCCTGCATTATTGCTTCG 62.4 

Bd5LD25964048 

Bd5LD25964048F1 GAAGGTCGGAGTCAACGGATTTTAGAGCGACTCCAATGA 57.5 

Bd5LD25964048F2 GAAGGTGACCAAGTTCATGCTTTAGAGCGACTCCAATGG 59.5 

Bd5LD25964048R AAGGTGTGGTTGGATGAAG 60.5 
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Supplementary Table 5 Primer sequences for KASP markers used for mapping of DON sensitivity trait on Bd1L 

Bd1L marker position Identifier Primer Sequence 5’-3’ Tm 

Bd1L 50961826 

Bd1L50961826F1 GAAGGTCGGAGTCAACGGATTTCACAAAGCCGCAACAAG 64.2 

Bd1L50961826F2 GAAGGTGACCAAGTTCATGCTTCACAAAGCCGCAACAAT 63.4 

Bd1L50961826R GCAAATATGCCAGGAGTCGT 64.3 

Bd1L 63558055 

Bd1L63558055F1 GAAGGTCGGAGTCAACGGATTGGGACAGGATCGTCCTCC 65.1 

Bd1L63558055F2 GAAGGTGACCAAGTTCATGCTGGGACAGGATCGTCCTCG 66.3 

Bd1L63558055R TACGCGAACAAGTCGTCTGA 65 

Bd1L 66077182 

Bd1L66077182F1 GAAGGTCGGAGTCAACGGATTTTGCCTGGAACCTGTAATAGA 61.5 

Bd1L66077182F2 GAAGGTGACCAAGTTCATGCTTTGCCTGGAACCTGTAATAGG 63.1 

Bd1L66077182R GCTCCTCCCATCGATTTC 62.7 

Bd1L 67231892 

Bd1L67231892F1 GAAGGTCGGAGTCAACGGATTGCTACGCTGTACGTTCCAATAA 63.2 

Bd1L67231892F2 GAAGGTGACCAAGTTCATGCTGCTACGCTGTACGTTCCAATAC 62.8 

Bd1L67231892R2 ATACCATTCGAGAACAGGGAG 62.3 

Bd1L 67755382 

Bd1L67755382F1 GAAGGTCGGAGTCAACGGATTGGAGTGGTCATAACTCGTGCA 65.4 

Bd1L67755382F2 GAAGGTGACCAAGTTCATGCTGGAGTGGTCATAACTCGTGCG 67.1 

Bd1L67755382R1 CAGGTTCACTGCTTTGCTTG 64 

Bd1L 68322255 

Bd1L68322255R1 GAAGGTCGGAGTCAACGGATTGCAATTTGACATCGGCCAGT 67.5 
Bd1L68322255R2 GAAGGTGACCAAGTTCATGCTGCAATTTGACATCGGCCAGA 68.6 
Bd1L68322255F1 TTTGGTGTCCGTCCCTGC 67.8 

Bd1L 68481897 

Bd1L68481897F1 GAAGGTCGGAGTCAACGGATTGCATTCACACCAACCAAAGTA 62.8 

Bd1L68481897F2 GAAGGTGACCAAGTTCATGCTGCATTCACACCAACCAAAGTG 65.7 

Bd1L68481897R1 CTGCTTCAGAGAGTGTCCC 60.7 

Bd1L 68688411 

Bd1L68688411F1 GAAGGTCGGAGTCAACGGATTGGACGGTGCATTAGACTAAAT 60 

Bd1L68688411F2 GAAGGTGACCAAGTTCATGCTGGACGGTGCATTAGACTAAAC 60.5 

Bd1L68688411R GGACTCCGAAAGAAGTATGG 60.6 
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Supplementary Table 5 Continued Primer sequences for KASP markers used for mapping of DON sensitivity trait on Bd1L 

Bd1L marker position Identifier Primer Sequence 5’-3’ Tm 

Bd1L 68992730 

Bd1L68992730F1 GAAGGTCGGAGTCAACGGATTTTGACACGATGCACTCGTAAC 64.2 

Bd1L68992730F2 GAAGGTGACCAAGTTCATGCTTTGACACGATGCACTCGTAAT 63.5 

Bd1L68992730R1 TGCAGGATTCTTGTGCTCTG 64.7 

Bd1L 69118233 

Bd1L69118233F1 GAAGGTCGGAGTCAACGGATTTTCCAGTGTAGCAGCCTCTG 63.7 

Bd1L69118233F2 GAAGGTGACCAAGTTCATGCTTTCCAGTGTAGCAGCCTCTC 62.7 

Bd1L69118233R1 ACCACGGAAGAAAGGAACTC 62.5 

Bd1L 69245412 

Bd1L69245412F1 GAAGGTCGGAGTCAACGGATTAACGTCCCCGACTTCTGC 65.8 

Bd1L69245412F2 GAAGGTGACCAAGTTCATGCTAACGTCCCCGACTTCTGG 65.6 

Bd1L69245412R GTGCACCAATCGCTTGATAA 64 

Bd1L 70039898 

Bd1L70039898F1 GAAGGTCGGAGTCAACGGATTGCGACGTAGATCCACCCTC 65.1 

Bd1L70039898F2 GAAGGTGACCAAGTTCATGCTGCGACGTAGATCCACCCTT 64.4 

Bd1L70039898R TCCATCCAGAGAATCGGC 64.4 

Bd1L 70410887 

Bd1L70410887F1 GAAGGTCGGAGTCAACGGATTCCAGCAATCACGACCTGTAAC 64.8 

Bd1L70410887F2 GAAGGTGACCAAGTTCATGCTCCAGCAATCACGACCTGTAAT 64.2 

Bd1L70410887R GCTGGACAGCTCTCTTCATCT 63.1 

Bd1L 70589328 

Bd1L70589328F1 GAAGGTCGGAGTCAACGGATTGTCCATAGTATACTCCCTCCA 57.6 

Bd1L70589328F2 GAAGGTGACCAAGTTCATGCTGTCCATAGTATACTCCCTCCG 59.5 

Bd1L70589328R1 TGACTCAAATTTGCCCAACA 64.5 

Bd1L 70657141 

Bd1L70657141F1 GAAGGTCGGAGTCAACGGATTGCGGTGAACTGATATTTGTT 59.6 

Bd1L70657141F2 GAAGGTGACCAAGTTCATGCTGCGGTGAACTGATATTTGTG 61.1 

Bd1L70657141R AAATCGCTTTGTGGCAAT 61.2 

Bd1L 70689962 

Bd1L70689962F1 GAAGGTCGGAGTCAACGGATTCACACCAAGTAGAGAAATGAA 57.4 

Bd1L70689962F2 GAAGGTGACCAAGTTCATGCTCACACCAAGTAGAGAAATGAG 57 

Bd1L70689962R1 GATCAAGAAAGGGAATGGA 59.6 
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Supplementary Table 5 Continued Primer sequences for KASP markers used for mapping of DON sensitivity trait on Bd1L 

Bd1L marker position Identifier Primer Sequence 5’-3’ Tm 

Bd1L 70875643 

Bd1L70875643F1 GAAGGTCGGAGTCAACGGATTCTCCCAAGTTGCTGGATTGT 64.4 

Bd1L70875643F2 GAAGGTGACCAAGTTCATGCTCTCCCAAGTTGCTGGATTGC 67.2 

Bd1L70875643R1 CCGTGCCTCCGATCCATA 67.5 

Bd1L 70957617 

Bd1L70957617F1 GAAGGTCGGAGTCAACGGATTGGAAAAATCAGCCCACCA 64 

Bd1L70957617F2 GAAGGTGACCAAGTTCATGCTGGAAAAATCAGCCCACCG 65.8 

Bd1L70957617R CTCTGCCGATTGGTCTTCTC 64.3 

Bd1LD 71418888 

Bd1L71418888F1 GAAGGTCGGAGTCAACGGATTTCCATGCTTGTGACATGGTG 66.3 

Bd1L71418888F2 GAAGGTGACCAAGTTCATGCTTCCATGCTTGTGACATGGTT 64.6 

Bd1L71418888R CTCCATATAAAGCATGGCACT 61 

Bd1L 72052958 

Bd1L72052958F1 GAAGGTCGGAGTCAACGGATTGCCCTAATAATGCCCGCTA 64 

Bd1L72052958F2 GAAGGTGACCAAGTTCATGCTGCCCTAATAATGCCCGCTG 66.7 

Bd1L72052958R CGACCTGTGAAGCTTGTTCTC 64.3 

Bd1L 72672681 

Bd1L72672681F1 GAAGGTCGGAGTCAACGGATTGGTTGTCTAGAGTACGGCGTA 61.2 

Bd1L72672681F2 GAAGGTGACCAAGTTCATGCT GGTTGTCTAGAGTACGGCGTG 64 

Bd1L72672681R ACTGAACCCGTCGTCAAAAC 64.3 

Bd1L 73243490 

Bd1L73243490F1 GAAGGTCGGAGTCAACGGATTGGGGCTGAATGCAAAGCT 65.7 

Bd1L73243490F2 GAAGGTGACCAAGTTCATGCTGGGGCTGAATGCAAAGCA 67.7 

Bd1L73243490R GAAGAACAGCAACTCACCGTT 63.6 

Bd1L 74037836 

Bd1L74037836F1 GAAGGTCGGAGTCAACGGATTTGATCGGACGGCTCTCA 65.1 

Bd1L74037836F2 GAAGGTGACCAAGTTCATGCTTTGATCGGACGGCTCTCT 64.2 

Bd1L74037836R AGCCAGTGGGGTCATGTTAG 64.3 
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Supplementary Table 6 KASP primers for fine-mapping of BSA Bd1L peak associated with DON sensitivity in Bd2-3xBd21 F7 high-confidence RILs 

Bd1L marker position Identifier Primer Sequence 5’-3’ Tm 

Bd1L_69245412 

Bd1_69316550_F1 GAAGGTCGGAGTCAACGGATTTTCTCTGAGTTGCCAGATTCT 61.1 

Bd1_69316550_F2 GAAGGTGACCAAGTTCATGCTTTCTCTGAGTTGCCAGATTCC 63.7 

Bd1_69316550_R CCCACCGGTGTTGTTAAATA 62.4 

Bd1L_69674361 

Bd1_69674361_F1 GAAGGTCGGAGTCAACGGATTGCTTTGCGGATAGATGGC 63.8 

Bd1_69674361_F2 GAAGGTGACCAAGTTCATGCTGCTTTGCGGATAGATGGT 60.8 

Bd1_69674361_R ATGGTACAGGCTGCCTACTG 62.2 

Bd1L_69696725 

Bd1L_69696725_F1 GAAGGTCGGAGTCAACGGATTCACTCAGCAGCACAAAGC 61.6 

Bd1L_69696725_F2 GAAGGTGACCAAGTTCATGCTGCACTCAGCAGCACAAAGT 62.4 

Bd1L_69696725_R CTTGGCTACCAATTAACCCT 60 

Bd1L_69718309 

Bd1L_69718309_F1 GAAGGTCGGAGTCAACGGATTTTAATACTTGGACGCCATACC 60.7 

Bd1L_69718309_F2 GAAGGTGACCAAGTTCATGCTTTAATACTTGGACGCCATACA 60 

Bd1L_69718309_R TAGGATTCTGGACAAACGAT 59.1 

Bd1L_69743518 

Bd1L69743518_F1 GAAGGTCGGAGTCAACGGATTATATATGCTGGGACGAAGGAA 62.6 

Bd1L69743518_F2 GAAGGTGACCAAGTTCATGCTATATATGCTGGGACGAAGGAC 62.1 

Bd1L69743518_R GAGTGCCCTGTAGGTTAGGC 63.0 

Bd1L_69756524 

Bd1L_69756524_F1 GAAGGTCGGAGTCAACGGATTTGGATGATTACTAGAGGTGGC 61 

Bd1L_69756524_F2 GAAGGTGACCAAGTTCATGCTTGGATGATTACTAGAGGTGGT 58.1 

Bd1L_69756524_R CTCCGGTGAATAGAGTTACAC 58.3 

Bd1L_69775755 

Bd1_69775755_F1 GAAGGTCGGAGTCAACGGATTTTATTGGTCCACTAAACGCCG 65.9 

Bd1_69775755_F2 GAAGGTGACCAAGTTCATGCTTTATTGGTCCACTAAACGCCA 64.4 

Bd1_69775755_R CTTGGAGTGCATACGCAAGT 63.3 

 

 



225 
 

Supplementary Table 7 DON induced 
phenotypes of Bd2-3 x Bd21 RILs 

RIL 10uM DON 20uM DON 

1 Bd21 Intermediate 

3 Intermediate Bd2-3 

4 Bd2-3 Intermediate 

5 Bd2-3 Bd21 

7 Bd2-3 Bd2-3 

9 Bd2-3 Bd2-3 

10 Bd21 Intermediate 

11 Bd21 Bd2-3 

12 Bd21 Intermediate 

13 Intermediate Bd21 

14 Intermediate Bd21 

15 Intermediate Intermediate 

16 Bd21 Bd2-3 

17 Bd2-3 Bd2-3 

18 Bd2-3 Bd2-3 

19 Bd21 Bd2-3 

20 Bd21 Intermediate 

21 Bd2-3 Bd2-3 

22 Bd21 Bd21 

23 Bd21 Bd21 

24 Bd21 Intermediate 

25 Bd2-3 Intermediate 

26 Bd21 Bd21 

27 Bd21 Bd21 

28 Bd21 Intermediate 

29 Bd21 Bd2-3 

30 * Bd2-3 

31 * Bd2-3 

32 * Bd2-3 

34 * Intermediate 

35 Bd21 Intermediate 

36 Bd2-3 Bd2-3 

37 * Bd2-3 

38 Bd21 Bd2-3 

39 Bd21 Intermediate 

40 Intermediate Bd2-3 

41 Bd21 Bd21 

42 Bd2-3 Bd2-3 

43 Bd21 Bd2-3 

 

Supplementary Table 7 continued DON 
induced phenotypes of Bd2-3 x Bd21 RILs 

RIL 10uM DON 20uM DON 

44 Bd21 Intermediate 

45 * * 

46 Bd21 Bd2-3 

47 Bd2-3 Bd2-3 

48 Intermediate Intermediate 

49 Bd21 Bd2-3 

50 Bd2-3 Bd2-3 

51 Bd21 Bd21 

52 Bd2-3 Bd2-3 

53 Bd2-3 Bd21 

54 * Bd21 

55 * Bd2-3 

56 Bd21 Bd2-3 

57 Bd21 Intermediate 

58 Bd21 Bd2-3 

59 Intermediate Intermediate 

60 Bd21 Bd2-3 

61 Bd21 Bd2-3 

62 * Bd2-3 

63 Bd21 Bd2-3 

64 Bd21 Bd2-3 

65 Bd2-3 Intermediate 

67 Bd21 Intermediate 

68 Bd2-3 Intermediate 

70 Bd21 Bd2-3 

71 Bd2-3 Bd2-3 

73 Bd2-3 Bd2-3 

75 * Bd2-3 

76 Bd2-3 Bd2-3 

77 Bd21 Bd2-3 

78 Intermediate Bd2-3 

79 Bd21 Bd21 

80 Bd21 Intermediate 

81 Intermediate Bd2-3 

82 Bd2-3 Bd2-3 

83 Bd2-3 Bd2-3 

85 Bd2-3 Bd2-3 

86 Bd21 Intermediate 

88 Intermediate Bd21 
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Supplementary Table 7 continued DON 
induced phenotypes of Bd2-3 x Bd21 RILs 

RIL 10uM DON 20uM DON 

89 Bd21 Intermediate 

90 Bd21 Bd2-3 

91 Bd21 Bd2-3 

92 Bd2-3 Bd2-3 

93 Bd2-3 Bd2-3 

94 Bd2-3 Bd2-3 

96 Bd2-3 Bd2-3 

97 Bd21 Bd2-3 

98 Intermediate Bd2-3 

99 Intermediate Bd2-3 

100 Bd21 Bd21 

101 Bd21 Intermediate 

102 Bd2-3 Bd2-3 

104 Bd21 Intermediate 

105 Bd2-3 Bd2-3 

107 Bd21 Bd21 

108 Bd21 Bd21 

109 Bd21 Bd21 

111 Bd21 Intermediate 

112 Bd21 Intermediate 

113 Intermediate Bd2-3 

114 Bd21 Intermediate 

115 Bd2-3 Bd2-3 

116 Bd21 Bd21 

117 Bd21 Bd21 

118 Bd2-3 Bd21 

119 Bd2-3 Bd21 

120 Bd2-3 Bd2-3 

121 Bd21 Bd2-3 

122 Bd2-3 Bd2-3 

123 Intermediate Bd2-3 

124 Bd21 Bd21 

125 Bd21 Bd21 

126 Bd21 Bd21 

127 Bd21 Bd21 

128 Bd21 Bd21 

129 Bd21 Bd21 

130 Bd21 Bd21 

 

Supplementary Table 7 continued DON 
induced phenotypes of Bd2-3 x Bd21 RILs 

RIL 10uM DON 20uM DON 

131 Bd21 Bd21 

132 Bd21 Bd21 

133 * Bd21 

134 Bd21 Bd21 

136 Bd2-3 Bd21 

137 Bd2-3 Intermediate 

138 * Bd2-3 

139 Intermediate Intermediate 

140 Bd21 Bd2-3 

142 Bd21 Bd21 

144 Bd2-3 Bd21 

145 Bd2-3 Intermediate 

146 Bd21 Bd21 

147 Bd2-3 Bd2-3 

148 Intermediate Intermediate 

149 Bd21 Bd21 

150 Bd2-3 Intermediate 

151 Intermediate Bd2-3 

152 Intermediate Bd21 

153 Bd21 Bd2-3 

154 Bd2-3 Bd2-3 

155 Bd21 Bd21 

156 Bd21 Bd21 

157 Bd2-3 Bd2-3 

158 Bd21 Bd21 

159 Bd2-3 Bd2-3 

161 Bd21 Intermediate 

162 Bd21 Bd21 

163 Bd2-3 Intermediate 

164 Bd21 Intermediate 

165 Bd21 Intermediate 

166 Intermediate Intermediate 

167 * Intermediate 

169 Bd2-3 Bd2-3 

171 Bd2-3 Bd21 

172 Intermediate Bd21 

173 Bd21 Bd21 

 

 


