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Abstract
This paper proposes a new sensor network optimized data fusion approach for structural health
monitoring of metallic structures using electromechanical impedance (EMI) signals. The
integrated approach used to fuse common healthy state baseline model based damage detection,
quantification and classification in EMI technique. Towards this, the principal component
analysis (PCA) is carried out and corresponding the root mean square deviation (RMSD) index
is calculated to study the information of piezoelectric transducer’s impedance (|Z|), admittance
(|Y |), resistance (R), and conductance (G) in the frequency domain. A new optimized data fusion
approach is proposed which was realized at the sensor level using the PCA as well as at the
variable level using self-organizing maps (SOMs). The SOM comparative studies are performed
using the Q-statistics (Q index) and the Hotelling’s T2 statistic (T index). The proposed
methodology is tested and validated for an aluminum plate with multiple drilled holes with
variable size and locations. In the process, a centralized data-fused baseline eigenvector is
prepared from a healthy structure and the damage responses are projected on this baseline
model. The statistical, data-driven damage matrices are calculated and compared with the
RMSD index and used in a fusion based data classification using SOM. The proposed method
shows robust damage sensitivity for hole locations and hole enlargement irrespective of the
wide frequency range selection, and the selected frequency range contains the resonant
frequency range.

Keywords: electromechanical impedance, structural health monitoring, sensor network, data
fusion, self-organizing map, principal component analysis

(Some figures may appear in colour only in the online journal)

1. Introduction

All man-made civil, aerospace and mechanical structures have
a limited lifespan and are prone to structural defects like

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

corrosion, fatigue, erosion, wear and delamination. These
structural defects can be monitored using suitable structural
health monitoring (SHM) techniques. The electromechanical
impedance (EMI) method is one of the SHM techniques that
have been used in the high-frequency domain to assess the
local health of a structure [1, 2]. This method uses metrics
as a damage-identification formula. These metrics are usually
based on the comparison of healthy and damage spectrum. The
piezoelectric lead zirconate titanate (PZT) transducers act as
sensors and actuators. The electrical impedance of the bonded
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PZT transducer is equal to the voltage (V) applied to the PZT
transducer divided by the current passing through the PZT.
The measured electric current (I) is used to calculate EMI
(Z(ω)) for the circular PZT [3, 4]:
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Cp
a, ‘J0’ and ‘J1’ are zero and first-

order Bessel function of the first kind, ‘Za’ is the short-
circuited mechanical impedance of piezoelectric transducer
(actuator), ‘Zs’ is the mechanical impedance of the structure,
‘hp’ the thickness of piezoelectric transducer, a is the radius
of transducer, ‘ρ’—density, ‘sE11’ is the compliance coeffi-
cient, ‘d31’ is the piezoelectric coefficient of the transducer
for direction 3–1 (electric field applied in direction 3, strains
in direction 1), j—complex symbol, εT33 is the complex per-
mittivity of the piezoelectric transducer for direction 33, ‘η’ is
the mechanical loss factor and δ is dielectric loss factor.

The EMI method effectiveness depends on the selection of
effective frequency spectrum which is usually hard to determ-
ine for the incipient damages in the structure. There is no estab-
lished theoretical methodology to determine the effective fre-
quency range of the transducer from the experimental data.
The robust frequency range of the damage detection in the
EMI method can be determined using a trial-and-error method
[5]. The trending data-driven approach in EMI technique for
damage detection is more focused on the sensor’s data fusion.
It is established that multiple sensors are more effective than
using one sensor alone [6]. Data fusion is a process of merging
information from the various sources for reducing the uncer-
tainty and yields a better signal to noise ratio. Data fusion can
be carried out at three levels: data level, decision level and fea-
ture level [7–9]. Although significant work has been done on
data fusion, very few techniques have been implemented for
EMI based SHM techniques. One of the exceptions is a work
by Shishir et al. The authors described novel data fusion tech-
nique using parameter F that combines information of R and
G for detection of a low level of damage [10]. On the other
end, the deployment of a sensor array of the PZT for the large
structure to be monitored is becoming popular in recent days.
This method enhances the probability of successful damage
detection for the complex structures [11]. Multisensory data
fusion gives additional information to improve the assessment
of health identification using data fusion technique [12]. Like-
wise, there are several other data fusion method based dam-
age detection techniques and these techniques have certain
limitations.

The Bayesian probability-based approaches in structural
damage quantification is popular in non-destructive testing
using acoustic emission and guided ultrasonic wave propaga-
tion, but it requires reasonable assumptions for the suitable
application [6, 13]. Bayesian probabilistic framework and the

state estimation method performance depend on the selection
of the model and these approaches often require subjective
decisions about the prior probabilities and model selections
[6, 14]. Zhao et al [15] proposed the hierarchical ensemble
scheme to data fusion based on the Dempster–Shafer (DS) the-
ory and the rotation forest (RF) method. RF used to build an
accurate and diverse base and DS used to combine the output
of RF data sources [15, 16]. Fuzzy logic is considered good
for addressing vagueness and imprecision of each decision, but
heavily dependent on a mathematical foundation with respect
to change of domain of application [6, 14, 17]. However, there
is no ubiquitous data fusion technique that applies to all SHM
applications [14]. Feature level fusion based machine learn-
ing techniques like artificial neural network (ANN), support
vector machine or deep learning is becoming popular in data
fusion [6]. Recently, Chen proposed deep-learning-based data
fusion concept to detect and localize cracks on the metallic
surfaces of the nuclear power plant’s reactors [18]. In this
work, we proposed to employ the combination of principal
component analysis (PCA) with root mean square deviation
(RMSD) and machine learning approach to detect and classify
the damage.

The PCA was developed by Karl Pearson and integrated
to the mathematical statistics by Harold Hotelling and used to
reduce the dimensions of the multivariable complex data set
[19]. Joe Quin used PCA based Q statistics and T2 statistics
in fault detection and diagnosis of polyester film manufactur-
ing process [20]. Mujica explored these statistical techniques
to detect and distinguish damages in steel plate and turbine
blade structures [21]. Tibaduiza proposed a data-driven stat-
istical approach using PCA for damage classification for dis-
tributed piezoelectric active sensor network for time-domain
vibrational structural responses [22]. Park et al employed PCA
model for impedance data in identifying loose bolts in bolted
Al plate structure in wireless SHM [23]. They used onboard
active sensor system consisting of impedance measuring chips
and a micro-fiber composite sensor. Further, the authors in
[24] combined the unsupervised hierarchical clustering and
k-means clustering based methodology in damage detection
on the near surface mounted fiber reinforced polymers using
EMI technique. Using this method, the authors tried to sep-
arate different loading stages in the cluster. Junior et al used
self-organizing maps (SOMs) classification architecture with
RMSD features of the real part of impedance in very narrow
frequency range. The features showed significant improve-
ment in EMI based damage classification of multipoint metal
dressing tool [25].

A data-driven based approach is more suitable than a
model-based approach when mathematical modeling of the
system is not of interest [6, 12]. An application of data-driven
fusion technique in the EMI method for damage detection is
inspired by the need to obtain a unified visualization of dam-
age to the structure. It will help with extracting knowledge
from frequency domain data to improve damage detection by
decision making. As in the previous work [26], the authors
try to quantify the sensitivity to the hole generating process
in the square aluminum plate using the resistance, conduct-
ance and susceptance based EMI features separately. From the
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review of literature, it is realized that several works have been
carried out on data fusion, but only a limited number of data
fusion techniques were implemented in the EMI based SHM
technique.

In this paper, we propose a new EMI based data fusion
approach for the sensor network that uses a damage detec-
tion algorithm and a statistical matching strategy to classify
damage and undamaged (healthy) condition of aluminum plate
with multiple holes. The data fusion allows the extraction of
information from frequency domain data to improve damage
detection through decision making. The PCA based RMSD
damage index is calculated to detect abnormalities in the struc-
ture. A PCA projection based modified algorithm is used for
localization of the damage by using the contribution of each
sensor to the RMSD index. The overall structural damage
detection is achieved by first performing local data fusion
(sensor data integration) that integrates the information from
four sensors, then performs global data fusion (|Z|, |Y |, G and
R from four sensors) that combines the frequency-domain fea-
tures using SOM. The final assessment result is obtained by
integrating the variance contribution of RMSD indices and
feature level fusion which are obtained from four different data
variables (|Z|, |Y |, G and R) using SOM.

2. Theory and methodology

RMSD is the most popular damage detection index employed
in EMI techniques. The following formula is used to quantify
damage with respect to a healthy state of the structure in the
EMI techniques:

RMSD=

√√√√∑n
i=1

(
Di−D0

i

)2∑n
i=1

(
D0
i

)2 (2)

where symbol n is used as the number of frequency spectrum
samples, symbol 0 is used for a healthy state, Di is the single
sample of the spectrum of damage state.

This paper introduces a new approach of data analysis using
PCA, which provides further opportunities for damage classi-
fication using statistical index Q, and T2 index. In this paper,
for the EMI data fusion demonstration |Y |, |Z|, G and R were
used from four sensors. Data fusion has been used at several
levels to analyze the damage to the structure.

Firstly, at the data level by directly combining the raw data
using a variance contribution of the principal components of
sensor network and secondly, feature-level fusion has been
done as heterogeneous (|Y |, |Z|, G and R from four sensors)
input of statistical indices in SOM. Statistical features of signa-
tures are extracted from the original raw data using PCA based
damage indices, and these features are concatenated prior to
the decision level SOM and effective RMSD fusion. A data
fusion based general framework of the adopted methodology
in damage classification of an aluminum plate using a sensor
network is given in figure 1.

The variables |Z|, |Y |, G and R of sensor network have dif-
ferent magnitudes and scales and can be scaled using mean
and standard deviations of the sensor’s measurement. The

Figure 1. A framework of the methodology adopted in the
classification of damage.

standard procedure of normalization has been used using the
formula:

D1ij =
Dij−µi

σi
(3)

where Dij represents jth sample for the ith sensor, µi is mean
of Dij, σi is the standard deviation of Dij.

The PCA based baseline model can be developed by arran-
ging the data in I× J matrix, D1 a normalized matrix of the
data set, having information (|Y |, |Z|, G and R) from the differ-
ent sensors (I) of the sensor network. PCA is used to combine
the pre-processed data from different piezo-actuators. PCA is
used to compute the covariance matrix of the data, eigenval-
ues, eigenvectors and the principal components. The compon-
ents are organized in descending order of variance contribu-
tion. The covariance matrix of normalized data matrix can be
calculated using the formula [19]:

Cd = D1TD1. (4)

This covariance matrix has I× I dimension and measures
the degree of linear relationship among all variables. If V con-
tains the eigenvectors of the covariancematrixCd,P is damage
state data matrix and T is a damage score matrix which repres-
ents the projection of damage data set in the direction of V and
given by:

T= PV. (5)

The most common PCA based damage detection indices
are Q index and the Hotelling’s T2 index. The former one uses
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Figure 2. A framework of the two-dimensional rectangular topology based SOM in classification.

to analyze the variability of projected data in the residual sub-
space and latter one uses the new space of the principal com-
ponents [19–21]. If Î is the identity matrix, x is the correspond-
ing piezo-actuator variable, xT is the transpose matrix of x, P1

are the reduced eigenvectors, PT1 is the transpose matrix of P1

andΛ is the eigenvalues based diagonal matrix, then statistical
indices can be calculated using equations (6) and (7):

Q= xT
(
Î−P1P

T
1

)
x (6)

T2 = xT
(
P1

−1PT1
)
x. (7)

The extracted feature indices and scores (length of Q index
and T2 index) from the PCA technique combined using the
mixing weight matrix to build a simplified ANN. SOM is an
ANN technique based on the unsupervised algorithm for the
classification of different states of the structure. SOM is a set of
nodes which is connected by inputs based on the weight. These
nodes are usually connected using rectangular or hexagonal
topology and the winning neuron is based on the similarity
between weight and input variables (x1, x2). SOM algorithm
is based on the minimum Euclidian distances d(xj, wij) of the
input variables and each neuron and given by the equation (8)
[26].

d(xj,wij) =

√√√√ n∑
j=1

(xj−wij)
2
. (8)

They have special differentiating techniques to various fea-
tures depending on the internal representation of input signals

and is becoming a promising tool for clustering and visual-
izing high dimensional data [27, 28]. The input layer neur-
ons are fully connected to the output neurons of the Kohonen
layer for the strongest response using the weight matrix.
The relations of the weight matrix and input are given by
equation (9).

Outputj =
∑
i

wijxij. (9)

The winner in the Kohonen layer is given by equation (10)
for the kth iteration

wij (k+ 1) = wij (k)+ ε(xj−wij) . (10)

Here, wij is the weighting factor between the ith neuron of
the input layer and jth neuron of the Kohonen layer and xij is
the input signal of the network in the form of Q and T index. A
diagram of the two-dimensional rectangular topology SOM is
given in figure 2 for the input and Kohonen layer using neur-
ons. For the two inputs, xij is x1 and x2 used as a combination
of the variables |Z|, R and |Y |, G, respectively.

In this paper, PCA is combined with SOM for struc-
tural damage detection. SOM performed on the damage score
matrix to classify the damage state of the structure using a
Kohonen SOM toolbox of Matlab [29].

3. Experimental setup

The experiments were performed on a thin square alu-
minum plate with attached piezo-actuators sensor network.
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Figure 3. Sensor network distribution against the damage locations in the sample plate.

The locations of piezo-actuators are a result of different study
with an optimization approach for guided wave-based damage
detection [30, 31]. The sensor placement was optimized using
a genetic algorithm and deals with guided wave-based damage
localization based on (a) maximum coverage of the structure
with at least one sensor-actuator pair, (b) maximum coverage
of the structure with three sensors-actuator pairs, (c) minimum
number of sensors [31]. For the EMI study, this sensor net-
work should be treated simply as an example of the distributed
network, because the optimization did not concern the EMI-
based damage detection. The study investigates the sensitivity
of EMI responses to the different size of drilled hole ‘D-a’ and
‘D-b’ in the Al plate as shown in figure 3. The dimension of
the Al plate was 100 × 100 × 0.1 cm3 and the temperature of
the room was kept constant (approximately 24 ◦C) while con-
ducting the above experiment. A HIOKI IM3570 Impedance
Analyzer was used to measure the EMI signatures at the piezo-
actuator terminals. In the first step, the 5 mm diameter hole at
the D-a location was created using drilling operation, further,
it was enlarged to 8 mm and further to 10 mm as shown in
figure 3. After introducing the 10 mm hole at location D-a, a
5 mm of hole was drilled at new location (D-b).

4. Results and discussions

Sensor network conductance spectra for the healthy and dam-
aged state of the Al plate are shown in figure 4 for the piezo-
actuators P1, P4, P5 equidistant from the hole and P8 farther
away from the hole. The prescreening of the EMI signatures
indicated that the 17–600 kHz frequency range is suitable to
demonstrate the method for all variables for damage detection
and classification. This frequency range contains the resonant
frequency range (180–250 kHz) as well. Hence, the method
is tested in both narrow (180–250 kHz) and wide frequency
ranges (17–600 kHz).

The RMSD damage indices were calculated using equation
(2) for these piezo-actuators for different stages of damage
severity (5 mm, 8 mm and 10 mm hole). The RMSD damage
index for the wide 17–600 kHz and narrow frequency range
180–250 kHz are given in figures 5 and 6, respectively. Piezo
actuator, P1 has shown the maximum RMSD index for all
features (|Z|, |Y |, G and R) as shown in figure 5. The piezo-
actuator P5 has shown the second highest sensitivity for the
two variables R and G but for |Z|, |Y |, showing exceptional
behavior and less than P8. From figure 5, it is also noticed
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Figure 4. Sensor network conductance spectra for healthy and damage state of piezo-actuators (a) P1, b) P4, (c) P5 and (d) P8.

Figure 5. Sensor network RMSD damage indices of 5 mm, 8 mm and 10 mm hole drilled at ‘D-a’ location for the (a) |Z|, b) |Y |, (c) R and
(d) G in the wider frequency range 17–600 kHz.

that RMSD index is not following increasing trends in dam-
age severity detection for all the sensors and all the variables.
Further, in the narrow frequency range, the performance of the
piezo-actuators for the damage sensitivity (figure 6) is bad in
comparison to their performance in the wide frequency range.
The RMSD values for 8 mm and 10 mm hole damage cases

are not always higher than for 5 mm hole damage case. Sim-
ilarly, the RMSD for 10 mm hole damage case is not always
higher than for 8 mm hole damage case in the both narrow and
wide frequency ranges. Summarizing, it can be seen that using
the RMSD index the damage severity cannot be seen for both
frequency ranges.
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Figure 6. Sensor network RMSD damage indices of 5 mm, 8 mm and 10 mm hole drilled at ‘D-a’ location for the (a) |Z|, (b) |Y |, (c) R and
(d) G in the narrow frequency range 180–250 kHz.

Figure 7. The PC1 based reconstructed conductance spectrum plot for the sensors (a) P1, (b) P4, (c) P5 and (d) P8.

Aprincipal component contribution basedmethodwas ana-
lyzed for all these variables (|Z|, |Y |, G and R from four
sensors).Most of the data variation is contained by the first few
principal components so 1st principal component was used for
damage analysis. The data from the healthy state is properly
trained from the ten experiments of each piezo actuator to pre-
pare the healthy state baseline model for four piezo-actuators.

These data are organized inmatrix form to create a high dimen-
sional space matrix (J× I) to create the baseline PCA model.
The RMSD calculation is made after the normalization of pro-
jection of damage state data on baseline model. Equation (11)
was used to calculate the RMSD index for projected data’s
principal components. Figure 7 shows the reconstructed con-
ductance spectrum plot for P1, P4, P5 and P8 using 1st PC
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Figure 8. RMSD based on 1st PC for 5 mm, 8 mm and 10 mm drilled holes for the variables (a) |Z|, (b) |Y |, (c) R and (d) G in the wide
frequency range 17–600 kHz.

Figure 9. RMSD based on 1st PC for 5 mm, 8 mm and 10 mm drilled holes for the variables (a) |Z|, (b) |Y |, (c) R and (d) G in the narrow
frequency range 180–250 kHz.

which is used to calculate the RMSD index in 17–600 kHz
frequency range.

Figure 8 shows the 1st principal component based RMSD
indices for the P1, P4, P5 and P8 for |Z|, |Y |, G and R vari-
ables. The 1st PCA based RMSD index for piezo actuator
P1 shows the maximum sensitivity towards damage due lar-
ger index values for the each cases (figure 8). Based on 1st

PCA RMSD damage indices P5 shows more sensitivity than
P8 for all the variables in case of 8 mm hole. However, R
based RMSD of P5 is closely less than P8 for 5 mm hole
and hence verifies the P8 is at a larger distance from the
P5. However, in the resonance frequency range, P1, P4 and
P5 have shown better sensitivity than P8 as high value of
the index and increasing trend for the damage severity as in
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Figure 10. Sensor network variance contribution for the EMI variables (a) |Z|, (b) |Y |, (c) R and (d) G on a large Al plate 17–600 kHz.

Figure 11. A comparative study of RMSD and PCA based fused RMSD for (a) 5 mm, (b) 8 mm (c) 10 mm and (d) P1 fused RMSD for
5 mm, 8 mm and 10 mm hole.

figure 9. Further, principal component’s variance contribution
based method was analyzed for the P1 to classify the dam-
age in the wider frequency range (17–600 kHz). This approach
provides the flexibility for the data fusion using variance con-
tribution based PC1, PC2 and so on in the effective RMSD
index. Figure 10 shows the variance with respect to principal
components to the variable |Z|, |Y |, G and R in the baseline
model of the sensor network.

The most of the variance contribution for the PC1 is for
|Z| and |Y | as shown in figures 10(a) and (b). However, PC2
cannot be ignored for the R and G variables as shown in
figures 10(c) and (d). The general algorithm used to calculate
effective RMSD is given by:

RMSDeffective = w1RMSDPC1 +w2RMSDPC2 + . . . .

+wnRMSDPCn (11)
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Figure 12. Sensor network 1st PC RMSD damage index for the ‘D-b’ location for the variables (a) |Z|, (b) |Y |, (c) R and (d) G.

Figure 13. Q index calculation of P1 EMI variables (a) |Z|, (b) |Y |, (c) R, (d) G on a large sample.

where w1, w2 and wn are variance contribution of correspond-
ing principal components;RMSDPC1,RMSDPC2 andRMSDPCn

are the RMSD values based on the 1st, 2nd and nth prin-
cipal components of projected damage data with respect to the
healthy state.

Figures 11(a)–(c) shows, effective RMSD index combining
1st PC and 2nd PC compared with 1st PCA RMSD and tradi-
tional RMSD for the most sensitive piezo actuator P1 in dam-
age 5 mm, 8 mm and 10 mm diameter hole case. RMSD using

PCA has a higher scale than traditional RMSD for the vari-
ables |Y |, |Z|, G and R. In figure 11(d), effective RMSD (using
PC1 and PC2) used to the quantification of damage severity
has shown an increasing trend for 5 mm, 8 mm and 10 mm
diameter hole.

In the second case, the method was used for the identifica-
tion of the hole at ‘D-b’ location using the PC1 RMSD of the
common baseline healthy state model above mentioned meth-
odology. The P5 shows the highest sensitivity in this study

10
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Figure 14. T2 index calculation P1 EMI variables (a) |Z|, (b) |Y |, (c) R and (d) G on the sample.

Figure 15. Matching hits based healthy (H) and damage data (D-a) classification for the Q index of piezo-actuator P1 in Al plate using (a)
|Z| and R (b) |Y | and G.

which supports that P5 is nearest to the damage ‘D-b’ location.
The PC1 RMSD of the P1, P4, P5 and P8 for the all variables
|Z|, |Y |, G and R is shown in figure 12. P8 shows the lowest
sensitivity in the all cases in compared to P1, P4 and P8.

This methodology enhanced the scope of the study for dam-
age classification and detection using data fusion and exten-
ded opportunities for damage indices and scores. Figures 13
and 14 have shown the calculation of Q index and T2 indices
for the P1 in damage classification for the 5 mm, 8 mm and
10mm holes. The P1 was selected to demonstrate the variation
of Q index (equation (6)) and T2 index (equation (7)) based on
maximum sensitivity among all piezo-actuators for the dam-
age. These indices are plotted against rearranged dimensional

score (corresponding to 25 measurements of each case) of the
four variables of sensor data |Z|, |Y |, R andG and showing very
small differences.

The results obtained fromQ index and T2 index for healthy,
5 mm, 8 mm and 10 mm diameter drilled holes are fused for
|Z|, |Y |, R and G by entering as input to the SOM—this is the
data fusion step. An SOM can be used to group and contrast
similar and different features based on heterogeneous feature-
level fusion. The Q index and T2 index dataset of |Z|, R and
|Y |, G variable of piezo-actuator P1 are grouped in the form of
data matrix using the input to the SOM. These dataset further
normalize using variance method. Since the input to SOM is in
terms of the indices (Q index and T2 index) so training time for

11
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Figure 16. Matching hits based healthy (H) and damage (D-a) data classification using T square index of piezo-actuator P1 in Al plate
using (a) |Z| and R (b) |Y | and G.

Figure 17. Matching hits based ‘D-a’ damage severity (5 mm, 8 mm and 10 mm hole) data classification for the Q index of P1 in Al plate
using (a) |Z| and R (b) |Y | and G.

the feature data is very negligible and mainly depends on the
size of the score. The total number of neurons used is 42 in this
procedure. The batch algorithm used to train the input data of
SOM and organized classification matrix data component of
the |Z|, R and |Y |, G variable of piezo-actuator P1. Using the
methodology of SOM toolbox details as discussed earlier in
the section 3, figures 15 and 16 shows U-matrix of hexagonal
topology and cluster of Al plate health based on distances
among neighboring Q index and T2 index. The hit histogram

shows the combined distribution of index components on the
map in the grey color. Higher values of the U-matrix means
bigger differences between Q index and T2 index components
based damage classification. These hits histograms are calcu-
lated based on the best matching unit of corresponding indices.
The healthy state (H) is labeled by the green color and damage
case D-a (all holes 5, 8 and 10mm are treated here as one dam-
age case) by red color. Further damage severity stages (5 mm,
8 mm and 10 mm) are classified using green, blue color and

12
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Figure 18. Matching hits based damage ‘D-a’ damage severity (5 mm, 8 mm and 10 mm hole) data classification for the T index of
piezo-actuator P1 in Al plate using (a) |Z| and R (b) |Y | and G.

Figure 19. Matching hits based healthy and damage locations data classification for the Q index of piezo-actuator P5 in Al plate using (a)
|Z| and R (b) |Y | and G.

red color. These values are well separated for Q index and T2

index in figures 17 and 18 and hence support the quality of
data.

In the second damage case ‘D-b’, the P5 was selected to
demonstrate the variation of Q index and T2 index based classi-
fication due to maximum sensitivity among all piezo-actuators
for the damage. |Y | and G based fused Q index and T2 index
cannot differentiate healthy (H) and damage cases (D-a and

D-b) in the structure as given in figures 19 and 20. Hence
it can conclude that fusion of variables |Z| and R is a bet-
ter quality of data than variables |Y | and G which supports
the fusion-based RMSD index calculation. From figures 19
and 20, it is observed that Q index based damage classific-
ation is less sensitive since unable to classify all the dam-
ages while T2 index is more sensitive towards the damage
classification.

13
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Figure 20. T2 indices based matching hits classification of healthy (H), damaged state ‘D-a’ and ‘D-b’ of the structure for the P5 in Al plate
using (a) |Z| and R (b) |Y | and G.

5. Conclusions

An integrated data fusion based robust identification method
is proposed for structural damage estimation irrespective of
wide or narrow frequency range selection, and the selected
frequency contains the resonant frequency range based on a
trial-and-error approach. This paper successfully used data
fusion at sensor level (P1, P4, P5 and P8) using a com-
mon baseline model as an identification of multiple dam-
ages at different locations in wide frequency range. The pro-
posed method shows an integrated approach using PCA and
SOM as a more robust technique in damage localization.
The SOM used for the variable level data fusion using four
sensor data |Z|, |Y |, R and G in EMI technique. The pro-
posed method combines the PCA based RMSD index, stat-
istical PCA tools based damage classification and data fusion
based SOM classification for SHM. This work concaten-
ates the data fusion technique based on variance contribu-
tion and machine learning SOM in the decision of damage
identification.

• The comparison between the standard RMSD approach
and PCA-based RMSD index with a fusion of data, for
damage detection, evaluation indicates the potential of
the proposed approach with respect to the traditional
approach.

• The methodologies developed in this work are success-
fully tested and validated by creating drilled hole 5 mm
and enlarging to 8 mm and then to 10 mm. The fusion of
variables |Z| and R is a better quality of data than variables
|Y | and G which supports the fusion based RMSD index
calculation.

• The application of data fusion increases the value of data
mining by using data variables |Z|, |Y |, R and G in EMI
technique. The SOM of T2 index has shown a better per-
formance over the Q index of the fused variables.

• Themethod shows robust damage sensitivity to the selected
resonance frequency 180–250 kHz and wide frequency
range (17–600 kHz) which contains the resonant fre-
quency range irrespective to the trial-and-error based dam-
age detection approach.

The future research can be focused on exploring the poten-
tial of the proposed approach for robust SHM of complex
metallic and composite structures under variable operating
conditions, which is ongoing research by the authors.
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