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Abstract
The electro-osmotically modulated hemodynamic across an artery with multiple stenosis is math-
ematically evaluated. The non-Newtonian behaviour of blood flow is tackled by utilizing Casson
fluid model for this flow problem. The blood flow is confined in such arteries due to the presence
of stenosis and this theoretical analysis provides the electro-osmotic effects for blood flow
through such arteries. The mathematical equations that govern this flow problem are converted
into their dimensionless form by using appropriate transformations and then exact mathematical
computations are performed by utilizing Mathematica software. The range of the considered
parameters is given as 0:03\dl\0:12, 2\m\3:5, 0:03\Q\2, 0\UHS\3, 2\Br\2:9,
0:01\S\0:025. The graphical results involve combine study of symmetric and non-symmetric
structure for multiple stenosis. Joule heating effects are also incorporated in energy equation
together with viscous effects. Streamlines are plotted for electro-kinetic parameter m and flow
rate Q. The trapping declines in size with incrementing m, for symmetric shape of stenosis. But
the size of trapping increases for the non-symmetric case.
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Introduction

The electro-osmotic phenomenon emerges when a channel under consideration is
filled with an electrolyte solution and then by application of a high voltage, a
charge is produced at inner surface of this tube when this electrolyte comes in con-
tact with inner walls. Finally, the flow is developed due to this electric field.1

Electro-osmosis has immense uses in medical field and helps in treatment of dis-
eases like cellular anomalies, sickle cells, and delivery of drugs by using diagnostic
kits.2 The capillary electro-kinetic detailed study and various micro-chip methods
are addressed.3 Wu and Papadopoulos4 had presented a mathematical model that
compares the cylindrical and annulur electro-kinetic flows. The electro-kinetically
produced flow between two parallel plates was mathematically studied by Yang
et al.5 Zhao et al.6 had mathematically examined the two dimensional flow of a
power law fluid by application of electroosmosis. The electro-kinetic flow of non-
Newtonian fluids in small length tubes was first time interpreted by Tang et al.7

Liu et al.8 had interpreted the micro-slit channel flow using Jeffery fluid model by
utilizing electro-kinetic mechanism. The Bingham plastic fluid’s electro-osmotic
flow across a micro length channel was mathematically examined by Nadeem
et al.9 Some of the recent research articles that interpret the electro-osmotic flow
phenomenon are referred by Narla and Tripathi,10 Tripathi et al.,11 Akram et al.,12

and Saleem et al.13

The blood arteries with stenosis result in restriction of hemodynamics across
these diseased arteries. In some certain conditions, such arteries may also have
more than one stenosis. The study of flow across such multiple stenosed arteries is
also a topic of recent interest for researchers. The flow across such stenosed arteries
was firstly reported by Ponalagusamy14 in his doctoral dissertation. This arterial
study of mild stenosis is also covered for stenosis with various shapes.15 Varshney
et al.16 had presented the mathematical study of a non-Newtonian fluid flow across
a channel with multiple stenosis. Sreenadh et al.17 had studied the flow of blood
across a multiple stenosed tube, treating blood as a Casson fluid. Nadeem and
Ijaz18 had mathematically examined the blood flow across a multiple stenosed tube
with variable fluid properties. The blood flow across such diseased multiple ste-
nosed arteries, considering distinct models of non-Newtonian fluids is given.19–27

The heat transfer study of blood flow across an artery with multiple stenosis
was interpreted by Tashtoush and Magableh.28 The analysis of heat phenomenon
for a mild stenotic tube, considering two phase blood flow model was conveyed by
Ponalagusamy and Selvi.29 The heat transfer analysis of Williamson blood flow
model for a stenotic tube was mathematically interpreted by Akbar et al.30 The
heat transfer details combined with dissipation effects and Joule heating for an
electro-kinetically developed flow was studied by Sadeghi and Saidi.31 Moreover,
some further recent researches that evaluate blood flow as well as heat transfer are
referred by Yan et al.,23 Li et al.,32 Ho et al.,33,34 and Chien et al.,35

The review of literature has shown that the electro-osmotic flow of blood across
a multiple stenosed artery is not mathematically considered yet. We have analyzed
the electro-kinetic flow of blood across an artery with multiple stenosis. The non-
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Newtonian behavior of blood is incorporated by using Casson fluid model for this
problem. In order to describe a thorough heat transfer mechanism, Joule heating
effect is also incorporated together with viscous dissipation. Exact mathematical
solutions are prevailed for governing flow equations. Further, these results are stud-
ied in detail with graphs.

Mathematical model

The electro-osmotically driven hemodynamic across an artery with multiple steno-
sis is studied. The non-Newtonian behaviour of blood is considered by utilizing
Casson model for this flow problem.

The multiple stenosis wall geometry �h zð Þ, with its dimensional mathematical
expression (Figure 1).36

�h zð Þ=
R 1�K sn�1

l �z� dlð Þ � �z� dlð Þn
� �� �

, dl � �z � dl + sl

R otherwise,
:

(
ð1Þ

The expression for value of K is

K=
d*l
Rsn

l

n
n=n� 1

n� 1
, ð2Þ

The governing mathematical equations that manipulate the incompressible flow of
Casson fluid are

Figure 1. Geometry of the problem.
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The Casson fluid’s extra stress tensor.37 The Casson fluid model is chosen to con-
sider the non-Newtonian nature of blood.

�Sij = mB +
pyffiffiffiffiffiffiffiffi
2pc

p
� �

�eij, ð7Þ

Where

�eij =
∂�vi

∂�xj

+
∂�vj

∂�xi

, ð8Þ

The value of s* given in equation (6) is s* = i2
es, where ie =

Ez

s
.38 An electrolyte

mixture (Na+Cl�) is uniformly considered and it’s electrical potential dispersion is
mathematically expressed by Poisson-Boltzmann equation as

r2 �F= � re

E
, ð9Þ

The value of re = ez* n+ � n�ð Þ, the density of ionic energy, when ‘‘no EDL over-
lap’’ is considered, is given

n6 = n0Exp6 ez* �F
	
KBT*


 �
, ð10Þ

Now substituting the value of re and n6 in equation (9), we get

1

�r

∂

∂�r
�r
∂�F

∂�r

� �
=

2n0ez*Sinh ez* �F
	
KBT*


 �
E

, ð11Þ

The Debye-Huckel approximation is utilized and we get Sinhðez* �F
	
KBT *Þ’

ez* �F
	
KBT*. Also the non-dimensional variables F=

�F
	
z, r =

�r=R are used in equa-

tion (11) and we get
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1

r
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r
∂F
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The Exact solution of equation (12) is obtained with these conditions
∂F
∂r

= 0, atr= 0, and F= 1atr=h(z):

F= I0(mr)=I0(mh), ð13Þ

The variables used in their dimensionless form are

r =
�r

R
, z=
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The following assumptions are used in this study, in order to consider mild case of
multiple stenosis

dl =
d*l
R
� 1,

Rn
1=n� 1

sl

;81 ð15Þ

The dimensionless variables provided in equation (14) and assumptions in equation
(15) are used to get these dimensionless equations

∂p
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∂w

∂r
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The relevant dimensionless form of boundary conditions is

∂w

∂r
= 0atr= 0andw= 0atr=h, ð19Þ

∂u

∂r
= 0atr= 0andu= 0atr=h, ð20Þ

The dimensionless mathematical form of multiple stenosis wall is
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h zð Þ= 1� dl
n
n
=n� 1
n�1

z� hlð Þ � z� hlð Þn½ �, hl � z � hl + 1

1otherwise

(
, ð21Þ

Exact solution

The mathematical solution of axial velocity is

w r, zð Þ=
b 4UHS +

dp

dz
r2 � h2ð Þ � 4UHSI0(mr)

I0(mh)

h i
4(1+b)

, ð22Þ

The volume rate of flow is evaluated by considering

Q= 2p

ðh
0

rwdr, ð23Þ

Thus, the mathematical result for pressure gradient is

dp

dz
=

8

h4
�Q(1+b)

pb
+UHSh2 � 2UHShI1(mh)

mI0(mh)

� 
, ð24Þ

The shear stress at multiple stenosed wall is provided

tw = � ∂w

∂r

����
r =h

= �
b 2 dp

dz
h� 4mUHSI1(mh)

I0(mh)

h i
4(1+b)

, ð25Þ

The exact temperature profile solution is

u r, zð Þ= 1

64m2(1+b)(I0(mh))2 ð26Þ

Results and discussion

The mathematical solutions acquired in above portion are explained in detail with
graphical results. In Figure 2(a)–(d), the velocity graphs are represented for enlar-
ging values of distinct physical parameters. It is observed in Figure 2(a) that there
is enhance in velocity at the centre, as the value of dl increases but it declines
toward walls with multiple stenosis. The velocity gains magnitude due to narrow-
ing of channel with incrementing dl but at the same time velocity reduces toward
walls with multiple stenosis. Figure 2(b) depicts that velocity declines with increas-
ing m. In Figure 2(c), it is seen that velocity increments with enhancing values of Q.
Figure 2(d) shows the decline in velocity for increasing UHS . Moreover, velocity
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attains its highest value for zero UHS and gradually declines with enhancing value
of UHS. Thus, the speed of flow can mainly be governed by electric field that is axi-
ally applied. It is seen in these graphs of velocity that the increase in velocity is less
for non-uniform shape as compared to uniform shape of multiple stenosis. The
shear stresses at walls having multiple stenosis are plotted for various parameters
and shown in Figure 3(a)–(d). The value of tw increments with increasing dl, pro-
vided in Figure 3(a). Also, there is enhance in tw with increasing electro-kinetic
parameter m, given in Figure 3(b). Figure 3(c) convey that tw gains magnitude, as
the flow rate Q enhances. In Figure 3(d), it is noted that tw increments for incre-
menting value of UHS. The shear stress increases in all cases mainly due to ‘‘no slip’’
at walls. In Figure 4(a)–(f), the temperature graphs are displayed for varying values
of involved parameters. Figure 4(a) shows enhance in temperature with increment-
ing Br. Figure 4(b) depicts that there is enhance in temperature at the center but
declines with walls having multiple stenosis, as the value of dl increases. There is
decrease in temperature with incrementing m, displayed in Figure 4(c). The tem-
perature gains magnitude for enhancing values of Q, given in Figure 4(d). Figure
4(e) depicts enhance in temperature with enhancing Joule heating S. There is

Figure 2. (a) Velocity for dl, (b) velocity for m, (c) velocity for Q, and (d) velocity for UHS.
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decline in temperature, as the values of UHS increases, as shown in Figure 4(f). All
these temperature graphs reveal that the increment in temperature for uniform
shape of multiple stenosis is higher when compared with non-uniform shape.
Further, both velocity as well as temperature declines with increasing axial electric
field. Thus, the flow can be controlled interms of both speed and temperature by
application of electro-osmosis. Figure 5(a)–(d) show streamline graphs for increas-
ing values of electro-osmosis parameter m, while both symmetric as well as non-
symmetric shapes of multiple stenosis are considered. The trapping declines in size
with incrementing m, for symmetric shape of stenosis. But there is enhance in size
of trapped streamlines, for non-symmetric case. Further, the walls with multiple
stenosis can clearly be seen in these streamlines. Also, the symmetric and non-
symmetric shapes are clearly observed. The streamlines for flow rate Q are also
plotted and provided in Figure 6(a)–(d). When the multiple stenosis have sym-
metric shape, then there is enhance in size of trapping with incrementing Q. But
when the shape is non-symmetric then the trapping declines in size for increasing
Q. Moreover, when the multiple stenosis have symmetric shape then the trapping
pattern is also symmetric in shape but it turns to be non-symmetric in shape, when
the multiple stenosis have non-symmetric shape.

Figure 3. (a) tw for dl, (b) tw for m, (c) tw for Q, and (d) tw for UHS.
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Conclusions

The electro-osmotically developed hemodynamics across an artery with multiple
stenosis is examined. The non-Newtonian behaviour of blood is incorporated by
using Casson fluid model. The important results are

� The speed of flow can mainly be governed by electric field that is axially
applied.

Figure 4. (a) Temperature for Br, (b) temperature for dl, (c) temperature for m,
(d) temperature for Q, (e) temperature for S, and (f) temperature for UHS.
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� The enhance in velocity is less for non-uniform shape as compared to uni-
form shape of multiple stenosis.

� The medical advantages of electro-osmosis include treatment of cellular
anomalies, sickle cells and delivery of drugs, etc.

� The present analysis is limited due to theoretical approach and there is no
experimental work performed during this research.

� The flow can be controlled interms of both speed and temperature by appli-
cation of electro-osmosis.

� The multiple stenosis have symmetric shape then the trapping is also sym-
metric in shape but it turns to be non-symmetric in shape, when the multiple
stenosis have non-symmetric shape.

Figure 5. (a) Streamlines for m = 2, n = 2, (b) streamlines for m = 3, n = 2, (c) streamlines for
m = 2, n = 6, and (d) streamlines for m = 3, n = 6.
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Appendix

Notations

(�r,�z) cylindrical coordinate system
(�u, �w) radial and axial velocity components
R non-stenotic radius of artery
dl stenosis position (l = 1, 2, 3)
sl stenosis length (l = 1, 2, 3)
Br Brickman number
ld Debye-length
Ez axial electrical field
n0 ions concentration
UHS Helmholtz-Smoluchowski velocity
z* charge balance
ie current density
n+, n� cation and anion densities
z zeta potential
mB plastic viscosity
n ø 2 multiple stenosis shape parameter
n= 2 symmetric shape of multiple stenosis
n= 6 non-symmetric shape of multiple stenosis
d*l maximum height of stenosis in dimensional form
s electrical resistivity of fluid
re density of total ionic charge
T * average temperature of electrolyte solution
e electronic charge
KB Boltzmann Constant
S Joule heating parameter
m electro-osmotic parameter
E permittivity
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�F electro-kinetic potential function
b Casson parameter
py yield stress
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