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Isoprene-degrading bacteria associated 
with the phyllosphere of Salix fragilis, a high 
isoprene-emitting willow of the Northern 
Hemisphere
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Abstract 

Background: Isoprene accounts for about half of total biogenic volatile organic compound emissions globally, and 
as a climate active gas it plays a significant and varied role in atmospheric chemistry. Terrestrial plants are the largest 
source of isoprene, with willow (Salix) making up one of the most active groups of isoprene producing trees. Bacte-
ria act as a biological sink for isoprene and those bacteria associated with high isoprene-emitting trees may provide 
further insight into its biodegradation.

Results: A DNA-SIP experiment incubating willow (Salix fragilis) leaves with 13C-labelled isoprene revealed an 
abundance of Comamonadaceae, Methylobacterium, Mycobacterium and Polaromonas in the isoprene degrading 
community when analysed by 16S rRNA gene amplicon sequencing. Metagenomic analysis of 13C-enriched samples 
confirmed the abundance of Comamonadaceae, Acidovorax, Polaromonas, Variovorax and Ramlibacter. Mycobacterium 
and Methylobacterium were also identified after metagenomic analysis and a Mycobacterium metagenome-assem-
bled genome (MAG) was recovered. This contained two complete isoprene degradation metabolic gene clusters, 
along with a propane monooxygenase gene cluster. Analysis of the abundance of the alpha subunit of the isoprene 
monooxygenase, isoA, in unenriched DNA samples revealed that isoprene degraders associated with willow leaves are 
abundant, making up nearly 0.2% of the natural bacterial community.

Conclusions: Analysis of the isoprene degrading community associated with willow leaves using DNA-SIP and 
focused metagenomics techniques enabled recovery of the genome of an active isoprene-degrading Mycobacterium 
species and provided valuable insight into bacteria involved in degradation of isoprene on the leaves of a key species 
of isoprene-emitting tree in the northern hemisphere.
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Introduction
Isoprene (2-methyl-1,3-butadiene) is a biogenic vola-
tile organic compound (BVOC) that is emitted glob-
ally at a rate of ~ 500 Tg  year−1 [1] making isoprene one 

of the most prevalent atmospheric BVOCs, second only 
to methane [1, 2]. Due to its volatile nature as a reac-
tive diene, isoprene plays a complex role in atmospheric 
chemistry and is thought to contribute both warming 
and cooling effects on the Earth’s climate. Isoprene reacts 
readily with hydroxyl radicals (OH), reducing the oxida-
tive capacity of the atmosphere and increasing the resi-
dence time of other greenhouse gases like methane. In 
pristine environments with low levels of nitrogen oxides 
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 (NOx), isoprene reacts directly with OH, thus reducing 
its overall tropospheric level. However in the presence of 
higher NOx, common in highly populated urban areas, 
the oxidation of isoprene results in the production of 
 NO2 via photolysis, which in turn increases ozone levels 
and thus can have a detrimental impact on air quality and 
human health [3, 4]. In other circumstances, the products 
of isoprene oxidation in the atmosphere can act as cloud 
condensation nuclei which then lead to an increase in 
cloud formation and contribute to atmospheric cooling 
[5].

The production of cis-polyisoprene (synthetic rub-
ber) is the main source of anthropogenic emissions of 
isoprene [6] but the bulk of isoprene produced arises 
from the natural environment. Biosynthesis of isoprene 
is widespread and can be observed in some species of 
bacteria, fungi, algae and animal in both aquatic and 
terrestrial environments [7–14], however, about 90% of 
isoprene production originates from terrestrial plants 
and particularly trees [12, 15]. Isoprene synthase is the 
enzyme responsible for isoprene production in plants, 
although its presence and activity can vary significantly, 
even between trees of the same genus [16–19]. In trees 
that emit isoprene, it is produced in the chloroplast via 
the methyl-erythritol 4-phosphate (MEP) pathway [20]. 
The isoprene synthase enzyme is responsible for convert-
ing dimethylallyl diphosphate (DMADP) to isoprene. In 
some cases, 1–2% of the total carbon fixed by the plant 
is converted to isoprene, making its production a signifi-
cant investment on the part of the plant [21, 22]. How-
ever, the exact reason why plants produce isoprene is not 
yet fully understood. It has been reported that isoprene 
improves the resilience of plants to oxidative, thermal 
and biotic stresses [22–25], however the mechanisms for 
these processes have yet to be fully elucidated. In terms 
of thermo-tolerance, it was previously thought that iso-
prene could intercalate into thylakoid membranes and 
improve their stability under heat stress [26, 27]. How-
ever, recent studies show that due to the highly volatile 
nature of isoprene and its inability to dissolve well into 
cellular components, isoprene is unable to accumulate in 
chloroplastic membranes at a concentration high enough 
to provide any significant impact on membrane stability 
[28]. A review by Lantz et al. [29] suggests that isoprene 
may play a role in gene expression, although direct evi-
dence for this theory is still limited.

The production and impact of isoprene on the atmos-
phere has long been studied, but the removal of iso-
prene via biological processes is a mechanism that is 
still relatively unexplored. Field chamber studies showed 
that temperate forest soils can rapidly deplete isoprene 
from ~ 400 ppbv to below a 5 ppbv detection limit [30, 
31]. Experiments utilising a continuous-flow method 

showed that temperate forest soil systems were also 
effective at consuming lower concentrations of isoprene, 
with as little as 2 ppbv isoprene being utilised [32]. Bac-
terial strains capable of growth with isoprene as their 
sole carbon source have been isolated from soil, phyllo-
sphere, and aquatic environments [33–40], reviewed in 
[41]. These earlier studies found most success in isolat-
ing Gram-positive Actinobacteria such as Rhodococcus, 
Gordonia and Mycobacterium. Recently however, tar-
geted isolation techniques have resulted in the isolation 
of novel Gram-negative Proteobacteria such as Sphin-
gopyxis, Variovorax and Ramilibacter, diversifying the 
collection of validated isoprene degrading bacteria [42].

All extant isoprene degrading bacteria use the enzyme 
isoprene monooxygenase (IsoMO) to oxidise isoprene. 
IsoMO, encoded by the genes, isoABCDEF, catalyses the 
first step of the isoprene degradation pathway. Adjacent 
genes isoGHIJ encode a CoA transferase, dehydroge-
nase and two glutathione transferases, and glutathione 
biosynthesis genes and other putative genes involved in 
the subsequent steps of isoprene metabolism (recently 
reviewed in [41, 43] are also in the same cluster. The gene 
encoding the α-subunit of the IsoMO, isoA, is highly con-
served amongst isoprene degrading bacteria, making it 
an excellent functional gene probe when investigating the 
presence, distribution, and diversity of isoprene degrad-
ing bacteria in the environment. This approach (recently 
reviewed in [44]) has been utilised previously in combi-
nation with DNA stable isotope probing (DNA-SIP) [45, 
46] to investigate isoprene degrading communities in a 
cultivation-independent manner [36, 37, 39–42, 47]. The 
genetic information recovered, and the isolates obtained 
from these studies allowed for the development of new, 
robust gene probes to examine the diversity of isoprene 
degradation genes recovered from environmental sam-
ples [48].

Willow species are common in the northern hemi-
sphere and are among the highest emitters of isoprene 
(emissions of up to 37  µg  g(dry weight)  h−1 have been 
recorded) [49]. There are a number of willow species in 
the UK such as the Salix fragilis studied here, one of the 
larger species of Willow often found by rivers and lakes 
and frequently used to stabilise riverside soil [50]. Willow 
is also planted in high numbers as a short-rotation cop-
pice (SRC) used for bioenergy, an example of which was 
also examined in this study [51–53].

Soil associated with willow species has previously been 
investigated for the presence of isoprene degrading bac-
teria [42] however, at 30 ppmv, the level of isoprene found 
in the intercellular spaces of leaves is orders of magnitude 
higher than atmospheric isoprene found at ground level, 
with the potential to select for a very different isoprene-
degrading bacterial community than that found in bulk 



Page 3 of 13Gibson et al. Environmental Microbiome           (2021) 16:17  

soil environments [54, 55]. The aim of this study was to 
investigate the phyllosphere of willow using DNA-SIP 
and qPCR methods to identify the bacteria responsible 
for isoprene degradation on the leaves of a high-isoprene-
emitting tree in the Northern Hemisphere.

Materials and methods
Isoprene DNA‑SIP incubations and DNA extraction
For SIP incubations, leaves (approximately 2.5  m above 
ground level) were removed from the south-facing side 
of a willow tree (Salix fragilis), located on the campus of 
the University of East Anglia. Cells were dislodged from 
leaves (approx. 5 g) by ultrasound as described previously 
[40] except using a 1/2 dilution of the minimal medium 
[56]. Cell pellets (retrieved by centrifugation and filtra-
tion as described [40]) were resuspended in 50 ml mini-
mal medium diluted as above and incubated in flasks (2 L 
volume) with isoprene (either unlabelled (Sigma Aldrich, 
Gillingham, UK) or uniformly 13C-labelled, synthesised 
as described [39]) added to approx. 150 ppmv by injec-
tion of vapour through the septum and incubated with 
shaking (150  rpm) at 25  °C. Headspace isoprene con-
centrations were monitored by gas chromatography 
[37] and incubations with labelled or unlabelled sub-
strate were carried out in triplicate. When isoprene was 
depleted, flasks were replenished once to the same iso-
prene concentration, and cells were harvested when the 
microcosms had consumed approx. 0.5  µmol isoprene 
 ml−1 (13–53  days). Cells were harvested by centrifuga-
tion (12,000× g, 20 min, 15 °C) and the cell pellet stored 
at − 20 °C prior to DNA extraction.

Nucleic acid extraction
DNA was extracted using the FastDNA spin kit for soil 
(MP Biomedicals, Solon, OH, USA) following the man-
ufacturer’s instructions, except using two bead beating 
treatments (each 40 s, speed 6.0) in the FastPrep instru-
ment. DNA was quantified using a Qubit 2.0 fluorometer 
(Thermo Fisher, Waltham, MA, USA) following the man-
ufacturer’s instructions.

Stable isotope probing
13C-labelled and unlabelled DNA were separated by 
density gradient ultracentrifugation and fractionation 
(12 fractions per sample) as described previously [39]. 
The relative proportion of DNA retrieved from each 
fraction was plotted against buoyant density, quanti-
fied by refractometry (Reichert AR200, Reichert Ana-
lytical Instruments, Buffalo, NY, USA), (Additional file 1: 
Fig. S1). Based on the data shown in Additional file  1: 
Fig. S1 the fractions containing 13C-labelled (“heavy”) 
and unlabelled (“light”) DNA were identified and used 
for analysis. Of the total DNA recovered from each 

ultracentrifugation tube, on average 1.2 ± 0.47% was 
located in the heavy fractions of 12C-isoprene incuba-
tions, whereas 19.7 ± 2.53% was recovered from the 
heavy fractions of 13C incubations.

Sequencing of DNA
The bacterial communities of the timepoint zero samples 
together with the heavy and light fractions from 12C- 
and 13C-isoprene incubations were profiled by ampli-
con sequencing of the 16S rRNA gene, generated using 
primers 0341F/0785R [57], following the Illumina 16S 
Metagenomic Sequencing Library Preparation (2013) 
protocol [58]. Pooled libraries were sequenced using the 
Illumina MiSeq platform (2 × 250  bp paired-end reads) 
at the Centre for Genomic Research (CGR), Univer-
sity of Liverpool, UK. DNA from the heavy fractions of 
13C-isoprene incubations was also sequenced by shotgun 
metagenomics. Library preparation (insert size < 500 bp) 
and sequencing were conducted by CGR using an Illu-
mina HiSeq 2500 platform in high-output mode (v4) 
(2 × 125  bp paired-end reads). Samples were processed 
with the use of the Nextera XT kit following the Nextera 
XT workflow [59] including an additional purification 
step with the use of Agencourt AMPure XP beads.

16S rRNA gene amplicon sequencing
16S rRNA gene amplicon sequencing data were analysed 
using the Bioconductor package DADA2 ([60]; version 
1.6). Forward and reverse reads were trimmed by 33 
and 37 nucleotides respectively to remove any adapter 
sequences and quality-filtered if their expected error was 
greater than two according to the DADA2 quality analy-
sis. Sequences were then denoised using the estimated 
error rates and resultant reads were dereplicated. Sub-
sequently, chimeric sequences were discarded and the 
DADA2 algorithm was used to infer individual amplicon 
sequence variants (ASVs). ASVs were then taxonomically 
identified with the use of the RDP rRNA database ([61]; 
version RDP trainset 18).

Metagenomic analysis
ofThe phylogenetic community as derived by raw-
metagenomic reads was assessed via Kraken ([62]; version 
1.1.1) and the results fed to Bracken (version 2.5; [63]) 
with a kmer length of 31 to determine relative abundance 
of each taxa. Metagenomic reads were processed and ini-
tial analysis carried out with various modules included in 
the MetaWRAP pipeline as described here ([64]; version 
1.2.1). Sequencing results from the heavy fractions of the 
three 13C-isoprene enriched samples were pooled giving 
a total of 24,849,791 reads and the subsequent assembly 
of these reads resulted in an N50 of 15,027 bp. To achieve 
this, raw, pooled reads were pre-processed with the use 
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of the metaWRAP::Read_qc module with default set-
tings, though the bmtagger step was skipped. Assembly 
was carried out with the metaWRAP::Assembly module 
utilising the assembler metaSPAdes.

Binning of metagenome assembled genomes 
(MAGs) was carried out simultaneously via the 
metaWRAP::Binning module using metaBAT2 ([65]; 
version 2.12.1), MaxBin2 ([66]; version 2.2.6) and CON-
COCT ([67]; version 1.0.0) and the results for each 
compared in order to compile the MAGs of the highest 
quality from each. These MAGs were then reassembled 
to improve completion by mapping reads back to the 
assembled genomes. The completeness, strain hetero-
geneity and contamination of each MAG was assessed 
with CheckM (version 1.0.18; [68]) utilising the lineage-
specific workflow. The metaWRAP::Classify bins module 
[63] was used to assign taxonomy to each MAG. MAGs 
of interest were functionally annotated with PROKKA 
([69]; version 1.14.5) with default settings and the ‘–cen-
tre X’ tag to generate appropriate contig names. MAG 
abundance was measured as genome copies per million 
reads. This measure was obtained by aligning reads to the 
entire indexed metagenomic assembly using the Quant_
bins::MetaWRAP module which then uses Salmon ([70]; 
version 0.14.2) to estimate the abundance of each contig. 
The average abundance of each MAG is calculated by 
taking the length-weighted average of the MAG’s con-
tig abundance [71]. Annotated MAGs were investigated 
with the use of the Artemis genome browser [72]. MAGs 
were investigated for the presence of plasmid DNA with 
the use of the plasmidVerify script [73] developed by the 
Centre for Algorithmic Biotechnology, Saint Petersburg 
State University.

MAGs of interest were further analysed with the MiGA 
pipeline to obtain a higher resolution taxonomic classifi-
cation to species level where possible [74].

isoA qPCR analysis
For qPCR analysis of isoprene degraders in the environ-
ment, samples were obtained from a commercial farm 
in Lincolnshire, NE England (53°18′55″N; 0°34′40″W) 
on adjacent plantations of willow SRC (Salix viminalis), 
miscanthus (Miscanthus x giganteus) and poplar (Popu-
lus nigra). Three different trees each made up the repli-
cates for poplar and willow samples. From each of these 
replicates, three samples per tree were made up of 2  g 
of collected leaf material taken from different sides of 
each tree. Miscanthus leaves were taken from six varying 
locations within the plantation area. DNA was extracted 
from cells associated with leaves as described earlier 
for DNA-SIP experiments. Extracted DNA was cleaned 
of any impurities that may have inhibited PCR activity 
with a second run of the FastDNA spin kit for soil (MP 

Biomedicals, Solon, OH, USA) following the manufac-
turer’s instructions. DNA was quantified as described 
earlier.

isoA sequence abundance in unenriched environmen-
tal samples were quantified by qPCR targeting the isoA 
gene using primers isoA14F and isoA511R [48]. qPCR 
assays were carried out with a StepOne Plus real-time 
PCR instrument (Applied Biosystems, Waltham, MA, 
USA). qPCR reactions (20 μl) contained 1–18 ng of DNA, 
400 nM of each primer and 10 μl of SensiFast SYBR Hi-
ROX kit (Bioline, Memphis, TN, USA). The qPCR reac-
tion consisted of an initial denaturation step at 95 °C for 
3 min, followed by 40 cycles of 95 °C for 20 s, 60 °C for 
20 s and 72 °C for 30 s. Data were acquired at 88 °C for 
15 s to avoid quantification of primer dimers. Agarose gel 
electrophoresis and melting curves obtained by increas-
ing the temperature in 0.3 °C increments from 60 to 95 °C 
were used to determine specificity of qPCR reactions. 
isoA gene copy numbers were determined from qPCR 
of ten-fold dilution series with DNA standards. Stand-
ards were prepared by cloning the isoA gene of Rhodoc-
occus sp. AD45 into the pGEM®T Easy vector (Promega, 
Madison, WI, USA) to be used as template DNA. The 
detection limit was  102 copies per 20  μl reaction. Effi-
ciency of all qPCRs ranged from 96–104%. isoA copies 
were normalised to 16S rRNA gene copy number (with 
the assumption of a rough ratio of 1:1 isoA to 16S rRNA 
gene within a genome) in order to estimate the relative 
abundance of isoprene degrading bacteria in each envi-
ronmental sample.

Number of copies of 16S rRNA genes was determined 
by qPCR using 519F and 907R primers [75]. Reactions 
(20 μl) contained 10–70 pg DNA, 400 nM of each primer 
and 10 μl of SensiFast SYBR Hi-ROX kit. The qPCR reac-
tion consisted of an initial denaturation step at 95 °C for 
3 min, followed by 40 cycles of 95 °C for 20 s, 55 °C for 
20 s and 72 °C for 30 s. Data were collected at 72 °C for 
15  s. Specificity of the qPCR reaction and quantifica-
tion of 16S rRNA gene copy number were determined as 
described above.

Results and discussion
Profiling the bacterial community associated with Salix 
fragilis leaves
To identify the active isoprene degraders associated with 
willow leaves, a DNA SIP experiment was set up using 
13C-labelled isoprene in microcosms consisting of cells 
washed from leaves incubated in minimal medium with 
a headspace of isoprene vapour (150 ppmv). DNA was 
extracted from cells following consumption of approxi-
mately 0.5  µmol isoprene  ml−1 (13–53  days). Density 
gradient ultracentrifugation and fractionation of DNA 
from samples incubated with 12C or 13C isoprene resulted 
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in the recovery of light and heavy fractions from both 
sets of incubations, with heavy buoyant density samples 
from the 13C incubations containing the enriched iso-
prene degrading community. The DNA extracted from 
these samples was analysed by 16S rRNA gene amplicon 
sequencing and shotgun metagenomics.

Following denoising and removal of chimeric 
sequences, a total of 3,368 ASVs were obtained from 16S 
rRNA amplicon sequence data across all samples and 
replicates. The average number of cleaned and processed 
reads used to collate ASVs was 561,187.

In those samples incubated with isoprene, although 
there was a variation between replicates (Fig.  1), unla-
belled samples (12C light and heavy, and 13C light) 
shared many similarities. The labelled, heavy fraction of 
13C-incubated samples were clearly distinct from these 
controls, indicating that the enrichment of isoprene 
degrading bacteria was successful.

Unenriched T0 samples were consistent across all rep-
licates and were dominated by Sphingomonas with an 
average relative abundance (RA) of 33.86 ± 0.57%. Other 
notable taxa present were Microbacteriaceae (RA of 

9.78 ± 1.76%), Hymenobacter (RA of 12.19 ± 1.54%) and 
Methylobacterium (RA of 5.09 ± 0.26%).

Control light fraction samples incubated with 12C iso-
prene were quite distinct between replicates in terms 
of their bacterial diversity. Replicate 1 showed an abun-
dance of Hydrocarboniphaga with an RA of 45.35% 
although the genus was not found in other replicates. 
Mycobacterium was found in replicates 1 and 2 with an 
RA of 6.94% and 13.32% respectively. Comamonadaceae 
was seen in all replicates with low RA in replicates 1 
and 2 (RA of 3.39% and 1.75% respectively) but showed 
higher abundance in replicate 3, with an RA of 29.59%. 
Caulobacter was present in all replicates with an average 
RA of 7.91 ± 5.76%.

In practice, it is expected that DNA would be recovered 
from all fractions during the fractionation process, but 
in the heavy fractions of 12C-incubated samples, the only 
driver for a change in diversity would be caused by a par-
ticularly high GC content in a given taxa, this is the rea-
son why such a low proportion of DNA is recovered from 
these samples (1% in this study). Outside of this occur-
rence, the heavy and light fractions of 12C-incubated 

Fig. 1 Bacterial community profile of DNA retrieved from willow leaf samples analysed by 16S rRNA gene amplicon sequencing. Samples are 
represented as unenriched (T0), enriched (T1), unlabelled (12C), labelled (13C), heavy DNA and light DNA fractions retrieved after DNA-SIP. R1–6 
indicate the six replicate samples analysed. Taxa that are at less than 1% relative abundance in a sample are grouped as ‘Other’. Taxa that were 
of > 5% relative abundance in heavy fractions of 13C-enriched samples are in bold
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samples were expected to be very similar, as can be seen 
in Fig. 1.

The light DNA fractions of samples incubated with iso-
topically labelled 13C isoprene contained the Caulobac-
ter also seen in samples incubated with 12C, with an RA 
of 17.58% and 15.40% in replicates 2 and 3. Other than 
this, the light fractions of samples incubated with 13C do 
show some clear differences. Sphingomonas were present 
across all replicates with an average RA of 7.99 ± 5.06%, 
the presence of Tabiella in replicates 1 and 3 was also 
unique to this group of samples, with an RA of 12.69% 
and 4.46% respectively (Fig. 1).

Finally, the heavy fraction of samples incubated with 
13C isoprene represent those bacteria that utilised the 
labelled isoprene during the process of reproduction and 
growth, confirming that these bacteria have the metabolic 
capacity to assimilate carbon from isoprene. The distinc-
tive bacterial community seen in these samples indicates 
that the selective pressure introduced by the DNA SIP 
experiment was successful in enriching these bacterial 
taxa. A substantial increase in the relative abundance of 
Comamonadaceae was seen in replicates 1 and 2, with 
an RA of 57.48% and 58.33% respectively. Polaromonas 
was also enriched with an RA of 24.78% in replicate 1, 
although this was not present in the other two replicates. 
A very notable shift in the bacterial community was seen 
with replicate 3. Here the abundance of Comamona-
daceae was not observed, and instead, there was a higher 
abundance of Methylobacterium (RA of 26.48%) which 
was not seen in any of the other enriched fractions or 
samples. However, as mentioned earlier, it was present in 
unenriched T0 samples (RA of 5.09 ± 0.26%). A substan-
tial increase in abundance of Mycobacterium with an RA 
of 45.39% was also observed (Fig. 1).

Further analysis of the bacterial community struc-
ture was undertaken by examining metagenomic data 
obtained after DNA-SIP incubations as described in 
Materials and Methods. These data were analysed and 
taxonomically classified using Kraken [62] and revealed 
the presence of a number of genera belonging to the 
family Comamonadaceae, with Acidovorax (RA of 
14%), Variovorax (RA of 10.83%), Polaromonas (RA of 
3.8%), Hydrogenophaga (RA of 3.2%), Ramlibacter (RA 
of 2.7%) and Rhodoferax (RA of 2.5%) being recovered 
in 13C-labelled, heavy DNA (Fig.  2). The presence of a 
number of different genera of the Comamonadacea in 
this phyllosphere environment mirrors a previous study 
which focused on the bacterial community of soil associ-
ated with a willow species where Comamonadaceae made 
up 21–30% of the relative abundance in 13C-incubated 
heavy samples [42]. Although the two environments are 
different, this shared abundance might suggest members 
of the phyllosphere community are being transported 

to the bulk soil environment, possibly though rainfall or 
falling leaves.

Bradyrhizobium from the order Rhizobiales which was 
observed after 16S rRNA gene amplicon analysis (Fig. 1) 
was also observed after metagenome analyses with an RA 
of 2.23% (Fig.  2). Mycolicibacterium had been labelled 
with an RA of 12.72%. This genus, which has recently 
been differentiated from the genus Mycobacterium [76], 
was also found in the heavy DNA fractions arising from 
13C-labelled SIP incubations after 16S rRNA gene ampli-
con analysis (Fig.  1). Mycobacterium itself made up 
4.52% of the metagenomic community. Previously, isoA 
sequences sharing high sequence similarity with the isoA 
of Mycobacterium AT1 were estimated to make up half 
of all isoA sequences present on the leaves of sampled 
willow leaves [48]. However, this is the first instance of 
Mycobacterium being significantly enriched in 13C-incu-
bated heavy fractions from a DNA SIP experiment with 
terrestrial samples.

Methylobacterium, which was estimated to be present 
at high relative abundance in 16S rRNA gene amplicon 
analysis of the heavy DNA fraction from 13C isoprene-
incubated replicate 3, also featured in the metagen-
ome analysis with an RA of 1.5%. The appearance of a 
13C-labelled Methylobacterium here is interesting, since 
Methylobacterium species have previously been reported 
to grow on isoprene [77, 78] but are still quite rare in 
studies examining isoprene-degrading communities in 
the environment.

Without an extant example of the strains that make 
up the Methylobacterium ASVs, it cannot be said with 

Fig. 2 Relative abundance of bacterial taxa retrieved after analysis 
of the metagenome from pooled heavy fractions from 13C-labelled 
willow leaf samples retrieved after DNA-SIP. Metagenome data were 
analysed and classified taxonomically using Kraken [60]. All taxa that 
were at less than 1% relative abundance or could not be classified in 
the 13C-labelled DNA have been grouped as ‘Other’
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absolute certainty that they do have the metabolic capa-
bility to degrade isoprene, but their presence in the heavy 
fraction of 13C isoprene-enriched samples (while not 
abundant in the heavy 12C controls) suggests they have 
indeed utilised the 13C-labelled isoprene during growth. 
However, there is the possibility that labelled by-products 
of isoprene metabolism produced by other organisms in 
the microcosm during isoprene degradation could have 
been assimilated by Methylobacterium. As the only meth-
ylotroph linked to isoprene degradation, further analysis 
confirming Methylobacterium to be an isoprene-degrad-
ing bacterium would be of great interest.

Analysis of an abundant Mycobacteriaceae MAG containing 
two isoprene monooxygenase gene clusters
Contigs obtained from metagenomic data were binned 
and a number of metagenome assembled genomes 
(MAGs) were recovered (Table 1). Of these MAGs, one 
identified as belonging to the family Mycobacteriaceae, 
was selected for further investigation due to the presence 
of a complete isoprene (iso) metabolic gene cluster. This 
MAG was the most abundant of those recovered with 
325 genome copies per million reads. On further investi-
gation using the MiGA pipeline [74], the MAG was iden-
tified to genus level as Mycobacterium. 

Table 1 Statistics for the completeness and abundance of recovered MAGs

Abundance Ranking Completeness (%) Contamination (%) N50 Size (Mbp) ID

1st 99.62 1.31 426,339 7.4 Mycobacteriaceae

2nd 84.53 2.30 28,949 4 Comamonadaceae

3rd 78.65 1.48 19,712 3.4 Comamonadaceae

4th 71.3 1.52 21,622 5 Comamonadaceae

5th 92.4 1.12 70,582 4.4 Comamonadaceae

6th 92.75 4.48 56,291 6.1 Comamonadaceae

7th 89.21 2.45 47,756 4 Comamonadaceae

8th 88.71 2.81 33,346 4.3 Comamonadaceae

9th 98.86 0.17 91,899 4.8 Methylobacteriaceae

10th 89.89 5.65 114,304 8.7 Myxococcales

11th 92.9 5.46 59,280 4.8 Comamonadaceae

12th 94.35 1.02 64,831 3.9 Burkholderiales

13th 98.77 0.80 142,624 4.2 Xanthomonadaceae

14th 77.75 8.04 36,155 3.9 Comamonadaceae

15th 98.98 0.76 201,989 3.3 Microbacteriaceae

16th 98.77 1.31 170,797 3.8 Sphingomonadaceae

17th 90.67 3.08 28,589 5.7 Burkholderiales

18th 87.71 0.53 197,524 2.8 Caulobacteraceae

19th 97.15 7.72 93,325 4.1 Caulobacteraceae

20th 95.4 1.74 263,888 4.2 Bradyrhizobiaceae

21st 91.19 13.04 33,095 3.2 Caulobacteraceae

22nd 96.75 1.15 93,753 3.4 Xanthomonadaceae

23rd 96.77 2.96 58,108 8.5 Proteobacteria

24th 93.05 2.47 50,463 8.2 NA

25th 88.3 3.19 14,127 3.5 Alphaproteobacteria

26th 88.11 0.93 49,319 3.8 NA

27th 91.77 0.69 14,215 3.3 Nocardioidaceae

28th 91.73 3.23 29,968 3.1 Xanthomonadaceae

29th 91.33 1.21 15,927 5.7 Mycobacteriaceae

30th 82.26 9.74 5,017 4.4 Bradyrhizobiaceae

31st 74.49 1.32 5,029 3.2 Xanthomonadaceae

32nd 73.68 1.85 3,730 2.5 Alphaproteobacteria

33rd 80.6 0.49 6,496 4.5 Bacteroidetes

34th 81.82 1.21 3,958 3.3 Sphingobacteriaceae
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The Mycobacterium MAG has two non-identical cop-
ies of the iso gene cluster isoABCDEFGHIJ (referred to 
as iso cluster 1 and iso cluster 2), encoding enzymes of 
the isoprene degradation pathway (reviewed in [41, 43]), 
together with associated genes aldH1, CoA-DSR, gshB 
and marR, encoding an aldehyde dehydrogenase, a CoA-
disulfide reductase, a glutathione synthase and a putative 
transcriptional regulator respectively (Fig. 3A, B).

To rule out the possibility that one of these duplicate 
clusters was an artefact of assembly or contamination, 
the contigs containing both clusters were investigated for 
the presence of essential marker genes, and each marker 
gene was analysed for possible duplication. Both contigs 
were of substantial length (995,005  bp and 363,049  bp) 
with coverage > 400× , and contained single copies of 
marker genes consistent with the genome of a mem-
ber of the Mycobacteriaceae, which strongly suggested 
that there was no contamination and that this MAG did 
indeed contain two iso gene clusters. This Mycobacte-
rium MAG was also investigated for genes that would 

indicate the presence of a plasmid but none were found, 
suggesting that both iso gene clusters are located on the 
genome and are not plasmid-borne as found in Rhodoc-
occus strain AD45 and Variovorax strain WS11 [37, 79], 
two isoprene degrading strains that contain duplicated 
genes within a single isoprene degradation cluster, but do 
not contain duplicate copies of the full iso gene cluster.

The translated polypeptide sequences of iso genes from 
both clusters showed a high degree of identity (> 75% 
amino acid identity) to the corresponding polypeptides 
found in the isoprene-degrading Mycobacterium AT1 
[36], although Mycobacterium AT1 also contained only 
one copy of the iso metabolic gene cluster (Additional 
file 1: Table S1).

Identification of a propane monooxygenase gene cluster 
in Mycobacterium
The genome of the recovered Mycobacterium MAG 
was investigated for other metabolic genes of inter-
est and a full propane monooxygenase gene cluster was 

Fig. 3 Isoprene degradation gene clusters recovered from MAGs assembled from heavy DNA incubated with 13C isoprene. A, B iso clusters 1 and 
2 recovered from a Mycobacterium MAG assembled from heavy DNA retrieved after DNA-SIP. Genes encoding IsoMO (isoABCDEF) are coloured in 
red. Adjacent genes isoGHIJ and the duplicate gene isoH2 encode a CoA transferase, dehydrogenase and two glutathione transferases involved 
in the subsequent steps of isoprene metabolism. Genes aldH1, CoA-DSR, gshB and marR encode an aldehyde dehydrogenase, a CoA-disulfide 
reductase, a glutathione synthase and a putative transcriptional regulator respectively. Adjacent genes that are not yet known to be involved 
in isoprene degradation are coloured in white. (696 048—Hypothetical protein; 699 065—Hypothetical protein; 699 453—Hypothetical 
protein; 700 611—Triacylglycerol lipase; 702 140—Acetyl-CoA-acetyltransferase; 703 826—AraC family transcriptional regulator; 226 978—
Acetyl-CoA-acetyltransferase; 228 652—Hypothetical protein; 241 033—Hypothetical protein; 241 556—Hypothetical protein; 242 962—CaiB/
BaiF family protein; 244 166—FAD-dependant oxidoreductase). Regulatory genes are shown in black. C A propane monooxygenase gene cluster 
recovered from a Mycobacterium MAG. Genes associated with propane metabolism are coloured in blue. Genes mimABCD encode an oxygenase 
large subunit, a reductase, an oxygenase small unit and a coupling protein respectively, making up the propane monooxygenase, with groEL 
encoding an associated chaperonin [75, 76]. Adjacent genes not involved in propane metabolism are coloured in grey
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recovered which comprised of genes mimABCD and the 
propane monooxygenase operon transcriptional regula-
tor mimR, along with the associated chaperonin groEL 
(Fig.  3C) [80]. The propane monooxygenase is a binu-
clear iron monooxygenase encoded by genes mimABCD 
that encode an oxygenase large subunit, a reductase, an 
oxygenase small unit and a coupling protein respectively. 
Such gene clusters share high amino acid identity to the 
propane monooxygenase encoded by the prmABCD gene 
clusters found in Rhodococcus sp. strain RHA1 [81] and 
Gordonia sp. strain TY‐5 [82]. The propane monooxy-
genase in these bacteria is essential for propane and ace-
tone metabolism and is capable of oxidizing phenol to 
hydroquinone in the presence of acetone [83]. However, 
the propane monooxygenase found in Mycobacterium 
AT1 did not allow growth on phenol [36].

The recovered MimABCDR polypeptides all shared a 
high amino acid identity (> 97%) with the corresponding 
polypeptides found in Mycobacterium AT1 (Additional 
file 1: Table S2), a bacterium that could grow on propane 
and ethane [36, 84]. However, amino acid identity (AAI) 
analysis of the genome as a whole gave a shared iden-
tity of 92.09%, indicating that although they are closely 
related, they are not the same species (same species share 
an AAI of 95% or above). Additional file 1: Table S2 also 
shows comparison of Mim polypeptides to the well-
characterised Mycobacterium smegmatis strain  mc2155 
in which, alongside propane and acetone metabolism, 
mimABCD encode enzymes responsible for the regiose-
lective oxidation of phenol to hydroquinone, similar to 
those of Rhodococcus sp. strain RHA1 and the Gordonia 
sp. strain TY‐5 mentioned earlier [80, 83].

Recovery of a Methylobacterium MAG, present 
in the isoprene‑degrading community as revealed 
by DNA‑SIP
Another MAG, identified as Methylobacteriaceae, 
showed high (98.86%) completion and low (0.17%) con-
tamination (Table 1). It was also one of the most abun-
dant MAGs recovered from metagenome data, following 
Comamonadaceae and Mycobacterium, with 49 genome 
copies per million reads. Methylobacterium, a member of 
the Methylobacteriaceae family, were found to be nota-
bly enriched in the heavy fraction of one of the 13C-incu-
bated samples in 16S rRNA analysis (Fig. 1), however this 
MAG contained no iso genes or obvious alternatives that 
might provide the microbe with the metabolic ability to 
degrade isoprene.

Further analysis recovered a full mxa methylotro-
phy gene cluster encoding a calcium-containing metha-
nol dehydrogenase (mxaFJGIRSACKLDEHB) with an 
upstream mxaW, a methanol regulated gene of unknown 
function [85, 86]. In addition, six genes required for 

pyrroloquinoline quinone (PQQ) synthesis were found, 
(pqqABC/DE) and (pqqFG)[86]. Genes mxbDM and 
mxcQE involved in transcriptional regulation of the 
methanol oxidation system were also present. Compari-
son between these genes and the same clusters from the 
well characterised Methylobacterium extorquens AM1 
can be seen in Additional file 1: Table S3 [87].

Abundance of bacteria associated with the leaves of willow 
and other plant species encoding for the isoprene 
monooxygenase alpha‑subunit
The DNA-SIP experiments described earlier enabled the 
identification of active isoprene-degrading bacteria on 
the surface of willow leaves. Analysis of MAGs retrieved 
from heavy DNA after DNA-SIP experiments also con-
firmed that isoprene-degraders present contained iso 
metabolic gene clusters with significant identity to those 
of well-characterised isoprene-degraders and that isoA, 
encoding the putative active site of IsoMO was again 
highly conserved in these MAGs. In order to gain initial 
insights into the relative abundance of isoprene degrad-
ers on willow leaves and to compare with other tree 
species, the abundance of isoA-containing bacteria asso-
ciated with leaves of the willow bioenergy crop Salix 
viminalis, was investigated with the use of qPCR follow-
ing methods described previously [48]. For comparison, 
the leaves of the high isoprene-producing crop Poplar 
nigra and the non-producer Miscanthus x giganteus were 
also analysed. Results showed that the willow leaves sam-
pled harboured an average of 1379 ± 1030 isoA sequences 
per million copies of 16S rRNA genes, indicating an 
average of ~ 0.14%. In comparison, leaves of the high 
isoprene-emitting poplar species contained 1473 ± 911 
isoA sequences per million 16S rRNA genes, equating to 
approximately 0.15%. The non-emitting Miscanthus spe-
cies showed 801 ± 704 isoA sequences per million 16S 
rRNA genes, representing about 0.07% (Fig. 4). While the 
average number of 16S rRNA genes per species can vary 
widely between taxa and it cannot be assumed that isoA 
genes are present in bacterial genomes in a 1:1 ratio with 
16S rRNA genes, this metric can only act as an approxi-
mation of the abundance of isoprene degrading bacteria 
in the wider bacterial community. As such, these results 
demonstrate a much higher abundance of isoA-contain-
ing bacteria in isoprene-rich leaf environments compared 
to leaves of a plant that does not emit isoprene. How-
ever, in comparisons between species that emit isoprene, 
there does not appear to be a linear correlation between 
isoprene production and number of isoprene degrading 
bacteria. It has been reported that Populus nigra emits 
29–76  μg   g−1 (dry weight)  h−1 of isoprene, while Salix 
viminalis emits 80–130 μg  g−1 (dry weight)  h−1 [49, 88–
90]. Estimated numbers of potential isoprene degrading 
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bacteria found in willow samples however were margin-
ally lower than those in poplar samples. This preliminary 
examination of the abundance of isoA sequences associ-
ated with isoprene-degrading trees confirms at least their 
presence and relatively high abundance when compared 
to a non-isoprene producing crop plant (Miscanthus). 

However, these data need to be interpreted with caution 
since the qPCR data were highly variable between plants 
and this may have been due to the ease (or otherwise) 
with which bacteria can be removed from different types 
of leaves. Our DNA-SIP study and isoA assays provide 
proof-of principle for the study of isoprene cycling in the 

0

2000

4000

6000

Misc
an

thu
s

Pop
lar

 R
1

Pop
lar

 R
2

Pop
lar

 R
3

W
illo

w R
1

W
illo

w R
2

W
illo

w R
3

Replicates

is
oA

 p
er

 m
ill

io
n 

co
pi

es
 o

f 1
6S

 rR
N

A
 g

en
e

Species Miscanthus Poplar Willow
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environment and clearly show that isoprene-degrading 
bacteria are present in significant numbers in these envi-
ronments but in future, a more systematic, quantitative 
study of isoprene-degrading bacteria, comparing a wide 
variety of high- and low-isoprene emitting trees, will be 
required. This could include analysis of transcripts to 
look more closely at the difference in isoprene degrading 
activity between such species.

Conclusions
Focussed metagenomics using DNA-SIP with 
13C-labelled isoprene and leaf washings from a high 
isoprene-emitting willow tree enabled identification 
of active isoprene-degrading bacteria from this envi-
ronment. Active isoprene-degraders included various 
members of the Comamonadaceae family and the Act-
inobacteria phylum. Analysis of metagenome sequence 
data from heavy DNA retrieved after SIP experiments 
enabled the assembly of a MAG from a putative-isoprene 
degrading Mycobacterium which contained at least two 
soluble diiron-containing monooxygenase gene clusters; 
duplicate copies of the iso metabolic cluster (isoABCDEF-
GHIJ), together with a putative propane monooxygenase 
gene cluster (mimABCD). Also of particular interest was 
a putative isoprene degrading Methylobacterium which 
warrants further study. These cultivation-independent 
approaches provide DNA sequence data to assist targeted 
isolation of isoprene degrading bacteria from the phyl-
losphere and provide proof-of-concept for more detailed 
quantitative studies on isoprene-degraders present on 
the leaves of high-isoprene-emitting trees.
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