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Abstract 
The investigation conducted throughout this doctoral thesis covers the underpinning science of 

synthesis, assembly and characterisation of novel polysaccharide-based materials. Within the 

broad chemical family of "sugars", polysaccharides are excellent biopolymers for hydrogel 

preparation. Innovative glycobiology techniques such as enzymatic catalysis can be used for the 

functionalisation of these materials and the introduction of specific and tuneable properties.  

Cellodextrin phosphorylase from Ruminiclostridium thermocellum (CDP) is a carbohydrate-active 

enzyme able to catalyse the synthesis of small fragments of cellulose. The enzyme’s loose 

specificity towards donor and acceptor substrates allows its exploitation for the introduction of 

functional groups in a regiocontrolled manner. Therefore, understanding the structural details of 

substrates molecular recognition is fundamental for a rational design of novel cellulose derivatives.  

We applied several NMR approaches and computational tools to unveil the mechanistic details of 

substrates recognition. The investigation highlighted differences in the binding epitopes of cognate 

and non-cognate donor and acceptor substrates, and the enthalpic contribution in the energy of 

binding played by inorganic phosphate.  

CDP has been used for the synthesis of a series of cellodextrin derivatives decorated with fluorine 

atoms. We combined state-of-the-art NMR spectroscopy (solution and solid-state) methodologies 

with PXRD technique to gain the molecular details of the novel materials self-assembly. In addition, 

we developed an NMR-based strategy to discern between surface/disordered and core/ordered 

domains.   

Great advances in polymer preparation for hydrogels needs to be followed by an understanding of 

the processes of gelation. Importantly, little is known about how the interactions between the gel 

network and the surrounding water control the gelation process. We developed a solution state 

NMR methodology to monitor water (and co-solvents) in hydrogel systems. The methodology is 

based on STD NMR, a ligand-based approach to monitor water-surface interactions. Our new 

protocol, called Spin Diffusion Transfer Difference (SDTD), enabled us to uncover changes in water 

structuration in hydrogels, giving insight into the role played by solvent in gelation. 
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1. Introduction: Carbohydrates – from biological 

systems to building blocks for novel materials 

1.1 Objectives of this thesis 

The work presented in this thesis is the outcome of a fruitful and exciting collaboration between 

multiple partners across different institution and disciplines. Since the really beginning of my PhD, 

I have been participating in the GelEnz scientific platform, which involves academics and industrial 

partners including the University of East Anglia (UEA), the John Innes Centre (JIC), the University of 

Bristol, the University of Bath, Unilever and Croda. Thanks to this, I have been very frequently in 

touch with research groups with expertise in different areas, taking small or large part in several 

collaborations.  

Principal aim of the GelEnz network is to develop bio-based interpenetrating gels network from 

starch and cellulose feedstocks, otherwise destined to waste. In specific, Professor Steve Eichorn 

(University of Bristol and leader of the GelEnz platform), as well as Professor Janet L. Scott and 

Professor Karen Edler (University of Bath) have ongoing research interests in the development of 

novel cellulosic materials and composites combining processing and chemical modifications. 

Together, they joint expertise in material characterisation with a wide range of length scale – 

from bulk properties to supramolecular arrangement – using techniques such as rheology, 

Raman spectroscopy and scattering techniques (synchrotron x-ray and neutron diffraction).  

In addition, the research group of Professor Robert A. Field (previously based at the John Innes 

Centre and recently moved the University of Manchester) has strong expertise on glycobiology and 

structural biology and is focused on the combination of chemical and enzymatic approaches for 

the tailored synthesis of oligo- and polysaccharides. In particular, they play a field leading role in 

the use of glycosyl phosphorylase (GPs) for the synthesis of novel oligosaccharides. 

Under the framework of this wide-ranging research project, I have decided to include in this 

dissertation the three biggest and most relevant works from a biological and material development 

and characterisation prospective. Hence, we have addressed: 
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1) The structural elucidation of the binding of cognate and non-cognate substrates with the 

wild-type cellodextrin phosphorylase (CDP, EC 2.4.1.49: β-1,4-glucan linkage-dependent).  

2) The detailed molecular level understanding and structural characterisation of novel 

cellodextrin derivatives combining solution and solid-state NMR spectroscopy and PXRD. 

3) The validation and optimisation of a novel NMR-based protocol for the characterisation of 

the degree of solvent structuration for polysaccharides-based gels prepared in deuterated 

solvents.  

To address the objectives of this thesis, we have taken advantage of the experience gained by the 

group in high-resolution Nuclear Magnetic Resonance (NMR) spectroscopy, computational 

methods such as protein-ligand docking and long-rage characterisation of material based on PXRD. 

In particular, Saturation Transfer Difference NMR spectroscopy and transferred-NOE techniques 

have been employed for the binding studies and combined with protein-docking calculations, 

while 1H-13 CP/MAS NMR and PXRD were used to obtain material fingerprints.  

1.2 Introduction 

1.2.1 A multidisciplinary approach to science 

During these 4 years, I had the terrific opportunity to be involved with the GelEnz project, 

a platform aiming to provide a multi-disciplinary approach in solving a global sustainability issue. 

The many projects coming and going have been for me an exceptional training in an extremely 

inspirational environment. All of this in the framework of helping to resolve the societal problem 

of food crops waste, that could be ‘recycled’ into sustainable alternative for ingredients currently 

used in manufacturing. 

To observe and practice different approaches, as well as to learn and deepen concepts with a wide 

arm of reach, shaped my scientific mindset. All the different bits and pieces came together to shape 

not only this dissertation, but my future approach to science. Hence, if you wonder which was the 

recipe for my PhD – here it is: chemistry, biochemistry, glycobiology, structural biology, material 

science, physics, mathematics, geometry, a pinch of informatic, with a focus on circular economy 

and waste reduction and management. 
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Taking inspiration from Louise Pasteur, who once said: “In the fields of observation chance 

favours only the prepared mind”, I see no more prepared mind that the one able to observe things 

from different perspectives. 

1.2.2 Chemistry of carbohydrates 

Carbohydrates are ubiquitous in nature in different combinations, from single monosaccharides to 

extremely complex glycoconjugates. They are the most abundant class of bioorganic compounds 

in the biological world, and their complexity reflects the crucial functions they play in vivo 

(from structure and storage to specific signalling).  

The name carbohydrate derives from “hydrates of carbon” due to the consistent 1:2:1 molar ratio 

between carbon, hydrogen and oxygen with empirical formula Cn(H2O)n. They are constituted by 

several hydroxyl group and a carbonyl functional group such as an aldehyde (aldoses) or a ketone 

(ketoses). In addition, different number of sugar units can condensate to form mono-, di-, oligo- or 

polysaccharides.  

If we take the glyceraldehyde molecule as a prototype of carbohydrate, we see that it has a 

stereogenic centre in C2, hence the molecule is chiral and presents two enantiomers (Figure 1.1). 

Based on the Fischer projection, the D-/L- nomenclature for the enantiomers is assigned by looking 

at the hydroxyl group at the stereogenic centre that is most remote of the carbonyl function: 

when it is at the right-hand side, the D- enantiomer is defined, while when on the left-hand side, 

we are in the presence of the L-enantiomer. The D-enantiomeric configuration is the most 

commonly found in nature. The D-/L- nomenclature does not give information on the absolute 

structure of the molecule. Alternatively, the R-/S- notation based on the Cahn-Ingold-Prelog (CIP) 

rules allows the exact assignment of each stereogenic centre. The introduction of a second or more 

steric centre give rise to 2n (n= number of steric centre) stereoisomers (two pairs of enantiomers), 

defined as diastereomers. Diastereomers that exhibit the opposite configuration at only one of the 

tetrahedral stereogenic centres are called epimers (i.e. D-glucose and D-mannose). 

Importantly, diastereomers show different physical parameters, while enantiomers exhibit the 

same ones (besides enantioselective interactions with other chiral molecules or polarized light).  
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Figure 1.1: Carbohydrates stereochemistry in Fisher projections, with highlighted differences 

between aldoses and ketoses and D-/L- nomenclature. The steric centre in D-glyceraldehyde is 

signed with a star (the steric centres in the other molecules are not signed).  

Carbohydrates present an equilibrium between linear and ring structure, as the hydroxyl groups in 

C4 or C5 can perform an intramolecular nucleophilic attack to the carbonyl function forming a cyclic 

hemiacetal or hemiketals with an additional stereogenic centre at the C1 position. 5- or 6- member 

heterocycles (called “furanose” and “pyranose” for their similarity to furan and pyran, respectively) 

are generally more energetically stable. In solution, the rings are found in equilibrium between two 

epimeric forms. Formation of furanose and pyranose rings determine the creation of an anomeric 

centre, which coincides with C1 in hemiacetals and with the carbon derived from the carbonyl of 

the ketone in hemiketals (i.e. C2 in D-fructose). The stereocenter has an anomeric reference atom, 

which is the farthest atom from the anomeric carbon in the ring (i.e. the configurational atom that 

defines the sugar as D- or L-, i.e. C5 in α-D-glucopyranose).  

The configurational relationship between the anomeric centre and the anomeric reference atom 

defines the so-called alpha (α) and beta (β) anomers. Looking at the cyclic Fisher projection, when 

the exocyclic oxygen atom at the anomeric centre and the exocyclic oxygen at the anomeric 

reference atom are in a cis configuration, the anomer is α; when they are trans, the anomer is β. 

Hence, the same absolute configuration for the anomeric carbon and the reference atom (both R 

or S) defines the α anomer, while opposite configuration (one R and the other S, or vice versa) 

defines the β anomer.1 
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Anomers are diastereomers and therefore have different physical properties (i.e. solubility, 

melting point and specific rotation). 

In aqueous solution, only 0.002% of D-glucose exists in the open-chain form, and β-D-glucose is 

about twice the concentration (62%) than α-D-glucose (38%). The equilibrium between the two 

configuration is reached via the mutorotation phenomenon (Figure 1.2).  

 

Figure 1.2: Schematic representation of the interchange between the α- and β-configuration in 

D-glucose in solution achieved via the mutorotation phenomenon.  

To understand why the β-configuration is more stable than the α, there are some additional factors 

that we need to take into consideration. First, as for cyclohexane, D-glucopyranose can adopt 

several conformations (i.e., chair, half-chair, boat, twisted boat, envelope): conformational 

isomers that can interchange without breaking any chemical bonds (Figure 1.3). The chair 

conformation is normally the most stable, where the ring substituents can adopt an axial or 

equatorial position (parallel or perpendicular to a vertical axis drawn through the ring, 

respectively). The equatorial substituents are usually slightly above or below a virtual horizontal 

plane. The angle between axial and equatorial substituents is almost a tetrahedral angle (109.5°). 

Substituents in equatorial position present lower steric hindrance; consequently, the equatorial 

position of the bulky -CH20H group and the hydroxyl group in C1 in glucopyranose are favoured. 

The glucopyranose chair conformation exists in two forms (4C1 and 1C4, where C = chair) with an 

energy difference of 42 kJ/mol2 and that may interchange with each other, with consequent 

rearrangement of the bonds from equatorial to axial (Figure 1.3). Taking the ring-oxygen and C2, 

C3 and C5 carbons as reference plane, the conformation 4C1 is defined with C1 and C4 are below 

and above this plane, respectively; otherwise it is labelled 1C4. 
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Figure 1.3: Diagram of the pseudorotational itinerary of the pyranose ring according to Jeffrey and 

Yates3, based on Cremer-Pople ring puckering coordinates 𝜃 and Φ.4 The polar 4C1 (𝜃 = 0°) and 1C4 

(𝜃 = 180°) chairs, together with the 12 equatorial puckers (𝜃 = 90°) are shown, while the 

envelope (E) and half-chair (H) conformations are not shown.  

In addition, the dipole moments of the 𝐶(5) → 𝑂௥௜௡௚ and the 𝐶(1)௔௡௢௠௘௥ → 𝑂𝐻 are nearly parallel 

and point into the same direction (Figure 1.4, a). This determines a hyperconjugation between the 

lone pair electrons in the non-bonding orbital (𝑛) of the ring oxygen and the antibonding 𝜎∗ orbital 

of the 𝐶(1) − 𝑂ଵ bond (𝑛 → 𝜎∗). This so-called endo-anomeric effect which favours the axial 

configuration in C1 position and therefore the α-anomer. This is compensated by the 

hyperconjugation between the lone pair electrons of the non-bonding orbital (np) of the glycosidic 

oxygen (Og) and the antibonding 𝜎∗ orbital of the 𝑂ହ − 𝐶ଵ bond (Figure 1.4, b), the so-called 

exo-anomeric effect. This effect favours the β-configuration at the anomeric carbon. 
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Figure 1.4: Schematic representation of the stereoelectronic genesis of a) the endo- and b) the 

exo-anomeric effect. 

Disaccharides, oligosaccharides and polysaccharides are two or more monosaccharides linked 

together through glycosidic linkages. The structure of the polysaccharides depends on 1) the 

monosaccharide sequence, 2) the site and stereochemistry (α or β) of the glycosidic linkage and 

3) the degree and type of substitution of hydroxyl groups (such as O-methylation or O-sulphation).  

Another essential feature of carbohydrates is their high conformational flexibility. The glycosidic 

linkage torsional angles 𝛷 and 𝛹 define the relative orientations of two consecutive 

monosaccharide units in a disaccharide moiety around the glycosidic, while the 𝜔 torsional angle 

is associated with rotation at the hydroxyl group (rotation around 𝐶ହ − 𝐶଺bonds, Figure 1.5). 𝛷   and 

𝛹 are defined differently in crystallography and NMR spectroscopy; in the first, 

𝛷 ≡ 𝑂ହ − 𝐶ଵ − 𝑂௚ − 𝐶௫  and 𝛹 ≡ 𝐶ଵ − 𝑂௚ − 𝐶௫ − 𝐶(௫ାଵ) (where, 𝑂ହ is the oxygen ring, 𝐶ଵ is the 

anomeric carbon, 𝑂௚ is the glycosidic oxygen and 𝐶௫  is the carbon belonging to the following 

residue, linked to the glycosidic oxygen), while in the NMR definition 𝛷 ≡ 𝐻ଵ − 𝐶ଵ − 𝑂௚ − 𝐶௫  and 

𝛹 ≡ 𝐶ଵ − 𝑂௚ − 𝐶௫ − 𝐻௫ (where 𝐻ଵis the hydrogen attached to the anomeric carbon).  
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Figure 1.5: 𝛷, 𝛹 and 𝜔 dihedral angles that define the overall conformation of oligosaccharides. 

In the example: maltose disaccharide. 

The overall conformation of the oligosaccharide chain is therefore determined by the set of 𝛷, 𝛹 

and 𝜔 angles. The energetically favourable conformations of a carbohydrate may be identified on 

Carbohydrate Ramachandran plots (CARP, Figure 1.6), which evaluates the preferred 𝛷, 𝛹 values 

of the glycosidic bond torsion angles. The energy of the linkage, the energetically 

favourable/unfavourable and the allowed or forbidden regions, depend on the types of 

monosaccharides involved, on the kind of linkage and on the degree of branching of the 

oligosaccharide. 

 

Figure 1.6: Example of (𝛷, 𝛹) maps for D-cellobiose with the glycosidic linkage energetic minima 

represented in green. Source: Lutteke et al., 2004 (http://www.glycosciences.de/)5 

As described above for the anomeric position, also the exocyclic hydroxymethyl group in 

hexopyranoses presents conformational preferences. Although the ω-angle can adopt three stable 
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staggered rotamers, the gauche-gauche (gg), gauche-trans (gt) and trans-gauche (tg) conformers 

characterised to the 𝑂ହ − 𝐶ହ − 𝐶଺ − 𝑂଺ and 𝐶ସ − 𝐶ହ − 𝐶଺ − 𝑂଺ dihedral angles (Figure 1.7), it 

shows propensity to adopt a gauche conformations. For gluco- and mannopyranosided, almost 

equal populations of gt and gg rotamers with nearly complete absence of the tg rotamer (both in 

solid and solution phases) was showed. In contrast to the anomeric effect, the gauche effect is 

principally caused by solvation and electrostatic interactions6, rather than steric or 

stereoelectronic effects. 

 

Figure 1.7: Newman projections of the gauche-gauche (gg), gauche-trans (gt) and trans-gauche (tg) 

rotameric conformers of the 𝜔 dihedral angle.  

Polysaccharides can form a myriad of complex structure due to the existence of two α and β 

anomeric configurations, the possibility to form glycosidic-linkage at different positions (1→1, 2, 3, 

4, 6 for hexopyranose), the changes in ring size (pyranose/furanose), and the introduction of 

branching and additional site-specific substitutions such as acetylation, phosphorylation or 

sulfation. Importantly, even a subtle change in the structure of the monosaccharide unit or the 

type of glycosidic linkage has a profound effect on the properties and functions of the 

polysaccharides. Oligosaccharides or glycans can be obtained by isolation from natural sources or 

prepared enzymatically and/or chemically, and the precise synthesis of a non-natural 

polysaccharides has potential application in the field of medicine, pharmaceutics, cosmetics and 

food industries. Nonetheless, the chemical synthesis of oligosaccharides remains challenging.  

1.3 Challenges in the synthesis of carbohydrates 

Since 1941, when it was first attempted to synthesise cellulose,7 many efforts have been devoted 

to the synthesis of polysaccharides with a well-defined structure. The great challenges in 

carbohydrate chemical synthesis are to achieve stereoselectivity (formation of the glycosidic 
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linkage with either the α - and β- configuration) and regioselectivity (introduction of the glycosidic 

linkage only in one of the several available hydroxyl groups), which in turn depends on the choice 

of substrates (with appropriate leaving and protecting groups), catalysts and experimental 

conditions such as solvent, temperature and atmosphere.8, 9 In general, the total synthesis of 

glycans sees the formation of a glycosidic bond between a glycosyl donor and an acceptor 

molecule. Important steps are: 1) the activation of a glycosyl donor by introducing a leaving group 

(X) at the anomeric carbon level; 2) the protection of the hydroxyl groups in both the donor and 

the acceptor molecules, leaving free only the one which should participate to the reaction. 

This second step determined the regioselectivity in the glycosidic bond formation.10 One approach 

is the so-called cationic ring-opening polymerisation of anhydrosugar monomers.11 Based on this 

approach, cellulose with degree of polymerisation (DP) equal to 19.3 was synthesised by 

polymerisation of 3,6-di-O-benzyl-α-D-glucose 1,2,4-orthopivalate and the subsequent removal of 

the protective group.12 

However, manual synthesis of oligosaccharides requires multistep protection-deprotection 

reactions, leading to undesired side-products. Furthermore, perfect stereocontrol of glycosidic 

linkages has not often been achieved.13 To overcome the manual synthesis limits, automated 

approaches for oligosaccharide synthesis have been developed. Early attempts to advance in the 

automated chemical syntheses in solution were performed by Takahashi and Wong, and, in 2012, 

Seeberger et al., reported the first fully automated solid-phase oligosaccharide synthesizer 

(Glyconeer 2.1).14  

1.3.1 Enzymatic approaches for carbohydrates synthesis 

Enzymatic catalysis (in vivo and in vitro) allow the synthesis of polysaccharides with highly stereo-, 

regio-, and enantio-selectivity (hence, formation of structurally controlled products) in mild 

conditions, such as buffered water, neutral pH and atmospheric pressure. In addition, from an 

environmental perspective, enzymes are defined as green catalyst being natural and renewable.15 

Importantly, a “key and lock” relationship (proposed by Fischer, 1894)16 exists between an enzyme 

and its substrates, but this relationship is not absolutely strict for in vitro enzymatic reactions. Thus, 

some enzymes present loose specificity in the catalytic cleft and can recognise non-natural 
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substrates, form the enzyme-substrate (ES) complex and catalyse the formation of a product 

(Figure 1.8). This feature allowed the introduction of structural modifications in complex natural 

oligosaccharides in a controlled manner. In addition, during the occurrence of the catalytic 

reaction, the formation of the ES complex stabilises the substrate transition state and lowers its 

activation energy (ΔGୣ୬୸
‡ < ΔG௡௢

‡ ) (Figure 1.9), explaining why enzymes are able to perform 

catalysis under mild conditions and accelerate 106−1012 fold the reaction rate.17 

 

Figure 1.8: Schematic representation of the enzyme-substrate key and lock relationship (left) and 

acceptability of unnatural substrates (right). In the case of in vitro enzymatic synthesis of 

polysaccharides, unnatural substrates can be recognised and employed for the enzymatic catalysis. 
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Figure 1.9: Energy of activation diagram (Pauling, 1946) for a chemical reaction. The comparison 

between an enzyme-catalyzed reaction and a reaction without enzyme.(E= Enzyme, S= Substrate, 

P= Product) shows that the activation energy (ΔGୣ୬୸
‡ ) of the transition state [𝐸𝑆]‡ is greatly 

lowered by the stabilizing action by the enzyme, in comparison with that (ΔG௡௢
‡ ) of a reaction 

without enzyme via a transition state  [𝑆]‡.  

Based on this background, the employment of enzymes for the precise synthesis of 

oligosaccharides is expected to perform: (1) perfect control of stereo- and regioselectivities in 

glycosidic linkages; (2) synthesis of nove; nonnatural polysaccharides without formation of side 

products; and (3) great turn over without the use of harmful catalysts as strong acids and bases or 

heavy metals. 

Enzymes are categorised in six main classes: oxidoreductases (EC 1), transferases (EC 2), hydrolases 

(EC 3), lyases (EC 4), isomerases (EC 5) and ligases (EC 6).18 Among those, carbohydrate active 

enzymes (CAZy, http://www.cazy.org)[ref] – hence involved in the cleavage, formation and 

rearrangement of glycosidic linkages - are categorized into two main classes: hydrolytic enzymes 

(hydrolases) and glycosyltransferases. The latter is further subclassified into synthetic enzymes 

(Leloir glycosyltransferases), sucrose-type enzymes and phosphorolytic enzymes (phosphorylases). 

Like in the general glycosylation, enzymes catalyse the reaction between an activated glycosyl 

donor and a glycosylic acceptor. The reaction proceed as: 1) recognition of the glycosyl donor by 

the enzyme and formation of the glycosyl-enzyme complex (transition state); 2) attack of the 

glycosyl donor by the hydroxyl group of the glycosyl acceptor and formation of a glycoside; 
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3) liberation of the elongated glycoside and the free leaving group. Importantly, in performing 

enzymatic reactions in vitro, both the donor and acceptor molecules can be used in their 

unprotected forms. 

Glycoside hydrolases are further divided into endo- and exo-types. Endoglycosidases catalyse 

natural polysaccharides hydrolysis in vivo but are able to perform glycosylation in vitro to produce 

the saccharide chains, probably due to a similar transition state structure. Hence, to proceed 

towards the synthetic direction, the enzyme substrates are designed as transition state analogues 

to efficiently form the enzyme-substrate complex. In specific, two different kind of monomers have 

been designed (i.e. glycosyl fluorides and sugar oxazolines).  

Leloir glycosyltransferases (generally transmembrane-type proteins) catalyse irreversible 

glycosylation in vivo, hence have a biological relevance. The reaction transfers the glycosyl residue 

from a sugar donor containing a nucleoside phosphate or a lipid phosphate leaving group to an 

acceptor molecule such as carbohydrates, lipids, and peptides. Hence, the reaction irreversibility 

is dictated by the cleavage of the high-energy linkage of nucleotide substrate. Nonetheless, the 

utilisation of glycosyltransferases is currently limited because their instability upon isolation and 

purification, their low amount in nature and the high cost of both the enzyme and the activated 

donor substrates.  

Sucrase-type enzymes are highly specialised in the recognition of sucrose as substrate and are able 

to transfer either the glucose or fructose moiety onto polysaccharides or appropriate acceptors, 

hence they are called glucosyltransferases (or glucansucrases) and fructosyltransferases 

(or fructansucrases), respectively.   

Phosphorylase can perform the catalytic reaction towards both the phosphorolysis and the reverse 

phosphorolysis direction, promoting the cleavage and the synthesis of the glycosidic linkage, 

respectively. α-Glucan phosphorylase, sucrose phosphorylase, cellobiose phosphorylase and 

cellodextrin phosphorylase are the most studied phosphorylases, with α-Glucan phosphorylase 

and cellodextrin phosphorylase extensively used for the practical synthesis of poly- or 

oligosaccharides and related poly- and oligosaccharide-based materials. α-Glucan phosphorylase 

is found in animals, plants, and microorganisms, where acts in the glycolytic pathway or, in other 

words, in the utilisation of storage polysaccharides. This enzyme catalyses the reversible 
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phosphorolysis of α-(1→4)-glucans such as glycogen and starch19, 20 and it has been used to 

synthesise unnatural saccharides21 and modified nanomaterials.22 Sucrose phosphorylase is found 

in bacterial cells and it is involved in the metabolism of extracellular sucrose. The enzyme catalyses 

the reversible phosphorolysis of sucrose into Glc-1-P and fructose19, 20 and it has been used 

industrially for the kilogram-scale production of the cosmetic humectant a-glucosyl glycerol. 21 

Cellobiose phosphorylase (CBP) was proved to act only in the cellobiose moiety and do not 

recognise cellooligosaccharides larger than cellobiose. Pfeifer & Langen GmbH & Co. KG 

implemented a large-scale production of D-cellobiose by CBP with concomitant formation of 

α-Glc1-P from sucrose using sucrose phosphorylase.23 More details in the reaction catalysed by 

phosphorylases are presented in Chapter 3, where we will pay special attention to cellodextrin 

phosphorylase (CDP) enzyme. 

1.4 Carbohydrates-protein interactions – the molecular 
recognition event 

1.4.1 The enthalpy-entropy compensation effect 

The enzyme-substrate system (or even more generally, protein-ligand system) is a 

thermodynamics system with the solvent (i.e. liquid water and buffer ions) as third component. 

Various interactions and energy exchange processes take part in association between the system 

components and the spontaneity of the processes is measured by changes in the Gibbs free energy 

(∆𝐺). Importantly, ∆𝐺 can be expressed based on its thermodynamics components by the 

equation 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆 Equation 1.1 

where ∆𝐻 and ∆𝑆 correspond to changes in enthalpy and entropy, respectively, and T is the 

temperature in K. Negative ∆𝐺 describes spontaneous process, while at ∆𝐺 = 0 the association 

reaction is at equilibrium.  

The enthalpy corresponds to the total energy of the thermodynamics system, and in the binding 

process negative (∆𝐻 < 0)  or positive (∆𝐻 > 0) changes of the binding enthalpy represent 
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formation and disruption of energetically favourable noncovalent interactions (van der Walls 

contacts, H-bonds, ion pairs, and any other polar and apolar interactions), respectively. 

The combination of (i) the disruption of noncovalent interactions between the protein and the 

solvent and the ligand and the solvent, (ii) the formation of noncovalent interactions between the 

protein and the ligand, and (iii) the reorganisation of the solvent in proximity of the complex 

surfaces, contribute to the net enthalpy change in the binding event.  

The changes in the entropic factor, instead, describe changes in the degree of freedom of the 

system, with the following three entropic terms contributing to the net binding entropy change ∆𝑆 

∆𝑆 =  ∆𝑆௦௢௟௩ + ∆𝑆௖௢௡௙ + ∆𝑆௥/௧ Equation 1.2 

where ∆𝑆௦௢௟௩ is the solvent entropy change arising from solvent release upon binding, ∆𝑆௖௢௡௙ is 

the conformational entropy change, which represent changes of the protein and ligand 

conformational freedom upon binding , and ∆𝑆௥/௧ represents the loss of translational and 

rotational degrees of freedom of the protein and ligand upon complex formation. Positive and 

negative net entropy change contributes favourably and unfavourably to the binding free energy; 

∆𝑆௦௢௟௩ usually makes a favourable contribution, ∆𝑆௖௢௡௙ can contribute either favourably or 

unfavourably, and ∆𝑆௥/௧effects a negative contribution by selecting one single conformation, 

among many conformations the free ligand can assume when it is free.24 Generally, for the binding 

event to occur, inescapable entropic penalties (i.e. the negative ∆𝑆௥/௧ upon binding) are overcome 

by either large solvent entropy gain (positive ∆𝑆௦௢௟௩) or favourable protein-ligand interactions 

(which lead to negative binding ∆𝐻).  

Entropy and enthalpy changes determine the sign and magnitude of the binding free energy (∆𝐺) 

and the magnitude of the negative (spontaneous) energy change determines the stability of the 

complex. Thus, we consider ∆𝐻 and ∆𝑆 as the driving factors for protein ligand binding. Generally, a 

complementary change between enthalpy and entropy occurs – the large negative enthalpy 

change resulting from the establishment of multiple favourable noncovalent interactions is usually 

accompanied by restriction in the mobility of the interacting patterns (conformational restrictions 

of the ligand and the small conformational changes throughout the protein upon binding)25, 26 and 

therefore a negative entropy change. Similarly, the de-solvation of both the free ligand and of the 



Chapter 1 - Introduction 

17 
 

apo binding pockets is entropically favourable, but enthalpically unfavourable as disruption of 

noncovalent interactions is required.27 This is called the enthalpy/-entropy compensation effect 

(Figure 1.10).   

 

Figure 1.10: Differences in the enthalpy and entropy contribution measured by at ITC 298.15 K for 

8 different benzothiazole sulfonamide ligands with different patterns of fluorination, substrates of 

the human carbonic anhydrase (HCA). ∆∆𝐽° indicates the difference in binding energy for this series 

of homologous compounds. Despite the differences in fluorination pattern, the ligands show 

similar binding affinities (similar Gibbs energies, ΔG – in blue). Nonetheless, they also show 

significant and compensating changes in enthalpy (ΔH, in green) and entropy (ΔS, in red) of binding. 

The grey region demarcates the 95% confidence interval (i.e., two standard deviations) of ∆∆𝐺°௕௜௡ௗ 

for the reference compound.  On the left panel the sketch of the association process depicts the 

differences in the structure (and consequently thermodynamics) properties of the water molecules 

surrounding the bound ligand (bottom) and filling the active site of a protein (protein). 

Source: Breiten et al., 2013 (graphic abstract).28 

The enthalpy-entropy compensation phenomenon has been for long a subject of debate which 

attributed it to experimental errors and limitations. Nonetheless, nowadays there is a much clearer 

evidence of this phenomenon for both dispersive and electrostatic systems. For example, Ryde 

(2014)30  studied the enthalpy-entropy compensation effect during the association of two 

molecules by means of molecular mechanics (MM) and quantum mechanics (QC) calculations in 
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gas phase. Both the investigation of the association of a two-atom model (in which the dispersion, 

electrostatic and covalent interactions could be easily distinguished) and of homologous series of 

complexes dominated either by dispersion or hydrogen bonds resulted in the observation of the 

enthalpy-entropy compensation effect. Nonetheless, he pointed out that when water molecules 

were added to the calculations, both enthalpy-entropy compensation and anti-compensation 

phenomena were observed, hence demonstrating that the phenomenon is not strict in real binding 

studies. 

1.4.2 Specific binding patterns, role of water and hydrophobic effect for 

carbohydrate recognition in the enzyme catalytic cleft 

From the above discussion it is clear that the process of carbohydrates molecular recognition in 

the catalytic cleft is driven by noncovalent interactions, and specific elements have been identified 

for in protein-carbohydrate interactions.  In specific, carbohydrate binding motif (CBMs, 

non-catalytic domains linked to the catalytic part of glycoside hydrolases)31 and lectins 

(carbohydrate-binding proteins which lack enzymatic activity on their ligand and are distinct from 

antibodies and free mono- and oligosaccharide sensor/ transport proteins)32 have been used as 

model systems for studying carbohydrates recognition mechanism.  

Carbohydrates present an amphiphilic nature: they are 1) hydrophilic due to the high density of 

hydroxyl groups, which allows them to act both as directional H-bond donors and acceptors  and 

to coordinate Ca2+ ions32, and 2) hydrophobic due to the slight electron-depletion on the CH bond 

(of carbons carrying hydroxyl or carboxylic groups),  which enables the establishment of van der 

Waals, stacking, and CH/π-interactions, as well as changes of the solvent structure in their vicinity 

with enthalpic/entropic consequences.32, 33  

Common residues side chains in the binding pocket involved in the establishment of cooperative 

H-bonds are arginine, aspartate and asparagine, while residues involved in hydrophobic 

interactions are tryptophan, tyrosine and phenylalanine. In addition, CH/π- stacking is favoured for 

β-sugars (β-glucose, -galactose, -mannose, -glucuronic acid) due to the presence of 3 axial CH at 

position C1, C3 and C5.32 Furthermore, epimerisation has usually a substantial consequence in the 

process of biorecognition, as epimers present different directionality of H-bond due to their 
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different electron density profile. Hence, each sugar is recognised in the binding pocket with high 

levels of specificity.32 

In the molecular recognition process, it is important to take into consideration the role played by 

water, being the medium in which the interactions take place and often intrinsically present in 

amphiphilic binding sites. In addition, free ligands in solutions are surrounded by several layers of 

water molecules. 

The amphiphilic nature of carbohydrates leads to anisotropic solvent densities around the 

molecule, with consequent formation of hydrophobic and hydrophilic patches in aqueous 

environments. Favourable interactions of water molecules with the hydrophilic patches result from 

electrostatic interactions and hydrogen bonding, whereas the interaction of water with 

hydrophobic surface patches is unfavourable.  

Computational studies performed by the group of Vanderkooi showed the influence of hydroxyl 

orientation on solute hydration and surrounding water structure in aldohexopyranose 

stereoisomers.34 The work highlighted how for a progressive conversion of hydroxyls 4, 2, and 3 

from equatorial to axial configuration (α-glucose, α-galactose, α-talose, and α-idose), the 

establishment of intramolecular H-bond networks (OH4 → OH6 → O5 and OH6 → OH4 → OH3) and 

syndiaxial OH-1/3 interactions determines a more hydrophobic surface of the sugar molecule, 

decreasing the ability to form solute-solvent H-bonds (Figure 1.11). In addition, the syndiaxial 

OH-2/4 intramolecular hydrogen bonding was reported to stabilise and induce directionality in the 

OH4 H-bond network (as in the OH2 → OH4 → OH6 → O5 H-bond terminating network), while the 

OH-1 and OH-3 groups have only an indirect effect on water structure; when these groups are 

equatorial, a hydrophobic patch is formed by C-H groups on one face of the sugar. However, the 

water structure surrounding this patch is actually relatively more polar-like than that observed 

when the OH-1 and OH-3 are in configurations that do not support patch formation.34 
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Figure 1.11: a) Positive (blue) and negative (red) electrostatic field iso-surface contours used to 

illustrate how partial charge impacts the surrounding environment. Sugars with both OH-2 and 

OH-4 in axial configuration (α-talose and α-idose) are able to form a syndiaxial intramolecular 

H-bond. As a result, the sugar faces are dominated by one potential surface rather than a mixture 

of positive and negative isopotentials, which is instead the case of α-glucose (OH-2 and OH-4 

equatorial) and α-galactose (OH-2 equatorial, OH-4 axial); b) Average water-water H-bond angles 

with the scale colour ranging from more linear H-bonds (27°, light blue) to more bent H-bonds 

(43°, orange).  More distorted, less linear H-bonds are associated to a lower interaction water with 

the solute surface. Source: Adapted from Vanderkooi et al., 2005.34 

Finally, the so-called hydrophobic effect (i.e. the tendency of nonpolar molecules - or part of 

them - to aggregate in aqueous media), plays a central role in biomolecular recognition.28 

Even though the already discussed CH/π- stacking interaction is a remarkable example of 

hydrophobic effect,33 the low occurrence of aliphatic residues in carbohydrate-recognising binding 

pockets has been attributed to a lower contribution of this phenomenon to protein-carbohydrate 

recognition.35 

1.5 Cellulose 

Cellulose is the most abundant biopolymer on earth, and it was firstly isolated by the French 

chemist Anselme Payen in 1838 by extraction from green plants.36 Cellulose is a linear 

homopolymer composed by anhydroglucopyranose units (AGU) linked together by 

β-(1→4)-glycosidic linkages.  The size of cellulose molecules is defined by the average degree of 
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polymerisation (DP), while the product of the average DP and the molecular mass of a single AGU 

defines cellulose molecular weight.  Due to its abundance, good mechanical properties, high aspect 

ratio, low density, thermal stability and renewable resource origin, cellulose has become a 

symbolic molecule in the field of polymers and macromolecules, and many fundamental and 

practical studies on cellulose structure, chemical and physical properties, biosynthesis and 

morphology have been carried out. 19, 20  

Cellulose is the major component of plant cell walls, but it is also produced by bacteria, algae and 

marine organisms such as tunicates. In the plant cell wall it is usually combined with lignin, 

hemicelluloses (arabinoxylan, xyloglucan, high-molecular weight mixed-linkage glucan)37 

and water. Native cellulose is organised in highly hierarchal fashion (from a single AGU to macro 

fibrils), where cellulose molecules are hold together by an extensive network of intra- and 

inter-chains hydrogen bonds.36  

The presence of  three equatorial hydroxyl groups in each AGU (in position C2 and C3 there are 

two secondary alcohols, while in position C5 there is a primary alcohol, the hydroxymethyl group) 

donate hydrophilic properties to cellulose, while the numerous axial C-H present in the sugar rings 

give a hydrophobic character to the polymer. Thus, cellulose shows amphiphilic nature and intrinsic 

structural anisotropy (Figure 1.12). In addition, native cellulose is a semi-crystalline polymer and 

has amorphous regions (low ordered) coexisting with crystalline domains (highly ordered), 

the degree of crystallinity (40– 60%) depending on the extraction process of the sample and on the 

cellulose source.   
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Figure 1.12: a) lateral and b) top view of the cellulose molecule plane. The first shows the 

hydrophobic region characterised by the hydrogen atoms of C–H bonds on the axial positions of 

the ring, the second highlights the hypothetic hydrogen bonds between the hydroxyl groups 

located on the equatorial positions of the ring. The hydrogen-bonds are represented as blue 

dashed lines.  

1.5.1 Cellulose polymorphs 

The crystal structure of cellulose has been investigated for more than a century, and Nishikawa 

and Ono were the first to obtain X-ray diffraction traces from wood, hemp and bamboo.38 Cellulose 

can exist in 6 different allomorphic forms (Iα, Iβ, II, IIIi, IIIii, IVi and IVii), even though cellulose IVi 

has been recently re-classified as Iβ.39 Cellulose Iα and Iβ are the native forms of cellulose found in 

primitive microorganisms and plants,38, 40 while the other allomorphs can be derived through 

thermochemical treatments from cellulose Iα and Iβ. Both native cellulose allomorphs can be 

converted irreversibly into cellulose II through mercerization or regeneration41 and into cellulose 

IIIi by treatment with liquid ammonia and other amines.42, 43 Cellulose IV, also called 

“high-temperature cellulose”, is prepared from cellulose II or III by treatment in glycerol at 260 °C, 

while cellulose I cannot be transformed directly into cellulose IV.39 The allomorph cellulose IVi is 

exclusively formed from cellulose IIIi treatment, while the allomorph cellulose IVii is obtained from 

both cellulose II and IIIii as source material. Recently, Nishiyama et al. revised the crystallographic 

structures of cellulose and reported the H-bond networks by applying synchrotron X-ray and 

neutron diffraction studies.38-41, 43, 44 
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Cellulose can be modelled by a triclinic (cellulose Iα and IVii) or monoclinic (cellulose Iβ, II, IIIi and 

IIIii) unit cell. The unit cell can contain either one (cellulose Iα and IIIi) or two (cellulose Iβ, II, IIIii 

and IVii) chains, in turn labelled as ‘origin’ and ‘center’ chains. The origin chain is positioned at the 

corner of the unit cell parallel to the c axis direction, while the center chain passes through the 

center of the a/b plane. The unit cell of cellulose Iβ presents two parallel and conformationally 

equivalent chains, while cellulose II and IIIii presents two antiparallel and conformationally 

inequivalent chains. In the case of cellulose IVii, two antiparallel chains were reported.45 The unit 

cell parameters for each cellulose allomorph are reported in Table 1.1. 

Cellulose allomorphs mainly differ in their conformations of the hydroxymethyl group 

(O5-C5-C6-O6 and C4-C5-C6-O6), with cellulose Iα and cellulose Iβ adopting a tg conformation, 

while cellulose II, IIIi and IIIii adopt a gt conformation (refer to Figure 1.7). 

Table 1.1: Unit cell parameters for reported cellulose allomorphs. The values are derived from 

synchrotron X-ray diffraction experiments. 

Cellulos

e 

Iα40 Iβ38 II41 IIIi42 IIIii43 IVii45 

Space 

group 
P1 P21 P21 P21 P21 P1 

a(Å) 6.717(6) 7.784(8) 8.10(1) 4.450(4) 4.450(4) 7.99 

b(Å) 5.962(6) 8.201(8) 9.03(1) 7.850(8) 7.640(8) 8.10 

c(Å) 10.400(6) 10.380(10) 10.31(1) 10.310(10) 10.360(10) 10.34 

α(°) 118.08(5) 90 90 90 90 90 

β(°) 114.80(5) 90 90 90 90 90 

γ(°) 333.3(6) 96.5 117.10(5) 105.10(5) 106.95(5) 90 
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1.6 Hydrogels 

1.6.1 Definition of gel 

Definitions of the term “gel” have been attempted since 1861, when Thomas Graham firstly 

distinguished between the rigidity of crystalline structure and the softness and fluidity of colloids.46 

Nevertheless, a clear definition struggled to arrive, to the extent that in 1926 Jordon Lloyd 

described the gel’s colloidal condition as easier to recognise than to define.47 The difficulty on 

obtaining a clear description of gel systems by that time can be attributed to both a lack of 

definition of physicochemical principles and the high versatility of gel systems. Indeed, when 

talking about gels, we refer to semi-solid material with both solid and solution phase features. 

In 1974 Flory wrote the universal characteristic of gels for the Faraday Discussion of Chemical 

Society, identifying as gels, systems with 1) a solid-like behaviour and 2) constituted by at least two 

components, one of them being a liquid present at higher concentration.48 Hence, a gel is a 

two-component colloidal dispersion, in which a gelator (the solid, continuous phase) is dispersed 

within a solvent (the liquid, dispersed phase).49 The three-dimensional (3D) continuous network of 

gelators is supported by covalent or noncovalent interactions (ionic bonds, van der Waals forces, 

hydrogen bonds, or physical entanglements), while the solvent is entrapped by capillary forces and 

surface tension.49 

Interestingly, gels are characterised by the elastic properties of ideal Hookean solids and the 

viscosity properties of Newtonian liquids. Hence, they are referred to as viscoelastic materials.50 

In other terms, gels deform when a force is applied and reverts to their original shape when the 

force is removed (elastic response); however, when the stress is higher than a certain threshold, 

the system loses the elastic feature and behaves as a liquid.51 The gel viscoelasticity can be 

quantified rheologically through the application of an oscillating stress and it is described by the 

complex modulus 𝐺∗. The complex modulus is defined as the ratio of the amplitudes of stress 

(i.e. the amount of force per unit area applied to the sample) and strain (i.e. the dimensionless 

degree to which the material deforms) and it is expressed as: 

𝐺∗ = 𝐺ᇱ(𝜔) + 𝐺ᇱᇱ(𝜔) Equation 1.3 
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where 𝐺ᇱ(𝜔) (or storage module) and 𝐺ᇱᇱ(𝜔) (or loss module) are the amounts of energy stored 

and lost during a strain cycle, respectively. 𝐺ᇱ(𝜔) describes the elastic behaviour typical of solids, 

whereas 𝐺ᇱᇱ(𝜔) describes liquids’ viscous behaviour. For a system to be classified as gel, 

the inequality 𝐺ᇱ(𝜔) > 𝐺ᇱᇱ(𝜔) for at least one order of magnitude must be fulfilled.52 In addition, 

the dynamics elastic modulus (𝐺ᇱ(𝜔)) must be relatively independent of the frequency of 

deformation.53 

Gels (and other colloidal materials) are thermodynamically unstable systems due to excess of 

interfacial free energy that exists between the continuous and dispersed phases (the so-called 

surface effects). Hence, they present a state of higher free energy than material in the bulk.54 

The spontaneous transition to a lower free energy state is prevented by the existence of an energy 

barrier (free energy of activation - 𝐸௔) that separates the higher free energy state (gel) from the 

lower equilibrium state (solid). The presence of this energy barrier kinetically traps the gels in a 

state of metastability.49 Gels stability arises from a combination of attractive and repulsive forces 

at the interfaces between the electrically charged continuous and dispersed phase. Based on the 

DLVO (Derjaguin and Landau, Verwey and Overbeek) theory, stabilising effects arise from repulsive 

surface forces, thermal motion of particles and hydrodynamics resistance of the medium. 

Contrarily, destabilising effects are attributed to attractive surface forces, which correlate to low 

surface elasticity.55 

1.6.2 Classification of gels 

Gels are highly heterogeneous systems which can therefore be classified in several ways. A first 

and straightforward classification is based on the solvent involved. Gels are distinguished between 

hydrogels (where the solvent is water), organogels (where the solvent is an organic solvent) or 

xerogels (where the solvent is replaced by air). In addition, gels can be classified based on their 

physical appearance (matrix, film, microsphere, etc.), organisation (amorphous, semicrystalline or 

crystalline), and charge (neutral, ionic, amphoteric, zwitterionic).56  

Gelators can be classified as i) Low-Molecular Weight Gelators (LMWG) - small molecules 

(with molecular weight less than 2000 Da) that self-assemble,57 and ii) Polymeric Gelators 
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(PGs) - long-chain polymer molecules which are swollen, but not dissolved, by the solvent. 58 

Moreover, gels can be differentiated based on their composition into (Figure 1.13): 

1. Homopolymeric - the polymeric network derives from a single type of monomer or 

polymer chain.  

2. InterPenetrating Network (IPN) gels - two independent cross-linked polymers joint together 

through orthogonal crosslinking. 

3. Semi-IPN - as IPN but with one of the polymers not crosslinked. The two components exist 

independently, without any covalent bonds between them. 

 

Figure 1.13: Representation of different types of gels based on their compositions. The dots 

indicate the establishment of cross-links between the polymer chains. Both in the interpenetrating 

and semi-interpenetrating networks, the second polymer exists as independent unit. However, just 

in the semi-interpenetrating network the second polymer does not establish cross-links between 

its own chains. 

Another important classification is based on the kind of interactions that hold the 3D network 

together. The two main type of interactions are i) covalent interactions for chemically cross-linked 

gels, and ii) non-covalent interactions for supramolecular gels. The former gives rise to strong and 

irreversible gels which lack stimuli responsiveness. The latter, instead, are characterised by weaker 

bonds which can be modulated by environmental changes. (i.e. temperature, pH and salt 

concentration). This environment-induced changes represent the key difference between physical 

and chemical gels. Importantly, reversible hydrogels display a sol–gel transition temperature, 

i.e. the temperature at which the system changes from non-flowing (gel) to flowing (sol) phase. 

This change occurs when the 3D network is disrupted by heating or other stimuli and cannot 

contain the water anymore.59, 60
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2.  Techniques and tools 

As has been highlighted in Chapter 1, this thesis is focused on three different research 

macro-topics: (i) the structural and energetic investigation of substrate binding in a class of 

enzymes able to catalyse glycosyl synthesis; (ii) the structural characterisation (with achievement 

of atomistic details) of novel functionally modified cellulose-like polymers and (iii) the 

development of a novel solution state NMR methodology to study solvent structuring at the gel 

solvent-network interface. In specific, we elected NMR spectroscopy technique to fulfil our 

research goals. Hence, this chapter includes detailed description of the fundamentals of NMR 

spectroscopy.  

Generally, different techniques are used to study protein-ligand recognition, the most common of 

which are surface plasmon resonance (SPR) to measure kinetics interaction 

parameters,61 and isothermal titration calorimetry (ITC) to achieve insight into thermodynamics 

properties of binding in solution.62 In addition, 3D models of protein-ligand complexes can be 

generated by docking calculations and molecular dynamics methodologies.63 In the same line, a 

variety of analytical techniques is normally used for material structural characterisation, 

covering a span of length scale that goes from bulk properties to supramolecular arrangements 

and atomistic details. For instance, rheology studies investigate the response of materials to an 

applied stress, defining the behaviour of elastic solid (Hookean solids), viscous liquid (Newtonian 

liquid) and viscoelastic material. On the other hand, scattering techniques allow indirect 

measurement of the 3D organisation of materials as a result of the scattering of an incident wave 

by the electrons of a crystal. In addition, atomic force microscope (AFM) is used to study material 

surface.   

Finally, three different experimental techniques are able to reach atomistic details of protein, 

protein complexes, and material arrangements: x-ray diffractions, cryo-EM and NMR spectroscopy. 

Unfortunately, the crystallisation of carbohydrates, glycoconjugates with proteins, as well as of 

many supra-molecular edifices and self-assembling systems with extended dynamics domains, is 

not trivial and the obtained electron density map often does not present high-resolution due to 

the intrinsic flexibility. On the contrary, cryo-electron microscopy (cryo-EM) requires only that the 

protein (systems at which cryo-TEM has been applied so far) is in a purified solution. Recently, 
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Ka Man et al., reported the structural characterisation of the protein apoferritin at atomistic details 

with a resolution of 1.25 Å.64 

High-field NMR spectroscopy is one of the most versatile techniques: solution state NMR has been 

widely used for the structural characterisation of both small molecules and macromolecules in 

solution, as well as to probe protein-ligands intermolecular interactions with a large range of 

affinities. NMR spectroscopy probes molecular structure on a different length scale compared with 

EM. NMR provides information on the local structure by reporting on the immediate vicinity of 

individual atomic nuclei which present a resonance frequency sensitive to the local electronic 

environment, while EM provides a molecular envelope picture by probing the electronic potential 

of the molecule. 

In addition, considerable reduction in the experimental time has been achieved with the 

implementation of non-uniform sampling and non-Fourier signal processing methods in 

multidimensional NMR, which allowed 7D experiments acquisition.65 In parallel, greater resolution 

is obtained by the increased strength of magnetic fields available. Presently, solution state 

1.2 GHz NMRs with a magnetic field of 28.2 Tesla (600,000 times stronger than the earth’s 

magnetic field), are located in the University of Florence (Italy), ETH Zurich (Switzerland) and in the 

Max Planck Institute (MPI) for biophysical Chemistry in Gottingen (Germany).  

In addition, solid-state NMR is commonly employed to characterise material short range ordering, 

the global and local dynamics of biomacromolecules as well as the interactions established with 

the surrounding water with a site-specific resolution. Solid-state NMR resolution is highly 

influenced by the rotor spinning rate. To date, high-tech spectrometer with ultra-fast MAS units 

(>100 kHz) allow acquisition of 1H spectra in condition which mimics the solution state, highly 

expanding the use of solid-state NMR. The current record for reported MAS rate is 140 kHz.66 

A major pitfall of higher rate of spinning is that rotors with smaller diameter have to be used, which 

in turn means smaller sample volume. Therefore, lower quantities of sample can be analysed and 

longer experimental times are required.67 Recently, Chen et al.,68 have implemented a novel 

spherical rotor design which is expected to accommodate higher sample volume for spinning speed 

up to 150 kHz.  
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2.1 NMR Spectroscopy 

2.1.1  Solution state NMR69-71 

NMR is a well-established analytical tool which continues to expand its capabilities and 

applications. Solution state NMR has been largely preferred for the study of ‘small’ molecules, 

biomolecules, bio-macromolecules and metabolomics, whereas solid-state NMR has established 

itself for materials science and biomolecules.  

When a sample containing nuclei with spin quantum number 𝐼 = 1 2⁄  (as 1H and 13C) is placed in a 

magnetic field (𝐵଴ – always applied in the z direction in the 3D Euclidean space), the spins can 

either align with z or with -z and will therefore present two different energy states (as defined by 

the 2𝐼 + 1 rule). Spins aligned with z are in lower energy state, called α, while spins aligned with -z 

are in a higher energy state, called β. The difference in the α and β population (𝑁ఈ  and 𝑁ఉ, for the 

α and β states, respectively) is described by the Boltzmann equation 

𝑁ఈ

𝑁ఉ
= 𝑒

∆ா
௞ಳ் Equation 2.1 

where 𝑘஻ is the Boltzmann constant and ∆𝐸 is the difference in energy between the α and β states 

and it is defined as 

∆𝐸 = ħ𝛾𝐵଴ Equation 2.2 

where 𝐵଴ is the applied magnetic field and 𝛾 is the so-called gyromagnetic ratio, which presents a 

defined value for each nuclide. Usually, the population of the α state is slightly higher than the 

population in the β state and this excess of population results in what is called the “bulk” 

magnetisation vector 𝑀௓ aligned with 𝐵଴ 

𝑀௓ ∝ 𝑁ఈ − 𝑁ఉ Equation 2.3 

Transitions between the α and β states can be induced by the application of an electromagnetic 

wave in the radiofrequency region (called radiofrequency pulse), so that the frequency of the 

applied pulse matches the nuclei Larmor frequency (the nuclei frequency of precession around the 
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z-axis deriving from the torque imposed by the static magnetic field 𝐵଴ to the nuclei magnetic 

moment 𝜇). The application of the 90° radiofrequency pulse initiates the movement of the 

magnetisation from the z to the x-y plane (also called transverse plane). This implies that at thermal 

equilibrium the net magnetisation on the transverse (x-y) plane to be null. All the NMR experiments 

can be described in terms of pulse sequences, the series of radiofrequency (rf) or field gradient 

pulses applied to manipulate nuclear spins to achieve the desired information.  

Four different phenomena represent the core base of all NMR experiments: 1) through-bond 

interactions via scalar (J) spin coupling established by bonding electrons; 2) through-space 

interactions via NOE mediated by dipole-dipole coupling and spin relaxation; 3) chemical exchange, 

mediated by change of the environment of one spin between two or more states, and 4) molecular 

self-diffusion which describe the translational movement of molecules or complexes.  

The application of a rf pulse excite the sample from its thermal equilibrium, but once the rf is 

stopped, the system tries to re-establish the equilibrium condition losing the energy excess by 

relaxation. The changes in the energy levels induced by relaxation are quite long to occur, 

which give us time to use a variety of pulse sequences. Consequently, understanding relaxation is 

pivotal to know how long the nuclei in our sample take to go back to equilibrium conditions. 

This allow us to timely acquire and accumulate more than one scan for each pulse sequence and 

increase the S/N ratio. 

Importantly, relaxation is induced by fluctuations in the nuclei local magnetic field (the rf magnetic 

field is instead coherently applied to the whole sample) which are random in direction and 

amplitude. Those fluctuations are driven by random molecular motions, such as diffusional 

rotation, and are therefore connected with the molecule motional regimes. 

2.1.1.1 Dynamics by NMR 

Correlation time and spectral density function 

The sample random fluctuations in molecular motions generate a distribution of frequencies in the 

correlating local magnetic field which is described by the correlation function 
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𝐺(𝜏) = 𝐵௟௢௖
ଶതതതതത𝑒

ି
|ఛ|
ఛ೎  Equation 2.4 

where 𝐵௟௢௖ is the local field, |𝜏| is the modulus of the time and 𝜏௖ is the correlation time. 𝜏௖ is 

defined as the average time taken for the molecule to rotate through one radian and it is affected 

by i) the molecular radial volume (in simpler terms, molecular size), ii) the solvent viscosity and iii) 

the temperature. Generally, for small fast tumbling molecules in low viscous solvent at room 

temperature, the 𝜏௖ is in the order of picoseconds. Those molecules are defined in the fast motion 

or extreme narrowing limit. Slow tumbling macromolecules, on the contrary, are defined in the 

slow motion or spin diffusion limit and present a 𝜏௖ in the order of nanoseconds. 

From Equation 2.4 we can see that the exponential part of the correlation function is independent 

from the source of local magnetic field. This allows us to simplify the relation and define a reduced 

correlation function  𝑔(𝜏), independent on the size of the local magnetic field. 

𝑔(𝜏) = 𝑒
ି

|ఛ|
ఛ೎  Equation 2.5 

Application of the Fourier Transformation (FT) to the correlation function yields to the spectral 

density function, 𝐺(𝜏)
୊୘
ሱሮ 𝐽(𝜔), which described a distribution of molecular motions at the angular 

frequency expressed in radians (𝜔 = 2𝜋𝜈) 

𝐽(𝜔) = 𝐵௟௢௖
ଶതതതതത 2𝜏௖

1 + 𝜔ଶ𝜏௖
ଶ
 Equation 2.6 

The discussion proposed above for the correlation function has validity also for the spectral density 

function, hence the reduced spectral density function is independent from the size of local fields 

𝑗(𝜔) =
2𝜏௖

1 + 𝜔ଶ𝜏௖
ଶ
 Equation 2.7 

The dependence of the spectral density for a hard sphere with frequency follows a Lorentzian 

function and it is dependent from the correlation time (Figure 2.1). In addition, 𝐽(𝜔) represents a 

probability of finding a certain component of the motion at a given frequency 𝜔. It is therefore 

possible to evaluate the amount of motion at the Larmor frequency by evaluating  𝐽(𝜔) at 𝜔 = 𝜔଴. 
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Figure 2.1: Spectral density function 𝐽(𝜔) as a function of different molecular correlation times. 

The area under the curves is independent from 𝜏௖. Source: Keeler, 201070 

From Figure 2.1 is visible that small molecules that tumble fast in solution have the ability to probe 

a wide range of motional frequencies and have a higher probability to match the Larmor frequency, 

reflected in a wide spectral density distribution varying with 𝜔. On the contrary, slow tumbling 

macromolecules (or medium-size molecules in viscous solvent or low temperature) can only 

experience lower frequencies of motion, reflected in a narrower but more intense distribution of 

frequencies and the spectral density function sharply peaked at 𝜔 = 0. 

𝑇ଵ and 𝑇ଶ spin relaxation 

Relaxation involves two different processes: (i) the reestablishment of the equilibrium 

magnetisation on the z-axis (𝑀௓) and (ii) the decay of the transverse magnetisation (𝑀௫௬) to zero. 

Two different mechanisms are involved:  

1) Tଵ relaxation (also called longitudinal or spin-lattice relaxation): an enthalpic process where 

energy is transferred to the surrounding in the form of heat. The recovery follows an exponential 

behaviour described by the equation: 

𝑀௓ =  𝑀଴൫1 − 𝑒ି௧ భ்⁄ ൯ Equation 2.8 

where Mz and M0 are the magnetization in the z-axis and at thermal equilibrium, respectively, and 

Tଵ is the first-order time constant for this process. Excited nuclear spins present long lifetime 
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(long T1) because of inefficient means to transfer the low transition energy associated with them. 

Indeed, spontaneous emission would require so long that is a negligible effect. On the contrary, a 

magnetic field matching the Larmor frequency of the excited spins can induce spin transition and  

Tଵ relaxation;  

2) Tଶ relaxation (also called transvere or spin-spin relaxation): an entropic process which destroys 

the coherence generated on the x-y plane by the application of the radiofrequency pulse. 

Coherence destruction is induced by local magnetic fields oscillating at the Larmor frequency 

(as for Tଵ) and by the so-called ’flip-flop’ mechanism, caused by swapping of energy between spins 

(while a spin is excited to the β state, another one drops to the α state). After the application of a 

90° pulse, the resonances moved on the x-y plane will be coherent, hence they have the same 

phase. Nonetheless, spins are exposed to slightly different magnetic field, which causes the 

fanning-out of the individual magnetization vectors and finally the destruction of any net 

magnetization in the transverse plane (Figure 2.2).  

 

Figure 2.2: Fanning out of the magnetisation in the x-y plane with consequently loss in coherence. 

Magnetic field differences experienced by the spins system arise from static magnetic field 

inhomogeneity and from intramolecular and intermolecular interactions in the sample. Generally, 

anything that causes Tଵ relaxation induces also  Tଶ relaxation, hence Tଶcan never be longer than 

Tଵ. On the contrary, due to the flip-flop mechanism contribution, Tଶ can be shorter than Tଵ. Tଶ 

relaxation, as Tଵ relaxation, follows an exponential decay. In addition, the inverse of T1 and T2, R1 

and R2 respectively, represent the rate at which the magnetisation recovers and fades out from 

the transverse plane. R1 and R2 are referred as relaxation rate constants (s-1). 
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Fundamental requirement for the relaxation of a spin-1/2 nucleus to occur is a time-dependent 

magnetic field which fluctuates at the nuclear spin Larmor frequency.  This condition is generally 

matched by local magnetic field generated by dipole-dipole interactions, chemical shift anisotropy 

(CSA), spin rotation and quadrupolar interactions, while the time dependence correlates with the 

vibrational, rotational and diffusion motion of the molecule. It is indeed the chaotic tumbling of a 

molecule to induce spin relaxation. This random motion is characterised by a rotational correlation 

time τc.  

As described above, the spectral density function 𝐽(𝜔) (Equation 2.6) describes, for a given 

frequency, the probability of finding a certain component of the motion. In this case, the frequency 

of interest is the Larmor frequency. Molecules with different motion regimes will present a 

different probability in creating a fluctuating magnetic field that matches the Larmor frequency 

(Figure 2.3) and hence induce Tଵ relaxation. 

Figure 2.3: a) Spectral density function 𝐽(𝜔) representing the probability of matching the Larmor 

frequency for different motional regimes; b) T1 and T2 curves represented as a function of 

molecular tumbling rates. Source: Claridge, 201669 

Fast tumbling molecules (as small molecules in low viscosity media) present small spectral density 

components at ω0, which correspond to a long Tଵ relaxation. Molecules with intermediate motion 

present faster Tଵ relaxation, but for slowly tumbling molecules the spectral density components 

drops again and they are correlated with long Tଵ. Noticeable, for slow tumbling molecules Tଵ is 

different to Tଶ. Indeed, in the slow-motion regime the very low frequency fluctuations stimulate 

the energy-conserving flip-flop process that induces Tଶ relaxation, hence Tଶ ≪ Tଵ (Figure 2.3, b). 
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The relationship between Tଶ and the correlation time can be expressed by the random fields 

relaxation mechanism, 

1

𝑇ଶ

=
1

2
𝛾ଶ〈𝐵ଶ〉𝐽(𝜔଴) +

1

2
𝛾ଶ〈𝐵ଶ〉𝐽(0) Equation 2.9 

where ଵ

ଶ
𝛾ଶ〈𝐵ଶ〉𝐽(𝜔଴) =

ଵ

ଶ
𝑇ଵ

ିଵ and represent the Tଵ relaxation contribution. In the fast motion 

(or extreme narrowing limit, 𝜔଴𝜏௖ ≪ 1), Tଵ and Tଶ have the same value as (𝜔଴) = 𝐽(0). On the 

contrary, in the slow motion regime (or spin diffusion limit, 𝜔଴𝜏௖ ≫ 1), the contribution of Tଵ 

becomes neglectable and the transverse relaxation becomes proportional to the correlation time 

𝐽(0) = 2𝜏௖.The fasterTଶrelaxation determines line broadening for large molecules like polymers, 

biological macromolecules and supramolecular complexes with consequently disappearance of the 

signals. 

Chemical exchange72 

In solution, dynamics events too slow to induce spin relaxation still play a role in what is referred 

as chemical exchange. Examples of these kind of processes can be physical interchange of a 

molecule between different structural forms, proton-exchange or the on-off equilibria of a 

ligand-protein binding event. The dynamics regime in which the exchange takes place determines 

the observed resonances line shape in the spectra. Let us take as example two equally populated 

sites A and B with equal forward and reverse first order constant k and with no J-coupling. In a very 

slow regime, two sharp and well-resolved lines of equal intensity with a Δ𝜈 = |𝜈஺ − 𝜈஻| frequency 

difference will appear in the spectra. As the kinetics constant k increases (hence faster exchange) 

the resonances will broaden and the lines come closer, up to the coalescence point in which they 

will merge. After the coalescence point, we enter the fast exchange regime, in which one single 

sharp peak in the two resonances midpoint is observed, reflecting the average properties of the 

species involved in the exchange. The peak line shape is defined by exchange narrowing. Hence, it 

can be noted that it is the exchange rate in reference to the resonance differences Δ𝜈஺஻ that 

defines which exchange rate regime we are observing. 
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Importantly, chemical shift is not the only NMR parameter influenced by chemical exchange, 

but also longitudinal or transverse relaxation rate constants, scalar couplings and residual dipolar 

couplings are sensitive to various types of chemical exchange.  

2.1.1.2 Structural characterisation via NMR 

The greatest use of NMR in chemical research is molecules structure verification. In this, 2D 

methods find great applicability in the elucidation of molecular structure and dynamics by utilizing 

interactions between spins to correlate them. The standard format of 2D NMR sequences is 

composed by preparation – evolution – mixing – detection periods. Preparation and mixing periods 

are pulses or cluster of pulses, while the evolution period introduces a second time variable t1, key 

for the generation of the second dimension of the spectra (Figure 2.4, a). 

 

Figure 2.4: a) general scheme for 2D NMR, where the preparation and mixing periods can be either 

a single pulse or a cluster of pulses and delays, depending on the experiment. The coherence 

generated during the preparation period evolves during t1, and after the mixing period the signal 

is detecting during t2; b) Illustration of how a 2D data set is recorded for a general sequence; c) 

general scheme for 2D 1H-1H NOESY experiment. 

To better understand how the process work, let us consider the preparation and mixing periods as 

two hard 90x° pulses with phases Φ1 and Φ2, respectively (Figure 2.4, b). If we set t1 value to zero, 

the preparation and mixing pulses will sum up to a hard 180° pulse which would invert the 

magnetisation from z to -z and no signal would be detected. As we increment the length of t1, the 

magnetisation would be moved to transverse plane by the first hard 90° pulse, and here it will 
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evolve based on its own chemical shift offset and move through an angle of 360νt1 degrees. 

Now, we can consider this vector as composed by two components, one along the y-axis 

(M0cos360νt1) and one along the x-axis (M0sin360νt1). With the application of the second hard 

90° pulse (mixing pulse), the y-component is moved to the -z-axis, while the x-component is 

unaffected and will give rise to the detected magnetisation. It is during this period that 

magnetisation is transferred from one spin to another. Hence, the t2 FID acquisition and Fourier 

transformation will give rise to a spectrum where the resonances amplitude varies as a function of 

sin360νt1, reaching a maximum when the magnetisation vector had time to evolve by a 90° angle, 

and then decrease, pass through a null, and finally through a negative minimum for larger t1  

(until the signal entirely decays due to relaxation). In this way, the frequency of the modulated 

amplitude, which corresponds to its chemical shift offset in the rotating frame, has been frequency 

labelled as a function of t1, and the second dimension is indirectly generated. 2D spectra of two 

uncoupled spins will give rise to two 2D singlets with the same frequency in both dimensions. 

For two coupled spins, magnetisation transfer via coherence pathways will take place during the 

mixing pulse, leading to a cross-peak which correlates different shifts in the two dimensions 

(ν1≠ν2). Thus, the resulting spectra will show diagonal peaks with identical frequency in both 

dimensions (large blue dots in the scheme in Figure 2.5), and the cross peaks featuring the two 

frequencies of the correlating protons (small pink in the scheme in Figure2.5). 

 

Figure 2.5: Schematic representation of a 2D NMR spectrum, the pink dots representing the 

cross-peak for the coupled protons A and B.  
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The sequence described so far allows the detection of homonuclear 1H-1H through bond 

correlations - the famous COSY experiment. For the performance of 2D 1H-1H through space 

correlation (NOESY experiment), instead, the mixing period consists of a 90° pulse, followed by a 

mixing time (tm) and a final 90° pulse before detection (Figure 2.4, c). In this sequence, the initial 

excitation pulse places the magnetisation vector in the transverse plane, which will evolve for the 

t1 evolution time. The second 90°pulse places one component of the magnetisation onto the -z 

axis, generating the population inversion required for transient NOE (further explained below). 

Hence, the mixing time allows the incoherent transfer of magnetisation between spins and hence 

NOE to develop. Finally, the new population is sampled with a final 90° pulse and the FID is 

collected. 

To explain the coherence transfer process we can consider a coupled two-spin system, I and S, for 

which the transverse magnetisation created by the application of a 90° pulse can be represented 

by  4 energy levels (αூαௌ, αூβௌ, βூαௌ, βூβௌ) with six possible relaxation pathways associated 

(Figure 2.6). The so-called longitudinal relaxation promotes the transition between these levels, 

each process presenting an associated transition probability W. 𝑊ଵ
ூ and 𝑊ଵ

ௌ are denoted single 

quantum spin transitions, which correspond  to the  α and β interconversions (αα ⇔  βα, 

αα ⇔  αβ, αβ ⇔  ββ and βα ⇔  ββ), and are allowed based on the quantum-mechanic selection 

rules (which allow only transition for the total spin quantum number 𝐼 corresponding to 

∆𝐼 = 𝐼(𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒) − 𝐼(𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒) = 1). 𝑊ଶ
ூௌ and 𝑊଴

ூௌ denoted the “double quantum 

transitions” (both spins flipped in the same direction, αα⇔ββ) and the “zero quantum transitions” 

(both spins flipped in opposite directions, αβ⇔βα), respectively. These are the two transitions that 

are not allowed by the selection rule but can be indirectly detected in 2D NMR. 
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Figure 2.6: Schematic representation of the energy level diagram of a coupled two-spin IS system 

and the six possible transitions. 

The corresponding transition probabilities (or rates) are: 

𝑊ଵ
ௌ =

3

40
𝑏ଶ𝑗(𝜔଴ௌ) Equation 2.10 

𝑊ଵ
ூ =

3

40
𝑏ଶ𝑗(𝜔଴ூ) Equation 2.11 

𝑊଴
ூௌ =

1

20
𝑏ଶ𝑗(𝜔଴ூ − 𝜔଴ௌ) =

1

20
𝑏ଶ𝑗(0) Equation 2.12 

𝑊ଶ
ூௌ =

3

10
𝑏ଶ𝑗(𝜔଴ூ − 𝜔଴ௌ) =

3

10
𝑏ଶ𝑗(2𝜔଴ூ) Equation 2.13 

where 𝑗(𝜔) is the reduced spectral density at the frequency of transition and 𝑏 is the dipolar 

constant, defined as: 

𝑏 =
𝜇଴𝛾ூ𝛾ௌħ

4𝜋𝑟ଷ
 Equation 2.14 

with γ being the gyromagnetic ratio, 𝜇଴ is the permeability of vacuum and r is the internuclear 

distance.  
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A rate equation for the flow of population for each level (denoted 𝑁ଵ, 𝑁ଶ, 𝑁ଷ and 𝑁ସ) can be 

written; for example, the rate equation for level 1 would be (similar equations can be written for 

the other three energy levels): 

𝑑𝑁ଵ

𝑑𝑡
=  −𝑊ଵ

ௌ𝑁ଵ − 𝑊ଵ
ூ𝑁ଵ − 𝑊ଶ

ூௌ𝑁ଵ − 𝑊ଵ
ௌ𝑁ଶ − 𝑊ଵ

ூ𝑁ଷ − 𝑊ଶ
ூௌ𝑁ସ Equation 2.15

At this point, to be able to follow the magnetisation of spins I and S on the z-axis, we will need to 

resort to the product operator formalism (even though a full explanation of this approach is not 

included in this thesis). From this approach two operators 𝐼௓ and 𝑆௓, representing the 

magnetisations of spins I and S on the z-axis, are defined. The simplified form of the differential 

equations expressing the deviation of population of each energy level, 𝑑𝐼௓ 𝑑𝑡⁄  and 𝑑𝑆௓ 𝑑𝑡⁄ , 

(the so-called Solomon equations) are herein reported.  

𝑑(𝐼௭ − 𝐼௭
଴)

𝑑𝑡
=  𝜌௭ூ(𝐼௭ − 𝐼௭

଴) − 𝜎ூௌ(𝑆௭ − 𝑆௭
଴) Equation 2.16 

𝑑(𝑆௭ − 𝑆௭
଴)

𝑑𝑡
=  𝜌௭ௌ(𝑆௓ − 𝑆௓

଴) − 𝜎ூௌ(𝐼௓ − 𝐼௓
଴) Equation 2.17 

where 𝜌௭ூand 𝜌௭ௌ are the auto-relaxation (longitudinal relaxation) rate constants, and 𝜎ூௌ is 

cross-relaxation rate constant which defines the magnetisation transferred from spin to spin. The 

presented rate constants defined as: 

𝜌௭ூ =  𝑊ை
ூௌ + 2𝑊ଵ

ூ + 𝑊ଶ
ூௌ Equation 2.18

𝜌௭ௌ =  𝑊ை
ூௌ + 2𝑊ଵ

ௌ + 𝑊ଶ
ூௌ Equation 2.19

𝜎ூௌ =  𝑊ଶ
ூௌ − 𝑊ை

ூௌ Equation2.20

From the Solomon equations it is evident that, when the cross-relaxation constant is not null, 

the rate of recovery of spins I and S depends on each other 

Assuming that 𝜔ைூ = 𝜔ைௌ, hence the spins of interest are of the same type (e.g. 1H), with 

comparable Larmor frequencies, the homonuclear cross relaxation in Equation 2.20 can be 

rewritten as: 
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𝜎ூௌ =  𝑊ଶ
ூௌ − 𝑊ை

ூௌ =
3

10
𝑏ଶ𝑗(2𝜔଴ூ) −

1

20
𝑏ଶ𝑗(0) Equation 2.21 

As aforementioned, the double and zero quantum transitions are not allowed by the conventional 

selection rules, still they can strongly influence the observable NMR intensities associated to the 

transition of the spins involved in the process of cross relaxation. 

Nuclear Overhauser effect 

The Nuclear Overhauser effect (NOE) is a cross-relaxation process stimulated by dipolar coupling 

and it manifests as a change in intensity of one resonance (called NOE enhancement even when a 

reduction of the signal is recorded) consequent to the perturbation of the equilibrium populations 

of a dipolarly coupled spins.  

Let us consider a homonuclear (1H-1H) dipolar coupled two-spin system IS contained in a rigid 

molecule that tumbles isotropically in solution, i.e., it does not show any preferential axis about 

which to rotate. In this idealistic system both protons do not present scalar coupling (𝐽ூௌ = 0) but, 

due to their proximity, they share dipolar coupling (magnetic interaction through space). In other 

words, both protons can sense the presence of the other dipolar-coupled partner. 

Perturbation of nucleus S resonance can be achieved by: 

1) selective saturation and consequently equalisation of the spin populations with a weak 

continuous wave (CW) rf irradiation – the so-called steady-state NOE. Application of this saturating 

pulse results in the disappearance of the peak corresponding to S, and in an enhancement in the 

peak corresponding to I, proportional to 𝜎ூௌ; 

2) a shaped 180° pulse, which invert the S resonance population. In this pulse sequence, after the 

first 180° pulse, a mixing time tm is allowed for the magnetisation to evolve, hence we are in the 

presence of a transient process and the experiment is called transient NOE. 

The sign and magnitude of the NOE enhancement (𝜂ூ{𝑆}) is proportional to the cross-relaxation 

rate constant 𝜎ூௌ 

𝜂ூ{𝑆} ∝ 𝜎ூௌ = 𝑊ଶ
ூௌ − 𝑊଴

ூௌ Equation 2.22 



Chapter 2 - Techniques and tools 

43 
 

and it is expressed as  

𝜂ூ{𝑆} =  
𝐼 − 𝐼଴

𝐼଴
∙ 100 Equation 2.23 

where 𝐼଴ is the intensity at the equilibrium, and I is that in the presence of NOE. 

Selective saturation of 1H nucleus S perturbs the spin populations of nucleus I, which will try to go 

back to the initial equilibrium situation via different relaxation mechanisms. Nonetheless, only the 

cross-relaxation pathways, characterised by 𝑊଴ and  𝑊ଶ transition probabilities, are responsible 

for the NOE development (Equation 2.22). 𝑊଴ and  𝑊ଶ cross-relaxation pathways are in 

competition within each other and the dominant mechanism dictates the sign of the observed 

NOE. Importantly, slow tumbling molecules (short correlation time τc) generate fluctuating local 

magnetic fields which induce the lower energy 𝑊଴ process, such that a negative NOE (𝐼 < 𝐼଴) is 

effectively recorded. On the contrary, 𝑊ଶ (higher energy) is the dominant mechanism in fast 

tumbling molecules, so that a positive NOE (𝐼଴ > 𝐼) is observed. Hence, depending on the 

magnitude of the NOE developed, two limits of motions have been defined: the 

extreme-narrowing limit for fast tumbling molecules, and the spin diffusion limit for the slow 

tumbling ones. Furthermore, low-frequency are more efficient than high-frequency magnetic 

fields in activating the cross-relaxation pathways, due to the different spectral density function 

𝐽(𝜔) that describe the fast, intermediate and slow motion (Figure 2.1). Therefore, positive NOE 

will have lower energy compared to negative NOE. 

Even though 𝑊଴ and 𝑊ଶ cross-relaxation pathways are the ones responsible for NOE, single 

quantum relaxation pathways (𝑊ଵ) are also active in trying to re-establish the equilibrium 

population differences of the non-saturated nucleus I. Hence, 𝑊ଵ relaxation operates against the 

NOE build-up, and if it is more efficient than 𝑊଴ and  𝑊ଶ pathways, NOE might not be observed. 

So, while the final sign of NOE depends on the 𝑊ଶ − 𝑊଴ difference, its magnitude depends on the 

three 𝑊ଵ, 𝑊଴ and  𝑊ଶ rates (as expressed by Equation 2.24, derived from the Solomon equation).  

𝜂ூ{𝑆} =  
𝛾ௌ

𝛾ூ
൤

𝑊ଶ − 𝑊଴

𝑊଴ + 2𝑊ଵ + 𝑊ଶ
൨ =

𝛾ௌ

𝛾ூ
൤
𝜎ூௌ

𝜌ூௌ
൨ Equation 2.24 
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In the case of homonuclear coupling of spin-1/2 nuclei and for fast-tumbling molecules, 

steady-state experiments can give rise to a maximum 50% NOE enhancement, while transient 

experiments develop weaker positive NOE enhancement (38% maximum). Hence, careful choice 

of the correct mixing time is crucial for the success of the experiments. On the contrary, for 

slow-tumbling molecules the efficient cross-relaxation determines that both transient and 

steady-state experiments will give rise to maximum negative enhancement (-100%); still, 

complication may arise from spin diffusion, hence transient experiments with short mixing time 

periods are preferred. 

Distances measurement and transfer NOESY  

NOE is a distance dependent effect, and in specific it is inversely proportional to 𝑟ூௌ
଺ . Importantly, 

in the steady-state NOE, 𝜂ூ{𝑆} does not depends only on the cross-relaxation rate, but also on spin 

I longitudinal relaxation properties, and results from a balance between the influence of all 

neighbouring spins. Hence only qualitative measurement of distances can be obtained. On the 

contrary, transient NOE 𝜂ூ{𝑆} depends only on 𝜎ூௌ and on the mixing time (which is experimentally 

set) and hence it is an excellent tool for the measurement of inter-nuclear distances between two 

spins based on the inverse and linear proportionality of 𝜎ூௌ and 𝑟ூௌ
଺ . For this to be valid, the 

so-called initial rate approximation must be fulfilled. 

In transient NOE, the NOE kinetics is monitored by inverting the spins population differences of 

the target resonance/s and then allowing the NOE to develop during the mixing time tm, in which 

no further external interference is applied. Under those conditions, the two cross-relaxing spins 

will at first behave as an isolated spin pair and the growth of NOE will follow a linear dependence 

within the increasing mixing time. However, for longer mixing times, the NOE build-up curve will 

start deviating from linearity and eventually decay to zero due to relaxation of spin I (Figure 2.7). 
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Figure 2.7: Development of the transient NOE between two spins as a function of mixing time (τm). 

Source: Claridge, 201669 

Hence, mixing periods comparable to T1 provide maximum enhancements. Nonetheless, to achieve 

a meaningful distance measurement (and initial rate approximation to be valid) we must use 

mixing times significantly shorter than the T1 relaxation time of spin I, where the NOE grows 

linearly. In such conditions, the NOE enhancement of spin I after inversion of spin S (𝜂{𝑆}) after a 

period 𝜏௠ is proportional to the cross-relaxation rate (𝜎ூௌ) which in turn depends on 𝑟ூௌ
ି଺ 

𝜂{𝑆} = 𝑘𝜎ூௌ𝜏௠ = 𝑘′𝑟ூௌ
ି଺𝜏௠ Equation 2.25 

where k and k’ are constants of proportionality which contain, among other known physical 

constant, the overall correlation time of the molecule, 𝜏௖. Hence, for known 𝜏௖, 𝑟ூௌ  can be derived. 

However, a more common practice is to use as reference a known internal distance between two 

nuclei (A and B), for which the reference NOE is measured. In this way, the direct comparison of 

the two NOE intensities provides the unknown internuclear distance, such as 

𝜂ூ{𝑆}

𝜂஺{𝐵}
=

𝑟ூௌ
ି଺

𝑟஺஻
ି଺ Equation 2.26 

For isotropically tumbling molecules the assumption that all internuclear vectors possess the same 

correlation time and therefore that the initial rate approximation is valid for all interactions allow 

measurement of internuclear distancing within a single experiment. Nonetheless, this is not the 

case when internal motions are the main contributors in proton-proton vectors reorientation. 
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2.1.2 Ligand-based NMR spectroscopy for binding studies 

tr-NOESY and STD NMR experiments are robust and powerful ligand-based NMR techniques used 

to study the carbohydrates conformation in the bound state and glycan-protein interaction at an 

atomic level (ligand binding epitope), respectively. The medium-weak binding affinities that 

characterise protein-glycan interactions are the perfect range for the characterisation of the 

kinetics of binding, also referred as kinetics of exchange since the ligand exchange between the 

free and the bound state. When the residence time 𝑡௥௘௦  of the ligand in the free state is much 

higher than that of the bound state, the transient interactions established within the weak-binding 

ligand and the macromolecular receptor allow the observation of intra- and/or inter-molecular 

NOE enhancements. On the contrary, when the binding is too tight, magnetisation is lost due to 

the efficient T1 relaxation typical of macromolecules, precluding NOE to develop prior to the 

acquisition period. Thus, it is important to consider the different timescales of the mechanisms 

involved into macromolecular recognition of low-affinity ligand (Figure 2.8). 

Figure 2.8: Timescales schematic representation of the distinct mechanism taking place during 

molecular recognition of low-affinity ligands to macromolecular receptors. The differences 

between T1,free – T1,bound and 𝑡௥௘௦,௙௥௘௘– 𝑡௥௘௦,௕௢௨௡ௗ allow the observation of the intermolecular NOEs.  

In addition, ligand-observed methods are not limited by the protein molecular size and therefore 

have great applicability for analysing protein–ligand interactions. 

2.1.2.1 The equilibrium kinetics of binding: one-site model for bimolecular association in 

solution 

In the so-called “one-site model for bimolecular association in solution” (which does not account 

for any allosteric and cooperative effects), three species are involved: a protein receptor (P), a 

ligand (L) and the complex of their association, the complex (PL). Thus, assuming that the protein 
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receptor P has a single binding site for the ligand L and that they interact transiently to form the 

complex PL, the binding equilibrium can be described by a two states model  

 

The temperature associated dissociation equilibrium constant KD of the complex is expressed by  

𝐾஽ =  
[𝑃] ∙ [𝐿]

[𝑃𝐿]
=  

𝑘௢௙௙

𝑘௢௡

 Equation 2.27 

where the unimolecular rate constant for the dissociation reaction (𝑘௢௙௙) is inversely related to the 

half-life time of the protein-ligand complex or, equivalently, the residence time of the ligand in the 

bound state 𝑡௥௘௦ (Figure 2.8). The bimolecular rate constant for the direct reaction (𝑘௢௡) measures 

the probability of a productive interaction between the protein and the ligand (e.g. encounter that 

leads to the complex formation). A 𝑘௢௡ value of 10଻ − 10ଽ𝑀ିଵ𝑠ିଵ has been estimated for 

association process controlled by molecular diffusion. However, if the complex formation involves 

strong long-range forces or large conformational changes,  𝑘௢௡ could be significantly larger or 

significantly lower, respectively. For systems in which we can assume 𝑘௢௡ diffusion-limited, 𝐾஽  is 

in direct proportion to 𝑘௢௙௙, hence measuring the affinity gives us direct information on ligand 

residence time in the binding pocket (turnover of binding). Small 𝐾஽ values (strong binding) 

correspond to small 𝑘௢௙௙, indicating slow turnover of the ligand in the binding site and long 

residence time. On the contrary, large 𝐾஽  values (weak binding) correspond to large 𝑘௢௙௙, 

hence fast turnover and a short residence time. 

The fraction of the bound protein 𝑓௉஻ is given by  

𝑓௉஻ =  
[𝑃𝐿]

[𝑃] + [𝐿]
 Equation 2.28 

Combination of Equation 2.27 with Equation 2.28 allow us to express the fraction of bound 

receptor as a function of the concentration of free ligand, i.e. the equation of a Langmuir isotherm 

for the saturation of a receptor site of interaction with the ligand. 
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𝑓௉஻ =  
[𝐿]

[𝑃𝐿] + 𝐾஽

 Equation 2.29 

Equation 2.29 shows that increasing the ligand concentration [𝐿], the fractional occupation of the 

receptor-binding site 𝑓௉஻ will rise in a hyperbolic function of [𝐿]. For low ligand concentration, 

[𝐿]  ≪  𝐾஽, 𝑓௉஻ is directly proportional to the concentration of the free ligand [𝐿]. In the other 

extreme, hence for very large ligand concentration, [𝐿]  ≫  𝐾஽, the receptor is completely 

saturated by the ligand (𝑓௉஻ = 1). Thus, for ligands with large 𝐾஽ higher concentrations are 

needed to saturate the receptor-binding site in comparison with ligands with low 𝐾஽. When the 

receptor is half saturated (𝑓௉஻ = 0.5), [𝐿] =  𝐾஽, from which derives the 𝐾஽ definition as 

“the concentration of ligand in the free state that leads to half saturation of the receptor”. 

Importantly, in the Langmuir isotherm, [𝐿] represent the concentration of the free ligand and not 

the total added concentration [𝐿]். 

Importantly, chemical exchange processes are established during the transient presence of the 

ligand in the protein receptor site, this chemical exchange being characterised by the exchange 

kinetics constant 𝑘௘௫ 

𝑘௘௫ =  𝑘௢௡ ∙ [𝑃] + 𝑘௢௙௙ Equation 2.30 

during which the ligand transiently adopts NMR parameters typical of the much larger receptor 

and, at the same time, transiently perturbs the microenvironment of the receptor binding site. 

Thus, if 𝑄 is a NMR parameter (e.g. chemical shift, relaxation rates, translational diffusion 

coefficient), in both cases 𝑄ி ≠ 𝑄஻, i.e ∆𝑄 ≠ 0 (F and B refer to the free and the bound state, 

respectively). 

Monitoring ∆𝑄 and ∆𝜈 upon binding, three scenarios are possible: 

1) 𝑘௘௫ ≪ ∆𝑄 and 𝑘௘௫ ≪ ∆𝜈; 

2) ∆𝜈 ≫ 𝑘௘௫ ≪ ∆𝑄; 

3) 𝑘௘௫ ≫ ∆𝑄 and 𝑘௘௫ ≫ ∆𝜈; 

In case 1), the exchange is slow relative to both time scales, therefore we observe two resonances 

and can measure both 𝑄ி and 𝑄஻. In case 2), the exchange is slow relative to the chemical shift 
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time scale and fast relative to 𝑄, so we observe two signals of which we can measure an 

exchange-averaged parameter 𝑄, 〈𝑄〉 

〈𝑄〉 =  𝑃஻𝑄஻ + 𝑃ி𝑄ி Equation 2.31 

where 𝑃ி and 𝑃஻ are the populations in the free and bound staste, respectively.  

In case 3), the exchange is fast relative to both time scales, and we have a single signal on which 

we can equally measure the average observed 〈𝑄〉. 

All the ligand-based NMR screening experiments assume that the receptor-ligand binding is in the 

fast exchange regime, with the ligand presenting an average observed 〈𝑄〉. Observed differences 

between 〈𝑄〉 and 𝑄ி provide measurable evidence of receptor binding. To detect biding with 

adequate sensitivity a larger contribution from the bound state (𝑃஻𝑄஻) than the free state (𝑃ி𝑄ி) 

is necessary. In typical screening conditions [𝐿]் ≫  [𝑃]், and in turn 𝑃஻ ≪ 𝑃ி , hence it is 

necessary that 〈𝑄〉 is amplified in the bound state (i.e. 𝑄஻ ≫ 𝑄ி). However, if 𝑘௢௡ is well 

approximated by a diffusion-limited value, then the slowest 𝑘௘௫ constants lie within the 

10ଷ < 𝑘௘௫ < 10ହ𝑠ିଵ range for weak-affinity ligands  with a 𝐾஽ in the μM range. Hence for 
1H observation, 𝑘௘௫ would consequently exceed most differences in intrinsic 1H relaxation rates 

and rotating frame precession frequencies, thus supporting the validity of the fast exchange 

assumption. 

2.1.2.2 Exchange-Transferred-NOESY (tr-NOESY)73, 74 

Tr-NOESY is a well-known 2D NMR technique to study the bound ligand conformation in solution. 

Technically, tr-NOESY is purely a NOESY experiment applied to a sample with the appropriate 

receptor and ligand ratio.  

The tr-NOESY experiment relies on the ligand change in correlation times 𝜏௖ between the free and 

bound states. The free ligand (small molecule) has short 𝜏௖, slow NOE build-ups and no spin 

diffusion, hence it shows small positive NOEs. On the contrary, the bound ligand acquires the 

motional properties of the macromolecule and it exhibits long 𝜏௖, rapid NOE build-ups, extensive 

spin diffusion, and strong negative NOEs (i.e. transferred-NOEs). Hence, discrimination between 

the NOEs of the free ligand in solution and the tr-NOEs originating from the bound state can be 
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accomplished easily by looking at the sign and size of the observed NOEs (Figure 2.9, a), or by 

looking at the NOE build-up rate (i.e. the time required to achieve NOE maximum intensity) usually 

in the range of 50-100 ms for tr-NOEs and four-to-ten times longer for small molecules 

(Figure 2.9, b). 

In the case of glycan-protein complexes, the fast kinetics of interaction (μM < 𝐾஽ < mM) is the 

ideal condition for the observation of tr-NOEs, while no tr-NOEs are observed for too tight bindings.  

In the fast exchange timescale, the perturbations in the populations of the ligand protons in the 

bound state (which derive from the intra-ligand longitudinal 1H-1H relaxation processes) are 

transferred to the bulk solution, where they can accumulate due to the smaller R1 of small 

molecules. Hence, it is possible to observe strong negative NOEs in the NMR signal of the free state. 

The ultimately observed longitudinal cross relaxation rate or NOE (𝜎்௥ିே ) is given by the 

population-weighted average of the NOEs in the free and the bound state: 

𝜎்௥ିேைா =  𝑓ி
௅𝜎ி

ேைா + 𝑓஻
௅𝜎஻

ேைா Equation 2.32 

where 𝑓ி
௅ and 𝑓஻

௅ are the fraction of free and bound ligand, and 𝜎ி
ேைாand 𝜎஻

ேைா, the NOEs in the 

corresponding free and bound states.  

Hence, to detect NOEs from the bound state, the condition |𝑓஻
௅𝜎஻

ேைா| ≫ |𝑓ி
௅𝜎ி

ேைா| must be 

fulfilled, with a ligand:protein ratio ([L]୘ [P]୘⁄ ) between 10:1 to 50:1. On the contrary, if the used 

[L]୘ [P]୘⁄  is too high, 𝑓ி
௅ ≫ 𝑓஻

௅, the elevated fraction of free ligand in solution will result in the 

detection of the small molecule positive NOEs (𝜎ி
ேைா) and in the reduction or even cancellation of 

the negative NOEs coming from the small fraction of bound ligand. 
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Figure 2.9: a) Schematic representation of a NOESY (left) and tr-NOESY (right) spectra. For the small 

molecule in the free state, cross-peaks show opposite sign to the diagonal peaks (positive NOEs). 

Upon addition of the receptor, the cross-peaks change to negative NOEs, same sign as the diagonal 

peaks; b) Nuclear Overhauser enhancements (NOEs) and tr-NOEs for 

α-L-Fuc-(1→6)-β-D-GlcNAc-OMe in the absence (filled symbols) and presence (open symbols) of 

Aleuria aurantia agglutinin, measured at 600 MHz as a function of the mixing time tm. Circles and 

diamonds refer to proton pairs H6proRGlNAC- H6proSGlNAC and H1Fuc- H6proSGlNAC, respectively. 

Source: a) Figure adapted from the Doctoral Thesis of J.C Muñoz-Garçia75 and b) Claridge, 201669 

Tr-NOESY is a widely used experiment to determine binding activity of single ligands and ligand 

libraries, and to determine the bioactive conformation of the ligand in the binding site. 

However, those protons of the receptor close to the ligand in the bound state can produce relay 

NOEs that can affect the intra-ligand NOEs (protein mediated spin diffusion). These indirect 

(protein-mediated) tr-NOE effects can give rise to negative cross-peaks between protons that are 

far apart and lead to errors in the analysis of the ligand bound conformation. To avoid this, we 

must resort to the use of short mixing times (analysis of the NOE build-up curves initial slopes), 

to the use of a per-deuterated receptor (if feasible)74 or to tr-ROESY experiments, which allow 

distinction between direct and indirect NOE cross-peaks.76 
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2.1.2.3 Saturation Transfer Difference (STD) NMR77, 78 

The STD NMR experiment is another ligand-based spectroscopic technique to study protein-ligand 

interactions in solution, and, alike tr-NOESY, it is based on the NOE effect. STD NMR has been 

traditionally used in pharmaceutical research to identify hits from compound library screening in 

drug discovery. Indeed, it can be applied to any system under chemical exchange in which the 

molecules involved in the exchange show relatively sharp NMR signals in the spectrum.  

The observation of the magnetisation transfer from A to B (e.g. from protein to ligand) is 

implemented by selectively saturating the resonance of protons belonging to A and monitoring the 

transfer to the other B. From the ligand perspective, STD optimal conditions are represented by 

𝑘௘௫ ≫ ∆𝜈 and 𝑘௘௫ ≫ ∆𝑅ଵ, ∆𝑅ଶ where ∆𝜈,  ∆𝑅ଵ and ∆𝑅ଶ are the difference between the 𝜈, 𝑅ଵ𝑠 and 

𝑅ଶ𝑠 of the ligand in the free and bound state. The assumption 𝑘௘௫ ≫ ∆𝑅ଵ is important to avoid 

loss of the spin perturbation before the exchange is completed. Thus, the free and bound ligand 

must be in a fast exchange condition. 

In such fast kinetics condition, it is necessary to use a large excess of ligand to saturate the protein 

binding sites (usually 1:10 up to 1:1000 protein-to-ligand ratio, which means that the chemical 

exchange takes place with highly unequal populations).  In the described conditions (fast exchange 

and large excess of ligand) the signals of the ligand in the NMR spectrum will mostly correspond to 

the free form, with the protein presenting weak broad signals on the baseline. Hence, direct 

observation of resonances of the bound ligand is not possible, and therefore neither their selective 

perturbation. This is why STD NMR resort on the selective saturation of the protein amino acid 

resonances, where the vast network of 1H-1H cross-relaxation pathways will allow the saturation 

to quickly spread over the entire macromolecule (via intramolecular NOE) and then to the bound 

ligand via intermolecular NOE. Due to this cross-relaxation mechanism, upon contacting the 

saturated protein the ligand will acquire the negative NOE characteristic of the slow-tumbling 

molecules, resulting in the decrease of the ligand signals.77 The dissociation of the ligand will then 

transfer the saturation into the bulk solution, where it will accumulate during the saturation time. 

Assuming that 𝑘௘௫ ≫ ∆𝑅ଵ, or 𝑘௢௙௙ ≫ 𝑅ଵ, means that the ligand does not lose the magnetisation 

transferred before to go back in the bulk solution. Since we monitor the signals of the free ligand 

in solution, saturation transfer is only detected for complexes with dissociation constant 𝐾஽  in the 
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range of 10ିଷ − 10ି଼ M. Hence, this results in the macroscopic detection of transferred saturation 

on the ligand signals in the saturated STD NMR spectrum. 

Factors affecting the amount of saturation transferred to the binder are: i) the macromolecular 

mobility, ii) the lifetime of the complex and iii) the geometry of binding (binding mode, 

which depends on the bioactive conformation of the ligand, and the intrinsic architecture of the 

binding pocket). 

From a practical perspective, implementation of STD NMR experiments is quite easy. A sample 

containing the receptor (MW >10 kDa) at low concentration (10-5 to 10-6 M) and a larger 

concentration of a pool of small test compound is prepared. Hence two different experiments are 

subsequently recorded: 1) the 1D 1H-NMR off-resonance experiment, from which the reference 

spectrum is obtained (Figure 2.10, a), and 2) the 1D 1H-NMR on-resonance experiment, from which 

a spectrum with reduced intensities of the binder molecules is obtained (Figure 2.10, b). From the 

subtraction of spectrum 2 from spectrum 1, the difference spectrum is obtained (Figure 2.10, c). 

Figure 2.10: Illustration of the 1D STD NMR experiment applied to a sample containing a protein 

receptor in the presence of a mixture of two small test compounds (a binder – resonances A, B, C 

and D, and a non-binder – resonances A’ and B’) in molar excess. Two 1D NMR spectra are 

recorded: a) a standard 1D 1H NMR (off-resonance or reference spectrum), and b) a 1D 1H NMR 

spectrum with selective saturation of receptor proton signals. The difference spectrum 

(𝐼଴ − 𝐼௦௔௧, c) will show only signals corresponding to the ligand, while signals of non-binder cancel 

out. Source: Figure adapted from Angulo, 201079 

In the first recorded experiment the irradiation frequency applied to the sample under thermal 

equilibrium conditions is set to a value far from any ligand or protein signal (e.g. 50 ppm), thus the 
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spectrum presents full intensities for the ligand resonances (𝐼଴). On the contrary, during the 

acquisition of the second experiment low power Gaussian-shaped pulses selectively irradiates 

some protons of the receptor (but not ligand signals), e.g. the aliphatic (from 0 to -1 ppm) or 

aromatic region (around 7 ppm). The applied saturation time can vary from 0.1 to 20 seconds, 

depending on experimental needs. The existence of a non-equilibrium magnetisation (saturation) 

on the 1H nuclei of the receptor leads to intermolecular NOEs with those 1H nuclei of the ligand in 

the bound state which are at very short distance (𝑟 < 4 − 5 Å) from the 1H nuclei of the receptor. 

The saturation transfer determines a reduction in the resonance intensities of the 1H nuclei that 

transiently bind to the receptor (𝐼௦௔௧) due to the negative inter-molecular NOE and the transfer of 

the relaxation properties of the macromolecule to the small ligand in the bound state. Hence, the 

difference spectrum (𝐼଴ − 𝐼௦௔௧) shows positive difference signals allowing identification of the 

binding compounds, while the intensities of non-binding molecules remain the same in both 

spectra and the difference spectrum cancels them outs (purple red signals in Figure 2.10, a and b).  

The STD absolute intensities are usually expressed as fractional STD ((I଴ − Iୱୟ୲) I଴⁄ ), or, in other 

words, the  STD signal intensity is expressed as a fraction of the intensity of an unsaturated 

reference spectrum; Also, a blank experiment must be carried out to assure the absence of direct 

irradiation of the ligand. 

As schematic representation of the pulse sequence applied during a STD NMR experiment is shown 

in Figure 2.11. Obviously, key elements is the selective radiofrequency by which the protein is 

saturated. Protein resonances selection could be achieved by a low power continuous wave 

saturating pulse (as in the presence of steady-state NOE), but it has been replaced by a train of 

Gaussian-shaped 180° selective pulses of 50 ms each (the filled half oval in Figure 2.11) to avoid 

undesirable spillover of the saturating field. The power is set to cover the bandwidth of about 100 

Hz, while the number of pulses in the train (n) is adjusted to obtain the desired length of total 

saturation time. Then, a hard 90° pulse (the filled bar with phase Φ4) is applied, followed by a spin 

lock purge (usually between 10 and 40 ms), to remove the broad protein signals. Any other 

unwanted residual magnetisation can be cancelled by using trim pulses with a length of 2.5 and 

5 ms (the empty bars with phase Φ1 and Φ2, respectively), performed at a power level for 

spin-lock. The use of a gradient in correspondence o the trim pulses can help this process.80 
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The usual saturation time for STD NMR in screening experiments is 2-3 s, as a compromise between 

sensitivity and reasonable experimental time. 

 

Figure 2.11: Pulse sequence for STD NMR. The narrow and wide-open bars correspond to trim 

pulses with a length of 2.5 and 5 ms, respectively, performed at the power level for spin-lock. 

The narrow-filled bar is a 90° hard pulse. A series of selective pulses (50 ms duration, 4 ms 

inter-pulse delay, frequency switched for on-resonance and off-resonance spectrum) is applied for 

saturation. The first two pulses as well as the gradient are applied to destroy residual 

magnetisation. Phase cycling: Φ1=x;  Φ2=y, Φ3=x, Φ4= ΦR=x, 2(-x), x, y, 2(-y), y; 

Φ5=4(y), 4(-x), 4(-y), 4(x). Source: Brand, 200580 

Group epitope mapping81, 82 

An important application of the STD NMR is the possibility to map the binding epitope of the 

investigated ligands (Figure 2.12). Indeed, the magnetisation transfer from receptor to ligand 

protons in the bound state via intermolecular NOE depends on the inverse of the sixth power of 

their distance. Hence, in a STD NMR spectrum not all the signals of the ligand show the same 

amount of saturation (the shorter the protein-ligand 1H-1H distance the more intense the 

STD signal) and the observed differences indicate different spatial proximities between the distinct 

part of the ligand molecule and the protein in the bound state. Semi-quantitative structural 

information about the binding can be obtained following normalisation of the all measured STD 

intensities against the most intense signal, to which an arbitrarily value of 100% relative STD is 

assigned. The obtained binding epitope represents a fingerprint of the protein-ligand contacts in 

the bound state. It can be used to identify which segment of the ligand is in direct contact with the 

receptor surface and hence determine which moiety of the ligand is key for molecular recognition 

in the binding site. 
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In general, the structural information provided by the binding epitope depends on 1) differences 

in R1 relaxation rates of ligand protons, 2) the extent of saturation received in the first place, and 

3) the kinetics of binding, while protons different ability to accumulate saturation in the free state 

is a source of distortions. 

Binding epitopes were commonly obtained for a given saturation time. However, significantly 

different R1 relaxation rates of the ligand protons can produce artefacts in the obtained epitope. 

Indeed, increasing the saturation time the absolute STD intensity of any given proton of the ligand 

would generally increase, until a plateau is reached (STDmax), usually at about 5-6 s, depending on 

the longitudinal relaxation time (R1) of the protons for the ligand in the free state. Hence, the closer 

we get to the STDmax, the more R1 will affect the recorded STD intensities. Consequence of this is 

that, for protons with slower R1 relaxation, saturation is accumulated more efficiently in solution, 

hence their relative STD intensity can be enhanced in comparison with faster relaxing protons and 

their proximity to the protein surface overrated at long saturation times.  

To cancel this artefact, Mayer and James82 proposed to derive STD intensities for a saturation times 

tending to zero, when virtually no accumulation of saturated ligand takes place. To do so, 

STD intensities are measured at increasing saturation times, as opposed as to a single saturation 

time experiment, and the experimental build-up curve is fit to the mono-exponential function:  

𝑆𝑇𝐷(𝑡௦௔௧) = 𝑆𝑇𝐷௠௔௫(1 − 𝑒ି௞ೞೌ೟∙௧ೞೌ೟) Equation 2.33 

where 𝑆𝑇𝐷௧௦௔௧ is the observed STD intensity at a given saturation time (𝑡௦௔௧), 𝑆𝑇𝐷௠௔௫ is the 

asymptotic maximum of the build-up curve, and 𝑘௦௔௧ is a rate constant that measures the speed of 

STD build-up.  

𝑘௦௔௧   and 𝑆𝑇𝐷௠௔௫ are derived by least-squares fitting, and the initial slope of the curve (STD଴) is 

obtained as: 

STD଴ =
dSTD(tୱୟ୲)

𝑑tୱୟ୲
ฬ

୲ୱୟ୲→଴

=  STD୫ୟ୶ ∙ kୱୟ୲ Equation 2.34 

This approach is usually referred to as initial slopes of the build-up curves (Figure 2.12, right). In 

addition, possible artefacts coming from intra-molecular spin diffusion (bound state) can also be 
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minimised with this approximation. Thus, the group epitope mapping of a ligand is composed by 

the relative values of the ligand protons initial slops, obtained by normalisation of the initial slopes 

values against the arbitrary chosen proton of the ligand with highest initial slope. 

Figure 2.12: Left: group epitope mapping of a tetramannoside binding to the human anti-HIV-1 

antibody 2G12 obtained by normalisation of the STD initial slopes from the experimental curves; 

Right: STD growth curves (absolute values) for the ligand recognition. In this example, proton H4A 

receives the highest saturation (thus the 100% is arbitrarily assigned) and is used as reference to 

calculate the STD percentages of the other protons. The distribution of saturation transfer 

indicates binding through the non-reducing mannose residue (mannose A). 

Source: Angulo et al., 201079 

In addition, the use of large molar excess of the ligand precludes the perturbation of the absolute 

STD intensities due to rebinding effects (i.e., a ligand already saturated experiences another 

association process, without previous full relaxation), which would impede to correctly determine 

the group epitope mapping. 

Differential Epitope Mapping (DEEP) STD NMR  

Recently, Monaco et al.,83 developed the Differential Epitope Mapping (DEEP) STD NMR 

methodology able to elucidate the nature of the protein residues around the ligand in the bound 

state, from which the ligand orientation inside the binding pocket can be inferred.  
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In short, the binding epitope of a ligand under two different experimental conditions (i.e., two 

different selective irradiation frequencies, or two different solvents, D2O and H2O) is recorded and 

their differences in relative STDs quantified. We will refer to the experiments performed under 

differential conditions as experiment-1 (exp1) and experiment-2 (exp2). Once the experiments 

have been recorded, it is necessary to compare the total sum of the STD values for each 

experiment, to determine which experimental condition produces stronger STD intensities. Hence, 

the experiment with largest total sum will be assigned to exp1. Next, the ratio of STD intensities 

(
ௌ்஽ %೐ೣ೛ ,೔

ௌ்஽ %೐ೣ೛మ,೔
) is calculated for each proton of the ligand. The obtained values contain the contribution 

from differences in the global level of protein saturation, which must be removed. Hence, the 

average ratio of STDs over all protons, n, is calculated ൤ଵ

௡
∑ ൬

ௌ்஽೐ೣ೛భ,೔

ௌ்஽೐ೣ೛మ,೔
൰௡

௜ ൨ and the obtained average 

factor subtracted from each of the individual ratios.   

 The DEEP-STD factor (∆DEEP − STD୧) for each proton 𝑖 of the ligand is obtained as: 

∆DEEP − STD୧ =
𝑆𝑇𝐷௘௫௣ଵ,௜

𝑆𝑇𝐷௘௫௣ଶ,௜

−
1

𝑛
෍ ቆ

𝑆𝑇𝐷௘௫௣ଵ,௜

𝑆𝑇𝐷௘௫௣ଶ,௜
ቇ

௡

௜
 Equation 2.35 

An increase of the relative STD values for the ligand protons will then be translated into positive 

values for increases in exp1, negative values for increases in exp2 (Figure 2.13). Importantly, 

we refer to “relative” STD values as they derive from the comparison of the binding epitopes 

recorded under the differential experimental conditions, and not from absolute STD values. 

When the structural coordinates (PDB) of the protein are available and the binding site known, 

chemical shift of the amino acids resonances constituting the catalytic cleft can be obtained  with 

SHIFTX2, a protein chemical shift prediction programs (http://www.shiftx2.ca/).84 Hence, we can 

select which types of protein protons will be directly irradiated (aliphatic, aromatic, polar, etc), 

and the differences in binding epitopes will highlight those parts of the ligand contacting a given 

type of irradiated protein residues (Figure 2.13, d). 
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Figure 2.13: a) Schematic representation of the different concepts behind conventionaL STD and 

DEEP STD NMR. b) ΔDEEP-STD histogram for the Differential Epitope Mapping (0.60 ppm/6.55 

ppm) of 2,7-anhydro-Neu5Ac in complex with GH33, the glycosyl hydrolase domain of the 

intramolecular (IT) trans-sialidase from Ruminococcus gnavus (IT-sialidase from RgNanH, 

PDB ID: 4X4A). Positive ΔDEEP-STD (above the limit of +0.75) after aliphatic irradiation (0.60 ppm) 

are in cyan, and negative ΔDEEP-STD (below -0.75) after aromatic irradiation (6.55 ppm) are in 

magenta. c) Differential Epitope: ΔDEEP-STD map of the ligand. Cyan surfaces highlights ligand 

contacts with aliphatic side chains; magenta, contacts with aromatic side chains. The ligand polar 

protons have been omitted. d) Crystal structure of the complex (PDB ID: 4X4A). 

Source: Figure adapted from Monaco et el.,201783 

Another source of differences in epitope maps is the solvent. In D2O, amino acids with polar side 

chains in the binding pocket will inefficiently transfer the saturation to the ligand as their 

exchangeable protons will be replaced by deuterium. In H2O, on the contrary, those protons will 

contribute to an additional transfer of saturation to ligand protons, with a major contribution 

expected for those protons which are in slow exchange with the bulk water. Therefore, regions of 
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the bound ligand in close contact with clusters of slow exchanging residues will present an increase 

in the relative STD intensities when the STD NMR experiment is performed in water. 

In addition, Nepravishta et al.,85 expanded the use of DEEP-STD NMR to situations when no spectral 

assignment of the protein is available.  They proposed the use of TEMPOL-based 2D 1H-1H TOCSY 

experiments to identify the binding pocket residues chemical shifts, and then perform 

DEEP-STD NMR experiments using the frequencies identified. In addition, they proposed to 

calculate an average DEEP-STD map by averaging all the obtained DEEP-STD factors (instead of 

using a single pair of frequencies), providing a more accurate depiction of the orientation and the 

nature of the amino acids surrounding the ligand in the binding pocket. 

Dissociation constant (𝐾஽) measurement86 

Furthermore, the thermodynamics protein-ligand dissociation constant 𝐾஽  can be derived from 

STD NMR experiments performed at increasing total ligand concentrations. Importantly, the 

observed experimental STD intensities ((I଴ − Iୱୟ୲) I଴⁄ ) are a function of the fraction of the fraction 

of bound ligand 𝑓௅஻  

𝑓௅஻ =
[𝑃𝐿]

[𝐿]்

=
[𝑃𝐿]

[𝐿] + [𝑃𝐿]
=

[𝑃]

𝐾஽ + [𝑃]
 Equation 2.36 

To obtain the fraction of bound protein 𝑓௉஻ necessary for the derivation of the Langmuir binding 

isotherm (Equation 2.38), Mayer and Meyer proposed a correction for total ligand concentration 

multiplying the observed STD by the molar excess of the ligand over protein to obtain the 

STD amplification factors (STD-AF – Equation 2.37)81, which depends on the fraction of bound 

protein (Equation 2.38)  

𝑆𝑇𝐷 − 𝐴𝐹 = 𝑆𝑇𝐷 ∙
[𝐿]்

[𝑃]்

 Equation 2.37 

𝑓௉஻ =
[𝑃𝐿]

[𝑃]்
=

[𝑃𝐿]

[𝑃] + [𝑃𝐿]
=

[𝐿]

𝐾஽ + [𝐿]
 Equation 2.38 
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Plotting the STD-AF values at increasing ligand concentration yields the protein-ligand binding 

isotherm, from which the dissociation constant KD can be derived. In Equation 2.38 the 

concentration of the free ligand [L] is not known. However, in conditions such as very low total 

concentration of protein ([𝑃]் ≪ 𝐾஽) and an excess of ligand, [𝐿] ≈ [𝐿]், so that 

𝑓௉஻ =
[𝐿]்

𝐾஽ + [𝐿]்

 Equation 2.39 

Plotting STD-AF values at increasing ligand concentration [L] gives rise to a Langmuir hyperbolic 

dose-response curve 

𝑆𝑇𝐷 − 𝐴𝐹 ([𝐿]) =
𝛼ௌ்஽[𝐿]

𝐾஽ + [𝐿]
 Equation 2.40 

where 𝛼ௌ்஽ is a dimensionless scaling factor which represent the maximum STD amplification for 

the monitored signal. Hence, the KD can be derived by mathematical fit of the experimental data 

to Equation 2.40.  

The experimental parameters affecting KD determination via STD NMR, such as the used saturation 

time (𝑡௦௔௧) (Figure2.14), the intensity of the STD signals and the fraction of bound ligand, have been 

thoroughly studied by Angulo et al.79. Importantly, they proposed to use the initial growth rates of 

the STD amplification factors (STD-AF0) rather than the STD-AF factors at a given saturation time, 

for a more accurate measurement of the KD. This approach removes fast protein– ligand rebinding 

processes effects, main cause of errors in KD determination by STD NMR spectroscopic titration 

experiments.  
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Figure 2.14: Example of STD binding isotherms, at different saturation times, of the WGA protein 

(46 μM) titrated with chitobiose. STD-AF values appear normalised against their corresponding 

plateau values. Note that different KD values (KD’, KD’’) are obtained at different saturation times. 

Source: Angulo, 201079 

2.2  Solid-state NMR (ssNMR)87 

As previously mentioned, ssNMR is a powerful tool to obtain structural and dynamics information 

of macromolecules and it is commonly employed to study solid and solid-like materials.  

1H detection in ssNMR is typically dominated by line broadening due to (i) strong homonuclear 

dipole interactions, and (ii) chemical shift anisotropy (CSA), i.e. the angular dependence of the 

chemical shift. CSA is eliminated via the so-called Magic Angle Spinning (MAS),88, 89 while the 

homonuclear dipole contribution is completely averaged out only at fast spinning (ultra-fast MAS 

usually required, i.e. above 100 kHz). 

Solid-state NMR allows the direct detection of 13C nuclei with high sensitivity via the 

cross-polarization (CP) experiment and the use of high power 1H decoupling. CP relies on the 

transfer of magnetisation from an abundant (I) to a diluted (S) spin by dipolar couplings. A thorough 

understanding of the parameters affecting the CP transfer is key to record of high-quality spectra, 

for quantitative studies and to derive molecular mobility information.87 
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2.2.1 Chemical shielding and Chemical Shift Anisotropy 

The electrons circulating in the orbitals around the nuclei act themselves as magnets (they have a 

magnetic moment and, with their movements, they create a circulating current), resulting in the 

induced magnetic field (𝐵ᇱ). This local magnetic field modulates the effective magnetic field (𝐵) 

felt by the nuclei, which is slightly smaller than the applied external field (𝐵଴) – thus, we say that 

the electrons have a “shielding” effect 

𝐵 = 𝐵଴ − 𝐵ᇱ = 𝐵଴(1 − 𝜎) Equation 2.41 

where 𝜎 is the shielding constant. This shielding interaction is described by the chemical shielding 

Hamiltonian (𝐻෡஼ௌ) 

𝐻෡஼ௌ = −𝛾𝐼መ௓𝐵଴(1 − 𝜎) Equation 2.42 

The expression of the chemical shift (𝛿) values as part per million (ppm) of the external field derives 

from the fact that the local magnetic fields produced by moving electrons are considerably smaller 

than 𝐵଴.90 Normally, the chemical shift is determined as the difference between the frequencies 

of the analysed nucleus (𝜈) with respect to a reference compound (𝜈௥௘௙) of known frequency, 

to which a  0 ppm chemical shift is assigned by convention 

𝛿௣௣௠ = 10଺ ቆ
𝜈 − 𝜈௥௘௙

𝜈௥௘௙
ቇ Equation 2.43 

Different standard reference compounds are used for different nuclei (depending on availability 

and ease to handle), e.g. adamantane and tetramethylsilane (TMS) are standards for 1H and 13C, 

CFCl3 for 19F and liquid NH3 for 15N chemical shift referencing. 

Different atoms present different electron clouds densities, depending on presence of hydrogen 

bonds, presence of electronegative nuclei in close proximity, unpaired electrons of through space 

interactions within molecular clusters and hybridization state. In addition, those electrons clouds 

do not present a spherical symmetric distribution around the nuclear spins but rather an elongated 

shape (ellipsoid) along bonds or non-bonding p-orbitals (Figure 2.15). The orientation of this 

ellipsoid with respect to the external field (and hence the orientation of the molecule) with respect 
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to 𝐵଴ determines the degree to which the electron density affects the size of the induced magnetic 

field and hence the resonance frequency. The nucleus resonance will therefore present a 

deviation, defined as chemical shift anisotropy (CSA). For 13C nucleus resonance frequency, 𝛿ଵଵ and 

𝛿ଷଷ correspond to the strongest and the weakest shielding effects, respectively. The first occurs 

when the narrowest part of the electron cloud is oriented along 𝐵଴ (Figure 2.15), while the second 

when the widest part is oriented along the z-axis (Figure 2.15).  𝛿ଶଶ, instead, is the shift produced 

by the molecular orientation perpendicular to the axes of 𝛿ଵଵ and 𝛿ଷଷ (Figure 2.15).90 Importantly, 

for the special case when 𝛿ଵଵ = 𝛿ଶଶ (a shielding tensor with axial symmetry), the chemical shift 

anisotropy (CSA) Hamiltonian (𝐻෡஼ௌ) can be written as 

𝐻෡஼ௌ஺ = 𝛾𝐵଴𝐼௓ ൤𝛿ூௌை +
1

2
𝛿஼ௌ஺(3 cosଶ 𝜃 − 1)൨ Equation 2.44 

Where the 𝛿ூௌை is the isotropic chemical shielding factor 

𝛿ூௌை =
1

3
(𝛿ଵଵ + 𝛿ଶଶ + 𝛿ଷଷ) Equation 2.45 

And 𝛿஼ௌ஺ described the chemical shift anisotropy (CSA 

𝛿஼ௌ஺ = 𝛿ூௌை − 𝛿ଷଷ Equation 2.46 
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Figure 2.15: Representation of preferential orientation of the ellipsoidal electron cloud of a 

carbonyl with respect with the external magnetic field, with the corresponding values of chemical 

shift tensors, with the corresponding values of chemical shift tensors, a) 𝛿ଵଵ, b) 𝛿ଶଶand c) 𝛿ଷଷ. 

Source: Laws et al., 2002.90 

2.2.2 Homonuclear Dipolar Coupling 

The homonuclear dipolar coupling is the interaction between the magnetic moments of like spins, 

and it is described by the homonuclear dipolar coupling Hamiltonian for a two-spin system 

𝐻ூ,ூ = − ቀ
𝜇଴

4𝜋
ቁ

ħ𝛾ଵ𝛾ଶ

𝑟ூభூమ

ଷ

1

2
൫3 cosଶ 𝜃ூభூమ

− 1൯ ൤2𝐼ଵ௭𝐼ଶ௭ −
1

2
(𝐼ଵ

ା𝐼ଶ
ି + 𝐼ଵ

ି𝐼ଶ
ା)൨ Equation 2.47 

where 𝛾ଵ𝛾ଶ are the gyromagnetic ratio of spin 1 and spin 2, respectively,  𝑟ூభ
𝑟ூమ

is the internuclear 

distance between two like spins, 𝜇଴ is the permeability of free space (𝜇଴ = 4𝜋 × 10଻ 𝑁𝐴ିଶ) and 𝜃 

is the angle that describes the orientation of the internuclear vector with respect to the external 

magnetic field. The terms𝐼ଵ
ା𝐼ଶ

ି and 𝐼ଵ
ି𝐼ଶ

ାexpress the spin diffusion mechanism of magnetisation 

transfer, hence the energy conserving “flip-flop” transition of two like spins with similar resonance 

frequencies (Figure 2.16). The raising operator (𝐼ା = 𝐼௫ + 𝑖𝐼௬) represents the flip of a spin from 

“down” to “up” orientation, while the lowering operator (𝐼ି = 𝐼௫ − 𝑖𝐼௬) expresses the flip of a spin 

from “up” to “down” orientation. By rearranging the term 
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𝐼ଵ𝐼ଶ = 𝐼ଵ௫𝐼ଶ௫ + 𝐼ଵ௬𝐼ଶ௬ + 𝐼ଵ௭𝐼ଶ௭ Equation 2.48 

The homonuclear dipolar coupling Hamiltonian can be simplified to 

𝐻ூ,ூ = − ቀ
𝜇଴

4𝜋
ቁ

ħ𝛾ଵ𝛾ଶ

𝑟ூభூమ

ଷ

1

2
൫3 cosଶ 𝜃ூభூమ

− 1൯[3𝐼ଵ௭𝐼ଶ௭ − (𝐼ଵ𝐼ଶ)] Equation 2.49 

 

The first left-term of the equation 47 describes to the dipolar constant (d), hence expressed as 

𝑑 = ቀ
𝜇଴

4𝜋
ቁ

ħ𝛾ଵ𝛾ଶ

𝑟ூభூమ

ଷ  Equation 2.50 

From equation 2.50 it is evident the direct proportionality between the dipolar interactions and 

the gyromagnetic ratio of interacting spins, as well as the inverse proportionality with the cube of 

the internuclear distance. Nuclei with larger magnetic moments produce stronger local magnetic 

fields, which in turn increases the dipolar coupling interaction. Therefore, for abundant nuclei with 

high gyromagnetic ratio, dipolar interactions are extremely strong (1H-1H in the range of 100 kHz). 

On the contrary, pairs of nuclei with low gyromagnetic ratio and low natural abundance present 

negligible homonuclear dipolar coupling (13C-13C do not exceed 5 kHz).  

 

Figure 2.16: Energy conserving “flip-flop” interaction between two like spins occurs since 

𝜔ூభ
= 𝜔ூమ
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2.2.3 Heteronuclear Dipolar Coupling 

The heteronuclear dipolar coupling is the interaction between the magnetic moments of unlike 

spins. The heteronuclear dipolar coupling Hamiltonian (𝐻෡ூ,ௌ) for a two-spin system is described by 

𝐻ூ,ௌ = − ቀ
𝜇଴

4𝜋
ቁ

ħ𝛾ଵ𝛾ଶ

𝑟ூௌ
ଷ

1

2
(3 cosଶ 𝜃ூௌ − 1)𝐼௓𝑆௓ Equation 2.51 

where nuclear spins are labelled as I for abundant spins (1H, 19F) and S for rare spins (13C, 15N) and 

𝑟ூௌ represents the internuclear distance between the two unlike spins. The spin component (𝐼௓𝑆௓) 

is significantly simplified, because the energy conversing “flip-flop” transition is not possible 

between two spins with different resonance frequencies (Figure 2.17). Similarly to homonuclear 

dipolar couplings, the strength of heteronuclear dipolar interactions depends on the gyromagnetic 

ratio of interacting spins, the distance between both nuclei and their orientation with respect to 

the external magnetic field. In specific, 13C-1H heteronuclear dipolar coupling has a typical strength 

between 20 and 30 kHz (at a distance of about 1 Å). 

 

Figure 2.17: Energy conserving “flip-flop” transitions cannot occur between two unlike spins since 

𝜔ூ ≫ 𝜔ௌ 

2.2.4 Magic Angle Spinning 

The Magic Angle Spinning approach was at first proposed by Andrew et al. (1958)88 for a single 

crystal of sodium chloride and revolutionised the field of ssNMR. In summary, all anisotropic 

interactions present orientational dependence via the term (3 cosଶ 𝜃 − 1). In powder samples, θ 

can assume all possible values, but when the sample is spun at an axis oriented at the angle θ = 

54.74° with respect to the external magnetic field, the angular dependence in the geometric 
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component of dipolar and CSA interaction is cancelled to zero (Figure 2.18, a). This technique 

mimics the sampling of all possible orientation for rapid tumbling molecules in solution, 

which therefore present isotropic chemical shifts. 

 

Figure 2.18: a) Representation of a rotor spun at the MAS (θ = 54.74°) and b) Variety of NMR rotor 

sizes available to reach different MAS rates. Source: Adapted from Demers et al., 201191 

In the application of the MAS to record 1H spectrum, it is possible to differentiate dynamics regimes 

in solids as mobile domains will appear in the spectra as sharp peak.92 In addition, a spectrum 

obtained under 1H-13C Cross-Polarisation/MAS conditions (explained in subsection 2.2.8) contains 

isotropic chemical shift information in analogy to liquid-state 13C NMR with proton decoupling. 

Nonetheless, to effectively eliminate the geometric term of the spin-spin interaction described by 

the Hamiltonians, MAS rates at least three times higher than the strength of the interactions are 

required. For example, MAS rate of 10-15 kHz effectively eliminates 1H-13C heteronuclear dipolar 

coupling. On the contrary, the much stronger homonuclear dipolar coupling (in the range of 

ca. 80 kHz) are frequently observed in solid-state NMR for nuclei with high abundance and high 

gyromagnetic ratio (1H, 19F). Even though application of ultra-fast MAS rates of 120 kHz is nowadays 

possible with currently developed solid-state NMR probes, the homonuclear dipolar interactions 

cannot be fully averaged and are still present in the spectrum. 

2.2.4.1 Spinning sidebands 

Common MAS artefacts are the so-called spinning sidebands, which arise when the spinning rate 

is not sufficient to average out the anisotropy. The spinning sidebands appear on both side of the 

isotropic chemical shift resonance and are separated by frequency distances of integer multiples 

of the spinning speed.  In order to effectively eliminate the geometric term of the anisotropic 
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interactions, it is necessary to use MAS rates 3-4 times higher than the interaction strength. 
1H-13C dipolar coupling is averaged at MAS rate of 10-15 kHz, but the stronger 1H-1H dipolar 

coupling (in the range of 80 kHz) are frequently observed. 

2.2.5 Heteronuclear decoupling 

When observing a dilute spin S (13C, 29Si, 15N), with a pool of abundant spin I nearby (1H), 

heteronuclear dipolar coupling result in a broadening of the lines. The effect of this coupling can 

be removed by applying high power rf irradiation at the resonance frequency of the I spin. 

This technique is known as high-power decoupling (HP).   

To understand how to reduce the heteronuclear dipolar coupling contribution, we need to look 

once more at the heteronuclear dipolar coupling Hamiltonian (Equation 2.51), from which it is 

evident that the heteronuclear dipolar interactions depends also on the spin component (𝐼௓𝑆௓), 

besides the gyromagnetic ratio of interacting spins, the distance between both nuclei and their 

orientation to the external magnetic field previously described.  Briefly, the effect of this rf 

irradiation is to cause a repeated transition of the I spin between high and low energy states (α↔β) 

when the free-induction decay (FID) curve for the S-spin is acquired. Consequently, the term 𝐼௓𝑆௓ 

will oscillate between positive and negative values, producing a time averaged value of zero. 

Nonetheless, application of decoupling rf pulses during long acquisition times can cause sample 

and probehead overheating. Molecular motions with a time scale similar to the rf irradiation can 

interfere with the decoupling field, resulting in an ineffective decoupling and consequent 

broadening of the signals in the spectrum. In addition, if the decoupling and the spinning rate are 

of the same order, the two processes will also interfere, resulting again in a broadening effect. 

For these reasons, lower power decoupling with the application of short pulses at define intervals 

are nowadays preferred. Common examples are TPPM (Two Phase Pulse Modulated)87, 90, 93, 94, XiX 

(X inverse X)95 and SPINAL96 pulse sequences, which present better performance than HP 

decoupling for similar rf power and can be used at higher spinning speed.  
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2.2.6 Homonuclear decoupling 

In the same way as in heteronuclear decoupling, the homonuclear dipolar coupling can be 

eliminated by annulling the effect of the homonuclear dipolar Hamiltonian on the nuclear 

magnetisation. This can be achieved by the application of multiple pulse sequences (e.g. WAHUHA 

or MREV-8).87, 90 Nonetheless, these decoupling sequences require the FID to be collected at 

particular points between cycles of pulses, as well as the application of high power pulses in order 

to maintain the pulse length short relative to the cycle time. Moreover, the spectral width of the 

resulting spectrum is the inverse of the cycle time and it must be large enough to contain all the 

signals; as a result, short cycles times are preferable. In addition, the decoupling sequence and the 

sample spinning should be synchronised as MAS can interfere with the decoupling sequence. 

To overcame these problems, the homonuclear decoupling is often implemented in the indirect 

dimension of two dimensional (2D) experiments, which resulted in the generation of high 

resolution 1H spectra from 2D experiments.97 Common pulse sequences are Lee-Goldburg (LG) and 

frequency switched Lee-Goldburg schemes (FSLG).87, 90 The main advantage of this approach over 

the implementation of one dimensional (1D) homonuclear decoupling is that the homonuclear 

decoupling does not need to be rotor synchronised.  

2.2.7 Single pulse excitation 13C NMR 

Single pulse (SP) 13C NMR experiments rely on the direct 13C excitation and subsequent spectra 

acquisition under conditions of high power 1H-13C heteronuclear decoupling. This experiment is 

called Single Pulse (SP) as only a 90° pulse on 13C is applied. The general pitfall of the experiment 

is the long relaxation delay required due to the typically long T1 times of 13C (tens – hundreds of 

seconds), leading to very long experimental times.98 The long T1 times of 13C are due to the low 

efficiency of the weaker 1H-13C heteronuclear dipolar couplings in triggering relaxation, and the 

absence of the stronger 13C-13C homonuclear dipolar couplings due to the low abundance of the 
13C isotope. On the contrary, when other nuclei (such as 19F) are acquired, the more efficient 

homonuclear coupling allows the use of shorter relaxation delays. 
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2.2.8 1H-13C CP/MAS NMR87 

Cross-polarization (CP) constitutes the core element in solid-state NMR pulse sequences. CP is a 

double-resonance solid-state NMR experiment that relies on the magnetisation transfer from 

abundant I nuclei (usually 1H) to dilute S nuclei (i.e. 13C, 29Si and 15N, with isotopic natural 

abundance of 1.1%, 4,7% and 0.03%, respectively) by applying simultaneous spin-lock pulses to 

both I and S nuclei (the S nuclei is often generally referred to as X). The CP experiment is commonly 

performed under MAS and high-power I spin decoupling conditions, enabling the detection of well 

resolved S peaks. The methodology overcomes two common problems in the NMR of solids: 

(i) the low sensitivity for low abundance NMR-responsive isotopes with low gyromagnetic ratio 

(e.g. 13C isotopic natural abundance is 1.1% and its gyromagnetic ratio is ¼ of 1H); and (ii) the long 

T1 relaxation time of dilute spin ½ nuclei (tens of seconds for 13C in powdered organics, minutes for 
29Si in framework silicates). 

During CP, magnetisation transfer is mediated by the heteronuclear dipolar coupling between 
1H and X; hence, the kinetics of CP transfer is highly influenced by internuclear 1H - X distances and 

local mobility. Thus, 1H - X pairs in rigid and mobile structures will show a fast and slow CP growth, 

respectively. On the other hand, 1H 𝑇ଵఘ relaxation competes with CP transfer, eventually leading 

to equilibrium magnetisation. X nuclei shows long longitudinal relaxation times due to the absence 

of strong homonuclear dipolar interactions to stimulate relaxation (only the weaker heteronuclear 

dipolar interactions are present). Nonetheless, in CP experiment, the relaxation delay is 

determined by the 1H 𝑇ଵఘ relaxation time, which is in general much shorter than the X spin 

relaxation time. This allows the faster acquisition of spectra with a good signal-to-noise ratio. 

The CP pulse is shown is Figure 2.19:  
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Figure 2.19: CP pulse sequence representation 

To understand the physical principles of CP, a double rotating frame of reference about 𝐵଴
ሬሬሬሬሬ⃗  is 

usually considered. In this frame of reference, the magnetic fields arising from the 1H and X 

spin-lock pulses appear static. In the first part of the pulse, the 90°x pulse applied on 1H rotates the 

magnetisation along the –y axis in the 1H rotating frame. Then, two concomitant pulses are applied 

on 1H and X along the –y axis (contact pulse). The application of these pulses generates two 

different fields, B1(1H) and B1(X), or spin-lock fields, which act as quantization axis for 1H and X 

energy states. Hence, the 1H and X nuclei will present parallel and antiparallel components to the 

spin-lock fields, respectively, called α* and β* for 1H and α*x and β*x for X.  

1H and X nuclei must be dipolar coupled for CP to occur, and the Hamiltonian operator describing 

this interaction is expressed as: 

Ĥு௑ = − ෍ 𝑑௜(3 cosଶ 𝛩௜ − 1)Î௜௭
ு Ŝ௭

௑ Equation 2.42 

where 𝑑௜  is the dipolar coupling constant. As both 1H and X spins are quantized in the x-y plane of 

the rotating frame, the dipole-dipole coupling operator Î௜௭
ு Ŝ௭

௑ , which acts in a direction 

perpendicular to the quantization axes, does not affect the net energy of the spin system or alter 

the net spin polarization (given by the sum of 1H and X spin polarizations) parallel to the transverse 

plane. For CP to occur, the magnitude of the contact pulses applied on 1H and X must meet the 

Hartmann-Hahn (HH) matching condition: 

𝛾ு𝐵ଵ(𝐻) = 𝛾௑𝐵ଵ(𝑋)  HH matching at the centerband, static case Equation 2.43 
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𝛾ு𝐵ଵ(𝐻) = 𝛾௑𝐵ଵ(𝑋) + 𝜔ெ஺ௌ HH matching at the 1st order sidebands, 

MAS case 
Equation 2.44 

where 𝜔ெ஺ௌis the magic angle spinning speed. Hence, the CP process is an energy conserving 

process, where the energy gaps between the I and S spins in their respective rotating frame 

becomes equal (Figure 2.20). The dipolar coupling between the 1H and X spins allows redistribution 

of energies between them, while the total energy and the net magnetisation are maintained 

constant. 

 

Figure 2.20: Equalisation of the energy differences between the transitions of the I and the S spins 

in a double rotating frame when the nutation frequencies on both spins are equal (ωI=ωs) 

For 1H, the initial 90°x pulse rotate the magnetization in the transverse plane, hence the spin 

population in the direction of the B1(H) field will be the same as the one along B0 in the laboratory 

frame. As the B1(1H) field is much smaller than B0, it cannot sustain the same energy difference 

between the α* and β* spin states, leading to a reduction of the population difference (α* →β*). 

At the same time, β*x→ α*x transitions in the rotating frame of the X spin occur to conserve the 

energy, leading to a large magnetisation along B1(X) 

Thermodynamics offers another elegant explanation of the CP as a heat-exchange process.99 

When the contact pulse is applied, the large spin population difference in I rotating frame could be 

compared to a high spin temperature, while the zero magnetisation of spin S in the rotating frame 

correspond to zero spin temperature. Thus, the HH matching condition brings both spin systems 

in thermal contact, enabling the “heat” transfer from the hot I spin population to the cold S spin 

population. Hence, it is the difference in spin temperature which enables the flow of energy and 

the polarisation transfer to occur. 
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Another important phenomenon to consider during CP is homonuclear 1H spin diffusion, 

which leads to magnetisation redistribution within the 1H network. A more exhaustive explanation 

on its effect on CP will be given in the following CP kinetics section.  

2.2.8.1 CP kinetics99 

The CP kinetics methodology relies on monitoring peak intensity changes of X nuclei during 

CP experiments performed at variable contact times. As CP relies on heteronuclear dipolar 

interactions, it is sensitive to the local mobility and internuclear distances. CP kinetics is thus a 

powerful method to characterise local structural and dynamics between dipolar coupled nuclei in 

solid-like materials and provides crucial information to correctly interpret single CP spectra. 

Indeed, different peaks can present maximum intensity at distinct contact times, hindering the 

application of single CP spectra for quantitative analysis. On the other hand, CP kinetics allows to 

identify the optimum contact time for each peak and, therefore, to design quantitative 

CP experiments.  

Over the years, two main models have been used to explain the behaviour of CP with contact time. 

The classical I-S model was constructed around homogeneous solids, thus systems presenting 

weak I-S heteronuclear and strong I-I homonuclear dipolar couplings. This favour the occurrence 

of homonuclear spin diffusion and homogenisation of the I magnetisation.  The general CP kinetics 

equation for abundant and diluted spin ½ systems is: 

 𝐼(𝑡) =  𝐼଴ ቆ1 +
𝑇ூௌ

𝑇ଵఘ
ௌ −

𝑇ூௌ

𝑇ଵఘ
ூ ቇ

ିଵ

ቊ𝑒𝑥𝑝 ቆ−
𝑡

𝑇ଵఘ
ூ ቇ − 𝑒𝑥𝑝 ቈ−𝑡 ቆ

1

𝑇ூௌ

+
1

𝑇ଵఘ
ௌ ቇ቉ቋ Equation 2.44 

where 𝐼଴ is the absolute intensity, 𝑇ூௌ the CP time constant, 𝑇ଵఘ
ூ  𝑎𝑛𝑑 𝑇ଵఘ

ௌ  the relaxation constant in 

the rotating frame for I and S, respectively, and t is the contact time.  

For slowly relaxing S nuclei, where ்಺ೄ

భ்ഐ
ೄ ≈ 0, the equation simplifies to: 

𝐼(𝑡) =  𝐼଴ ቆ1 −
𝑇ூௌ

𝑇ଵఘ
ூ ቇ

ିଵ

ቈ𝑒𝑥𝑝 ቆ−
𝑡

𝑇ଵఘ
ூ ቇ − 𝑒𝑥𝑝 ൬−

𝑡

𝑇ூௌ
൰቉ Equation 2.45 
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This equation describes the double exponential behaviour of CP, where the initial growth is 

governed by the exp ቀ−
௧

்಺ೄ
ቁ term, and the curve exponential decrease is governed by the – 𝑡/𝑇ଵఘ

ூ . 

The maximum intensity (I0) is decreased by the CP time constant factor ൬1 −
்಺ೄ

భ்ഐ
಺ ൰

ିଵ

.  

On the other hand, when 𝑇ଵఘ
ூ  relaxation is slow in comparison to 𝑇ூௌ, i.e. 𝑇ூௌ/𝑇ଵఘ

ூ ≈ 0, the CP 

kinetics expression simplifies to: 

𝐼(𝑡) =  𝐼଴ ൤1 − 𝑒𝑥𝑝 ൬−
𝑡

𝑇ூௌ
൰൨ Equation 2.46 

which describes a monoexponential curve that grows with a time constant TIS and reaches the 

plateau corresponding to the amplitude of I0. 

Importantly, while  𝑇ூௌ and 𝑇ଵఘ
ௌ  are characteristic for individual resonances, 𝑇ଵఘ

ூ  represent a volume 

property averaged over a distance of ca. 2 nm, as assumed by the fast I-I magnetization 

redistribution due to the efficient spin diffusion. This highlights a limitation in the I-S model for the 

description of CP kinetics in solids with heterogeneous populations of spin source.  

On the contrary, the I-I*-S model takes into account spin diffusion efficiency. The model originated 

from the study of stationary single crystals which revealed a transient harmonic oscillation for the 

CP of a C-H group.99 This was explained with the existence of two different proton populations: 

I* corresponding to the proton directly bound to the diluted spin system S, and I for the rest of the 

proton network.  

In the single crystal case, spin diffusion is not fast enough to prevent the oscillatory CP transfer and 

hence the CP curve will present two different CP growing rates. At first, a fast rise of the intensity 

is observed due to the I*-S close proximity. Then, the remote spins I will transfer polarisation to I* 

via spin diffusion, which in turn will transfer it to S. This is characterised by a slow rise of the CP 

intensity or damped oscillation. Finally, for long contact times, magnetisation will eventually decay 

due to 𝑇ଵఘ
ு  relaxation.  

The general equation that describes the oscillatory CP behaviour of the I-I*-S model for isolated 

pairs of spin-1/2 in static conditions is: 
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𝐼(𝑡) = 𝐼଴ ൤1 −
1

2
𝑒𝑥𝑝(−𝑅𝑡) −

1

2
𝑒𝑥𝑝(−3𝑅𝑡 2⁄ ) cos(𝑏𝑡 2⁄ )൨ Equation 2.47 

where R represents the spin-diffusion rate, b the dipolar coupling, and t the contact time. 

The equation was then modified to include both the effect of 𝑇ଵఘ
ூ  relaxation and of low-probability 

spin diffusion between S nuclei.  

Generally, for isolated S-In spin pairs in a powder sample under MAS conditions, the following 

equation applies: 

𝐼(𝑡) =  𝐼଴𝑒𝑥𝑝 ቆ−
𝑡

𝑇ଵఘ
ூ ቇ ቈ1 − 𝜆𝑒𝑥𝑝 ቆ−

𝑡

𝑇ௗ௙
ቇ

− (1 − 𝜆)𝑒𝑥𝑝 ቆ−
3

2

𝑡

𝑇ௗ௙
ቇ 𝑒𝑥𝑝 ቆ−

1

2

𝑡ଶ

𝑇ଶ
ଶቇ቉ 

Equation 2.48 

where 𝑇ଵఘ
ூ  is the I spin lattice relaxation constant in the rotating frame, 𝑇ௗ௙ is the I spin-diffusion 

time constant describing the strength of the homonuclear dipolar interactions and the 

homogeneity of the I spin pool; 𝑇ଶ is the spin-spin relaxation constant, and λ is defined by the 

number of I spins (n) attached to the S spin under study (𝜆 = (1 (𝑛 + 1)⁄ ). Due to its dependence 

on mobility, the theoretical values of 1/2 and 1/3 for CH and CH2 groups, respectively, does not 

always match with the experimental data and 𝜆 must be fitted. Usually, fitting gives values that do 

not deviate more than 0.1 from the theoretical values for CH and CH2 groups, while for quaternary 

and methyl carbons, 𝜆 values in the range of 0.7-0.8 and 0.4-0.6, respectively, have been 

reported.99 

To summarise, the I-I*-S model applies when heteronuclear I*-S dipolar interactions are sufficiently 

strong compared to homonuclear I-I dipolar interactions, which is often the case when 1H and 13C 

are in the same functional group and this is relatively immobile. On the contrary, for weak I-S 

heteronuclear interactions and strong I-I homonuclear dipolar coupling, the CP kinetics will most 

likely follow the classical I-S model. The classical model is usually employed for polymers with 

substantial segmental chain motion. 
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2.2.9 Water-polarisation transfer – characterisation of water-network 

interactions in hydrogel systems by ssNMR 

In solid-state NMR, water polarization transfer CP experiment (WPT-CP) is 

a well-established technique to gain site specific information on the hydration profile of solid 

particles.100  WPT-CP experiments begins with a 1H T2 filter sequence, optimized to select the 1H 

magnetisation of the mobile component (e.g. water in hydrogels) while removing the transverse 

magnetization of the immobile components of the system (e.g. cellulose fibrils). Hence, after the 

initial 90° pulse on the 1H channel, a 180° pulse in the middle of the T2 filter is applied to refocus 

the isotropic chemical shift evolution and B0 field inhomogeneity. Next, a 1H 90° pulse stores the 

mobile component magnetisation along the z-axis and allows the transfer of 1H polarisation to the 

immobile components via spin diffusion (hence, distance- and mobility-dependent 1H-1H dipolar 

coupling) and chemical exchange mechanisms during the mixing time period. Finally, a CP building 

block transfers the 1H to 13C magnetisation for detection (Figure 2.21, a).  
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Figure 2.21: a) WPT-CP pulse sequence and b) WPT curves representing the normalized growth of 

peak area (peak intensities at each mixing time is normalized against the spectrum acquired with 

the longest mixing time) against the square root of mixing time. Source: Adapted from White et al., 

2014.100 

The experiment is repeated for varying mixing times to obtain the so-called WPT 

curves (normalised peak intensity vs square root of mixing time) for each carbon peak 

(Figure 2.21, b). To avoid a strong contribution of spin diffusion during CP, the application of a short 

contact time (500 µs) is recommended. In this way, the acquired signal is mostly affected by water 

proximity and mobility.  

Importantly, it should be noted that the intensities obtained in the WPT-CP experiments ultimately 

depends on 1H-13C cross-polarization efficiency (last step before FID acquisition); thus, only 

components that are immobile enough to cross-polarise will contribute to the spectra, while 

the most mobile components might not be “picked-up” by this experiment. In other words, 

WPT-CP curves report only on water interactions with rigid components.   

2.3 Powder X-Ray Diffraction 

PXRD is an analytical technique able to characterise the long-range ordering of crystalline and 

semi-crystalline materials based on their diffraction pattern. Crystals with precise periodicities over 

long distances give rise to sharp and clear diffraction peaks, while crystals with long range ordering 

defects (such as impurities, dislocations, planar faults, internal strains) produce diffraction patterns 

which present broadened, distorted and/or weakened diffraction peaks. Contrarily, amorphous 

materials lack a well-defined three-dimensional organisation, which results in strong peak 
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broadening and, hence, the lack of a distinguishable diffraction pattern. Importantly, each specific 

crystalline arrangement of atoms produces a unique diffraction pattern. 

Crystals can be defined as solids presenting an ordered aggregation of atoms, ions or molecules, 

enclosed by symmetrically arranged plane surfaces and intersecting at defined and characteristic 

angles. In crystals, atoms repeat periodically in all three dimensions (crystal lattice), the smallest 

repeating pattern being defined as the crystal unit cell. Hence, we describe the unit cell in terms 

of the lattice (set of identical points). Seven possible shapes of unit cells have been defined, 

each one described by three side lengths a, b, and c and the angles α, β, and γ (Table 2.1).  

Table 2.1: The cell parameters reported by the Seven Crystal System for the possible shapes of unit 

cells. 

Crystal system Cell lengths Cell angles 

Cubic a=b=c α=β=γ=90° 

Tetragonal a=b≠c α=β=γ=90° 

Orthorhombic a≠b≠c α=β=γ=90° 

Monoclinic a≠b≠c α=γ=90°≠β>90° 

Triclinic a≠b≠c α≠β≠γ≠90° 

Hexagonal a=b≠c α=120° β=γ=90° 

Rhombohedral a=b=c α=β=γ≠90° 

Two main techniques are employed to access structural information of ordered materials. 

Single crystal X-ray diffraction provides precise information on unit cell parameters (position of 

atoms, bond lengths and angles between them), but it is limited to molecules or materials able to 

form stable and high-quality crystals of sufficient size. Powder X-ray diffraction (PXRD) enables the 

analysis of powdered materials reporting on the long-range planes of symmetry that characterise 

the material. In PXRD spectra, the X-ray intensities are plotted against the scattering angle. 

X-rays are emitted by an anode bombarded by electrons generated from an electrically heated 

tungsten filament and accelerated in vacuum by high potential voltage of 20-60 kV. The anode can 

be composed of different metals, generally Cu. The electron emitted by the filament displace the 

electrons on the inner shell (K) of Cu. Hence, electrons from the outer shell descend emitting 
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energy in the form of radiation (Figure 2.22). Electrons that descend from the L and M shell emit 

Kα and Kβ radiation, respectively. Kα radiations usually present a wavelength of 1.54056 Å. 

 

Figure 2.22: Generation of X-rays through changes in the electronic structure of Cu. 

Source: Lesley at al., 2005101 

X-rays electromagnetic waves present a wavelength ranging from 0.01-10 nm, which is on the 

same order of magnitude of inter-atomic distance of crystalline materials (1 Angstrom = 0.1 nm). 

X-rays can be scattered by a point object resulting in a new wave which spread in all directions. 

In the case that no loss of energy occurs, the wave maintains the same frequency. Two waves 

scattered by different points, will interfere with each other. The resulting amplitude depends on 

the phase shift (δφ) between the two waves (when the two waves are not coincident, hence do 

not have the same phase). This can be described on a linear scale in the wavelength units (Δ) or as 

a phase shift (δφ) on an angular scale: 

𝛥

𝜆
=

δφ

2𝜋  
⇒ δφ =

𝛥

𝜆
2𝜋 Equation 2.52 

In the two extreme cases, the detected intensity (I) of two sine waves (A1 and A2) can present either 

the same (δφ=0) or δφ=π shifted phase by constructive or destructive interference, and can be 

written as: 

For δφ = 0: 𝐼 = (𝐴ଵ + 𝐴ଵ)ଶ  Equation 2.53 
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For δφ = π: 𝐼 = (𝐴ଵ−𝐴ଶ)ଶ Equation 2.54 

The above equations for two and more (j) waves can be written as: 

𝐼 = (𝐴ଵ+𝐴ଶexp (𝑖δφ))ଶ Equation 2.55 

𝐼 = ቈ෍ 𝐴௝exp (𝑖φ௝)
௝

቉

ଶ

 Equation 2.56 

Hence, the detected intensity corresponds to the square of the sum of the amplitudes of the X-rays 

waves scattered by the electrons of the atoms distributed in the three-dimensional space, meaning 

that the phase shift of the detected waves contains information about relative atomic positions. 

Application of the Bragg’s Law then leads to structural information of crystalline solids. 

Bragg’s Law treats crystals planes of atoms acting as mirrors. To understand this, we need to look 

at Figure 2.23.  When a monochromatic beam of parallel X-rays (ADI) is directed to a crystal (the 

green dots aligned in planes in Figure 2.23) with an angle Θ, the ray A is scattered by atom B, 

while ray D and I penetrates the material and are scattered by atom F and J, respectively. 

As mentioned, the crystal is organised in planes, characterised by the Miller indices (hkl). 

When parallel, those planes are equally spaced by a distance dhkl , and present the same Miller 

index. 

 

Figure 2.23: Example of X-ray diffraction resulting in reflections at a particular angle Θ used to 

derive Bragg’s equation. Source: Dinnebier et al., 2008101, 102 

From Figure 2.23 it is evident that ray D travels longer distance before  (EF)  and after (FG) being 

reflected, in comparison with ray A. Nonetheless, as both rays are reflected in the same direction, 
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superimposition occurs, with a constructive interference arising only when the difference in 

distance Δ = EF + FG is a multiple (n) of wavelength (λ): 

Δ = EF + FG = nλ and EF = FG Equation 2.57 

In geometrical terms (based on Figure 2.3) 

sin 𝛼 =
𝐸𝐹

𝑑௛௞௟

⇒ 𝐸𝐹 = 𝑑௛௞௟ sin 𝛼 Equation 2.58 

∆ = 𝐸𝐹 + 𝐹𝐺 = 2𝑑௛௞௟ sin 𝛼 Equation 2.59 

𝑛𝜆 = 2𝑑௛௞௟ sin 𝛼 Equation 2.60 

Equation 2.60 is known as Bragg’s equation and it relates the spacing between the individual planes 

(dhkl) with the Bragg’s angle Θhkl at which the reflections from those planes are observed. The Miller 

indices (100), (110), (111) are used to label the observed reflections in PXRD according to the plane 

from which they diffract. However, in the case when the reflected of waves are out of phase, 

destructive interferences occur, and no diffraction patterns are detected. 

Importantly, powder XRD patterns can be simulated from previous diffraction data using Mercury, 

a high-quality crystal structure visualization and investigation software developed by the 

Cambridge Crystallographic Data Centre (CCDC). A Crystallographic Information File (.cif) 

containing atoms coordinates can be loaded in the software and the simulated powder diffraction 

pattern calculated and displayed using the Mercury Powder Diffraction Pattern tool. The pattern 

is plotted as diffraction intensity against 2Θ for a given wavelength of radiation (for example, 

CuKa1 = 1.54059).103 

2.4 Molecular modelling104 

Molecular modelling is a broad field that spreads from theoretical and semi-empirical quantum 

mechanical (QM) methods to semi-empirical Molecular Mechanics (MM) methods. QM methods 

aim to an accurate description of the molecule electronic environment. On the contrary, the MM 

approach is based on the Born-Oppenheimer approximation, which treats the motions of nuclei 
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and electrons separately. Due to their smaller size, the motions of the electrons can be neglected, 

and the atomic nuclei can be described as spherical masses that follows classical mechanical physic.  

Application of QM methods to large biological molecules (i.e. proteins, DNA and lipid membrane) 

is computationally intense and most of the time not feasible, while the simplified MM approach is 

widely used to calculate molecular geometries and energies.  

2.4.1 Molecular Mechanics 

In MM, atomic nuclei are described as “balls” of different sizes (depending on the atom type) and 

given coordinated, which are connected by springs. The balls interact with each other through 

processes of bond stretching, dihedrals distortion, angle opening and closing. 

The basic concept of MM is that bonds have equilibrium lengths and angles which are defined in 

the so-called “force field”. Deviations from these standard values results in an increase of the total 

energy of the molecule, described by the potential energy function. In fact, the overall potential 

energy 𝑈 for a molecular system as a function of the internal coordinates 𝑅ሬ⃗  of the N particles 

constituting the system can be expressed in classical mechanic terms as  

𝑈൫𝑅ሬ⃗ ൯ = ෍ 𝑘௕(𝑏 − 𝑏଴)ଶ

௕௢௡ௗ௦

+ ෍ 𝑘ఏ(𝜃 − 𝜃଴)ଶ

௔௡௚௟௘௦

+  ෍ 𝑘ఞ

ௗ௜௛௘ௗ௥௔௟

(1 + cos(𝜂𝜒 − 𝛿))

+ ෍
𝑞௜𝑞௝

𝜀𝑟௜௝
஼௢௨௟ ௜,௝

+ ෍ ቆ
𝐴௜௝

𝑟௜௝
ଵଶ +

𝐵௜௝

𝑟௜௝
଺ ቇ

௅௃ ௜,௝

  

Equation 2.61 

where the constants 𝑘௕, 𝑘ఏ and  𝑘ఞ, as well as the bonds and angles reference volumes  𝑏଴ and  𝜃଴ 

are extracted from experimental data (hence it falls into the semi-empirical methods category) or 

QM calculation and expressed in the force field. The different energy terms are resolved by 

harmonic functions which penalise distortion from the reference values. Not only the contribution 

of bond stretching (∑ )௕௢௡ௗ , angles (∑ )௔௡௚௟௘௦   and proper (and improper) dihedrals re-arrangement 

(∑ )ௗ௜௛௘ௗ௥௔௟  are considered, but also non-bond terms are taken into account: the electrostatic 

interactions (𝐶𝑜𝑢𝑙 𝑖, 𝑗) and the Lennard-Jones (𝐿𝐽 𝑖, 𝑗) repulsion-dispersion potential energy terms. 
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Thus, in the second line of the equation,  𝑞௜ and 𝑞௝ are the charges of the interacting particles, 𝜀 is 

the solvent dielectric constant, 𝐴௜௝ and 𝐵௜௝ are the Lennard-Jones coefficient and 𝑟௜௝is the distance 

between the particles Importantly, the nature of each particle and bond and the parameters 

relative to them (e.g., the atoms mass and volume) must be specified. To find the optimal 

molecular geometry, the values of the coordinates of each atom are searched by minimising the 

force field equation. 

2.4.2 Protein-ligand docking calculations105, 106 

Molecular docking is a computational procedure (based on the force field theory) used to predict 

the preferred orientation and conformation of a ligand bound to its target protein 

(protein-ligand docking). Although several docking software packages exist (e.g., DOCK, FlexX, 

AutoDock, AutoDock Vina, etc.), they all share common features to: 

1) Locate regions on the protein surface for favourable interactions with the ligands 

2) Sample the conformational space of the ligand 

3) Compute the interaction energy between the protein and ligand 

Recently, the group of Imberty conducted a comparison study between three docking software 

(DOCK, AutoDock and Glide) to predict the binding mode of flexible carbohydrate in shallow lectins 

binding site. They found that Glide is the most successful to account for the flexibility of the 

oligosaccharides and to represent the complexity of their binding modes.107 

Ideally, in performing docking calculation both the docked protein and ligands should be set free 

to rotate, translate and change conformation so that a more realistic interaction is reproduced. 

Nonetheless, calculations performed in this way are not feasible due to the high-number of 

degrees of freedom characterising the protein-ligand system. Thus, approximations about the 

protein and ligand flexibility states have been introduced. In rigid docking (the simplest 

approximation possible), the protein and the ligand are treated as two distinct rigid bodies and are 

enabled only to translate and rotate. In more computationally demanding techniques, only the 

receptor is treated as a rigid body, while the ligand is enabled to explore its conformational degree 

of freedom (those are the most widely used docking algorithms). 
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In both cases, to perform docking calculations the same practical steps must be followed (shortly 

described below). In the Schrödinger suite docking calculations are performed by the Glide 

program, to which we will refer henceforth.  

1) Protein preparation and ligand conformational minimisation 

Before to start any molecular modelling study, some preparations steps are necessary from both 

the protein and the ligand prospective. Common sources for protein 3D molecular structures are 

X-ray crystallography data, NMR studies or homology modelling. Whatever the source is, the 

protein structure needs to be checked and prepared to ensure that 1) all the atom types and bond 

lengths, angles and orders are correctly specified, 2) no hydrogen atom is missing, and 3) all the 

residues in the binding pocket have defined orientation (in some cases, amino acid side chains can 

present several conformations in the X-ray structure). Then, selection of the number and type of 

water molecules to keep in the binding pocket is possible. Finally, a round of minimisation is 

performed.  

For the ligand, instead, a conformational search and a minimisation step must be performed. In 

this way, the starting conformation of the molecule is in a low relative minimum and represents 

the free molecule in solution. Notably, during docking calculations, the docking algorithms usually 

generates new ligand conformations. Nonetheless, those are based only on torsional variations, 

while bond lengths and angles in the input ligand structure will be kept consistent among the 

docked poses. For these reasons, docking several conformations of each ligand with variations in 

bond lengths and bond angles is a reasonable strategy to reduce input dependence.  In the 

Schrödinger suite the receptor and ligand preparations are carried out by the protein preparation 

wizard and the ligand preparation wizard, respectively. 

2) Grid generation 

The space of the receptor in which the ligand will be docked is defined by generating a grid in which 

the ligand is confined (Figure 2.24). The grid is generated by the Receptor Grid Generation 

application. The centre of the grid is defined using a reference ligand in the binding pocket or by 

choosing any residues of interest. In glide, the grid has a default cubic shape with 20 Å sides length, 

but this value can be changed (30 Å maximum length for each side). The length of each side can be 

set to different values; hence the grid can have different shapes. In addition, an inner grid can be 
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defined, which encloses the centre of the ligand (defined as the midpoint of the longest segment 

which can be drawn between any two atoms of the molecule). Each sides of the inner box are set 

to a default value of 10 Å, but it can be modified into the 6-14 Å range.  

The size of the grid strongly affects the outcome of the docking calculations: larger grids allow to 

explore a wider space and it is useful when probing unusual and asymmetric binding modes in the 

active site; on the other hand, smaller grids will reduce the number of results and exclude odd 

poses (saving calculation time). 

 

Figure 2.24: 3D image showing the grid box (purple-lined cube) and the ligand diameter midpoint 

box (green-lined cube) in glide. 

3) Docking calculations 

Several docking algorithms can be applied to generate ligand structures. The algorithms can be 

grouped into deterministic and stochastic approaches, the first is reproducible, while the second 

presents random factors and is not fully reproducible.  The most common algorithms used in 

docking are the incremental construction, the genetic and the hierarchical algorithms. They all aim 

to define the best location for the ligand on the protein surface (within the grid), to sample the 

conformational space of the ligand and to compute the energy of the protein-ligand interaction, 

giving higher score to the most favourable.   
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Glide docking program uses a hierarchical algorithm, also defined as a “funnel” process, where the 

number of poses decreases stepwise (Figure 2.25). Initially a set of ligand conformations is 

generated and deterministically screened over the entire space available to the ligand 

(rough scoring). The identified promising ligand poses are then refined in torsional space in the 

field of the receptor using a standard molecular mechanics energy function with a 

distance-dependent dielectric model (Glide SP & XP use OPLS3 as force field). Finally, the 

lowest-energy poses are subjected to a Monte Carlo procedure with full ligand flexibility to 

minimize the poses within the field of the receptor (post-docking minimization or PDM).  

 

Figure 2.25: Glide docking “funnel” showing the protocol followed to generate docked poses. 

Source: Harder et al., 2016108 

4) Scoring functions 

The poses produced after the calculation are then scored and ranked. Energy scoring functions 

evaluate the free energy of binding (∆𝐺) of the ligand-receptor interaction, described by the Gibbs 

free energy equation 

∆G = ∆H − T∆S Equation 2.62 
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where ∆𝐺 represents the energetic changes between the free and bound states of both ligand and 

receptor, ∆𝐻 is the enthalpy, 𝑇 is the temperature expressed in Kelvin and ∆𝑆 is the change in 

entropy of the system. ∆𝐺 is also related to the binding association and dissociation constants 

(𝐾௔ and 𝐾ௗ, respectively), allowing to estimate binding affinities 

∆𝐺° = −𝑅𝑇 ln 𝐾௔ =  𝑅𝑇 ln 𝐾ௗ Equation 2.63 

where R is the ideal gases constant.  

Nonetheless, calculation of ∆𝐺 for each of the generated ligand-receptor interactions poses is 

computationally demanding. Thus, empirical scoring functions have been developed to enable a 

faster ranking. Terms such as solvation, ionic interactions and hydrogen bonds are used to 

construct an equation that predicts binding affinities. These terms are then optimised via 

multilinear regression using a set of known protein-ligand complexes. Several functions are 

available, and they serve diverse needs. “GlideScore” in Glide, for example, has been optimised to 

compare binding of different ligands to one receptor (e.g., to define the best binder among many), 

while the “Emodel” scoring function weights more the electrostatic and van der Waals energetic 

component in the force field and is more suitable to compare conformations of the same ligand to 

its receptor. Glide uses Emodel to select the best poses of the ligand and then ranks these best 

poses with GlideScore. Therefore, the ranking of poses for a given ligand does not reflect the actual 

ranking that Glide used for poses selection. Therefore, the Emodel score needs to be considered 

to determine the highest ranked pose for a ligand. 

2.4.2.1 Induced Fit Docking 

While consideration of the protein and/or the ligand as rigid bodies allow a reduction in the 

computational costs, it does not reflect reality and can give rise to misleading results. Indeed, 

induced fit phenomenon within the binding site (i.e. rearrangements of the protein side chain or 

backbone upon binding to better adapt to the shape and binding mode of the ligand) might take 

place. The performance of Induced Fit Docking (IFD) protocols allows screening of the ligand pose 

against several receptor conformations with refined active site geometries in the presence of the 

ligand.109 This should 1) allow the docking of known active ligands that cannot be docked in the 

rigid procedure, and 2) rescue rigid docking false negatives (poorly scored true binders). 
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First, the active ligand is docked with Glide using reduced van der Waals (vdW) radii and an 

increased Coulomb-vdW cutoff. In addition, highly flexible side chains are temporarily removed 

during the docking step. Hence, a protein structure prediction program (Prime) is used to reorient 

protein side chains nearby the ligand and minimisation of both the ligand and the protein residues 

in performed. Each ligand pose is then redocked into its corresponding low energy protein 

structure. The resulting energies are ranked based on GlideScore and Prime energies scoring 

functions.  

Importantly, this protocol can be used to construct models of protein-glycans interactions. Glycans 

generally present weak binding constants and rigid docking produces a high output of poorly 

scored true binders. 
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3. Cellodextrin phosphorylase from Clostridium 
thermocellum: structural studies on substrates 
recognition 

3.1 Introduction 

3.1.1 Principal aims of the work 

The scientific community is increasingly using enzymatic routes for the synthesis of 

oligosaccharides and glycoconjugates, although with some limitations on enzymes availability. 

Glycoside phosphorylases (GPs) are a class of enzymes able to build up short-to-medium length 

sugar chains starting from activated donor and acceptor substrates. Wild-type cellodextrin 

phosphorylase (CDP, EC 2.4.1.49: β-1,4-glucan linkage-dependent) tolerates a number of 

non-cognate sugar-1-phosphate donors and several acceptor substrates, proving to be a powerful 

biological tool for the synthesis of new sugars with functional groups introduced in a regio- and 

stereo-selective manner. The enzyme demonstrated reduced kinetics efficiency for non-natural 

substrates.  

Herein, we have characterised the molecular recognition of a series of cognate and non-cognate 

CDP substrates by NMR spectroscopy and docking calculations. To gain a complete picture of the 

structural details of the molecular recognition of substrates by CDP under the dynamics conditions 

existing in solution, and hence complementing solid state structures (i.e. from X-ray 

crystallography), other techniques are valuable, such as Saturation Transfer Difference NMR 

spectroscopy (STD-NMR) and transferred NOESY (tr-NOESY) experiments. Specifically, STD NMR 

allows one to map the key ligand protons interacting with the protein (binding epitope mapping)81 

and to determine protein-ligand dissociation constants (KD).79 Tr-NOESY experiments are used to 

measure intramolecular proton-proton distances of ligands in the state bound to the protein and 

hence they report on the bioactive conformation of the ligand and probe conformational 

rearrangements upon binding.110  

In addition, we generated 3D-models the binary complexes CDP/donor and CDP/acceptor and the 

ternary complex CDP/donor/acceptor by molecular modelling (protein-ligand SP docking and 



Chapter 3 – Cellodextrin phosphorylase from Clostridium thermocellum 

92 
 

induced fit docking IFD calculations run in MAESTRO Schrödinger using Glide as force field) and 

analysed the resulting structures on the basis of their correlation with experimental data from 

NMR spectroscopy, X-ray crystallography and with literature.  

This study reveals atomistic details of substrate recognition and structural features that contribute 

to donor and acceptor specificity. In addition, we focused in the characterisation of the role played 

by inorganic phosphate (enzymatic co-factor) on substrates binding properties.    

3.1.2 Importance of phosphorylases in carbohydrate synthesis 

The number of reported phosphorylases constantly increases, proving how these enzymes are 

useful tools for the practical synthesis of α- and β-glucans. Table 3.1 lists all the phosphorylases 

belonging to the EC 2.4.1 subclass (Transferases, Glycosyltransferases and Hexosyltransferases) 

stated in ExPASy (Bioinformatic Resource Portal - https://enzyme.expasy.org/EC/2.4.1.-) to date.111 

Phosphorylases classification can be based on: (1) the anomeric forms of the substrates glycosidic 

linkages, (2) the anomeric forms of the glycose 1-phosphate, and (3) the retention or inversion 

mechanism of the carried reaction.22, 112 
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Table 3.1: Catalogue of known phosphorylases and their characteristics. The reaction mechanism 

catalysed is classified based on anomeric retention or inversion in the reaction. Generally, 

reversible phosphorylation determines the liberation of monosaccharide 1-phosphate from the 

nonreducing-end of specific glycosides in the presence of inorganic phosphate.  The enzymes are 

named combining the name of the substrate and phosphorylase (continuous next page). 

EC Enzyme Mechanism Substrate Product 

2.4.1.1  

Glycogen 
phosphorylase retention ((1→4)-α-D-glucosyl

)(n) α-D-Glc-1-P 

2.4.1.7    

Sucrose 
phosphorylase retention Sucrose α-D-Glc-1-P 

2.4.1.8    

Maltose 
phosphorylase inversion Maltose β-D-Glc-1-P 

2.4.1.20  

Cellobiose 
phosphorylase inversion Cellobiose α-D-Glc-1-P 

2.4.1.30  

1,3-β-oligoglucan 
phosphorylase inversion ((1→3)-β-D-glucosyl

)(n) α-D-Glc-1-P 

2.4.1.31  

Laminaribiose 
phosphorylase inversion Laminaribiose α-D-Glc-1-P 

2.4.1.49   

Cellodextrin 
phosphorylase inversion ((1→4)-α-D-glucosyl

)(n) α-D-Glc-1-P 

2.4.1.64  

α,α-trehalose 
phosphorylase inversion α,α-trehalose β-D-Glc-1-P 

2.4.1.97  

1,3-β-D-glucan 
phosphorylase inversion ((1→3)-α-D-glucosyl

)(n) α-D-Glc-1-P 

2.4.1.211  

1,3-β-galactosyl-N-
acetylhexosamine 
phosphorylase 

inversion ((1→3)-β-D-glucosyl
)(n) α-D-Glc-1-P 

2.4.1.216  

Trehalose  

6-phosphate 
phosphorylase 

inversion α,α-trehalose-6-P β-D-Glc-1-P 

2.4.1.230  

Kojibiose 
phosphorylase inversion 2-α-D-glucosyl-D-gl

ucose β-D-Glc-1-P 

2.4.1.231  

α,α-trehalose 
phosphorylase retention α,α-trehalose α-D-Glc-1-P 

2.4.1.247  

β-D-galactosyl-(1->
4)-L-rhamnose 
phosphorylase 

inversion β-D-galactosyl-(1→
4)-L-rhamnose α-D-Gal-1-P 
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Table 3.1: continued 

EC Enzyme Mechanism Substrate Product 

2.4.1.279  

Nigerose 
phosphorylase inversion 

3-O-α-D-glucopyran
osyl-D-glucopyrano
se 

β-D-Glc-1-P 

2.4.1.280  

N,N'-diacetylchitobi
ose phosphorylase inversion N,N'-diacetylchitobi

ose α-D-GlNAc-1-P 

2.4.1.281  

4-O-β-D-mannosyl-
D-glucose 
phosphorylase 

inversion 
4-O-β-D-mannopyr
anosyl-D-glucopyra
nose 

α-D-Man-1-P 

2.4.1.282  

3-O-α-D-glucosyl-L-
rhamnose 
phosphorylase 

inversion 
3-O-α-D-glucopyran
osyl-L-rhamnopyra
nose 

β-D-Glc-1-P 

2.4.1.319  

β-1,4-mannooligos
accharide 
phosphorylase 

inversion ((1→4)-β-D-mannos
yl)(n) α-D-Glc-1-P 

2.4.1.320  

1,4-β-mannosyl-N-
acetylglucosamine 
phosphorylase 

inversion 
4-O-β-D-mannopyr
anosyl-N-acetyl-D-g
lucosamine 

α-D-Man-1-P 

2.4.1.321  

Cellobionic acid 
phosphorylase inversion 4-O-β-D-glucopyran

osyl-D-gluconate α-D-Glc-1-P 

2.4.1.329  

Sucrose  

6(F)-phosphate 
phosphorylase 

retention 
Sucrose-6(F)-pho
sphate 

α-D-Glc-1-P 

2.4.1.332  

1,2-α-glucosylglyce
rol phosphorylase inversion 2-O-α-D-glucopyran

osyl-glycerol β-D-Glc-1-P 

2.4.1.333  

1,2-β-oligoglucan 
phosphorylase inversion ((1→2)-β-D-glucosyl

)(n) α-D-Glc-1-P 

2.4.1.334  

1,3-α-oligoglucan 
phosphorylase inversion ((1→3)-α-D-glucosyl

)(n) β-D-Glc-1-P 

2.4.1.339  

β-1,2-mannobiose 
phosphorylase inversion 

β-D-mannopyranos
yl-(1→2)-D-mannop
yranose 

α-D-Man-1-P 

2.4.1.340  

1,2-β-oligomannan 
phosphorylase inversion ((1→2)-β-D-mannos

yl)(n) α-D-Man-1-P 

2.4.1.352  

Glucosylglycerate 
phosphorylase retention 2-O-α-D-glucopyran

osyl-D-glycerate α-D-Glc-1-P 

2.4.1.359  

Glucosylglycerol 
phosphorylase retention 2-O-α-D-glucopyran

osyl- glycerol α-D-Glc-1-P 
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Phosphorylases can also be classified, based on their amino acid sequence similarity, into the 

glycoside hydrolase families (GH) 13, 65, 94, 112, 130, or glycosyltransferase families (GT) 4 or 35, 

as reported  in the Carbohydrate-Active Enzymes database (http://www.cazy.org/).113 

The enzymes catalyse the cleavage of a glycosidic linkage at the non-reducing end of a saccharide 

chain in the presence of inorganic phosphate (also called exo-wise phosphorolysis). The reaction 

produces the corresponding glycose-1-phosphate and the saccharide chain with one smaller DP. 

In the reverse reaction the glycose unit is transferred from the glycosyl 1-phosphate (donor) to the 

non-reducing end of an appropriate glycosyl acceptor with the formation a stereo- and 

region- controlled glycosidic linkage and inorganic phosphate liberation. The reversibility of the 

reaction is dictated thermodynamically by the comparable bond energy of the glycosyl-phosphate 

and the glycosidic-linkage.22, 112 A schematic representation of the retaining and inverting reaction 

mechanisms is shown in Figure 3.1.  
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Figure 3.1: a) schematic representation of the phosphorylases catalysed SN2 with retaining 

mechanism; b) schematic representation of the phosphorylases catalysed SN2 with inverting 

mechanism. Inverse phosphorolysis has been described as a general acid/base-catalysed 

displacement reaction, with the phosphate operating a nucleophilic attack on the anomeric carbon 

of the scissile glycosidic bond. Concomitantly the general acid catalyst in the binding site donates 

a proton to the glycosidic oxygen.114 In contrast to the typical glycosyl hydrolase mechanism, 

the catalytic reaction requires only a single carboxylate side-chain as the phosphate is ionised ad 

physiological pH. Source: Nakai et al., 2013.112 

Phosphorylases present strict stereo- and regio-specificities, important characteristics for the 

synthesis of oligo- and polysaccharides with well-defined structure. As mentioned in Chapter 1, 

section 1.3.1, while several phosphorylases have been employed for the synthesis of poly- and 

oligosaccharides, others are just able to catalyse the reversible phosphorolysis from and towards 

the disaccharide substrates. For example, cellodextrin phosphorylases, laminaridextrin 
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phosphorylase, and kojibiose phosphorylases have been reported to efficiently catalyse the linear 

extension of carbohydrate acceptor, while maltose phosphorylase, nigerose phosphorylase, 

trehalose phosphorylase, cellobiose phosphorylase, and chitobiose phosphorylase catalyse the 

formations of the corresponding glycobioses.112 

3.1.3 Cellodextrin phosphorylase 

Cellodextrin phosphorylase, a β-1,4-oligoglucan orthophosphate glucosyltransferase, was firstly 

isolated in 1967 from Ruminiclostridium thermocellum by Sheth and Alexander.115 To date CDPs 

have been isolated from several bacterial sources, such as Ruminiclostridium thermocellum115, 

Clostridium stercorarium116, Ruminococcus albus,117 Thermosipho africanus118 and 

Ruminiclostridium cellulolyticum.119 These bacteria are able to degrade cellulose and metabolize 

the soluble cellodextrins as part of the energy catabolism. A number of GH94 CDP have been 

cloned, expressed and characterised.116, 118-121  Among these, CDP from Ruminiclostridium 

thermocellum and Clostridium stercorarium are the most studied. Interestingly, although the two 

enzymes are far away in the GH94 family phylogenetic tree and share only ca. 25% amino acid 

sequence identity,120 Petrović et al. reported no differences in the catalysis of cellobiose and 

Glc-1-P.122 

CDP performs a reverse phosphorolysis reaction (Figure  3.2) to synthesise cellooligosaccharides 

with average DP of 7 or 9, depending on the primer used.123 Importantly, the complete dissociation 

of the enzyme and the product after addition of each glucose unit explains why precipitation of 

the substrate interrupts the elongation.122 Indeed, cellooligosaccharides with DP >7 are poorly 

soluble in water and readily precipitate, becoming not accessible to further chain elongation.124 
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Figure 3.2: Schematic representation of the reverse phosphorolysis performed by CDP in the 

presence of a general glycose-1-phosphate (donor) and a general acceptor molecule. 

Recombinant CDP from Ruminiclostridium thermocellum  (henceforth depicted as CDP) was 

expressed with high yield in E. coli.120, 125 It is stable up to 60 °C and presents highest activity at 

pH 7.5.120 The protein consists of 1009 amino acids, with a MW of 114.364 KDa per monomer 

(in solution, it forms a dimer), as reported by the GF elution profile.126 The enzyme catalyses the 

phosphorolysis of cellooligosaccharides longer than cellobiose, and its permissiveness towards a 

wide range of donors and acceptors has been assessed.  This will be discussed in the following 

subchapter.  

The publication of the CDP crystal structures in the apo and bound to ᴅ-cellotetraose acceptor 

ligand states (PDB: 5NZ7 apo CDP structure and 5NZ8 ligand bound CDP structure), by O’Neill et al., 

opened the avenue for an in-depth CDP structural characterisation and provided valuable 

information on key interactions involving substrate recognition.126  

The apo structure (2.3 Å resolution) revealed that CDP adopts a homodimeric structure127 with the 

dimer interface formed by a large β-sandwich domain. Each monomer is composed by the 

N-terminal α/β domain, the β-sandwich domain that is connected by a two α-helix linker to the 

(α/α)6-barrel catalytic domain and a final two layered-jelly roll fold peripheral domain (Figure 3.3). 

The N-terminal arm and the α/β domain were reported to interact with the β-sandwich domain of 

the opposing monomer, maintaining a more open active site in CDP and leading to a dimer 

interfacial area of ca. 4800 Å2
 (in comparison, CBP misses the N-terminal arm and the α/β domain 

and  has ca. 3300 Å2 of dimer interfacial area). 
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Figure 3.3: Schematic linear representation of CDP domain structures.  

Source: O’Neil et al., 2017.126   

CDP structure bound to ᴅ-cellotetraose was obtained by soaking 10 mM ᴅ-cellohexahose into a 

crystal which had been grown in the presence of 10 mM phosphate buffer. The electron densities 

collected (3.0 Å resolution) revealed the presence of ᴅ-cellotetraose adjacent to a phosphate ion 

in the active site cleft. All the sugar rings were treated as β(1→4)-linked 4C1 chairs and the glucan 

was oriented with the non-reducing terminal in the inner side of the catalytic cleft, located 

between Asp624 (expected general acid catalyst) and the phosphate ion. The glucan spanned from 

subsite -1 to subsite +3 of the active side pocket, occupying the -1 donor site (Figure 3.4, a and b).  

 

Figure 3.4:  Representation of the subsites in the catalytic cleft. The absence of electron density 

after the +3 subsite did not exclude the presence of the additional two residues of ᴅ-cellohexaose, 

but rather delimits the extent of acceptor ordered binding. The catalytic loop terminates at the 

+1 subsite level, the acceptor site opens out and the glucan chain extends across a wide U-shaped 

canyon formed at the dimer interface.  Source: O’Neil et al., 2017.126  

The -1 subsite terminates with the ‘’hydrophobic platform’’ formed by Trp622 sidechain, 

structurally conserved in the close homologues and important to exclude water around the scissile 

bond region. A lobe adjacent to the active site cleft accommodate the phosphate ion. Since the 

binding of the glucan to the -1 subsite closes the access to the phosphate lobe, the co-substrate 
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must bind before the sugar in the phosphorolytic reaction, coherent with the sequential 

Bi Bi mechanism. Beyond the +1 subsite the acceptor site opens out. Nonetheless, the 

homodimeric structural organisation of the protein determines interaction of the residues 

occupying the +2 and +3 subsites with the sidechains of the β-sandwich domain in the 

opposite monomer unit. Important interactions for substrate recognition are highlighted in Figure 

3.4, b. More specifically, (i) the carboxylate of the catalytic Asp624 hydrogen bond with both the 

O3 of the -1 subsite sugar and the oxygen of the scissile glycosidic linkage; (ii) the 6OH of 

the -1 subsite sugar hydrogen bonds with both the carbonyl of Trp622 and the amide of Asp624 

(main chains), while C6 makes van der Walls interactions with Trp622 and Phe815 side chains; 

(iii) Cys625, the adjacent residue within the catalytic loop, hydrogen bonds with the O2 of the 

+1 subsite sugar; (iv) from the opposite loop, Asp297 hydrogen bonds within O3 of the +2 subsite 

sugar, while Tyr300 forms a stacking interaction with the sugar ring; (v) Glu328 sidechain, also from 

the opposing subunit but from a different loop, hydrogen bond with the O1 of the +3 subsite sugar. 

3.1.3.1 CDP specificity towards donor and acceptor substrates  

CDP presents the same regiospecificity as cellobiose phosphorylase but differs in the specificity 

towards the acceptor DPs. Indeed, the large difference in acceptor reactivity between D-glucose 

and longer cellooligosaccharides is well accepted among the scientific community. Nonetheless, in 

several works the use of D-glucose or β-D-glucoside as CDP acceptors has been reported. 

In addition, CDP present a very low phosphorolysis rate on D-cellobiose.128 

CDP is very effective in the synthesis of functionalised cellooligosaccharides. Samain et al. 

pioneered the effort to apply unnatural substrates for CDP and established the use of 

4-Thiocellobiose, methyl β-cellobioside, and methyl 4-thio-a-cellobioside as acceptor substrates.129 

CDP presents loose substrate specificities, and a complete list of the variety of donors and 

acceptors recognised by the enzyme is presented in Table 3.2 and Table 3.3, respectively, while the 

molecules which did not report any turn-over are reported in Table 3.4. 
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Table 3.2: CDP specificities towards donor-like substrates. 

Donors 

α-D-glucosyl 1-fluoride114 

α-D-xylose 1-phosphate126, 130 

α-D-galactose 1-phosphate126, 131 

α-D-glucosamine 1-phosphate126, 131 

α-D-galactosamine 1-phosphate131 

 

Table 3.3: CDP specificities towards acceptor and acceptor-like substates. The red frame indicates 

D-glucose or β-D-glucoside derivates as carbohydrate moiety of the acceptor-like substrates 

(continuous next page). 

Acceptors 

D-Glucose123, 124, 128, 132-137 

Radioactive D-Glucose138 

1-azide-1-deoxy-β-D-glucopyranoside (β-glucosyl azide)132 

Oligo(ethylene glycol) (OEG) bearing β-D-glucose139 

Alkyl β-D-glucoside140 

2-aminoethyl-β-D-glucoside141 

2-(glucosyloxy)ethyl methacrylate142 

vinyl glucosides143 

4-O-β-D-Glucopyranosyl-D-glucose (cellobiose)114, 120, 122-124, 128, 144 

Methyl β-cellobioside124 

Phenyl β-cellobioside124 
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Table 3.3: continued 

Benzophenonel β-cellobioside124 

4-Thiocellobiose124 

Methyl 4-thio-α-cellobioside124 

MethylO-β-D-glucopyranosyl-(1→3)-S-β-D-glucopyranosyil-(1→4)-

O-(4-thio-β-D-glucopyranosyl)-(1→4)-β-D-glucopyranoside129 

N,N-bis(β-d-cellobiosyl)succinamide145 

tris(aminoethyl N-carbonylmethyl β-d-cellobiosyl)amine145 

β-d-cellobiosyl polyamidoamide (PAMAM) dendrimers145 

2-O-β-D- Glucopyranosyl-D-glucose (sophorose)114 

4-O-β-D- Glucopyranosyl-D-altrose146  

4-O-β-D-Glucopyranosyl-D-2-deoxy- D-glucose146 

4-O-β-D- Glucopyranosyl-D-mannose146 

4-O-β-D- Glucopyranosyl-D-xylose130, 146 

4-O-β-D- Glucopyranosyl-1-deoxynojirimytin125 

4-O-β-D-Glucopyranosyl-D-2-deoxy- D-glucose146 

4-O-β-D- Glucopyranosyl-D-mannose146 

4-O-β-D- Glucopyranosyl-D-xylose130, 146 

4-O-β-D- Glucopyranosyl-1-deoxynojirimytin125 

β-D-2-ammine-glucopyranosyl-β-(1→4)-D-glucopyranosyl-β-(1→4

)-D-glucopyranose147 

4-O-β-D-Xylopyranosyl-D-xylose (xylobiose)130 

4-O-β-D- Xylopyranosyl-D-glucose130 

Cellobitol146 
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Table 3.4: List of tested monosaccharides, disaccharides and trisaccharides acceptors for which 

CDP Glc-1-P did not show any turn-over. In addition, the only donor-like substrate which did not 

show any catalytic efficiency is reported in red. 

* The acceptor specificity was determined exclusively at 4.4 mM CDP concentrations for 3 h using 

200 mM a-Glc1-P and 200 mM of the tested acceptor at pH 5.4 and 40 °C. 

In general terms, the turn-over for the reported acceptors was tested with Glc-1-P as donor, with 

only Shintate and Singh reporting on the transfer of unnatural donor to unnatural acceptors. 

Indeed, Shintate demonstrated the efficiency of Xyl-1-P towards xylose containing 

disaccharides.130 Recently, Singh et al. reported for the first time the CDP-catalysed 

β-1,4-galactosylation and β-1,4-glucosamination of both β-1,3-linked and mixed-linked 

oligosaccharide acceptors.131 

Importantly, CDP ability to synthesise derivatised β-(1→4)-oligosaccharides has been used for the 

synthesis of 1,3: 1,4-β-d-Glucanases from Bacillus licheniformis129 and cellulase inhibitors125, 

and for the subsite mapping of (1→3,1→4)-β-d-glucan endohydrolases.148 Table 3.5 and Table 3.6 

report the kinetics parameters of various cognate and non-cognates CDP donor and acceptor 

substrates, respectively.  

Xylose114, 115 N-Acetyl-glucosamine*114 Mannobiose*114 

L-Rhamnose*114 β-methyl glucoside115 Sucrose*114 

Salicin115 Melibiose*114 Talose*114 

Lactulose*114 Isomaltose*114 L-Fucose*114 

Maltose114, 115 Mannotriose126 N-Acetyl-mannosamine*114 

Arabinobiose*114 Galactose*114 Lactose114, 115 

Xylose114, 115 Fructose*114 Trehalose*114 

Mannose*114 N-Acetyl-galactosamine*114 Turanose*114 

Arabinose*114 Gentibiose114, 115 Mannose-1-P126, 131 
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Table 3.5:  Kinetics parameters of CDP donor substrates reported towards the synthetic direction. 

Donor specificity was determined by the measurement of phosphate release keeping the acceptors 

concentration constant (5 mM). Source: the data were taken from  Singh (2020) 131 and O’Neill 

(2017) 126 

  Reverse phosphorolysis 

Donors Acceptor 𝒌𝒄𝒂𝒕 (s-1) 𝑲𝑴
𝒂𝒑𝒑 (mM) 𝒌𝒄𝒂𝒕/𝑲𝑴

𝒂𝒑𝒑 (mM-1s-1) 

Glc-1-P 
D-cellobiose 16.4 ± 0.7 3.0 ± 0.6 5.5 

D-laminaribiose 15.9 ± 0.4 3.0 ± 0.3 5.3 

Gal-1-P 
D-cellobiose 0.6± 0.02 9.3 ± 1.1 0.06 

D-laminaribiose 0.6± 0.01 10.7 ± 0.7 0.06 

GlcN-1-P 
D-cellobiose 0.08± 0.003 1.6± 0.2 0.05 

D-laminaribiose 0.14± 0.013 5.1± 1.2 0.03 

Man-1-P 
D-cellobiose NA NA NA 

D-laminaribiose NA NA NA 

 

Table 3.6:  Kinetics parameters of CDP acceptor substrates reported towards the synthetic 

direction. Acceptor specificity was determined by the measurement of phosphate release keeping 

Glc-1-P concentration constant (10 mM). 

 Reverse phosphorolysis 

Acceptors 𝒌𝒄𝒂𝒕 (s-1) 𝑲𝑴
𝒂𝒑𝒑 (mM) 𝒌𝒄𝒂𝒕/𝑲𝑴

𝒂𝒑𝒑 (mM-1s-1) 

Glucose120, 126, 128 NA/nd NA/nd NA/nd 

Phenylβ-D-glucopyranoside126 15.0 ±6.3 24 ±13 0.63 

Cellobiose126 17 ±0.50 2.6 ±0.18 6.5 

Cellotriose126 9.5 ±0.35 0.68 ± 0.076 14 

Cellotetraose126 5.0 ±0.25 0.54 ± 0.13 9.3 

Cellopentaose126 4.3 ±0.47 0.36 ± 0.076 12 

Cellohexaose126 7.6 ±1.8 1.9 ±0.76 4.0 

NA not applicable; nd not determined 
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Comparison of Glc-1-P with the non-cognate donor substrates reveals a ca. 25 fold and ca. 125-fold 

drop in 𝑘௖௔௧ for Gal-1-P and GlcN-1-P, respectively, and a slight increase of 𝐾ெ
௔௣௣ for both the 

donors. These data indicate a lower catalytic efficiency for Gal-1-P and GlcN-1-P, as expressed by 

𝑘௖௔௧/𝐾ெ
௔௣௣. Man-1-P did not show turnover.  

According to the literature, D-glucose was found to be a poor CDP acceptor and the kinetics 

parameters could not be determined.128 On the contrary, phenyl β-D-glucopyranoside was proved 

a better acceptor, probably due to the fixed anomeric configuration. The tested 

cellooligosaccharides show a decrease of 𝐾ெ
௔௣௣ from 2.6 mM to 0.36 mM with DP increase up to 5, 

while cellohexahose presented a higher 𝐾ெ
௔௣௣ of 1.9 mM. 𝑘௖௔௧ follows a similar pattern with respect 

to the acceptor chains length. 

3.1.3.2 Obtaining ligand SAR from X-ray crystal structure and substrate specificity 

Comparison between the CDP-bound D-cellotetraose crystal structure (PDB: 5NZ8)126, and the 

turn-over capacity of the tested donor and acceptor substrates enabled us to rationalise the 

enzyme catalytic efficiency. We can first look at the contacts established by D-cellotetraose 

non-reducing ring, which occupies the -1 subsite in the catalytic cleft.  

The hydroxyl group in C2 position establishes hydrogen bonds with Arg496, explaining the lack of 

turn-over demonstrated for Man-1-P, mannose, mannobiose and mannotriose and the lower 

catalytic efficiency (drop in 𝑘௖௔௧/𝐾ெ
௔௣௣) of GlcN-1-P. For mannoglycosides, the configurational 

switch of the hydroxyl group at C2 from equatorial to axial could either break the hydrogen bonds 

established with the side-chains of Arg496 and Gln874 and, in case of acceptor substrates, with 

the phosphate group, or create a clash with the preserved catalytic residue Asp624, with severe 

impact on the overall interactions. GlcN-1-P reduced catalytic activity, instead, could be explained 

by the positive charge carried by Arg496, which would interfere with the donor NH2 group. 

In addition, the good acceptor activity of (β(1→4)-GlcN(Glc)2) toward extension with Glc-1-P 

demonstrates that a change of the oxygen with a nitrogen at C2 of the +1 subsite acceptor sugar 

does not alter significantly the acceptor binding.126 

The contacts established by the hydroxymethyl group, the OH sugar hydrogen bonds with the 

carbonyl of Trp622 and the amide of Asp624 backbones and the C6 van der Walls interactions with 
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Trp622 and Phe815 side chains, explain the poor donor activity of xylose 1-phosphate, which lacks 

both C6 and O6. 

3.2 Experimental section 

3.2.1 Spectral assignment of donor and acceptor substrates 

Before proceeding with the investigation of donor and acceptor substrates binding, a full 

assignment of the 1H 1D spectrum for each studied ligand was necessary (i.e. Figure 3.5, a – 

representing the proton spectrum of D-cellobiose 3 mM, in [D11]Tris 25 mM). The assignment of 

the different proton sights was obtained by comparison of the connectivity patterns in 2D spectra 

(1H-1H COSY, 1H-1H TOCSY, 1H-1H NOESY and 1H-13C HSQC). 

For example, the 1H and 13C chemical shifts of D-cellobiose could be assigned in sequence: the H1 

proton resonances, at 4.90, 4.35 and 4.18 and ppm for H1α, H1β, and H1b, correlate with the 

directly coupled H2 signals at 3.25, 2.95 and 2.99 ppm in the 1H-1H COSY spectrum (Figure 3.5, b). 

The acquisition of 1H-1H TOCSY experiment allowed the identification of each individual spin 

system (Figure 3.5, c). The 1H-1H NOESY spectrum shows the cross-relaxation peak between H1 

(4.18 ppm) and H4 (3.33 ppm), belonging to the glycosidic linkages (Figure 3.5, d). In addition, as 

shown in the HSQC spectrum, the C6 resonance at ca.~ 60 ppm and correlate with the proton peaks 

at 3.63 ppm, 3.59 ppm, 3.55 ppm, 3.49 ppm, 3.41 ppm and 3.28 ppm (Figure 3.5, c). The C2 (73.5, 

72.8 and 70.8 ppm) and C3 (75.1, 74.0 and 70.9 ppm) 13C resonances in the HSQC spectrum of the 

D-cellobiose correlate with the directly coupled H2 (2.95, 2.99 and 3.25 ppm) and H3 (3.2, 3.3 and 

3.48 ppm) signals, respectively (Figure 3.5, e).  

Using a similar method, we were able to assign the chemical shifts of the other studied substrates. 

For the less complex structure of the monosaccharide donors, the spectra assignment was possible 

by only the acquisition of COSY and HSQC spectra. 

The spectra acquired for each donor and acceptor substrates are reported in the Appendix. 
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Figure 3.5: a) COSY, b) TOCSY, c) NOESY (mixing time 400 ms) and d) HSQC spectra recorded for 

D-cellobiose (3 mM, in [D11]Tris 25 mM) at 278 K. 
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3.2.2 Structural basis of molecular recognition of natural and non-cognate 

donor substrates 

The first part of this study focused on the investigation of Glc-1-P (CDP natural donor), and a series 

of sugar 1-phosphate molecules (i.e. the glucose isomers Gal-1-P and Man-1-P, and the 

functionalised glucose analogues GlcN-1-P and 6-deoxy-6-fluoro-α-ᴅ-glucose-1-phosphate 

6F-Glc-1-P). The choice of these donor-like substrates was driven by the kinetics studies reporting 

that modifications on the hexopyranose ring of the sugar 1-phosphate ligands affect the enzymatic 

activity of CDP dramatically. As for these sugar 1-phosphate series binding to CDP is expected to 

occur at the medium/weak affinity range (as a guide, 𝐾ெvalues fall in the low mM range),114, 120, 126, 

128, 131 i.e. within the so-called fast chemical exchange conditions, the NMR technique of choice was 

saturation transfer difference (STD) NMR spectroscopy. This technique allows to identify 

differences in ligand-enzyme contacts between the non-cognate substrates and the natural 

substrate Glc-1-P, at atomic detail.  

3.2.2.1 Detection of binding by STD NMR  

First, we confirmed that binding to CDP was detectable by STD NMR for all the small molecules 

chosen. After confirmation of binding, we carried out series of STD NMR experiments at different 

saturation times, in order to gain structural information on the complexes. To that aim, we 

monitored the growth of saturation transfer for every proton of the ligands (STD build-up curves), 

and from these curves we determined the corresponding ligand group epitope mappings using the 

initial growth rates approach (described in Chapter 2, section 2.1.2.3).82 Figure 3.6 shows the STD 

build-up curves with the monoexponential fit for Glc-1-P, from which 𝑆𝑇𝐷௠௔௫, 𝑘௦௔௧, 𝑆𝑇𝐷଴ and 

normalised percentages (Table 3.7) were derived. The fitted STD build-up curves and 

corresponding 𝑆𝑇𝐷௠௔௫, 𝑘௦௔௧, 𝑆𝑇𝐷଴ and normalised percentages for all the other investigated 

ligands are reported in the Appendix. 
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Figure 3.6: Glc-1-P STD NMR build-up curves recorded at increasing saturation time at 278 K. 15 uM 

binding unit was used for a ligand concentration of 3 mM. 

Table 3.7: STDmax, ksat and STD0 for Glc-1-P. Relative STD (%) were obtained through normalisation 

against the largest ligand STD initial slope (H6; 100%) 

  STDmax ksat STD0 STD (%) 
H1 9.70 0.52 5.06 91 
H2 7.01 0.64 4.45 80 
H3 9.95 0.54 5.34 96 
H4 8.12 0.59 4.80 86 
H5 7.03 0.77 5.42 98 
H6 4.31 1.29 5.56 100 
H6' 4.77 1.15 5.48 98.5 
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Figure 3.7 shows the group epitope mappings for Glc-1-P and the other four non-cognate sugar 

1-phosphate ligands. The percentages on different regions of the ligands report on their distinct 

proximity to the surface of the CDP enzyme in the bound state (higher normalised STD values 

correspond to shorter ligand-enzyme distances). 

 

Figure 3.7: Group epitope mapping of a) Glc-1-P, b) Gal-1-P, c) Man-1-P, d) GlN-1-P and e) 

6F-Glc-1-P from STD NMR for the interactions with CDP determined by using the initial slope 

approach of each STD build-up curve. The assigned relative contact percentages were obtained 

through normalisation against the maximum ligand STD initial slope for each ligand and report on 

the saturation received by those protons from the enzyme (higher values corresponding to shorter 

ligand-enzyme distances). Numbering of the glucopyranose atom positions are reported in Glc-1-P 

in bold after the STDs relative percentages in Glc-1-P. The COSY and HSQC spectra recorded for 

peaks assignment (Figures A.1, A.2, A.4, A.6 and A.8), the STD build-up curves with the 

monoexponential fit (Figures A.3, A.5, A.7 and A.9), the derived 𝑆𝑇𝐷௠௔௫, 𝑘௦௔௧, 𝑆𝑇𝐷଴ and 

normalised percentages (Tables A.1, A.2, A.3 and A.4) are reported in the Appendix. All the 

experiments were run at 278 K. 
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3.2.2.2 Molecular recognition of the cognate donor substrate Glc-1-P 

For the natural CDP donor substrate, Glc-1-P, the analysis of the STD initial slopes revealed that 

the whole glucopyranose ring is in very close contact with CDP in the bound state. All the 

non-exchangeable ring protons of Glc-1-P show normalised STD values above 80% (Figure 3.7, a), 

which supports the intimate recognition of Glc-1-P in CDP donor subsite. The large STD on H1 

indicates a close recognition by CDP of the α-configuration at the anomeric centre, in good 

agreement with the known specificity of the enzyme (the enzyme does not use the anomer 

β-ᴅ-glucose-1-phosphate as a donor).20, 22, 112 The largest saturation transfer occurs to protons H5 

and H6 of the glucopyranose ring. This result suggests a major role of the hydroxymethyl group at 

C5 of Glc-1-P in binding to CDP and reflects the poor kinetics and low turnover reported for Xyl-1-P 

as donor substrate for CDP. Finally, H2 and H4 showed lower contribution to donor substrate 

recognition, with H2 showing the lowest STD. 

To deepen our understanding of the molecular recognition of Glc-1-P, we generated a 3D model 

of the CDP/Glc-1-P complex by molecular modelling (protein-ligand SP docking calculations run in 

MAESTRO Schrödinger149 using Glide as force field105). The resulting structure was analysed on the 

basis of its correlation with the experimental data from STD NMR. The most populated solution 

from the docking calculations is shown in Figure 3.8, where a superimposition of the obtained pose 

to the terminal non-reducing glucose ring of the published CDP-bound ᴅ-cellotetraose structure is 

presented.126  

In the model, Glc-1-P accommodates a position compatible to the performance of the nucleophilic 

attack, with the phosphate group binding in a lobe adjacent to the -1 subsite of the active site. This 

position is the same occupied by the inorganic phosphate in the crystal structure of bound CDP.126 

As shown in Figure 3.8, the phosphate establishes hydrogen bonds with four different residues 

(Arg486, Gln874, and Ser889 sidechains, and Gly890 backbone) acting as an H-bond acceptor and 

a salt bridge with Arg486. The glucopyranose ring is anchored within the binding pocket residues 

at the -1 subsite, with the hydroxyl groups in C2, C3 and C6 acting as H-bonds acceptors with the 

side chains of Arg496 and Arg501 and the backbone NH of Asp624, respectively. Additionally, the 

hydroxyl groups in C3 and C4 act as H-bond donors with the sidechain of Glu502 and the backbone 

CO of Trp622.  
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The described model is in very good agreement with the experimental binding epitope from STD 

NMR experiments (Figure 3.8, a). The glucopyranose ring is in very close proximity with CDP, 

with protons H2 and H4 being more water exposed due to a slight tilt of the sugar ring in 

comparison to the non-reducing terminal ring of ᴅ-cellotetraose (Figure 3.8, a). 

Remarkably, the hydroxymethyl group is located between Trp622 and Asp624, making close 

contacts with the Trp622 side chain. This explains the most notable transfer of saturation towards 

protons H6, H6’ and H5 (Figure 3.7, a). The function of Trp622 side chain as a “hydrophobic 

platform” has been described already,150 and O’Neil et al.126 reported the establishment of van der 

Waals contacts between the hydroxymethyl group of ᴅ-cellotetraose non-reducing ring and the 

residues Trp622 and Phe815, as well as the establishment of H-bond between 6OH of the -1 subsite 

sugar within both the carbonyl of Trp622 and the amide of Asp624 (main chains). In this study we 

show for the first time the atomic details that make these contacts key elements for the 

recognition of the natural donor substrate. In addition, the proximity to Asp624 at the CDP catalytic 

cleft agrees with its known pivotal role in enzyme catalysis due to its ability to act as proton 

donor/acceptor in the SN2 reaction mechanism.150  

 

Figure 3.8: a) 3D docking model of the CDP/Glc-1-P complex. The ᴅ-cellotetraose complex 

determined by X-ray crystallography is superimposed for comparison (PDB ID 5NZ8,126 purple wire 

representation). For simplicity, only two rings of ᴅ-cellotetraose are shown (sites -1 and +1.  

The protein residues establishing interactions with Glc-1-P are represented as thick tubes. Glc-1-P 

is represented as ball-and-stick and painted in pink. Non-bonded interactions are represented as 
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dash-lines; H-bonds are coloured in yellow and salt bridges in magenta; b) Ligand interaction 

diagram reported to facilitate the visualisation of the set of interactions established by Glc-1-P with 

the binding pocket residues in the -1 subsite. The arrows indicate H-bond going from donor to 

receiver, dash lines represent H-bond with residues sidechain, whereas the solid line with residues 

backbone. The solid line shaded from red to blue represents a salt bridge. 

3.2.2.3 Molecular recognition of non-cognate donor-like epimer ligands: Gal-1P and 

Man-1-P 

The NMR-validated 3D molecular model of the CDP/Glc-1-P complex (Figure 3.8) shows that the 

binding pocket has enough room to accommodate some configurational or functional changes on 

the hexopyranose ring. This is in agreement with the already proven ability of CDP to use both 

non-cognate donor and acceptor substrates, albeit with reduced catalytic efficiency in comparison 

to Glc-1-P. The investigation of glucose epimers at position C4 (Gal-1-P) and position C2 (Man-1-P) 

allowed us to decipher how a configurational inversion at these positions affects donor binding in 

the -1 subsite of the catalytic pocket. Importantly, the performed STD NMR experiments provide a 

clear evidence of the ability of Man-1-P to bind CDP. Hence, the binding of Man-1-P to bind CDP is 

herein demonstrated for the first time, while this was only suggested previously by its impact on 

the enzymatically produced cellodextrin oligomer length.126 

The group epitope mapping of Gal-1-P (Figure 3.7, b) shows that H1 establishes the closest contact 

with the CDP binding site. Interestingly, the configurational change at C4 gives rise to a 

rearrangement of the hexopyranose ring in comparison to Glc-1-P, inferred from the observed 

reduced saturation transfer to protons H3 and H5 in Gal-1-P. On the contrary, the group epitope 

mapping of Man-1-P (Figure 3.7, c) supported that the configurational change at C2 does not affect 

the molecular recognition of the hexopyranose ring by CDP significantly. Indeed, within the 

experimental error, the group epitope mapping of Man-1-P is very similar to that of Glc-1-P, 

with protons H1, H3 and H6 receiving large saturation transfer, supportive of an intimate 

recognition by CDP as in the case of Glc-1-P. 

These results are relevant as Man-1-P is not processed by CDP.126, 151 Our STD NMR study thus 

demonstrates that the C2 configurational change, although detrimental for the catalytic activity, 

neither impairs binding nor affects the binding mode. In this way, the results show that the null 
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catalytic efficiency for Man-1-P cannot be explained by a change in the binding mode in the donor 

site, in comparison to Glc-1-P, but rather by the effect that the configurational change at C2 has 

on the network of interactions with the catalytic residues of CDP in the donor binding subsite -1. 

Most likely, the axial orientation of the hydroxyl group at C2 of the mannose ring precludes the 

catalytic loop from shifting towards the substrate, remaining far from the ligand as in the 

holo-enzyme structure.126 In this conformation, the carboxylate side chain of Asp624 is not within 

H-bond distance of the anomeric carbon, and cannot act as the general acid catalyst in the 

proposed SN2 reaction mechanism. Previous studies already supported the presence of a steric 

clash of the axial hydroxyl with the catalytically competent Asp624.126, 131 

3.2.2.4 Molecular recognition of functionalised donor-like ligands: GlcN-1-P and 6F-Glc-1P 

The group epitope mapping of the functionalised GlcN-1-P (Figure 3.7, d) and 6F-Glc-1P (Figure 3.7, 

e) revealed close contact of hydroxymethyl group and significantly reduced in H1 and H2 contacts 

in comparison with Glc-1-P.  In the case of GlcN-1-P, the reduction in contact reported for H2 can 

be explained by steric hindrance and electrostatic repulsion of the amine group with the positively 

charged side chain of Arg496, located in the -1 subsite of the catalytic cleft (see Figure 3.8).126, 131 

In addition, the close contact for H6s in 6F-Glc-1-P indicate recognition of the fluorine group of this 

derivative, supporting tolerance of CDP for a group at position 6 isosteric to OH acting as an H-bond 

acceptor. This is in perfect agreement with the proven ability of CDP to use 6F-Glc-1-P as donor-like 

substrate.152  

The NMR validated 3D model of the CDP/Glc-1-P complex along with the comparison of relative 

STD values for all the non-cognate donor-like ligands (Figure 3.7) strongly support: (i) the 

importance of the presence of an H-bond acceptor at position 6 of the hexopyranose ring, and (ii) a 

key relevance of the equatorial hydroxyl at position 4. As regarding the latter, Gal-1-P received the 

lowest saturation transfer in comparison to the other donor-like ligands (see Appendix, Figures 

A.3, A.5, A.7 and A.9), compatible with a lower affinity, and shows a significantly different binding 

epitope. These data correlate very well with previous studies in which epimerization at C4 led to 

an increase in the 𝐾௠
௔௣௣from 3 mM (Glc-1-P) to 9.3 mM (Gal-1-P), whereas for functionalised 

Glc-1-P analogues, like GlcN-1-P, only a slight decrease on the 𝐾௠
௔௣௣ was reported.131 
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Binding of the functionalized glucose-1-phosphate analogues correlates very well with the 

observed ability of CDP of using them as active donor substrates. The introduction of an amine 

group at C2 (GlcN-1-P) results in a reduction of the glucopyranose ring contacts (Figure 3.7), 

while the catalytic activity is preserved (CDP has previously shown to perform the addition of one 

GlcN residue to the acceptor substrate using GlcN-1-P as donor).126 6F-Glc-1-P has been recently 

proven to act as a donor and used for the CDP catalysed enzymatic synthesis of multiply 

6F-cellodextrin chains.152 

3.2.3 Structural basis of molecular recognition of acceptor and acceptor-like 

substrates 

3.2.3.1 Detection of binding by STD NMR 

We next investigated the molecular recognition of acceptors by CDP using a set of four acceptor/ 

acceptor-like mono-, di- and trisaccharides: ᴅ-glucose, ᴅ-cellobiose, ᴅ-laminaribiose and 

ᴅ-cellotriose. The STD NMR experiments on ᴅ-glucose do not show any STD signal (Figure 3.9), 

indicating inefficiency of binding in the STD timescale.  

 

Figure 3.9: STD NMR off-resonance and difference (off-resonance – on-resonance) spectra of 

ᴅ-glucose in [D11]Tris buffer 25 mM, pH 7.4 at 4 seconds saturation time. The protein:ligand ratio 

for the collected spectra was 1:20. The STD Difference spectra do not show any peaks, indicating 
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lack of contacts between ᴅ-glucose and CDP. The peak labelled with the star in both the off- and 

on-resonance spectra belongs to the residual Tris-CH2 signal and gives an STD% of 1.25% at 

saturation time 4 seconds. 

The experimental group epitope mappings of ᴅ-cellobiose, ᴅ-cellotriose and ᴅ-laminaribiose for 

their interactions with CDP are shown in Figure 3.10. As explained in Chapter 1 (subsection 1.2.2), 

the phenomenon of mutorotation of the saccharides reducing ring determines the coexistence of 

the α-isomer and β-isomer in solution. As these two species are diastereomeric, they present 

different chemical environments, and they also have different resonances in the NMR spectra. 

Importantly, characteristic resonances are commonly observed for each proton of a reducing 

monosaccharide correlated to a specific anomeric configuration. In addition, at high magnetic field 

the effect of the anomeric centre can spread up to the resonances of the non-reducing residues.153 

We were able to integrate isolated resonances for the α- and β-anomeric spin systems of the 

reducing ring sugars (H1α, H1β, H2α, H2β and H6α for ᴅ-cellobiose and ᴅ-cellotriose, H1α, H1β, 

H2β, H3α, H5α, H6α and H6’α for ᴅ-laminaribiose reducing ring) as well as H1b/α, H1b/β for the 

non-reducing glucose ring of ᴅ-laminaribiose. 

In order to quantify the STD intensities of ligands with both anomers present in solution accurately, 

we took into account the different concentrations of α- and β-anomers in equilibrium in solution, 

by application of a correction factor to STD intensity of each α‑ and β- anomer. The correction 

factor was calculated as the ratio of integrals of the peaks due to the α- and β- anomeric protons 

relative to the integral of the H1 signal of the non‑reducing ring for ᴅ-cellobiose, and the H2 signal 

of the non-reducing ring for ᴅ-cellotriose, and ᴅ-laminaribiose (Table 3.8).  

Table 3.8: Ratios of integrals of the peaks of α‑ and β- anomeric protons 
 

 α β 

ᴅ-cellobiose 0.15 0.85 

ᴅ-cellotriose 0.4 0.6 

ᴅ-laminaribiose 0.45 0.55 
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Figure 3.10: Group epitope mappings from STD NMR for the interactions with CDP of a) 

ᴅ-cellobiose, b) ᴅ-cellotriose and c) ᴅ-laminaribiose. Numbering of the glucopyranose atom 

positions are reported in D-cellobiose reducing ring inside brackets and in bold, while the curly 

brackets indicate the ring labels. Relative percentages report on the proximity of different regions 

of the ligands to the surface of the enzyme in the bound state (higher values corresponding to 

shorter ligand-enzyme distances). Except for all glucose reducing rings and H1 of the non-reducing 

ring of ᴅ-laminaribiose, the STD values reported are average values for both α- and β-anomeric 

forms of the oligosaccharides. For accuracy, we considered only well resolved and isolated NMR 

resonances (for example, the reducing ring anomeric protons). The contacts of overlapping signals 

are not reported. Isolated resonances for which no STD signal was detected are represented within 

empty circles. The COSY, TOCSY, NOESY and HSQC spectra recorded for peaks assignment (Figures 

A.11 and A.13), the STD build-up curves with the monoexponential fit (Figures A.10, A.12 and A.14) 

and the derived 𝑆𝑇𝐷௠௔௫ , 𝑘௦௔௧, 𝑆𝑇𝐷଴ and normalised percentages (Tables A.5, A.6 and A.7) are 

reported in the Appendix. 
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3.2.3.2 Molecular recognition of the cognate acceptor substrate D-cellobiose 

ᴅ-Cellobiose interacts with CDP making closer contacts at the non-reducing glucose ring. The group 

epitope mapping is in excellent agreement with the non-reducing ring being the key acceptor 

element for the direct phosphorolysis reaction (and the residue to be cleaved). The closest contact 

of ᴅ-cellobiose with the enzyme is at H2 at that non-reducing ring (Figure 3.10, a), while reduced 

contacts are observed progressively from H3 to H6, with the hydroxymethyl group showing the 

lowest saturation transfer of the whole disaccharide. These results agree with the inability of CDP 

to tolerate modifications at C2 position of the non-reducing sugar ring of the acceptor, as it shows 

a lack of turnover for mannotriose .126 Further, in contrast to the observations at the glucose ring 

on Glc-1-P, reduced contacts are observed for ᴅ-cellobiose at the exocyclic hydroxymethyl group 

at C5, explaining the ability of CDP to recognise xylose-derivatives as acceptors.130 At the 

(1→4)-β-glycosidic linkage, significantly larger saturation transfer was observed for H4 at the 

reducing glucose ring in comparison to the non-reducing H1. Interestingly, the β-anomer of the 

disaccharide received significantly larger amount of saturation at the reducing ᴅ-glucose ring 

(Figure 3.10, a), with a group epitope mapping revealing a more intimate contact to CDP in 

comparison to the α-anomer. Indeed, H1β presented the second closest contact of ᴅ-cellobiose 

with CDP, whereas most of the protons of the α-anomer did not show any contacts at all 

(Figure 3.10, a). 

To rationalise the observed differences between the α- and β-spin anomers of ᴅ-cellobiose in 

structural terms, we ran molecular docking calculations in the presence of inorganic phosphate 

(Figure 3.11). The best scored poses were in agreement with the STD NMR data, predicting closer 

contacts at the non-reducing glucose ring. Comparing the poses for α- and β-anomers indeed 

indicated differences in the ψ torsional angle at the inter-glycosidic linkage (Table 3.9) that 

explained very well the NMR experimental observations. Only in the case of the β-anomer 

of ᴅ-cellobiose the anomeric hydroxyl group establishes a hydrogen-bond with the side chain 

of Asp297 (Figure 3.11), which drives the H1β proton closer to the surface of the enzyme. This is in 

excellent agreement with the reported saturation transfer to H1β proton, and the negligible 

saturation transfer to H1 proton. 
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Figure 3.11: Representation of the best scored poses (induced fit docking calculations, IFDs) for α 

(light blue) and β (orange) anomers of ᴅ-cellobiose in the CDP binding pocket. The amino acid 

residues establishing interactions with the ligands are represented as thick tubes and labelled, 

the other are represented as wire. The two ᴅ-cellobiose are represented as ball-and-stick. 

Inorganic phosphate is painted in pink and represented as CPK. 

Table 3.9: φ and ψ torsional angles for ᴅ-cellobiose anomers, indicating that the two ligands have 

a different inter-glycosidic conformation, as reported by the different ψ angles. Nonetheless, both 

the conformation were in the allowed region of the energy map, as reported by GlycoMapsDB 

(Glycosciences.de).154 

 φ ψ 

α-anomer 44.5 -27.8 
β-anomer 45.3 -3.7 

We attempted to obtain further experimental details of the orientation of ᴅ-cellobiose in CDP 

binding pocket by application of Differential Epitope mapping (DEEP) STD NMR methodology.155 

This approach allows to derive information of the orientation of the bound ligand by reporting on 

the nature of the protein residues (aliphatic, polar, apolar, aromatic) in close contact with the 
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ligand.155 The predicted protein protons chemical shifts were obtained by using ShiftX2 

(http://shiftx2.ca)98 and the available protein 3D structure (PDB: 5NZ8).126 Based on the chemical 

shift reported for residues within 5 Å from the ligand (Appendix, Table A.9 and Table A.10), 

we selected three frequencies (1.5, 6.7 and 7.3 ppm) in order to selectively irradiate aliphatic and 

aromatic residues, highlighted in light blue (residues that resonate at 1.5 ppm) and pink (residues 

that resonate at 6.7 and 7.3 ppm), respectively. To prevent the effects of spin diffusion and 

reduction in the accumulation of magnetisation, a saturation time of 0.5 seconds was used. For a 

better visualisation of substrate-residues contacts, Schrodinger Maestro 11 version 20164 was 

employed for the molecular graphics generation. The protonated residues were selected within 

5 Å from -ᴅcellobiose structured obtained by the IFD calculations (Figure 3.12, a).  

 

Figure 3.12: a) Representation of aliphatic (light blue) and aromatic (pink) residues in the -1, +1 

and +2 subsites of CDP binding pocket, selectively irradiated at 1.5, 6.7 and 7.3 ppm, respectively 

(the representation covers residues up to 5 Å apart from the substrate). The substrate used for the 

representation is D-cellobiose from the IFD calculations, represented as ball-and-stick in orange. 

The irradiated protons are highlighted thank to the construction of a molecular surface (Maestro), 

whereas non-irradiated residues are shown as wire. The cofactor (inorganic phosphate) is 

represented as CPK in purple; b) ΔSTD factor at 1.5/6.7 ppm and c) ΔSTD factor at 1.5/7.3 ppm 

calculated in [D11]Tris buffer. 
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It was expected to obtain positive and negative ΔSTD factors reporting on STD increases when 

irradiating aliphatic and aromatic residues, respectively. Unfortunately, the very large molecular 

weight of the protein, 114.364 KDa per monomer, 228.728 KDa for the dimer (active form of CDP 

in solution)126 resulted in a loss in the selectivity of the irradiation due to fast intramolecular 

magnetisation spreading among close residues driven by spin diffusion. This prevented us to obtain 

information about any contact with aliphatic and aromatic “patches”, as demonstrated by the very 

low ΔSTD factors measured for each isolated proton of ᴅ-cellobiose in [D11]Tris buffer, 25 mM for 

the selected irradiation frequencies (Figure 3.12, b and c; see also Appendix, Table A.11 and Table 

A.12). 

3.2.3.3 Molecular recognition of cognate acceptor substrate D-cellotriose and the 

non-cognate acceptor-like substrate D-cellotriosyl-azide 

Next, we studied the binding of a longer CDP acceptor-like substrate, the trisaccharide 

ᴅ-cellotriose, to investigate interactions on the +2 subsite, further from the inner side of the 

catalytic cleft (-1 and +1 subsites). Its group epitope mapping (Figure 3.10, b) showed some 

similarities with that of ᴅ-cellobiose β-anomeric spin system, with the closest contact on H2 of the 

non-reducing ring and lower saturation transfer to the other protons of the ring. The central ring 

overall showed intimate contacts with the enzyme surface, with H4 displaying the second closest 

contact in the whole ligand, with higher saturation transfer than H1 at the non-reducing ring, as in 

the case of ᴅ-cellobiose. Different from ᴅ-cellobiose, however, ᴅ-cellotriose showed contacts for 

both the reducing α- and β-glucose rings, with the β-anomer showing a more intimate contact with 

CDP in the bound state. 

To prove the CDP selectivity towards the β-anomeric configuration, we synthesised the 

ᴅ-cellotriose derivative ᴅ-cellotriosyl-azide, in which the introduction of an azide group in position 

C1 via an intermolecular nucleophilic attack mediated by 2-chloro-1,3-dimethylimidazolinium 

chloride (DMC) in aqueous solution fixes the anomeric carbon in the β-configuration. The choice 

of these acceptor-like substrate was driven by the previously described ability of CDP  to recognise 

and promote elongation of β-glucosyl azide primers.132 The conversion of ᴅ-cellotriose into 

cellotryolsyl-azide was performed following the one-step conversion described by Tanaka et al.,156 

the progression of the reaction was monitored via TLC, and the formation of the product was 
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confirmed by NMR spectroscopy (Appendix A.15). The group epitope mapping is in excellent 

agreement with the ones described above for ᴅ-cellobiose and ᴅ-cellotriose (Figure 3.13). 

The closest contact of ᴅ-cellotriosyl-azide is at H1 of the central ring, while the β-anomeric proton 

presents the second fastest building-up curve. These results reinforce the CDP β-anomeric 

selectivity described for ᴅ-cellobiose and ᴅ-cellotriose 

 

Figure 3.13: Binding epitope mapping of ᴅ-cellotriosyl-azide in [D11]Tris buffer 25 mM, pH 7.4, 

employing 2 mM of ligand for 10 μM in binding unit. The STD build-up curves with the 

monoexponential fit (Figure A.16) and the derived 𝑆𝑇𝐷௠௔௫ , 𝑘௦௔௧, 𝑆𝑇𝐷଴ and normalised 

percentages (Table A.8) are reported in the Appendix. 

3.2.3.4 Molecular recognition of the non-cognate acceptor –like substrate: D-laminaribiose 

To explore the influence of the regiochemistry of the glycosidic bond configuration on CDP binding, 

we compared the binding of ᴅ-cellobiose with its regioisomer ᴅ-laminaribiose 

(ᴅ-glucose-β-(1,3)-ᴅ-glucose). The STD NMR results are shown in Figure 3.10, c. Similarly to 

ᴅ-cellobiose, H2 of the non-reducing ring received the highest saturation transfer. However, in 

contrast to ᴅ-cellobiose and ᴅ-cellotriose, in this case, the closest contact at the reducing ring was 

observed for the α-anomer. Additionally, for ᴅ-laminaribiose, good spectra resolution allowed us 

to detect also the impact of the anomeric configuration up to the non-reducing ring signals, where 

H1b of α-ᴅ-laminaribiose showed significantly higher saturation transfer compared to H1b of 

β-ᴅ-laminaribiose. Hence, our results indicate that for the molecular recognition of regioisomers 

with sequence ᴅ-glucose-β-(1-X)-ᴅ-glucose, CDP shows a preferential molecular recognition of 

α-anomeric disaccharides showing a β-(1-3) inter-glycosidic regiochemistry (ᴅ-laminaribiose), 

whereas this preference changes towards β-disaccharides when the inter-glycosidic 

regiochemistry is β-(1-4) (ᴅ-cellobiose). 
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The observed differences in binding group epitope mappings depending on the reducing sugar ring 

configuration prompted us to characterise the bound conformations of both anomers to explore 

whether those epitope differences are also concomitant with conformational differences upon 

binding to CDP. To that aim, we carried out Transfer-NOESY experiments (tr-NOESY) on a sample 

containing a 1:10 CDP:ᴅ-laminaribiose ratio (Figure 3.14). ᴅ-laminaribiose bound NOEs were 

compared to those in the free state (in the absence of the protein) to probe conformational 

changes due to binding. The focus was on the inter-glycosidic NOEs, and quantitative analysis of 

H1b-H3α and H1b-H3β NOEs was performed and key 1H-1H distances of the disaccharides in the 

bound state were derived (Table 3.10). As a result, no significant changes in the 1H-1H 

inter-glycosidic distances were observed, indicating that the observed differences in binding group 

epitope mappings for ᴅ-laminaribiose α- and β-anomers are not correlated with a conformational 

change upon binding to CDP. This result supports that, in contrast to ᴅ-cellobiose, its 

β-(1-3) regioisomer, ᴅ-laminaribiose, brings closer the surface of the protein to the reducing 

glucose ring in the case of the α-anomer. The absence of any significant perturbation of the 

inter-glycosidic linkage conformation for ᴅ-laminaribiose indicates a distinct orientation of the 

reducing sugar ring, imposed by the differences in inter-glycosidic linkage stereochemistry. 
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Figure 3.14: (i) Expansion and (ii) full spectra of the transferred 2D-NOESY spectra of a) free 

ᴅ-laminaribiose and b) ᴅ-laminaribiose bound to CDP (1:10 protein to ligand ratio)  in [D11]Tris 

buffer 25 mM pH 7.4, NaCl 100 mM registered at 300 ms mixing time and 290 K in a 800 MHz 

spectrometer. 
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Table 3.10: Inter-glycosidic 1H-1H distances (Å) of ᴅ-laminaribiose determined from tr-NOESY 

experiments considering the Isolated Spin Pair Approximation110; the cross-relaxation rates (𝜎ேைா) 

were approximated by the ratio of the normalised NOE volume and the mixing time. 

 Free D-laminaribiose Bound D-laminaribiose 

Proton pairs distance (Å) 𝜎ேைா distance (Å) 𝜎ேைா 

H1(b)-H3(α) 2.94 0.02 2.92 -0.08 

H1(b)-H3(β) 3.20 0.01 3.26 -0.04 

H1(b)-H3(b) 2.66 0.04 2.66 -0.13 

3.2.4 Impact of phosphate on the binding of acceptors 

Following on our effort to understand substrate recognition by CDP in detail, we explored the 

effect of inorganic phosphate on the binding of the acceptor ligands, as this anion is a key player 

in the phosphorylase reaction. We first carried out STD NMR experiments on CDP/D-cellobiose 

samples after addition of 100 μM phosphate (K3PO4, Figure 3.15, a). Furthermore, STD NMR 

experiments were also carried out with a phosphate excess large enough to ensure saturation of 

the CDP binding pocket, using 25 mM PBS pH 7.4 buffer (Figure 3.15, b). As previously mentioned 

in section 3.3.2, a correction factor was applied to the STD signal of each α‑ and β‑associated peaks 

to account on the α- and β-anomers difference in concentration. The correction factor was 

calculated as ratio of area of the α- and β- anomeric protons relative to the area of H1 of the 

non‑reducing ring for ᴅ-cellobiose for each concentration of inorganic phosphate in the reaction 

mixture (Table 3.11).  
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Figure 3.15:  Effect of phosphate on the binding epitope of ᴅ-cellobiose for its interaction with 

CDP. Group epitope mappings derived from the initial slope approach for each isolated proton.81 

a) sample in 25 mM [D11]Tris pH 7.4, 100 mM NaCl in the presence of 100 μM K3PO4, and b) sample 

in 25 mM PBS pH 7.4, 100 mM NaCl. The maximum STD0 was observed for H2 in the non-reducing 

ring, to which an arbitrary value of 100% was assigned. The STD build-up curves with the 

monoexponential fit (Figure A.17 and A.18) and The derived 𝑆𝑇𝐷௠௔௫, 𝑘௦௔௧, 𝑆𝑇𝐷଴ and normalised 

percentages (Table A.13 and A.14) are reported in the Appendix. 

Table 3.11:  Population of the α- and β- anomeric spin system relative to the H1 of the nonreducing 

ring (integrated 1) calculated for each experimental condition.  

 

 

 

 

 α β 

ᴅ-cellobiose 0.15 0.85 

ᴅ-cellobiose + K3PO4 100 μM 0.4 0.6 

ᴅ-cellobiose in PBS 25 mM 0.3 0.7 
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Interestingly, addition of phosphate let to some changes in the group epitope mapping at the 

non-reducing ring.  The STD increases at protons H3, H4 and H5, particularly at high phosphate 

excess. This is also in excellent agreement with the 3D models for the binding of D-cellobiose 

anomers to CDP (Figure 3.11), generated in the presence of phosphate. In these models, 

hydroxyl groups at C2, C3 and C4 sit on top of the negatively charged anion, which brings H3, H4 

and H5 closer to the CDP binding surface, explaining their increase in relative STD values. Globally, 

the group epitope mapping of D-cellobiose did not change significantly upon phosphate titration 

(cf. Figures 3.10 and 3.15) indicating that the presence of phosphate does not affect the acceptor 

substrate binding mode further than getting the C2-C3-C4 of the non-reducing ring a bit closer to 

the surface of the binding pocket. 

Notably, addition of phosphate led to a significant decrease in absolute STD NMR intensities of 

D-cellobiose (Figure 3.16) which seemed to equilibrate upon saturation of CDP binding site with 

phosphate in the 25 mM PBS pH 7.4 sample. This flattening effect could provide information on 

the kinetics of binding. Indeed, having used the same irradiation frequency for the different 

reaction mixtures, and having demonstrated no changes in the substrate binding mode, we can 

consider the substrate residence time in the bound state as a variable factor. Hence, when [D11]Tris 

buffer is used, the fast kinetics of exchange and therefore the short bound residence time prevent 

the magnetisation to spread evenly from H2, the proton in very close contact with the protein, and 

the ligand’s protons further from the protein surface. Hence, the faster the kinetics of interaction, 

the larger the gap between the STD value of H2 and H3 (the second strongest STD signal in the 

non-reducing ring spin system). On the contrary, when PBS buffer was used, the gap between the 

STD values of those two protons was reduced considerably.  

Analogy with thermal diffusion process can help us explain how this gap relates to the kinetics of 

the interaction. Let us imagine a metal bar which is brought close to a source of heat. The part of 

the bar closer to the heat source will be the first part to get hot, and the hottest one at any point. 

However, the longer the bar will remain close to the heat source, the further the heat will diffuse, 

and the rest of the bar will gradually get hotter. If we now imagine the magnetisation to be the 

heat, the protein surface to be the source of heat, and the ligand to be bar-like, we can translate 

the thermal diffusion analogy to explain the gap in STD NMR intensities between close and far 

protons. We are therefore witnessing a flattening effect of the binding epitope due to longer 
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permanence of the ligand into the binding pocket. In addition, this increase on ligand affinity is 

reflected by the increased relative STD of the protons at the non-reducing ring.  

 

Figure 3.16: Effect of phosphate on absolute STD NMR intensities for d-cellobiose in a) [D11]Tris, 

25 mM pH 7.4, NaCl 100 mM, b) [D11]Tris, 25 mM pH 7.4, NaCl 100 mM with 100 μM K3PO4 and 

c) PBS 25 mM, pH 7.4. The STD build-up curves were recorded for each experimental condition at 

increasing saturation times (from 0.5 to 6 seconds). 

To investigate this, we carried out titration experiments with D-cellobiose in the absence and in 

the presence of phosphate, and determined the apparent dissociation constant (𝐾஽
௔௣௣) for 

D-cellobiose binding to CDP, under the three following experimental conditions: i) absence of 

inorganic phosphate ([D11]Tris buffer 25 mM, pH 7.4, NaCl 100 mM) ; ii)10-fold excess of inorganic 

phosphate to binding sites, and iii) very large excess of inorganic phosphate (PBS 25 mM pH 7.4, 

isotonic). As CDP is able to slowly phosphorylate the acceptor in the time scale of tens of hours, 

we could not follow a full initial slope analysis,79 so quantification of 𝐾஽ was carried out by reducing 

the time scale of the titration experiments by running the STD NMR spectra at one short saturation 

time (1 s). On top of that, 𝐾஽
௔௣௣ values were determined from the proton on D-cellobiose 

simultaneously showing: i) the lowest STD absolute intensity, to avoid the impact of differential 

relaxation times on the 𝐾஽
௔௣௣ determination79, and ii) the best mathematical fitting to a Langmuir 

isotherm. Thus, we monitored the titration via the STD-AF of H4β (Figure 3.17). Table 3.12 shows 

the different  𝐾஽
௔௣௣ values upon phosphate addition, proving that the co-factor plays a 

thermodynamics contribution in substrate recognition producing a slight increase in ligand binding 

affinity. These experiments highlight the high sensitivity of STD NMR intensities to changes in 

affinities under the conditions tested. 
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Figure 3.17: Binding isotherm fitted to Langmuir equation for D-cellobiose in a) [D11]Tris buffer 25 

mM pH 7.4, NaCl 100 mM, b) [D11]Tris buffer 25 mM pH 7.4, NaCl 100 mM with K3PO4  100 μM and 

c) PBS 25 mM, pH 7.4, isotonic. 

Table 3.12: Apparent equilibrium dissociation constant 𝐾஽ [mM] calculated from STD NMR 

spectroscopic titration as a function of the saturation time (𝑡௦௔௧). The STD signals from proton H4β 

was followed for ᴅ-cellobiose bound to CDP in [D11]Tris buffer 25 mM pH 7.4 NaCl 100 mM, [D11]Tris 

buffer 25 mM pH 7.4 NaCl 100 mM in presence of K3PO4 and PBS buffer 25 mM pH 7.4, isotonic. 

 [D11]Tris [D11]Tris with K3PO4 PBS 

 KD 
[mM] 

95% 
conf. 

R2 KD 
[mM] 

95% 
conf. 

R2 KD 
[mM] 

95% 
conf. 

R2 

H4β 2.23 (±0.71) 0.9972 1.961 (±1.06) 0.9911 1.157 (±0.70) 0.9828 

As the inorganic anion did not affect the binding mode of the acceptor ligand yet had a slight effect 

on the affinity, we decided to investigate whether the presence of phosphate might affect the 

bioactive conformation of the disaccharide. To that aim, tr-NOESY spectra were measured to 

characterise the conformation of ᴅ-cellobiose around the β-(1-4) linkage in the bound state. 

Cross-relaxation rates (σNOE) were approximated by the ratio of the normalised NOE volume and 

the mixing time. The Isolated Spin Pair Approximation110 was used to calculate distances. 

NOEs were recorded for (i) the free ligand, (ii) the bound ligand (1:20 protein to ligand ratio) and 

(iii) the bound ligand in the presence of inorganic phosphate (1:20 protein to ligand ratio, 

1:5 protein to cofactor ratio) (Figure 3.18). The results (Table 3.13) demonstrate that the 

inter-glycosidic H1(b)-H4(β) distance, reporting on the conformation around the  β-(1-4) linkage, 
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did not change significantly neither exchanging from the free to the CDP-bound state, nor after 

addition of inorganic phosphate in the bound state.  

 

Figure 3.18: (i) Expansion and (ii) full spectra of the transferred 2D-NOESY NMR spectra for a) free 

ᴅ-cellobiose, b) ᴅ-cellobiose bound to CDP (1:20 protein to ligand ratio) and c) ᴅ-cellobiose bound 

to CDP in the presence of inorganic phosphate in [D11]Tris buffer 25 mM, pH 7.4 NaCl 100 mM 

recorded at 160 ms mixing time and 298 K in a 800 MHz spectrometer. 
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Table 3.13: 1H-1H distances (Å) measured via tr-NOESY experiments for ᴅ-cellobiose free ligand, 

bound to CDP (20:1 ligand-to-enzyme ratio) and bound to CDP in the presence of 5-fold per 

enzymatic cleft unit of inorganic phosphate; the cross-relaxation rates (𝜎ேைா) were approximated 

by the ratio of the normalised NOE volume and the mixing time. 

 Free D-cellobiose Bound D-cellobiose Bound D-cellobiose 
with phosphate 

Proton pairs distance (Å) 𝜎ேைா distance (Å) 𝜎ேைா distance (Å) 𝜎ேைா 

H1(b)-H5(b) 2.38 0.03 2.38 -0.10 2.38 -0.04 

H1(b)-H3(b) 3.07 0.01 2.91 -0.03 2.83 -0.01 

H1(b)-H4(β) 2.54 0.02 2.44 -0.09 2.38 -0.04 

H4(b)-H6(b) 2.92 0.01 3.11 -0.02 n.r n.r 

H4(b)-H6'(b) 3.53 0.003 3.06 -0.02 2.95 -0.01 

H2β-H4β 2.52 0.02 2.21 -0.16 2.05 -0.09 

H1(b)-H6(β) n.r.* n.r.* 2.46 -0.08 2.66 -0.02 

H1(b)-H6'(β) n.r.* n.r.* 2.62 -0.06 2.46 -0.03 

*n.r.= not recorded 

3.2.5 Structural details of the CDP-donor-acceptor ternary complex 

interactions 

To deepen our understanding of the molecular recognition of substrates taking place during the 

reverse phosphorolysis reaction, we generated a 3D model of the CDP/Glc-1-P/D-cellobiose ternary 

complex by molecular modelling (protein-ligand docking SP) and analysed the resulting structure 

on the bases of its correlation with the published CDP-bound D-cellotetraose structure.126 

The calculations were performed by docking ᴅ-cellobiose to the previously obtained CDP-bound 

Glc-1-P structure, and the most populated solution is shown in Figure 3.19. To help visualisation of 

the location and orientation of the donor Glc-1-P and acceptor ᴅ-cellobiose substrates within the 

binding site, we show a superimposition of the published CDP-bound D-cellotetraose structure.126 
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The main contacts established by the acceptor substrate and the residues in the catalytic cleft are 

reported in Table 3.14.  

The docking model shows that ᴅ-cellobiose enters the +1 subsite of the binding pocket with the 

non-reducing ring, orientation compatible with the reverse phosphorolysis mechanism. 

Figure 3.19, a shows that the residue Asp624 has a bridge function between donor and acceptor 

substrates. Specifically, the hydroxymethyl group of Glc-1-P acts as H-bond acceptor with the 

backbone NH of Asp624, while the hydroxyl groups at C4 and C6 act as H-bond donors with Asp624 

side chain (Figure 3.19, b).   

The hydroxyl groups at C2 and C3 of D-cellobiose non-reducing ring act as H-bond donor with the 

side chain of Glu810, while the hydroxyl group at C2 acts as H-bond acceptor with the side chain 

of Tyr804. Additionally, D-cellobiose reducing ring establishes a CH-π stacking interaction with 

Tyr300 in the +2 subsite. The establishment of this CH-π stacking interaction is in very good 

agreement with the STD binding epitope mapping of ᴅ-cellotriose, where a more intimate contact 

of the β-anomer in comparison with the α-anomer was reported for the reducing ring occupying 

the +2 subsite. It is expected that a configurational change of the anomeric proton from β- to α- will 

determine a disruption of the CH-π stacking interaction, causing a reduction in the enthalpic 

contribution for the binding event. Furthermore, the position of this interaction at the +2 subsite 

might explain the lower 𝐾ெ
௔௣௣ of ᴅ-cellotriose in comparison with ᴅ-cellobiose, as well as the CDP 

inability to perform the phosphorolysis reaction on substrates shorter than ᴅ-cellotriose. 
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Figure 3.19: a) Representation of Glc-1-P / ᴅ-cellobiose / CDP ternary complex obtained by Docking 

SP calculations run for all the obtained poses of ᴅ-cellobiose conformational search (MacroModel), 

a 4-fold enhanced conformational sampling and a grid box of 10 Å inner box and 23 Å outer box. 

The substrates pose is compared with ᴅ-cellotetraose structure from O’Neill et al., 2017.126 

The main amino acids residues establishing interactions with the substrates are represented as 

thick tubes; Glc-1-P and ᴅ-cellobiose are represented as ball-and-stick in fuchsia and orange, 

respectively. b) Ligand interaction diagram reported to facilitate the visualisation of the set of 

interactions established by Glc-1-P and ᴅ-cellobiose with the binding pocket residues in the 1, +1 

and +2 subsites. The arrows indicate H-bond going from donor to receiver, dash lines represent 

H-bond with residues sidechain, whereas the solid line with residues backbone. The solid line 

shaded from red to blue represents a salt bridge. 
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Table 3.14: Interactions established between ᴅ-cellobiose and the catalytic cleft residues in the 

ternary complex CDP/Glc-1-P/ᴅ-cellobiose. The established interactions are specified in brackets 

nearby the involved group. 

 

 

 

 

 

 

 

Important structural information can be obtained comparing the 3D docking model of the ternary 

complex with the available literature on cellobiose phosphorylase from Cellovibrio gilvus (CBP) and 

on CDP from Clostridium stercorarium. In the first case, CBP crystal structures (PDB: 3QG0)157 

shows that the enzyme misses a residue able to establish a CH-π stacking interaction in the 

+2 subsite. This observation might explain the ability of CBP to synthesize only disaccharides and 

no longer oligosaccharides chains, supporting the hypothesis that this residue is pivotal for the 

productive binding of D-cellobiose and longer saccharides.  In the second case, previous studies on 

CDP from Clostridium stercorarium158  reported on the presence of a TRP residue in the +2 binding 

subsite level. The construct of a mutant with an ALA residue in place of the TRP resulted in 

retention of 50% activity on recognising D-cellobiose as acceptor, indicating the contribution of 

other residues at the +2 subsite in the substrate recognition.158  

To experimentally validate our 3D docking model of the ternary complex, we resort to Inter-Ligand 

NOE (ILOE) NMR experiments to probe donor and acceptor proximity by detection of 

intermolecular NOE between the two CDP-bound substrates.159 We selected Man-1-P as donor-like 

D-cellobiose non-reducing ring CDP interacting residues  

-OH2 (H-bond acceptor) Tyr804 

-OH2 (H-bond donor) Glu810 

-OH3 (H-bond donor) Glu810 

-OH4 (H-bond donor) Asp624 

-CH2OH (H-bond donor) Asp624 

D-cellobiose reducing ring  

-OH3 (H-bond donor) Asp297 

-CH (1,3,5) (CH-π stacking) Tyr300 
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substrate as the very quick turnover of D-cellobiose to D-cellotriose  in the presence of Glc-1-P (the 

appearance of peaks belonging to D-cellotriose happens in a matter of seconds) prevented us from 

using CDP cognate donor substrate in our investigation. Importantly, the previously described 

binding epitope of Man-1-P obtained with the STD NMR experiments demonstrated that Man-1-P 

binds CDP in a similar way of Glc-1-P, even though no catalytic efficiency was reported for this 

donor-like molecule.126 We performed ILOE experiments for the ternary complex 

CDP/Man-1-P/D-cellobiose with a fixed enzyme-to-acceptor ratio of 1:50 and two different 

acceptor-to-donor ratio (1:1 and 1:2, respectively) at 278 K (Figure 3.20). Based on our 

CDP/Glc-1-P/D-cellobiose ternary complex docking model, we expected to observe a cross-peak 

between the proton at C1 of Glc-1-P and proton at C4 of D-cellobiose non-reducing ring, for which 

a 3.3 Å distance was measured. Unfortunately, no inter-ligand cross-peak was detected.  

 

Figure 3.20: ILOE NMR spectra of a) D-cellobiose 5 mM, Man-1-P 5 mM, CDP 100 μM and b) 

D-cellobiose 5 mM, Man-1-P 10 mM, CDP 100 μM in [D11]Tris 25 mM, pH 7.4 NaCl 100 mM at 278 K. 

The experiments were performed using a mixing time of 1.5 s. 

The STD NMR competition experiments helped us to explain why the expected cross-peak could 

not be detected in the ILOE spectra. In the competition experiments, STD NMR spectra are 

recorded at a single saturation time, and the changes in absolute STD intensity of one species are 

monitored upon introduction of a competitive binder. At first, we recorded the STD NMR spectra 

for a fixed concentration of D-cellobiose, and we gradually added Man-1-P on the sample 
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(Figure 3.21, a). The experiment shows that the introduction of Man-1-P does not change the 

absolute STD intensity recorded for D-cellobiose protons, indicating that D -cellobiose is a stronger 

binder than Man-1-P and it is not displaced by the presence of the donor molecule.  

We then recorded the STD NMR spectra for a fixed Man-1-P concentration, to which we added 

D-cellobiose on top (Figure 3.21, b). In this case, a drastic reduction of the intensity of H1 of 

Man-1-P was recorded, even when D-cellobiose was present at lower concentration. 

Then, increasing D-cellobiose concentration, no significant changes in D-cellobiose protons 

absolute STD intensity was observed. The data indicate that, upon introduction of D-cellobiose, 

Man-1-P is fast and completely displaced from the binding pocket. 

 

Figure 3.21: a) Results of STD NMR experiments recorded at 2 seconds saturation time for a sample 

containing D-cellobiose 1 mM to which Man-1-P was gradually added. The experiments were 

recorded with 100 μM CDP binding unit in in [D11]Tris 25 mM, pH 7.4 NaCl 100 mM at 278 K.; 

b) Results of STD NMR experiments recorded at 4 seconds saturation time for a sample containing 

Man-1-P 5 mM to which D-cellobiose was gradually added. The experiments were recorded with 

50 μM CDP binding unit in [D11]Tris 25 mM, pH 7.4 NaCl 100 mM at 278 K. 

3.3 Final discussion and future prospective 

CDP is one of the most studied and used biocatalyst belonging to GPs family. Understanding the 

nature of interactions involved in both natural and non-cognate substrates recognition is 

important to achieve background knowledge for carbohydrate synthesis, with potential 

applications in both academic and industrial environments. CDP broad specificity towards 
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non-cognate donor-like and acceptor-like substrates has already been discussed in subsection 

3.1.3.1. Nonetheless, the use of non-cognate substrates is not optimised yet, as demonstrated by 

the substrates reduced enzyme catalytic efficiency and turnover. 

The work presented in this chapter is a thorough structural investigation on the molecular 

recognition processes of donor and acceptor substrates by CDP, conducted by STD NMR 

spectroscopy and computational tools. The study covers four main points, herein summarised: 

i) CDP molecular recognition of cognate and non-cognate donor substrates (Glc-1-P, 

Man-1-P, Gal-1-P, GlN-1-P and 6F-Glc-1-P);  

ii) CDP molecular recognition of cognate and non-cognate acceptor substrates (D-glucose, 

D-cellobiose, D-cellotriose, D-cellotriosyl-azide and D-laminaibiose);  

iii) the role played by inorganic phosphate in acceptor substrates recognition; 

iv) the structural characterisation of the ternary complex CDP/donor/acceptor.  

Studying donor and donor-like substrates is important for the synthesis of cellodextrins with 

functional groups introduced along the chains in a regiospecific manner. For example, the synthesis 

of multiply 6-fluoro-6-deoxy-cellodextrins, decorated with fluorine atom at C6 position, has been 

recently achieved in our research group, indicating the possibility of using CDP as enzymatic route 

to synthesise novel and tailored carbohydrate structures.152 The close contacts between Glc-1-P 

and CDP, as indicated by the STD NMR group epitope mapping, suggests a restricted specificity of 

this enzyme towards the donor substrates. Our results indicate that the hydroxymethyl group plays 

a pivotal role in substrate recognition. Hence, we can foresee that the introduction of a bulky group 

on C6 would impair an important contact for substrate recognition, leading to a molecule with 

poor donor ability. The close contact for H6s in 6F-Glc-1-P proves CDP tolerance for a group in 

position 6 isosteric to OH acting as an H-bond acceptor. In addition, the lower contact 

demonstrated for the protons in position C2 and C4 might indicate CDP ability to accept functional 

modification at these positions. 

The study of acceptors and acceptor-like substrates binding is interesting for the preparation of 

various cellodextrins substituted at their reducing end. STD NMR group epitope mapping showed 

an intimate contact between the sugars non-reducing ring and CDP in all the investigated acceptor 

substrates and revealed a pivotal role played by position C2 in acceptor substrates recognition. 
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In addition, the study revealed an anomeric selectivity of CDP towards the α- and β-anomeric 

configuration for β-(1-3) and β-(1-4)-oligosaccharides acceptors, respectively. 

The performance of CDP reaction is dictated by the presence of inorganic phosphate in the binding 

pocket. The co-factor binds to a lobe adjacent to the -1 subsite and it is ionised at physiological 

pH.126 Nonetheless, really few information has been gathered so far about the impact that the 

inorganic phosphate on the substrate binding properties. Our study indicates that the inorganic 

phosphate plays a thermodynamics contribution in acceptor substrate binding, as demonstrated 

by the reported reduction of 𝐾஽  upon phosphate introduction.  

Our study complements the already published apo- and bound- CDP crystal structures and the CDP 

specificity information available both for donor and acceptor substrates. The structural details at 

the atomic level achieved for those complexes reveal the molecular basis of the observed kinetics 

and specificity of CDP towards both cognate and non-cognate donor and acceptor substrates. 

Together, these studies provide structural details on CDP specific recognition of both single and 

multiple substrates. These studies are valuable starting point towards the design and engineering 

of CDP for tolerance towards different non-cognate donors and acceptors, hence expanding GPs 

applications in carbohydrate synthesis. 

3.4 Material and methods  

3.4.1 CDP expression and purification 

A recombinant plasmid (pET15b) containing the CDP 

gene from Ruminiclostridium thermocellum (YM4 strain) was transformed into E. coli BL21 (DE3) 

cells and grown as described previously.126 Briefly, 1 L of LB medium containing the transformant 

and carbenicillin (100 μg/mL) was incubated at 37 °C with shaking (200 rpm) until OD600 around 

0.6. Heterologous protein expression was induced by adding isopropyl βD1thiogalactopyranoside 

(IPTG) to a final concentration of 1 mM and incubating for 4 hours at 30 °C with shaking (180 rpm). 

The cells were harvested by centrifugation (4,000 × g, 20 min), resuspended in lysis buffer (50 mM 

HEPES, pH 7.5, 100 mM NaCl, EDTAfree protease inhibitor cocktail tablet, 0.02 mg/mL DNaseI), 

lysed by cell disruption (30 Kpsi, constant flow) and the supernatant containing the recombinant 
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proteins was separated from cell debris by centrifugation (20,000 × g, 30 min). Proteins were 

purified at 4 °C using an ÄKTA pure FPLC system (GE Healthcare). The supernatant was loaded to a 

5 mL His-TrapTM HP column (GE healthcare) pre-equilibrated with buffer A (50 mM Tris-HCl, pH 8, 

50 mM glycine, 5% glycerol, 500 mM NaCl, 20 mM imidazole). The column was washed with buffer 

A to remove unbound proteins followed by elution of bound proteins with buffer B (50 mM 

Tris-HCl, pH 8, 50 mM glycine, 5% glycerol, 500 mM NaCl, 500 mM imidazole). Further purification 

was carried out by gel filtration chromatography (Superdex S200 16/600 column, 

GE Healthcare) with 20 mM HEPES, pH 7.5, 150 mM NaCl, 1 mL/min. Fractions containing CDP were 

pooled and concentrated using Amicon Ultra15 Centrifugal Filter (30,000 MW cut off) and the 

enzyme concentration (5.7 mg/mL) was determined by NanoDropTM spectrophotometer 

(Thermo Fisher Scientific, UK). The Histag CDP was stored in aliquots at 80 °C until required.  

The exchange of the protein with deuterated solvent ([D11]Tris, pH 7.4, 100 mM NaCl) was 

performed via 50K MW filter, centrifuge 4000 rfm, 4 degree. 5 cycles of 20 minutes each. The final 

concentration of the protein was measured using a Thermo Scientific NanoDrop UV-Vis 

spectrophotometer with a A280 method and an extension coefficient ε of 117.635 set up. 

The obtained concentrated protein was then diluted to the desired concentration for NMR analysis 

using [D11]Tris buffer solution. 

3.4.2 Nuclear Magnetic Resonance 

All the experiments were carried out using an Avance 800.23 MHz on a Bruker Avance III 

spectrometer equipped with a 5-mmD probe TXI 800 MHz H-C/N-D-05 Z BTO. 1H and 13C resonance 

assignment for the ligands was performed on the bases of 1D 1H, 2D DQF-COSY, HSQC and NOESY 

experiments run on the free ligands in [D11]Tris, pH 7.4 NaCl 100 mM at a temperature of 5°C.  

3.4.2.1 Saturation Transfer Difference (STD) NMR  

Donors: The Glc-1P sample consisted of 3 mM ligand and 15 μM in binding site (CDP is a 

homodimer) in [D11]Tris buffer (25 mM, pH 7.4, NaCl 100 mM), for an enzyme-to-ligand ratio of 

1:200. A decreasing amount of number of scans was collected (from 128 to 32) based on the 

applied saturation time. For the non-cognate donors (Gal-1P, Man-1P, GlN-1P and 6F-Glc1P) we 
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increased the enzyme-to-ligand ratio, hence increasing the fraction of bound ligand (fLB) and in turn 

the STD signal, using 5 mM of ligand and 50 μM in binding site. A reverse amount of number of 

scans was collected (from 256 to 16 according to the saturation time) and a recycle delay of 6.1 s 

was used. 

Acceptors: All the samples were prepared using a 200-fold excess of ligand over catalytic unit 

(3 mM ligand, 15 μM enzyme monomer) in [D11]Tris buffer (25 mM, pH 7.4, NaCl 100 mM). 

128 number of scans were acquired for each saturation time, and a relaxation delay of 6.1 seconds 

was employed. The impact of inorganic phosphate on ᴅ-cellobiose was tested by adding on top of 

the same sample K3PO4 solution in [D11]Tris buffer, for a final concentration of 100 μM K3PO4. 

In addition, STD NMR experiments in PBS (25 mM, pH 7.4, isotonic) were run for ᴅ-cellobiose with 

the same experimental conditions. Finally, STD NMR experiments for ᴅ-cellotryosyl-azide were run 

employing 2 mM of ligand for 10 μM in binding unit. A reverse amount of number of scans was 

collected (from 128 to 32) based on the applied saturation time. 

STD NMR experiments were acquired at different saturation times (0.5, 0.75, 1, 1.5, 2, 3, 4, 5 and 

6 seconds) to determine the initial slope of the STD build‑up of each proton involved in binding to 

CDP. The employed irradiation frequencies were 0.3 ppm and 50 ppm for the on-resonance and 

the off-resonance spectra respectively. Cascades of 50 ms Gaussian-shaped pulses at a field 

strength of 50 Hz were employed, with a delay of 1 ms between successive pulses. The broad 

protein signals were removed using a 40 ms spinlock (T1ρ) filter (stddiff.3).81  

Following, the obtained curves were fitted to a mono-exponential function  

𝑆𝑇𝐷(𝑡௦௔௧) = 𝑆𝑇𝐷௠௔௫(1 − 𝑒ି௞ೞೌ೟∙௧ೞೌ೟) 

From these STD build‑up curves, we mapped out the main contacts of the ligands to CDP in the 

bound state by determining the initial slopes (𝑆𝑇𝐷଴) of the curves, obtained as the product of the 

𝑆𝑇𝐷௠௔௫ and ksat coefficients, and thereafter normalising all the 𝑆𝑇𝐷଴ values within a given ligand 

by the highest one, to which an arbitrary value of 100% was assigned. It should be noted that the 

use of STD initial slopes increases the accuracy of the STD methodology for binding epitope 

mapping by avoiding the detrimental effects of different relaxation properties of the ligand protons 

on the determination of the binding epitope. Different mapping scales were used for the binding 

epitopes of donor and acceptor molecules, as the donor is buried inside the binding pocket and 
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therefore receives higher saturation transfer. Therefore, we have considered > 90% and >70% of 

relative STD as close contact for donors and acceptors, respectively.  

For accuracy, in the present study we considered only well resolved and isolated NMR resonances 

for each investigated ligand (for example, H1β of the reducing ring). The contacts of non-isolated 

protons (overlapping signals) are not reported. On the other hand, the lack of contact of 

well-resolved protons, which did not show any STD signal, is represented within empty circles 

(Figure 3.10). 

3.4.2.2 Differential Epitope mapping (DEEP-STD)  

DEEP-STD NMR experiments were carried out for ᴅ-cellobiose in [D11]Tris buffer (25 mM, pH 7.4, 

NaCl 100 mM). The predicted protein protons chemical shifts were obtained by using ShiftX2 

(http://shiftx2.ca)84 and the available protein 3D structure (PDB: 5NZ8).126 Based on the chemical 

shift reported for residues within 5 Å from the ligand (Table A.X), we selected three irradiation 

frequencies (1.5 ppm, 6.7 ppm and 7.3 ppm) in order to selectively irradiate aliphatic and aromatic 

residues, highlighted in light blue and pink, respectively. A total of 512 scans and 8 dummy scans 

were collected for each experiment, with a saturation time of 0.5 seconds and a relaxation delay 

of 6 seconds. The absolute STD intensities was measured for each isolated proton of ᴅ-cellobiose, 

and the ΔSTF factors for each pair of irradiation frequencies (1.5/6.7 ppm and 1.5/7.3 ppm).83 

∆DEEP − STD୧ =
𝑆𝑇𝐷௘௫௣ଵ,௜

𝑆𝑇𝐷௘௫௣ଶ,௜

−
1

𝑛
෍ ቆ

𝑆𝑇𝐷௘௫ ,௜

𝑆𝑇𝐷௘௫ ,௜
ቇ

௡

௜
 

Schrodinger Maestro 11 version 2016-4 was employed for all he molecular graphics generation. 

The protonated residues were selected within 5 Å from ᴅ-cellobiose structure obtained from 

docking calculations.  

3.4.2.3 Transferred-NOESY (tr-NOESY)  

Tr-NOESY experiments were carried out using a phase sensitive pulse programme with gradient 

pulses in the mixing time and a relaxation delay of 1.5 seconds. ᴅ-cellobiose was analysed using 

[D11]Tris buffer 25 mM pH 7.4 NaCl 100 mM and a protein-to-ligand ratio of 1:20 at 298 K. 

Experiments at different mixing times (40 and 160 ms) were collected for the free and bound state. 

Finally, the same experiments were collected in the presence of a 5-fold excess of inorganic 
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phosphate, in comparison with a CDP single binding unit. Tr-NOESY experiments were also carried 

out to probe conformational rearrangement upon binding on ᴅ-laminaribiose at 290 K. In this case, 

a protein-to-ligand ratio of 1:10 was employed. Experiments at different mixing times (40 and 

300 ms) were collected in the free and bound state. The experimental distances of the ligand in 

the bound state were derived using the isolated spin pair approximation (ISPA)110 approach. 

First, each cross peak was divided by its corresponding diagonal peak at 40 ms, thus obtaining the 

normalized NOE volume. Each volume was then divided by the mixing time to get a good 

approximation of the cross-relaxation rate (σNOE). Finally, using the fixed H1-H5 and H1−H3 

distances of the non-reducing ring terminal (2.38 Å and2.66 Å) for D-cellobiose and D-laminaribiose, 

respectively, the key inter-glycosidic proton−proton distances were calculated according to the 

expression  

𝑑௫ = 𝑑௥௘௙൫𝜎௥௘௙ 𝜎௫⁄ ൯
ଵ ଺⁄

 

where 𝑑௫ is the unknown distance to be determined, 𝑑௥௘௙ is the distance used as reference, and 

𝜎௥௘௙ and 𝜎௫  are the cross-relaxation rates of the reference and unknown distances, respectively. 

3.4.2.4 KD measurement 

The measurement of the ligand binding affinity was performed by application of STD NMR 

experiments.79, 82 1H STD NMR spectra of ᴅ-cellobiose were acquired at different ligand 

concentration (0.25, 0.5, 1, 2.5, and 5 mM) with saturation times of 1 second. On-resonance and 

off-resonance frequencies were 0.3 and 50 ppm, respectively. A total of 128 number of scans were 

collected for each experiment, and a relaxation delay of 6 seconds was employed. Tree different 

experimental conditions were investigated: 1) total absence of inorganic phosphate in the sample, 

with [D11]Tris 25 mM, pH 7.4 NaCl 100 mM, 2) concentration of inorganic phosphate 10-fold per 

binding unit, 3) large excess of inorganic phosphate, with PBS 25 mM. To obtain the KD values, 

the obtained Langmuir isotherm was fitted to79  

𝑆𝑇𝐷 − 𝐴𝐹 ([𝐿]) =
𝛼ௌ்஽[𝐿]

𝐾஽ + [𝐿]
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3.4.2.5 ILOE 159 

ILOE experiments were performed for the ternary complex CDP/Man-1-P/D-cellobiose for two 

different acceptor-to-donor ratios (1:1 and 1:2, respectively) at 278 K in [D11]Tris 25 mM, pH 7.4 

NaCl 100 mM. An enzyme-to-acceptor ratio of 1:50 for a final concentration of 100 μM binding 

unit was used in both experiments. Phase-sensitive 1H-1H NOESY experiments with water 

suppression with gradients were carried out at 1.5 seconds mixing time with 128 increments in F1. 

3.4.3 Molecular Docking: 

All the reported model calculations were performed within the Schrödinger molecular modelling 

suite (MAESTRO).149 The crystal structure of CDP complexed to ᴅ-cellotetraose (PDB code 5NZ8)126  

was processed using the protein preparation wizard toll. Conformational sampling of 

α-ᴅ-glucose-1-phosphate (Glc-1-P) and ᴅ-cellobiose was performed by a conformational search 

(MacroModel) based on Monte Carlo Multiple Minimum method in order to enhance the samples 

conformations. In the case of Glc-1-P, the obtained poses (13 in total) were used to run docking SP 

(Glide) with a receptor grid of 10 Å inner box and 20 Å outer box, a 4-fold enhanced conformational 

sampling and OPLS3 as force field. In addition, the sampling of ring conformations was forbidden, 

and the calculation was run in the absence of inorganic phosphate inside the binding pocket. 

The obtained conformers were clustered by atomic RMSD (RMSD in place) and the most 

energetically favourable pose of the most populated cluster (which showed a good overlapping 

with the non-reducing ring of ᴅ-cellotetraose complexed with CDP) was selected for analysis and 

further docking calculations. On the other hand, for ᴅ-cellobiose a separate conformational search 

was performed for the α- and β-anomeric configuration. In both cases, the obtained poses were 

clustered (RMSD in place) and a representative of the most populated cluster was selected for 

further calculations. Flexible induced fit docking was performed with a 0.8 Å tolerance constrain 

on the interglycosidic-linkage position referenced to ᴅ-cellotetraose complexed with CDP. 

This constraint was introduced as previous attempts reported a distortion of the 

interglycosic-linkage conformation, with φ and ψ angles values not allowed in the 

β-(1-4)- Carbohydrate Ramachandran Plot (CARP) reported by GlycoMapsDB (Glycosciences.de).154 

The obtained poses were clustered (RMSD in place). For the α-anomeric configuration, the most 
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energetically favourable pose of the most populated cluster was saved, whereas in the case of the 

β-anomeric configuration we had to discard the first two most populated clusters as the first 

presented an inverse orientation of the ligand in the binding pocket and the second presented 

forbidden values of φ and ψ angles. Finally, the selected Glc-1-P (obtained from the first docking 

stage) was introduced in the CDP structure to dock a second ᴅ-cellobiose molecule, allowing us to 

obtain a ternary CDP/ᴅ-cellobiose/Glc-1-P complex. The selection of ᴅ-cellobiose as second docked 

substrate was led by its ability act as acceptor in the reverse phosphorolysis reaction 

(indeed, ᴅ-cellobiose is the natural disaccharide acceptor). In addition, the closer contact 

demonstrated for the β-anomer by STD NMR experiments, as well as the additional H-bonding 

reported from docking calculations, has driven us to select this configuration for our studies. 

Docking SP was run for all the obtained poses of ᴅ-cellobiose conformational search, a 4-fold 

enhanced conformational sampling and a grid box of 10 Å inner box and 23 Å outer box.
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4. Deoxyfluorinated cellodextrin derivatives: 
structural characterisation 

Parts of the finding from this Chapter are published as: 

de Andrade Peterson, Muñoz-García Juan C., Pergolizzi Giulia, Gabrielli Valeria, Nepogodiev Sergey, 

Iuga Dinu, Fábián László, Nigmatullin Rinat, Johns Marcus A., Harniman Robert, Eichhorn Stephen 

J., Angulo Jesús, Khimyak Yaroslav Z., Field Robert Robert A. - Chemoenzymatic synthesis of 

fluorinated cellodextrins identifies a new allomorph for cellulose-like materials. Chemistry - 

A European Journal, 2020. DOI: 10.002/chem.202003604 

4.1 Introduction 

4.1.1 Principal aims of the work 

Cellodextrin phosphorylase (CDP) has been demonstrated a powerful biological tool for the 

synthesis of both cellodextrin and cellodextrin-derivatives (Table 3.2 in Chapter 3 reports a full list 

of recognised donor-like and acceptor-like substrates). Enzymatically synthesised cellodextrins are 

known to have limited water solubility beyond DP9 and to self-assemble into particles resembling 

the antiparallel cellulose II crystalline packing.128 The expression and purification of CDP and the 

mechanistic details of the catalysed reaction have been already discussed in Chapter 3. 

Herein, have prepared and characterised a series of site selectively fluorinated cellodextrins of 

different degrees of fluorination and substitution patterns by chemoenzymatic synthesis: 

2-deoxy-2-fluoro cellodextrin (2F-EpC, 1), 3-deoxy-3-fluoro cellodextrin (3F-EpC, 2) and 

6-deoxy-6-fluoro cellodextrin (6F-EpC, 3) and the multifluorinated multiply 6-deoxy-6-fluoro 

cellodextrin (multi-6F-EpC, 4).   

2F-, 3F- and 6F-EpCs represent a series of single site selectively fluorinated cellodextrins, 

synthesised to assess the structural impact upon addition of one fluorine atom per chain. On the 

contrary, multi-6F-EpCs presents decoration of fluorine atoms along the whole cellodextrin chain, 

except for the reducing cellobiose-unit. Scope of multi-6F-EpCs was to probe the potential 

disruption of the hydrogen bond network of cellulose II. 
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Thanks to the scientific consortium established within the John Innes Centre, the University of East 

Anglia and the University of Bristol, we combined microscopy (TEM and AFM), 

Raman spectroscopy, PXRD and advanced NMR spectroscopy to obtain structural characterisation 

at different length scales (morphological, long-range and short-range structural information).  

The introduction of a single fluorine atom per cellodextrin (2F-EpC, 3F-EpC and 6F-EpC) determines 

minor changes on the material morphology and crystalline arrangement in comparison with 

unfunctionalized cellodextrin chains. On the contrary, multi-6-EpC chains showed unprecedent 

features for cellulose-like materials. In addition, we highlight the importance of combining solution 

and solid-state NMR approaches to achieve a full assignment of material characterised by different 

ordered and disordered domains.  

4.1.2 On the importance of fluorine functionalised cellulose 

4.1.2.1 Effect of fluorination to tailor material properties 

The introduction of a fluorine atom in a molecular structure has been proven to profoundly modify 

its chemical and physical properties. Fluorinated materials possess higher stability, attributed to 

the stronger C-C bond in fluoropolymers, which might achieve extremely high values such as 

112 kcal mol-1  in CF-CF species.160 In addition, C-F chemical bond is the strongest single bond 

known (ca. 450 kJ mol−1), and even though highly dipolar, it is marked by a relative 

non-polarizability (hardness).161 

The presence of fluorine increases the molecular hydrophobicity and allows tuning of 

hydrophilic-hydrophobic balance (HLB) of a material. Extensive fluorination determines the 

creation of the so-called “fluorous phase”, which does not mix with either polar or non-polar 

hydrogenated phases.162 As an example, perfluoroalkanes, perfluorodialkyl ethers, 

and perfluorotrialkyl amines presents limited miscibility with common organic solvents such as 

toluene, THF, and acetone.163 Finally, fluorinated compounds exhibit high CO2 solubility due to the 

favourable quadrupole-dipole interactions established among the CO2 quadrupolar moment 

deriving from its highly electronegative oxygen atoms and the polar fluorocarbons, 

which facilitates a close physical association (less than 4.3 Å between the centres of mass) between 

CO2 and fluorinated groups.164  
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In conclusion, fluorine-organic compounds present a variety of new functional properties such as 

enhanced hydrophobicity, high lipophobicity in per-fluorinated substances, high thermal and 

oxidative stability, chemical and biological inertness, high gas dissolving capacity, weak 

intermolecular interactions and low surface energy and surface tension.165 

Despite its high natural abundance, fluorine rarely occurs in natural organic molecules.166 

The reason of this scarcity of fluorometabolites in natural products derives from the low 

abundance and hence low bioavailability of fluoride ions in the oceans in comparison with chloride 

and bromide. In addition, fluoride presents the highest heat of hydration (ca. 120 kcal mol–1). 

Therefore, enzymes had to evolve a desolvation strategy to being able to perform nucleophilic 

catalysis with fluorine atoms. Furthermore, the high electronegativity of fluorine (in the Pauling 

scale, F = 4.0) goes against its oxidation and the generation of the fluoride ion (𝐹ି), limiting the 

evolution of fluorine biochemistry.167   

4.1.2.2 Fluorine-functionalised cellulose derivatives 

Fluorination has been used to control interfacial properties of cellulose, aiming to reduce its 

surface hydrophilicity and produce a superhydrophobic polymer. Indeed, cellulose fluorination is 

expected to increase water resistance, improve thermal and anti-oxidative stability, and enhance 

compatibility with synthetic polymers via low surface energy. To date, etherification and 

esterification of cellulose surface with fluorine derivatives have been reported.168-170 In addition, 

Kasuya et al. reported the regioselective substitution of the hydroxyl group in C6 and formation of 

the deoxy-fluorine cellulose derivative obtained by reaction of cellulose 2,3-dibenzoate and 

cellulose 2,3-diacetate with diethylaminosulphur trifluoride.171 

4.1.2.3 Biocatalysis of organo-fluorine compounds 

To promote selective fluorination and reduce costs of laborious chemical synthesis, many research 

groups are investigating biosynthetic pathways. Biocatalysis of organo-fluorine compounds can be 

performed i) by extending the scope of existing enzymes for the formation of C-F bond or ii) by 

expanding the biosynthetic pathways of different enzymes to accept fluorinated precursors.  

In the first instance, fluorinases (FLAs) are so far the only class of enzymes known to directly 

introduce fluorine into organic molecules (creation of a C-F bond). In 2002 O’Hagan et al.172 isolated 
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the first-ever natural FLA from Streptomyces cattleya, while from 2014 to 2016 four additional FLAs 

have been identified from Streptomyces sp. MA37, Nocardia brasiliensis, Actinoplanes sp.173 and 

Streptomyces xinghaiensis.174, 175  

In the second instance, a variety of enzymes have been proven to accept fluorine-functionalised 

substrates. Within the framework of this thesis, it is important to highlight the existence of kinases 

capable of recognising fluorinated monosaccharides and producing α-D-sugars-1-phosphates.176 

Notably, sugars-1-phosphate do not just have a pivotal role in sugars metabolism and utilisation, 

but they act as donors in the reverse phosphorolysis reaction catalysed by phosphorylases, 

central point of this dissertation. Several phosphorylases showed specificity towards various 

fluorinated donors and/or acceptors substrates. As examples, α-1,4-d-Glucan phosphorylases and 

α-1,4-Glucan:maltose-1-phosphate maltosyltransferase demonstrated to accept fluorinated 

derivatives as donor,22 while D-galactosyl-β1–3-N-acetyl-D-hexosamine phosphorylase accepted 

both fluorinated donor and acceptor derivatives. 177,178, 179    

4.1.2.4 Fluorine in NMR spectroscopy 

Fluorine is a promising sensitive NMR probe with high intrinsic sensitivity and 100% natural 

abundance of the NMR active isotope 19F. Indeed, application of fluorine in combination with NMR 

screening has been recognised as a powerful tool in the identification and optimisation phases of 

drug discovery projects. Methods based on protein-, substrate/cofactor-, and ligand-based 19F 

NMR screening have been developed for the identification of drugs binding site, measurements of 

the dissociation binding constant (KD) and binding assays in direct or competition mode. The great 

sensitivity of 19F to changes in chemical environment (i.e. protein binding or particle-particle 

interactions) derives from its great chemical shift dispersion which reduces signals overlap in 

chemical mixtures. This large dispersion originates mostly from the paramagnetic contribution of 

energetically low-lying p atomic orbitals.180  

It is important to note that, although the use of fluorinated organic derivatives had recently found 

great applicability in biological systems, its use in biomaterials is still mostly under explored. 
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4.1.3 Combining solution and solid-state NMR approaches for material 

characterization 

Macromolecular systems, either in solution or solid phase, present two kinds of molecular motion: 

i) local motions – in the sub nanometre length scale and the ps – ns timescale (corresponding to 

PHz to GHz range in frequency scale)181, and ii) larger scale motions – within the a length scale  

greater than nanometre (from GHz to Hz range). The larger scale motions are further divided into 

translational (diffusion, flow or advection)182 and rotational motions.  

In the case of polymers, such as cellulose or cellodextrin chains which are of interest for this thesis, 

mobility is determined by the physical state (solid form, colloidal dispersion or dissolved solution), 

the short and long-range (crystallinity) order, the intramolecular and intermolecular interactions 

(e.g. H-bond, lipophilic, electrostatic and steric interactions).183 Macromolecules might present 

domains of different mobility regimes;184 for instance, the core of tightly packed polymeric fiberes 

presents lower mobility in comparison with those parts in the solid/air or solid/liquid interface.92 

In addition, a crystalline and ordered organisation would generally be more rigid than an 

amorphous and disordered form. A schematic representation of commonly employed NMR 

parameters and their relationship with the scales of molecular motion is shown in Figure 4.1: 
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Figure 4.1: Correlation between different mobility regimes in a macromolecule and corresponding 

NMR parameters. We represent the principal features of solution and solid-state NMR 

spectroscopy which reports to different molecular mobility regimes, highlighting how different 

experiments can be used to obtain information on different timescales. 

4.1.3.1 Sources of broadening in NMR spectra 

In NMR, careful analysis of peaks broadening can provide valuable information on intermolecular 

interaction and structural disorder. Notably, in solution and solid-state NMR line widening is 

affected by different phenomena.  

Resonance broadening in solution state NMR 

In solution state NMR, T2 relaxation contribution (i.e. the rate of disappearance of net transverse 

magnetisation) is predominant, and the relationship between T2 relaxation and molecular tumbling 

is well established (Chapter 2, T1 and T2 curves vs molecular tumbling rate, Figure 2.3)  For colloidal 

dispersion, two dynamically different regions can be distinguished; a surface on the colloid-solvent 

interface, and a core with established both particles-particles intra- and inter-molecular 
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interactions. Different dynamics regimes have already been reported for polymers constituted 

both from proteins and carbohydrates.92, 185 

Historically, peaks broadening has been the first revelation of faster transverse relaxation time. 

Measurements of NMR relaxation T1 and T2 time constants have been used to assess the mobility 

of the polymeric chain components and hence differentiate crystalline/ordered (more rigid) from 

non-crystalline/disordered (more mobile) regions. In many cases the difference in mobility of these 

two regions determines whether or not the signal is observed in the NMR spectra, the more flexible 

being NMR visible, the more rigid being NMR invisible (hidden in the spectra baseline). Examples 

of NMR spectra obtained from the residual mobility of a small subunit covalently linked to a larger 

object are microtubulin-associated proteins in intact microtubules,185 or solvent-exposed waxy rice 

starch granules.92  

On the contrary, the dissolution of polymeric and particulate networks (e.g. dissolution of cellulose 

at pH 14) is due to the disruption of the intermolecular interactions that hold together the packing 

of polymer chains. This disruption determines a general decrease of the correlation time of each 

polymeric chain and, thus, narrower peaks. Material in the gel state would be expected to be more 

mobile than the solid state, but more restricted than in solution. 

Resonance broadening in solid-state NMR 

In solid-state NMR the strong dipolar coupling and chemical shift anisotropy (CSA) contribute to 

line widening in molecules resonances as they are not averaged out by the free isotropic tumbling. 

Combination of high-power proton decoupling and magic angle sample spinning (MAS) yields 

solid-state 13C spectra with resonances appearing at their isotropic chemical shift positions. 

Organic solids can be distinguished between crystalline/ordered/rigid systems and 

noncrystalline/disordered/mobile systems (i.e. glassy polymers below the glass transition 

temperature Tg) or a mixture of them. In polymers presenting crystalline and noncrystalline 

domains, crystalline regions will give narrow resonances, while noncrystalline regions will give 

broader resonances. In the latter, the variability in conformations and molecular packing 

contributes to the chemical shift dispersion by: (1) modification of the bond angles; (2) variation 

of short-range interactions; (3) modification of the hydrogen bond connections and (4) distortion 

of the orientation source of CSA. For those systems, the relaxation broadening mechanism is 
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usually not dominant, although not neglectable. In specific, the higher molecular mobility in 

correlation with the rotor spinning causes a faster loss in transverse magnetisation coherence.186  

Generally, solid-state NMR experiments often rely on Cross-Polarization (CP) - a phenomenon 

explained in the Chapter 2, section 2.2.8 - which favour the detection of rigid, strongly dipolar 

coupled components rather than mobile. In this case, system mobility could contribute to the 

broadening of  13C resonances due to motional modulation of the C-H coupling.187 

Importantly, in solid-state NMR carbons in different environments (i.e. surface or interior and/or 

ordered and disordered regions or any inter- or intramolecular inequivalences) might present 

chemical shift differences.188  

Given the above we suggest that, in the studies of heterogeneous systems in which domains with 

different order and mobility coexist, a full assignment of the NMR spectra can be achieved only by 

a combination of specific solution and solid-state experiments targeting different domains. 

Within the combination of the aforementioned approaches, we were able to assign resonances 

belonging to surface (mobile) and core (rigid) regions, visible only in solution and solid-state NMR 

respectively (see the experimental section for further details). 

4.1.4 Determination of structure of cellulose by NMR spectroscopy 

As previously referred in Chapter 1, cellulose can be assembled in different crystal forms (I, II, III 

and IV).36 In this thesis chapter, previous structural studies on cellulose allomorphs are used as 

reference for the novel deoxyfluorinated cellodextrin synthesised by us.  

Characterisation of cellulose structure has been performed via solid-state NMR spectroscopy since 

the early 1980s, with VanderHart and Gast pioneering the work.189, 190 The assignment of the peaks 

in the 13C spectra started with a direct comparison of the peaks obtained for glucose, cellobiose 

and short cello-oligosaccharides in solution state NMR.189 Herein we report comparison between 
1H-13C CP/MAS NMR spectra of cellulose type I (Iα and Iβ) and II (Figure 4.2) and a comparison of 
13C chemical shifts for cellulose Iα, Iβ, II, IIIi IIIii, IVi and IVii (Table 4.1). The 1H-13C CP/MAS spectra 

reported in the literature for the allomorphs IIIi, IIIii and IVi , IVii are reported in the corresponding 

subchapters. 
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Figure 4.2:  1H-13C CP/MAS NMR spectra of a) cotton linters (cellulose type Iα and Iβ mixture); 

b) cellulose allomorph Iα, from Acetobacter; c) cellulose allomorph Iβ, from low-DP cellulose I; 

d) cellulose type II allomorph, from a low-DP cellulose II sample. Source: The figure was adapted 

from Atalla and VanderHart, 1984.188 

Table 4.1: 13C chemical shifts reported in the literature for all the knowns cellulose allomorphs. 
b Broad amorphous contribution; c values taken from deconvolution data 

Cellulose allomorph Chemical shift (ppm) 
 

C1 C4 C6 

cellulose Iα 
(Glaucocystis)44 105 89.7, 88.8 65.3 

cellulose Iβ (tunicin)44 105.7, 103.9 88.7, 88.0b 65.5, 64.9b 

cellulose II43 107.0, 104.7 88.6, 87.4 62.9, 62.2 

cellulose IIII
44 104.8 87.8 62.3 

cellulose IIIII
c , 43 

106.5, 105.7, 
106.2b 88.5, 87.3, 85.2b 62.5, 62.1, 61.5b 

cellulose IVI
39, 191 105.7, 103.9 88.7, 88.0, 84.8b 65.3, 64.0b 

cellulose IVII
191 105.5 83.6, 84.4 63.7 
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4.1.4.1 Cellulose type I (Iα and Iβ) 

The 1H-13C CP/MAS solid-state spectra of microcrystalline cellulose (composite of Iα and Iβ 

allomorphs in different quantities, depending on cellulose source)192 presented isolated peaks for 

C1, C4 and C6, while peak overlapping made the unambiguous assignment of C2, C3 and C5 sites 

impossible. Interestingly, C4 and C6 showed two different components, a sharp one and a broader 

one. The assignment of those two components has not been trivial, but finally the broad 

component was assigned to the surface and amorphous regions, while the narrower one to the 

internal core and crystalline regions of the cellulose elementary fibril. The broadening effect has 

been attributed to differences in mobility,193, 194 to higher disorder in packing187, 189, 195 and to 

different conformational arrangements.196 Importantly, it was noted that glucose units on the 

surface of the cellulose elementary fibril presents looser packing and lower H-bonding constrain in 

comparison with the anhydroglucose in the centre.187 

The multiplicity of C1 carbon peak and the narrow peaks of C4 and C6 sites depends on the 

coexistence of Iα and Iβ allomorphs within the cellulose fibril unit cell.188, 197 Microcrystalline 

celluloses from different sources exhibit different multiplicities, hence different ratio between the 

Iα and Iβ allomorph components.188 The Iα crystalline form shows singlets for C1 and C6, and a 

doublet for C4, hence indicating the presence of one (C1 and C6) and two (C4) chemical 

environments per unit cell. On the other hand, the Iβ crystalline form has doublets at C1, C4 and 

C6, ascribed to different conformations of the inter-glycosidic linkages and of the hydroxymethyl 

group in non-equivalent chains (see Figure 4.2 to compare carbons multiplicities).194 

4.1.4.2 Cellulose type II 

Differences in peaks splitting can be highlighted for cellulose type II, in which peaks of C1, C4 and 

C6 appear as doublets with 1:1 intensity. This was ascribed to the inequivalent lattice position of 

the antiparallel chains of cellulose type II198 (in contrast with the parallel polarity of cellulose type 

I) and to conformational differences among the two chains (the center chain is more puckered than 

the origin chain and presents a different torsion of the glycosidic linkage).41 In addition, the peaks 

of C4 and C6 present different chemical shifts for the two allomorphs (reported in Table 4.1).188, 191 

For C6, this is  attributed to different conformations arounds of the hydroxymethyl group, 
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with cellulose type I and cellulose type II adopting a  trans-gauche (tg) and gauche-trans (gt) 

conformation, respectively.196  

Hence, these differences in multiplicity and chemical shifts can be used as markers to distinguish 

cellulose I and II in 13C solid-state NMR spectra (Figure 4.2 and Table 4.1). 

4.1.4.3 Cellulose type III (IIIi and IIIii) 

Cellulose type IIIi and IIIii can be obtained by treatment of cellulose I and II in liquid ammonia or 

organic amines, respectively.191 Cellulose IIIi derived from both cellulose Iα and Iβ allomorphs 

presents identical chemical shift patterns. Cellulose IIIi 1H-13C CP/MAS spectrum shows six sharp 

peaks (singlets), corresponding to the six carbon atoms of the glucosyl ring (Figure 4.3, a; 

the chemical shifts of C1, C4 and C6 are also reported in Table 4.1). Cellulose IIIi appears to have 

some features of cellulose II, i.e. matching chemical shifts for C1 and C6 with cellulose type II C1 

and C6 upfield peak, and C4 chemical shift correspond exactly to the mean position of cellulose 

type II C4 doublet.44 In addition, a change in the chemical shift of the hydroxymethyl carbon was 

reported (see Table 4.1)191 and associated to a conformational change from a trans-gauche 

arrangement in cellulose I (64.9 – 65.3 ppm) to gauche-trans in IIIi (62.3 ppm) allomorph.36 

Cellulose IIIii differs from IIIi in the value of C1, C4 and C6 chemical shift and multiplicity (see Figure 

4.3, b and Table 4.1, C1, C4 and C6 appear as singlets for cellulose IIIi, triplets for cellulose IIIii) as 

well as in C2, C3 and C4 patterns.191 Cellulose IIIii presents a higher chemical shift of the C1 

resonance and a similar peak C6 resonance pattern and chemical shift (ascribed to the gt 

conformation of the hydroxymethyl groups). 

Cellulose IIIii 1H-13C CP/MAS spectrum complexity reveal the presence of two distinct types of 

cellulose (one type similar to cellulose IIIi, with each carbon atom giving rise to a singlet, 

the another type giving rise to a series of doublets) and three distinct molecular conformations. 

In addition, subtraction of cellulose IIIi to cellulose IIIii spectra and peak deconvolution supported 

the doublet feature for C1, C4 and C6 sites in cellulose IIIii.43 
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Figure 4.3: 1H-13C CP/MAS NMR spectra of a) cellulose IIIi obtained from oriented film of 

microcrystalline cellulose in supercritical ammonia for 1h at  140 °C and b) cellulose IIIii obtained 

from mercerized ramie treated with ammonia for 1h at 180 °C (solid line) and cellulose IIII (dashed 

line). Source: The figure was adapted from a) Wada et al., 200144 and b) Wada et al., 2009.43 

4.1.4.4 Cellulose type IV (IVi and IVii) 

Cellulose IV, also called “high-temperature cellulose”, is prepared from cellulose II or III by 

treatment in glycerol at 260 °C, while cellulose I cannot be transformed directly into cellulose IV.39, 

199 The allomorph cellulose IVi is exclusively formed from cellulose IIIi treatment, while the 

allomorph cellulose IVii is obtained from both cellulose II and IIIii as source material. Figure 4.4 

presents the 1H-13C CP/MAS NMR spectra recorded for cellulose IVi and IVii.39, 191 

 

Figure 4.4: a) cellulose IVi obtained by treatment of Cladophora cellulose first with super-critical 

ammonia and heating at 140° C for 1h (to obtain cellulose type IIIi) and then with glycerol at 260° 

C for 30 minutes; N.C. = Non Crystalline b) cellulose IVii prepared from the cellulose II sample by 

heating in water at 190 °C for 2 h. Source: a) Wada et al., 200439 and b) Isogai et al., 1989.191 
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The spectra of cellulose IVi (Figure 4.4, a) presents similarities with cellulose Iβ spectra in carbons 

C1, C4 and C6 chemical shifts and multiplicities (Table 4.1), as well as in the pattern of C2,3,4. 

Wada et al.,39 recently suggested that cellulose IVi is not a distinct polymorph, but a finely-divided 

cellulose Iβ with higher lateral disorder introduced during the heat treatment. Furthermore, 

Newman et al.,200 reported a good fit in simulating cellulose IVi diffractogram data based on 

cellulose Iβ unit cell. 

On the contrary, the existence of cellulose IVii as a distinct polymorph is supported by several 

characteristic features in the 1H-13C CP/MAS NMR spectrum (Figure 4.4, b). C4 appears as a sharp 

doublet resonance at 83.6 - 84.4 ppm assigned to the crystalline component, while almost the 

same position was assigned to the C4 surface/amorphous component in cellulose I allomorphs 

(suggesting  a similar molecular conformation of the crystal-interior chains in cellulose IVii and the 

crystal-surface chains in cellulose I).200  C1 and C6 appear as single resonances at 105.5 and 

63.7 ppm, respectively. C6 resonance appears in the chemical shift range of the gt conformation 

for the hydroxymethyl group.196  C2,3,5 resonances display maxima at 73.8, 74.8 and 77.0 ppm, 

respectively, and show a triplet pattern similar to cellulose type II allomorph.191 

4.2 Experimental section 

4.2.1 Background on the synthesis of cellodextrin and cellodextrin fluorinated 

derivatives 

4.2.1.1 Enzymatic synthesis of cellodextrin (EpC) 

The synthesis of short enzymatically produced cellodextrin chains (EpC, 5) was performed using 

glucose-1-phosphate (6) as donor and D-cellobiose (7) as acceptor. The complete characterisation 

of EpC (5) (chemical structure reported in Figure 4.5, a) by PXRD, solid-state 1H-13C CP/MAS NMR, 

Maldi-ToF and TEM methods (Figure 4.5, b, c, d and e) was carried out and used as reference for 

the deoxy-fluorinated cellodextrin chains described below. Solid-state NMR 1H-13C CP/MAS and 

the PXRD confirm the organisation the chain into cellulose type II allomorph.128 NMR spectrum of 

EpC shows multiplicity in C1 and C4, which is consistent with the anti-parallel chain orientation of 

cellodextrins, determined by the relative inter-chain polarity of the reducing and nonreducing 
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rings.201 In addition, the PXRD pattern is in agreement with previously described cellulose type II.128 

The Maldi-Tof confirmed polydispersity of the synthesised chains within a DP between 6 and 11 

anhydroglucose units.128 TEM showed a platelet-like (sheets) shapes for the aggregated EpC chains. 

 

Figure 4.5: Enzymatically produced cellodextrin (EpC, 5) a) chemical structure; b) PXRD patterns 

(Cu λ 1.54 Å) ; c) 1H-13C CP/MAS NMR spectra of EpC powder recorded using a 400 MHz 

spectrometer (12 kHz spinning rate, contact time of 1 ms and recycling delay of 5 s); d) MALDI-ToF 

(matrix assisted laser desorption/ionization−Ɵme-of-flight mass spectrometry (MALDI-ToF MS) 

and e) TEM image of EpC produced from G1P 200 mM, Clb 25 mM in HEPES buffer 500 mM at pH 7 

and T 37 °C.  

4.2.1.2 Enzymatic synthesis of fluorinated cellulose-like derivatives: 

Substitution of the acceptor substrate D-cellobiose (7) with the deoxy-fluoro-derivatives 

2-deoxy-2-fluoro-cellobiose (8), 3-deoxy-3-fluoro-cellobiose (9) and 6-deoxy-6-fluoro cellobiose 

(10) led to the formation of cellodextrin chains containing a fluorine atom at the reducing ring in 

position 2, 3 and 6, respectively. The structures of the acceptor molecules and the 

2-deoxy-2-fluoro-cellodextrin (1), 3-deoxy-3-fluoro-cellodextrin (2) and 

6-deoxy-6-fluoro cellodextrin (3) are reported in Figure 4.6, together with the reaction scheme. 

Description of the reaction conditions utilised for the enzymatic synthesis of the monofluorinated 

derivatives 8, 9 and 10 and the subsequent CDP catalysed polymerization reaction using 
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α-D-glucose-1-phosphate (6) is reported in the material and methods (subsection 4.4.2.1 and 

4.4.2.2). 

 

Figure 4.6: (Left) Schematic representation of the reverse phosphorolysis reaction carried out by 

CDP in the presence of 2-, 3- or 6-fluoro-substituted acceptor molecules (8, 9 and 10), and (Right) 

chemical structure of the single 2-, 3- and 6-fluorinated cellodextrin product 1, 2 and 3. 

The synthesis of the compounds 1, 2, 3, 8, 9 and 10 was performed by Peterson De Andrade 

(John Innes Centre). 

The substitution of the CDP natural donor α-D-glucose-1-phosphate (6) with its derivative 

6-deoxy-6-fluoro-glucose-1-phosphate (11) led to the production of cellodextrin chains with 

fluorine atoms regio-selectively introduced in position 6 all along the chain 

(multiply 6-fluorinated cellodextrin or multi-6F-EpC, 4), with the exception of the cellobiose moiety 

at the reducing terminal (from the acceptor; Figure 4.7). The reaction conditions are reported in 

the material and methods subsection 4.4.2.3 and 4.4.2.4. 

 

Figure 4.7: (Left) Schematic representation of the reverse phosphorolysis reaction carried out by 

CDP in the presence of 6-deoxy-6-fluoro glucose-1-phosphate (donor molecule, 11) and (Right) 

chemical structure of the obtained product multiply 6-fluorinated cellodextrin (4). The synthesis of 

the compound 11 and 4 was carried out by Peterson De Andrade (John Innes Centre). 
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4.2.2 Deoxyfluorinated cellodextrin derivative multi-scale characterisation 

The complete characterisation of the novel materials was achieved throughout the joint effort of 

a scientific consortium established between the University of East Anglia, the John Innes Centre 

and the University of Bristol. A combination of Transmission Electron Microscopy (TEM), 

Atomic Force Microscopy (AFM), Raman spectroscopy, Powder X-ray diffraction and advanced 

Nuclear Magnetic Resonance techniques has been employed for the thorough structural 

characterisation of compounds 1, 2, 3 and 4. In the following sections the discussion will focus on 

X-ray and NMR characterisations, as my main contribution to this work. The conclusions derived 

from TEM, AFM and Raman spectroscopy are important to be taken into account for the complete 

structural characterisation of the materials and they will be briefly discussed in the following 

session. 

4.2.2.1 Morphological characterisation 

TEM images (Appendix, Figure A.19) show that the introduction of a single fluorine in the reducing 

end does not modify the sheet-like morphology previously reported for both enzymatically 

synthesised unfunctionalized128, 133 and functionalised (such as acrylated cellulose142 and cellulose 

conjugated with oligo(ethylene glycol)139) cello-oligosaccharides. On the other hand, multi-6F-EpC 

(4) formed shorter platelets (< 100 nm length). AFM imaging (Appendix, Figure A.20) confirmed 

the highlighted differences showing the formation of few long platelets in multi-6F-EpC (4) but still 

in a smaller fraction in comparison with EpC (5).  

Raman spectra (Appendix, Figure A.21) did not show any significant changes between EpC (5), 

2F-EpC (1), 3F-EpC (2), and 6F-EpC (3), but new bands corresponding to CH2F groups and a shift of 

the band associated with the glycosidic-linkage were observed for multi-6F-EpC (4). The latter 

indicates that the crystalline arrangement of multi-6F-EpC (4) does not correspond to either 

cellulose type I or II. In this regard, quantum mechanics calculations for fluorinated cellobiose 

showed that the substitution of all hydroxyl groups by fluorine atoms does not affect either the 

ring puckering of glucose (4C1) or the conformation of the glycosidic bond.202 Hence, the shift in the 

Raman spectra was attributed to differences in packing of the oligosaccharide chains, rather than 

to conformational changes. 
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4.2.2.2 Long-range structural characterisation 

X-ray powder diffraction (PXRD) is a rapid and effective analytical technique for the 

characterisation of the long-range structural order of materials (see Chapter 2, section 2.3 for 

further details). Importantly, each crystalline material (different crystallites or even allomorph of 

the same crystallite) presents a characteristic X-ray diffraction patterns, which works as fingerprint 

for the specific crystal organisation. 

2F-EpC (1), 3F-EpC (2) and 6F-EpC (3) show diffraction patterns very similar to that of EpC (5), 

indicating that the single fluorinated cellodextrins assemble into cellulose type II crystalline 

organisation. This allomorph is characterised by three intense and sharp diffraction peaks at 2θ of 

12.24°, 20.02° and 22.08° (d-spacings of 0.74, 0.44 and 0.40 nm, respectively), which represent the 

(11ത0), (110) and (020) planes.128 On the contrary, multi-6F-EpC (4) produced a very different 

diffraction patter, with two well defined peaks at 2θ equal to 15.6° and 22.5° (d-spacings of 0.57 

and 0.39 nm, respectively),  and four different broad components at 2θ of 21.6°, 25°, 30.2° and 36° 

(d-spacings of 0.41, 0.36, 0.30 and 0.25 nm, respectively). The collected diffraction patterns are 

shown in Figure 4.8, a.  Interestingly, the comparison with the PXRD patterns of all cellulose 

allomorphs reported so far (Iα, Iβ, II, IIIi and IIIii) demonstrated that multi-6F-EpC (4) ensemble into 

a crystalline organisation that is unprecedented for a cellulose-like material (Figure 4.8, b and 

Table 4.2). 
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Figure 4.8: a) Experimental PXRD patterns for EpC (5, black), 2F-EpC (1, red), 3F-EpC (2, green), 

6F-EpC (3, orange) and multi-6F-EpC (4, blue). All the samples were analysed in powder form; 

b) Predicted diffraction patterns for cellulose types Iα (black)40, Iβ (red)38, II (green)41, IIII (purple)42 

and IIIII (blue)43 from previously published synchrotron data. The patterns were generated using 

Mercury with FWHM set to 0.5. The position of the experimental 2θ values for multi-6F-EpC (4) are 

shown as blue dashed lines.  

Table 4.2: Predicted 2θ and d-spacing values of cellulose Iα, Iβ, II, IIII and IIIII. Peak indices refer to 

cellulose II PXRD pattern (Figure 4.9, a). 

 
PEAK 1 (11ത0) PEAK 2 (110) PEAK 3 (020) 

 
2Θ d (nm) 2Θ d (nm) 2Θ d (nm) 

Iα 14.56 0.610 16.86 0.530 22.74 0.390 

Iβ 14.86 0.600 16.66 0.530 22.98 0.390 

II 12.24 0.722 20.02 0.443 22.08 0.402 

IIII 11.66 0.758 17.18 0.516 20.88 0.425 

IIIII 12.1 0.731 17.1 0.518 20.86 0.425 
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Table 4.3: Experimental 2θ and d-spacing values of multi-6F-EpC (4).  

 PEAK 1 PEAK 2 PEAK 3 PEAK 4 PEAK 5 PEAK 6 

 2Θ d 

(nm) 

2Θ d 

(nm) 

2Θ d 

(nm) 

2Θ d 

(nm) 

2Θ d 

(nm) 

2Θ d 

(nm) 

4 15.6 0.570 21.6 0.410 22.5 0.390 25.0 0.360 30.2 0.300 36.0 0.250 

4.2.2.3 Molecular characterisation by solution and solid-state NMR 

The 1H-13C CP/MAS NMR experiment is the most widely used solid-state NMR method to 

characterise solid or solid-like samples, and it can be used as molecular fingerprint of the 

material.203, 204  

Figure 4.9, a shows the 1H-13C CP/MAS NMR spectra of the monofluorinated EpCs (1, 2, and 3) in 

comparison with non-modified EpC (5). The collected spectra show the characteristic cellulose type 

II fingerprint. Interestingly, the spectra of monofunctionalised EpCs show a broad peak at ca. 

61 ppm that corresponds to the surface/disordered population of C6 site. The C6 chemical 

environment has been previously reported for bacterial cellulose205, plant cell walls,206 

nanocrystalline cellulose203 and TEMPO-oxidised cellulose nanofibrils.207  

In contrast, the 1H-13C CP/MAS NMR spectrum of multi-6F-EpC (4) (Figure 4.9, b) presented a totally 

different molecular fingerprint, indicating a different chain packing in comparison to EpC (5). 

The different multiplicity of C1 (doublet in EpC and singlet in multi-6F-EpC) indicates the presence 

of two and one non-equivalent anomeric carbons per unit cell in EpC and multi-6F-EpC, 

respectively. As previously described, the multiplicity in C1 of EpC reflects the anti-parallel 

orientation of the cellodextrin chains.201  
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Figure 4.9: a) 1H-13C CP/MAS NMR spectra of EpC (black) in the powder form acquired using MAS 

rate of 10 kHz and the single fluorinated 2F-EpC, 3F-EpC, 6F-EpC 10 wt% dispersions acquired using 

MAS rate of 6 kHz and 5 C; b) Comparison of the 1H-13C CP (blue) and 19F{ H 
ଵ }-13C CP (purple) 

spectra of powdered multi-6F-EpC (4, 15 kHz MAS rate and room temperature) and 13C DEPT-135 

(with 1H decoupling) spectrum (orange) of multi-6F-EpC (4) 0.5 wt% dispersion in D2O. The * 

symbole indicates the resonances of the cellobiose reducing terminal, i and s indicate internal and 

surface resonances, respectively. 

Notably, the 1H-13C CP/MAS spectrum of multi-6F-EpC does not correspond to any of the cellulose 
1H-13C CP/MAS NMR chemical shifts reported so far in the literature, as showed in Table 4.1 and 

Table 4.3. Only some similarities were observed between multi-6F-EpC and cellulose IIII 

(comparable chemical shifts and multiplicity for C1 and C6); however, the large differences 

between their diffraction patterns (Figure 4.8, Table 4.2) clearly indicates a different crystalline 

organisation for multi-6F-EpC. 

The full assignment of multi-6F-EpC (4) could be achieved only by combining solution and 

solid-state NMR experiments (Figure 4.10, b and Figure 4.11), approach already discussed in the 

introduction of this chapter (subsection 4.1.3).  
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Table 4.3: 13C chemical shifts of peaks of multi-6F-EpC (4) acquired in solid-state (top) and 
solution state (bottom) NMR. 

Chemical shifts (ppm) 

Solid-state NMR 

C1 sC6 iC6c sC2,3,4,5 iC2,3,4,5 C6* 

104.8 84.2, 83.5 81.9 75.2 73.1 62.6 

Solution state NMR 

sC1 sC6 sC4* sC2,3,4,5 sC6*  

104.8 84.3, 83.3 79.9 76.0, 75.3 62.1  

{ H 
ଵ − F 

ଵଽ }-decoupled 19F-13C CP/MAS spectra (Figure 4.9, b) enabled the assignment of C6, C5 and 

C4 peaks of the fluorinated residues in multi-6F-EpC (4). The highest intensity peak at lower field 

(83.8 ppm) was assigned to C6 as the closest carbon atom to fluorine (1.3 Å), and hence more 

efficient cross-polarisation. The peak at 73.1 ppm was assigned to C5 and C4 (second shortest 

distance from fluorine), while C3 and C2 were too far away from fluorine to cross-polarise 

effectively. On the other hand, the solution state 13C DEPT-135 spectra allowed us to assign the 

methylene peaks corresponding to 6-monofluorinated (C6) and non-fluorinated (C6*) residues 

(in antiphase with respect to the CH carbons), and confirmed the assignment of C6 in the 
1H-13C CP/MAS NMR spectrum (Figure 4.9, b).  

Further, 2D solution NMR spectroscopy was used to complete the characterisation of both EpC (5) 

and multi-6F-EpC (4) (Figure 4.10). COSY and HSQC experiments of EpC (Figure 4.10, a) enabled the 

detailed assignment of the α and β anomeric spin systems and distinguish between internal and 

reducing end peaks for H1, H2 and H6, H6’. In addition, the non-reducing ring chemical shifts were 

assigned (nr labels, Figure 4.10, a). With regard to multi-6F-EpC (4) the spectra presented a higher 

level of complexity due to the presence of a larger number of possible chemical environments 

(Figure 4.10, b). Nonetheless, it was still possible to differentiate between the cellobiose unit at 

the reducing end (labelled with a star - *), the fluorinated residues and the non-reducing terminal 

environment (labelled as nr).  
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Figure 4.10: 1H-1H COSY experiment (left) and 1H-13C HSQC spectra (right) for a 2 wt% dispersion of 

EpC (a) and a 0.5 wt% dispersion of multi-6F-EpC (b) in D2O (99.9%, Sigma-Aldrich®). 

All experiments were run at room temperature, except for the 1H-1H COSY experiment of 

multi-6F-EpC, which was run at 278 K. The F1 dimension of the HSQC spectra shows 13C DEPT-135 

projection of the EpC (a, right) and multi-6F-EpC (b, right) dispersions. The spectra are reported as 

contour plots. 

Importantly, the presence of molecular mobility (e.g. particle surface domains) is essential to 

obtain visible solution NMR spectra, while highly immobile peaks (e.g. particle interior domains) 
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are not observed due to large peak broadening. Hence, the combination of 13C-detected solution 

and solid-state NMR experiments allow for the differentiation of chemical environments from 

surface and interior domains in gels. In this regard, it should be noted that the 1H-13C CP/MAS peaks 

of multi-6F-EpC (4) at 81.9 and 73.1 ppm (Figure 4.9, b) are not observed in either the 13C DEPT-135 

or the 1H-13C HSQC solution NMR experiments (Figure 4.9, b and Figure 4.10, b). Thus, these 

CP-observed peaks were assigned to the interior (immobile) domains (iC6 and iC2,3,5, Figure 4.9, b) 

whereas the C6 and C2,3,4,5 chemical environments observed only in the 13C DEPT-135 solution 

NMR experiments were assigned to surface (mobile) domains (sC6 and sC2,3,4,5, respectively, 

Figure 4.9, b). 

The assignment of sC6 and iC6 was further validated by water polarisation transfer CP (WPT-CP) 

solid-state NMR experiments (Figure 4.11).100 In these experiments, polarization transfer is 

mediated by three mechanisms: i) chemical exchange – uniformly active in our samples due to the 

presence of OH groups with labile protons, ii) nuclear Overhauser effect (NOE) – expected to be 

less statistically relevant at moderate MAS frequency of 6 kHz, and iii) spin diffusion mediated by 

coherent 1H-1H dipolar coupling, which depends on both internuclear distances and mobilities. 

Therefore, in our experiments the water−polysaccharide polarizaƟon transfer is driven by chemical 

exchange followed by spin diffusion and the build-up curves of the recorded peaks intensities 

depends on i) the number of interacting water molecules at a particular site and ii) the distance 

and relative mobility of bound water at the particle surface. As peaks corresponding to surface 

domains are more water-exposed, it is expected for the a faster WPT growth at short mixing times 

in comparison with interior domains. This has been recently observed in a study conducted by our 

research group in bacterial cellulose (BC), where we have been able to characterize to which extent 

individual Plant Cell Wall (PCW) polysaccharides affect the hydration of BC.205  

At sufficiently long mixing times, WPT become homogeneous for both surface and interior domains 

due to the efficient spin diffusion. Figure 4.11 shows the WPT factors for a 25 wt% dispersion of 

multi-6F-EpC (4) at 16 ms and 64 ms mixing time, point at which homogenisation of surface-interior 

water polarisation transfer is achieved. At short mixing time, a much higher WPT factor was 

observed for the sC6 (83.8 ppm) compared to the iC6 peak (81.8 ppm), confirming the assignment 

of sC6 and iC6 peaks to surface and interior domains, respectively. Also, sC2,3,4,5 showed higher 
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WPT compared to iC2,3,4,5, in agreement with solution NMR data where the sC2,3,4,5 and 

iC2,3,4,5 peaks are visible and invisible, respectively. 

 

Figure 4.11: a) Bar graph showing the water polarisation transfer (WPT) factors determined for 

each carbon peak of multi-6F-EpC 25 wt% hydrogel using a mixing time of 16 ms and 64 ms. At 16 

ms mixing time, the higher WPT factor observed for sC6 and sC2,3,4,5 compared to iC6 and 

iC2,3,4,5 demonstrates the increased solvation of the formers, hence being assigned to surface 

domains. At 64 ms mixing time, the WPT is homogenised by the spin diffusion process. 

To characterise the internal dynamics of these materials, 1H-13C CP/MAS NMR kinetics experiments 

were carried out for both EpC (5) and multi-6F-EpC (4) (Figure 4.12). The CP build-up curves were 

simulated using the equation already presented in Chapter 2, section 2.1.2.10, Equation 2.48 

(simplified I-I*-S CP kinetics model), as reported by Kolodziejski et al.99 The obtained parameter 

T1ρ
I , Tdf, λ and T2 represent, respectively, the I spin lattice relaxation time in the rotating frame, 

the 1H spin-diffusion time constant describing the strength of the homonuclear dipolar 

interactions, the homogeneity of the I spin pool (hence, the number n of I spins attached to the 

S spin under study), and is the spin-spin relaxation time (Table 4.4 and 4.5). The 1H-13C CP kinetics 

analysis showed a very similar behaviour for both EpC (5) and multi-6F-EpC (4), indicating a 

similar degree of rigidity at the molecular level for both materials 
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Figure 4.12: 1H-13C CP/MAS kinetics curves of EpC (a) and multi-6F-EpC (b) acquired with a 12 kHz 

MAS rate, a 13C frequency of 100.6 MHz at 298 K. The curves are fitted to the I-I-*-S CP kinetics 

model. 

Table 4.4: Parameters obtained from the fit of the 1H-13C CP/MAS build-up curves of EpC 

(Figure 4.13, a) to Equation 2.48. The error indicates 95% confidence. 

 C1 C4 C235 C6 

λ 0.4278 ± 0.07 0.4228 ± 0.07 0.3769 ± 0.09 0.272 ± 0.12 

T1ρ (ms) > 100  > 100  > 100  > 100  

T2 (µs) 23.07 ±4.83 23.57 ±4.77  23.72 ±5.39  18.17 ±3.94  

Tdf (µs) 456 ±162.6 419.6 ±150.4  408.3 ±200.6  223.7 ±195.8  

R2 0.987  0.987  0.981  0.976  
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Table 4.5: Parameters obtained from the fit of the 1H-13C CP/MAS build-up curve of multi-6F-EpC 

(Figure 4.13, b) to Equation 2.48. The error indicates 95% confidence. 

 C1 sC6 iC6 C2345 

λ 0.4259 ± 0.07 0.3132 ± 0.1 0.3621 ± 0.07 0.3746 ± 0.07 

T1ρ (ms) > 100  > 100  > 100  > 100  

T2 (µs) 24.05 ± 5.14 25.94 ± 5.54 23.75 ± 4.44 24.36 ± 5.10 

Tdf (µs) 810.4 ± 306.4 308.5 ± 225.5 702.8 ± 308.2 819.3 ± 374 

R2 0.9887  0.9876  0.9859  0.9959  

 

In addition, direct polarisation 19F NMR experiments were carried out for 2F-EpC (1), 3F-EpC (2), 

6F-EpC (3) and multi-6F-EpC (4) (Figure 4.13, a). The monofluorinated cellodextrins presented a 

broad and asymmetric peak centred at -190 (2F-EpC, 1), -197 (3F-EpC, 2) and -232 ppm (6F-EpC, 3), 

respectively, while multi-6F-EpC (4) showed a sharper Lorentzian-shaped peak centred 

at -230 ppm. The line widths at half height of each derivative are reported in Table 4.6. 

The recorded chemical shifts are in good agreement with reported solution state NMR 19F data 

(Figure 4.14).  

 

Figure 4.13: a) 19F MAS NMR spectra of multi-6F-EpC (4, blue) and 2F- (1, red), 3F- (2, green) and 

6F-EpC (3, orange) powders, acquired at 60 kHz MAS rate and 800 MHz 19F frequency (20 T 

magnetic field) without 1H decoupling; b) 19F NMR spectrum of 3F-EpC powder acquired with (dark 

green) and without (light green) 1H-19F decoupling at the MAS rate of 15 kHz and 60 kHz, 

respectively, and 800 MHz 19F frequency. 
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Table 4.6: Full width at half maximum (in kHz) measured without 1H-19F decoupling during 

acquisition at 60 kHz MAS rate for 2F-EpC, 3F-EpC, 6F-EpC and multi-6F-EpC and with 1H-19F 

decoupling during acquisition at 15 kHz MAS rate for 3F-EpC. 

 FWHM 

 Without decoupling 

(kHz) 

With decoupling (kHz) 

2F-EpC 3.7  

3F-EpC 11.9 33.0 

6F-EpC 9.4  

Multi-6F-EpC 3.8  

 

 

Figure 4.14: 19F{1H} NMR spectra (1 M NaOD) of 2-, 3- and 6-monofluorinated cellodextrins (2F-EpC, 

1; 3F-EpC, 2 and 6F-EpC, 3) and multiply 6-fluorinated cellodextrin (multi-6F-EpC, 4). 

Interestingly, it was noted that spectra recorded using a slower MAS rate (15 KHz instead of 60 

KHz) and with the application of proton decoupling resulted in a broader 19F peak, as represented 
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for 3F-EpC in Figure 4.13, b. This observation indicated that, under certain conditions, fast MAS can 

decouple more efficiently than radiofrequency pulses. This is possible due to the probe setup 

employed to perform 1H-decoupled 19F experiments at low MAS conditions, where both 19F and 1H 

had to be tuned simultaneously leading to an imperfect tuning for both nuclei. Excluding a strong 

contribution of homonuclear and heteronuclear dipolar couplings in the spectra recorded at fast 

MAS, peak broadening was attributed to the large heterogeneity of 19F chemical environments. 

Indeed, in the investigated fluorinated-cellodextrins, the 19F atoms can be found potentially in 

different environments in the nanofibrils (i.e. surface, core, far from or nearby other fluorinated 

residues) resulting in a distribution of chemical shifts. 

4.3 Discussion and future prospective 

Our multiscale approach combining microscopy, Raman, PXRD and NMR demonstrates that the 

insertion of a single fluorine atom per cellodextrin chain does not exert a substantial impact on the 

morphology and long and short-range order structure of the material. On the contrary, the 

introduction of multiple 6-deoxyfluoro substituents along the cellodextrin chain yielded to a 

crystalline allomorph never reported before for a cellulose-like material.  

To rationalise the potential impact of deoxyfluorination on the cellodextrin structure, it is key to 

analyse the hydrogen bonds (HB) network that defines the cellulose type II arrangement. 

Langan et al., 58 reported three different HBs patterns for cellulose type II allomorph, established 

between two different types (origin, o, and centre, c) cellulose chains, as shown in Figure 4.15.41, 

208 HBs were identified within groups less than 2.8 Å apart and with an angle D-H-A greater than 

110° (where D = HB donor and A = HB acceptor). Table 4.5 reports the intra- and inter-chain HBs. 

In specific, intermolecular HBs between origin (o-o-o), centre chains (c-c-c) or centre and origin 

chains (o-c-o) were identified as O2-HO6 (o-o-o), O6-HO2 (c-c-c) and O6-HO6 and O2-HO2 

(o-c-o), respectively. Also, intramolecular HBs O3-HO5 with a minor component involving 

O3-HO6 are present in each arrangement, while O6-HO3 is present only in o-c-o sheets. 

In addition, Dalvit et al., reported on the ability of fluorine to form intermolecular HB only either 

in the presence of a strong HB donors or at HB donor high concentration.209 Thus, the presence of 



Chapter 4 – Deoxyfluorinated cellodextrin derivatives 

174 
 

other HB acceptor in the investigated samples (all the other hydroxyl groups) will compete with 

the formation of HBs with the fluorine atom. 

 

Figure 4.15: Representation of cellulose type II hydrogen bonds network differentiating between 

origin and centre chain. Intra- and inter-chain hydrogen bonds are represented as blue and orange 

dashed lines, respectively. Source: Langan et al., 1999.208 

Table 4.5: Summary of all the intra- and inter-chain hydrogen bonds for each different chain 

arrangement in cellulose type II allomorph. 

o-c-o o-o-o c-c-c 

intrachain Interchain intrachain interchain intrachain interchain 

O3(D)⋯O6(A) O6(D)⋯O3(A) O3(D)⋯O6(A) O6(D)⋯O2(A) O3(D)⋯O6(A) O2(D)⋯O6(A) 

O3(D)⋯O5(A) O2(D)⋯O2(A) O3(D)⋯O5(A)  O3(D)⋯O5(A)  
O6(D)⋯O3(A) O6(D)⋯O6(A)     

 O6(D)⋯O5(A)     

 O6(D)⋯03(A)     

The site-specific hydroxyl-group substitution with a fluorine atom will prevent the HB donor action 

of that specific position. In specific, the substitution of the 3-hydroxyl group of glucose with a 

fluorine atom would affect the formation of the intra-chain hydrogen bond with O6, while the 

formation of the O2⋯O2 and O6⋯O6 inter-sheet hydrogen bonds of cellulose II would be affected 

in 2F- and 6F-EpC, respectively. Thus, the introduction of a single fluorine atom in the reducing ring 

unit would affect both the intra-chain and inter-chain HB network, leading to increased disorder. 
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Nonetheless, the most significant effect was expected for the multiple 6-deoxy-fluoro substitution 

(i.e. multi-6F-EpC), as the 6-hydroxyl group is highly involved in inter-chain packing. The different 

organisation of multi-6F-EpC is also reflected in the 1H-13C CP/MAS NMR spectra; indeed, this 

material exhibits a totally different CP fingerprint in comparison with cellulose type II. In addition, 

the different multiplicity reported for C1 between EpC and multi-6F-EpC indicated the loss of the 

antiparallel chain arrangement typical of cellulose type II, and the presence of only 

one non-equivalent anomeric carbon per unit cell in multi-6F-EpC. These data are supported by an 

unprecedent PXRD pattern collected for multi-6F-EpC.  Additionally, both ordered and disordered 

domains are seen for multi-6F-EpC by PXRD (presence of broad components) and NMR (where two 

very different 13C chemical environments observed for C6). 

In conclusion, we have demonstrated the enzymatic incorporation of single and multiple 

fluorinated glucose residues into cellodextrin chains. The OH to F substitution is tolerated by the 

cellodextrin phosphorylase, albeit at low efficiency. Nonetheless, we were able to produce 

selectively fluorinated cellodextrins averaging ca DP 9 in size, which self-assemble into crystalline 

materials. Singly fluorinated cellodextrins display structural features reminiscent of cellulose II, 

as judged by solid-state NMR, powder X-ray diffraction and Raman spectroscopy. In contract, 

multiply 6-fluorinated cellodextrin gave rise to a new allomorph, not previously reported for either 

native celluloses or cellulose-like materials. Advanced solid-state NMR methods have enabled the 

detailed characterisation of these novel materials, deciphering the water exposed and interior 

chemical environments for different carbon sites. Our findings highlight the considerable potential 

of chemoenzymatic synthesis for generating novel glycomaterials of controlled molecular structure 

and morphology. 

 

4.4 Material and methods 

4.4.1 General materials and methods 

Chemicals were commercially obtained as reagent grade and used without any purification. 

Deoxy-fluoro-D-glucoses (2F-, 3F- and 6F-Glc) and α-D-glucose 1-phosphate disodium salt hydrate 

(Glc-1P) were purchased from Toronto Research Chemicals (Canada) and Sigma-Aldrich (UK), 



Chapter 4 – Deoxyfluorinated cellodextrin derivatives 

176 
 

respectively. Cellobiose phosphorylase (CBP) (PRO-GH94-004) was kindly provided by Prozomix 

Limited (UK) and Milli-Q (MQ) H2O was used to prepare all buffers. Thin-layer chromatography 

(TLC) was performed on pre-coated silica gel 60 F254 plates (Merck) and compounds were visualised 

by UV irradiation (λ 254 nm) and/or by spraying TLC with staining solution (2% orcinol w/v in 

EtOH/H2O/H2SO4 15:1:2 v/v/v) followed by heating. Biotage SP4 flash chromatography system was 

used for purification of protected monosaccharides using normal phase (pre-packed SNAP 

cartridges) and the monofluorinated cellobiose analogues were purified by HPLC (Thermo 

Scientific Dionex Ultimate 3000) on a Luna OH column (5 µm HILIC 200 Å, 250 × 10 mm, 

Phenomenex) using 5 mM ammonium formate buffer (5%) and acetonitrile (95%) at 5 mL/min in 

isocratic elution over 25 min. Detection was performed by charged aerosol detector (CAD) with 

power function 1.00, data collection rate 10 Hz and nebulizer temperature 25 °C. Products were 

lyophilised using a Labconco FreeZone Benchtop freeze dryer. 1H, 13C, 31P and 19F NMR spectra 

were recorded on a Bruker Avance III 400 MHz and/or Bruker Avance Neo 600 MHz spectrometers 

at 298 K. Chemical shifts recorded in D2O are reported with respect to the solvent residual peak at 

4.79 ppm in 1H NMR. High resolution mass spectra were acquired in a Synapt G2-Si mass 

spectrometer (Waters, UK) using electrospray ionisation (positive or negative mode). 

Optical rotations were measured at 20 °C using a Perkin-Elmer Model 341 polarimeter. 

4.4.2 Synthesis of deoxyfluorinated-cellodextrin derivatives 

4.4.2.1 Enzymatic synthesis of 2-, 3-, and 6-monofluorinated cellobioses 8, 9 and 10 

 

To a solution of deoxy-fluoro-glucose (F-Glc) (18.2 mg, 100 mM stock solution in Milli-Q (MQ) 

water, 1 mL, 1 eq., 13 mM final concentration) and Glc-1P (disodium salt hydrate, 30.4 mg, 100 

mM stock solution in MQ water, 1 mL, 1 eq., 13 mM final concentration) in HEPES buffer (80 mM 

stock solution in MQ water, 5 mL, pH 7.2), was added cellobiose phosphorylase (CBP, 1 mg/mL 
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stock solution, 1 mL, 1 mg) and the reaction was incubated at 37 °C shaking for 16 h. The reaction 

mixture was centrifuged, and the supernatant was passed through HisTrap HP (1 mL) and High Q 

(5 mL) Bio-Rad columns to remove CBP and remaining Glc-1P, respectively. The pre-purified 

mixture was freeze dried, dissolved in 2 mL MQ water and purified by gel filtration chromatography 

(Toyopearl TSK HW40S, 1.6 × 90 cm, MQ water, 0.5 mL/min) followed by HPLC (Luna OH 5 µm HILIC 

200 Å, 250 × 10 mm, Phenomenex, 5 mL/min in isocratic elution over 25 min, 5% 5 mM ammonium 

formate buffer and 95% acetonitrile) to afford the title compounds 8-10: 

2-Deoxy-2-fluoro-cellobiose (8). 

Yield: 26% (9 mg; 0.029 mmol); Rf = 0.40 (isopropanol:NH4OH:H2O, 6:3:1); [α]D
20 +32.5 (c 1, CH3OH). 

1H NMR (600 MHz, D2O) δ 5.47 (0.45 H, d, J1,2 3.9 Hz, H1α), 4.95 (0.5 H, dd, J1,2 7.9 Hz, J1,F 2.4 Hz, 

H1β), 4.54 (1 H, two d, J1',2' 8.0 Hz, H1'), 4.48 (0.45 H, ddd, J2,F 49.5 Hz, J2,3 9.5 Hz, J1,2 3.9 Hz, H2α), 

4.22-4.07 (1 H, m, H2β, H3α), 4.02-3.87 (3.5 H, m, H5α, H3β, H6aβ, H6aα, H6'a, H6bα), 3.83 (0.5 H, 

dd, J6a,6b 12.4 Hz, J5,6 5.0 Hz, H6bβ), 3.78-3.72 (2 H, m, H4α, H4β, H6'b), 3.67 (0.5 H, ddd, J4,5 9.9 Hz, 

J5,6a 5.0 Hz, J5,6b 2.2 Hz, H5β), 3.56-3.50 (2 H, m, H3', H5'), 3.47-3.42 (1 H, m, H4'), 3.37-3.32 (1 H, 

m, H2'). 13C NMR (151 MHz, D2O): δ 102.48 (C1'), 93.44 (C1β), 93.21 (C2β), 91.99 (C2β), 90.55 (C2α), 

89.44 (C1α), 89.32 (C2α), 78.02 (C4α), 77.97 (C4β), 75.97 (C5'), 75.46 (C3'), 74.89 (C5β), 73.11 (C2'), 

72.76 (C3β), 69.94 (C5α), 69.92 (C3α), 69.48 (C4'), 60.64 (C6'), 59.83 (C6β), 59.68 (C6α). 19F NMR 

(1H-decoupled, 376 MHz, D2O) -199.08, -199.27. HRMS (ESI): m/z calculated for C12H21FO10Na+ 

[M+Na]+: 367.1011; found: 367.1013. 

3-Deoxy-3-fluoro-cellobiose (9). 

Yield: 12% (4 mg; 0.012 mmol); Rf = 0.29 (isopropanol:NH4OH:H2O, 6:3:1); [α]D
20 +28.7 (c 1, CH3OH). 

1H NMR (600 MHz, D2O) δ 5.28 (0.5 H, t, J1,2 = J1,F 3.8 Hz, H1α), 4.77-4.66 (1 H, m, H3α, H1β), 

4.64-4.51 (1.5 H, m, H3β, H1'), 4.04-3.96 (2 H, m, H5α, H4α, H4β, H6aβ), 3.94-3.90 (2 H, m, H6aα, 

H6'a, H6bα), 3.88-3.82 (1 H, m, H2α, H6bβ), 3.72 (1 H, dd, J6'a,6'b 12.5 Hz, J5,6'b 5.9 Hz, H6'b), 3.63-3.60 

(0.5 H, m, H5β), 3.57 (0.5 H, ddd, J2,F 14.2, J2,3 9.1, J1,2 8.0 Hz, H2β), 3.53-3.49 (1 H, m, H3'), 3.48-3.44 

(1 H, m, H5'), 3.42-3.37 (1 H, m, H4'), 3.33-3.28 (1 H, m, H2').13C NMR (151 MHz, D2O): δ 102.39 

(C1'), 95.29 (C3β), 95.05 (C1β), 94.08 (C3β), 93.73 (C3α), 92.53 (C3α), 91.99 (C1α), 76.04 (C5'), 75.69 

(C5α), 75.56 (C3'), 75.49 (C4α), 73.84 (C5β), 73.27 (C2'), 72.76 (C2β), 70.07 (C2α), 69.86 (C4β), 69.61 

(C4'), 60.67 (C6'), 59.74 (C6β), 59.61 (C6α). 19F NMR (1H-decoupled, 376 MHz, D2O) 
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 -192.35, -197.01 HRMS (ESI): m/z calculated for C12H21FO10Na+ [M+Na]+: 367.1011; found: 

367.1014. 

6-Deoxy-6-fluoro-cellobiose (10). 

Yield: 23% (8 mg; 0.023 mmol); Rf = 0.34 (isopropanol:NH4OH:H2O, 6:3:1); [α]D
20 +17.0 (c 1, CH3OH). 

1H NMR (600 MHz, D2O) δ 5.27 (0.55 H, d, J1,2 3.8 Hz, H1α), 4.96-4.85 (1 H, m, H6a,bα), 4.76-4.65 

(1.5 H, m, H1β, H6a,bβ), 4.52 (1 H, d, J1',2' 7.9 Hz, H1'), 4.15-4.06 (0.55 H, m, H5α), 3.94 (1 H, dd, J6'a,6'b 

12.3 Hz, J5,6'a 2.2 Hz, H6'a), 3.87 (0.55 H, t, J2,3 = J3,4 9.3 Hz, H3α), 3.82-3.72 (2.5 H, m, H5β, H4α, H4β, 

H6'b), 3.69-3.65 (0.45 H, m, H3β), 3.62 (0.55 H, dd, J2,3 9.8 Hz, J1,2 3.8 Hz, H2α), 3.56-3.49 (2 H, m, 

H3', H5'), 3.47-3.43 (1 H, m, H4'), 3.37-3.31 (1.5 H, m, H2', H2β). 13C NMR (151 MHz, D2O): δ 102.62 

(C1'), 95.90 (C1β), 91.96 (C1α), 82.39 (C6α), 82.12 (C6β), 81.28 (C6α), 81.01 (C6β), 77.80 (C4α), 77.56 

(C4β), 75.97 (C5'), 75.48 (C3'), 74.10 (C3β), 73.76 (C2β), 73.33 (C5β), 73.15 (C2'), 71.24 (C3α), 71.13 

(C2α), 69.42 (C4'), 69.02 (C5α), 60.56 (C6'). 19F NMR (1H-decoupled, 376 MHz, D2O) 

-233.68, -234.24. HRMS (ESI): m/z calculated for C12H21FO10Na+ [M+Na]+: 367.1011; found: 

367.1014. 

4.4.2.2 Enzymatic synthesis of 2-, 3-, and 6-monofluorinated cellodextrins (2F-EpC, 1, 

3F-EpC, 2, and 6F-EpC, 3) 

The monofluorinated cellodextrins were synthesised in a one-pot reaction. After CBP removal, 

more Glc-1P (110 mg, 4 eq.) was added together with cellodextrin phosphorylase (CDP, 0.9 mg/mL 

stock solution, 0.7 mL, 0.63 mg) and the reaction was incubated at 50 °C while shaking for 16 h. 

A white precipitate was formed and isolated by centrifugation, followed by re-suspension and 

washing with MQ water (3×). To the supernatant, more Glc-1P was added (90 mg) and the reaction 

incubated at 50 °C shaking for 12 h. A white precipitate was formed again and isolated by 

centrifugation, followed by re-suspension and washing with MQ water (3×). The precipitates were 

combined to give reasonable final yields [47% 2F-EpC (1), 30% 3F-EpC (2) and 32% 6F-EpC (3)]. The 

white solid was analysed by MALDI-ToF (DP8 on average) and solution-state 19F NMR 

(1H-decoupled, 376 MHz, 1 M NaOD) -195.21 and -195.26 ppm (1); -190.86 and -197.19 ppm 

(2); -232.55 and -234.05 ppm (3). 
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4.4.2.3 Chemical synthesis of 6-deoxy-6-fluoro-α-D-glucose 1-phosphate (6F-Glc-1P, 

11) 

 

Reagent and conditions: i) n-BuLi, (PhO)2POCl, THF, -78 °C to room temperature, overnight; ii) 

PtO2, H2(g), EtOH, room temperature, 24 h; iii) Et3N:H2O:MeOH (1:3:7, v/v/v), room temperature, 

48 h.  

n-BuLi (2 mL of 1.6 M in hexane; 3.20 mmol; 1.2 eq.) was added dropwise to a solution of 

6-deoxy-6-fluoro-2,3,4-tri-O-acetyl-D-glucopyranose (822 mg; 2.67 mmol; 1 eq.) (synthesised from 

D-glucose in five steps)2,3 in anhydrous THF (40 mL) at -78 °C under N2 atmosphere and stirred for 

15 min. Diphenyl chlorophosphate (664 µL; 3.20 mmol; 1.2 eq.) was added dropwise and the 

reaction mixture was allowed to warm to room temperature overnight. The reaction was quenched 

with NH4Cl saturated solution (30 mL) and partitioned with EtOAc (3 x 30 mL). The organic phase 

was washed with NaCl saturated solution (2 × 30 mL), dried over MgSO4, filtered, concentrated 

under vacuum and purified by flash chromatography [cartridge SNAP 25g; solvent: Hexane/EtOAc; 

gradient: 0-20%, 20-20% and 20-30% (v/v); flow: 25 mL/min] to afford the product 

6-deoxy-6-fluoro-2,3,4-tri-O-acetyl-α-D-glucopyranosyl 1-diphenylphosphate4 in 48% yield 

(690 mg; 1.28 mmol). The deprotection steps of the synthesised phosphate (600 mg; 1.11 mmol) 

were performed with PtO2 (50 mg; 0.22 mmol; 0.2 eq.) in absolute ethanol (25 mL) at room 

temperature under H2 atmosphere for 48 h. After catalyst removal by filtration, the crude was 

concentrated under vacuum, dissolved in MeOH (20 mL) followed by addition of Et3N (10 mL) and 

concentrated again. Lastly, the residue was dissolved in Et3N:H2O:MeOH (1:3:7, v/v/v) (45 mL) and 

stirred for 48 h at room temperature. After concentration under vacuum, the crude was dissolved 

in water and freeze dried to afford 6-deoxy-6-fluoro-α-D-glucose 1-phosphate triethylammonium 

salt4 in 88% yield (457 mg; 0.98 mmol).  

1H NMR (400 MHz, D2O) δ 5.49 (1 H, dd, J1,P 7.0 Hz, J1,2 3.5 Hz, H1), 4.83-4.58 (2 H, m, H6a, H6b), 

3.97 (1 H, dd, J5,F 30.3 Hz, J4,5 10.6 Hz, H5), 3.78 (1 H, t, J2,3 = J3,4 9.5 Hz, H3), 3.60-3.51 (2 H, m, H4, 
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H2), 3.20 (10 H, q, J 7.4 Hz, 2x HN(CH2CH3)3), 1.28 (16 H, t, J 7.3 Hz, 2x HN(CH2CH3)3). 13C NMR (101 

MHz, D2O): δ 94.61 (C1), 82.80 (C6), 81.13 (C6), 72.56 (C3), 71.48 (C2), 71.36 (C5), 71.17 (C5), 68.27 

(C4), 46.62 (HN(CH2CH3)3), 8.19 (HN(CH2CH3)3). 19F NMR (1H-decoupled, 376 MHz, D2O): δ -236.30. 
31P NMR (162 MHz, D2O): δ -1.07. HRMS (ESI): m/z calculated for C6H11FO8P [M-H]-: 261.0181; 

found 261.0173. 

4.4.2.4 Enzymatic synthesis of multiply 6-fluorinated cellodextrin (multi-6F-EpC, 4) 

Cellodextrin phosphorylase (CDP, 5.7 mg/mL stock solution, 300 µL, 1.7 mg) was added to a 

solution of cellobiose (5.5 mg, 16.1 µmol, 1 eq.) and 6-deoxy-6-fluoro-α-D-glucose 1-phosphate 

(6F-Glc-1P) (triethylammonium salt, 45 mg, 96.6 µmol, 6 eq.) in 500 µL NaOAc buffer (200 mM, 

pH 5.0) and the reaction was incubated at 37 °C for 24 h with shaking (300 rpm). A white precipitate 

started forming and more CDP was added (1-fold) and the reaction continued in the same 

conditions for 48 h (72 h in total). The white precipitate was isolated by centrifugation, 

re-suspended and washed with MQ water (4×) and freeze dried to afford the multiple 6-fluorinated 

cellodextrin 7 in 64% yield (17 mg; 10.3 µmol). The white solid was analysed by MALDI-ToF (DP 10 

on average) and solution-state 19F NMR (1H-decoupled, 565 MHz, 1 M NaOD) 

 -233.25, -233.29, -233.31, -233.35 ppm. 

4.4.3 Analytical characterisation 

4.4.3.1 Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry 

(MALDI-ToF MS) 

(DHB) matrix (10 mg/mL in 30% acetonitrile in MQ water), spotted on a target plate (Bruker MTP 

384 Polished Steel TF Target) and analysed on an AutoflexTM Speed MALDI-TOF/TOF mass 

spectrometer (Bruker DaltonicsTM GmbH, Coventry, UK). The instrument was controlled by a 

flexControlTM (version 3.4, Bruker) method optimised for peptide detection and calibrated using 

peptide standards (Bruker). All spectra were processed with flexAnalysisTM (3.4, Bruker). 
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4.4.3.2 Electron microscopy (EM) 

Transmission Electron Microscopy (TEM) images were viewed on a Thermo Fisher Talos F200C 

transmission electron microscope at 200kV (Thermo Fisher UK Ltd, Cambridge, UK) using a Gatan 

OneView 4k X4K digital camera (Gatan, Abingdon, UK) to record DM4 files. 400 mesh EM 

Resolution Formvar/Carbon coated copper grids were glow discharged, the samples were 

suspended in 200 µL MQ water and 5 µL drop was pipetted onto the grid for 1 minute. The excess 

was then blotted off with filter paper and 5 µL of 2% uranyl acetate was pipetted onto the grid for 

30 seconds then blotted off with filter paper and allowed to dry.  

4.4.3.3 Powder X-ray diffraction (PXRD) 

X-ray diffraction data were collected using a single crystal diffractometer (Rigaku Synergy S, Cu 

X-ray tube, 50kV-1mA) with Cu Kα radiation (λ = 0.154 nm). Samples of enzymatically produced 

cellodextrin (EpC), 2F-EpC, 3F-EpC, 6F-EpC and multi-6F-EpC were placed in a 96-well plate and 

analysed using an XtalCheck screening plate mounted on the diffractometer. The collected 

diffraction images were integrated between diffraction angles (2Θ) 5 and 40°. All the samples were 

analysed in powder form and after gentle grinding with mortar and pestle. The simulated powder 

patterns were generated using Mercury5 and the published crystal structures of cellulose I,40 I,38 

II,41 IIII 
42and IIIII.43 All the graphs were generated using MATLAB®. 

4.4.3.4 Solution and solid-state NMR 

Solution state NMR 

The NMR characterisation of EpC dispersed in D2O was carried out using a Bruker Avance I 

spectrometer equipped with a 5 mm probe operating at frequencies of 499.7 MHz (1H) and 125.7 

MHz (13C). Around 600 μL of dispersion (2 w/V%) in 99.9% D2O (Sigma-Aldrich®) was pipetted into 

a 5 mm NMR tube at room temperature. Both phase-sensitive 1H-13C HSQC experiment with 1H-13C 

correlation via double inept transfer and 1H-1H COSY experiment with multiple quantum filter and 

gradient ratio for artifact suppression were acquired with 256 increments in the F1 dimension, 

8 number of scans and a relaxation delay of 2 s. A 13C DEPT135 experiment with 1H decoupling was 

acquired using a pulse length of 11.25 μs and  8k number of scans. 



Chapter 4 – Deoxyfluorinated cellodextrin derivatives 

182 
 

The solution NMR characterisation of a 0.5 wt% dispersion of multi-6F-EpC (7) was carried out 

using a Bruker Avance III spectrometer equipped with a 5 mm inverse triple-resonance probe 

operating at frequencies of 800.2 MHz (1H) and 201.2 (13C). Phase-sensitive 1H-13C HSQC 

experiment with 1H-13C correlation via double inept transfer was acquired at 293K with 

128 increments in the F1 dimension, 8 number of scans and a relaxation delay of 3s. A 1H-1H COSY 

experiment with multiple quantum filter and gradients was acquired at 5 C with 256 increments 

in the F1 dimension, 12 number of scans and a relaxation delay of 2 seconds. Finally, a 13C DEPT135 

experiment with 1H decoupling was acquired using a Bruker Avance Neo spectrometer equipped 

with a cryoprobe operating at frequencies of 600.2 MHz (1H) and 150.9 MHz (13C). A relaxation 

delay of 1 s was used and 30k scans were registered. 

Solid-state NMR 

1H-13C cross-polarisation solid-state NMR experiments of the single 2-, 3- and 6- monofluorinated 

EpC 10 wt% hydrogels and multi-6F-EpC 25 wt% hydrogels were performed at 5 C using a Bruker 

Avance III spectrometer equipped with a 4 mm triple resonance probe operating at frequencies of 

400.2 MHz (1H) and 100.6 MHz (13C). Each gel was packed into a kel-f insert, sealed using a plug 

and a screw, and spun at 6 kHz. The WPT-CP experiment was carried out using a T2 filter and mixing 

time of 16 and 64 ms, respectively. The WPT factors shown in Figure 4.11 were calculated by 

normalisation of the peak intensities of the spectrum acquired at 16 ms and 64 ms mixing times 

against a reference spectrum at 0 ms mixing time.  

For the powder samples, experiments were carried out at the UK 850 MHz solid state NMR facility 

(Warwick). All the experiments were run at frequencies of 850.2 MHz (1H), 799.8 MHz (19F) and 

213.8 MHz (13C). 1H-decoupled 1H-19F CP (1H-19F{ H 
ଵ }), 1H-13C CP with 1H and 19F decoupling 

(1H-13C{ H, F 
ଵଽ

 
ଵ }), and 19F-13C CP with 1H and 19F decoupling (19F-13C{ H, F 

ଵଽ
 

ଵ }) experiments were run 

using a 2.5 mm HFX H13894 probe, at 15 kHz MAS spinning and 12  3 C. A field strength of 67 or 

83 kHz was employed for 1H decoupling. The CP contact time was optimised to 1 ms and a 

relaxation delay of 3 s was employed. A 90 pulse of 4 and 3 µs was used for 1H and 19F, respectively. 
1H-undecoupled 19F spectra with 19F background suppression (19F-bs), and 1H-decoupled and 
19F-undecoupled 1H-13C CP (1H-13C{ H 

ଵ }) experiments were run using a 1.3 mm X/Y/H-F 

H13863 probe, at 60 kHz MAS spinning and 27  3 C. The CP contact time was optimised to 3 ms 
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and a relaxation delay of 3 s was employed. A 90 pulse of 1.5 µs was employed for 1H and 19F. 

All spectra were referenced with respect to TMS.
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5. SDTD: a novel methodological tool to study solvent in 
3D gels network 

Parts of the finding from this Chapter are published as: 

Gabrielli Valeria, Kuraite Agne, Alves da Silva Marcelo, Edler Karen J., Angulo Jesús, Nepravishta 

Ridvan, * Muñoz-Garcia Juan C.,* Khimyak Y.*  - Spin Diffusion Transfer Difference (SDTD) NMR: 

An Advanced Method for the Characterisation of Water Structuration Within Particle Networks. 

Journal of Colloid and Interface Science (2021) 594 217–227. DOI: 10.1016/j.jcis.2021.02.094 

Introduction 

5.1.1 Principal aims of the work 

Carbohydrate-based hydrogels are 3D networks constituted by particles or polymers 

self-assembled in large amount of water. Understanding the molecular details of 

carbohydrate-water interactions is pivotal to comprehend gelation mechanisms. Historically, NMR 

relaxometry and solvent self-diffusion coefficient have been used to study the dynamics of the 

solvent and distinguish between its free and bound states. Nonetheless, the dynamic character of 

the interactions between the gel network and water at solid/solution interface might lead to the 

observation of an averaged value which reflects a variety of motionally-averaged molecular 

environments. 

To overcome this limitation, we resort on Saturation Transfer Difference NMR spectroscopy.  

This technique allows the detection of the water directly interacting with the gel network 

(bound water) by monitoring the saturation that accumulates on the water molecules following 

selective saturation of the gel network. In addition, to prevent chemical exchange processes 

between labile protons of the gel network and the protons of water, we formulated our gels in 

pure D2O, limiting in this way the pool of protons available for exchange. 

We have studied a set of colloidal dispersions and hydrogels composed by 

oxidized cellulose nanofibril (OCNF), corn starch (CS) and enzymatically produced cellulose (EpC). 

The measured STD signals report on the percentage of bound water, but are dependent 
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on gelator and solvent concentrations, precluding comparison between different systems and 

concealing information on solvent structure within the network.  

We propose to resort to STD build-up curves normalisation against the maximum STD factor and 

mathematically analyse the resulting curves by means of a 1D diffusion equation. We demonstrate 

that this approach cancels the effect of gelator and solvent concentrations on the resulting 

build-up curves. The proposed analysis of the curves provides access to parameters such as the 

solvent-network minimum distance (r) and the diffusion rate at the solid-liquid interface (D).  

In conclusion, the novel protocol, called Spin Diffusion Transfer Difference (SDTD) NMR, is a 

powerful tool for the study and comparison of different gel systems and opens the doors to novel 

insights into solvation properties. 

5.1.2 The role of water in hydrogels 

As explained in Chapter 1, hydrogels are swollen 3D networks with water as main constituent. 

Hence, characterisation of the organisation of water on the surface of the gels solid component is 

pivotal to understand the gel physical properties and interfacial interactions. In biomaterial science 

biocompatibility of hydrogels is associated with the extensive presence of water,210 and therefore 

a great deal of work has been devoted in investigating the nature of water.  

In hydrogel systems a cooperative interaction exists between the water and the 3D network, the 

first preventing the network from collapsing, and the latter preventing the water from flowing 

away.211-213 Water plays critical role in controlling not only hydrogels mechanical properties. It also 

acts as a diffusion barrier for drug release. Indeed, the rate of drug release depends on the diffusion 

rate of water into the gel matrix, forming a barrier gel layer, and the subsequent diffusion of water 

through this gel layer. Hence, distribution and mobility of water within the gel layer are important 

factors to be taken into account.214,215  

Jhon and Andrade216, pioneers in this work, developed a three-state model according to which 

water can exists as 1) non-freezing, or bound water, 2) freezing interfacial, or intermediate water, 

and 3) free, or bulk water (Figure 5.1). Importantly, the nature and extent of the water-solid phase 

interaction will depend upon the gelator chemical structure. Indeed, water can have either a 
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plasticising or anti-plasticising effect217 (namely, decrease and increase of the glass transition 

temperature), inducing major changes in the gelator mechanical properties. In turn, the 

physical-chemical properties of water (i.e. crystallization exotherms or melting endotherms) are 

affected by the interaction within the gel solid component. Indeed, bound water (as referred for 

the ensemble of non-freezing and freezing interfacial water) can either do not present any phase 

transition temperature, as in the case of non-freezing water, or it can present different transitions 

temperature and enthalpy in comparison with bulk water. The bound water is in a 

thermodynamically non-equilibrium state.218 

 

Figure 5.1: Schematic representation of the different states of water in hydrogel system. 

The bound water (red circles) is strongly associated with the gel network by non-covalent 

interactions (hydrogen bonds or polar interactions); the intermediate water (pale yellow circles) is 

a transitory state between the bound and the bulk water and it is characterised by hydrophobic 

interaction with the macromolecule; the bulk water (light blue circles) is free water whose 

properties are not affected by the presence of the gel matrix. 

The most common methodologies employed for water characterisation in hydrogels are 

differential scanning calorimetry (DSC) and NMR spectroscopy (water T1 and T2 relaxation times 

and water self-diffusion coefficient).211, 218, 219 In performing DSC and NMR experiments, there are 

some important considerations to be taken into account to avoid misinterpretation of data. For 

instance, the experimental timescale should be considerably longer than the timescale of a thermal 

event to be probed (i.e. freezing of water, which is a quite slow process). Hence the rate of 

temperature change in DSC experiments should be appropriately tailored. Timescale of 

phenomena such as chemical exchange, spin diffusion and cross-relaxation are important for NMR 

measurements.219 
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Furthermore, attention must be paid in comparing data from different gel networks. Indeed, their 

individual character (i.e. polarity and hydrophilicity of the gelator molecules and morphology of 

the network), their self-assembly habit and thermal history are important factors to take into 

account.219 Finally, results cannot be routinely extrapolated from one temperature regime to 

another, as changes in temperature would highly affect the equilibrium conditions of the 

interactions established to hold the gel system.215 

In general, the presence of bound water to insoluble hydrophilic polymers has been reported to 

break down the hydrogen bonds established between the numerous hydroxyl groups present in 

the polymeric chain.218 In this chapter we will answer some of the questions related to the state(s) 

of water in highly hydrophilic hydrogels, focusing on the interactions between water and cellulose 

(either unfunctionalised or oxidised cellulose nanofibrils, OCNF). 

5.1.2.1 Cellulose and water interactions 

Cellulose is the most abundant hydrophilic (but water-insoluble) polymer on Earth. Its high 

hydrophilicity determines cellulose ability to adsorb and entrap water. Indeed, water is able to 

bind and interact with the hydroxyl group exposed on the surface of the cellulose fibrils. In turn, 

the changes in water mobility due to these interactions determine a change in water physical 

properties, such as melting and crystallisation temperature.218  

Molecular mechanics simulations showed short-range ordering of water on cellulose surfaces by a 

combination of both hydrogen-bonds and hydrophobic interactions with nonpolar surfaces.220 

O’Neill et al.221 recently reported the existence of two different populations of water associated 

with cellulose, one more mobile and associated with the cellulose surface, the second more rigid 

and confined in the narrow spaces between fibrils. It is important to note that unfunctionalised 

cellulose fibrils present intrinsic structural anisotropy determined by (i) the high polarity of the 

lateral side in the glucopyranose ring due to the presence of equatorial hydroxyl groups, and (ii) the 

hydrophobicity of the axial orientation of the ring due to the presence of C-H bonds (see Chapter 1, 

Figure 1.12).222, 223 The presence of hydroxyl groups on the fibrils surface and their consistent 

equatorial configuration determines structuring of the water molecules at the surface 

(Figure 5.2, a). In addition, MD simulations reported that only the dynamics of the surface 

hydrogen bonds between water and cellulose is affected by cellulose hydration, while the 
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hydrogen bonds in the bulk of cellulose remain unaffected. This indicates that the hydration-driven 

fast hydrogen bond relaxation is not transmitted from the surface to the core.224 Hence, no drastic 

rearrangement of the fibril network is expected upon hydration. 

A different situation is encountered when considering functionalised cellulose. In the presented 

study, we focused on oxidised cellulose nanofibrils (OCNF), where about 25% of the hydroxymethyl 

groups are substituted with carboxylic acid functional group. Importantly, the pKa of OCNF was 

reported to be 3.9.225, 226 Thus, in our experimental conditions (the pH of the analysed sample was 

measured as 7), about 10% of the carboxylic groups are protonated while the rest are negatively 

charged (Figure 5.2, b).225 This results in repulsive forces among the cellulosic fibrils and favour 

dispersion in water.  

SAXS studies at increasing concentration of OCNF fibrils showed that: (i) no interactions are 

established for OCNF fibrils concentrations below 1 wt%, (ii) between 1 wt% and 1.5 wt% repulsive 

interactions start emerging,  and (iii) above 1.5 wt% repulsive interactions between the OCNF fibrils 

are evident.227 In addition, rheological data demonstrated that measurable G’ values were 

obtained only for concentrations above 1 wt%, while G’>>G’’ only for samples of 2 wt% and above. 

Hence, the formation of gel was explained by the repulsion of the fibrils due to the negative 

charges, but no insight into the role played by water has been provided.  

Previous studies on negatively charged hydrogelators described the ability of water to structure 

around the negative charges. For instance, a work published by Peppas et al. on poly(methacrylic 

acid) grafted with poly(ethylene glycol) at low ionic strength reported a higher swelling ratio for 

copolymers containing a higher amount of methacrylic acid, attributed to a larger electrostatic 

repulsion.228 In a later work on the same copolymer, the authors showed that an increase in the 

solution ionic strength would have a shielding effect on the negative charges, hence reducing the 

repulsive forces contribution on swelling.229  
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Figure 5.2: Schematic representation of water interaction with different cellulose systems; 

a) binding of water around cellulose fibrils with ubiquitous distribution of hydroxyl groups on the 

surface; b) interactions of water with different functional groups present in OCNF nanofibrils. The 

blue and red lines help us to visualise differences in the interactions established by water and the 

different functional groups onto cellulose surface. 

5.1.3 NMR for solvent investigation in gels  

Traditionally, NMR investigation of solvent (i.e. water for hydrogels) in swollen systems relied on 

T1 and T2 relaxation times and solvent self-diffusion coefficient, providing insight into the dynamics 

and local environment of the solvent molecules. A large number of studies have been reported 

with applications to several different systems, and a full discussion is beyond the scope of this 

thesis. Nonetheless, it is important to understand the mechanism behind those methodologies, 

their possible uses and their inherent limitations. As hydrogels are the main interest of this thesis, 

from now on we will refer to water as the solvent in question. 

5.1.3.1 T1 and T2 relaxation times 

As specified in Chapter 2, T1 and T2 relaxation constants are affected by the rate of molecular 

tumbling. Bulk water, fast and isotropic tumbling molecule, generally presents the same magnitude 

for proton T1 (spin-lattice) and T2 (spin-spin) relaxation constants, with T1 usually varying between 

2 or 3 seconds depending on the amount of dissolved oxygen and/or other impurities.212 On the 

contrary, in gels water not only presents T1 and T2 values different from each other, but they are 

also smaller in magnitude in comparison to the bulk water. This change in the relaxation properties 

depends on the water-network surface contact volume, on nature of the interactions (exchange, 

cross-relaxation) and the slower dynamics of bound water molecules.215, 230 
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In the simplest description of the swollen water-network system, water can be considered to exist 

in free and bound states, which are in exchange between each other. Two hierarchical processes 

govern this exchange: (i) the diffusion from the bulk to the gel surface, and (ii) the exchange with 

the molecule in the bound state. Importantly, exchange of water molecules or a chemical exchange 

of protons are both possible.212 A stochastic theory of relaxation times for multiple phase systems 

has been developed which accounts specifically for the essential features of very slow and very 

fast exchange regimes.231 For very slow exchange two distinct average nuclear correlation times 

exist, which give rise to two different longitudinal (T1) and transverse (T2) relaxation constants 

associated to each phase. On the contrary, when unique T1 and T2 values are found, it can be 

concluded to be in the fast exchange regime in relation to the NMR time scale between the water 

bound and free states.215 

Two processes are involved in the levelling of the relaxation values: 1) chemical exchange (between 

distinct molecules of water or between the water and the exchangeable protons – OH and NH2 – 

in the gel network) and 2) diffusion processes, such as physical diffusion of water and spin diffusion 

within proton spin system.219 When chemical exchange is ineffective, different transverse 

relaxation times are observable as the spin diffusion process is slow on a T2 time scale.232 On the 

contrary, spin diffusion equalises the longitudinal relaxation. In other words, the observation of a 

distribution of T2 values for water indicates the existence of water microenvironments large 

enough to cause an inefficient spin diffusion process on a spin-spin relaxation time scale.232 

Importantly, the distinction between mechanisms of spin diffusion in solids and liquids will be 

discussed in the spin diffusion subsection 5.1.5.1. 

The presence of a slower T2 component has been attributed, in some cases, to the presence of 

structured water. This has been reported by Blinc et al.233 in the study of collagen-water system in 

which a third water component (in addition to the bound and free water) was found and identified 

as "structural" water stabilizing the helical structure of collagen. 

Importantly, the interpretation of T1 and T2 relaxation data can be hindered by the relaxation 

constants intrinsic limitations.  If we look back at Figure 2.3, b in Chapter 2, we can clearly see that 

T1 presents symmetric behaviour at short and long correlation times. Hence, high T1 values might 

indicate either slow or fast dynamics regimes.69 In addition, T1 represent the average contribution 
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of both bulk and confined water molecules. On the contrary, T2 relaxation presents a monotonic 

dependence with molecular motion (slow tumbling molecules have shorter T2 time than fast 

tumbling molecules). Nonetheless, the measured value is strongly affected by chemical 

exchange.207 

5.1.3.2 Self-Diffusion 

Self-diffusion in solution (i.e. translational motion, as defined in Chapter 4) plays a central role in 

science reflecting not only the intrinsic properties of a biomacromolecule, such as its 

hydrodynamics, but also the features of the surrounding environment such as intermolecular 

dynamics or motional restriction.  

When talking about translational molecular motion, the term diffusion is used to denote 

self-diffusion, mutual diffusion and ‘distinct’ diffusion, phenomena that share the same units 

(m2s-1) and are related within each other, although being physically different: the first describes 

the random translational motion of molecules driven by their internal kinetic energy, the second 

the mass fluxes that arise when a concentration inhomogeneity exists between molecules in a 

multicomponent system, while the third has been proposed as direct measures of particle 

interactions in fluids.182 

 NMR methodologies are used for the measurement of self-diffusion, defined as the motion of 

molecules in a pure liquid at thermal equilibrium and depicted as a Brownian motion without any 

applied force (Figure 5.3).182 Being a random process, the mean displacement,〈r1 – r0〉 or 〈R〉

, is equal to zero, although vicinal molecules are separated and hence dispersed. This phenomenon 

is defined by a self-diffusion coefficient D (m2s-1) which range from ca. 10-20 m2s-1 for solids up to 

ca. 1 m2s-1 for dilute gases.182  
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Figure 5.3: a) Diffusion in the random thermal motion of the molecules, characterised by a 

diffusion coefficient D (m2s-1); b) Brownian motion of a particle in a liquid formed by so small 

molecules that they effectively form a continuum with respect to the diffusing solute particle. 

Source: Adapted from Price et al., 2009182 

Importantly, in a multicomponent system each of the components will present its own 

characteristic diffusion coefficient. In addition, the structure of a system in which another species 

is diffusing will restrict its motion and forbid an isotropic diffusion, hence affecting the rate of 

propagation and the pattern of its time-dependence. 

Self-diffusion can be seen from a molecular level perspective, hence as a many-body effect in which 

each molecule is considered individually, or from a macroscopic level, in which the particles are 

taken as a continuum, reducing the phenomena to a one-body stochastic problem. Most of the 

experimental techniques work on a timescale sensitive to the macroscopic behaviour, with the 

self-diffusion coefficient D defined as (Equation 5.1) 

𝐷 = lim
௧→ஶ

1

2𝑡
〈[𝑟௜(𝑡) − 𝑟௜(0)]ଶ〉 Equation 5.1 

where ri(t) is the location of particle i at time t and 〈[𝑟௜(𝑡) − 𝑟௜(0)]ଶ〉 is the mean square 

displacement (MSD).182 

Self-Diffusion coefficient measurements - PGSE NMR: 

NMR provides a unique method for the non-invasive measurement of translational motion. 

Self-diffusion measurements rely on spin-echo, at first in the presence of a static magnetic 

gradients (i.e., Steady Gradient Spin-Echo or SGSE NMR), following improved by the application of 

the magnetic gradients as pulses (i.e., Pulsed Gradient Spin-Echo NMR or PGSE NMR).182 

In addition, the most common sequences in PGSE NMR are the Hahn spin-echo sequence (SE) and 

the stimulated echo sequence (STE). In PGSE NMR the nuclei are spatially labelled using a magnetic 

field gradient pulse which imparts a position-dependent phase shift. A delay is elapsed before a 

second gradient pulse is applied to reverse the effect of the first. Diffusion of the molecules within 

the delay period leads to an incomplete refocusing and a reduced signal intensity. Typically, the 
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signal intensity is recorded as a function of the amplitude of the gradient pulse. The self-diffusion 

coefficient can then be extracted by fitting the data to the Stejskal-Tanner Equation:234   

ln ൬
I

I଴
൰ = −γଶδଶD ൬

∆ − δ

3
൰ gଶ Equation 5.2 

where D is the diffusion coefficient, γ is the nuclei gyromagnetic ratio, δ is the gradient length, 

g the gradient strength and ∆ the diffusion time. 

The application of magnetic field gradients allows to spatially differentiate the NMR signal, 

as nuclei in different section of the sample will experience a different magnetic field and hence 

precess at different frequency.235 

5.1.4 STD NMR applied to hydrogel systems 

Chapter 2 presents STD NMR methodology in detail. Briefly, for macromolecules undergoing 

Brownian motion in solution, STD NMR consists of the selective saturation of the macromolecule 

followed by saturation spread throughout the whole macromolecule via intramolecular and 

intermolecular NOE. Subsequently, the magnetisation is transferred to fast-exchanging binders by 

intermolecular NOE. 

In soft matter, STD NMR has been used to study both gelator and solvent molecules. The first 

application of STD NMR to study water in gels system was reported by Yadama-Nosaka et al., in the 

study of a hydrophilic poly(hydroxyethyl methacrylate) and a hydrophobic of poly(methyl 

methacrylate) hydrogels.236 Specifically, they classified the water contained in these membranes 

as bound, intermediate and free water. The bound water was claimed to be too rigid to be detected 

by NMR (signal too broad), hence the detected NMR water signal was attributed to intermediate 

and free water. By selective saturation 20 ppm up-field of the observed water signal, reduction of 

water signal intensities was recorded for both hydrogels and attributed to saturation transfer via 

fast-exchange between observable and unobservable water.  

About 15 years later Mahajan et al., reported the use of STD NMR to monitor the site-specific 

interactions between water and gelator molecules within gels formed by pyrene-grafted 

glutathione (γ-glutamyl-cysteinyl-glycine; GSH).237 The water peak was selectively saturated and 
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the transfer of magnetisation from water to the GHS-pyrene protons monitored in a sample in the 

process of gelling (hence, in viscous fluid ‘gels’ state to reduce line broadening). Thus, qualitative 

indication of which protons are affected upon gelation was achieved. Lozano et al., applied 

STD NMR to study asparagine/tryptophan organogel.53 Importantly, they reported that setting the 

on-resonance frequency at -1 ppm, a reduced peak intensity was recorded for both the gelator and 

the solvent resonances. This demonstrated the existence of a rigid gel solid phase hidden below 

the baseline due to fast transverse relaxation rate. 

In addition to its role to unveil solvent-network interactions, STD NMR has been used to monitor 

the interaction of other substrates within the gel network. Segarra-Maset et al.,238 investigated the 

interaction of dopamine and related substances with amino acid-based hydrogels and obtained 

relative affinity values by competition experiments either with free gelator molecules or with an 

added substrate. 

A literature research with Google Scholar and Web of Science revealed that, in the last 5 years, 

only 6 papers have been published with STD NMR applied for the study of gels, and all of them 

from our research group at UEA, with the exception of the work carried by Wallace et al.239, 

University of Liverpool (currently also at UEA).  Ramalhelte et al. proved STD NMR a valuable tool 

to assess exchange phenomena at the gel/solution interface in supramolecular amino acid based 

hydrogels.240  Wallace et al. focused instead in the indirect characterisation of fibre surface 

properties (i.e. charge, hydrophobicity and ion-binding dynamics) in N-functionalised dipeptides 

hydrogels and used STD NMR to characterise interactions of probe molecules to the gel surface.239  

Finally, the work published by Calabrese et al. is the first example of STD NMR applied to the 

investigation of the state of water in carbohydrate-based hydrogels and it is an important starting 

point for our study.207 Briefly, the work focused on the study of heat-induced gelation in 

TEMPO-oxidised cellulose hydrogels (OCNF - 1wt% and 4 wt% concentrations). These were 

compared with cationic cellulose hydrogels (CCNF - 1wt% and 4 wt% concentrations), which did 

not present any changes in their physical properties upon temperature raise.  

STD NMR was measured by selective saturation of the polysaccharide fibrils network at 1 ppm and 

the saturation transfer to the solvent monitored at 4 seconds saturation time and variable 

temperature. Importantly, the gels were prepared in D2O. This detail is of extreme importance for 
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two main reasons: (i) the recorded solvent signal in the spectra belongs to HDO, derived from the 

chemical exchange process which takes place from D2O and exchangeable protons from OH and 

NH2 functional groups: 

RH +  DଶO ↔ RD + HDO 

The signal is proportional to the number of exchangeable protons present in the system; (ii) the 

low presence of 1H nuclei strongly limits the contribution of chemical exchange to the saturation 

transfer from the gel fibrils to the solvent (Figure 5.4).  

 

Figure 5.4: For gels in D2O the contribution from direct transfer through chemical exchange 

between HDO and the hydroxyl group of cellulose can be discarded as most of the cellulose 

hydroxyl group will be deuterated. Minimising the contribution of chemical exchange to the 

apparent STD factor of water, a more accurate estimation of the population of network-bound 

water is achieved. Source: Calabrese et al., 2019207  

5.1.5 A new methodological tool: Spin Diffusion Transfer Difference (SDTD) 

NMR 

We rationalised a strong dependence of STD NMR absolute signal on gelator and solvent 

concentrations. For hydrogels formulated in D2O, the final concentration of HDO in the sample 

depends on the gelator chemical nature, on its concentration and on the formulation conditions 

(e.g. environmental humidity, exposure to air, purity of D2O - just to mention few). All those factors 

determine the presence of an unpredictable concentration of HDO in the sample, which in turn 
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would affect the STD signal recorded, hence precluding comparison between different sets of 

hydrogels.  

In addition, after selective saturation of the gelator network, the magnetisation will spread among 

the network components at different rate: the stronger dipole-dipole interactions established by 

thicker, more solid-like gels determine a faster magnetisation spreading in comparison to softer 

gels. This precludes comparison between different concentrations of the same materials, as well 

as comparison between gelators which presents different thickening effects.  

Three mechanisms can be ascribed to the gel network - water magnetisation transfer observed: 

(i) proton exchange, (ii) NOE and (iii) spin diffusion. Following formulation of gels in D2O the proton 

exchange mechanism has a lower statistical probability, while NOE is expected to be less effective 

in anisotropic conditions, hence spin diffusion is the major active component for magnetisation 

transfer from the fibrils to the bound HDO.241-243  

5.1.5.1 Spin Diffusion 

Spin diffusion is a cross-relaxation phenomenon, which causes a mutual exchange of spin 

magnetisation at a rate larger than the spin-lattice relaxation of the protons, and can be depicted 

as the recovery of spatially uniform magnetisation in a system removed from a state of 

thermodynamics equilibrium.241, 243 In solution state, multiple spin systems relaxation theory 

usually ignores the correlation between dipolar coupling and motion of a proton pair, simplification 

acceptable for systems showing an overall isotropic rotational diffusion.243  

Nonetheless, in solids and gel-like samples (e.g. particulate gels) the dipolar coupling is not 

averaged out by the isotropic tumbling of the molecules (we are in the presence of anisotropic 

interactions). Thus, the spin diffusion phenomenon is not related to molecular motion but to a 

coherent effect due to the 1H-1H dipolar interactions.244,245 For this reason, NOE-based solid-state 

NMR pulse sequences are often referred to as spin diffusion, as the incomplete MAS averaging of 

the strong homonuclear dipolar coupling determines spin diffusion to be the dominant mechanism 

of magnetisation transfer in solids. To avoid confusion, both definitions of spin diffusion are usually 

classified as coherent spin diffusion (solids) and incoherent spin diffusion (liquids).  
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In semisolid samples (e.g. gels), both coherent and incoherent spin diffusion can play a role, 

although the contribution of coherent spin diffusion is expected to be much larger than the 

incoherent mechanism. In this work, when we use the term spin diffusion, we will be referring to 

coherent spin diffusion. 

Two factors contribute to the spin diffusion coefficient, 𝐷௦௣ (Equation 5.3): (i) the intermolecular 

flip-flop process (Df) and (ii) the translational displacement of the molecules (Dtr).241, 246, 247 

𝐷௦௣ =  𝐷௙ + 𝐷௧௥ Equation 5.3 

The intermolecular flip-flop process is a spontaneous phenomenon when the energy levels of two 

spins connected by dipolar coupling (e.g. the αβ and βα levels in a two spins I=1/2 system) have 

the same energy (Figure 5.5, a), although this is rarely the case for isotropically tumbling molecules 

in solution (Figure 5.5, b). The situation is different for solids and solid-like systems, where the 

existence of a dense network of dipolar coupled nuclear spins causes overlapping between some 

of the αβ and βα levels (Figure 5.5, c). In this case the flip-flop transitions between these levels is 

energy conserving and spin diffusion occurs.248 Importantly, protonated solids and solid-like 

systems present significant 1H-1H dipolar couplings compared to the chemical shift differences, 

hence those dipolar couplings are the driving force for spin diffusion to occur.247, 248 In addition, 

characteristic times of these intermolecular flip-flop transitions (𝜏௙ ≫ 10ିଶ − 1 s, where 𝜏௙ is the 

mean flip-flop time of a dipolar coupled spin pair) are greater for colloidal dispersions because of 

the higher mobility of the molecules in liquid.241 

 

Figure 5.5: Energy levels for: (a) two equivalent dipolar coupled spins with degenerate αβ and βα 

energy levels. The energy-conserving “flip–flop” transitions is allowed, and cross-correlation 

occurs; (b) two inequivalent dipolar coupled spins, hence the transition is not energy conserving 
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and its probability is low, and (c) two inequivalent spins coupled to (many) other spins. Broadening 

of the two-spin system energy levels causes overlap between some of the αβ and βα levels, hence 

cross-correlation has high probability and spin diffusion occurs. Source: adapted from 

Emsley et al., 2009.248 

In the case of macromolecular solutions and high molecular weight particles dispersions,  τ௙ shows 

a molecular mass dependence, i.e. it initially decreases with the increase of the MW and becomes 

independent after a  critical molecular mass N* (hence, it reaches a constant value), as expressed 

by Equation 5.4:   

τ௙ = τ௦𝑁∗ଷ.ସ Equation 5.4 

where τ௦ is the segmental relaxation time (10-11 - 10-9 s) and N represent the number of Kuhn 

segments per macromolecule. Importantly, the relationship between the spin diffusion coefficient 

𝐷௦௣ and the self-diffusion coefficient 𝐷௦ௗ is dependent on the relationship between N* and the 

molecular mass of the dispersed particles, with 𝐷௦௣ ≈ 𝐷௦ௗ for 𝑁 ≪ 𝑁∗, and 𝐷௦௣ ≫ 𝐷௦ௗ for 𝑁 ≫ 𝑁∗ 

(as τ௙ of the macromolecules resembles anomalous diffusion). Indeed, for  𝑁 ≪ 𝑁∗ the rate of 

flip-flop transition is slow in comparison with the macromolecule relaxation time and the levelling 

of the spatially distributed magnetisation lines up with the macromolecule self-diffusion. On the 

contrary, when 𝑁 ≫ 𝑁∗ the flip-flop transition is faster than relaxation, hence spatially distributed 

magnetisation will equilibrate at times τ௙, while the macromolecule segments will self-diffuse with 

a longer time, hence 𝐷௦௣ ≫ 𝐷௦ௗ.241  

Fisher, Kimmich, Fatkullin247 and Yatsenko246 measured intermolecular spin diffusion process via 

field gradient NMR diffusion in the steady gradient of a superconducting fringe field. For example, 

Fisher et al.,247 measured spin diffusion in a polyethylene oxide sample by division of the 

stimulated-echo amplitude attenuation derived from experiments performed with and without 

field gradient. In the first experiment (with field gradient, where the sample was subjected to the 

magnet fringe field) the obtained echo-attenuation depended on the overall contribution of 

transverse relaxation, spin–lattice relaxation, dipolar correlation, and diffusion. In the second 

experiment the sample was placed in the centre on the corresponding magnet and therefore 

subjected to a homogeneous field. Consequently, the echo-attenuation was governed by 

relaxation and dipolar correlation effects only, with no contribution of translational diffusion. 
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In addition, solid-state NMR experiments on membrane proteins and plant cell wall demonstrated 

the effectiveness of intermolecular magnetization transfer at the solid-liquid interface either from 

a mobile249 or rigid250 source via spin diffusion.  

It was reported that the magnetization time-space evolution via spin diffusion is described by a 

Gaussian displacement probability251-253 and follows a macroscopic 1D diffusion equation.247, 251-253 

The selective saturation applied to the gelator network creates a nonuniform magnetization profile 

throughout the sample, which is then transferred to the HDO molecules in proximity with the 

gelator 3D network with a length scale evolution on the order of the root mean square 

displacement during the saturation time (Δz௥௠௦ = ඥ𝐷𝑡௦௔௧).251 The overall time required to the 

magnetisation to achieve spatial equilibration depends on the morphology of the molecular entity, 

hence on its proton-proton distances and protons density. 

Spin diffusion kinetics is described by Fick’s 2nd law of diffusion 

M(𝑟, 𝑡) = ∇[D(𝑟)∇M(r, t)] Equation 5.5 

Where ∇ is the Laplace operator, D is the diffusion gradient, r is the space vector, t is the diffusion 

time and M(r, t) is defined as the ratio between the z-magnetisation m(r, t) and the mass fraction 

of protons mୌ(r), which in turn depends on the proton density Qୌ and on the molecular entity 

total volume V୲୭୲ 

M(r, t) = m(r, t)/mୌ(r) = m(r, t)/(Qୌ, V୲୭୲)(r) Equation 5.6 

The solution of the diffusion equation for a point source is the Gaussian function:  

M(r, t) = (M଴/4𝜋𝐷௧)eି௥మ/ସ஽௧ Equation 5.7 

While for an infinite solid the error function of the Gaussian function can be a solution for the 

diffusion equation 

M(r, t) = 1
2ൗ M଴erfc(r − 𝑟଴/√4𝐷𝑡) Equation 5.8 

Let us consider a two-phase system A and B in which the nonequilibrium spatial distribution of the 

magnetisation is achieved by selective saturation of protons of phase A, and the magnetisation 

diffusion to phase B is detected. The diffusion of magnetisation for each phase is described by the 

error function 
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M୅(r, t) = E୅ + F୅erfc(r − r଴/ඥ4D୅t) Equation 5.9 

M஻(r, t) = E஻ + F୆erfc(r − r଴/ඥ4D஻t) Equation 5.10 

where E୅ and E஻ represent the spin populations in phase A and phase B, while F୅and F୆ represent 

the field experienced by in phase A and phase B, respectively. For 𝑡 = 0 

E୅ + F୅ = M୅,଴ Equation 5.11 

E஻ + F஻ = M஻,଴ = 0 Equation 5.12 

Using the interface condition that E୅ = E஻ and the flux equilibrium at the interface 

j୅(𝑟଴, 𝑡) = j୆(𝑟଴, 𝑡) it can be shown that 

M஻(r, t) = ൫M୅,଴ඥD஺𝑄ு஺ ඥD஺𝑄ு஺ + ඥD஻𝑄ு஻ൗ ൯𝑒𝑟𝑓𝑐(r − r଴/ඥ4D஻t) Equation 5.13 

And in the conditions D஺ ≫ D஻ Equation X can be simplified to 

M஻(r, t) = M୅,଴𝑒𝑟𝑓𝑐(r − r଴/ඥ4D஻t) Equation 5.14 

5.1.5.2 Transforming the STD data  

By acquiring experiments at increasing saturation times, the build-up curve of the rigid-to-mobile 

magnetisation transfer is obtained. For the experiment to be successful, the following conditions 

must be fulfilled: 

1. The small molecule (HDO) in phase B is in fast exchange conditions between the free and 

the bound state with phase A, so that the overall exchange constant (Equation 2.30, 

Chapter 2) is high due to a 𝑘௢௡ that can be considered at the diffusion limit and a high 

𝑘௢௙௙ constant, so that 𝑘௘௫ ≫ 𝐷௜௡௧௘௥௙௔௖௘; 

2. Hence, the half-life time of the small molecule/macromolecule instantaneous interaction 

is expected to be low compared to the interfacial diffusion time. Therefore, several cycles 

of association-dissociation of the small molecule will take place before the magnetization 

can be efficiently transported from phase A to phase B, where it will be detected.  

3. Free HDO molecules in phase B present almost no differences between the spin diffusion 

and the self-diffusion coefficient (𝐷௦௣ ≈ 𝐷௦ௗ, a condition that we have already 

encountered in section 5.1.4.1). The small molecules, once received the magnetisation 

interacting with the macromolecule (phase A), will maintain it for long time. Indeed, the 
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process of relaxation through spin diffusion for small molecules is highly inefficient and 

therefore they must relax through different mechanisms (i.e. longitudinal relaxation). 

This will create a new nonequilibrium spatial distribution of magnetization along the 

protons of phase B, described by Equation 5.14. Spin diffusion at the interface is the 

slowest and rate-limiting process and it dominate the kinetics of magnetisation transfer in 

phase B. Hence, it is possible to substitute 𝐷஻  within 𝐷௜௡௧௘௥௙௔௖௘ in Equation 5.14. 

4. Finally 𝐷௜௡௧௘௥௙௔௖௘ can be easily obtained experimentally by changing the time of saturation 

in 1H NMR STD pulse sequence, selecting specific protons of phase A and detecting the 

diffusion of magnetization in the phase B through the proportionality 𝑀஻ ∝ 𝐼 𝐼଴⁄ . 

Point 4 defines that it is necessary to relate them to the equilibrium value for 𝑡௦௔௧ → ∞ by scaling 

the data against the highest obtained STD signal. Hence, we perform a standard normalisation 

using the highest STD signal as a scaling factor to finally obtain the Spin Diffusion Transfer 

Difference (SDTD) values. The SDTD values are then plotted against the square root of the 

saturation time (ඥ𝑡௦௔௧) and the obtained spin diffusion build-up curve can be simulated 

numerically via mathematical fit to the 1D diffusion equation252, 253 (Equation 5.15): 

𝑆𝐷𝑇𝐷 = 𝐶 ∙ 𝑒𝑟𝑓𝑐 ቈ
𝑟

2 ∙ ඥ𝐷 ∙ 𝑡௦௔௧

− 𝑏቉ Equation 5.15 

where SDTD is the normalised STD intensity values, C is the proportionally constant of the fit, erfc 

is the complementary error function, r is the minimum distance between the gel network and the 

HDO molecules (expressed in nm), D is the spin diffusion coefficient at the solid-liquid interface 

(expressed in nm2/ms), 𝑡௦௔௧ is the saturation time (expressed in ms) and b is a correction factor to 

centre the gaussian distribution. In this way, for each saturation time 𝑡௦௔௧ one can determine the 

amount of magnetisation which has diffused from the gelator network to the surrounding water. 

In addition, this approach allows comparison of the speed of growth for different STD curves. 

Through comparison of different curves, information can be inferred. Two factors determine the 

shape of the SDTD curves (Figure 5.6, a): (i) the minimal distance in the solvent-network r 

(Figure 5,6, b) determines the initial part of the curve, also called lag phase. The longer is r, 

the greater is the lag phase. To obtain a correct fit of the curve and sample the lag phase, it is 

necessary to perform the experiments starting from shorter saturation times than in conventional 



Chapter 5 – Spin Diffusion Transfer Difference (SDTD) NMR 

203 
 

STD (0.05 seconds and above); and (ii) the spin diffusion coefficient D determines the slope of the 

curve. The larger the value, the higher the slope. Importantly, both r and D are parameters related 

to the degree of solvent structuration within the gel network, as faster spin diffusion rates D and 

shorter distances r reflect increased solvent structuration.  
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Figure 5.6: a) Schematic representation of the parameters affecting the SDTD curves shape; b) grid 

approximation of the spin diffusion model. 

Mathematical fit of the SDTD curve is performed by variation of either the distance r or the spin 

diffusion coefficient D parameters, while maintaining the other parameter constant. Throughout 

this work, the value r was fixed to 0.2 nm in accordance to previous studies reporting on 

water-particle interfaces.249 Since spin-diffusion is primarily determined by the rate-limiting steps 

of magnetization transfer across the gelator-water interface, the spin diffusion build-up curves are 

largely independent from the thickness of the hydration shell.  Hence, only the closer bound water 

is represented by the SDTD curves.  

5.2 Experimental section 

This chapter presents the results of a systematic study on the experimental conditions affecting 

the recorded absolute STD values and in the development of a novel STD NMR methodology, which 

we named Spin Diffusion Transfer Difference (SDTD) NMR. The obtained data (SDTD curves) can 

be modelled by the 1D diffusion equation (Equation 5.15), which describes the “rigid-to-mobile” 

magnetisation transfer via spin-diffusion that occurs between the gel network and the interacting 

water molecules. The SDTD data are important to explore changes in solvent structuration in 

different systems and to establish correlations between solvent structuration and material 

properties. 
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5.2.1 Model validation 

The modelling of the spin diffusion kinetics for large particles dispersed in solution (i.e. of very slow 

rotational and translational diffusion) by Equation 5.15 has been validated experimentally by 

monitoring the evolution of the HDO peak of two carbohydrate-based dispersions in D2O: (i) a 

liquid-like OCNF 1 wt% dispersion, and (ii) a viscous corn starch (CS) 15 wt% gel (Figure 5.7 a and 

b). STD NMR experiments at different 𝑡௦௔௧ ranging from 50 ms to 8 s and 5 s for OCNF and CS, 

respectively (Figure 5.8, a) were recorded. Normalisation of the obtained STD intensities against 

the highest STD value was performed, the resulting data were plotted against the 𝑡௦௔௧ square-root 

and fit to Equation 5.15 (Figure 5.8, b). Several values of the b parameter were tested to reach the 

best fit. In this regard, it should be noted that, as the parameter D is dependent on the b value 

used during the fit, only D values obtained from curve fits carried out using the same b can be 

compared. Thus, when comparing SDTD curves for which different b values give the best fit, 

a compromise value must be chosen to determine D. 

 

Figure 5.7:  Off-Resonance (red) and STD (blue) HDO peak for a) OCNF 1wt% and b) CS 15wt% at 

5 s saturation time and 298 K. on-resonance frequency of -1 and 0 ppm for OCNF and CS, 

respectively, and off-resonance frequency of 50 ppm. 
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Figure 5.8: a) STD and b) SDTD build-up curves of the HDO peak for the OCNF 1 wt% dispersion 

(pale yellow) and corn starch (CS) 15 wt% gel (red) prepared in D2O. Solid lines are fits to 

Equation 5.15. 

The comparison of the SDTD build-up curves of OCNF 1 wt% and CS 15 wt% shows the faster spin 

diffusion growth at the CS-water interface (Figure 5.8, b and Table 5.1), indicating that, 

as expected, the degree of structuration of water is significantly higher in the viscous CS gel 

compared to the liquid-like OCNF dispersion. Table 5.1 reports the parameters used to fit the SDTD 

curves to Equation 5.15 and the resulting D values. 
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Table 5.1: Calculated values for the C and D parameters obtained from the fit to Equation 5.15 of 

the SDTD build-up curves of the HDO peak for the OCNF 1 wt% and CS 15 wt% dispersions. b and r 

parameters were fixed at a value of 1 and 0.2 (nm), respectively. The errors associated to each C 

and D value are shown and correspond to the 99% confidence level. The R2 values of each fit to 

Equation 5.15 are shown. 

 OCNF 1 wt% CS 15 wt% 

C 1.14 1.12  

error ± 0.13 ± 0.14 

D (nm2/ms) 9.80 x10-5 1.28 x10-4 

error ± 1.13 x10-5  ± 1.70 x10-5 

R2 0.9951  0.9952  

5.2.2 The effect of solvent concentration on STD and SDTD build-up curves 

As it is mentioned above, the chemical exchange mechanism for saturation transfer is limited by 

the preparation of the dispersions/gels in pure D2O, hence limiting the HDO concentration to the 

proportion of exchangeable protons originating from the gelator molecules. Nonetheless, it is 

extremely difficult to maintain the HDO concentration under precise control due to its dependence 

on (i) the 2H purity of the batch of deuterated solvents employed, (ii) the relative humidity of the 

environment and air exposition, and (iii) the solid content of the gel and (iv) the chemical structure 

of the gelator. 

In this regard, it is important to note that the STD NMR signal is proportional to the fraction of 

ligand bound, henceforth referred as fraction of bound water (𝑓ௐ஻). As expressed in Chapter 2, 

Equation 2.36, the fraction of ligand bound is inversely proportional to the total concentration of 

ligand (HDO in the presented case). Therefore, an increase of the total HDO concentration 

([𝐻𝐷𝑂]்ை்) determines a reduction in 𝑓ௐ஻ (as expressed by Equation 5.16, where the total HDO 

concentration - [HDO]TOT - appears in the denominator) and in turn a decrease in the recorded STD 

factor.  
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𝑓ௐ஻ =  
[𝑁𝑒𝑡𝑤𝑜𝑟𝑘 − 𝐻𝐷𝑂]

[𝐻𝐷𝑂]்ை்

 Equation 5.16 

To investigate the effect of [𝐻𝐷𝑂]்ை்  on the SDTD build-up curve, we carried out H2O titrations 

(used concentrations: below 1 wt%, 5 wt%, 10 wt%, 20 wt% and 30 wt%) to OCNF 1 wt% 

dispersions prepared in D2O. Comparison of the STD (Figure 5.9 , a) and SDTD (Figure 5.9, b) 

build-up curves for HDO binding to OCNF particles shows that, when we applied the SDTD 

methodology to these data, the effect of HDO concentration on the observed SDTD values was 

cancelled out, resulting in the overlapping curves for all the HDO concentrations sampled. 

Importantly, in the considered experimental conditions the contribution of the chemical exchange 

phenomenon to the magnetisation transfer can still be neglected.  

The mathematical fit the Equation 5.15 yielded C and D parameters, reported in Table 5.2. 

 

Figure 5.9: a) STD and b) SDTD build-up curves for HDO binding to OCNF 1 wt% dispersion acquired 

at different H2O/D2O ratios. The H2O concentrations used range from < 0.1 wt% (purple), 5 wt% 

(yellow), 10 wt% (red), 20 wt% (green) and 30 wt% (light blue). A b value of 1 was used to obtain 

the best fit for the EpC SDTD curves.  
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Table 5.2: Calculated values for the C and D parameters obtained from the fit to Equation 5.15 of 

the SDTD build-up curves of the HDO peak for OCNF 1 wt% dispersions prepared with different 

concentrations of H2O. An r value of 0.2 nm and a b value of 1 were kept constant during the fit. 

The errors associated to each C and D value are shown and correspond to the 99% confidence 

level. The R2 values of each fit to Equation 5.15 are shown. 

HDO <1% 5% 10% 20% 30% 

C 1.14  1.15  1.13  1.13  1.11 

error ± 0.13 ± 0.11 ± 0.15 ± 0.18 ± 0.12 

D (nm2/ms) 9.80 x10-5 9.36 x10-5 9.64 x10-5 9.66 x10-5 9.93 x10-5 

error ± 1.13 x10-5 ± 9.35 x10-6 ± 1.31 x10-5 ± 1.59 x10-5 ± 1.12 x10-5 

R2 0.9951 0.9963 0.9930 0.9897 0.9952 

5.2.3 The effect of gelator concentration on STD and SDTD build-up curves: 

SDTD reports on changes in the degree of solvent structuration 

The solution-to-gel transition which characterise the gelation process is generally dependent on 

the gelator concentration. In the STD NMR context, it should be noted that an increase in the 

gelator concentration determines a change in the number of binding sites available for the solvent,  

an increase in the 𝑓ௐ஻ and, in turn, higher STD factors. In addition, the stronger dipolar interactions 

in more viscous or stiffer network boost spin diffusion and hence a higher amount of magnetisation 

will be transferred from rigid to mobile components. The combination of these factors hinders the 

understanding of solvent structuration via conventional STD NMR. 

To prove the independence of the SDTD build-up curves from gelator concentration, we applied 

the SDTD method to a dispersion of neutral enzymatically produced cellulose (EpC).128 As expected, 

STD NMR absolute signal increased with the increasing of EpC concentration (Figure 5.10, a), 

while the SDTD build-up curves showed a perfect overlap for the three EpC concentrations tested 

(Figure 5.10, b). This and the three reported almost identical spin diffusion coefficients D derived 
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from Equation 5.15 (Table 5.3) reveal no significant changes in the magnetisation transfer at the 

solid-liquid interface. The data prove that (i) solvent structure is not influenced by EpC 

concentration, and (ii) the differences observed in the STD build-up curve are strictly due to 

changes in the fraction of bound solvent.  

 

Figure 5.10: a) STD and b) SDTD build-up curves for HDO binding to EpC 0.5 wt% (light blue), 1 wt% 

(green) and 2 wt% (red) gels; A b value of 1 was used to obtain the best fit for the EpC SDTD curves. 

Table 5.3: Calculated values for the C and D parameters obtained from the fit to Equation 5.15 of 

the SDTD build-up curves of the HDO peak for EpC dispersions at different concentrations. An r 

value of 0.2 nm was kept constant during the fit. A b value of 1 was used to fit the EpC SDTD curves. 

The errors associated to each C and D value are shown and correspond to the 99% confidence 

level. The R2 values of each fit to Equation 5.15 are shown. 

Gelator conc.  0.5 wt% 1 wt% 2 wt% 

C 1.24 1.19 1.24  

error ± 0.06 ± 0.04 ± 0.04 

D (nm2/ms) 8.85 x10-5 9.25 x10-5 8.88 x10-5 

error ± 3.06 x10-6 ± 2.97 x10-6 ± 5.40 x10-6 

R2 0.9942 0.9953 0.9949 
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A different scenario is expected for systems where gelation occurs due to a change in solvent 

structuration, in which case changes of the network-solvent interactions would correspond to a 

variation in the magnetization transfer at the network-solvent interface. We predicted this to be 

reported by changes in our SDTD curves, as well as in the spin diffusion coefficient D.  

We used OCNF dispersions at increasing concentrations as a case study. As explained in section 

5.2.1.1, the gelation mechanism OCNF has been attributed to the establishment of fibril-fibril 

interactions with (i) no interactions for OCNF concentrations below 1 wt%, (ii) between 1 wt% and 

1.5 wt% repulsive interactions start emerging,  and (iii) above 1.5 wt% repulsive interactions 

between the OCNF fibrils are evident.227 

Acquisition of the STD build-up curves and application of the SDTD methodology to three different 

OCNF concentrations (0.5 wt%, 1 wt% and 2 wt%) show an increase of both STD and SDTD factors 

(Figure 5.11, a and b), and the faster SDTD build-up implies that water becomes more structured 

upon increasing the concentration of gelator (Figure 5.11, b). The mathematical fit the Equation 

5.15 yielded C and D parameters are reported in Table 5.4. 

The increased degree of structuration of water at higher OCNF concentration might be due to 

(i) the formation of denser networks of structured water that shields the increased concentration 

of repulsive interactions, (ii) the increased presence of Na+ ions onto the surface of OCNF fibrils 

leading to reduced fibril-fibril repulsion and, therefore, increased fibril-fibril overlap and water 

confinement, and (iii) the  enhanced structuration of water around the Na+ ions bound to the 

fibrils.227 However, as Na+ is only present at stochiometric ratios in our samples (very small 

compared to the HDO concentration), we expect a negligible contribution of the latter and a major 

role of the denser networks of structured water within the more confined space between fibrils. 
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Figure 5.11: a) STD and b) SDTD build-up curves for HDO binding to OCNF 0.5 wt% (light blue), 1 

wt% (green) and 2 wt% (red) gels. A b value of 2 was used to obtain the best fit for the OCNF SDTD 

curves. 

Table 5.4: Calculated values for the C and D parameters obtained from the fit to Equation 5.15 of 

the SDTD build-up curves of the HDO peak for OCNF dispersions at different concentrations. An r 

value of 0.2 nm was kept constant during the fit. A b value 2 was used to fit the OCNF SDTD curves. 

The errors associated to each C and D value are shown and correspond to the 99% confidence 

level. The R2 values of each fit to Equation 5.15 are shown. 

Gelator conc. 0.5 wt% 1 wt% 2 wt% 

C 0.76  0.69 0.65 

error ± 0.06 ± 0.04 ± 0.04 

D (nm2/ms) 3.93 x10-5 4.86 x10-5  5.91 x10-5 

error ± 3.06 x10-6 ± 2.97 x10-6 ± 5.40 x10-6 

R2 0.9964 0.9975 0.9940 
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Hence, the independence of the SDTD factors from solvent and gelator concentrations allow to 

monitor changes in the degree of water structuration within gel networks of different gelator 

concentrations.  

5.2.4 SDTD NMR characterisation of the role of co-solvents on the 

alcohol-induced gelation of OCNF hydrogels 

The alcohol-induced gelation of OCNF was recently investigated by rheology and SAXS.254 Three 

alcohols (i.e. methanol, ethanol and 2-propanol - in order of decreasing hydrophilicity) were tested 

in their ability to induce OCNF gelation in mixtures with water. Alcohol’s 

hydrophilicity/hydrophobicity on its own did not explain the observed macroscopic properties. For 

example, methanol was able to induce gelation at the lowest concentration, followed by 

2-propanol and ethanol. However, methanol and ethanol gels gave the weakest and stronger gels 

at the point of gelation, respectively. 2-propanol showed reduced stiffness compared to ethanol. 

With the exception of methanol gels, the analysis of SAXS data showed an increase in the 

cross-section of the OCNF nanofibrils above the gelation and phase separation concentrations.254 

The authors proposed that, as Na+ is less soluble in ethanol and 2-propanol than in water 

(similar solubility in methanol and water), the gel formation could be driven to some extent by the 

aggregation of OCNF fibrils due to the increased condensation of Na+ ions onto the surface of OCNF 

fibrils at higher ethanol and 2-propanol concentrations.254 However, they also pointed out that the 

difference in the solubility of NaCl in ethanol and methanol is not large enough to explain the 

substantial differences of stiffness and fibril-fibril overlap between these alcohols (methanol gels 

are much weaker than ethanol gels), and suggested that other mechanisms must be involved. 

Thus, we hypothesised that water structuration must play an important role in the gelation 

mechanism of OCNF-alcohol mixtures. 

To test our hypothesis, we studied a series of OCNF gels prepared in cosolvent mixtures of water 

(D2O) and low molecular weight alcohols. The D2O-exchanged alcohols methanol (MeOD), ethanol 

(EtOD) and 2-propanol (2-PrOD) were studied at several concentrations (10 wt%, 30 wt%, 50 wt% 

and 60 wt%). An OCNF concentration of 1 wt% was used for all gels, and a dispersion of OCNF 

1 wt% prepared in D2O was employed as control sample. 
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Notably, the SDTD curves clearly demonstrates the preferential binding of HDO to OCNF at all 

alcohol concentrations (much faster growth of the SDTD build-up curves of HDO compared to the 

alcohols; Figure 5.12). These results indicate that water constitutes the first solvation shell(s) of 

OCNF nanofibrils, while the alcohol component would only establish indirect interactions mediated 

by water.  

 
Figure 5.12: SDTD NMR build-up curves of the HDO alcohol peaks in OCNF 1 wt% gels prepared in 

a) D2O/MeOD, b) D2O/EtOD and c) D2O/2-PrOD cosolvent mixtures of 10 wt% (blue symbols), 30 

wt% (green symbols), 50 wt% (red symbols) and 60 wt% (orange symbols) alcohol content. 

Note the faster growth of the SDTD build-up curves for HDO compared to the alcohols in all the 

gels. 

Aiming to monitor the degree of structuration of HDO before, during and after gelation (i.e. upon 

addition of increasing concentrations of alcohol), we calculated the spin diffusion rate D of HDO 

for each water/alcohol gel (Figure 5.13, a, b, c and Table 5.5, 5.6 and 5.7), and normalised it against 

the spin diffusion rate D0 of HDO (D0  = 7.71 x10-5 nm2/ms) for the control sample without alcohol 

(OCNF 1 wt% in D2O). Thus, the D/D0 ratio of HDO was plotted as a function of alcohol content 

(Figure 5.13, d). Firstly, we note lower D/D0 values for the MeOD compared to the EtOD and 2-PrOD 

gels above the point of gelation. Also, MeOD gels showed a significant D/D0 decrease up to 30 wt% 

followed by an increase up to the D/D0 ~ 1 (i.e. very similar to the control sample) at 60 wt% of 

MeOD (no syneresis observed at this concentration). This suggest a lower capacity of MeOD to 

induce water structuration in OCNF gels compared to EtOD and 2-PrOD. which correlates with 

previous SAXS studies showing that the cross-section and overlap of OCNF fibrils do not vary 

significantly with methanol concentration.254  
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On the other hand, ethanol gels showed a continuous increase of D/D0 upon gelation (30 wt% of 

ethanol) and up to 60 wt% of alcohol content, while the D of ethanol was not significantly affected 

(Figure 5.13, d - point of syneresis indicated with a star). This suggests that the degree of 

structuration of water within the gel network increases with ethanol concentration, 

which correlates to the ethanol-induced increase of the average OCNF fibril cross-section 

(i.e. increase of fibril-fibril overlap), whereas the structuration of ethanol is barely affected. 

This further confirms that ethanol does not interact directly with the OCNF network, but possibly 

forms microdomains similar to what was described before for the mechanism of alcohol-induced 

gelation of clays.255 Regarding 2-propanol gels, a behaviour very similar to ethanol gels was 

observed above 30 wt% of 2-propanol, although no significant differences of D/D0 were observed 

for concentrations below 30 wt%. 

In conclusion, our SDTD NMR approach highlights the essential role of water structuration on the 

gelation properties of OCNF gels prepared in water and low molecular weight alcohol mixtures. 

In particular, the higher stiffness of water/ethanol and water/2-propanol gels correlates with their 

best ability to form networks of highly structured water compared to water/methanol gels, most 

likely due to the increased water confinement within the denser OCNF particle network 

(increased OCNF particle cross-section).254 On the other hand, ethanol and 2-propanol would 

organise into microdomains due to the more favourable water-water and alcohol-alcohol 

compared to water-ethanol interactions. Notably, a similar mechanism was proposed for the 

alcohol-induced gelation of clays, where the clay particles were also in the sodium-salt form.255 

Overall, the SDTD NMR method has clarified the partially incomplete picture on the molecular 

features governing the mechanism of gelation and macroscopic properties of ONCF water/alcohol 

gels, highlighting that, besides fibril-fibril overlap and NaCl solubility in the alcohols, the degree of 

water structuration also plays a critical role on directing gel properties. 
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Figure 5.13: SDTD NMR build-up curves of the HDO peak in OCNF 1 wt% gels prepared in a) 

D2O/MeOD, b) D2O/EtOD and c) D2O/2-PrOD cosolvent mixtures. The SDTD curve for the control 

sample (OCNF 1 wt% in 100% D2O, 0% alcohol), is shown in pale yellow. The SDTD curves for the 

D2O/alcohol-OD gels are shown in blue (10 wt% of alcohol-OD), green (30 wt% of alcohol-OD), 

red (50 wt% of alcohol-OD), and orange (60 wt% of alcohol-OD). A b value of 2 was used for all 

curves. d) Plot showing the evolution of the normalised spin diffusion rate (D/D0) of HDO binding 

to OCNF 1 wt% containing different concentrations of MeOD, EtOD and 2-PrOD. D0 represents the 

value of D of HDO calculated in the absence of alcohol (OCNF 1 wt% in D2O, control sample). The D 

value of HDO in each water-alcohol gel sample was obtained from the fit of the SDTD build-up 
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curves shown in a), b) and c). The ranges of alcohol concentrations leading to gelation are shown 

as blue areas. The concentration (ca. 60 wt%) at which phase separation occurs for ethanol and 

2-propanol gels is indicated with a star. 

Table 5.5: Calculated values for the C and D parameters obtained from the fit to Equation 5.15 of 

the SDTD build-up curves of the HDO peak for OCNF 1 wt% dispersions with different 

concentrations of MeOD alcohol. An r value of 0.2 nm was kept constant during the fit. A b value 

2 was used to fit the OCNF SDTD curves. The errors associated to each C and D value are shown 

and correspond to the 99% confidence level. The R2 values of each fit to Equation 5.15 are shown. 

MeOD 10% 30% 50% 60% 
 

CH3 HDO CH3 HDO CH3 HDO CH3 HDO 

C 0.66 0.59 0.74 0.61 0.68 0.59 0.60 0.57 

error ±0.04 ±0.01 ±0.06 ±0.02 ±0.04 ±0.01 ±0.05 ±0.02 

D 

(nm2/ms) 

4.70 

x10-5 

7.20 

x10-5 

4.08 

x10-5 

6.29 

x10-5 

4.61 

x10-5 

7.45 

x10-5 

5.46 

x10-5 

8.59 

x10-5 

error 
±2.78 

x10-6 

±1.30 

x10-6 

±3.21 

x10-6 

±2.47 

x10-6 

±2.62 

x10-6 

±2.88 

x10-6 

±1.10 

x10-6 

±5.48 

x10-6 

R2 0.9786 0.9978 0.9644 0.9894 0.9813 0.9898 0.9352 0.947 
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Table 5.6: Calculated values for the C and D parameters obtained from the fit to Equation 5.15 of 

the SDTD build-up curves of the HDO peak for OCNF1 wt% dispersions with different 

concentrations of EtOD alcohol.  An r value of 0.2 nm was kept constant during the fit. A b value 2 

was used to fit the OCNF SDTD curves. The errors associated to each C and D value are shown and 

correspond to the 99% confidence level. The R2 values of each fit to Equation 5.15 are shown. 

EtOD 10% 30% 50% 60% 

 CH2 CH3 HDO CH2 CH3 HDO CH2 CH3 HDO CH2 CH3 HDO 

C 0.55 0.64 0.60 0.62 0.67 0.58 0.61 0.65 0.55 0.64 0.65 0.56 

error 
± 

0.05 

± 

0.04 

± 

0.01 

± 

0.05 

± 

0.04 

± 

0.01 

± 

0.02 

± 

0.02 

± 

0.01 

± 

0.02 

± 

0.02 

± 

0.01 

D 

(nm2/

ms) 

6.24 

x10-5 

4.87 

x10-5 

6.93 

x10-5 

5.45 

x10-5 

4.51 

x10-5 

8.12 

x10-5 

5.74 

x10-5 

5.23 

x10-5 

9.55 

x10-5 

5.35 

x10-5 

5.30 

x10-5 

1.13 

x10-4 

error 
±7.14 

x10-6 

±3.17 

x10-6 

±1.17 

x10-6 

±5.90 

x10-6 

±2.93 

x10-6 

±3.30 

x10-6 

±2.41 

x10-6 

±2.03 

x10-6 

±2.46 

x10-6 

±1.56 

x10-6 

±1.82 

x10-6 

±5.78 

x10-6 

R2 0.914 0.973 0.997 0.912 0.974 0.983 0.989 0.990 0.995 0.994 0.992 0.978 
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Table 5.7: Calculated values for the C and D parameters obtained from the fit to Equation 5.15 of 

the SDTD build-up curves of the HDO peak for OCNF 1 wt% dispersions with different 

concentrations of 2-PrOD alcohol. An r value of 0.2 nm was kept constant during the fit. A b value 

2 was used to fit the OCNF SDTD curves. The errors associated to each C and D value are shown 

and correspond to the 99% confidence level. The R2 values of each fit to Equation 5.15 are shown. 

2-PrOD 10% 30% 50% 60% 

 CH (CH3)2 HDO (CH3)2 HDO CH (CH3)2 HDO CH (CH3)2 HDO 

C 0.51 0.66 0.58 0.58 0.58 0.61 0.65 0.55 0.64 0.65 0.56 

error 
± 

0.08 

± 

0.04 

± 

0.01 

± 

0.02 

± 

0.01 

± 

0.01 

± 

0.02 

± 

0.01 

± 

0.02 

± 

0.02 

± 

0.01 

D 

(nm2/ms) 

4.70 

x10-5 

4.51 

x10-5 

7.84 

x10-5 

6.14 

x10-5 

7.50 

x10-5 

5.74 

x10-5 

5.23 

x10-5 

9.55 

x10-5 

5.35 

x10-5 

5.30 

x10-5 

1.13 

x10-5 

error 
±8.13 

x10-6 

±2.95 

x10-6 

±2.2 

x10-6 

±2.48 

x10-6 

±1.26 

x10-6 

±2.26 

x10-6 

±2.03 

x10-6 

±2.45 

x10-6 

±1.56 

x10-6 

±1.82 

x10-6 

±85.3 

x10-6 

R2 0.819 0.973 0.994 0.989 0.998 0.987 0.990 0.990 0.995 0.992 0.982 

 

5.3 Discussion and future perspective 

The chapter presents for the first time the application of STD NMR for the investigation of solvent 

and cosolvents structuration in hydrogels systems. We demonstrate that, under conditions of 

negligible translational diffusion of the receptor within the NMR time scale, i.e., for large particles, 

the normalised STD build-up curve is 1) independent on the gelator and solvent concentrations, 

and 2) dependent on the receptor-to-solvent spin diffusion rates (D) and the minimum 

receptor-to-solvent distance (r). Our new method, called Spin Diffusion Transfer Difference (SDTD), 

relies on the normalisation of the standard STD NMR build-up curve against the haighest STD factor 

determined at long saturation times. The SDTD build-up curve can be simulated using the general 

1D diffusion equation.  The results report on the degree of solvent structuration (e.g. the extension 

of structured solvent networks or number of solvation shells).  
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The SDTD method presents an advantage over traditional water polarisation transfer (WPT) 

solid-state NMR experiments, of similar aim, as it relies on monitoring the well-resolved solvent 

peaks instead of the broad or often invisible particle peaks, in solution or HR-MAS NMR. 

Hence, SDTD method does not require the solid-state NMR setup. Also, the method is based on 

the quick acquisition of one-dimensional NMR spectra, does not require isotopic labelling, 

nor assignemt of the network peaks (being a solvent-observed method). This represents a 

significant advantage over gelator-observed solid-state NMR methods such as WPT, which rely on 

the cross-polarization efficiency and the observation of low abundant nuclei. In addition, SDTD 

allows for the study of diluted dispersions, very limited by WPT solid-state NMR experiments, 

as well as highly viscous gels by HR-MAS SDTD NMR.  

Importantly, SDTD NMR allows for the simultaneous and rapid characterisation of the degree of 

structuration of different solvents in cosolvent gels. In this regard, the application of the SDTD 

methodology to OCNF-water/alcohol gels enabled the understanding of the role these cosolvents 

(methanol, ethanol and 2-propanol) on the macroscopic properties of these materials. 

In particular, the SDTD build-up curves demonstrated that (i) water binds preferentially to OCNF 

over any of the three alcohols tested, and (ii) the degree of water structuration increases with 

alcohol concentration for the water/ethanol and water/2-propanol gels. This effect correlates with 

the much higher gel strength of water/ethanol and water/2-propanol gels compared to methanol 

gels.  

To conclude, we have demonstrated that the application of STD NMR can be extended beyond its 

traditional boundaries for very high molecular weight receptors such as carbohydrate particles. 

We show that by simulating the SDTD build-up curves with the 1D diffusion model it is possible to 

derive structural parameters at the particle-solvent interfase reporting on the degree of solvent 

structuration. Our novel method will provide the community of soft matter with a straightforward, 

fast and robust ligand-observed NMR technique for better understanding of the role of the 

solvent(s) in the gelation mechanism and the rheological and mechanical properties of a wide 

range of particulate soft matter materials. 
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5.4 Material and methods 

5.4.1 Sample preparation 

5.4.1.1 Gels prepared in D2O 

Dispersions of TEMPO-oxidised cellulose nanofibrils (OCNF), corn starch (CS) and enzymatically 

produced cellulose (EpC) at different concentrations were prepared in D2O. OCNF of a degree of 

oxidation of ca. 25%, produced from purified softwood fibre and processed via high pressure 

homogenisation, was kindly provided by Croda. These were further purified by dialysis against 

ultra-pure water (DI water, 18.2 MO cm) and stirred at room temperature for 30 min. Then the 

dispersion was acidified to pH 3 using HCl solution and dialysed against ultra-pure water (cellulose 

dialysis tubing MWCO 12400) for 3 days with the DI water replaced twice daily. The dialysed OCNF 

suspension was processed via mechanical shear (ULTRA TURRAX, IKA T25 digital, 30 minutes at 

6500 rpm) and the pH was adjusted to 7 using NaOH solution. This dispersion was further dialysed 

to remove any remaining salts and dispersed using a sonication probe (Ultrasonic Processor, 

FB-505, Fisher), via a series of 1 s on and 1 s off pulses for a total time of 60 min at 30% amplitude 

in an ice bath, and subsequently freeze-dried.  

To prepare the OCNF dispersions for NMR investigation, OCNF powder and water were weighed 

to provide the desired concentrations of OCNF, and then probe sonicated for 30 min at 20% 

amplitude using pulses of 1 s on and 2 s off, using an ultrasonic processor vibracell VCX 130 

sonicator. CS samples were first gelatinised in a boiling water bath for 30 minutes. The CS samples 

were sonicated for 2 min at 40% amplitude using 1 s on and 2 s off pulses.  

For the H2O titration experiments, OCNF 1 wt% dispersions were prepared using MilliQ® water and 

D2O of 99.9 atom % D to achieve the desired H2O/D2O ratio (5:95, 10:90, 20:80 and 30:70). For the 

variable gelator concentration experiments (OCNF and EpC at 0.5, 1 and 2 wt%), the samples were 

prepared by dilution from the 2 wt% dispersions to avoid error propagation.  

5.4.1.2 OCNF 1 wt% gels prepared in mixtures of D2O and alcohol-OD 

First, stock dispersions of OCNF 2 wt% were prepared by redispersing OCNF powder in D2O by 

probe sonication for 1 min at 30% amplitude using 1 s on 1 s off pulses, using an ULTRA TURRAX, 
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IKA T25 digital sonicator. Subsequently, all the gels were prepared by dilution of the OCNF 2wt% 

dispersions using the corresponding alcohol-OD and D2O weight concentrations. 

D2O (151882) and 2-propanol-OD (615080) were purchased from Sigma-Aldrich. Ethanol-OD and 

methanol-OD were purchased from Cambridge Isotopes Lab, Inc. 

5.4.2 Nuclear magnetic resonance (NMR) spectroscopy 

Solution state NMR experiments were performed using a Bruker Avance I spectrometer equipped 

with a 5 mm triple resonance probe operating at frequency of 499.69 MHz (1H). Saturation transfer 

difference (STD) NMR experiments of CS and OCNF dispersions were acquired at 298 K using a train 

of 50 ms Gaussian shaped pulses for selective saturation of the gelator particles, using an 

on-resonance frequency of 0 and -1 ppm for CS and OCNF dispersions, respectively, and an 

off-resonance frequency of 50 ppm. For the CS 15 wt% dispersion, saturation times ranging from 

50 ms to 5 s were used. For the experiments carried out on OCNF dispersions in water (i.e. H2O 

titrations and variable OCNF concentration), STD NMR experiments were performed using 

saturation times ranging from 100 ms to 8 s. A constant time length per scan (saturation time + 

recycle delay) of 8 s was used. Depending on saturation time, STD NMR experiments were 

performed with 128 scans or less (with a minimum of 16 scans), in inverse relation to the saturation 

time, and 8 dummy scans. 

STD NMR experiments for different concentrations of EpC were carried out using an Avance II 

Bruker 800.23 MHz spectrometer equipped with a 5 mm inverse triple-resonance probe. 

The experiments were acquired at 298 K at saturation times ranging from 100 ms to 8 s, using a 

constant time length per scan (saturation time + recycle delay) of 8 s. The on- and off-resonance 

frequencies were set to -1 and 50 ppm, respectively. Depending on saturation time, STD NMR 

experiments were performed with 512 scans or less, in inverse relation to the saturation time, 

and 8 dummy scans. 

The D2O/alcohol-OD OCNF gels were characterised by high-resolution magic angle spinning 

(HR-MAS) using a solid-state Bruker Avance III spectrometer operating at a 1H frequency of 

400.22 MHz with a triple resonance HR-MAS probe (1H,31P,13C). All samples were spun at 6 kHz. 

HR-MAS NMR was required for these samples due to large 1H peak broadening precluding enough 
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resolution in the absence of magic angle spinning. The large spectral broadening of the 

D2O/alcohol-OD OCNF gels is due to their high viscosity leading to very strong dipolar couplings, 

particularly for D2O/ethanol-OD and D2O/2-propanol-OD at high alcohol concentrations. 

Saturation transfer difference (STD) NMR experiments were carried out by 1H selective irradiation 

(on-resonance) of OCNF peaks (2.3-2.5 ppm). A train of 50 ms Gaussian-shaped pulses were 

employed for saturation, with a field strength of 50 Hz.2 STD NMR experiments using 0.5, 0.75, 1, 

1.5, 2, 3, 4, 5, 6, 7 and 8 s saturation times were carried out, using a total relaxation time of 8.1 s. 

The off-resonance frequency was set to 56 ppm.  

The STD spectra (ISTD) were obtained by subtracting the on- (Isat) to the off-resonance (I0) spectra. 

To determine the STD response or STD factor (ηSTD), the peak intensities in the difference spectrum 

(ISTD) were integrated relative to the peak intensities in the off-resonance spectrum (I0). The SDTD 

build-up curves were obtained by normalising all the STD factors against the highest value 

(usually corresponding to the longest saturation time).  

5.4.3 Simulation of the SDTD build-up curves 

To obtain a good fit of the SDTD build-up curve, it is essential to achieve a good sampling of both 

the lag phase and the plateau of the curve. To do this, saturation times ranging from tens of 

milliseconds to 6-8 seconds need to be used. The SDTD build-up curves were represented as a 

function of the square root of the saturation time and simulated in Matlab (Appendix, Script A.1) 

using Equation 5.15. Here, the dependent variable is the normalized intensity of the NMR 

observable and the independent variable is the square root of the saturation time (in ms), r is the 

minimum distance of the grid (in nm), D is the spin diffusion rate (in nm2/ms) at the particle-solvent 

interface, erfc is the complementary error function, C is the proportionally constant of the fit, and b 

is a parameter to centre the function around x. Notably, the growth rate of the SDTD curve 

presents a proportional and inversely proportional relationship to the spin diffusion rate D and the 

minimum distance r, respectively, both related to the degree of solvent structuration within the 

gel network. Hence, faster spin diffusion rates D and shorter distances r reflect increased solvent 

structuration. 



Chapter 5 – Spin Diffusion Transfer Difference (SDTD) NMR 

224 
 

By visual investigation, a tendency of the fitting curves to misfit the final points could be noticed. 

Nonetheless, the fitting was considered valid in line with the acceptable value of the standard 

deviations obtained. In addition, comparison of curves fitting done with origin resulted in the same 

values of the spin diffusion coefficient D, indicating the veracity of the reported data. 
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Chapter 6 

Final remarks  
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6. Final Remarks 

Carbohydrates are abundant biomolecules with a strong tendency to form supramolecular 

networks via the formation of a multitude of hydrogen bonds. Due to their inherent 

biocompatibility, it is becoming increasingly important to develop strategies to functionalise these 

materials with specific and tuneable properties. Hence, controlling the composition of 

carbohydrate-based polymers at the molecular level could provide materials with novel 

self-assembly arrangements and tailored properties. 

Abundant plant-based polysaccharides comprise starch, cellulose, hemicelluloses and chitin, and 

from these building blocks, value-added products can be obtained by chemical, thermal or 

enzymatic treatments. These treatments expand the design space for creating completely novel 

polysaccharide-based compounds. Carbohydrates active enzyme (CAZy) can be used in vitro to 

produce polysaccharide-based products. In addition, the growing portfolio of techniques for 

genetic engineering has the potential to be expand the enzyme specificity towards non-cognate 

substrates for the production of functionalised polysaccharides.  

To achieve desired properties by design, it is important to understand both the mechanistic details 

behind the molecular recognition of building blocks in the enzyme catalytic cleft, and the 

mechanism of the polymer self-assembly. This will allow us to control arrangement, morphology 

and properties of the polysaccharide chains. The aim of this chapter is to emphasize our hypothesis 

and main findings, as well as to highlight the novelty of this doctoral work.  

The core results of this thesis are:  

1) the investigation of the binding mode of series of cognate and non-cognate substrates to 

Cellodextrin phosphorylase (CDP), deciphering important contacts for substrates specificity;  

2) the application of CDP for the synthesis of novel cellulosic materials, together with the atomic 

level characterisation of the particles self-assembly; 

3) the implementation of a novel STD NMR approach to study solvent structuring in hydrogel 

systems.  
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Due to the potential wide-ranging applications of the presented work, we think the content of this 

thesis will have considerable appeal, not just to the cellulose community, but more broadly in 

materials science, pharmaceuticals and biosciences. 

Throughout the thesis, we covered the fields of glycobiology, intermolecular interactions, 

materials development and characterisation. The field of Nuclear Resonance was also explored, 

with an eye on its extensive application in structural studies. The great variability of the presented 

studies could be achieved only thanks to the coexistence of these fields of expertise in our research 

group.  

At this point, it is important to emphasise the vast potential of NMR spectroscopy to study both 

relevant weak and dynamics interactions (either protein-ligand or gel network-solvent molecules), 

as well as to obtain a fingerprint of the molecular arrangement of novel materials. 

Carbohydrates are an interesting subject for NMR observation given their high degree of 

stereochemistry, flexibility and complexity. Still, carbohydrates generally present a low chemical 

shift dispersion (proton chemical shifts concentrate between 3.2 ppm and 4.1 ppm for the ring 

protons H2 to H6, and between 4.4 ppm and 5.2 ppm for the anomeric protons). Carbon chemical 

shifts can be found around 60 ppm for C6, between 67 ppm and 80 ppm  for the ring carbon C2 to 

C5 and between 90 ppm and 105 ppm for the anomeric carbons).256 Consequently, it is often 

necessary to use high field spectrometers and, in the case of solid-state NMR, to achieve ultra-fast 

spinning of the sample, to obtain atomic details. In addition, carbohydrates usually present 

weak-to-medium binding affinities to proteins, which makes NMR the ideal tool to study their 

interactions. 

The accurate knowledge of the structure of polymeric material is an essential step for the complete 

understanding of the solids and for monitoring their properties. Diffraction techniques such as 

single-crystal and powder X-ray diffraction, small-angle X-ray scattering and small angle neutron 

scattering analysis are commonly used to characterise molecular and supramolecular interactions 

in the solid state. For single-crystal XRD a large, stable and good quality crystal is required, and 

when not available, the structural analysis is conducted on polycrystalline powders, named powder 

XRD. This determines the contemporary presence of small crystals, each of them with their own 

orientation, and consequently poorer data are acquired. To overcome these requirements of strict 
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periodicity and crystal size, solid-state NMR spectroscopy is usually applied. The technique allows 

not only the characterisation of ordered materials, but also the study of materials that are not 

necessarily periodic and may present local disorder or mobility, such as amorphous powders and 

gels.257, 258 NMR spectroscopy is sensitive to the local environment of atoms, therefore the same 

atom in different molecules of an asymmetric unit cell can show different chemical shift values 

(as example, C1 in cellulose type II gives a doublet).191 Therefore, correlations can be made 

between chemical shift and tensor components with the number and multiplicity of 

crystallographically non-equivalent positions in the asymmetric unit.257 In addition, NMR provides 

information on through-bond connectivities, through-space proximities and intermolecular 

distances.87, 257 

The well-equipped NMR facility available at the School of Pharmacy at UEA combines a 800 MHz 

Bruker spectrometer with both solution state and HR-MAS probeheads, a solution state 500 MHz 

Bruker spectrometer, as well as two solid-state NMR spectrometers: a 400 MHz Bruker 

spectrometer featured with four different probeheads, three of them able to achieve different 

spinning rates (4 mm, 2.5 mm and a 1.3 mm rotor sizes, for sample spinning of 15 KHz, 35 KHz and 

67 KHz), the fourth being a HR-MAS probehead, and a 300 MHz Bruker spectrometer. It was also 

possible to resort to the UK solid-state NMR national facility in the University of Warwick for the 

use of the 850 MHz solid-state Bruker spectrometer for material structural elucidation. In addition, 

the performance of molecular docking calculations to model the 3D structure of the interactions 

in solution, on the bases of the structural experimental data, could be achieved thanks to 

availability of the Maestro Schrödinger suite (reported to be the most efficient tool to model 

flexible carbohydrates in relatively shallow binding pockets).259 It is therefore evident that the 

combination of expertise from our research group and the available facility created the perfect 

environment to make considerable research advances. 

6.1 Cellodextrin phosphorylase from Clostridium thermocellum: 
structural studies on substrates recognition  

In Chapter 3, we investigated the specificity and the mechanism of molecular recognition of donor 

and acceptor substrates by CDP, with an emphasis on the ability to discriminate between cognate 
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and non-cognate donor-like molecules and between substrate lengths and stereochemistry of 

acceptors molecules. 

Thanks to the combination of NMR approaches and protein-ligand docking calculations, we 

obtained structural elucidation of the binding of cognate and non-cognate substrates molecules to 

the -1, +1 and +2 subsites of CDP. The natural leads were Glc-1-P, D-cellobiose and D-cellotriose, 

while the non-cognate substrates were the glucose isomers Gal-1-P and Man-1-P, the 

functionalised glucose analogues GlN-1P, 6F-Glc-1-P and the cellobiose regioisomer 

D-laminaribiose. Our aim was to investigate the binding event in terms of affinity, specificity and 

mechanisms of recognition. Through this investigation, we wanted to unveil: 

- the main elements of the ligands for the molecular recognition  

- the key elements of the interactions 

- the minimum sugar entity recognised by CDP 

- the selectivity of CDP towards glycosidic linkages 

6.1.1 Molecular recognition of donor and donor-like substrates: 

Our main results indicate the high specificity for the hexopyranose ring of donor and donor-like 

substrates to the -1 subsite of CDP. The main pieces of structural information that we obtained 

investigating Glc-1-P and the non-cognate donor-like substrates were: 

For Glc-1-P 

- The proof that the glucopyranose ring fits tightly in the -1 subsite 

- The hint that the specificity of binding Glc-1-P is driven by the closer contacts showed for 

H1, H3, H5 and H6s (above 90% of relative STD) with the enzyme surface in comparison 

with H2 and H4  

- the location of Glc-1-P hydroxymethyl group between Trp622 and Asp624 residues in 

CDP -1 subsite, together with the close contact with Trp622 side chain and the 

establishment of an H-bond between the hydroxyl group in C6 and the backbone NH of 

Asp624  
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For Gal-1-P and Man-1-P 

- Gal-1-P rearrangement of the hexopyranose ring in binding CDP in comparison to Glc-1-P 

- The evidence that Man-1-P tightly binds CDP and presents the same binding mode of 

Glc-1-P, proving that the C2 configurational change does not impair binding  

- The presence of a steric clash between the axial hydroxyl in C2 of Man-1-P and the 

catalytically competent Asp624 

For GlN-1-P and 6F-Glc-1-P 

- A change in the binding mode of both GlN-1-P and 6F-Glc-1-P, in comparison with Glc-1-P, 

characterised by a reduction in H1 and H2 contacts 

- The possibility of developing steric hindrance and electrostatic repulsion between the 

amine group in C2 of GlN-1-P and the positively charged side chain of Arg496 

- The tolerance of CDP for a group at position 6 isosteric to OH acting as an H-bond acceptor 

6.1.2 Molecular recognition of acceptor and acceptor-like substrates: 

Our main results indicate that specificity of CDP -1 subsite towards the glucopyranose ring of 

acceptor molecules is not sufficient to anchor the ligand in the binding pocket, and additional 

cooperative interactions need to be established to ensure the binding of acceptor substrates. 

This was proven by the lack of binding for D-glucose indicated by no detection of STD signal. 

The main pieces of structural information that we obtained investigating the longer substrates 

D-cellobiose, D-cellotriose and the non-cognate acceptor-like D-laminaribiose were: 

General information 

- The proof that the ligand exclusively enters the binding pocket with the nonreducing ring  

- The importance of the contact established between H2 of the non-reducing ring and the 

enzyme surface for acceptor recognition 

- The thermodynamics contribution played by inorganic phosphate in acceptor substrates 

recognition  
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For D-cellobiose  

- The anomeric selectivity towards the β-configuration of the reducing ring, driven by the 

establishment of on H-bond between the reducing ring hydroxyl group in C1 and Asp297 

residue in the +1 subsite of CDP binding pocket 

For D -cellotriose 

- The anomeric selectivity towards the β-configuration of the reducing ring, explained by the 

C-H/π-stacking established between the D-cellotriose reducing ring and Tyr300 residue in 

the +2 subsite of CDP binding pocket 

For D -laminaribiose 

- The preferential molecular recognition of the α-configuration of the reducing ring (inverted 

anomeric selectivity in comparison with D-cellobiose and D-cellotriose) 

6.1.3 Additional notes 

With molecular docking we developed the 3D molecular models of Glc-1-P and D-cellobiose bound 

to CDP, which was validated against experimental STD data. Our 3D model of the CDP/Glc-1-P is 

the first Michaelis complex of the CDP enzyme acting on a donor substrate available to date. 

Unfortunately, at the current stage we were not able to experimentally validate the 3D model of 

the ternary complex CDP/Glc-1-P/ D-cellobiose. The investigation was hindered by the stronger 

affinity demonstrated by D-cellobiose, in comparison with the donor-like substrate (Man-1-P) used 

to conduct our studies. It would be interesting, for future work, to investigate different substrates 

and experimental conditions (i.e. temperature and pH) in order to provide experimental data to 

validate (or not) our model. 

This investigation was conducted with the aim to uncover the structural details of the molecular 

recognition of donor and acceptor substrates by CDP, paramount in directing novel pathways for 

the synthesis of functionalised cellulosic materials. It is in our interest to extend the applicability 

of CDP, by enhancing the binding affinity of accepted substrates, or by allowing recognition of 

non-accepted substrates.  
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6.2 Deoxyfluorinated cellodextrin derivatives: structural 

characterisation  

In Chapter 4, we introduced a bottom-up (from single building blocks to larger molecules), 

chemoenzymatic synthesis approach to access site-selectively functionalized cellulose oligomers, 

along with their detailed structural analysis. Our approach expands the scope of chemoenzymatic 

syntheses in the production of tailor-made materials and evidences the potential to generate 

unique structural arrangements. 

The synthesis of mono- and multi-fluorinated cellulose-like materials by CDP was achieved using 

either non-cognate acceptors or donor-like molecules. The detailed structural characterisation of 

a novel cellodextrin derivatives at different length scales was performed using complementary 

analytical techniques (TEM, IR-AFT, AFM, PXRD and NMR). In our project, more emphasis was given 

to NMR spectroscopy, due to its proven ability to detect a wide range of domains (surface/core, 

organised/amorphous, rigid/mobile). The heterogeneous character of these materials requires the 

combination of solution and solid-state NMR techniques.  

The core interests of this thesis are: 

1) the combination of PXRD and solid-state NMR to characterise the molecular scale 

arrangement of the mono- and multi-fluorinated cellodextrin chains, and  

2) the combination of a wide range of solution- and solid-state NMR experiments to decipher 

water exposed and interior chemical environments for different carbon sites. 

We believe that these studies represent a significant advancement for the field, proving that 

glycoside phosphorylases can tolerate functionalized donor substrates, generating unique 

structural arrangement. Indeed, the presence of multiple units of 6F-glucose yielded novel 

fluorinated cellulose oligomers with unique structural features. In one instance, the crystalline 

arrangement discovered has not been reported before and constitutes a new long-range ordering 

motif unprecedented for cellulose-based biomaterials (Figure 6.1).  
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Figure 6.1: The different PXRD pattern for enzymatically produced cellodextrin (left) and the 

enzymatically produced multiply 6-fluorinated cellodextrin (right), demonstrating a distinct 

organisation of the cellodextrin fibrils. 

The site selective introduction of 19F nuclei was adopted as these nuclei represent a highly sensitive 

NMR probe for chemical and biological interactions in complex systems. As previously mentioned 

in Chapter 4, 19F is of increasing interest due to its 100% natural abundance, its almost total 

absence in biological systems and its pronounced chemical shift dispersion and sensitivity to local 

environment in NMR spectroscopy.  Therefore, the introduction of 19F may give us useful 

information about conformational changes and interaction processes in complex systems such as 

interpenetrating or composite hydrogels.  

In the context of our project aiming to develop cellulose based materials with tailored properties, 

the fluorine inserted onto enzymatically produced cellodextrin oligomers can be used to probe the 

associations of the oligomers when packing into crystalline and/or amorphous regions, their 

interaction with other polysaccharides, and their process of mesoscale assembly.   For instance, 

we prepared blends between the monofluorinated 3F-EpC and the multi 6F-EpC with crystalline 

nanocellulose (CNC). Our preliminary studies using AFM indicate that, in the case of 3F-EpC, 

CNC forms a network of particles which coats and bridges the 3F-EpC fibrils (Figure 6.2, a). On the 

contrary, multi 6F-EpC assembles around CNCs (Figure 6.2, b). However, complete NMR data 

needed for full characterisation of the structure of this novel material are yet to be acquired. 

Importantly, due to the very similar 13C chemical shifts of CNC and fluorinated cellulose, high 

resolution and ultra-fast MAS spinning rate are of fundamental importance to attempt to 

differentiate both components in the 1H-13C CP/MAS NMR spectra. 
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Figure 6.2: AFM height images of a) 3F-EpC and b) multi 6F-EpC cellulose fibrils blended with CNC. 

3F-EpC fibrils (light brown narrow areas, left image) coat and bridge the CNC particles 

(white shapes, left image), while multi 6F-EpC (light brown shapes, right image) assembles around 

CNCs (white shapes, right image).   

6.3 SDTD: a novel NMR tool to study solvent (and co-solvents) in 
3D gels network 

In Chapter 5, we introduced a novel solution state NMR methodology based on STD NMR to 

investigate solvent structuration in gels systems. Gels are neither conventional solids nor liquids, 

and their heterogeneous nature (the coexistence of a very rigid component together with a 

dynamics and highly mobile solution phase) makes them very challenging systems to characterise. 

Several complementary analytical techniques are required to gain a complete understanding of 

morphology, dynamics and supramolecular organisation of these systems.  

In this work, we focused on gaining understanding of the role played by solvent in the gelation. 

Solvent properties play a central role in mediating aggregation and self-assembly of gelators and 

have huge influence on the solvation effect (depending on the system pH, which affects the 

competing solvation of donor and acceptor sites of hydrogen bonds)  and salt effects (depending 

on the types of salt ion and their ionic strength, impacting the strength of electrostatic 

interactions).260 

Our novel methodology, named Spin Diffusion Transfer Difference (SDTD) NMR, cancels the effect 

of solvent and gelator concentrations on the signal recorded by STD NMR experiments (Figure 6.3, 
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a and b), and allows the comparison between different gels, thus unveiling changes in solvent 

structuration (Figure 6.3, c). In addition, the application of our methodology gave access to 

important parameters for the characterisation of solvent structuring around the solid network, 

such as solvent-network minimum distance (r) and diffusion rate at the solid-liquid interface (D). 

 

Figure 6.3: Summary of the main findings reported in Chapter 4. The effect of solvent (a) and 

gelator concentration, for neutral (b, EpC) and charged (c, OCNF) gelators, on the SDTD build-up 

curves and the degree of structuration of water within the gel network is shown.  
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This study was conducted on carbohydrate-based hydrogels (namely, corn starch, enzymatically 

produced cellodextrin and oxidised cellulose nanofibrils), as well as by using hydrogels in which the 

gelation process is induced by the presence of alcohols. Therefore, our methodology was proven 

to be a robust approach to monitor both main solvent and co-solvents present in the systems, 

unveiling preferential interactions between the gelator network and the surrounding solvents.  

We expect the use of SDTD NMR to be expanded to other systems, including 

non-carbohydrate-based hydrogels, organogels, and multi-components systems (i.e. copolymeric 

or double network gels, as an example). Solvation plays a very important role in the stimuli-

responsive properties of these systems.261, 262  In addition, the methodology can be expanded to 

monitor the interactions of small ligand within system, such as in the case of drug-loaded 

hydrogels,238 or even to monitor hydrogel-protein interactions. 

The chance to apply SDTD NMR to a diverse range of systems (and with promising results so far) is 

very important to strengthen the potential of the technique. Further perspectives include the 

additional methodological investigation of the effect of different parameters on the SDTD outcome 

(including temperature, irradiation power, etc.). 

We emphasise that the monitoring of the broad and high intensity peak of HDO, as well as the 

broad nature of the solid resonance hidden in the baseline, does not require the application of 

high magnetic field, nor the acquisition of an prohibitive number of scans. - The sample is thus easy 

to prepare, and the experiments are fast, reliable and easy to set up. Nonetheless, in the case if 

the solvent peak(s) are difficult to be resolved (i.e. in stiff gel, the solvent peak might be too broad) 

it will be necessary to use HR-MAS.
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Chapter 3 

Molecular recognition of donor and donor-like substrates by CDP  

Glc-1-P 

 

Figure A.1: (left) COSY and (right) HSQC spectra Glc-1-P at 278 K  



 

III 
 

Gal-1-P 

 

Figure A.2: (left) COSY and (right) HSQC spectra Gal-1-P at 278 K. 

 

Figure A.3: Gal-1-P STD NMR build-up curves recorded at increasing saturation time at 278 K. 

50 μM binding unit was used for a ligand concentration of 5 mM. 
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Table A.1: STDmax, ksat and STD0 for Gal-1-P. Relative STD (%) were obtained through normalisation 

against the largest ligand STD initial slope (H1; 100%) 

 STDmax ksat STD0 STD (%) 
H1 7.09 0.45 3.21 100 
H3 4.96 0.54 2.65 83 
H4  3.75 0.68 2.54 79 
H5 3.29 0.71 2.35 73 

 

  



 

V 
 

Man-1-P 

 

Figure A.4: (left) COSY and (right) HSQC spectra Man-1-P at 278 K. 

 

Figure A.5: Gal-1-P STD NMR build-up curves recorded at increasing saturation time at 278 K. 

50 μM binding unit was used for a ligand concentration of 5 mM. 
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Table A.2: STDmax, ksat and STD0 for Man-1-P. Relative STD (%) were obtained through normalisation 

against the largest ligand STD initial slope (H6’; 100%) 

 STDmax ksat STD0 STD (%) 
H1 22.22 0.49 10.91 87 
H3 19.49 0.61 11.81 94 
H6' 10.27 1.22 12.55 100 
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GlN-1-P 

 

Figure A.6: (left) COSY and (right) HSQC spectra GlN-1-P at 278 K. 

 

Figure A.7: GlN-1-P STD NMR build-up curves recorded at increasing saturation time at 278 K. 50 

μM binding unit was used for a ligand concentration of 5 mM. 
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Table A.3: STDmax, ksat and STD0 for GlcN-1-P. Relative STD (%) were obtained through normalisation 

against the largest ligand STD initial slope (H6’; 100%) 

 STDmax ksat STD0 STD (%) 
H1 11.39 0.52 5.88 52 
H2 9.25 0.63 5.83 51 
H4 12.09 0.67 8.12 71 
H6 8.38 1.32 11.02 97 
H6' 7.88 1.44 11.36 100 

  



 

IX 
 

6F-Glc-1-P 

 

Figure A.8: (left) COSY and (right) HSQC spectra 6F-Glc-1-P at 278 K. 

 

Figure A.9: 6F-Glc-1-P STD NMR build-up curves recorded at increasing saturation time at 278 K. 

35 μM binding unit was used for a ligand concentration of 3.5 mM. 
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Table A.4: STDmax, ksat and STD0 for 6F-Glc-1-P. Relative STD (%) were obtained through 

normalisation against the largest ligand STD initial slope (H6’; 100%) 

 STDmax ksat STD0 STD (%) 
H1 10.06 0.49 4.94 70 
H2 7.92 0.60 4.72 67 
H3 11.16 0.51 5.66 80 
H4 8.97 0.64 5.78 82 
H5 8.30 0.74 6.10 86 
H6 4.01 1.60 6.42 91 
H6' 4.20 1.69 7.07 100 
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Molecular recognition of acceptor and acceptor-like substrates by CDP  

D-cellobiose 

 

Figure A.10: D-cellobiose NMR build-up curves recorded at increasing saturation time (from 0.5 to 

6 seconds) in [D11]Tris buffer 25 mM, pH 7.4 at 278 K. 15 μM binding unit was used for a ligand 

concentration of 3 mM. 

Table A.5: STDmax, ksat and STD0 for ᴅ-cellobiose in [D11]Tris buffer 25 mM, pH 7.4 The assigned 

STD % were obtained through normalisation against the maximum ligand STD initial slope 

(H2 terminal non-reducing ring; 100%) 

 STDmax ksat STD0 STD (%) 
H1β 11.82 0.61 7.24 78.52 
H2β 9.52 0.42 4.02 43.68 

H4α/β 8.81 0.80 7.05 76.55 
H1b 4.92 0.71 3.51 38.04 
H2b 17.03 0.54 9.21 100.00 
H3b 9.30 0.57 5.28 57.27 
H4b 6.76 0.59 3.97 43.05 
H5b 6.16 0.60 3.71 40.24 
H6b 2.74 1.10 3.01 32.65 
H6’b 2.74 1.11 3.05 33.05 

 



 

XII 
 

D-cellotriose 

 

Figure A.11: a) COSY, b) TOCSY, c) NOESY (mixing time 300 ms) and d) HSQC spectra recorded for 

D-cellotriose (1.5 mM, in [D11]Tris 25 mM) at 278 K. 
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Figure A.12: D-cellotriose NMR build-up curves recorded at increasing saturation time (from 0.5 to 

6 seconds) in [D11]Tris buffer 25 mM, pH 7.4 at 278 K. 15 μM binding unit was used for a ligand 

concentration of 3 mM. 
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Table A.6: STDmax, ksat and STD0 for ᴅ-cellotriose in [D11]Tris buffer 25 mM, pH 7.4 The assigned 

STD % were obtained through normalisation against the maximum ligand STD initial slope 

(H2 terminal non-reducing ring; 100%) 

 STDmax ksat STD0 STD (%) 
H1α 4.24 0.49 2.06 27.25 
H2α 4.26 0.44 1.88 24.93 
H3α 2.98 0.82 2.44 32.33 
H4α 9.06 0.61 5.52 73.09 
H6α 2.61 1.04 2.71 35.81 
H1ß 7.11 0.54 3.86 51.13 
H2ß 7.75 0.46 3.55 47.03 
H4ß 9.06 0.61 5.52 73.09 
H6ß 3.71 0.89 3.30 43.66 
H1b 8.02 0.66 5.29 70.01 
H2b 11.01 0.53 5.84 77.25 
H4b 8.16 0.79 6.43 85.14 
H1c 6.47 0.62 4.00 52.99 
H2c 14.46 0.52 7.56 100.00 
H3c 8.29 0.59 4.87 64.44 
H4c 8.15 0.60 4.87 64.42 
H5c 8.13 0.53 4.29 56.71 
H6c 4.46 0.90 4.03 53.30 
H6'c 4.30 0.90 3.87 51.21 
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D-laminaribiose 

 

Figure A.13: a) COSY, b) TOCSY, c) NOESY (mixing time 300 ms) and d) HSQC spectra recorded for 

D-laminaribiose (3 mM, in Tris-d11 25 Mm) at 278 K. 
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Figure A.14: D-laminaribiose NMR build-up curves recorded at increasing saturation time (from 0.5 

to 6 seconds) in [D11]Tris buffer 25 mM, pH 7.4 at 278 K. 10 μM binding unit was used for a ligand 

concentration of 2 mM. 

Table A.7: STDmax, ksat and STD0 for ᴅ-cellobiose in [D11]Tris buffer 25 mM, pH 7.4 The assigned 

STD % were obtained through normalisation against the maximum ligand STD initial slope 

(H2 terminal non-reducing ring; 100%) 

 STDmax ksat STD0 STD (%) 

H1α 5.41 0.44 2.38 58.87 
H3α 1.69 0.71 1.20 29.58 
H5α 2.81 0.80 2.25 55.66 
H6α 2.65 1.08 2.87 70.85 
H6'α 2.64 1.10 2.90 71.49 
H1β 0.81 0.79 0.64 15.89 
H2β 2.03 0.43 0.87 21.38 
H6β 0.87 0.90 0.79 19.41 

H1b/α 1.86 0.72 1.34 33.03 
H1b/β 0.78 0.85 0.66 16.34 

H2b 8.23 0.49 4.05 100.00 
H5b 4.59 0.54 2.50 61.67 
H6b 5.02 0.68 3.40 83.98 
H6'b 1.58 1.44 2.28 56.28 
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D-cellotriosyl-azide 

 

Figure A.15: a) TLC showing partial conversion of ᴅ-cellotriose into ᴅ-cellotriosyl-azide. b) 1D 1H 

spectra c) COSY, d) TOCSY, e) NOESY (mixing time 300 ms) and f) 13C-1H HSQC spectra with peaks 

assignment reported. 
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Figure A.16: D-cellotriosyl-azide NMR build-up curves recorded at increasing saturation time 

(from 0.5 to 6 seconds) in [D11]Tris buffer 25 mM, pH 7.4 at 278 K. 10 μM binding unit was used for 

a ligand concentration of 2 Mm. 

Table A.8: STDmax, ksat and STD0 for ᴅ-cellotriosyl-azide in [D11]Tris buffer 25 mM, pH 7.4. 

The assigned STD % were obtained through normalisation against the maximum ligand STD initial 

slope (H1 central ring; 100%) 

 STDmax ksat STD0 STD (%) 
H1β 10.83 0.70 7.60 93.37 
H2β 12.54 0.43 5.37 65.97 
H1b 8.30 0.98 8.14 100.00 
H2b 14.13 0.44 6.21 76.25 
H1c 7.22 0.70 5.08 62.37 
H2c 14.73 0.45 6.70 82.28 
H3c 10.00 0.53 5.29 65.04 
H4c 8.86 0.49 4.32 53.10 
H5c 7.18 0.63 4.50 55.26 
H6c 5.16 0.71 3.64 44.72 
H6'c 4.97 0.52 2.58 31.64 
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Orientation of d-cellobiose in the binding pocket – DEEP STD experiments 

Table A.9: Amino acid residues of CDP chain A within 5 Å from the ligand. 1H chemical shifts have 

been simulated by shiftx2.ca (ref. http://shiftx2.ca), and resonances within 0.6 ppm from the directly 

irradiated frequencies (1.5, 6.7 and 7.3 ppm) are highlighted in the same colour scale as in 

Figure 3.10. 

297 ASP H 8.12 

   HA 4.63 

   HB2 2.71 

    HB3 2.45 

300 TYR H 7.85 

    HA 4.08 

    HB2 3.16 

    HB3 2.96 

    HD1 7.09 

    HD2 7.01 

    HE1 6.72 

    HE2 7.23 
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Table A.10: Amino acid residues of CDP chain B within 5 Å from the ligand. 1H chemical shifts have 

been simulated by shiftx2.ca (ref. http://shiftx2.ca), and resonances within 0.6 ppm from the directly 

irradiated frequencies (1.5, 6.7 and 7.3 ppm) are highlighted in the same colour scale as in 

Figure 3.10.  

486 ARG H 8.44 502 GLU H 7.82     HA 4.63     HD2 6.93 
    HA 4.30    HA 4.06    HB2 2.79     HE1 7.77 
    HB2 1.79    HB2 2.27    HB3 2.63 874 GLN H 7.98 
    HB3 1.69    HB3 2.13    HD1 7.04    HA 4.18 
    HD2 3.15    HG2 2.39    HD2 6.92    HB2 2.12 
    HD3 3.19     HG3 2.31   HE1 6.78   HB3 1.85 
    HE 7.29 622 TRP H 8.89     HE2 7.18   HE21 7.35 
    HG2 1.59    HA 4.51 809 ARG H 6.27    HE22 7.23 
    HG3 1.68    HB2 3.20    HA 2.74    HG2 2.43 
492 GLN H 7.55    HB3 3.11    HB2 1.10     HG3 2.42 
    HA 4.30    HD1 7.30    HB3 1.29 886 PRO HA 4.324 
    HB2 2.04    HE1 10.13    HD2 2.68    HB2 2.07 
    HB3 1.97     HE3 7.47    HD3 2.74    HB3 1.98 
    HE21 7.18 623 ASN H 9.14    HE 7.26    HD2 3.65 
    HE22 7.01    HA 4.55    HG2 1.20    HD3 3.55 
    HG2 2.25    HB2 2.86     HG3 0.93    HG2 1.94 
    HG3 2.26    HB3 2.84 810 GLU H 8.60     HG3 1.86 
496 ARG H 7.76    HD21 7.66    HA 4.19 889 SER H 8.07 
    HA 4.20     HD22 7.07    HB2 2.10    HA 4.69 
    HB2 1.68 624 ASP H 8.45    HB3 2.09    HB2 3.90 
    HB3 1.65    HA 4.44    HG2 2.52     HB3 3.74 
    HD2 3.15    HB2 2.58     HG3 2.43 890 GLY H 8.85 
    HD3 3.22     HB3 2.59 815 PHE H 8.50    HA 3.72 
    HE 7.21 625 CYS H 8.83    HA 4.37    HA2 3.92 
    HG2 1.53    HA 4.36    HB2 2.85     HA3 3.541 
    HG3 1.50    HB2 2.85    HB3 2.87     
501 ARG H 8.23     HB3 2.88    HD1 7.12     
    HA 3.94 786 LEU H 8.05    HD2 6.86     
    HB2 1.78    HA 4.08   HE1 6.98     
    HB3 1.39    HB2 1.64   HE2 7.15     
    HD2 3.07    HB3 1.50     HZ 6.88     
    HD3 3.32    HD1 0.61 817 HIS H 8.42     

    HE 8.00    HD2 0.38     HA 4.29     

    HG2 1.70     HG 1.38     HB2 3.31     

    HG3 1.82 804 TYR H 7.09     HB3 3.02     
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Table A.11: Δ-STD factors calculated for 1.5/6.7 Differential Irradiation of the CDP/D-cellobiose 

complex. 

Protons 1H δ (ppm)[a] STD %  
1.5 ppm 

STD %   
6.7 ppm 

Ratio STD 
 (1.5/6.7 ppm) 

ΔSTD 

H1β 4.36 3.46 0.36 0.75 0.05 
H2β 2.98 2.05 2.71 0.78 0.08 
H4β 3.36 2.71 1.43 0.70 0.00 
H1b 4.21 1.58 2.02 0.75 0.05 
H2b 3 4.28 1.20 0.76 0.06 
H3b 3.2 2.60 3.25 0.76 0.06 
H4b 3.11 1.98 1.74 0.67 -0.03 
H5b 3.17 1.92 1.26 0.64 -0.06 
H6b 3.61 1.45 1.18 0.61 -0.08 
H6'b 3.43 1.51 0.93 0.64 -0.06 

  SUM SUM STD average  

  24.02 17.04 0.70  

[a] Spectra for assignment acquired at 278 K. 

Table A.12: Δ-STD factors calculated for 1.5/7.3 Differential Irradiation of the CDP/D-cellobiose 

complex. 

Protons 1H δ (ppm)[a] 
STD % 

1.5 ppm 
STD % 

7.3 ppm 
Ratio STD 

(1.5/7.3 ppm) ΔSTD 

H1β 4.36 3.46 0.33 0.68 0.04 
H2β 2.98 2.05 2.51 0.72 0.08 
H4β 3.36 2.71 1.34 0.66 0.02 
H1b 4.21 1.58 1.85 0.68 0.04 
H2b 3 4.28 1.04 0.66 0.02 
H3b 3.2 2.60 3.16 0.74 0.10 
H4b 3.11 1.98 1.54 0.59 -0.05 
H5b 3.17 1.92 1.16 0.59 -0.05 
H6b 3.61 1.45 1.06 0.55 -0.09 
H6'b 3.43 1.51 0.84 0.58 -0.06 

  SUM SUM STD average  

    24.02 15.72 0.64 
  

[a] Spectra for assignment acquired at 278 K. 
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Impact of inorganic phosphate in acceptor binding 

CDP/D-cellobiose complex with small excess of inorganic phosphate 

 

Figure A.17: D-cellobiose NMR build-up curves recorded at increasing saturation time (from 0.5 to 

6 seconds) in [D11]Tris buffer 25 mM, pH 7.4 at 278 K. 15 μM binding unit was used for a ligand 

concentration of 3 mM and a inorganic phosphate concentration of 100 μM. 

Table A.13: STDmax, ksat and STD0 for ᴅ-cellobiose in [D11]Tris buffer 25 mM, pH 7.4 with K3PO4 100 

μM. The assigned STD % were obtained through normalisation against the maximum ligand STD 

initial slope (H2 terminal non-reducing ring; 100%) 

 STDmax ksat STD0 STD (%) 
H1 β 5.46 0.60 3.27 58.09 
H2 β 5.09 0.42 2.14 37.98 

H4 α/β 4.90 0.70 3.43 60.85 
H1 b 2.59 0.82 2.11 37.44 
H2 b 11.65 0.48 5.63 100.00 
H3 b 6.32 0.53 3.37 59.89 
H4 b 4.10 0.60 2.47 43.77 
H5 b 4.02 0.55 2.21 39.16 
H6 b 1.85 1.00 1.86 33.05 
H6' b 1.85 1.10 2.04 36.19 
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CDP/D-cellobiose complex with large excess of inorganic phosphate 

 

Figure A.18: D-cellobiose NMR build-up curves recorded at increasing saturation time (from 0.5 to 

6 seconds) in PBS 25 mM, pH 7.4 at 278 K. 15 μM binding unit was used for a ligand concentration 

of 3 mM. 

Table A.14: STDmax, ksat and STD0 for ᴅ-cellobiose in PBS 25 mM, pH 7.4. The assigned STD % were 

obtained through normalisation against the maximum ligand STD initial slope (H2 terminal 

non-reducing ring; 100%) 

 STDmax ksat STD0 STD (%) 
H1 β 6.67 0.57 3.81 71.80 
H2 β 7.51 0.42 3.14 59.18 

H4 α/β 5.14 0.76 3.90 73.33 
H1 b 3.26 0.88 2.87 53.95 
H2 b 10.94 0.49 5.31 100.00 
H3 b 7.52 0.59 4.43 83.47 
H4 b 4.85 0.59 2.86 53.76 
H5 b 4.51 0.67 3.03 57.00 
H6 b 2.31 1.28 2.97 55.95 
H6' b 2.45 1.16 2.83 53.37 
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Chapter 4 

Morphological characterisation of deoxy-fluorinated cellodextrin derivatives – 

TEM and AFM 

 

Figure A.19: TEM images of enzymatically produced cellodextrin EpC (a) and enzymatically 

produced fluorinated cellodextrins 2F-EpC (b), 3F-EpC (c), 6F-EpC (d) multi-6F-EpC (e) negatively 

stained with 2% uranyl acetate. Scale bars correspond to 100 nm.  
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Figure A.20: TEM (a) and AFM (b and c) images of EpC (5, row A) and multi-6F-EpC (4, row B). 

Scale bars are shown at the bottom of each image. The gradient bars next to b and c correspond 

to height measurements. 

Short range characterisation of deoxy-fluorinated cellodextrin derivatives – 

Raman Spectrosopy 

 

Figure A.21: Deconvoluted and normalised Raman spectra for EpC (black), 2F-EpC (red), 

3F-EpC (green), 6F-EpC (orange) and multi-6F-EpC (blue). Dashed lines correspond to boundaries 

of bands associated with C-O-C stretching (C-O-C) and presence of fluorinated carbon groups (CH2F 

and CHxF). Each Raman spectrum represents the average of three Lorentzian-deconvoluted spectra 

upon noise removal. 
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Chapter 5 

Fit of the SDTD curves to the 1D equation 

Script A.1: Matlab script used in this work to plot the SDTD data vs the square root of saturation 

time (SQRT_tsat) and carry of the fit to Equation 5.15. 

 

function [fitresult, gof] = createFit(SQRT_tsat, SDTD) 

%CREATEFIT(SQRT_TSAT,SDTD) 

%  Create a fit. 

% 

%  Data for 'SDTD_fit' fit: 

%      X Input : SQRT_tsat 

%      Y Output: SDTD 

%  Output: 

%      fitresult : a fit object representing the fit. 

%      gof : structure with goodness-of fit info. 

% 

%  See also FIT, CFIT, SFIT. 

 

% export data, introduce path to your xlsx file in fname.  

% SQRT_tsat and SDTD data must be in the first and second column, respectively, of fname 

fname = 'PATH/filename.xlsx'; 

data = readmatrix(fname); 

SQRT_tsat = data(:,1); 

SDTD = data(:,2); 

scatter(SQRT_tsat,SDTD); 

 

%% Fit: 'untitled fit 1'. 

[xData, yData] = prepareCurveData( SQRT_tsat, SDTD ); 

 

% Set up fittype and options. 
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ft = fittype( 'C*erfc(r/(sqrt(4*D*x))-b)', 'independent', 'x', 'dependent', 'y' ); 

opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); 

opts.Display = 'Off'; 

opts.Lower = [-Inf 0 1 0.2]; 

opts.StartPoint = [1 0.000125 1 0.2]; 

opts.Upper = [Inf 0.1 1 0.2]; 

 

% Fit model to data. 

[fitresult, gof] = fit( xData, yData, ft, opts ); 

 

% Plot fit with data. 

figure( 'Name', 'SDTD_fit' ); 

h = plot( fitresult, xData, yData ); 

legend( h, 'SDTD vs. SQRT_tsat', 'SDTD_fit', 'Location', 'NorthEast', 'Interpreter', 'none' ); 

% Label axes 

xlabel( 'SQRT_tsat', 'Interpreter', 'none' ); 

ylabel( 'SDTD', 'Interpreter', 'none' ); 

grid on 


