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Abstract

Cancer classification plays an important role in the clinical management of cancer patients. It

enables clinicians to predict how individual cancers will behave and directs the best course of

treatment. However, the classification of heterogeneous cancers has proven to be challenging.

To address this problem more advanced classification techniques should be used. In

this thesis we focus on the unsupervised Bayesian algorithm Latent Process Decomposition

(LPD). This technique has previously been used to classify breast cancer and was recently

used to produce a novel classification of prostate cancer. We therefore aim to leverage LPD’s

ability to classify heterogeneous diseases.

We begin by performing a study on the prostate cancer subtype DESNT, introduced by

Luca et al. (2017). By creating and applying a new type of LPD algorithm (OAS-LPD) to the

DESNT classification, we establish a DESNT risk score that is an independent predictor of

progression alongside existing diagnostic variables (PSA level and Gleason score). DESNT’s

expression profile is also demonstrated to be detectable in prostate cancer biopsies. Combined,

these findings present the possibility for a new clinical test to reduce the over treatment of

prostate cancer patients.

In the second part of this thesis we apply LPD to six transcriptome datasets obtained

from colorectal cancer (CRC) biopsies. We identify and characterise four new CRC subtypes

present across the datasets, including one subtype (designated Pericol) associated with a

statistically significant poorer prognosis. Many of the Pericol signature genes are shown



vi

to overlap with other published signatures and the Pericol risk score is identified as an

independent predictor of disease recurrence.

Our results demonstrate the existence of poor prognosis categories of human cancers that

can be used to assist in the targeting of treatment. They also emphasise the importance of

employing biologically appropriate techniques to classify heterogeneous diseases.
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Chapter 1

Introduction

The term cancer describes a group of diseases in which abnormal cells divide without control,

invade nearby tissues and eventually spread to distant parts of the body [10]. Cancer continues

to be one of the leading causes of death worldwide, accounting for 9.6 million deaths in 2018

alone [11]. Among the many types of cancer, colorectal and prostate cancers accounted for

24.9% of all new cancer cases within the UK in 2017 [1] (Figure 1.1).

The name of a cancer is typically derived from the location within the body in which

it first develops. However, cancer is not a simple set of diseases and each type of cancer

may contain many subtypes, formed through distinct molecular pathways with independent

clinical outcomes. The prevalence of these diseases has resulted in many attempts to find

cancer subcategories to facilitate the development of targeted diagnosis and treatment options.

The identification of specific cancer subtypes could also highlight potential targets for the

development of new drugs.

The classification of cancer therefore plays an important role in the diagnosis and treat-

ment of cancer patients. It can prevent unnecessary radical treatments in low risk patients

and ensure high risk patients receive the necessary treatment to improve their prognosis. This

avoids the complications and side-effects associated with such treatments for low risk pa-

tients, while providing radical treatments to patients with the most to gain. The identification
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of high risk cancer classifications can focus research efforts into the areas with the greatest

potential benefits for patients. These research efforts can also target the characteristics of

each identified subtype to provide specialised treatment options for specific groups of patients

[12].

Fig. 1.1 The number of patients diagnosed with the fifteen most prevalent cancer groups in
England in 2017. Adapted from ONS [1].

An important example of the benefits of cancer classification is provided by the identifi-

cation of five distinct molecular subtypes of breast cancer (normal breast-like, basal, luminal

A, luminal B, and ERBB2+) [13]. Together the many breast cancer studies have determined

epidemiological, histoclinical, molecular, prognostic and therapeutic features associated

with each of these five subtypes [14]. One such key observation within the aggressive basal

subtype is an association with germline BRCA1 mutations [15]. However, these mutations
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are not always present within the basal subtype and are less frequently observed in other

subtypes [15]. The identification of BRCA1 mutations is as key step during diagnosis and

treatment as these mutations confer a susceptibility to PARP inhibitors that can be used to

improve the overall patient survival times [16].

While many molecular subtypes have been successfully identified within cancers such

as breast cancer, this has proven to be far more challenging within prostate and colorectal

cancers. However, a recent study in 2017 by the University of East Anglia managed to

produce a novel set of classifications for prostate cancer, with clinically useful associations

[17]. The main reason for this successful unsupervised classification has been attributed to

their use of Latent Process Decomposition (LPD), which accounted for the heterogeneity

within prostate cancer, optimised the number of clusters and avoided over-fitting the model

to noise within the data. This unsupervised Bayesian method has also been applied to breast

cancer, where it was previously able to identify four subtypes closely related to the molecular

subtypes discussed above [18].

The application of LPD to other cancers may yield similarly promising results and provide

new opportunities to tailor treatment options to specific cancer subtypes. Colorectal cancer is

one such highly heterogeneous disease whose patients may benefit from the application of

LPD to identify common molecular subtypes. While a number of colorectal classifications

currently exist within the literature, including the clinically approved Oncotype DX test [19],

they have been shown to be independently distinct from one another [20]. This discordance

suggests the current classifications are limited by a lack of robustness and that further work

is required to reliably classify the disease at a molecular level.

1.1 Thesis Aims

The aim of this thesis is to develop novel classifications of heterogeneous diseases, focusing

on prostate and colorectal cancers, that can be used to stratify patients into high and low
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risk groups. To accomplish this we make use of the unsupervised Bayesian classifier called

Latent Process Decomposition. We split the thesis into two separate pieces of work that each

focus on the application of LPD within one of these two types of cancer.

In the first part of this thesis we shall focus on prostate cancer. In particular, we extend

upon the work by Luca et al. [17] to explore the potential uses for the poor prognosis subtype

known as DESNT. We modify the LPD algorithm to classify new samples into the LPD

processes of an existing model (such as DESNT) and show the feasibility of applying this

transcriptomic model to prostate biopsy samples.

In the second part of this thesis we will present a set of novel classifications of col-

orectal cancers, containing both good and poor prognosis groups based on their molecular

subtypes. We will characterise each of the subtypes using their transcriptomic signatures

and accompanying clinical data. Clinically relevant correlations to these subtypes will be

shown in additional to an analysis of the genetic pathways critical to the development of

these colorectal cancer subtypes.

1.2 Chapter Summaries

We now summarise the contents of the rest of this thesis, including a summary of my

contributions:

• In Chapter 2 we introduce the biological principles key to this thesis. This will

include the defining characteristics of cancer and the technologies used to quantify

transcriptomes.

• In Chapter 3 we introduce the computational approaches used to classify cancer. This

chapter will predominately focus on Latent Process Decomposition, as it has shown a

strong ability to classify heterogeneous cancers. We will also describe the algorithms

used to analyse the survival times of patients.
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• In Chapter 4 we discuss the defining features of prostate cancer and current methods

to quantify patient risk. We conclude this chapter with a discussion focused on the

prostate cancer treatment options and the limitations of current tests.

• In Chapter 5 we apply a Latent Process Decomposition algorithm to five prostate

cancer datasets, as described in Luca et al. (2017) [17]. We then extend this work to

further analyse the importance of the DESNT prostate cancer subtype in relation to

determining the risk of recurrence in patients. We end the chapter by performing a

preliminary study aiming to detect DESNT in prostate cancer biopsies using a novel

type of LPD. My contribution to new analyses and results within this chapter include

the analysis of DESNT as a continuous predictor of biochemical recurrence and the

classification of prostate biopsy samples using OAS-LPD.

• In Chapter 6 we discuss the defining features of colorectal cancer, highlighting the

differences between hereditary and sporadic forms of the cancer. We also consider the

range of transcriptomic factors known to influence the progression of colorectal cancer

and explore the available treatment options.

• In Chapter 7 we produce a new classification framework for colorectal cancer by

applying LPD to six transcriptome datasets. We then use these LPD models to construct

a consensus OAS-LPD model and examine the clinical differences between each of

the consensus subtypes. We identify a poor prognosis subtype capable of predicting

the risk of disease relapse and show LPD’s ability to derive subtypes similar to those

found in the current literature. My contribution to new analyses in this chapter extends

to all work presented.

• In Chapter 8 we conclude the findings of this thesis with a discussion on some of the

possible future directions for this research.



Chapter 2

Biomedical Background

2.1 Summary

In this chapter we present the main biological concepts related to cancer. In later chapters

we build upon this information to describe the medical approaches related to the clinical

management of prostate and colorectal cancers. We begin by describing the basic molecular

biology surrounding the formation of cancerous tissue. We then introduce the technological

approach (microarrays) used to produce the datasets analysed in later chapters of this thesis.

2.2 Transcription / Translation

Organisms store genetic information in DNA (deoxyribonucleic acid), a double stranded,

helical structure, composed of chains of nucleotides. These nucleotides contain a phosphate

group, a sugar group and one of four nitrogen bases (Adenine, Cytosine, Guanine and

Thymine). The central dogma of molecular biology states that DNA is transcribed into

RNA (ribonucleic acid), which is then translated into proteins [21]. These proteins form the

structural and functional elements of an organism’s cells.
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A gene is a segment, or multiple segments, of DNA that codes for a given protein. The

process of synthesising a protein from its coding gene is referred to as gene expression. More

specifically these genes are transcribed into pre-mRNA (precursor messenger RNA). The

pre-mRNA is then spliced, a process where some portions (introns) are removed and the

remaining portions (exons) are ligated together to form mRNA (messenger RNA), as shown in

Figure 2.1. The selection of exons can be changed to produce alternative mRNA transcripts.

Fig. 2.1 A simple depiction of RNA splicing.

The mRNA nucleotide sequence is then translated into a sequence of amino acids within

a cellular structure called a ribosome. The strand of mRNA is split into sequences of three

nucleotides (codons). Amino acids, attached to tRNA (transfer RNA), are then arranged into

the order corresponding to the order of codons by matching each mRNA codon with the

anti-codon on the tRNA molecules (Figure 2.2).

The codon responsible for initialising translation is AUG. Upstream of the initialisation

codon is the 5’ untranslated region (5’UTR) of mRNA responsible for regulating translation.

Translation is terminated by one of three stop codons (UAG, UAA, UGA), which precede the

3’ untranslated region (3’UTR). Within the 3’UTR exist regions that commonly influence

the subsequent gene expression.

The quantity of each protein produced by translation is thought to be determined by

the amount of RNA. In practice there is a poor correlation between levels of mRNA and

proteins [22]. The quantity of RNA can vary over time, based on many external stimuli and
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Fig. 2.2 A simple depiction of mRNA being translated into a sequence of amino acids.

internal needs. The amount of mRNA transcribed is referred to as the gene expression level.

We can use gene expression levels as a proxy of what mechanisms are functionally altered

within a cell. While there has been a great deal of progress in understanding the mechanisms

that control the amount of DNA transcribed, such as the need for transcription factors to

bind to promoters (a region of DNA upstream of the transcription sequence) and distal

enhancers (regions within the noncoding DNA that stimulate transcription), it is still not fully

understood [23]. For the purposes of this thesis we will be investigating the gene expression

levels in cancer samples and the potential epigenetic effects (non-genetic influences) that

could explain these changes in gene expression levels.

2.3 Cancer

Cancer is a disease of the genome, consisting of many individual diseases that are charac-

terised by uncontrolled cell division. The progression from a normal cell to a cancerous

cell is a multi-stage process known as tumorigenesis. Normal cells contain numerous safe

guards against uncontrolled division, which must be disabled or bypassed to become a cancer

cell. Over time cells can accumulate numerous mutations, inheriting the mutations from
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previous cell generations and developing new mutations alike. By accumulating a sufficient

number of mutations to disable and bypass the various safe guards, a cell may begin to divide

uncontrollably.

Hanahan and Weinberg (2000) [24] described six essential capabilities that cancer cells

must acquire to multiply and spread: self-sufficiency in growth signals, insensitivity to

growth-inhibitory signals, evasion of programmed cell death (apoptosis), limitless replicative

potential, sustained angiogenesis and tissue invasion and metastasis.

The first four capabilities are essential to begin the formation of cancers, without them the

cells would neither divide uncontrollably or survive once they did begin to multiply. Cancers

that develop within solid tissue can create tumours. As these tumours begin to grow in size

they require a steadily increasing supply of oxygen, nutrients and waste removal [25]. To

accomplish this the tumours usually hijack the mechanisms responsible for angiogenesis, to

spread new blood vessels from existing ones [26].

As a tumour progresses into the latter stages it begins to invade the surrounding tissue and

ultimately spreads to new distant sites, developing metastatic tumours. A metastatic tumour

is typically the result of cancerous cells spreading into the blood, which transports them to

a distant site. This process is known as metastasis and is the main cause of cancer-related

death as a result of multiple organ failure.

More recently Hanahan and Weinberg (2011) [27] presented two additional emerging-

hallmarks of cancer: reprogramming of energy metabolism and evading immune destruction.

They first highlight the observation that many cancer cells limit their energy metabolism

to glycolysis (the anaerobic breakdown of glucose into pyruvic and lactic acids) [28], ir-

respective of the presence of oxygen. Initially this appears to be counter-intuitive given

the 18-fold lower efficiency of ATP production by glycolysis, compared to mitochondrial

oxidative phosphorylation [29]. However, the lactate produced via the glycolytic pathway

can be utilised by the surrounding cancer cells as part of the citric acid cycle to provide
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another source of energy [30]. Additionally, the glycolytic intermediates can be used in

multiple biosynthetic pathways including the production of amino acids [31]. The products

of these biosynthetic pathways can in turn be utilised in the assembly of new cells to support

cell proliferation.

The second emerging-hallmark, evading immune destruction, highlights the ability for

some cancer cells to avoid detection by the immune system. Better prognosis has been

observed in several forms of human cancer where immune cells have heavily infiltrated the

solid tumours, such as colorectal and ovarian tumours [32, 33], while increased incidence has

been observed in immunocompromised patients [34]. However, cancer cells may also prevent

the immune system from killing these cells in individuals with normal immune systems by

utilising immunosuppressive factors, such as TGF-β , to suppress the actions of infiltrating

immune cells.

2.3.1 Mutations

A genetic mutation is the alteration to a sequence of nucleotides within a portion of DNA.

When a single nucleotide is substituted the genetic mutation is referred to as a point mutation.

These mutations are the result of external factors such as radiation, ultraviolet light or

chemicals, or endogenetic factors such as errors in DNA repair. When mutations take place

within a protein coding gene, the protein produced by this mutated gene may also change.

The changes to the protein may in turn result in detrimental effects to its ability to perform

its normal function(s).

There are a number of mutations that play an important role in the development of cancers.

Mutations to the tumour suppressor gene TP53 occur in up to 50% of tumours depending

on the type of cancer, making it one of the most common mutations within cancer [35].

Mutations to this gene commonly result in its inability to initiate apoptosis, or to activate

DNA repair proteins, preventing it from stopping the formation of cancers.
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While TP53 is commonly mutated in many different types of cancer, other genes have

been found to be mutated in a vast number of tumours attributed to one or more specific

types of cancer. Examples of this are the APC tumour suppressor gene that has been strongly

associated with colorectal cancers [36] and BRCA1 / BRCA2 that have been associated with

an increased risk of both Prostate and Breast cancers [37, 38].

2.3.2 Chromosomal Abnormalities

Chromosomal abnormalities are a class of genetic alteration that can result in either an

increase or decrease to the number of chromosomes in a patient. Alternatively they can result

in a change to the structure of a patient’s chromosomes. These abnormalities can be found in

almost all major tumour types and are split into two main subclasses: balanced chromosomal

rearrangements and chromosomal imbalances. [39]

Chromosomal rearrangements change the structure of a chromosome without affecting

the number of copies of a gene. They consist of reciprocal translocations (two chromosomes

exchanging portions), inversions (a portion of a chromosome is inverted) and insertions

(a portion of a chromosome is inserted into another) [39] as shown in figure 2.3a-c. A

more complex form of chromosomal rearrangement coined chromoplexy also exists where

multiple inter translocations occur simultaneously between multiple chromosomes (Figure

2.3d) [40, 41].

The breakpoints of chromosomal rearrangements often occur within a gene transcript

or within proximity to the promoter region. In these cases the rearrangement may result in

a gene fusion, where parts from two distinct genes form a new chimeric gene with new or

altered functionality [39]. These chimeric genes may no longer respond to regular control

mechanisms, or produce proteins that are non-responsive. This behaviour can be seen in

almost all cases of chronic myeloid leukaemia where the BCR gene located on chromosome



2.3 Cancer 12

Fig. 2.3 Chromosomal Abnormalities: a) reciprocal translocation, b) inversion, c) insertion,
d) chromoplexy, e) duplication, f) deletion.

22 and ABL1 gene located on chromosome 9 form a chimeric gene following reciprocal

translocation [42].

Chromosomal imbalance refers to abnormalities that arise through the loss or gain

of genetic material. This can occur to a portion within a chromosome or to the entire

chromosome. These duplications or deletions (Figure 2.3e,f) directly affect the production of

proteins associated with the genes and regulation of the pathways they are involved in. The

loss of the PTEN tumour suppressor gene through deletion is a prime example, as it results

in the deregulation of the PIK3/Akt pathway [43]. This pathway plays an important role in

the maintaining a balanced cell proliferation, cell growth and in apoptosis. The deletion of

PTEN is therefore a major contributor to the development of many cancers [44].
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The duplication or deletion of genomic sequences containing 50 or more base-pairs

are commonly referred to as copy-number variants (CNVs) [45]. The frequency of CNVs

can vary greatly among a population and are considered as important as single nucleotide

polymorphisms in defining genetic diversity [46]. The percentage of a genome affected by

CNVs is known as the CNV burden. Within the PAM50 breast cancer subtype CNV burden

has been shown to be significantly associated with disease survival, suggesting the potential

use of CNV burden as a prognostic biomarker [47].

2.3.3 DNA Methylation

There are many other ways to alter a gene’s normal activity without changing the DNA

sequence. One such example is a type of epigenetic mechanism called DNA methylation; the

addition of a methyl group (CH3) to a CpG site (a location where a cytosine nucleotide is

followed by a guanine nucleotide) to suppress the expression of a target gene. The addition

of methyl groups is facilitated by the family of enzymes called DNA methyltransferases

(DNMTs). These enzymes allow a methyl group to bind to the fifth carbon of cytosine bases

to form 5-methylcytosine.

CpG sites that are significantly denser than the surrounding DNA sequence are known

as CpG islands. Unlike sparse CpG sites that are commonly methylated, CpG islands

are typically unmethylated, but can cause gene silencing if they become methylated [48].

Gardiner-Garden and Frommer [49] provided the first formal definition of CpG islands as

regions that meet the following three requirements:

• A region greater than 200 base-pairs in length.

• A G+C content greater than 50%.

• An observed versed expected ratio for the occurrence of CpGs of more than 0.6.
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These CpG islands frequently occur in transcription start sites and in promoter regions.

Methylation of CpG islands plays an essential role in mammalian development and maintain-

ing genetic stability [50]. However, if this methylation occurs improperly it can lead to the

promotion of diseases. In the context of cancer development this improper methylation may

occur in mismatch-repair genes and tumour suppressor genes, resulting in the transcriptional

silencing of these genes and increasing the risk of tumour development [51]. One such

example of methylation promoting the development of cancer is the hyper-methylation of

MLH1 mismatch-repair genes in colorectal cancer (discussed further in Chapter 6.3.7).

2.4 Tissue Samples and Cell Cultures

There are two main approaches to analysing cancer using tissue samples. The first approach

is to extract a sample from a clinical biopsy, store it and later analyse it using a variety

of available techniques, such as microarrays or methylation arrays. The second is to grow

the cancer cell cultures in vitro or in vivo under controlled conditions and analyse their

development, or use the mature cells in a variety of -omics based experiments [52].

The two approaches bring their own advantages and disadvantages. Clinical samples

accurately reflect how cancers develop naturally, providing a snapshot of the diseases’

progression in individual patients. The information that can be extracted from clinical

samples regarding how the cells evolved is however restricted to indirect information as the

conditions cannot be tightly controlled. Acquiring the samples can also be unpleasant for the

patient and result in undesired side effects. The collection process also carries the risk of

providing a limit source of material. Cell cultures on the other hand provide a dynamic view

of the tumour cell proliferation and a readily available source of additional material. The

conditions of the culture can be closely controlled and their effects measured, but they may

not accurately reflect what happens in vivo.
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Clinical samples can be obtained from normal, primary tumour or metastatic tissue. To

prevent the samples from degrading they must be fresh frozen (FF) or formalin-fixed-paraffin-

embedded (FFPE). FF samples are created by submerging the fresh tissue sample in liquid

nitrogen. The FF samples can later be analysed by slowly thawing them in solution [53] or

quickly grounding them to preserve RNA integrity. FFPE samples are created in a two step

process. They are first treated with formalin to preserve the tissue, before being embedded in

paraffin to support the tissue. FFPE samples can be analysed later by cutting them into slices

or microscopic sections (Figure 2.4).

Fig. 2.4 Processing FFPE tissue samples. a) Tissue sample is serial sectioned. b) Sectioned
tissue is placed in a plastic cassette to be processed. The tissue is fixed and embedded in
paraffin. c) After processing, blocks are formed. Each block consists of tissue embedded in
paraffin that is attached to the bottom of the cassette. d) A microtome is used to slice the
block into slices (typically 4 microns thick) that can be mounted and analysed. Adapted from
Lester (2010) [2].

One of the main advantages of using FF samples is that they usually contain better quality

RNA [54]. However, FF samples must be stored in dedicated freezer storage making them far

less cost-efficient than FFPE samples, which can be stored at room temperature [55]. Due to

their cost efficiency and ability to be processed faster, FFPE archives are far more abundant.
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The relative abundance of FFPE samples has made them an appealing source of material

for retrospective studies. Researchers have since compared FFPE and FF paired samples

to test whether the difference in RNA quality significantly affects study results [56] and

concluded that FF is the ideal source of material, but FFPE is suitable for gene expression

and single-nucleotide variant (SNV) detection [55].

As previously discussed, cell cultures are an alternative way to study cancer development.

To establish a cell culture, cells must be isolated from a tissue sample. These cells are referred

to as the primary cells and are the best representation of the in vivo state [57]. Once the cell

culture has undergone multiple sub-cultures it produces a cell line. These cell lines can be

grown and injected into immunodeficient organisms, typically mice, to obtain an efficient in

vivo model.

While primary cell cultures offer the best representation of the original in vivo state, they

typically have a finite lifespan and are not well characterised. Established immortalised cell

lines, derived from tumours that are capable of reproducing infinitely, provide an alternative

solution to these problems. These cell lines are both well characterised and available for a

wide range of cancer subtypes [58].

2.5 Microarrays

Microarrays are genomic tools that can simultaneously measure the expression level of

thousands of genes, or other transcripts. The data output from a microarray is a matrix of

real positive values representing the expression levels, with normal or log-normal expression

level distributions [59]. One of the first attempts at producing these tools, albeit on a much

smaller scale, appeared in 1975 [60]. However the modern description of a microarray did

not appear until the mid-1990s [61].

The three main types of microarrays are two-colour arrays, bead arrays and Affymetrix

arrays [62]. Here we focus on Affymetrix arrays which were primarily used throughout this
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thesis. Modern microarrays are small silicon or glass slides that can contain millions of

probes (spots). Millions of copies of the same single-stranded DNA sequence are attached

to the microarray surface at each spot. These DNA sequences each correspond to a region

of interest within a genome. The probes can be grouped into two main types, perfect match

(PM) probes and mismatch (MM) probes that together form a probe pair. The middle base

pair of the PM probe is typically changed to form the corresponding MM probe, which is

intended to measure non-specific binding.

To measure the gene expression level of a sample, RNA is first extracted from the sample

cells. The RNA is then amplified and converted to complementary DNA (cDNA) in a

reaction called reverse transcription. The cDNA is then labelled using a fluorescent dye

and injected onto the microarray. Depending on the expression level of each gene a greater

or lower number of complementary sequences hybridise to each probe. A laser then scans

the microarray measuring the luminosity of each spot [63]. The luminosity of each spot is

then converted to a set of numeric values, which must be normalised to take into account

background noise, slide position and other non-biological effects.

To avoid background noise and the position of an interrogation probe within the mi-

croarray from affecting the results, a microarray usually has several probes measuring the

expression of the same biological sequence (exon in this case). These probes typically map

to different locations with the same genomic region and are placed in different positions on

the chip to prevent localised biases. The group of probes that interrogate the same region are

known as a probeset. During the normalisation of the microarray data, the expression level

estimates from each probe are adjusted and summarised to obtain a single estimate for each

probeset. The main limitation of microarrays is their inability to measure the expression of

every known gene, due to the limited number of probesets.

One of the many uses of microarray technologies is to identify differentially expressed

genes between two groups. This could be between cancerous and non-cancerous tissue;
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patients with different clinical outcomes; or samples before and after a given treatment.

Statistical methods, such as t-tests, adaptive ranking and two-way clustering can be used

to analyse the output from microarrays to identify differentially expressed genes between

samples [64]. One of the most commonly used R packages to identify differentially expressed

genes is the Limma package [65].

Microarrays can also be used to derive gene signatures that can be used as biomarkers.

These signatures can be used to discriminate between multiple conditions and classify new

samples into distinct clinical outcomes [66]. The extensive repositories of microarray data

further lends itself to this form of research.

2.5.1 Exon Microarrays

The analyses performed later in this report predominately use the highest resolution microar-

rays currently available. These high resolution microarrays are called Affymetrix GeneChip

Human Exon 1.0 ST Arrays and will be referred to in this report as exon microarrays.

Exon microarrays contain over 5.5 million probes to interrogate over 1 million known or

predicted exons. They contain on average 4 probes per exon and 40 probes per gene [67].

This comprehensive coverage enables analyses to be performed at both the exon and gene

levels. For the purposes of this work we will be focusing on gene level analysis.

In a standard Affymetrix microarray there is usually a single mismatch probe for every

perfect match probe. These mismatch probes have the same sequence as their perfect probe

counter part, however one nucleotide in the middle of the sequence is altered, giving rise

the name mismatch probes. The reason for having these probes comes into effect when

correcting for background noise. They allow the non-specific hybridisation levels to be

estimated and so help with the data normalisation [68].

Exon microarrays in contrast do not contain mismatch probes. Due to this several standard

normalisation algorithms that rely on mismatch probes cannot be used. To compensate for
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the lack of mismatch probes other algorithms, such as RMA, PLIER and SCAN can be used

[69]. These other algorithms use two alternative types of probe that can be found in exon

microarrays. These probes are:

• Genomic background probes - Probes from regions of the genome that are unlikely

to be transcribed.

• Anti-genomic background probes - Probes that are not found in the genome.

2.6 Discussion

In this chapter we have introduced the main biological concepts and technologies relevant

to this thesis. We have presented the central dogma of molecular biology and explored the

main data sources that will be used in our analyses. In the next chapter we will explore

the bioinformatics methods used to analyse our data and the machine learning algorithm

(latent process decomposition) used to produce our classifications of prostate and colorectal

cancer. The next chapter will also explain that latent process decomposition assumes a

normal distribution of gene expression level. It is important to highlight that microarrays

have been selected as the main source of data due to their abundance and because they fit this

distributional assumption.



Chapter 3

Computational Background

3.1 Summary

In this chapter we start by introducing the data normalisation techniques used to remove the

batch effects from our gene expression data. After, we discuss the clustering technique used

in Chapters 5 and 7 to define groups of patients based on their gene expression profiles. We

then introduce the survival analysis models used to analyse the clinical risks associated with

these classifications, which can be used to inform patient prognosis and treatment. Finally

we discuss the application of pathway analysis in understanding the mechanisms driving the

development and progression of our novel subtypes.

3.2 Data Normalisation

Before gene expression data can be analysed it must be thoroughly normalised to remove

the batch effects and biases that can occur during the sample extraction and processing [70].

Batch effects must be accounted for across each sample within a given dataset as well as

across each dataset within a study. To account for all of these factors we will now discuss
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three normalisation techniques that have been used in the work later in this thesis: Robust

multiarray analysis, ComBat and Quantile normalisation.

3.2.1 Quantile Normalisation

Quantile normalisation is a technique used in statistics to make two distributions identical in

terms of their statistical properties [71]. Originally called quantile standardisation, quantile

normalisation was taken from statistics and applied to microarray data to tackle the inter-

and intra-chip gene expression variability [72] [73]. It was motivated by the idea that the

distribution of two data vectors are the same if they can be plotted as a straight diagonal line

on a quantile-quantile plot. By projecting data points onto this line in the nth dimension we

can therefore transform the data into the same distribution as one another.

To achieve this projection we first let qi = (qi1, ...,qin) for i = 1, ..., p be the vector of the

ith quantiles for all n arrays and d = ( 1√
n , ...,

1√
n) be the unit diagonal. We can then transform

the quantiles of q to lie along the diagonal d [72]

projdqi =

(
1
n

n

∑
j=1

qi j, ...,
1
n

n

∑
j=1

qi j

)
. (3.1)

Transforming the data into the same distribution requires substituting the original data

with the mean expression quantile across all arrays. Given a matrix A, containing n arrays as

the columns and g genes as the rows, we can transform the distribution through a five stage

process:

1. Create a new matrix B, of size n × g, containing the numerically ascending ranks of

the columns from A.

2. Reorder each column of A into ascending order.

3. Calculate the mean of each row of A and store in vector V.
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4. Rank the values of V into numerically ascending order.

5. Substitute the ranked values of V into the corresponding ranks of B to ensure all arrays

contain the same distribution.

3.2.2 Robust Multiarray Analysis (RMA)

The RMA algorithm by Irizarry et al. [74] is one of the most commonly used techniques

for the normalisation of exon microarrays. In their work they identified that the MM probes

within microarrays (Chapter 2.5) capture both the background noise and the transcript

signal similar to that of the PM probes. The consequence of these findings suggestions that

the difference between MM probes and PM probes would not be enough to remove the

background noise and non-specific binding. To overcome these limitations Irizarry et al.

proposed the RMA algorithm to better measure gene expression using log-transformed PM

values following background correction and quantile normalisation.

The RMA algorithm begins with background correction to account for unwanted non-

specific binding. The model assumes that the observed PM probe intensities are the combined

result of the true signal (S) and some background noise (B). This can be represented by:

PM = S+B, (3.2)

where S is assumed to follow an exponential (positive) distribution (λ ) and B is assumed

to follow a normal distribution with mean µ and variance σ . These assumptions allow an

empirical Bayes approach to be used to estimate λ , µ , σ from the data. Once these values

have been estimated we can predict and correct for B by minimising the mean squared error.

Following background correction, quantile normalisation is employed to transform the probe

intensities of each microarray to the same distribution.
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The final step of the RMA algorithm is to obtain a single value per probeset, through the

summation of all probe intensities within a given probeset. Li and Wong [75] highlight the

challenge of this summation as the variation of probe intensities from any given probeset

may be very large, due to probe-specific effects. RMA overcomes this challenge by taking

advantage of the reproducibility of these probe-specific effects and uses the following linear

additive model:

Yijn = µ in +α jn + ε ijn, i = 1, ...,I, j = 1, ...,J, n = 1, ...,n, (3.3)

where i is the index of a microarray, n is the probeset index of the microarray, j is the probe

index of the probeset, Yijn represents the log2 background-adjusted and quantile normalised

expression level of probe j in probeset n from microarray i, µ in is the log2 expression level of

probeset n in microarray i, α jn represents the probe affinity effect of probe j from probeset n

and εi jn is an identically distributed independent error term with a mean of 0 [74]. The above

model is robust against outliers by employing a median polish algorithm [76] to estimate

model parameters. The output of RMA is an estimate of µi as the log scale measure of

expression.

3.2.3 ComBat

ComBat normalisation was proposed by Johnson et al. (2007) [77] as an extension to model-

based location/scale adjustment using empirical Bayes (EB) to account for outliers in small

sample sizes. It makes use of systematic batch biases that are common across many genes

to shrink the batch effect parameter estimates. The method contains a three stage process:

standardisation of the data, EB batch effect parameter estimation and data adjustment for

batch effects.

Johnson et al. (2007) [77] initially assume a location/scale adjustment model as follows:
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Yijg = αg +Xβ g + γ ig +δ igε ijg, (3.4)

where Yijg represents the expression value for gene g in sample j from batch i, αg is the

overall gene expression, X is a design matrix for sample conditions and Xβ g is the vector of

regression coefficients corresponding to X. The values γ ig and δ ig represent the additive and

multiplicative batch effects respectively of batch i for gene g. The error term ε ijg is assumed

to follow a Gaussian distribution with an expected value of zero and a variance of σ2
g . The

batch-adjusted data is therefore given as:

Yijg =
Yijg − α̂g −Xβ̂ g − γ̂ ig

δ̂ ig
+ α̂g +Xβ̂ g, (3.5)

where α̂g, β̂ g, γ̂ ig and δ̂ ig are estimates for the previous model parameters αg, β g, γ ig and

δ ig respectively.

3.2.3.1 Step 1: Data Standardisation

The magnitude of gene expression could vary across genes due to probe sensitivity. This

must be accounted for to prevent bias being introduced to the EB estimates. To avoid this

bias Johnson et al. (2007) [77] begin by standardising the data gene-wise to produce a similar

mean and variance for each gene. They employ a gene-wise ordinary least-squares approach

and constrain ∑i niγ̂ig = 0 for all genes (g = 1, ...,G). The variance is then estimated as

σ̂2
g = 1

N ∑i j(Yijg − α̂g −Xβ̂ g − γ̂ ig)
2. From this the standardised data can be calculated as:

Zijg =
Yijg − α̂g −Xβ̂ g

σ̂g
. (3.6)
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3.2.3.2 Step 2: Empirical Bayes Batch Effect Parameter Estimation

Assuming the standardised data, Zijg, follows a normal distribution with mean γig and

variance δ 2
ig, we can also assume that prior distributions of the batch effect parameters are

approximately

γ ig ∼ N(Yi,τ i
2) and δ ig

2 ∼ Inv-Gamma(λ i,θ i), (3.7)

where the above hyperparameters are estimated empirically using the method of moments.

Using these distributional assumptions, the EB batch effect parameter estimates are given by

the following conditional posterior means

γ ig =
niτ̄

2
i γ̂ig +δ 2∗

ig γ̄i

niτ̄
2
i +δ 2∗

ig
and δ

2∗
ig =

θ̄i +
1
2 ∑j(Zijg − γ∗ig)

2

nj
2 + λ̄i −1

. (3.8)

3.2.3.3 Step 3: Data Adjustment for Batch Effects

The data can now be adjusted for batch effects using the estimators, γ∗ig and δ 2∗
ig . These

effects can result from either human or technical errors and biases that occur throughout

the processing and analysis of each sample. Using the EB estimated batch effects the

batch-adjusted data, γ∗i jg, can be calculated as

γ
∗
ijg =

σ̂g

δ̂ ∗
ig

(Zijg − γ̂
∗
ig)+ α̂g +Xβ̂ g. (3.9)

3.3 Clustering Methods

Machine learning is a branch of artificial intelligence that uses unlabelled data, or past

experiences, to determine the parameters of a mathematical or statistical model, which

can then be used to categorise new data. The widespread application of machine learning

techniques vary from spam filtering [78] and fraud detection [79] to the classification of
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cancer data [80]. There are two main approaches that machine learning techniques use:

supervised methods and unsupervised methods [81].

The main difference between the two approaches is due to the type of data they each use

in the training phase. Supervised methods classify objects based on models that are trained

using sets of objects for which the objects’ classes are already known. These objects with

predefined classes are referred to as labelled objects, while unlabelled objects are objects for

which the class is unknown. Unsupervised methods only use unlabelled objects and must

derive the objects’ classes by grouping (clustering) objects with similar characteristics [81].

Many different clustering methods exist, each with a different definition for how they

assign samples to their clusters. These methods can broadly be separated into two types:

hard clustering where each object does or does not belong to a cluster and soft clustering

(also known as fuzzy clustering) where each object partially belongs to multiple clusters.

These definitions can be extended to form a variety of clustering types, such as exclusive

clustering, hierarchical clustering and probabilistic clustering [82].

Exclusive clustering refers to classifying objects into non-overlapping clusters. Hierar-

chical clustering requires objects to belong to a given cluster and to also belong to any parent

clusters associated with the given cluster. Probabilistic clustering is a form of soft clustering,

where a sample is assigned to each cluster with a certain probability. The probability of a

sample belonging to each cluster is between zero and one, with the sum of probabilities for a

given sample equalling one.

3.3.1 K-means Clustering

K-means clustering [83–85] is a technique that belongs to the unsupervised exclusive clus-

tering class of machine learning algorithms, where samples are partitioned into distinct

categories. This algorithm is a special case of the Expectation Maximization (EM) algorithm

(a natural generalisation of maximum likelihood estimation), where the covariances are zero
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and the mixture weights are equal [86]. The EM algorithm has been shown to converge within

a finite number of steps, a property inherited and demonstrated by the K-means clustering

algorithm [87]. The simplistic nature, finite runtime and ability to fine tune the K-means

algorithm has resulted in its wide-spread application [88].

The K-means algorithm works by initialising K centroids (central cluster points) and

assigns each sample to the nearest centroid’s cluster. Within each cluster the centroid is then

redefined as the point closest to the centre of the cluster. This is commonly calculated using

the mean Euclidean distance between all points within a cluster, however other distance

measures can be applied. When the centroids are redefined some samples may become closer

to the centroids of other clusters. The membership of each clusters’ samples is then updated.

The previous steps are repeated until the process converges to a state where no samples

change clusters and the centroids remain stable. This algorithm is presented schematically in

Algorithm 1.

Algorithm 1 K-means Algorithm
1: Initialise the K centroids randomly.
2: repeat
3: Assign each sample to the closest centroid.
4: Update each centroid’s position to the centre of its cluster.
5: until The centroids do no change (converge).

3.3.2 Topic Models

Topic models are a type of unsupervised probabilistic classifier that aim to discover abstract

topics within a collection of documents through statistical modelling. These topics are

derived from clustering similar words together, which is achieved by analysing the frequency

that individual words occur with others.

Historically topic models were used to find patterns in documents containing natural

language, but in recent years this has been extended to many fields of research including
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bioinformatics [89]. The origins of topic modelling can be found in the latent semantic

indexing work by Deerwester et al. [90], however one of the first true topic modellers is

the later work by Hofmann [91] called probabilistic latent semantic analysis (PLSA). Latent

Dirichlet allocation (LDA) was proposed in 2003 by Blei et al. [92] as an extension to PLSA

and has since been used as the basis of many new forms of topic modeller.

3.3.3 Latent Process Decomposition (LPD)

In this section we introduce Latent Process Decomposition (LPD), which forms a large part

of the analysis presented in Chapters 5 and 7. LPD is a hierarchical Bayesian technique

developed by Rogers et al. [3] as an extension of the Latent Dirichlet Allocation (LDA)

approach [92]. Data objects within an LPD model are therefore allowed to have a partial

membership to multiple clusters (processes). This simulates the potential for a given object

to contain some, or all, of the defining characteristics of multiple clusters.

In the context of this project we assume that each LPD process represents a biological

process within cancers, each with a distinct gene expression pattern. Prostate cancer is highly

heterogeneous [93], with the potential for a mixture of tumour foci and foci subclones to

be present in each sample [94]. It is consequently possible that a combination of several

biological processes will be displayed within the expression profile for each sample. LPD is

therefore useful as it can represent each sample as a percentage of each process.

To do this the LPD method first determines an expression profile for each process,

consisting of the expected expression level of each gene in the process. The model can then

estimate how well the expression profile of each process matches the gene expression levels

of a given sample.

The LPD method is described by Rogers el al. [3] as follows: In an LPD model containing

K processes (known in advanced), formed from a given dataset D, LPD considers that each

gene g in a set of genes G has a distribution specific to each process. The distribution of each
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gene g in process k is assumed to follow a Gaussian distribution with mean µgk and variance

σgk. The distribution of processes, θθθ , that contribute to the observed expression profile for

a given sample α from D is represented as a K-dimensional vector. Each element of this

vector, θθθ k, contains a value between 0 and 1, where the sum of all the elements equals 1. The

distribution θθθ is assumed to come from a Dirichlet distribution specific to the given dataset

D. A graphical representation of LPD is presented in Figure 3.1 and supported by Table 3.1

and Table 3.2.

Fig. 3.1 A graphical representation of an LPD model adapted from Rogers et al. [3]. Each
circle corresponds to a variable, the dark circles represent hidden variables, while the empty
circles show observed variables. The arrows represent conditional dependencies between
variables.

Gene
Process

A B C

1 6.90457 7.29901 8.01408
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2 6.31902 5.96126 7.86269

3 4.73213 4.34013 5.84578

4 7.00041 8.13431 4.24155

5 6.08666 5.83762 5.48995

. . . . . . . . . . . .

G-1 7.81492 6.73804 6.27111

G 8.32382 6.23671 6.15953

Table 3.1 Table showing an example of the different Gaussian means of G genes in K=3
processes.

Sample
Process

A B C

1 0.0185 0.0117 0.9698

2 0.0006 0.0051 0.9944

3 0.2091 0.0005 0.7905

4 0.5134 0.3595 0.1272

5 0.6135 0.3399 0.0467

6 0.3503 0.0225 0.6272

7 0.3931 0.0573 0.5495

8 0.5507 0.0005 0.4488

. . . . . . . . . . . .

α-1 0.1994 0.0005 0.8002

α 0.9764 0.0005 0.0232

Table 3.2 Table showing an example of the sample θ vectors containing the proportional
assignment of each sample to K=3 processes.
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3.3.3.1 Parameter Estimation

Bayesian models, such as LPD, use a dataset of observed data D and a set of unknown

parameters H. In this model the unknown parameters that need to be estimated are H =

{α,µ,σ ,θθθ}. When fitting a model with parameters H to dataset D, we are interested in

estimating the values for H for which the posterior probability p(H | D) is maximised. This

is more commonly referred to as the maximum posteriori (MAP).

Bayes’ rule can be employed to estimate the MAP as:

p(H|D) =
p(D|H)p(H)

p(D)
. (3.10)

The factor p(D | H) is known as the likelihood, while p(H) is the prior. We are interested

in finding the value of H for which the posterior probability is maximised, therefore the

denominator of the above equation can be ignored as it does not depend on H. This leads to

the following equation:

p(H|D) ∝ p(D|H)p(H), (3.11)

Where the MAP is proportional to the product of the likelihood and the prior. When the

prior is uniform (uninformative) the probability p(H) is constant across H, resulting in the

MAP solution becoming the maximum likelihood solution (MLE). In this situation we are

interested in finding the values of H for which the likelihood p(H | D) is maximised.

One of the main problems associated with MLE is its tendency to over-fit the model to the

dataset used to train the model [95]. This results in a model with a poor ability to accurately

predict the cluster membership of an object from an independent dataset. To overcome this

shortcoming appropriate non-uniform (informative) priors should be defined. This additional

information results in the use of the MAP solution instead of the MLE solution. LPD provides
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implementations for both MLE and MAP solutions, however we employed the MAP solution

to avoid over-fitting the model.

3.3.3.2 MLE

For the MLE solution the likelihood of a set of T training samples is:

p(D|µ,σ ,α). (3.12)

The log function is a monotonous increasing function, making the search for the maximum

likelihood equivalent to finding the maximum log-likelihood, defined as log p(D | H). It is

usually easier to estimate the maximum log-likelihood. Using the log-likelihood instead of

the likelihood and factorising over individual samples, the previous equation can be updated

as:

logp(D|µ,σ ,α) =
T

∑
t=1

logp(t|µ,σ ,α). (3.13)

Marginalising over the latent variable θ allows the expression to be expanded as follows:

logp(D|µ,σ ,α) =
T

∑
t=1

log
∫

θ

p(t|µ,σ ,θθθ)p(θθθ |α)dθθθ , (3.14)

where the probability of a sample can be expressed in terms of its individual components,

giving the following:

logp(t|µ,σ ,α) = log
∫

θ

{
G

∏
g=1

K

∑
k=1

N (egt |k,µgk,σgk),θk

}
p(θθθ |α)dθθθ , (3.15)

where N denotes the normal distribution.
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The summation over k inside the above equation makes the log-likelihood intractable. To

solve this problem we will use the technique provided by Rogers et al. (2005) [3], known as

the Bayesian variational inference framework, to estimate the parameters.

A lower bound on equation 3.15 can be inferred [96] by introducing two sets of variational

parameters, Qkgt and γγγ tk. The lower bound is guaranteed to be lower than, or equal to, the

log-likelihood at any given point. It is useful to introduce the lower bound as it can be

maximised more easily and the maximums usually result in good approximations for the

model parameters. The two variational parameters are defined as:

Qkgt =
N (egt |k,µgk,σgk)exp

{
ψ(γtk)

}
∑

K
k=1 N (egt |k,µgk,σgk)exp

{
ψ(γtk)

} , (3.16)

where ψ(x) is the digamma function and:

γγγ tk =αααk +
G

∑
g=1

Qkgt . (3.17)

Using these variational parameters for a given αααk, the model parameters are obtaining from

the following equations:

µµµgk =
∑

T
t=1 Qkgtegt

∑
T
t ′=1 Qkgt ′

, (3.18)

σσσ
2
gk =

∑
T
t=1 Qkgt(egt −µµµgk)

2

∑
T
t ′=1 Qkgt ′

, (3.19)

and:

αααnew =αααold −H(ααα−1
old)g(αααold), (3.20)

where H(α) is the Hessian matrix and g(α) is the gradient. The updated Dirichlet parameter

ααα is represented by αααnew and the previous iteration of ααα is represented by αααold .
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3.3.3.3 MAP

Informative priors can now be introduced when calculating the model parameters, to avoid

the over-fitting associated with MLE. A logical expectation, regarding a given dataset, would

be that the majority of genes would not be differentially expressed in a given process; while

a smaller number of genes would have a process-specific distribution. This prior belief can

be represented on the mean parameters µgk using a normal distribution with a mean of zero.

To avoid over-fitting the model, caused by the collapse of the Gaussian function to a

single point, we must ensure that the variances will never be equal to zero. Equally we can

assume the variance parameters µ2
gk will tend to be close to one.

The parameter priors are therefore set to:

p(µgk) ∝ N (0,σµ), (3.21)

and

p(σ2
gk) ∝ exp

{
− s

σ2
gk

}
. (3.22)

The values σµ and s are called hyper-parameters. In full Bayesian models the hyper-

parameters are estimated alongside the other model parameters. LPD however, is a type of

Empirical Bayes model in which the hyper-parameters are estimated independently.

The estimation of the parameters, µgk and σ2
gk, must be updated for the MAP estimation

to incorporate the informative priors as follows:

µgk =
σ2

µ ∑
T
t=1 Qkgtegt

σ2
gk +σ2

µ ∑
T
t=1 Qkgt

, (3.23)

σ
2
gk =

∑
T
t=1 Qkgt(egt −µgk)

2 +2s

∑
T
t=1 Qkgt

. (3.24)



3.4 Survival Analysis 35

3.3.4 One Added Sample LPD (OAS-LPD)

Attempting to decompose new samples using LPD, without needing to retrain an existing

model was not previously possible. To overcome this problem we proposed a modified

version of LPD called one added sample LPD (OAS-LPD) [5].

In OAS-LPD the model parameters, µgk, σ2
gk and α , from Rogers et al. [3] are taken

from an existing LPD model and frozen. The remaining variational parameters, Qkgt and γtk,

relating to the new samples are iteratively updated until they converge as described in EQ.

3.16 and 3.17. The new samples are therefore decomposed into the subtypes derived from

the original model.

Due to the lack of retraining, OAS-LPD confers the benefit of decomposing samples

magnitudes of time faster than it would take to compute a new LPD model. This additional

benefit, in conjunction with the lack of retraining, lends itself to the classification of clinical

samples where regular LPD would struggle.

3.4 Survival Analysis

The information presented in this section and associated subsections is predominately based

on the book by Kleinbaum and Klein [97].

Survival analysis is a collection of statistical techniques for the analysis of data for which

the variable of interest is the time until an event occurs. The event is not restricted to only

the death of an individual, it can alternatively be the recovery time, relapse, or any other

experience of interest. Time is typically measured in years, months, weeks, or days. However

it may alternatively refer to the age of an individual during an event. For simplicity, the time

until an event occurs is commonly referred to as the survival time, irrespective of the type of

event. The occurrence of an event is referred to as a failure.
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Typically in a medical study, the participants are monitored for a period of time following

an initial event, such as the diagnosis of a disease. During this period of observation some

participants will experience failure, however other participants may not experience the event

of interest during the entirety of the study. We do not know the survival time of the patients

that fall into the latter group, as such they are said to be censored.

There are generally three reasons why censoring may occur:

1. A participant does not experience the event of interest before the study ends.

2. A participant is lost to follow-up during the study period. This could either be due to

the participant withdrawing from the study, or the participant no longer communicating

with study representatives.

3. A participant dies during the study period, where the event of interest is not death, or

the death is attributable to a reason outside the scope of the study.

3.4.1 Kaplan-Meier (KM) Survival Curves

One way of modelling survival data is through Kaplan-Meier (KM) survival curves, where

the survival probability is represented as a function of time. The survival probability, S(t),

represents the probability that a given participant survives past a point in time t. Due to the

finite number of participants in a study, the estimated survival curve function, Ŝ(t( j)), is a

step-function rather than a smooth curve, as shown in Figure 3.2.

In Table 3.3 we demonstrate how to estimate the step-function using a fictitious dataset.

The first column, t( j), contains distinct time points where failures occurred, sorted into

ascending order. It is important to note that the survival time of all participants in the study

must be measured in a consistent unit of time. For the purposes of this demonstration, the

survival time was measured in months after the initial event for each patient. The first row of

the table always begins with t( j) = 0, even though there are no failures at this point in time.
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Fig. 3.2 A KM plot calculated for the data in Table 3.3. The thin crosses represent observed
events that have been censored.

This is to take into account the potential for censored events to take place before the first

failure.

The second column, n( j), contains the number of participants still in the study at t( j),

including the participant(s) that failed at that point in time. The participants that were

censored from t( j) up until t( j+1) are also included in the number of participants at t( j). The

participants in n( j) are known as the risk set. The third column, m( j), represents the number

of participants that failed at time t( j). The fourth column, q( j), represents the number of

participants that were censored in the risk set between t( j) and t( j+1).
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t( j) n( j) m( j) q( j) ŜSS(t( j))

0 30 0 0 1

4 30 3 1 1.0×27/30 = 0.9

6 26 1 1 0.9×25/26 = 0.8654

11 24 4 2 0.8654×20/24 = 0.7212

15 18 1 0 0.7212×17/18 = 0.6811

21 17 3 1 0.6811×14/17 = 0.5610

24 13 2 3 0.5610×11/13 = 0.4747

26 8 1 2 0.4747×7/8 = 0.4154

Table 3.3 An example of survival data, including the estimated survival probabilities. t( j) is
the survival time (in months) and n( j) is the number of participants remaining at each survival
time. While m( j) and q( j) represent the number of failures and censored events respectively,
at each survival time.

The final column, ŜSS(t( j)), demonstrates the estimation of the survival probability at each

given time point. The general formula for this function is the product of two factors:

ŜSS(t( j)) = ŜSS(t( j−1))×p(T > t( j)|T ≥ t( j)), (3.25)

where first factor, ŜSS(t( j−1)), represents the probability of surviving past the previous failure

time t( j−1) and the second factor p(T > t( j)|T ≥ t( j)) represents the probability of surviving

past the time t( j), given the participant survived until at least t( j). As demonstrated in Table

3.3, the survival probability at t( j) requires the product of all of the previous terms. It is

therefore often referred to as a product-limit formula.



3.4 Survival Analysis 39

3.4.2 Log-rank Test

One of the main objectives of survival analysis is to determine whether there is a statistically

significant difference between two or more groups within a study. A commonly used

technique to achieve this goal is to perform a log-rank test using multiple KM survival curves.

An example of where this would be useful is during the testing of a new drug, compared with

a placebo and/or existing drugs, to test whether the drug improves patient survival rates.

The log-rank test is a form of χχχ2 test that compares estimates of the hazard functions of

each group at every ordered observable event time. In Table 3.4 we present an example of the

log-rank test by Kleinbaum and Klein (2005) [97], using 42 leukaemia patients split into two

groups. The first group contains 21 patients using a placebo, while the second group contains

21 patients undergoing treatment. The data has been sorted into ascending order based on

the failure time t( j). The columns n(g j) represent the risk set size for group g at each time t( j).

Likewise, columns m(g j) represent the number of patients in group g that experienced failure

at time t( j). Columns e(g j) represent the number of patients in group g that were expected to

experience failure at time t( j). The expected cell counts for column e(g j) are calculated as:

e(g j) =
n(g j)

∑g n(g j)
×∑

g
m(g j), (3.26)

which is the proportion of participants in group g at time t, multiplied by the total number of

failures at time t.

The log-rank statistic uses the sum of the observed failures, minus the expected failures,

as shown in the last two columns of Table 3.4. The log-rank statistic for the two groups is

calculated as:

Log-rank statistic =
(Og −Eg)

2

Var (Og −Eg)
, (3.27)
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Risk Set O E O – E

j t( j) n(1 j) n(2 j) m(1 j) m(2 j) e(1 j) e(2 j) m(1 j)− e(1 j) m(2 j)− e(2 j)

1 1 21 21 0 2 (21/42) × 2 (21/42) × 2 -1.00 1.00
2 2 21 19 0 2 (21/40) × 2 (19/40) × 2 -1.05 1.05
3 3 21 17 0 1 (21/38) × 1 (17/38) × 1 -0.55 0.55
4 4 21 16 0 2 (21/37) × 2 (16/37) × 2 -1.14 1.14
5 5 21 14 0 2 (21/35) × 2 (14/35) × 2 -1.20 1.20
6 6 21 12 3 0 (21/33) × 3 (12/33) × 3 1.09 -1.09
7 7 17 12 1 0 (17/29) × 1 (12/29) × 1 0.41 -0.41
8 8 16 12 0 4 (16/28) × 4 (12/28) × 4 -2.29 2.29
9 10 15 8 1 0 (15/23) × 1 (8/23) × 1 0.35 -0.35

10 11 13 8 0 2 (13/21) × 2 (8/21) × 2 -1.24 1.24
11 12 12 6 0 2 (12/18) × 2 (6/18 )× 2 -1.33 1.33
12 13 12 4 1 0 (12/16) × 1 (4/16) × 1 0.25 -0.25
13 15 11 4 0 1 (11/15) × 1 (4/15) × 1 -0.73 0.73
14 16 11 3 1 0 (11/14) × 1 (3/14) × 1 0.21 -0.21
15 17 10 3 0 1 (10/13) × 1 (3/13) × 1 -0.77 0.77
16 22 7 2 1 1 (7/9) × 2 (2/9) × 2 -0.56 0.56
17 23 6 1 1 1 (6/7) × 2 (1/7) × 2 -0.71 0.70

Total 0 0 9 21 19.26 10.74 -10.26 10.26

Table 3.4 An example of the steps involved in the log-rank statistic.

where g represents either of the two groups, as they each result in the same final value. This

calculation can be generalised to include 3 or more groups, however this report will not go

into further detail on this.

Once the log-rank statistic has been obtained, a p-value can be derived, as the log-rank

statistic is approximately equal to a χ2 test with G – 1 degrees of freedom, where G is the

total number of groups.

3.4.3 Cox Proportional Hazard (PH) Model

The Cox proportional hazard (PH) model [98] is one of the most popular statistical models

for performing multivariate survival analysis. Its popularity and widespread use can be

attributed to the model being robust, such that the results from a Cox PH model will be a

close approximation to the true parametric model.

The Cox PH model has three main purposes:
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1. To test if a variable is a statistically significant factor on survival probability, taking

into account the effects of other covariates.

2. To provide a point estimate (hazard ratio) that describes the impact on survival proba-

bility when a variable’s value changes.

3. To provide a confidence interval for the hazard ratio.

The function central to the Cox PH model is known as the hazard function. This function

is defined as:

h(t,X) = h0(t)exp

{
n

∑
i=1

βixi

}
, (3.28)

where X = {x1,x2, ..,xn} is a set of n explanatory variables and {β1,β2, ..,βn} are a set of n

coefficients corresponding to them.

The hazard function described in Equation 3.28 models the hazard rate of an individual

with a given set of explanatory variables, as a function of time formed from two factors. The

first factor, h0(t), is called the baseline hazard function and is only a function of time. Its

purpose is to explain how the hazard changes over time, before considering the explanatory

variables. The second factor, exp
{

∑
n
i=1 βixi

}
, is only a function of explanatory variables,

which does not consider time. The parameters {β1,β2, ..,βn} can be estimated using a partial

maximum-likelihood approach and will henceforth be denoted as {β̂1, β̂2, .., β̂n}.

The hazard rate of one individual compared with a second individual is called the hazard

ratio. The hazard ratio can be calculated for two individuals with sets of instances of the

explanatory variables, X and X′, as:

ĤR =
ĥ(t,X)

ĥ(t,X ′)
= exp

{ n

∑
i=1

β̂i(xi − x′i)
}
, (3.29)

where the final exponential has been simplified, due to the factor, h0(t), cancelling out in the

numerator and denominator of the two hazard functions.
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Informally, the hazard ratio describes the odds of experiencing faster failure with every

one unit increase in the value xi, after adjusting for the effects of other coefficients. When

the variable is categorical, the hazard ratio describes the odds of experiencing failure faster

for the individuals in one category, compared to a baseline category after adjusting for other

covariates.

It is important to note that the set of explanatory variables X are time-independent

variables. This is a requirement to fulfil the PH assumption that the baseline hazard is

exclusively a function of time. In spite of that, it is possible to use time-dependent variables

through the use of the extended Cox model [99], however the PH assumption is no longer

fulfilled and such a model will not be discussed further in this thesis. Additionally the model

assumes that each variable is independent and contributes a linear relationship to Cox model.

3.5 Pathway Analysis

Biological pathways describe how multiple genes can interact to promote or suppress the

production of molecules within a cell [100]. Many curated databases of biology pathways

exist. Three of the largest and most widely cited databases are Gene ontology (GO) [101],

Reactome [102] and the manual curated database called Kyoto encyclopaedia of genes and

genomes (KEGG) [103]. The most common use of pathway analysis is to identify biological

functions that correlate with an under-represented or over-represented set of genes. These

gene sets are typically determined by testing for a difference in expression between two

conditions, such as patient ethnicity, disease status, or other known factors.

Each pathway within a database has a known background frequency, while the set of

conditional genes provides the sample frequency. The background frequency describes the

number of genes annotated for a given pathway relative to the number of genes in the entire

database, where the database could be all the genes on a microarray, or within a genome. A va-

riety of statistical tests can be used to determine whether a pathway is under/over-represented



3.6 Discussion 43

in the set of conditional genes, with a given measurement of confidence. The hypergeometric

test provides one way to measure the probability of a pathway being under/over-represented

[104]. The associated p-value for such a test is a measure of the probability of the observed

gene set containing greater or fewer genes related to a specific pathway than the expected

frequency from the background set. However, as the tests are performed individually on each

pathway the resulting p-values should be adjusted for multiple comparisons.

3.6 Discussion

In this chapter we have presented the main computational and statistical techniques and

approaches used in this thesis. In Chapters 5 and 7 we will explore how LPD can be used

to produce new classifications of prostate and colorectal cancers. We will also demonstrate

the clinical associates between these new classifications using the statistical approaches

discussed in this chapter. Before doing this, we will expand upon Chapter 2 in Chapter 4 to

provide specific background on prostate cancer.



Chapter 4

The Prostate and Prostate Cancer

4.1 Summary

In this chapter we discuss key information pertaining to the prostate and prostate cancer,

including risk factors and current disease treatments. This information will serve as the

basis for understanding the current limitations of prostate cancer diagnosis and treatment. In

Chapter 5 we aim to reduce unnecessary treatment (discussed in this chapter) by developing

an approach to identify the risk of disease relapse. Our approach will use a novel technique

combined with the risk factors discussed below.

4.2 The Prostate

The prostate is a glandular (70%) and fibromuscular (30%) organ forming part of the male

reproductive system. It is surround by a capsule of collagen, elastin and smooth muscle and

is located underneath the bladder. The prostate can be divided into four zones: Transitional

zone, Central zone, Peripheral zone and Anterior fibromuscular stroma [105] (Figure 4.1)

The transitional zone accounts for around 5-10% of a prostate’s glandular tissue and is

estimated to contain 20% of the cancers occurring within the prostate [106]. The central zone
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Fig. 4.1 A diagram of the location of a prostate and the four prostate zones. Adapted from
AcademLib [4].

is structurally different from the rest of the prostate and accounts for 25% of the glandular

tissue within a prostate. Only 1-5% of prostate cancers originate within the central zone.

The peripheral zone is the largest contributor to the glandular tissue, containing approx-

imately 70% of all glandular tissue within the prostate. It is also the most common area

for cancers to develop, with 75% of prostate cancers originating here [106]. The anterior

fibromuscular stroma is rarely associated with prostate cancer development, although it

contributes up to a third of the total mass of a prostate.

4.3 Prostate Cancer

4.3.1 Risk Factors

Across the wide range of potential prostate cancer risk factors only a small subset have been

consistently reproducible and accepted. The risk factors that have been accepted include age,

race/ethnicity and a positive family history of prostate cancer [107–109].

Age is a common risk factor in cancer development, with an increase in time allowing

for a greater mutational burden to accumulate. This risk is especially true in prostate cancer

with an increase in age corresponding to an increase in prostate cancer prevalence [110]. A

study by Zlotta et al. (2013) [111] found that Asian men aged 81-90 years old were almost
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twice as likely to have prostate cancer as Asian men aged 61-70 years old (58.8% and 30.8%

risk respectively).

Race is the second widely accepted risk factor for prostate cancer. In the UK, Black

men are more than three times as likely to develop prostate cancer than White men [112].

Conversely Asian men are at less risk of developing prostate cancer than White men [113].

Family history plays an important role in prostate cancer risk. Men with a first degree

relative diagnosed with prostate cancer were found to be at significantly greater risk of

developing prostate cancer themselves [114]. Bratt et al (2016) [114] observed the risk of

developing prostate cancer increasing in the general population from 4.1% to 14.9% in men

with 1 brother with diagnosed prostate cancer by the age of 65 years old. This increased

risk was found to decrease over time, but was still a significant factor to consider. It should

however be noted that while race and family history confer a genetic predisposition to prostate

cancer, immigrating to a new country for extended periods of time often results in developing

the same risk as the local population [115]. This emphasises the impact of environmental

factors in the development of prostate cancer.

Patient diet is one of the main environmental factors proposed as the reason for this

migratory change in prostate cancer risk. While there have been conflicting studies regarding

the overall effect of a population’s diet on prostate cancer risk, some consistently reported

findings do exist. One such finding refers to the consumption of cruciferous vegetables and

their ability to provide a statistically significant protective effect against the development

of prostate cancer [116]. Cohen et al. (2000) [116] hypothesise that cruciferous vegetables

provide this protection through the hydrolysis of the glucosinolates found in cruciferous

vegetables This supports the earlier work by Lee et al. (1994) [117] and Moskaluk et al.

(1997) [118] into glutathione S-transferase activity protecting against prostate cancer.

A broader hypothesis regarding diet and prostate cancer risk is that a Western diet

(defined as a diet containing a greater volume of red/processed meats, dairy and other high
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fat products, fried foods and high sugar content) confers an increased risk compared to that

of an Asian diet (broadly defined as a diet containing an increased volume of fruit, vegetables

and fish and a reduced volume of the products found in a Western diet). This hypothesis has

however yielded conflicting results, with some studies accepting and others rejecting the null

hypothesis [119, 120].

4.3.2 Screening and Early Detection:

The Problems with Prostate Specific Antigen Testing

The early detection of cancer is an important part in the diagnosis and treatment of the

disease. Screening is a form of early detection, whereby a test is performed on patients that

are at risk of developing the disease, but are yet to present any symptoms. The dominate

screening technique used to detect prostate cancer is to test the level of prostate specific

antigen (PSA) in peripheral blood [121]. The same technique is also commonly used to test

patients presenting symptoms of prostate cancer.

PSA is a single-chain glycoprotein produced by both normal and malignant cells within

the prostate gland [122]. The level of PSA found within a man’s blood commonly corresponds

to the volume of prostate tissue within his body. Since the prostate gradually enlarges over

time and its volume varies between men, testing for the level of PSA provides limited

diagnostic value (discussed further in Section 4.3.3).

Although high levels of PSA are associated with the presence of prostate cancer, there

is no consistent evidence that this leads to a reduction in cancer-specific mortality rates

[123]. PSA screening therefore leads to significant over-diagnosis and over-treatment. Over-

diagnosis refers to the detection of a disease that would not have shown any clinical symptoms

during the lifespan of the patient. It has been estimated that PSA screening has led to the

over-diagnosis rate of up to 44% [124].
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Over-diagnosis leads to unnecessary anxiety and the potential of complications to arise

from invasive tests, such as taking a biopsy. It also leads to unnecessary treatment and

the high risk of a reduced quality of life associated with this treatment. In patients that

underwent radical prostectomy between 16-59% of patients reported urinary incontinence

[125] and >50% reported erectile problems [126]. The unneeded surgery also carries the risk

of infection (reported in 20-25% of patients) and even death (reported in <0.5% of patients)

[127].

4.3.3 Diagnosis

Patients that are suspected of having prostate cancer, such as those with lower urinary tract

symptoms (incontinence and increased frequency of urination) [128], are first given a PSA

test and a digital rectal examination (DRE). However, PSA tests lack both sensitivity and

specificity. Many patients with prostate cancer have low levels of PSA [129], whereas high

levels of PSA have also been associated with other conditions, such as benign prostatic

hyperplasia (BPH). Cancers located in the peripheral zone can be detected by a DRE,

provided the tumour is larger than 0.2 mL [130].

The European Association of Urology (EAU) and the National Institute for Health and

Care Excellence (NICE) guidelines on prostate cancer recommend that a definitive diagnosis

should be made using a needle biopsy [130, 131]. They also recommend that the results

from a PSA test and DRE should be combined with knowledge of other risk factors, such as

age, race and family history, to determine whether there is sufficient risk to justify a needle

biopsy.

The standard biopsy technique is a transrectal ultrasound (TRUS) guided biopsy to

collected 10-12 cores [130]. The drawback to this is that a TRUS-guided biopsy misses

up to 20-30% of clinically relevant cancers [132]. If the first biopsy is negative, but other
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factors still indicate significantly high risk of a cancer existing, then a second biopsy may be

performed with the aim of collecting 20 or more cores [130].

An alternative to the TRUS-guided biopsy was recently presented by Ahmed et al. [133]

as part of the PROMIS trial. They analysed the effectiveness of using multi-parametric

magnetic resonance imaging (MP-MRI) instead of the standard biopsy. The advantage to this

technique is its non-invasive nature, preventing the risk of unneeded surgical complications.

Their findings indicate that up to 25% of prostate biopsies could be avoided by first performing

an MP-MRI. They recommend that a biopsy should still be taken in the remaining 75% of

cases using the MP-MRI as a guide, due to it’s lower specificity.

4.3.4 Classification criteria

Once the prostate cancer has been diagnosed it must be evaluated to determine the most

suitable way of managing the disease. This can be done using the PSA and DRE results, in

combination with computed tomography (CT) and MP-MRI scans to determine the current

progression of the disease. A strategy for managing the disease is then developed by assessing

the PSA levels, DRE results, Gleason score, tumour node metastasis (TNM) stage and other

pathological features.

4.3.4.1 Gleason Score

Gleason score is a grading system based on the sum of the two most common tumour patterns

observed in the biopsy by a histopathologist [134]. The most common pattern is referred to

as the primary pattern, while the second most common pattern is referred to as the secondary

pattern. A secondary pattern is only assigned upon meeting the condition that it is present in

at least 5% of the total patterns. If this condition is not fulfilled then the grade assigned to

the primary pattern is doubled.
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Each of the two patterns’ grades take a value between 1 and 5, creating a range of Gleason

sums between 2 and 10. Grade 1 is assigned to well-differentiated tissue, while grade 5 is

assigned to poorly-differentiated tissue. A higher Gleason sum is associated with a poorer

prognosis. It should be noted that a Gleason sum of 7 created from a score of 4 + 3 (primary

grade 4 and secondary grade 3) has significantly worse outcome than the score 3 + 4 [135].

4.3.4.2 Tumour Node Metastasis

Tumour Node Metastasis (TNM) classification is the standard system for staging malignant

tumours by the American Joint Committee on Cancer (AJCC) and the International Union

for Cancer Control (UICC). It comprises of three parts, described by Brierley et al. (2017)

[136] as:

• T: describes the primary tumour site.

• N: describes the regional lymph node involvement.

• M: describes the presence or otherwise of distant metastatic spread

T - Primary Tumour

TX - Primary tumour cannot be assessed.

T0 - No evidence of primary tumour.

T1 - Clinically inapparent tumour that is not palpable.

T1a - Tumour incidental histological finding in 5% or less of tissue resected.

T1b - Tumour incidental histological finding in more than 5% of tissue resected.

T1c - Tumour identified by needle biopsy (e.g., because of elevated PSA).

T2 - Tumour that is palpable and confined within prostate.

T2a - Tumour involves one half of one lobe or less.

T2b - Tumour involves more than half of one lobe, but not both lobes.
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T2c - Tumour involves both lobes.

T3 - Tumour extends through the prostatic capsule.

T3a - Extracapsular extension (unilateral or bilateral) including microscopic

bladder neck involvement.

T3b - Tumour invades seminal vesicle(s).

T4 - Tumour is fixed or invades adjacent structures other than seminal vesicles: external

sphincter, rectum, levator muscles, and/or pelvic wall.

N - Regional Lymph Nodes

NX - Regional lymph nodes cannot be assessed.

N0 - No regional lymph node metastasis.

N1 - Regional lymph node metastasis.

M - Distant Metastasis

M0 - No Distant metastasis.

M1 - Distant metastasis.

M1a - Non-regional lymph node(s).

M1b - Bone(s).

M1c - Other site(s).

Table 4.1 Tumour Node Metastasis (TNM) classification system.

4.3.4.3 ICGC risk stratification

Prostate cancer patients that have undergone prostatectomy can be categorised into three

distinct risk groups, based on the UK International Cancer Genome Consortium (ICGC)

consensus (Professor Chris Foster, personal communication). The criteria for each of the

three groups are presented in Table 4.2.
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Risk Level Criteria

Low Risk 1) PSA ≤ 10ng/ml AND Gleason = 3+3

2) PSA ≤ 10ng/ml AND Gleason = 3+4 AND no extra capsular extension

Medium Risk 1) 10ng/ml < PSA ≤ 20ng/ml

2) Gleason = 4+3 AND no extra capsular extension

3) Gleason = 3+4 AND extra capsular extension

High Risk 1) PSA > 20ng/ml

2) Gleason sum > 7

3) Gleason = 4+3 AND extra capsular extension

4) Seminal vesicle invasion

Table 4.2 ICGC risk categorisation of prostate cancer patients that have received radical
prostatectomy.

4.3.5 Localised Disease and Treatment

Patients with localised prostate cancer (clinical stage T1/T2) are stratified into risk categories

using D’Amico stratification [137], as shown in Table 4.3. Patients with a low level of risk

are enrolled onto active surveillance or watchful waiting programmes. Patients with an

intermediate or high level of risk are usually referred for radical treatments.

Level of risk PSA Gleason Clinical stage

Low risk <10 ng/ml and ≤6 and T1-T2a
Intermediate risk 10-20 ng/ml or 7 or T2b
High risk >20 ng/ml or 8-10 or ≥T2c

Table 4.3 D’Amico risk stratification for men with localised prostate cancer.
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4.3.5.1 Active Surveillance

The purpose of active surveillance is to avoid or delay the treatment of patients with low risk

prostate cancer. This helps to reduce over-treatment without affecting the rate of survival.

If their disease progresses then the patients are referred for radical treatments, such as

Brachytherapy, Radiotherapy, or Prostatectomy.

Low risk patients receive PSA and DRE screenings at regular intervals, every 3 months

for the first 2 years and every 6 months afterwards. Repeat biopsies are also performed 6-12

months after the initial biopsy [138]. Patients are removed from active surveillance and

offered radical treatment in the event of PSA double within 3 years; histological progression

(Gleason ≥ 7) following repeat biopsy; clinical progression (≥ T3); or at the patient’s request.

4.3.5.2 Brachytherapy

Low risk patients with an early stage of localised prostate cancer can receive brachytherapy

[139]. This form of treatment involves radioactive seeds being implanted into the prostate.

External beam radiotherapy can also be used in combination with brachytherapy to maximise

the efficiency of the treatment.

As brachytherapy is minimally invasive it is less invasive than other techniques, such as

prostatectomy, this reduces the risks associated with surgery. In addition to this benefit, it

has been reported that patients who received brachytherapy had significantly less urinary and

sexual problems than patients who received radical prostatectomy [140].

4.3.5.3 Radiotherapy

External beam radiotherapy is another minimally invasive therapy [131]. This involves

directing multiple radiation beams from different angles to intersect at the tumour. The

side-effects associated with radiotherapy include fatigue, irritation and nausea, however the

long-term side-effects, such as incontinence and impotence are less common than in patients
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who receive radical prostatectomy. Radiotherapy is also commonly combined with hormone

therapy (described below) in localised and locally advanced prostate cancer to reduce the

overall cancer-specific mortality rate [141].

4.3.5.4 Prostatectomy

Patients with intermediate or high risk prostate cancer are most likely to be recommended for

radical prostatectomy (RP). This is an invasive procedure where the prostate gland, seminal

vesicles and a portion of the surrounding tissue are surgically removed.

Patients that underwent RP have shown a relatively good outcome. The proportion of

patients free from cancer progression at 5, 10 and 15 years after prostatectomy has been

estimated at 82%, 77% and 75% respectively [142]. Bianco et al. also found that the

cancer-specific survival at 5, 10 and 15 years was 99%, 95% and 89% respectively.

While RP has been shown to improve survival probability more than radiotherapy it has

also been associated with a greater rate of urinary and sexual problems. Approximately 60%

of patients were free of cancer, continent and potent two years after RP [142].

4.3.5.5 Biochemical Reoccurrence (BCR)

After radical treatment a patient’s PSA level is monitored. Typically, if a patient is observed

to yield a PSA level above 0.2 ng/mL during two consecutive check-ups, then the patient

is considered to have BCR [130]. BCR is often considered an early warning of a cancer’s

clinical progression into metastasis, before other signs become apparent. However BCR often

pre-dates metastasis by several years, as such it is important to avoid using some secondary

treatments too early [143].
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4.3.5.6 Androgen Deprivation Therapy (ADT)

Androgens are steroid hormones that control the development of the male sexual organs and

male characteristics. One of the most commonly known androgens testosterone is produced

by the testicles, while an even more potent androgen dihydrotestosterone (DHT) is produced

from testosterone using 5α-reductase [144].

Androgens are also involved in the development of prostate cancer. Reducing the levels

of androgens or preventing them from binding to androgen receptors therefore slows down

the development of a tumour and can often result in tumour shrinkage [145]. This is known

as androgen deprivation therapy.

Androgen deprivation requires surgical or chemical castration. Chemical castration uses

compounds that block the androgen receptors called androgen blockers. A combination of

surgical and chemical castration is referred to as maximum androgen blockade (MAB) [146].

In patients that have localised prostate cancer, ADT is usually used along with radiother-

apy. It is also commonly used when radical treatments are no longer effective, or if patients

are unfit to receive radical treatment [147].

ADT has been shown to significantly improve the disease free survival rate when using

alongside radiotherapy compared to using only radiotherapy. Bolla et al. (1997) [148]

performed a study on over 400 patients to compare these survival rates. They found that

radiotherapy+ADT resulted in a disease free survival rate of 85%, compared to only 48% in

patients who only received radiotherapy. Similar results were found in a follow up study that

looked into the 5-year disease free survival [149].

While there is a clear benefit to using ADT to help treat localised prostate cancer, it

comes with significantly adverse effects. These effects include muscular and bone mass

loss, depression, erectile dysfunction, anaemia and both cardiovascular and endocrinological

problems [150]. Some patients may therefore decline receiving ADT.
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4.3.6 Metastatic Disease and Castration Resistant Prostate Cancer (CRPC)

Patients that progress to metastatic disease can receive ADT to create a period of remission.

This period does not last indefinitely and in virtually all patients the disease becomes

unresponsive to ADT. This stage is referred to as castration resistant prostate cancer (CRPC)

and is characterised by a continuous rise in the level of PSA; progression of the existing

disease; or the appearance of new metastases [151].

In cases where CRPC metastases begin to develop in a bone, the micro-environment

of the bone drives the development of further metastases [152]. The resulting metastases

cause both bone fragility and pain to the patient. Radium-223 dichloride can be administered

to prolong the survival of men with CRPC bone metastases and to improve/alleviate their

symptoms [153]. This radio isotope therapy is currently used as a palliative treatment option,

however clinical trials looking into its use as a combined therapy are currently ongoing [154].

4.4 Discussion

In this chapter we have explored the biology of the prostate and the known risks associated

with prostate cancer. We have looked at how cases of prostate cancer are diagnosed and

the current limitations of using PSA tests. We have also discussed the current clinical

management of prostate cancer patients and the variety of treatment options available. In the

next chapter we will build upon the molecular subtype of prostate cancer known as DESNT

and perform novel analyses to determine the usefulness of this subtype in predicting the risk

of recurrence in prostate cancer patients.



Chapter 5

Towards the Analysis of DESNT in

Prostate Cancer Patient Samples

5.1 Summary

In this chapter we build upon the work of Luca et al. (2017) [17] with the long term aim of

classifying clinical biopsies using the poor prognosis DESNT subtype. To work towards this

goal we begin by applying the unsupervised Bayesian technique introduced in Chapter 3,

called Latent Process Decomposition (LPD), on five prostatectomy datasets. We apply LPD

on these datasets to show that we are able to produce the same DESNT subtype as Luca et al.

(2017), which is characterised by the down-regulation of a core set of 45 genes.

We then apply a novel classification technique, called OAS-LPD (introduced in Chapter

3.3.4), to the five prostatectomy datasets and a small cohort of biopsy samples. OAS-LPD is

shown to detect DESNT cancers within both prostatectomy and biopsy samples. Finally, we

demonstrate that the risk of biochemical recurrence within prostate cancer patients can be

determined by analysing the proportion of γ associated with the DESNT subtype.
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5.2 Materials

The work in this chapter was performed using five datasets denoted MSKCC, CancerMap,

CamCap, Stephenson and Klein, further details can be found in Table 5.1. The first four

datasets each contained clinical data, however this information was not available for Klein.

The MSKCC dataset was published by Taylor et al. (2010) [155] and can be downloaded

from the GEO repository under GSE21032. We have only used the sub-series GSE21034 in

this work, a choice made by Luca et al. [17], to limit the range and quality of the platforms

used. This sub-series contains 370 Affymetrix Human Exon 1.0 ST Array experiments and

was the only dataset that contained samples from metastatic tissue, cell-lines and xenografts.

For consistency with the other datasets, only the samples from primary tumours and normal

prostate tissues were used. The resulting dataset contained 320 samples.

The CancerMap dataset was created by combining two Affymetrix Human Exon 1.0

ST array datasets, which will individually be referred to as ICR and Cambridge. Both of

these datasets were formed as part of a joint project to collect fresh prostate cancer samples

from prostatectomy patients, at the Royal Marsden NHS Foundation Trust, London, UK and

Addenbrooke’s Hospital, Cambridge, UK. The samples were then prepared at the Institute of

Cancer Research (ICR), London, UK and CRUK Institute, Cambridge, UK. The ICR dataset

contains 81 patients and the Cambridge dataset contains 73 patients, with up to four samples

per patient.

The CamCap dataset was created by combining two Illumina HumanHT-12 V4.0 expres-

sion beadchip datasets. These datasets were published by Ross-Adams et al. (2015) [156] and

are available from GEO under GSE70768 and GSE70769. The first dataset, GSE70768, con-

tains 186 radical prostectomy samples and 13 TURP (transurethral resection of the prostate)

samples. This was the only dataset to contain TURP samples, as such these were removed

for consistency with the other datasets. GSE70769 only contains 94 primary tumour samples.
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The resulting dataset contained 280 samples. It should be noted however that CamCap and

CancerMap have 40 patients in common.

The Stephenson dataset was published by Stephenson et al. (2005) [157]. This dataset

contains 89 Affymetrix U133A human gene arrays taken after radical prostatectomy from

patients with clinically localised prostate cancer.

The Klein dataset was published by Klein et al. (2015) [158] and is available at GEO

under GSE62667. This dataset contains 182 formalin-fixed and paraffin-embedded (FFPE)

primary tumour samples analysed with Affymetrix Human Exon 1.0 ST Arrays. No clinical

data is provided for this dataset.

Samples Primary Tumour Benign
Total Unique Total Unique Total Unique

MSKCC 320 160 262 131 58 29
CancerMap 235 154 209 137 24 17
CamCap 280 207 207 207 73 73
Stephenson 89 89 78 78 11 11
Klein 182 182 182 182 0 0

Table 5.1 A summary of the prostate cancer datasets used in the LPD analysis.

5.3 Producing the DESNT LPD Analysis

To see if we could obtain the DESNT classification of prostate cancer, we performed an

independent LPD analysis on each of the five microarray datasets, previously named MSKCC,

CancerMap, CamCap, Stephenson and Klein. The 500 probesets with the greatest variance

across the MSKCC dataset were selected for use in LPD, due to the infeasible computation

time required to use all probesets. The use of the 500 most variable probesets was previously

shown to be sufficient by Luca et al. [17] and Carrivick et al. [18]. Within our analysis

these 500 probesets mapped to 492 genes in the MSKCC dataset. For the other datasets, the

probesets mapping to these 492 genes were used in LPD.
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5.3.1 Choosing LPD Parameters

As discussed in Section 3.3.3, there are two forms of LPD, the maximum likelihood (MLE)

model and maximum posterior (MAP) model. The MAP variant is more suitable to use

as a final model as it helps to prevent over-fitting. However, to use the MAP variant two

starting parameters, σ and the number of processes, must be carefully selected. To identify

appropriate values for these parameters we used a three step process:

• Step 1: The number of processes within the dataset is estimated using the MLE model.

The log-likelihood is calculated across a range of values and the value corresponding

to the highest log-likelihood is deemed suitable. In our experiments we used a range

of 2-15 processes to find a suitable number.

• Step 2: A suitable value for sigma is selected using the MAP model. The suitable

number of processes from step 1 is used, along with a range of values for sigma. The

σ value that produced the highest log-likelihood is deemed suitable to use in the next

step. Similar to Rogers et al. (2005) [3], we used a set of small negative values which

were: -0.01, -0.05, -0.1, -0.2, -0.3, -0.5, -0.75, -1 and -2.

• Step 3: The number of processes from step 1 is validated using the MAP model. The

suitable σ value from step 2 is used as a starting parameter in addition to a range

of process numbers. The number of processes at which the log-likelihood reaches a

plateau is deemed suitable. The same range of values from step 1 were used in step 3

(2-15 processes).

LPD can give slightly different results each time it is run by converging to a different

local maxima. This is caused by the randomised nature of some starting parameters within

the LPD model and the repeated resampling. In light of this, the LPD alogorithm should be

run multiple times to produce robust parameters. To ensure our value of σ and our number

of processes were robust, we restarted the LPD algorithm 100 times at each step and used
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the average across all the runs for each value. An example of the results are shown for the

MSKCC dataset in Figure 5.1. A summary of the suitable sigma values and number of

processes for each dataset is provided in Table 5.2.

Fig. 5.1 The log-likelihood against the number of processes using the MLE solution (red
curve) and the MAP solution (blue curve) for the MSKCC dataset. The points represent the
mean log-likelihood from 100 LPD restarts. Error bars for each point are also provided to
demonstrate the distribution of log-likelihoods across the LPD restarts.
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Dataset σ No. of Processes

MSKCC -0.5 8

CancerMap -0.5 8

CamCap -0.05 6

Stephenson -0.75 3

Klein -0.3 5

Table 5.2 A summary of the suitable parameters identified for each prostate cancer dataset.

5.3.2 LPD Classification

We applied the LPD algorithm, using the results from Table 5.2, on the samples from

the five prostate cancer datasets described in Section 5.2 (MSKCC, CancerMap, CamCap,

Stephenson and Klein) to produce an unsupervised classification of prostate cancer. As

previously discussed, LPD generates non-identical results. To produce a classification that

represented a closer portrayal of the underlying processes within each dataset, we restarted

the LPD algorithm 100 times. An example of one of these runs for the MSKCC dataset is

shown below in Figure 5.2.

5.3.3 Survival Analyses

In order to perform survival analysis, samples must be exclusively classified into separate

groups and have accompanying clinical data for a given event. Since LPD produces a set

of probabilistic results, we had to convert these results into a set of exclusive associations.

To achieve this, each sample was assigned to the process with the largest contribution to

its expression profile. The clinical event used to compare survival times was biochemical

recurrence (BCR). As the Klein dataset did not contain clinical data, we were unable to use it

during the survival analyses.
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Fig. 5.2 A bar chart showing the output from an LPD run, using the MSKCC dataset. Each
bar within a process (row) represents the proportion for which that sample was associated
with that process (σ ). The colour of each bar represents the ICGC category assigned to each
sample within the associated clinical data.

Across the 100 LPD runs the set of randomised variables created the potential for samples

to change their main process assignment. To take this variability into account we determined

the average run, as this would be a better representation of the underlying processes and

allow us to confidently assign samples to their main processes in that given run. To find the

average run we plotted the density distribution of log-rank p-values across the 100 LPD runs.

The run with a log-rank p-value closest to the mode of the distribution was then selected as

the representative run.
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5.3.3.1 Univariate Survival Analysis

The log-rank p-values for each of the representative runs were very low (MSKCC 4.88×10−3,

CancerMap 1.57×10−5, CamCap 6.27×10−3, Stephenson 1.75×10−4), suggesting that the

LPD groups had statistically different rates of BCR failure. Survival curves were then plotted

for each of the LPD groups, as shown in Figure 5.3 for the MSKCC dataset.

Fig. 5.3 Kaplan-Meier survival curves for the eight LPD groups created from the MSKCC
dataset, using BCR failure as the event. The number of cancer samples in each group is
indicated at the bottom right corner, alongside the number of BCR failures in parentheses.

For all of the datasets, the Kaplan-Meier plots contained a minimum of one curve that

showed a lower survival probability over time, compared to the other curves. To test whether

this difference in survival probability was significant, we compared the lowest survival

curve against all the other curves combined. The resulting Kaplan-Meier survival curves are

shown in Figure 5.4, with the low survival curve denoted as DESNT. A log-rank test was
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performed on each dataset to compare the DESNT and non-DESNT curves. The resulting

log-rank p-values from these tests (MSKCC 2.64×10−5, CancerMap 2.98×10−8, CamCap

1.22×10−3, Stephenson 4.28×10−5) showed a statistically significant difference in survival

probability, for the DESNT group compared with other groups, across all the datasets.

Fig. 5.4 Kaplan-Meier survival curves comparing DESNT and non-DESNT groups for the
MSKCC dataset, using BCR failure as the event. The number of cancer samples in each
group is indicated at the bottom right corner, alongside the number of BCR failures in
parentheses.

5.3.3.2 Multivariate Survival Analysis

Once we had determined that DESNT was a statistically significant predictor of BCR failure,

we began to access whether or not DESNT could be used as an independent predictor of

BCR failure. To achieve this we performed a multivariate survival analysis using a Cox PH

model. For the purpose of this report an extended Cox PH model was not used. Due to this,
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pathological stage was not used as it was shown to be a non-independent factor over time

by Luca et al. [17]. In contrast to this, PSA level and Gleason score each fulfilled the PH

assumption, allowing them to be covariates within the Cox PH model.

A Cox PH model was generated for each dataset, using DESNT membership, PSA level

(≤ / > 10) and Gleason score (≤ / > 7) as the covariates. These results are depicted in

Figure 5.5 (A-D). DESNT membership was found to be a statistically significant indicator

in the majority of the datasets tested, however this result was not found when using the

MSKCC dataset. The MSKCC Cox PH model showed that DESNT membership had a hazard

ratio (1.799) greater than one, but due to the 95% confidence interval (0.658) extending

significantly below one, the p-value (2.53×10−1) associated with this hazard ratio was not

statistically significant. This wide confidence interval is likely due to the relatively low

number of samples assigned to DESNT within the MSKCC dataset (17/131 samples).

The Cox PH models generated from the CancerMap, CamCap and Glinsky datasets

each had a hazard ratio greater than one (4.532, 2.077 and 3.360 respectively), indicating

that DESNT membership was a predictor of BCR failure. These hazard ratios were also

statistically significant (1.77×10−3, 4.51×10−2 and 3.75×10−4 respectively).

Since the DESNT group was relatively small and in some cases produced large confidence

intervals for a given dataset, we performed further analysis by merging the datasets together.

The MSKCC, CancerMap, CamCap and Glinsky datasets were all merged together, with

duplicate patients from CancerMap and CamCap removed at random. The results from this

model are shown in Figure 5.5 (E) and Appendix A.1 (E). Membership to the DESNT group

was found to be the largest significant predictor of BCR failure, after adjusting for the effects

of other covariates. This result suggests that DESNT membership is a predictor of BCR

failure, independent of PSA level and Gleason score.
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Fig. 5.5 Results from the multivariate Cox PH models, using the MSKCC (A), CancerMap
(B), CamCap (C), Stephenson (D) datasets and a combination of the previous four datasets
(E). The blue markers denote the hazard ratio for each covariate and the extended bars denote
the 95% confidence interval. The log-rank p-value for each covariates’ hazard ratio is listed
on the right side of the figure. PSA level was split on ≤ / > 10, Gleason score was split on
≤ / > 7 and DESNT γ was treated as a continuous variable between 0 to 1.
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5.3.4 Differentially Expressed Genes

In this section we identify a set of genes that were differentially expressed in DESNT

compared to non-DESNT cancers. All of the available probesets were used for this analysis,

as it is possible that some genes outside of the 500 listed could still be discriminative for the

DESNT group. Similar to our previous analysis of LPD, we used all 100 LPD restarts for a

more robust analysis.

We selected the genes that were differentially expressed in each LPD restarts’ DESNT

group (compared to all other groups combined) and narrowed the list down to the genes that

were present in 20%, 40%, 60% and 80% of the restarts. We then determined which of these

genes were present across each of the datasets. Figure 5.6 (A) depicts the number of genes

that were differentially expressed across multiple datasets in at least 80% of the LPD restarts.

Figure 5.6 (B) depicts the genes that were differentially expressed in all four of the datasets.

A total of 45 genes were identified that were differentially expressed in the DESNT

group across all four datasets, in at least 80% of the runs. This set of genes matches the list

published by Luca et al. (2017) [17]. A heatmap depicting the gene expression levels of the

500 genes used within the LPD classifications has been included in Appendix A.2.
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Fig. 5.6 A) A venn diagram of the number of differentially expressed genes in the DESNT
group compared to the non-DESNT groups, across the MSKCC, CancerMap, Stephenson
and Klein datasets, that were present in at least 80% of the LPD restarts. B) The differentially
expressed genes in the DESNT group compared to the non-DESNT groups, across the
MSKCC, CancerMap, Stephenson and Klein datasets, that were present in at least 20%, 40%,
60% and 80% of the LPD restarts.

5.3.5 Pathway Analysis

Dr Bogdan Luca previously analysed the Gene Ontology (GO) [101], Kyoto Encyclopedia

of Genes and Genomes (KEGG) [159] and Reactome [102] pathways that were significantly

under/over-represented in the set of 45 genes associated with the DESNT signature. The

following is a summary of his findings and an independent assessment by Prof. Dylan

Edwards.

An independent analysis was performed using all the available pathways annotated in GO,

KEGG and Reactome using the clusterProfiler R Bioconductor package [160]. The p-values

were adjusted for multiple comparisons using the FDR method at a 5% level and restricted

using a confidence limit of 0.05. In total over 200 GO biological processes, nine KEGG

pathways and nine Reactome pathways were identified as being over-represented in the

DESNT signature. The top 20 (ordered by significance) GO processes and the nine KEGG

and Reactome pathways are presented in Appendix A.3. Dr Luca consistently identified
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muscle contraction based pathways among those with the greatest significance across all

three of the databases analysed .

Prof. Dylan Edwards, from the School of Biological Sciences, UEA, performed an

independent assessment of the possible molecular functions involving the set of 45 DESNT

genes. The following is a reproduction of his analysis:

"Several signature genes encode proteins that are components of the actin cytoskeleton or

which regulate its dynamics, including ACTA2, ACTG2, ACTN1, CNN, FLNA, ILK, ITGA5,

LMOD1, MYLK, PALLD, VCL, CALD1, CDC42EP3, PDLIM1, SVIL, TNS1, TPM1, TPM2.

In particular, actomyosin contractility is highlighted by the presence of myosin light chain

kinase (MLCK) and myosin light chain-9 (MYL9) and other molecules such as α-actinin

(ACTN1), tensin (TNS1) and calponin (CNN1). Increased malignancy may correlate with

increased cell migratory behaviour, which in turn may reflect the deployment of particular

types of cell adhesion and cytoskeletal machinery. A high dependency on actomyosin

contractility is recognised as a hallmark of amoeboid movement [161], and since this aspect

is down-regulated in the poor prognosis signature, it would seem less likely to be the mode of

migration employed.

However, also noteworthy are important focal adhesion components such as integrin α5

(ITGA5), vinculin (VCL) and integrin-linked kinase (ILK), which would be expected to be

involved in mesenchymal type migration. It is thus possible that the gene signature favours

a collective migration phenotype, typified by maintenance of E-cadherin mediated cell-cell

adhesion mechanisms [162]. Also too there are a few transcription factors and an RNA

binding protein that will affect translation, thus there could be diverse downstream changes

in genetic programmes as a result of the down-regulation of these genes. However, it is hard

to predict the consequences here."
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5.4 DESNT as a Continuous Variable

In the previous sections of this chapter we have shown that tumours predominately assigned

to the DESNT subtype are associated with poorer prognosis. However, considering the full

range of DESNT γ values as a continuous variable may identify its use as a predictor of risk

in all patients. Based on the current LPD classifications we began to analyse the importance

of DESNT γ with BCR failure. To do this we analysed whether BCR failure was related

to the proportion of a sample’s assignment to the DESNT group. A random selection of

samples from the MSKCC dataset are depicted as pie charts in Figure 5.7, demonstrating the

varying levels of DESNT γ across all samples.
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Fig. 5.7 A) Bar chart showing the variable DESNT γ associations from the representative
LPD run for the MSKCC dataset. B) Pie charts showing how varied the γ associations are for
the range of samples highlighted in Figure 5.7-a that are not DESNT dominant. C) Pie charts
showing how varied the γ associations are for the range of samples highlighted in Figure
5.7-a that are DESNT dominant. Published in Luca et al. (2020) [5]

For the purposes of our initial analysis we used all the unique patient samples from

the MSKCC, CancerMap, CamCap and Stephenson datasets, removing duplicate patients

between datasets randomly. Samples were then split into four groups based on the proportion

of their γ assignment to the DESNT group. These proportional groups were:

• Group 1: γ < 0.001

• Group 2: 0.001 ≤ γ < 0.3

• Group 3: 0.3 ≤ γ < 0.6

• Group 4: 0.6 ≤ γ



5.4 DESNT as a Continuous Variable 73

Kaplan-Meier survival curves were produced for each of the four datasets previously listed

(shown in Appendix A.3 A-D). Log-rank p-values were then calculated for each dataset to

determine if there was a significant difference between proportional DESNT groups and their

associated BCR failure rates. In all of the datasets the p-values were statistically significant

(MSKCC 1.74 × 10−3, CancerMap 8.42 × 10−5, CamCap 3.16 × 10−5 and Stephenson

1.18×10−3), however some of the groups contained far fewer samples than others.

To ensure the result was robust we combined the four datasets (removing duplicate

patients at random) and produced a new Kaplan-Meier plot, as shown in Figure 5.8. We

found a strong correlation between an increase in DESNT association and decreased BCR

free survival time (p=1.28×10−14; Log-rank test).

Fig. 5.8 A) An ordered barchart showing the DESNT γ of every sample used in the ac-
companying Kaplan-Meier survival plot. B) A Kaplan-Meier survival plot using all unique
samples from the MSKCC, CancerMap, CamCap and Stephenson datasets, split using the
four proportional assignment groups. Published in Luca et al. (2020) [5].

A multivariate Cox PH model was produced for the four discretised DESNT groups

using the combined dataset, with PSA level and Gleason score as covariates (Figure 5.9 A).

The proportional groups were then reassembled to test DESNT γ as a continuous variable.
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A second Cox PH model (Figure 5.9 B) was generated from this continuous variable to

determine if the proportion of DESNT membership could be used as an independent predictor

of BCR failure. The model showed that a high DESNT γ is associated with a higher hazard

ratio (HR) than a Gleason score of 8 or higher (DESNT γ HR 4.097 with p-value 3.11×10−7

and Gleason HR 3.477 with p-value 4.40× 10−10). The log-rank test performed on this

second Cox PH model strongly suggests that the proportion of DESNT γ is statistically viable

as a predictor of BCR failure, in addition to Gleason score and PSA level.

Fig. 5.9 Cox PH models for the combined prostate cancer dataset, formed from the unique
patients in the MSKCC, CancerMap, CamCap and Stephenson datasets, where duplicate
patients were removed randomly. The blue markers indicate the hazard ratio for each
covariate and the extended bars represent the 95% confidence interval. The log-rank p-value
for each covariate is displayed on the right side of the figure. A) The covariates were all
discretised. The base case for each of the Group variables was γ < 0.001. Samples were
assigned to Group 2, 3 and 4 in the range 0.001 ≤ γ < 0.3, 0.3 ≤ γ < 0.6 and 0.6 ≤ γ

respectively. PSA was split on (≤ / > 10) and Gleason was split on (≤ / > 7). B) DESNT
represents the continuous range of DESNT γ from 0 - 1. PSA was split on (≤ / > 10) and
Gleason was split on (≤ / > 7).
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5.5 Biopsy DESNT Analyses

The desired outcome for utilising DESNT in clinical practise is to use DESNT γ to sep-

arate the aggressive and non-aggressive tumours prior to treatment. To date all research

into DESNT has been performed using samples from patients that have undergone radical

prostatectomy. To achieve the desired clinical test, patients must be tested for DESNT status

using only their biopsy samples. The result of this test would determine which patients

require radical prostatectomy.

Testing new biopsy samples for DESNT status would require rebuilding the LPD model

to include the new samples. This would be inefficient from the perspective of both time

and computational resource allocation. As a result of rerunning LPD the current model

would also undergo small changes and need to be revalidated. To circumvent these issues

we employ our novel form of LPD (OAS-LPD), as described in Chapter 3 and in Luca et al.

(2020) [5], to classify 20 new biopsy samples for DESNT status. Unfortunately at the time

of writing we do not have access to BCR status and metastasis status for these patients and

can only use Gleason as a clinical comparison.

5.5.1 Biopsy Samples

FFPE biopsy samples were obtained from 22 unique patients across a range of Gleason

scores (Gleason 3+4 to Gleason 5+4). Patient age was distributed between 52 years to 77

years, with a mean age of 70.05 years. Of these samples 20/22 were assessed to have good

RNA yields, the remaining 2 samples were removed from the study. Samples were grouped

using the new 5 grade group system (Table 5.3). A summary of our assignments can be found

in Table 5.4, highlighting a higher proportion of high grade samples.
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Gleason Score New Grade Group

≤ 6 1

3+4 2

4+3 3

8 4

≥ 9 5

Table 5.3 A summary of the new Gleason grade groups. Epstein et al. (2016) [8].

Gleason Grade Group Number of Biopsy Samples

1 0

2 4

3 2

4 7

5 7

Table 5.4 A summary of the prostate biopsy samples summarised into grade groups.

5.5.2 Applying the DESNT OAS-LPD model

Before classifying the biopsy samples we had to ensure the samples were batch normalised

against our original datasets. The process began by grouping the biopsy samples into a

new dataset and applying RMA. The resulting expression values were further normalised by

application of reference ComBat and reference Quantile normalisation. Within the ComBat

normalisation the pre-normalised MSKCC, CamCap, CancerMap, Stephenson, Klein, Erho,

Karnes and TCGA datasets were combined into a single reference batch along side the

biopsies in a separate new batch. To complete the normalisation we then took the quantile

normalised MSKCC data and used it as a reference to quantile normalise the biopsy samples.
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Fig. 5.10 Boxplots showing the mean and 95% confidence intervals for the 20 normalised
biopsy samples and a random selection of 60 normalised samples from the MSKCC dataset,
due to the limited space on the page.

We began to classify the biopsy samples by constructing an OAS-LPD model. To

construct the model we derived the original MSKCC representative LPD model’s µgk, σ2
gk

and α parameters and set these values to be immutable within an OAS-LPD model. The

normalised biopsy samples were then run through OAS-LPD using this model 100 times and

the representative of these 100 runs was identified (Figure 5.11).

Fig. 5.11 Bar plots showing the LPD γ values for the association between each biopsy sample
and OAS-LPD process. The OAS-LPD process primarily associated with each biopsy sample
has also been highlighted, in addition to the Gleason Grade of each given biopsy.
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By assigning each sample to LPD process with the greatest γ value we were able to test

whether Gleason Grade was dependent on the primary process of each sample. Fisher’s

exact test (p-value = 0.0256) provided the evidence required to reject the null hypothesis that

Gleason Grade was independent of the LPD primary process. This was the expected result

based on our previous DESNT work and further supports the idea that biopsies can be used

with OAS-LPD to assess patient risk. We also analysed DESNT γ as a continuous variable

within the biopsy samples using Pearson’s correlation. The result from this test (correlation =

0.395, 95% CI = -0.0573 - 0.713 and p-value = 0.0846) suggests a weak positive correlation

between DESNT γ and Gleason Grade within the biopsies (Figure 5.12). However, due to a

relatively low number of samples and wide spread of DESNT γ values this correlation is not

statistically significant.

Fig. 5.12 Scatter-plot comparing OAS-LPD DESNT γ and Gleason grade for 20 prostate
cancer biopsy samples. The blue line denotes the Pearson’s correlation and the shaded region
the 95% confidence region.
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5.6 Discussion

In this chapter we used the 8 process LPD classification by Luca et al. (2017) [17] to further

analyse the DESNT subtype using both prostatectomy and biopsy samples. We presented

the genes associated with the DESNT subtype and the pathways these genes were involved

in. Finally, we presented a novel method (OAS-LPD) for classifying new prostate cancer

samples using the existing 8 process LPD classification.

Within the set of genes that comprise the DESNT gene signature are a number of down-

regulated genes known to encode proteins that are components of the actin cytoskeleton and

facilitate actomyosin contractility. The identification of increased malignancy in DESNT

tumours could correlate with an increase to cell migratory behaviours reliant on particular

cytoskeletal machinery, however the down-regulation of these genes suggests an alternative

migration method is utilised. Within the DESNT signature are a number of genes involved

in focal adhesion, Integrin α5 (ITGA5), Vinculin (VCL) and Integrin-linked Kinase (ILK).

These genes may instead facilitate mesenchymal type migration with E-cadherin mediated

cell-cell adhesion mechanisms [162].

In addition to the previously discussed pathways, to which the majority of the DESNT

signature genes belong, are a number of genes related to various other transcription factors

that can be associated with one or more hallmarks of cancer. One of these genes encodes the

Endothelial PAS Domain Protein (EPAS1), a transcription factor involved in the induction

of oxygen regulated genes implicated in the development of blood vessels [163]. Two other

genes of interest are ETS Proto-Oncogene 2 (ETS2) and Signal Transducer and Activator

of Transcription (STAT5B), which are partially responsible for regulating apoptosis within

cells [163]. These genes may therefore play an important role in the development of the poor

prognosis DESNT subtype.

In this chapter we have also demonstrated that the risk of BCR in prostate cancer patients

can be determined by analysing the proportion of DESNT γ present in prostatectomy samples.
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An increase in DESNT γ is seen to strongly correlate with a decrease in BCR-free survival

and is also shown to be an independent predictor of risk, with a greater covariate hazard ratio

than current prostate cancer risk measures (PSA and Gleason).

To begin assessing the viability of using LPD to predict risk in a clinical setting we

obtained 20 biopsy samples, with good RNA yields. We also modified the LPD algorithm

(OAS-LPD) to classify new samples within a pre-existing LPD model. We found that a

three stage normalisation process involving RMA, reference ComBat and reference Quantile

normalisation was able to adequately normalise new samples’ individual gene and sample

distributions similar to the levels of the reference dataset(s). This normalisation allowed the

new samples to be run through the novel OAS-LPD method to produce a set of Bayesian

classifications based on the existing MKSCC LPD model’s processes, which were originally

published by Luca et al. (2017) [17].

From the OAS-LPD results we were able to establish a correlation between the OAS-LPD

processes and Gleason grades in the biopsy samples. This result mirrors the findings found

within the prostatectomy samples and warrants the need for further large scale biopsy studies

to address the limitations relating to the range of DESNT γ values and restrictive clinical

data of this study. Overall we have demonstrated the potential strength of applying LPD

to prostate cancer in a clinical setting and believe DESNT γ can be used to improve the

targeting of treatment to reduce the over treatment of low risk patients.



Chapter 6

Colorectal Cancer (CRC)

6.1 Summary

In this chapter we discuss key information regarding the colon and colorectal cancer, including

risk factors and current disease treatments. This information is vital to understanding the

benefits of molecular testing in colorectal cancer, before introducing our own novel molecular

classification of colorectal cancer in Chapter 7.

6.2 The Colon

The colon is a long-tube like organ that forms the last part of the gastrointestinal tract. Its

purpose is to extract water and electrolytes from solid waste and can be split into two main

sections and eight subsections [164] (as shown in Figure 6.1):

• The Proximal colon: Starting at the cecum and ending at the splenic flexure, includes

the cecum, ascending colon, hepatic flexure, transverse colon and splenic flexure.

• The Distal colon: Starting from the descending colon and ending at the rectum, includes

the descending colon, sigmoid colon and rectum.
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Fig. 6.1 A diagram detailing the sections of a colon. Adapted from Mayo Clinic [6].

The cecum is a pouch that connects the small intestines to the large intestines on the right

side of the body via the ascending colon. The ascending colon runs up the right side of the

body from the cecum to the heptic flexture and is the first section of the colon responsible

for extracting water from solid waste. The solid waste is transported up the ascending

colon through the process of peristalsis (a wave of muscle contraction and relaxation). The

transverse colon begins at the hapatic flexure and spans across the abdominal cavity to the

splenic flexure. Approximately 41% of CRC cases occur within the proximal colon [165].

The descending colon begins at the splenic flexure and runs down the left side of the

body to the sigmoid colon and is responsible for storing faecal matter before it is emptied

into the rectum. Below the descending colon is the sigmoid colon, named after its S-shaped

structure. The sigmoid colon contains muscular walls that contract to apply pressure on the

faecal matter, pushing the compressed stool into the rectum below. Approximately 22% of

CRC cases occur within the distal colon down to the rectum with a further 28% of cases

occurring within the rectum. The remaining 8% occur in other sites [165].
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6.3 Colorectal Cancer

6.3.1 Risk Factors

There are many well established risk factors associated with colorectal cancer. As with many

other types of cancers these factors include age, race/ethnicity and family history, however

CRC risk has also been associated with specific diets [166] and genetic mutations [167].

Age is a large risk factor in the development of many diseases. In the case of CRC the

risk of developing cancer increases significantly after 50 years of age, with the mean age of

diagnosis varying globally between 65-75 years [168, 169]. CRC is a disease predominately

found in the elderly as demonstrated by the sharply increasing age standardised incidence

rates per 100,000 people in the UK between 2015-2017 (1.8, 41.6 and 386.7 cases for age

ranges 20-24, 50-54 and 80-84 years respectively) [170].

While older age has been associated with CRC development, it does not explain why

incidence rates vary around the world. Race/ethnicity has been shown to be another major

risk factor for CRC development, that begins to explain the variable global risk. In the USA

the racial group with the highest risk of CRC development are Black people with an age

standardised risk of 45.7 per 100,000 people. This figure was 18.7% lower in non-Hispanic

White people and 34.4% lower in Asian Americans [171]. In partial contrast, within the UK

the racial group with the highest risk of developing CRC was White people, with an average

age standardised risk of between 44.1-45.1 per 100,000 people. This was significantly higher

than rates found in Black and Asian people, 15.2-22.8 and 25.1-37.7 per 100,000 respectively

[170]. It should be noted that the range of standardised rates was attributed to a 17% unknown

ethnicity in the population analysed.

Although racial populations show variable relative risk across countries, these changes

could be partially explained by the proportion of generations present in each cohort. Studies

conducted across the world have concluded that migrates to any given country have a different
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risk of developing CRC compared to the native population. These differences are reduced

over time, with the risk to subsequent generations converging to the average for that country

[172, 173].

The differences in generation specific risks are more likely attributable to environmental

factors rather than genetic factors due to the relatively short timespan between generations.

Of the potential environmental factors, diet stands out as a factor that could have an impact

on the health of a patient’s colon through direct contact. The main dietary condition widely

accepted as causing an increased risk of CRC is the consumption of a western diet (a diet

containing high volumes of red and processed meats, high-fat dairy products, refined grains

and desserts) [174].

Genetic mutations can also confer a difference in CRC risk, with the main two hereditary

conditions being hereditary nonpolyposis colorectal cancer (HNPCC or Lynch syndrome)

and familial adenomatous polyposis (FAP). Lynch syndrome is a defined by a mutation in at

least one of four mismatch repair genes (MSH1, MSH2, MSH6 and PMS2), which confers up

to an 80% life time risk of developing CRC [175]. FAP is a hereditary condition caused by

the mutation of the APC gene on chromosome 5q21 [176] and accounts for approximately

1% of all CRC cases [175].

6.3.2 Screening and Early Detection

Population screening has been a controversial topic yielding mixed results for many diseases.

However, results from CRC screening have shown improvements to patient survival in many

countries [177–179]. The two main screening techniques used to identify new CRC cases

in the UK are the faecal occult blood test (FOBT) and faecal immunochemical test (FIT)

[180]. These tests measure the amount of blood found in a patient’s faeces, with a positive

result indicating a significant amount of blood detected. While a positive test can indicate

CRC, it can also be caused by ulcers, haemorrhoids, benign polyps, swallowing blood or
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from inflammatory bowel disease [181]. A positive test therefore requires further tests and

examination to confirm the CRC status of a patient.

6.3.3 Diagnosis

Patients presenting with CRC symptoms are initially tested for occult blood in their faeces.

NICE recommends that patients with a positive FOB test are then referred for a colonoscopy

due to the lack of sensitivity in the initial test [182]. Biopsies may be taken during the

colonoscopy for further molecular testing if polyps or other growths are identified. These

molecular tests are useful tools to initialise an investigation into hereditary markers (such

as those for HNPCC and FAP), or to assess the disease severity using sporadic markers

(discussed later in this chapter).

A computed tomography (CT) scan can also be performed in patients with a suspected or

confirmed case of CRC to further establish the locations and sizes of their tumours in both

the colon and other parts of the body [183, 184]. A virtual colonoscopy using CT scanners

can be offered in some cases instead of a physical colonoscopy to reduce the invasiveness of

the procedure [183].

6.3.4 Classification criteria

Once a patient has been diagnosed with CRC the severity of the disease must be established

in order to guide treatment pathways for the patient. CT scans can advise whether the disease

is currently contained locally, or whether it has spread to distant sites around the body. In

the latter case analysis of the metastases will drive alternative classification and treatment

pathways [185].

Tissue from a colonoscopy biopsy extraction provides a much greater depth of information

to explore at both a pathological and molecular level. By studying the biopsy a pathologist is

able to determine the key features related to CRC tumours and gain an initial understanding
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of the disease progression. These pathology results may not be as accurate as those performed

later on the surgically removed tumour, as such the biopsy study results are referred to as

the clinical grade/score and the colectomy study results are referred to as the pathological

grade/score [186].

6.3.4.1 Tumour Node Metastasis

Tumour Node Metastasis (TNM) classification is the standard pathological system for staging

malignant CRC tumours by the American Joint Committee on Cancer (AJCC) and Union for

Interventional Cancer Control (UICC). It comprises of three parts that are described by the

American Cancer Society [187] and Cancer Research UK (CRUK) [188] as:

• T: describes the primary tumour size, whether the tumour has spread into the wall of

the colon/rectum and if so how many layers have been invaded.

• N: describes the spread into regional lymph nodes.

• M: describes the presence or otherwise of distant metastatic spread into distant lymph

nodes or other organs.

These three parts can be broken down further to provide detailed descriptions of individual

CRC cases:

T - Primary Tumour

TX - Primary tumour cannot be assessed.

T0 - No evidence of primary tumour.

Tis - Cancer cells only found in the epithelium of the colon.

T1 - Tumour invading submucosa.

T2 - Tumour invading the muscularis propria.

T3 - Tumour penetrating the muscularis propria and the subserosa.
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T4 - Tumour directly invading other organs or structure.

T4a - Tumour penetrating visceral peritoneum.

T4b - Tumour directly invading or adhering to other organs or structures.

N - Regional Lymph Nodes

NX - Regional lymph nodes cannot be assessed.

N0 - No regional lymph node metastases.

N1 - Regional lymph node metastases.

N1a - Tumour present in 1 regional lymph node.

N1b - Tumour present in 2 or 3 regional lymph nodes.

N1c - Tumour present in regional structures that are not lymph nodes.

N2 - Regional lymph node metastasis in 4 or greater lymph nodes.

N2a - Tumour present in 4 - 6 regional lymph nodes.

N2b - Tumour present in 7 or greater regional lymph nodes.

M - Distant Metastasis

M0 - No Distant metastases.

M1 - Distant metastases.

M1a - Distant metastases in 1 other part of the body.

M1b - Distant metastases in more than 1 other part of the body.

M1c - Peritoneal metastases.

Table 6.1 Tumour Node Metastasis (TNM) classification system for CRC.

AJCC TNM staging can be used to stratify patients into similar risk groups based on the

progression of the disease. Table 6.2 below outlines the AJCC stages using the detailed TNM

information, with higher level stages conveying increased patient mortality risk.
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AJCC Stage TNM Criteria

0

Tis

N0

M0

I

T1 or T2

N0

M0

IIA

T3

N0

M0

IIB

T4a

N0

M0

IIC

T4b

N0

M0

IIIA

T1 or T2

N1 or N1c

M0

OR

T1

N2a

M0

IIIB

T3 or T4a

N1 or N1c

M0

OR

T2 or T3

N2a

M0

OR

T1 or T2

N2b

M0

IIIC

T4a

N2a

M0

OR

T3 or T4a

N2b

M0

OR

T4b

N1 or N2

M0
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IVA

Any T

Any N

M1a

IVB

Any T

Any N

M1b

IVC

Any T

Any N

M1c

Table 6.2 AJCC / TNM staging for CRC.

6.3.4.2 Dukes’ Staging

While the AJCC TNM staging system is the most common system used to describe CRC

progression, some doctors will use a simpler system when discussing results with their

patients [189]. One such system is the Dukes’ staging system used by some UK doctors.

Dukes’ staging collapses the TNM stages into the four categories outlined in Table 6.3.

Dukes’ Stage AJCC Stage

A I

B IIA, IIB, IIC

C IIIA, IIIB, IIIC

D IVA, IVB, IVC

Table 6.3 AJCC stages grouped by Dukes’ stage for CRC.
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6.3.5 Localised and Regional Disease Treatment

Unless otherwise specified, the following subsections related to disease treatments are based

on the NICE guidelines for colorectal cancer treatment [185].

Patients with localised low risk colorecal cancer (T1/T2, N0 and M0) are offered various

forms of surgical resection to remove the CRC tissue if the tumour is resectable. This

represents the gold standard treatment for localised CRC. NICE do not recommend pre-

operative radio-/chemo-therapy for low risk patients, but recognise a small improvement to

the relapse free survival of higher risk patients (T1/T2, N1/N2 and M0, or T3/T4, any N and

M0) following surgery with pre-operative therapy [190].

6.3.5.1 Surgical Resection

Patients with localised colorectal cancer are offered a selection of three forms of surgical

resection. The first two options are called transanal excision (TAE) and endoscopic sub-

mucosal dissection (ESD). Both TAE and ESD are performed using endoscopic surgery to

minimise the invasiveness of the procedures and limit the typical hospital stay to just 1-2

days. In each case the aim of surgery is to only remove the cancerous tissue and not the

lymph nodes or colon. An additional benefit to TAE and ESD is a reduction to the number of

possible complications that could arise from the surgery, however this comes at the risk of

requiring further surgery at a later date.

In some cases a decision may be made for a more invasive form of surgical resection

called total mesorectal excision (TME). The greatest difference in TME surgery, compared to

TAE and ESD, is the aim to remove both the cancerous tissue and a portion of the surrounding

colon. It is unusual to require further surgery following TME due to the extent of the surgery,

however TME does not come without its own risks and negative impacts. Patients opting

for TME will typically spend 5 to 7 days in hospital recovering from the surgery and be at

risk of more severe complications, such as anastomtic leaking (leaking of the bowel into the
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abdomen). Removing part of the colon may also require the patient to undergo a colonstomy

to create a stoma (redirecting part of the colon to a permanent or temporary bag attached to

an opening in the abdomen), resulting in a potentially life long consequence.

6.3.5.2 Radiotherapy and Chemotherapy

Using radiotherapy alone to treat CRC is an uncommon practice. It is typically applied in

combination with other treatment options and is most commonly used to treat cancers found

in the rectum [191], or in patients with tumours that extend to the lining of the abdomen in

combination with chemotherapy before surgery. The intention of this combined therapy is

to reduce the size of the tumour and make it easier to remove during surgery. Patients that

experience complete clinical and radiological response to neoadjuvant treatment may also be

offered the option to defer surgery, but are warned of the additional risk of recurrence.

Chemotherapy is typically used as an adjuvant therapy alongside surgery, since surgery

is the gold standard primary treatment in most CRC cases. A report advising NICE [192]

considered six independent studies to ascertain that high risk stage II and stage III CRC

patients could benefit from adjuvant chemotherapy to reduce overall systemic recurrence.

However, the report also warned that the studies themselves were of relatively low quality.

Current NICE guidelines recommend only offering adjuvant chemotherapy to patients with

stage III colorectal cancers (T1-T4, N1-N2, M0), due to the associated negative side effects

of chemotherapy treatment.

Many chemotherapy agents exist for the treatment of CRC including Capecitabine,

Oxaliplatin and Fluorouacil. NICE recommends using a combination of Cepecitabine and

Oxliplatin (CAPOX) wherever possible due to CAPOX’s reduced treatment costs and shorter

treatment time compared to other chemotherapy treatments. Where this is not possible

because of a patient’s histopathology NICE instead recommends the use of Flurouacil

combined with Oxaliplatin and Folinic acid (FOLFOX).
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6.3.6 Metastatic Disease Treatment

Unless otherwise specified, the following section on metastatic disease treatments is based

on the NICE guidelines for colorectal cancer treatment [185].

Metastases are the leading cause of mortality in CRC patients, with a 5-year survival rate

of approximately 15% compared to 90% for patients with localised disease [193]. Although

overall 5-year survival rates are low, palliative treatment options exist to help alleviate

the symptoms of metastatic CRC and in some cases are used to cure specific subtypes.

Approximately 20% of patients undergoing systemic therapy with metastatic CRC will

experience primary tumour related symptoms such as pain, bleeding and obstruction of the

colon. Patients can be offered surgical resection of their primary tumour to prevent these

symptoms from manifesting, but at a 5% risk of severe postoperative complications that may

delay their systemic therapy.

Patients may be offered additional location specific treatment for their metastases along-

side treatment of their primary tumour. The four main metastatic locations with recommended

treatments are metastases of the bones, liver, lung and peritoneal. Treatment of bone metas-

tases follows the same treatment pathway as all solid tumours (other than prostate). The

treatment involves using bisphosphonate drugs to prevent the loss of bone density. Deno-

sumab is recommended as the primary choice of bisphosphonate even though it has a higher

cost, as its overall cost effectiveness is lower than other tested bisphosphonates. This reduced

cost is attributed to the statistically significant reduction to first skeletal-related events (HR

0.84, p=7×10−4) [194].

Liver metastases follow a different three layer strategy involving surgery, systemic anti-

cancer therapy (SACT) and selective internal radiation therapy (SIRT). Surgical resection

offers the best 5-year survival for CRC liver metastatic patients, with approximately a 30%-

50% 5-year survival rate [195]. In addition to resection of both the primary and metastatic

liver tumours, NICE recommends the use of SACT to improve overall and disease free
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survival. Only in special cases when no other treatment options are viable do they advise the

use of SIRT, due to inadequate research into the benefits of SIRT [196].

Metastases within the lungs are treated with either metastasectomy (surgical removal),

ablation (generating heat through an electrical current), or stereotactic body radiation therapy

(SBRT). Due to a lack of high quality evidence NICE do not currently recommend the use

of one of these treatments over the others. Unlike other CRC metastases, those found in

the peritoneal are primarily advised to undergo SACT, rather than resection. Medical staff

are also encouraged to refer patients to specialist centres that can offer potentially curative

cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC), however

NICE acknowledges the mixed results of research in these areas.

6.3.7 Genetic Alterations and Biomarkers

Colorectal cancers can be broadly catergorised into two distinct forms of genetic alteration,

those that occur sporadically and those that are hereditary. Sporadic alterations account for

approximately 65% of all CRC and can be classified into three distinct mechanisms discussed

below [197]. Hereditary alterations can be split into two main conditions, those belong-

ing to familial adenomatous polyposis (FAP), including attenuated familial adenomatous

polposis (AFAP) and MYH-associated polyposis (MAP) and those belonging to hereditary

nonpolyposis colorectal cancer (HNPCC).

The first sporadic mechanism is chromosomal instability (CIN), which accounts for

approximately 80%-85% of sporadic CRCs and can be described as the partial or complete

duplication, or deletion, of one or more chromosomes [198–200]. The second mechanism,

microsatellite instability (MSI), accounts for up to 15% of all sporadic CRCs and can

be defined as frequent mutations occurring in microsatellite loci [198, 199]. The third

mechanism is known as epigenetic gene silencing, this can also be referred to as CpG island

methylator phenotype (CIMP) when the mechanism occurs frequently at promoter CpG
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islands and is present in approximately 30% of CRCs [201]. CIMP status has a large overlap

with MSI status and unique combinations of the two mechanisms yield several associations

with other clinical variables, as shown in Tables 6.4 & 6.5 [9].

CIMP-H CIMP-L CIMP-0

MSI-H
Group 1:

10%

Group 2:

5%

MSI-L Group 3:

5-10%

Group 4:

5%
Group 6:

40%

MSS
Group 5:

30-35%

Table 6.4 Table showing the percentages of cases for each group of CIMP and MSI combi-
nations. CIMP-H, CIMP-L and CIMP-0 refer to high, low and very low methylation levels
respectively. MSI-H, MSI-L and MSS refer to high, low and no microsatellite instability
respectively. Adapted from Ogino 2008 [9].

Group Associations

1
MLH1 and BRAF mutations, CIN negative, proximal colon,

elderly females, good prognosis.

2 KRAS mutation, CIN negative, proximal colon, HNPCC.

3
BRAF mutation, CIN negative, right colon, elderly females,

poor prognosis.

4 MGMT methylation, KRAS mutation.

5 KRAS mutation, CIN negative, males.

6 Wild-type KRAS and BRAF, CIN positive, distal colon.

Table 6.5 Table highlighting the main CIMP-MSI group associations. Adapted from Ogino
2008 [9].
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6.3.7.1 Hereditary CRC

Familial adenomatous polyposis results in the formation of hundreds, or thousands of

adenomatous polyps caused by a dominantly inherited mutation of the APC gene. Due to

this, the risk of developing CRC in patients with untreated FAP is 95% by the age of 50 and

almost a 100% risk across their full life time [197].

Cases where the patient presents with only 10-100 adenomatous polyps within the

proximal colon may be considered an attenuated form of FAP (AFAP). This condition has a

reduced life time risk of 70-80% and can be managed without colectomy in one third of cases.

As with FAP, AFAP is caused by dominantly inherited mutations within the APC gene that

are typically located within the extreme ends of the gene’s DNA sequence. MYH-associated

polyposis is phenotypically similar to AFAP, but is caused by recessive/biallelic mutations

within the MYH gene. Around 20% of cases involving more than 20 and fewer than 500

colonic adenomatous polyps can be attributed to MAP [202].

Hereditary nonpolyposis colorectal cancer, also known as Lynch syndrome is the most

common hereditary form of CRC and accounts for 1-3% of all CRC cases. It is an autosomal

dominantly inherited condition that occurs from the mutation of at least one of four mismatch

repair (MMR) genes (MLH1, MSH2, MSH6 and PMS2) [203]. Over 90% of these cases

contain mutations in one of the first two genes and 6% of cases are caused by a mutation

of the third gene. PMS2 mutations occur rarely within HNPCC, making up only a small

percentage of cases, but testing for PMS2 mutations has also been shown to improve the

sensitivity of MLH1 mutation detection [197, 203]. Due to the loss MMR gene functionality

in Lynch syndrome, MSI occurs in over 90% of cases [203].

All patients with confirmed cases of CRC are referred for immunohistochemistry or MSI

testing when they are first diagnosed [204]. These tests are performed for two main clinical

reasons. First to determine the Lynch syndrome status of the patients and second to determine

the MMR and MSI status of the patients. The primarily targets of these tests are the MLH1
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oncogene and BRAFV600E mutation [204]. It is important to determine both MMR and MSI

status as they each confer a resistance to Flurouacil adjuvant treatment [205–207].

6.3.7.2 Sporadic CRC

Cancers require multiple mutations in order to develop, however the estimated average

mutation rate per nucleotide base pair is not sufficient enough to generate all of these

mutations [208]. Cells must first develop genomic instability before acquiring the mutations

required to progress to carcinoma [209, 210]. The two main pathways to developing sporadic

CRC are the adenoma-carcinoma sequence and the serrated pathway [211].

Adenoma-carcinoma describes the progression from normal tissue, to small adenomas,

to large adenomas, to eventually forming cancerous tissue and is predominately associated

with the development of CIN-positive CRCs [211]. The first mutational step in this sequence

involves a mutation within the APC gene found on the long arm of chromosome 5. APC

mutations occur in up to 75% of all sporadic colorectal cancers [198] and result in either

a truncated non-functional APC protein, or even complete allele loss [209]. Loss of this

gene/protein produces an overactivation of the Wnt/β -catenin signalling pathway and causes

irregular cell proliferation [211].

Following the loss of APC, subsequent mutations in the KRAS oncogene encourage

adenoma growth. A single nucleotide substitution within the KRAS gene can cause it to

bind with Guanoisine-5’-triphosate (GTP), resulting in the propagation of growth factors

and an activation cascade within the MAPK/ERK signalling pathway [212]. This pathway is

normally responsible for regulating signals from cell surface receptors and the nucleus of a

cell, such as signals to promote cell division. By destabilising the regulation of these signals

the KRAS mutation causes further irregular cell proliferation. The adenomas must then

undergo the functional lose of tumour suppressor genes / miss match repair genes such as

Tp53, MLH1 and MGMT to progress to CRC [7]. While this sequence of events is associated
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with CIN-positive cancers, it remains unclear whether the mutational sequence encourages

CIN development, or whether CIN is a precursor allowing these mutations to occur [211].

The serrated pathway for CRC development begins with normal tissue growing hyper-

plastic polyps that can later progress into sessile serrated adenomas, before finally forming

cancerous tissue. Hyperplastic polyps are the result of a mutation within the BRAF oncogene

[213, 211]. In up to 90% of CRC cases involving a BRAF mutation, thymine is substituted

with adenine at nucleotide position 1799 [214]. This initial molecular event activates the

MAPK pathway in an uncontrolled manor through the binding of BRAF and Adenosine

triphosphate. The resulting signal cascade promotes cell proliferation, prevents apopto-

sis and results in the formation of hyperplastic polyps [211]. The second key molecular

event is CIMP, which drives the polyps to serrated adenomas and CRCs [213]. Approxi-

mately 75% of sessile serrated adenomas and and 90% of serrated adenocarcinomas present

CIMP-positivity [211]. Figure 6.2 provides a visualisation of key molecular events and their

resulting carcinomas.

The main sporadic CRC pathways present distinct molecular events and mutations. These

unique characteristics allow analysis and classification of patients to better inform their

individual clinical management. The KRAS mutations and BRAF mutations found almost

exclusively in CIN-positive and CIMP-positive cancers respectively are important markers

for predicting patient response to different therapies. Mutation of either the KRAS or BRAF

genes confers a resistance to anti-epidermal growth factor receptor monocolonal antibodies

(anti-EGFR MoAbs) and patients presenting these mutations must instead undergo alternative

treatment [215–217].

6.4 Discussion

In this chapter we have explored the biology of the colon and the risks known to be associated

with colorectal cancer. We have reviewed the current diagnosis/classification criteria for
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Fig. 6.2 A diagram detailing the sporadic CRC molecular event pathways. Adapted from
Szylberg et al. (2015) [7].
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colorectal cancer and discussed the key molecular markers guiding patient treatment options.

In the next chapter we will produce a novel classification framework for colorectal cancer

and demonstrate its usefulness in predicting patient risk alongside current factors.



Chapter 7

Deriving Molecular Subtypes in

Colorectal Cancer

7.1 Summary

In the previous chapter we discussed the risk factors currently associated with colorectal

cancer (CRC), including the main genetic and epigenetic pathways that commonly lead to the

development of CRC. In this chapter we apply the LPD algorithm to over 2,000 colorectal

cancer samples to establish a novel classification of the disease. We establish four main

subtypes, characterised by unique molecular profiles. We find that each subtype presents an

independent clinical outcome and that the poor prognosis subtype (Pericol) could be used to

aid clinical decision making by assessing the risk of disease recurrence.

Comparisons with existing publications reveal a large overlap between our Pericol

transcriptomic signature and many other published signatures. Two of our other subtypes

are also observed to be closely related to two unique groups within the CIMP-MSI model

discussed in Chapter 6.3.7. These findings further substantiate the hypothesis that LPD

can robustly identify subtypes within heterogeneous diseases and be used to improve the

diagnosis of such diseases.
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7.2 Materials

7.2.1 Datasets

The work in this chapter was performed using five microarray datasets from the GEO

repository: GSE14333 [218], GSE17536 [219], GSE39582 [220], GSE41258 [221] and

GSE81653 [222] (Table 7.1). RNA-seq and methylation data from The Cancer Genome

Atlas repository (TCGA-COAD [223]) was also used to analyse the novel classifications.

We identified 133 patients in common between the GSE14333 and GSE16536 datasets.

To prevent the introduction of bias we removed these duplicate patients from the GSE17536

dataset and combined the remaining samples with GSE14333 to form GSE14333plus. Simi-

larly, 67 samples from the TCGA-COAD dataset were removed due to patient duplication or

missing clinical data. Further details regarding these datasets can be found in Table 7.1.

Dataset Samples Primary Normal Tissue Type Platform

GSE14333plus

[218, 219]

290 290 0 FF Affymetrix HG U133 Plus 2.0

44 44 0 FF Affymetrix HG U133 Plus 2.0

GSE39582

[220]
585 566 19 FF Affymetrix HG U133 Plus 2.0

GSE41258

[221]
240 186 54 FFPE Affymetrix HG U133A

GSE81653

[222]
593 593 0 FFPE Affymetrix HG 2.0 ST

TCGA-COAD

[223]
454 205 197 FF/FFPE Illumina RNA-Seq

Table 7.1 Table summarising the unique samples from the datasets used in this chapter.
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7.2.2 Clinical Data

All five datasets contain associated data regarding the type of the sample (primary tumour or

normal tissue), however all other clinical information was available at varying levels of detail

for each dataset. The GSE81653 dataset contained recurrence status without any further

follow-up data, or other information regarding known clinical variables. Due to the severely

limited clinical data for the GSE81653 dataset we decided to only use it in the production of

the LPD models and exclude the samples from any further follow-up analyses.

The GSE14333plus, GSE39582 and GSE41258 datasets all contained relapse-free sur-

vival or disease-free survival (DFS) information, allowing us to perform survival based

analyses on these datasets using DFS as the endpoint. The TCGA-COAD dataset only

contained overall-survival data and could not therefore be included in any survival based

analyses using the other datasets. A summary of the other key clinical variables can be found

in Table 7.2.

GSE14333plus GSE39582 GSE41258 GSE81653 TCGA-COAD

Gender

Male 192 322 108 0 240

Female 142 263 122 0 214

Unknown 0 0 10 593 0

Age

Median 66 69 65.5 NA 68.81

Mean 65.84 66.95 63.11 NA 67.44

Range 26-92 22-97 19-87 NA 31-90

CRC Location

Distal 161 351 133 0 171

Proximal 125 232 97 0 263
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Table 7.2 continued from previous page

GSE14333plus GSE39582 GSE41258 GSE81653 TCGA-COAD

Unknown 48 2 10 593 20

TNM Stage

I 45 32 35 0 78

II 98 271 58 0 181

III 92 210 60 0 131

IV 99 60 77 0 64

Unknown 0 0 0 593 0

Relapse Events

Event 55 179 50 234 0

No Event 210 395 180 359 0

Unknown 69 11 10 0 454

MSI

MSI-H 0 0 41 0
11

MSI-L 0 0 19 0

MSS 0 0 151 0 81

Unknown 334 585 29 593 362

MMR

Proficient 0 459 0 0 30

Deficient 0 77 0 0 28

Unknown 334 49 240 593 396

CIMP

Positive 0 93 0 0 0

Negative 0 420 0 0 0
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Table 7.2 continued from previous page

GSE14333plus GSE39582 GSE41258 GSE81653 TCGA-COAD

Unknown 334 72 240 593 454

CIN

Positive 0 369 0 0 0

Negative 0 112 0 0 0

Unknown 334 104 240 593 454

TP53

Mutant 0 190 119 0 0

Wild-Type 0 161 67 0 0

Unknown 334 234 54 593 454

KRAS

Mutant 0 217 0 0 22

Wild-Type 0 328 0 0 24

Unknown 334 40 240 593 408

BRAF

Mutant 0 51 0 0 3

Wild-Type 0 461 0 0 25

Unknown 334 73 240 593 426

Table 7.2 Table summarising the clinical data associated with the samples used in this chapter.

7.2.3 Dataset Pre-processing

Before beginning the data normalisation we downloaded the raw CEL files for our five

microarray datasets, GSE14333, GSE17536, GSE39582, GSE41258 and GSE81653 from

the GEO repository. The GSE14333 and GSE17536 datasets were combined as described
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in Section 7.2.1 to form GSE14333plus. To begin normalising the four microarray datasets

we applied the RMA algorithm, described in Section 3.2.2, from the Oligo R Bioconductor

package [224]. To begin normalising the RNA-seq dataset we applied a variance stabalising

and log2 transformation, using the DESeq2 R Bioconductor package [225].

To further mitigate the dataset specific differences in expression intensities we employed

the ComBat algorithm, described in Section 3.2.3, from the sva R Bioconductor package

[226]. We used ComBat on all four of the RMA normalised datasets and the RNA-seq dataset,

treating each dataset as an individual batch. Finally we applied Quantile normalisation across

all the datasets to ensure a similar distribution of gene expression levels across all samples.

A selection of normalised samples can be seen in Figure 7.1.

Fig. 7.1 Boxplots depicting 20 random normalised samples from each of the GSE14333plus,
GSE39582, GSE41258 and GSE81653 datasets.

Due to the normal distribution of microarray data and the binomial distribution of RNA-

seq data there were concerns as to whether we would be able to use the RNA-seq data

with LPD, or be able normalise the two sources of data together. Initially we applied the

preceding normalisation steps to the microarray data in isolation. However, after attempting

the normalisation with both microarray and RNA-seq data we established this was viable and

proceeded with the combined normalisation for the remainder of this thesis. For completeness,

the original LPD processes (produced without using RNA-seq data) are provided in Appendix

B.1.
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7.3 Creating the LPD Models

In order to classify the CRC samples we first identified the 500 genes with the greatest

variance across all our datasets. We calculated the mean expression level of all the probesets

that mapped to each of these 500 genes (as discussed in Section 2.5) and used these means

as the input for each LPD run. A limit of 500 genes was implemented to counteract the

computationally intensive limitation of LPD, which prohibited every gene from being used.

The number of input genes was selected based on the previous successful applications of

LPD [18, 17, 3] that were able to achieve distinct subtypes using 500 most variable genes.

7.3.1 Choosing LPD Parameters

As discussed in Section 3.3.3 there are two forms of LPD. Out of these two forms the

MAP model is more suitable to use as it helps to prevent over-fitting. With this in mind we

dedicated additional computing power during the LPD parameter selection phase to allow

us to use the MAP model to optimise the parameter selection. We ran LPD 50 times for

every combination of σ (between -0.1 to -1.0, increment -0.1) and the number of processes

(between 2 to 12, increment 1). The mean log-likelihood was calculated from all the repeats

for each parameter combination. We then plotted the log-likelihoods and assessed them.

For each number of processes we selected the σ value corresponding to the model with the

maximum log-likelihood.
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Fig. 7.2 Figure depicting the log-likelihoods of each parameter combination for the
GSE14333plus dataset. a) The log-likelihood plateau. b-d) The three groups of input
parameters selected for further analysis.

To avoid over-fitting the data it is important to consider the principle of Occlam’s razor,

"plurality should not be posited without necessity" [227]. We therefore aimed to select the

model with the greatest discriminatory power between individual subtypes, while aiming

to minimise the total number of subtypes. To assess each of the models we calculated the

Pearson correlations between the subtypes within each of the three models approaching the

log-likelihood plateau (Figure 7.2). The number of processes used to generate the model
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with the lowest mean Pearson correlations between its subtypes was selected as the input for

the final model. The input parameters for each datasets’ final model are listed in Table 7.3.

Dataset σ
Number of

Processes

GSE14333plus -0.6 5

GSE39582 -0.5 6

GSE41258 -0.5 5

GSE81653 -0.8 4

TCGA -0.5 6

Table 7.3 Table summarising the final model parameters for each dataset.

7.3.2 Representative LPD Classification

We applied the MAP LPD algorithm (without resampling) a further 100 times per dataset,

using the results from Table 7.3, to produce 500 independent classifications of CRC. Each

LPD model based on the same dataset exhibited slight variation in sample assignment due to

the non-deterministic nature of the LPD algorithm. To account for this variation we selected

a representative model of all 100 runs per dataset by performing a log-rank test on all the

runs using time to disease relapse as the end point. The LPD model with the log-rank p-value

closest to the modal log-rank p-value density was selected as the representative model for

each dataset. An example of this for the GSE39582 based models is shown in Figure 7.3 (The

remaining density plots for each dataset are shown in Appendix B.2). For the models using

the GSE81653 dataset only the disease recurrence status was available, without a measure of

time. To determine a representative model for this dataset we substituted the log-rank p-value

with the χ2 p-value, calculated using the contingency table between event status and LPD

process.
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Fig. 7.3 Figure depicting the identification of a representative LPD run, based on the density
of p-values from a set of 100 log-rank tests, each performed on an individual LPD model
using the GSE39582 dataset. The model with the shortest p-value distance to the modal
density was selected as the representative LPD run.

A representative run was successfully identified from the set of models based on each

independent dataset. However, the LPD runs based on the TCGA-COAD dataset displayed a

wide range of log-rank test results (Figure 7.4). While the selected TCGA-COAD LPD run

was later identified to strongly correlate with each of the other models’ representative runs,

we could not confidently state that this run was a true representative for all the TCGA-COAD

LPD runs. Due to this, we decided not to use this model in the proceeding analyses.
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Fig. 7.4 Figure depicting the identification of a representative LPD run, based on the density
of p-values from a set of 100 log-rank tests, each performed on an individual LPD model
using the TCGA-COAD dataset. The model with the shortest p-value distance to the modal
density was selected as the representative LPD run.

7.4 Analysing the LPD Models

Each representative run was made up of unsupervised Bayesian classifications of all samples

within each given dataset. As the classifications were Bayesian in nature every sample could

belong in part to any number of the derived processes, with each association (γ) to a process

comprised of a value between 0 and 1, totalling 1 across all processes (as described in Section

3.3.3). An example of the representative LPD classification results for the GSE39582 dataset

are illustrated in Figure 7.5 (all LPD models are shown in Appendix B.3).
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Fig. 7.5 Figure depicting the LPD γ values (association between a sample and a process) for
each LPD process in the GSE39582 representative run. Samples have been grouped by their
process with the greatest γ value for ease of viewing.

For each sample we examined the set of γ values and consider the process with the

greatest γ value the primary process. All 19 normal tissue samples from the GSE39582

dataset were primarily associated with process 1 within the GSE39582 LPD model. A

mixture of TNM graded primary tumours were also associated with process 1 within this

model. All 54 normal tissue samples from the GSE41258 dataset were primarily associated

with processes 2 and 3 in the LPD model based on this dataset, with the majority (76%) of

normal samples displaying a greater association to process 3. It is worth highlighting that

primary association to each of these two processes was exclusive to normal samples. When

GSE41258 was run with fewer processes the two exclusively normal processes remained

distinct, suggesting an underlying molecular difference in these normal samples.

7.4.1 Comparing LPD Process Survival

The classifications of CRC samples were derived entirely from the gene expression data

without influence from any samples’ associated clinical data. We were therefore interested in
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analysing whether the molecular subtypes exhibited differences in survival. We performed

survival analyses using the three datasets where appropriate clinical data was available

(GSE14333plus, GSE39582 and GSE41258), assigning samples to their primary process.

We produced Kaplan-Meier survival curves (see Chapter 3.4.1) based on these assign-

ments to determine whether there was a significant difference in survival time between

the LPD processes. A representative example can be found for the GSE39582 dataset in

Figure B.13. Within this . We found that two of the three models demonstrated a significant

difference in survival time between the processes (GSE14333plus log-rank p-value 0.0345,

GSE39582 log-rank p-value 9.64×10−4). The samples from the GSE41258 dataset showed

markedly better survival times than the other datasets (median DFS = 55 months, compared

with 34 and 43 months for GSE14333plus and GSE39582 respectively) and did not display a

statistically significant difference in survival between the non-normal processes (log-rank

p-value 0.171).
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Fig. 7.6 Kaplan-Meier survival curves showing the disease-free survival of the the six LPD
processes from the representative run for the GSE39582 dataset. The total number of samples
(with DFS information) for each process is shown in the bottom right, with the number of
DFS events displayed in brackets.

7.4.2 Identifying Conserved Processes

It was important to determine whether any of the processes derived from entirely independent

datasets correlated between the representative models. We would expect common molecular

processes driving the development of colorectal cancers to be present in all datasets. Identi-

fying common molecular processes would therefore enable us to have greater confidence

in the classifications and show that LPD was not just modelling dataset specific artefacts.

We calculated the Pearson correlations between the gene expression profiles of all LPD

processes from each of the representative models and identified four common subtypes (r

> 0.5). The non-representative TCGA-COAD based model processes were also compared

with each of the representative models to see whether they would have also correlated. They
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were found to strongly correlate with the four common subtypes, but were not used to derive

these common subtypes due to our earlier decision to exclude them from the analysis. Figure

7.7-a depicts the strong positive correlations between each process, highlighting these four

common processes. Three of these common processes, henceforth called LPD A, LPD C

and Pericol, were present in all four microarray based models as well as the selected TCGA-

COAD model. The fourth process, LPD B, was found to correlate significantly between all

of the selected models, with the exception of the GSE81753 derived model.

Fig. 7.7 a) Correlation map where each line represents a statistically strong positive correla-
tion between two processes from independent representative models. b) An example of the
correlations between all four microarray and TCGA-COAD based models for the Pericol
colorectal subtype.

When the datasets were combined on the four common subtypes, they showed a sig-

nificantly different survival curves (log-rank p-value 8.24×10−5), with Pericol exhibiting

significantly worse survival times than the other subtypes (Figure 7.8).
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Fig. 7.8 Kaplan-Meier survival plot showing the disease-free survival of the four common pro-
cesses from the representative LPD runs for the GSE14333plus, GSE39582 and GSE41258
datasets. The total number of samples (with DFS information) for each process is shown in
the bottom right, with the number of DFS events displayed in brackets.

7.5 Developing a Consensus OAS-LPD Model

To test samples in a clinical setting would require the use of a fixed/consistent model for

all patients. One of the main limitations of using LPD is the need to derive processes

from scratch every time new data is added, making it inappropriate in a clinical setting. To

overcome this problem we modified the LPD algorithm to create a novel form of LPD called

OAS-LPD, as described in Section 3.3.4. This modified version makes the gene expression

profiles of a pre-existing LPD model’s processes immutable and enables new samples to be
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assigned to these processes. By removing the need to derive new processes, samples can also

be classified in a fraction of the time required to generate the original model. The γ values

from an OAS-LPD model are also very stable, reducing the need for multiple reruns.

While the four common processes previously identified showed strong correlations

between the four representative models, their expression profiles were not identical. To

account for the variation between models we decided to create a consensus model, consisting

of four OAS-LPD models, each based on one of the original four representative models.

An equally weighted vote/consensus could then be calculated to determine whether all four

models would derive the same primary process in each sample.

To begin constructing a consensus model we first extracted the µgk, σ2
gk and α variables

from each representative LPD model. These values were set to be immutable in four new

OAS-LPD models in order to conserve the original LPD processes. Each sample from all five

datasets was then run through all four OAS-LPD models, resulting in four unique Bayesian

classifications per sample.

For the purposes of survival analyses we followed the same process as before, assigning

each sample to its primary process in each model. The four independent primary process

assignments per sample (one for each model) were then assessed to determine whether the

four models reached a consensus. If a consensus was reached (all four models agreed on the

same subtype) then the sample was deemed to truly belong to the assigned subtype. Table

7.4 summaries the number of samples assigned to each subtype by consensus vote.

LPD A LPD B LPD C Pericol
GSE14333plus 11 19 37 21
GSE39582 37 63 53 49
GSE41258 39 26 25 9
GSE81653 25 28 30 20
TCGA-COAD 15 31 58 19
Total 127 167 203 118

Table 7.4 A summary of the OAS-LPD consensus assignments.
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By generating KM-survival curves from the consensus results it became clear that the

four subtypes exhibited significantly different disease-free survival curves to one another

(log-rank p-value = 1.43×10−5). The survival curve of the consensus Pericol subtype had

also dropped significantly compared to that of the original individual LPD models (Figure

7.9), emphasising the severity of the novel CRC subtype.

Fig. 7.9 Kaplan-Meier survival plot showing the disease-free survival of the four common
processes from the consensus OAS-LPD models. The total number of samples (with DFS
information) for each process is shown in the bottom right, with the number of DFS events
displayed in brackets.
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7.6 Analyses of the CRC Subtypes

7.6.1 Novel CRC Subtypes’ Clinical Associations

Having assigned the samples from our five datasets to our four CRC subtypes, we began

to identify the characteristics of each subtype. We performed a Fisher’s exact test on

the distribution of each available clinical variable, described in Table 7.2, within our four

subtypes (Figure 7.10). Normal tissue samples were exclusively assigned to the LPD A

subtype, resulting in an over representation of normal tissue in LPD A (p-value = 2.2×10−16)

and the under representation of normal tissue in LPD B, LPD C, and Pericol. Nevertheless,

it is important to note that LPD A did not solely consist of normal tissue. LPD A also

appeared to have an over representation of TNM stage 1 patients, however this was shown to

be narrowly outside the 0.05 confidence cut-off (p-value = 0.0557). The LPD A subtype was

not found to have any other significant clinical associations.

A wide range of clinical associations were demonstrated in the LPD B subtype. The

subtype showed a strong association with the development of tumours in the distal colon

compared to the proximal colon (p-value = 1.28×10−6), but did not show signs of an over

representation in any TNM group (p-value = 0.911). When assessing the MSI and MMR

status of LPD B the subtype was seen to be microsatellite stable (p-value = 0.0274) and in

line with these findings it contained proficient mismatch-repair genes (p-value = 8.08×10−5).

CpG islands were not found to be hyper-methylated (p-value = 6.38×10−6), instead LPD

B exhibited chromosomal instability (p-value = 1.33× 10−5) and an over representation

of TP53 mutations (p-value = 1.50× 10−4). Finally LPD B was observed to consist of

predominately wild-type BRAF tumours (p-value = 1.07×10−7) and did not display any

significant difference in mutant and wild-type KRAS (p-value = 0.508).

The LPD C subtype displayed an almost polar opposite set of clinical associations to the

LPD B subtype. It contained an over representation of tumours located in the proximal colon
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(p-value = 1.63×10−10) and TNM stage 2 tumours, while TNM grades 1 and 4 were found

to be under represented (p-value = 1.03×10−3). We identified a strong association between

LPD C and deficient MMR genes (p-value = 4.11×10−6) that resulted in high microsatellite

instability (p-value = 6.38×10−6). Tumours of this subtype did not exhibit chromosomal

instability (p-value = 1.34×10−8) and predominately contained wild-type TP53 (p-value =

2.14×10−3). Hyper-methylation in LPD C CpG islands was significantly overrepresented

(p-value = 2.44×10−11) in addition to an over representation of BRAF mutations (p-value

= 1.74×10−6). KRAS mutations were not found to be either under or over represented in

LPD C (p-value = 0.666).

Pericol tumours were found to mainly be higher TNM stage tumours, with an over

representation of stages 3 and 4 (p-value = 0.0200). The mismatch repair genes were found

to be proficient (p-value = 2.67× 10−3), however MSI status did not exhibit a significant

difference in the number of high, low or stable samples (p-value = 0.593). The greatest

difference in the Pericol subtype compared to the other three LPD subtypes was the over

representation of KRAS mutations (p-value = 0.0486). No significant difference was found

in CIMP, CIN, TP53 or BRAF status in the Pericol subtype (p-value = 0.546, 0.322, 0.300

and 0.670 respectively).

Fig. 7.10 CRC subtype clinical associations. The green up arrows highlight the over-
representation of a given clinical factor, while the red down arrows highlight the factors as
under-represented.
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7.6.2 Novel CRC Subtypes’ Differentially Expressed Genes

In this section we identify sets of genes that were differentially expressed in the samples

from each of our four CRC subtypes compared with the samples in each of the other three

subtypes. To derive these differentially expressed genes (DEGs) we imposed a stringent set

of requirements to help ensure the genes were as robust as possible. The genes had to be

differentially expressed in all representative models, they had to be differentially expressed

in all 100 LPD repeats and have a false discovery rate below 0.01. The mean expression

levels of all the probesets mapping to any given gene were used to derive the DEGs for each

subtype. We used all the available probesets within the normalised datasets and did not

limit this analysis to only the probesets that mapped to the 500 genes used within the LPD

classification.

For the LPD A subtype we identified 139 DEGs within the GSE14333plus model, 5460

DEGS within the GSE39582 model, 5683 DEGs within the GSE41258 model and 2360

DEGs within the GSE81653 model. By calculating the intersection we found a total of

86 genes shared across all the representative models for LPD A (Figure 7.11-a, Table 7.5,

Appendix Table B.1). Among the differentially expressed genes identified in LPD A is

TIMP1. This gene is part of the TIMP gene family, whose normal function involves the

degradation of the extracellular matrix, promoting cell proliferation and may also have

anti-apoptotic functionality [228]. Unsurprisingly this gene is differentially expressed in

many different types of cancer and has been proposed as a non-invasive screening tool in

CRC [229]. Another known gene within this set of DEGs is FCGBP, which was previously

associated with metastatic disease and a decreased overall survival time [230]. This is

somewhat surprising given LPD A’s relatively good prognosis compared with Pericol.

For the LPD B subtype we identified 3137 DEGs within the GSE14333plus model, 3703

DEGS within the GSE39582 model, 3276 DEGs within the GSE41258 model and 4993

DEGs within the GSE81653 model. By calculating the intersection we found a total of
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330 genes shared across all the representative models for LPD B (Figure 7.11-b, Table 7.5,

Appendix Table B.2). Within the set of differentially expressed genes is SPON1. This gene

is mainly expressed in smooth muscle tissue, which surrounds the human colon. The Human

Protein Atlas observed a raised expression of this gene in 25% of colorectal cancer patients

and found that a high expression conferred better 5-year survival in renal cancer patients (80%

compared to 65% in low expression patients) [231]. On the other-hand raised expression of

this gene results in a reduction in the 5-year survival of urothelial cancer patients with high

SPON1 expression from 55% to 27% [231].

For the LPD C subtype we identified 787 DEGs within the GSE14333plus model, 2285

DEGS within the GSE39582 model and 114 DEGs within the GSE41258 model. By

calculating the intersection we found a total of 26 genes shared across all the representative

models for LPD C (Figure 7.11-c, Table 7.5, Appendix Table B.3). The raised expression

of the GBP1 gene in LPD C is another example of LPD identifying subtypes with well

documented genes within CRC. The Cancer Genome Atlas Consortium showed that high

GBP1 expression was associated with a reduction in the aggressiveness of CRC tumours

[223].

LPD A LPD B LPD C Pericol

GSE14333plus 139 3137 787 3282

GSE39582 5460 3703 2285 5033

GSE41258 5683 3276 114 1034

GSE81653 2360 4993 NA 2392

Intersection 86 330 26 471

Table 7.5 Table summarising the intersection of differentially expressed genes.

For the Pericol subtype we identified 3282 DEGs within the GSE14333plus model, 5033

DEGS within the GSE39582 model, 1034 DEGs within the GSE41258 model and 2392
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DEGs within the GSE81653 model. By calculating the intersection we found a total of 471

genes shared across all the representative models (Figure 7.11-d, Table 7.5, Appendix Table

B.4). Alongside LPD A, TIMP1 was also identified as being differentially expressed in

the Pericol subtype. Many of the Pericol DEGs including TIMP1 were seen to be present

in existing colorectal cancer signatures, we discuss this overlap later in this chapter after

exploring the enriched pathways these DEGs belong to.

Fig. 7.11 Venn diagrams showing the intersection of differentially expressed genes across
each representative model in our four CRC subtypes. a) LPD A. b) LPD B. c) LPD C. d)
Pericol
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7.6.3 Novel CRC Subtype Pathways

We wanted to identify the biological pathways that were over represented in our sets of

differentially expressed genes to help understand the biological mechanisms that were

driving the development of our subtypes. To accomplish this we used version 6.8 of the

publicly available DAVID Functional Annotation Tool [232, 233]. We used this tool to assess

the Gene Ontology (GO) biological processes [234], Kyoto Encyclopedia of Genes and

Genomes (KEGG) [159] and Reactome [235] pathways.

Within the LPD A subtype we identified 20 GO biological processes involving the set

of differentially expressed genes (Appendix B.5). These processes were primarily involved

in the transportation and regulation of salts and other molecules, metabolic processes and

organisation of collagen fibrils. We were able to identify six KEGG pathways that were

over represented in LPD A (Appendix B.6). These KEGG pathways were also involved in

metabolic processes and the reabsorption/reclamation of sodium and biocarbonates. In total

five Reactome pathways were observed to be over represented (Appendix B.7), including

collagen synthesis and glycosylation.

The LPD B subtype was associated with significantly more processes than LPD A, with

72 GO biological processes observed to be over represented in the set of LPD B DEGs

(Appendix B.8). A significant number of these processes were related to angiogenesis and

apoptotic regulation. Other processes included extracellular matrix (ECM) organisation,

endothelial cell proliferation and organ regeneration. A total of 11 KEGG pathways were

identified in LPD B (Appendix B.9). Among these pathways were genes involved in the

MAPK signaling pathway and others known to be involved in transcriptional misregulation

and proteoglycans found in cancer. Five Reactome pathways were identified to be over

represented in LPD B (Appendix B.10). These pathways were primarily associated with cell

surface interactions and elastic fibre formation.
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No pathways were found to be associated with the genes from LPD C, however Pericol

was found to contain the most biological pathways out of all four of our subtypes. A total of

193 GO biological processes were observed within Pericol covering a wide range of functions

(Appendix B.11). These pathways can be broadly categorised into processes controlling

the organisation, regulation and growth of new and existing cells. Among the top 20 GO

biological pathways were genes focusing on angiogenesis, immune responses and ECM

organisation. We identified genes involved in 26 KEGG pathways, including ECM receptor

interaction, PI3K-Akt signaling and proteoglycans found in cancer (Appendix B.12). Genes

involved in small cell lung cancer were also over represented.

A total of 45 Reactome pathways were found to be over represented in Pericol, however

many of these were involved in the processes of other diseases (Appendix B.13). Among

the top 20 pathways were processes involving ECM proteoglycans, collagen assembly and

degregation and the biosynthesis of chondroitin sulfate. We also compared the set of Pericol

DEGs with the Online Mendelian Inheritance in Man (OMIM) database of diseases. The

presence of differentially expressed COL6A1, COL6A2 and COL6A3 genes within Pericol

suggested a possible association with Bethlem myopathy and Ullrich congenital muscular

dystrophy (hereditary conditions involving the progressive weakening of skeletal muscles

and connective tissue [236, 237]).

7.6.4 Intersection of Pericol Genes and Published Signatures

The Pericol subtype was identified as offering a poorer prognosis for CRC patients. Focusing

on this group and understanding the mechanisms that drive its development therefore have

the greatest chance of yielding significant benefits to CRC patients. In this section we

compared the 471 differentially expressed genes from the Pericol subtype with 791 unique

genes from other published prognostic CRC signatures. We collected published signatures

from Oncotype DX [238], Chen et al. (2017) [239], ColoPrint [240], ColDX [241], Gao et
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al. (2018) [242], Oh et al. (2012) [243], D-Sun et al. (2018) [244], Shu et al. (2018) [245],

Chunsheng et al. (2018) [246], D-Sun et al. (2019) [247], Pagnotta et al. (2013) [248] and

Pan et al. (2017) [249].

We identified a total of 19 genes shared by any two published signatures (AKAP12,

ARHGEF2, AXIN2, CFTR, CYFIP2, CYP1B1, FAP, GPX3, KLK10, KRT17, NHLRC3, NT5E,

POSTN, PPARA, QPRT, REG4, SCG2, SFRP2 and SPON1). Only the KLK10 gene was

shared by three published signatures (Gao et al, D-Sun et al and Shu et al) and has additionally

been shown to play a role in the suppression of tumourigenesis in breast and prostate cancers

[250].

We then compared each publications’ prognostic genes with the DEGs from our Pericol

subtype and identified 62 genes in common (Figure 7.12). Four genes among these 62 genes

(AKAP12, CYP1B1, FAP and POSTN) were seen to be shared between Pericol and at least

2 other publications. The AKAP12 gene was shared between Pericol, Oncotype DX and

Pagnotta et al. (2013) where it was found to be significantly associated with prognosis,

however Pagnotta et al. did not include it in their final signature. The FAP gene was shared

between Pericol, Oncotype DX and Oh et al. (2012). Both the CYP1B1 and POSTN genes

were shared between Pericol, Oh et al. (2012) and ColDx.

The total number of genes shared with each publication and the total number of genes

from each publication are included with a list of the shared genes below:

• Oncotype DX [15/48]: AKAP12, AKT3, ANTXR1, BGN, COL1A1, FAP, IGFBP3,

IGFBP7, INHBA, PDGFC, SFRP4, SPARC, TGFB3, TIMP2 and TIMP3

• ColDx [25/584]: ATP2C2, BICD1, CLCN2, CTGF, CTSD, CYP1B1, DGAT1, DHRS11,

FRAT2, GLUL, GREM1, HIF1A, ICAM1, MACF1, PEA15, PHF21A, PIGR, POSTN,

PPFIBP1, RHOQ, ROBO1, SERPINE1, SLA, SLC2A3 and WSB1
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• Oh et al. (2012) [17/87]: ADAM12, ANXA1, BCAT1, COL11A1, CXCR4, CYP1B1,

FAP, GAS1, LOX, LRRC19, OLR1, POSTN, RGS2, SLC26A3, SPP1, TMEM45A and

TNFAIP6

• Shu et al. (2018) [2/17]: C5orf30 and ITGA5

• Chunsheng et al. (2018) [4/12]: COL8A1, COMP, KIF26B and TWIST1

• G-Sun et al. (2018) [2/8]: NAT2 and TIMP1

• Pagnotta et al. (2013) [1/4]: AKAP12

Fig. 7.12 Circos plot highlighting the genes shared between any two signatures. Genes
shared with Pericol are highlighted red.

7.6.5 Methylation of Genes in Pericol

In Sections 2.3.3 and 6.3.7 we explained the significant effects that epigenetic alterations can

have on the development of cancers. To understand the role of these alterations in the Pericol
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subtype we performed a differential methylation analysis (using Limma [65] and methylGSA

[251]) on the set of 471 genes previously identified to be differentially expressed.

Using the methylation data from TCGA-COAD a total of 1,692 CpG sites corresponding

to regions within 380 genes were identified to be differentially methylated in the set of Pericol

DEGs. By analysing these sites we identified 98 genes where the majority of CpG sites

were hyper-methylated and the genes were under expressed and 87 genes where the majority

of CpG sites were hypo-methylated and the genes were over expressed. The differential

methylation results for all CpG sites corresponding to these 185 genes have been included in

Appendix B.7.

We analysed these sets of hyper/hypo-methylated genes using version 6.8 of the publicly

available DAVID Functional Annotation Tool [232, 233]. When assessing the GO biolog-

ical processes [234], 11 GO terms were identified as being significantly over-represented

(Benjamini and Hochberg adjusted p-values ≤ 0.05). The results of this gene set enrichment

analysis can be found in Appendix B.8. Among the 87 hypo-methylated genes: 29 were

associated with cell adhesion, 20 were associated with extracellular matrix organisation, 13

were associated with angiogenesis and 12 were associated with collagen catabolic processes.

7.7 Pericol, a Continuous Predictor of Recurrence?

In this chapter we identified four CRC subtypes including Pericol, a subtype with significantly

poorer disease-free survival rates than our other three subtypes. Overall only one third of

samples could be assigned to a single primary subtype using our consensus model, making it

difficult to use in the clinical decision making process for the other two thirds of patients. To

overcome this limitation we set out to analyse the Pericol subtype in all samples, treating the

Pericol γ value as a continuous variable between 0 and 1. Each sample’s Pericol γ value was

treated as the mean value across our four OAS LPD models used in our consensus model.
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We initially grouped the Pericol γ values into four discrete groups for ease of viewing.

These groups were:

• No Pericol (γ < 1%).

• Low Pericol (1% ≤ γ < 25%)

• Moderate Pericol (25% ≤ γ < 50%)

• High Pericol (γ ≥ 50%)

By calculating and plotting KM-survival curves for these four categories of Pericol

γ , using the GSE14333plus, GSE39582 and GSE41258 datasets, we found that Pericol γ

showed a strong inverse correlation with disease-free survival time (Log-rank p-value =

5.03×10−6) (Figure 7.13), indicating its potential use as a clinical predictor of risk.

Fig. 7.13 a) Mean Pericol γ taken from all four OAS LPD models for each sample in the
GSE14333plus, GSE39582 and GSE41258 datasets, coloured according to the four discrete
Pericol γ groups. b) Kaplan-Meier survival curves for the discretised Pericol γ groups.

To further assess the viability of using Pericol γ to predict patient risk we generated a

Cox proportional hazard model. This was created using Pericol γ as a continuous variable

alongside tumour location, TNM stage and patient age and gender as model covariates. We
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found that Pericol γ was an independent predictor of disease recurrence with a hazard ratio

of 2.71 (p-value = 2.79×10−4, 95% CI = 1.58-4.63).

7.8 Discussion

In this chapter we have presented our work on classifying colorectal cancer. We demonstrated

how the LPD algorithm can be applied to a range of colorectal cancer transcriptome datasets

to produce novel unsupervised classifications of the disease. By correlating the LPD processes

we established four robust categories of colorectal cancer that were consistently identified in

multiple independent datasets, each containing fresh frozen and formalin fixed tissue.

Analysis of our novel colorectal cancer classifications showed that each subtype held

clinically relevant associations, despite LPD having no access to this information during the

classification phase. This became especially interesting when examining each subtype in the

wider context of the current colorectal cancer literature. In Chapter 6.3.7 we explained how

the majority of sporadic colorectal cancers can be separated into six distinct groups based on

their CIMP and MSI status (CMS). When comparing these groups to our subtypes we saw a

striking similarity between LPD B and LPD C with CMS group 6 and group 1 respectively.

Within the CMS grouping system CMS group 6 is primarily described as MSI-L/MSS

and CIMP-0, while in our own classifications LPD B was also shown to be MSS and CIMP

negative. When analysing CMS group 6 in greater detail it is seen to consist of tumours

containing both wild-type BRAF and KRAS genes that are located in the distal colon. The

same characteristics are observed in LPD B, with the small exception of LPD B exhibiting

neither primarily mutant or wild-type KRAS status.

CMS group 1 and LPB C each consist of primarily MSI-H and CIMP positive tumours.

These subtypes are most commonly located in the proximal colon of elderly female patients.

While these facts hold true in LPB C it must be noted that the over representation of female

patients was not statistically significant (p-value = 0.156, Fisher’s exact test). However, both
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of these colorectal cancer subtypes do exhibit a statistically significant over representation of

mutated BRAF genes.

LPD’s ability to derive these established subtypes in an unsupervised fashion further

substantiates the other subtypes within the LPD classification of colorectal cancer. Pericol

was the only LPD subtype with a significant association with KRAS mutated tumours. This

subtype also exhibited significantly worse disease-free survival times, which may in part be

linked to the abundance of KRAS mutations [252]. According to the work of Deng et al.

(2015) [252] these patients with increased KRAS mutations could also benefit from adjuvant

FOLFOX treatment to a greater degree than the patients with non-Pericol tumours, which do

not exhibit an increase in KRAS mutations.

Furthermore, the overall poor prognosis of the Pericol group could be compounded by the

effect of KRAS mutations within the tumours located in the distal colon of primary Pericol

patients [253]. We observed a 0.721 Cox proportional hazard ratio within the Pericol tumours

located in the proximal colon compared to distal based Pericol tumours, however this was

not statistically significant (p-value = 0.332, 95% CI = 0.372-1.40).

When analysing the differentially expressed gene signatures of each LPD subtype we

found a large intersect between the Pericol subtype and many existing published poor

prognosis signatures. Before considering Pericol, we could only establish 19 unique genes

that were in common between any two of these publications, whereas Pericol shared 62

unique genes with the same publications.

Most notable within this subset of genes were the AKAP12, CYP1B1, FAP and POSTN

genes as they formed an intersect between three independent signatures. This was not

something that was observable prior to the inclusion of Pericol and further emphasises the

overlap with this novel subtype. Another notable intersection is that of Pericol and Oncotype

DX, which is currently the only commercial test with level 1 evidence [19] (obtained from



7.8 Discussion 131

at least one properly designed randomized controlled trial). We found 15 genes in common

between these signatures, which is even more startling given the unsupervised nature of LPD.

During our own analysis of the Pericol subtype we established its association with

significantly poorer patient prognosis. By considering each patient’s association (γ) with

Pericol we found that Pericol γ can be used as an independent predictor of disease relapse.

This novel measurement could be used alongside current standard clinical indicators (TNM

stage and tumour location) to provide additional evidence during the clinical decision making

progress. By identifying tumours that are more (or less) aggressive we hope to reduce the

unnecessary side effects of avoidable treatment in patients with non-aggressive colorectal

cancers.



Chapter 8

Conclusions and Future Work

8.1 Summary

In this thesis we have presented new classifications of prostate and colorectal cancers through

the application of latent process decomposition. We have identified common subtypes

between independent datasets, including aggressive forms of each disease that can be used

to describe patient risk of disease recurrence. We now discuss potential avenues of further

research that build upon the work presented in this thesis.

8.2 Prostate Cancer - DESNT

8.2.1 Biochemical Risk Assessment

Within the fields of prostate cancer diagnosis and prognosis prediction lies the problem of

highly variable patient outcomes. At present the primary screening and diagnosis tool used

to identify prostate cancer is the prostate specific antigen (PSA) test. When applied as a

screening test it has been shown to reduce the cancer specific mortality by up to 21% [254],
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but also results in significant overdiagnosis [255]. The significant over diagnosis of indolent

prostate cancer is a major issue and leads to significant over-treatment of low risk patients.

In an attempt to reduce the over-treatment of low risk patients we set-out to determine

the feasibility of using the DESNT subtype of prostate cancer as a measure of biochemical

recurrence (BCR) risk in prostate cancer patients. The DESNT subtype was previously

shown to be associated with BCR and we believed that accurately assessing a patient’s risk of

BCR could be used to better inform the decision making between patients and doctors when

determining treatment options. To begin this work we first reproduced the LPD classifications

containing DESNT. This was achieved by following the processes described in Luca et al.

(2017) [17] to normalise the gene expression microarray datasets and optimise the LPD

initialisation parameters.

Upon obtaining the DESNT classification we began to assess the correlation between

each samples’ association with DESNT. We established a strong inverse correlation between

increasing DESNT γ (the measure of confidence between a sample and an LPD process) and

patient BCR-free survival. We also demonstrated that DESNT γ is an independent predictor

of BCR. These findings could have a direct influence on the clinical discussions between

doctors and patients regarding the choice of watchful waiting and radical treatment.

One of the longest running randomised trials to assess the benefits of radical prostatectomy

vs watchful waiting was recently concluded by the Swedish Cancer Society [256]. During

their 29 year study Bill-Axelson et al. (2018) established a mean gain of 2.9 additional years

alive for patients with localised disease that underwent radical prostatectomy, compared to

those that remained on watchful waiting over the course of 23 years. They also found that

8.4 patients were required to undergo radical treatment to prevent the death of one patient

with localised disease. Overall Bill-Axelson et al. (2018) concluded that patients should

be carefully selected for treatment and that low-risk tumours should not undergo radical

treatment.



8.2 Prostate Cancer - DESNT 134

The ability of LPD to predict the risk of BCR through the analysis of DESNT is therefore

of vital importance during the decision making process, as BCR precedes metastasis in 24%

- 34% of patients [257] and cancer specific death in 53% of patients [258] within 15 years.

While BCR is a useful measure of disease prognosis, using the time to metastasis would

have been the ideal surrogate measure for cancer survival. Unfortunately this data was not

available to us at this time, but should be considered in future studies. Ultimately it will

remain the patient’s decision whether or not to undergo radical treatment, however we foresee

DESNT γ being a useful tool at the time of diagnosis to aid the decision making process

alongside existing risk matrices to reduce the overall treatment of low risk patients.

8.2.2 OAS-LPD Classification of Biopsy Samples

To begin transferring our research into a clinical setting we obtained 20 prostate cancer

biopsy samples covering a broad range of Gleason grades as part of a pilot study aiming

to identify DESNT in prostate cancer biopsies. The main reason for this pilot study was to

overcome the limitation of all previous DESNT research where analyses were conducted

using prostatectomy samples. A second change to enable the analysis of DESNT in a clinical

setting was the modification of the LPD algorithm by Rogers et al. (2005) [3] to allow

samples to be classified into LPD processes from a pre-generated LPD model (OAS-LPD,

Chapter 3.3.4).

We began to study the 20 biopsy samples by reference normalising them against the

datasets used to generate the original DESNT classification by Luca et al. (2017) [17]. An

OAS-LPD model was then constructed from the representative model processes based on the

MSKCC dataset. The reference normalised biopsies were then run through this OAS-LPD

model to produce the Bayesian classifications between biopsies and LPD processes.

We analysed the biopsy classification results to determine whether the DESNT subtype

or any other subtypes had been identified in the biopsies. In this admittedly small cohort,
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we found that the biopsy γ values were comparatively lower than those of the original

prostatectomy samples, however the DESNT subtype was identified as the primary subtype

within four biopsy samples. All four of these samples were associated with high Gleason

grades. This observation corresponds with our previous work on the DESNT subtype that

identified an over representation of high Gleason grade cancers in the DESNT subtype.

Unfortunately Gleason grade was the only clinical variable currently available for these

samples and this represents a major limitation of the pilot study. In future studies we intend

to obtain comprehensive clinical follow-up data for patients, including BCR and metastasis

status. The current sample size was another major limiting factor and while a range of

Gleason grades were available, low Gleason grade samples were unrepresented in the pilot

study. Both of these limitations will need to be addressed in future studies to accurately

understand the prevalence and distribution of DESNT tumours within biopsies.

8.3 LPD and Consensus OAS-LPD Classification of Col-

orectal Cancer

For the heterogeneous disease called colorectal cancer (CRC) we aimed to establish a novel

classification using latent process decomposition. To begin this project we gathered multiple

gene expression microarray datasets alongside data from The Cancer Genome Atlas (TCGA).

These datasets were normalised using RMA, ComBat and Quantile normalisation prior to

being used in LPD.

We began the construction of CRC LPD models by refining the optimisation stage of

the LPD initialisation parameter selection. We opted to use the MAP version of LPD

to optimise both the number of processes and the value of σ simultaneously. This was

achieved by repeatedly running every combination of these two variables and identifying the

log-likelihood plateau before finally minimising the mean internal model process Pearson



8.3 LPD and Consensus OAS-LPD Classification of Colorectal Cancer 136

correlations. By performing these steps we were able to objectively define the optimal

number of processes within each dataset.

Once an LPD model had been generated for each of our four gene expression microarray

datasets we calculated the Pearson correlations between every pair-wise combination of

processes. By analysing the Pearson correlations between each processes’ expression profile

it became clear that there were four common processes, with three processes strongly

correlated between all four models and a fourth process strongly correlated between three

models.

While identification of these common processes is a promising sign that LPD was not

modelling dataset specific noise, one result that we cannot fully explain is the variable

number of processes identified in each dataset, which ranged between four and six processes.

The GSE14333plus dataset contained four common processes and a fifth dataset specific

process. This fifth GSE14333plus process was weakly or moderately correlated with the poor

prognosis process called Pericol in each of the other dataset models, suggesting an unknown

underlying difference that separated these samples from Pericol.

The fifth GSE14333plus process was also moderately correlated with a dataset specific

process within the GSE39582 based LPD model, however the GSE39582 specific process

did not demonstrate a similarity to any other process. Similarly the dataset specific process

within the GSE81653 did not correlate with any process from any model. These unique

processes cannot be explained by dataset size or by microarray platform, but we speculate

that in some cases these processes could be formed of samples that are in the early stages of

multiple other processes.

Among the processes that correlated between datasets, namely LPD A, LPD B, LPD C

and Pericol, we observed significantly poorer survival in patients primarily assigned to the

Pericol subtype. Pericol γ was identified as an independent predictor of disease recurrence

when combined with existing risk factors (TNM stage, tumour location, patient age and
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gender). This poor prognosis subtype was also the only subtype to be associated with an over

representation of KRAS mutations, a mutation previously reported to reduce the survival of

CRC patients [252]. However, due to these KRAS mutations patients with Pericol tumours

may benefit from adjuvant FOLFOX treatment to a greater extent than those with wild-type

KRAS [252]. The predictive power of LPD and Pericol could therefore be a useful tool to

aid the clinical decision making process.

The differentially expressed genes present in the Pericol subtype were observed to

overlap with a wide number of published signatures. While these signatures shared a total

of 19 unique genes with each other, the intersect with Pericol’s differentially expressed

genes (DEGs) was more than three times greater (62 unique DEGs). This large overlap

with published signatures combined with consistently identifying Pericol across multiple

independent datasets demonstrates LPD’s ability to identify robust subtypes. These findings

encourage the development and use of related techniques to classify other heterogeneous

diseases where current techniques have struggled to produce consistent results.

8.4 Consensus Molecular Subtypes

There have been several attempts at the unsupervised classification of colorectal cancer in

recent years [259, 260, 220, 261–264, 223]. However, a recent study by Guinney et al. (2015)

[20], using an aggregated dataset of 4,151 normalised samples, examined six of the previous

models [259, 260, 220, 262–264] and established these models were dissimilar. One reason

for the varying results could be attributed to the use of hierarchical clustering in six of the

eight studies, which ignores the underlying heterogeneity.

Guinney et al. (2015) then attempted to produce a robust model using the original

independent models as a starting point. Each of these models consisted of three to six

subtypes, creating a collection of 27 unique subtype labels. These labels were treated as

part of a consensus using a Markov cluster algorithm (MCL), applied on the network of
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associated Jaccard distances. By optimising the inflation factor within the MCL, Guinney et

al. (2015) were able to establish four robust consensus subtypes.

Observing the identification of four robust subtypes in such a large study raises an

interesting question regarding how similar our own four subtype consensus OAS-LPD model

could be to the MCL consensus model. Among the 18 datasets used by Guinney et al.

(2015) five were from proprietary sources and four of the remaining 13 public datasets

were used in this thesis. A potential future study to access the similarity between these two

independent models and techniques could provide further evidence that these models offer an

accurate description of colorectal cancer. Observing such a result would also demonstrate the

robustness of LPD in the classification of heterogeneous diseases. Undertaking this project

would represent a large international collaboration involving many collaborators, with the

potential to establish the most robust classification of CRC to date.

8.5 Development of Clinical Tests

The identification of DESNT and Pericol’s prognostic power encourages the development of

clinical tests. These tests could be used to identify the high risk patients that are in the early

stages of each disease and help to reduce the over treatment of low risk patients currently

self-electing for treatment.

Preventing irreversible surgery (prostatectomy or colectomy) in low risk patients requires

the development of a clinical test using biopsy samples, or a less invasive material source such

as a blood or urine samples. In the context of DESNT and Pericol, a less invasive test using

these subtypes is entirely theoretical and would require extensive further study to develop.

However, a study by Connell et al. in 2020 [265] combined urine-derived cell-free messenger

RNA (cf-RNA) and urine cell DNA methylation data to produce a risk score capable of

predicting whether a TRUS biopsy would contain Gleason score ≥ 3+4 prostate tumours.

While Connell et al. (2020) were able to identify prostate cancer positive patients, reducing
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the need for biopsies in up to 75% of patients, their test was unable to distinguish between the

severity of the disease within each patient. The development of a non-invasive test capable of

distinguishing between the severity of tumours would mark a major breakthrough in prostate

and colorectal cancer research.

Further Prostate cancer studies are also required to validate the identification of DESNT

tumours using biopsy samples. In the case of colorectal cancer we have already demonstrated

Pericol γ’s ability to independently predict disease recurrence using biopsy samples. Due

to this success we will focus our discussion on the development of a biopsy based test for

colorectal cancer.

One of the largest points of contention when developing a test is the choice of technology.

In our exploratory work with colorectal cancer we employed gene microarrays and exon

microarrays, as microarray studies are abundant and fulfil LPD’s assumption that the gene

expression follows a normal/log-normal distribution. We also employed RNA-seq and

showed the expression profiles of the LPD processes still correlated with those generated

from the microarrays, however there was a greater level of variability between RNA-seq LPD

runs. A third potential technique to process the biopsy samples is through quantitative reverse

transcription polymerase chain reaction (RT-qPCR), which has been shown to produce results

comparable to microarrays [266, 267].

To translate this work into a clinical test we must first consider a number of factors,

namely the cost, the expected turnaround time and the number of genes to analyse. These

decisions are important to determine the appropriate technology to measure each sample’s

gene expression levels. These decisions are also connected, with the cost of each available

technology varying in relation to the number of genes.

Among the clinical tests currently available for colorectal cancer is the Onocotype DX

Colon Recurrence Score Test. This test assesses the gene expression levels of 12 genes to

establish the likelihood of recurrence within three years of surgery [19]. RT-PCR is a fast
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and cost effective method for small sets of genes, making it an appropriate choice for the

Oncotype DX test [268, 269].

In contrast to the small number of genes used by Oncotype DX, our LPD classifications

were derived from 500 unique genes obtained from microarrays. It would be necessary to

measure the expression levels of all 500 of these genes to use our CRC consensus OAS-LPD

model. The relatively large number of genes is likely to rule out the use of RT-PCR, instead

custom arrays or RNA-seq could be more appropriate options to use alongside OAS-LPD.

Within a hospital setting the application of whole transcriptome based tests may require

additional infrastructure to facilitate their use. An alternative solution would be to use 3rd

party laboratories that have been accredited by the relevant governing bodies, such as UKAS

within the UK [270]. While the current DESNT and Pericol results are promising, only large

scale clinical trials will offer a definitive assessment of the predictive power and potential

benefits of using OAS-LPD with these subtypes in a clinical setting.

8.6 Improved Versions of LPD

In this thesis we used a version of LPD developed by Rogers et al. [3], to reproduce the

DESNT subtype of prostate cancer and to produce a novel classification of colorectal cancer.

One of the reasons for using this particular version of LPD was that our research lab had

previously used it to produce the DESNT classification [17] and for their classification of

breast cancer data [18]. LPD was also selected

Several other versions of LPD have also been developed. One of these proposed models,

created by Ying et al. [271], uses an improved framework for parameter estimation. This new

model uses the marginalised variational Bayes (MVB) framework instead of the standard

variational Bayes (VB) method used by Rogers et al. [3], which has been shown to produce

mathematically better solutions [271].
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The LPD model has been further improved by Masada et al. [272], using a new parameter

estimation framework, known as MVB+. This version of LPD allows for the model hyper-

parameters (such as σ ) to be re-estimated during model training. This removes the need

to perform additional optimisation steps when choosing the LPD parameters (described in

Section 5.3.1), as sigma is now automatically optimised.

In addition to producing models that better fit the data, the authors of these new versions

of LPD claim that they are also capable of generating models in significantly less time. In our

analyses, using the version of LPD by Rogers et al. (2005) [3], we required approximately

24 hours to fit an LPD model on 320 samples using 500 genes. In comparison to this Masada

et al. (2009) [272] required only 174 minutes (on average) to fit a model on 286 samples

using 17,816 genes. This impressive improvement to performance is further emphasised by

their use of far more genes, providing a greater level of detail by removing the need to reduce

the set of input genes.

A future investigation of interest would be to use these new versions of LPD with our

existing prostate and colorectal cancer datasets. The models generated by these techniques

could then be compared to our current prostate and colorectal cancer LPD models. Empirical

analysis of these new models may further support the mathematical improvement claims

made by Ying et al. (2007) [271] and Masada et al. (2009) [272]. If the mathematical claims

held true we could expect to see improvements to the models, which may result in greater

confidence between samples and LPD processes and fewer samples changing their primary

subtype between LPD runs.

Employing the new algorithms’ greatly reduced computational times would allow us to

generate LPD models for many more datasets in a far more manageable time-frame. By

comparing these models to our existing classifications we could further demonstrate the

widespread nature of the LPD processes, with few processes that are dataset specific artefacts.



8.7 Conclusion 142

8.7 Conclusion

In this thesis we applied LPD to two heterogeneous diseases known as prostate and colorectal

cancers. We identified the potential use of the DESNT subtype’s γ value as an indicator of

patient biochemical relapse risk in prostate cancer [5]. If this test could be validated in a

clinical setting our findings could significantly reduce the over treatment of low risk patients

and help to identify high risk patients that were previously viewed as low risk.

We have also produced a new classification framework for colorectal cancer using a

consensus OAS-LPD approach. Among our four CRC subtypes we observed a significantly

poorer prognosis in patients that displayed a predominantly Pericol expression signature.

Pericol was shown to be an independent predictor of disease recurrence alongside existing

risk measures and could be used to further inform the choice of treatments through its

association with KRAS mutations. We also established sets of known clinical covariates

within two of our other CRC subtypes, providing further evidence that LPD is able to extract

the heterogeneous structure of diseases in an unsupervised manor.

These findings emphasise the importance of using more advanced techniques, such as

LPD, when analysing heterogeneous diseases. By using LPD instead of other algorithms,

such as Naive-Bayes, dendrograms or Gaussian mixture models, we can reduce the risk

of overfitting, unambiguously determine the number of processes and remove the need to

preselect genes prior to feature extraction [3].

While beyond the scope of this thesis, studying the molecular changes that drive the

development of each cancer subtype identified in this thesis may reveal new therapeutic

targets. Such discoveries could in turn enable new radical treatments to be developed, or lead

to the personalisation of treatment pathways. These outcomes would represent a significant

step forward in the classification and treatment of heterogeneous diseases.
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Fig. A.1 Results from the multivariate Cox PH models, using the MSKCC (A), CancerMap
(B), CamCap (C), Stephenson (D) datasets and a combination of the previous four datasets
(E). The blue markers denote the hazard ratio for each covariate and the extended bars denote
the 95% confidence interval. The log-rank p-value for each covariates’ hazard ratio is listed
on the right side of the figure. PSA level was split on ≤ / > 10, Gleason score was split on
≤ / > 7 and DESNT was split on non-DESNT/DESNT membership.
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A.2 Gene Expression Levels

Fig. A.2 A heatmap depicting the gene expression levels of the 500 genes, used in the LPD
classification process, for the CancerMap, Stephenson, Klein and MSKCC datasets.

A.3 DESNT Over-Represented Pathways

Table A.1 Top 20 GO pathways over-represented in the DESNT signature.

Pathway ID Description GeneRatio p-value p-adjusted

GO:0009611 response to wounding 19/44 3.2×10−13 6.33×10−10

GO:0003012 muscle system process 13/44 9.3×10−13 9.2×10−10

GO:0006936 muscle contraction 12/44 2.2×10−12 1.45×10−9

GO:0042060 wound healing 15/44 4.16×10−11 2.06×10−8

GO:0030029 actin filament-based process 13/44 5.31×10−10 1.92×10−7

GO:0009653 anatomical structure morpho-

genesis

24/44 5.81×10−10 1.92×10−7

GO:0048856 anatomical structure develop-

ment

31/44 2.04×10−9 5.43×10−7

GO:0034329 cell junction assembly 9/44 2.33×10−9 5.43×10−7

GO:0030036 actin cytoskeleton organiza-

tion

12/44 2.47×10−9 5.43×10−7
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GO:0044707 single-multicellular organism

process

35/44 3.36×10−9 6.53×10−7

GO:0007596 blood coagulation 12/44 3.88×10−9 6.53×10−7

GO:0007599 hemostasis 12/44 4.29×10−9 6.53×10−7

GO:0050817 coagulation 12/44 4.29×10−9 6.53×10−7

GO:0050878 regulation of body fluid levels 13/44 5.24×10−9 7.41×10−7

GO:0034330 cell junction organization 9/44 6.24×10−9 8.24×10−7

GO:0032501 multicellular organismal pro-

cess

35/44 1.01×10−8 1.23×10−6

GO:0048468 cell development 20/44 1.05×10−8 1.23×10−6

GO:0032989 cellular component morpho-

genesis

17/44 1.87×10−8 2.06×10−6

GO:0003008 system process 19/44 2.29×10−8 2.39×10−6

GO:0031589 cell-substrate adhesion 9/44 2.65×10−8 2.63×10−6

Table A.2 KEGG pathways over-represented in the DESNT signature.

Pathway ID Description GeneRatio p-value p-adjusted

hsa04270 Vascular smooth muscle con-

traction

6/26 3.86×10−6 1.99×10−4

hsa04510 Focal adhesion 7/26 6.13×10−6 1.99×10−4

hsa04520 Adherens junction 4/261.43×10−4 3.11×10−3

hsa04670 Leukocyte transendothelial

migration

4/26 8.56×10−4 1.28×10−2

hsa04810 Regulation of actin cytoskele-

ton

5/26 9.85×10−4 1.28×10−2
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hsa05100 Bacterial invasion of epithelial

cells

3/26 2.86×10−3 2.78×10−2

hsa04022 cGMP-PKG signaling path-

way

4/26 3.08×10−3 2.78×10−2

hsa05410 Hypertrophic cardiomyopathy

(HCM)

3/26 3.42×10−3 2.78×10−2

hsa05414 Dilated cardiomyopathy 3/26 4.3×10−3 3.1×10−2

Table A.3 Reactome pathways over-represented in the DESNT signature.

Pathway ID Description GeneRatio p-value p-adjusted

445355 Smooth Muscle Contraction 10/28 4.67×10−18 4.2×10−16

397014 Muscle contraction 10/28 3.24×10−14 1.46×10−12

446353 Cell-extracellular matrix inter-

actions

4/28 8.8×10−7 2.64×10−5

5627123 RHO GTPases activate PAKs 3/28 1.07×10−4 2.41×10−3

446728 Cell junction organization 4/28 2.6×10−4 4.46×10−3

114608 Platelet degranulation 4/28 3.16×10−4 4.46×10−3

109582 Hemostasis 8/28 3.47×10−4 4.46×10−3

76005 Response to elevated platelet

cytosolic Ca2+

4/28 3.98×10−4 4.48×10−3

1500931 Cell-Cell communication 4/28 1.63×10−3 1.63×10−2

A.4 Discretised Proportional DESNT Assignment Kaplan-

Meier Curves
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Fig. A.3 Kaplan-Meier survival curves comparing the discretised DESNT γ groups for the
MSKCC (A), CancerMap (B), CamCap (C), Stephenson (D) and merged dataset (E), using
BCR failure as the event. The number of cancer samples in each group is indicated at the
bottom right corner, alongside the number of BCR failures in parentheses.
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Appendix B

Appendix B

B.1 LPD Models Normalised Without TCGA Samples

Fig. B.1 Figure depicting the LPD γ values (association between a sample and a process)
for each LPD process in the GSE14333plus representative run when normalising the data
without TCGA samples. Samples have been coloured by their Dukes’ stage assignment.
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Fig. B.2 Figure depicting the LPD γ values (association between a sample and a process) for
each LPD process in the GSE39582 representative run when normalising the data without
TCGA samples. Samples have been coloured by their Dukes’ stage assignment.
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Fig. B.3 Figure depicting the LPD γ values (association between a sample and a process) for
each LPD process in the GSE41258 representative run when normalising the data without
TCGA samples. Samples have been coloured by their Dukes’ stage assignment.
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Fig. B.4 Figure depicting the LPD γ values (association between a sample and a process) for
each LPD process in the GSE81653 representative run when normalising the data without
TCGA samples.

B.2 Colorectal Cancer LPD Densities
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Fig. B.5 Figure depicting the identification of a representative LPD run, based on the density
of p-values from a set of 100 log-rank tests, each performed on an individual LPD model
using the GSE14333plus dataset. The model with the shortest p-value distance to the modal
density was selected as the representative LPD run.

Fig. B.6 Figure depicting the identification of a representative LPD run, based on the density
of p-values from a set of 100 log-rank tests, each performed on an individual LPD model
using the GSE41258 dataset. The model with the shortest p-value distance to the modal
density was selected as the representative LPD run.
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Fig. B.7 Figure depicting the identification of a representative LPD run, based on the density
of p-values from a set of 100 log-rank tests, each performed on an individual LPD model
using the GSE81653 dataset. The model with the shortest p-value distance to the modal
density was selected as the representative LPD run.
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B.3 Colorectal Cancer Representative LPD Models: Gamma

Barplots

Fig. B.8 Barplot showing the γ values (Bayesian association) for each sample with each LPD
process, in the LPD model built using the GSE14333plus dataset.



B.3 Colorectal Cancer Representative LPD Models: Gamma Barplots 181

Fig. B.9 Barplot showing the γ values (Bayesian association) for each sample with each LPD
process, in the LPD model built using the GSE39582 dataset.
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Fig. B.10 Barplot showing the γ values (Bayesian association) for each sample with each
LPD process, in the LPD model built using the GSE41258 dataset.
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Fig. B.11 Barplot showing the γ values (Bayesian association) for each sample with each
LPD process, in the LPD model built using the GSE81653 dataset.
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B.4 Colorectal Cancer Representative LPD Models: Kaplain

Meier Plots

Fig. B.12 Kaplan-Meier survival curves showing the disease-free survival of the the six LPD
processes from the representative run for the GSE14333plus dataset. The total number of
samples (with DFS information) for each process is shown in the bottom right, with the
number of DFS events displayed in brackets.
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Fig. B.13 Kaplan-Meier survival curves showing the disease-free survival of the the six LPD
processes from the representative run for the GSE39582 dataset. The total number of samples
(with DFS information) for each process is shown in the bottom right, with the number of
DFS events displayed in brackets.
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Fig. B.14 Kaplan-Meier survival curves showing the disease-free survival of the the six LPD
processes from the representative run for the GSE41258 dataset. The total number of samples
(with DFS information) for each process is shown in the bottom right, with the number of
DFS events displayed in brackets. LPD2 and LPD 3 are not shown on the figure as they only
contain normal samples.

B.5 Colorectal Cancer Differentially Expressed Genes

B.5.1 LPD A DEGs

Table B.1 Differentially expressed genes within the colorectal cancer LPD A subtype

ACSM3 CAPN5 EIF2AK3 MOGAT2 SLC35A3
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ADAMDEC1 CASP5 EPHX2 MS4A12 SLC44A4

ADAMTS2 CASP7 ETHE1 MUC13 SLC4A4

ADH1C CEACAM7 FABP2 MUC2 SLC9A2

ADTRP CES3 FCGBP MUC4 SUCLG2

AKR1B10 CHPF GALNT12 NEDD4L TIMP1

AMPD1 CHST5 GALNT7 NOX4 TJP3

ATP2A3 CLCA1 GBA3 NR3C2 TMPRSS2

BCAS1 CLCA4 GUCA2B PADI2 TPSG1

BGN CLDN7 HADH PARM1 TRPM4

BMP5 CLIC5 HHLA2 PIGR TSPAN1

BTNL8 CLINT1 HSD17B2 PKP2 UNC13B

C4orf19 CLMN INHBA PTGER4 XDH

CA12 CNNM4 ITM2C RETSAT ZG16

CA2 COL10A1 KDELC1 SCNN1B

CA4 COL11A1 KIF26B SCP2

CA7 COMP LIMA1 SERPINH1

CAMK1D CPT2 LRRC15 SI

B.5.2 LPD B DEGs

Table B.2 Differentially expressed genes within the colorectal cancer LPD B subtype

AATF CSF1R HLA.DPA1 MORF4L1 SH3BP5

ACKR1 CSF2RB HLA.DPB1 MRC1 SIGLEC1

ACP2 CSRP1 HLA.DQB1 MS4A4A SIRT5

ACR CTSL HMOX1 MTPAP SLA

ACTR3B CXCL12 HMX1 MYO1F SLC15A3

ADAMTS1 CYB5R3 HNRNPU NAGK SLC2A5
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ADH1B CYBRD1 HOOK1 NAP1L3 SLC31A2

AGMAT CYP1B1 HOXB2 NCKAP1L SLC7A7

AHNAK CYR61 HSD11B1 NDN SLCO2B1

ANK2 DARS2 HTR2B NNMT SMAD6

ANKMY1 DCLK1 IFFO1 NR6A1 SMARCC1

APOE DCLRE1A IGFBP6 NRP2 SOX9

ARHGDIB DDN IGHG1 OAZ2 SPAG5

ARMC6 DNA2 IL10RA OLFM1 SPON1

ASPM DOCK6 IL6 ORC6 SPRYD7

ATAD5 DOK5 IL7R OXLD1 SRPX

ATAT1 DPT INE1 P2RY13 STAB1

ATP2B4 DPYSL3 INO80D PABPC3 SUSD6

ATP6V1B2 DUSP1 INTS7 PALB2 SUV39H1

ATXN2L DUSP5 ITGA5 PALLD SYNE1

AXL EFR3B ITGB2 PDSS1 SYT12

BCL6 EHD2 ITM2A PDZRN4 TADA2A

BEX4 EIF5B ITPR1 PEX10 TAF1B

BLVRA ELK3 ITPR3 PIWIL2 TCF21

BNC2 EMILIN2 JAM2 PLD3 TFDP2

BRSK2 EMP3 JRK PLEKHO1 TGFB1

BYSL ENO2 KCNC3 PLEKHO2 THBD

C14orf132 ENPP2 KCNMB1 PMFBP1 THEMIS2

C1orf105 EPB41L3 KIF20B PMP22 THSD7A

C1orf109 EPHB2 KLF2 PNMA1 TINF2

C5AR1 EVI2A KNOP1 POLA2 TMEM255A

C7 EVL KYAT1 POLD1 TMEM45A
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CACNA1D EZH2 L3MBTL1 POLR1C TNFAIP8

CALHM2 F13A1 LAIR1 PPP4R3B TPBG

CAPZB FAM129A LARP1 PRELP TRAC

CAV1 FBLN5 LARP4B PRKCH TRAF2

CAV2 FCGR2B LHFPL2 PRLR TRAP1

CBFA2T2 FCGR3B LIG3 PTCD3 TRIB2

CCDC69 FEZ1 LILRB2 PTPN3 TRIM22

CCL18 FHL1 LIPE PUS7L TRIM24

CCR2 FLI1 LMO2 RAB13 TRPV2

CD14 FLVCR2 LMOD1 RAC2 TSC22D3

CD37 FMO2 LMTK2 RAMP3 TSPAN4

CD4 GABARAPL1 LRRC20 RASSF2 TSPYL5

CD63 GADD45B LSP1 RCAN1 TUSC3

CD69 GAS1 LST1 RCAN2 UBAP2

CD74 GAS7 MAF RGS2 UPP1

CD93 GBX2 MAFB RHOG URB1

CENPJ GFPT2 MAOB ROR1 USP27X

CFH GGT5 MAP2K7 RPS6 VAMP2

CHAF1A GIMAP6 MAP4K2 RSAD2 VCAM1

CHD7 GMFG MAP7D1 RTN1 VEGFC

CHML GNL3L MAPK8IP2 S1PR1 VGLL3

CHRDL1 GPR183 MCM3AP.AS1 SAFB VIM

CHST3 GPR21 MCOLN1 SASH1 VNN2

CILP GPR68 MDFIC SCARF1 VPS33A

CLC GPX3 MEF2C SCG2 WBP1L

CLDN5 GTF3C2 MEOX1 SELL WDR3
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CMA1 GYPC MFAP4 SEPT-11 WIPF1

COA1 HCK MFAP5 SETBP1 WWTR1

COL16A1 HCLS1 MGAT1 SF3B3 XPO6

COLEC12 HGH1 MITF SFRP1 ZNF142

CPA3 HHEX MKI67 SFTPC ZNF443

CRCP HIST3H2A MLLT11 SGCE ZNF473

CRIP2 HLA.DMA MMRN1 SGK1 ZNF629

CRISPLD2 HLA.DMB MNX1 SH2B3 ZSWIM1

B.5.3 LPD C DEGs

Table B.3 Differentially expressed genes within the colorectal cancer LPD C subtype

ANO10 ENTPD5 KCNK5 SLC26A2 WARS

BTN3A3 ERO1A PLEKHG6 SLC39A6 WDR41

CHP2 GBP1 PLXNA2 SMAP1

CKB GREM2 RARRES3 SNAPC1

CLCN2 IHH RPS6KA6 TFCP2L1

CXCL10 JAK2 SGK2 UBE2L6

B.5.4 Pericol DEGs

Table B.4 Differentially expressed genes within the colorectal cancer Pericol subtype

A1CF COL4A1 GLIPR1 MSN SFRP4

ABCA1 COL4A2 GLT8D2 MSR1 SGK2

ACOT11 COL5A1 GLUL MXRA5 SH3BP5

ACSM3 COL5A2 GNA11 MXRA7 SIRPA

ADAM12 COL6A1 GNS MXRA8 SLA
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ADAMTS2 COL6A2 GOT2 MYH10 SLAMF8

ADAP2 COL6A3 GPA33 MYO1A SLC1A3

ADGRF5 COL8A1 GPD1L MYO1F SLC22A18AS

ADGRL4 COLEC12 GPR137B MYO5A SLC22A5

ADTRP COMP GPR65 MYOF SLC26A3

AGFG2 COPZ2 GPX7 NAGK SLC27A2

AGMAT COQ9 GREM1 NAT2 SLC2A3

AHR COX4I1 GULP1 NCF2 SLC37A4

AIF1 COX5B HADH NDUFAF4 SLC38A2

AKAP12 CPT1A HCK NID2 SLC38A6

AKT3 CPTP HCLS1 NNMT SLC39A6

ALOX5AP CREM HDHD3 NOL12 SLC44A4

ANGPTL2 CRYM HEG1 NOX4 SLC9A2

ANOS1 CSF1R HEXA NPL SLFN12

ANTXR1 CSGALNACT2 HHLA2 NREP SMARCA1

ANXA1 CTGF HIF1A NRP1 SMPD3

ANXA5 CTSB HIP1 NXPE4 SNAI2

ANXA6 CTSD HIVEP2 OLFML2B SPARC

AP1M2 CTSK HLA.DMA OLR1 SPHK2

APLNR CTSL HLA.DPA1 OSMR SPOCK1

APOC1 CTSO HLA.DPB1 OVOL2 SPP1

ARHGDIB CWH43 HLA.DRA PAK4 SRGN

ARL4C CXCR4 HNRNPAB PALLD SSH1

ASPN CYB5R3 HOXB2 PAM ST6GALNAC5

ASTE1 CYBB HSD11B2 PARM1 STAP2

ATP10D CYP1B1 HTRA1 PBLD STC1
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ATP2C2 CYP2J2 ICAM1 PCK2 STOM

ATP6V1B2 CYP4F12 ID1 PCOLCE SUCLG1

AXL CYR61 IFI16 PDE10A SUCLG2

BASP1 DACT1 IGFBP3 PDE4DIP SULF1

BCAT1 DBN1 IGFBP4 PDGFC SULT1B1

BCL6 DCN IGFBP5 PDGFRB TAF6L

BDH1 DEGS1 IGFBP7 PDLIM5 TCF4

BGN DENND5A IL1R1 PDLIM7 TENM3

BICC1 DGAT1 ILVBL PDSS1 TFEC

BICD1 DHRS11 IMPA2 PDZD3 TGFB1

BNIP3L DOCK4 INHBA PEA15 TGFB3

BTNL3 DOK4 IRAK3 PECAM1 THBS1

C1orf105 DPYSL2 ITGA5 PEX11A THBS2

C1orf109 DPYSL3 ITGAM PFKFB3 THEMIS2

C1orf123 DRAM1 ITGAV PHF21A THY1

C1orf174 DSE ITGBL1 PIGR TIMP1

C1QTNF1 DUSP10 KBTBD11 PILRA TIMP2

C3 ECM2 KIF26B PIP4K2A TIMP3

C3AR1 EDNRA LAMA4 PIP5K1B TJP3

C5AR1 EFEMP1 LAMB1 PKD2 TLR1

C5orf30 EFEMP2 LAMB2 PLA2G7 TLR2

CALCRL ELK3 LAMC1 PLEKHA6 TM6SF1

CALU EMP3 LAMP5 PLS1 TMEM106C

CAMSAP2 ENG LAPTM5 PLXDC2 TMEM45A

CAPN5 ENTPD1 LCP2 PLXNC1 TMPRSS2

CASP5 EOGT LDB2 PLXND1 TNC
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CC2D1A EPB41L4B LDLRAP1 PMP22 TNFAIP3

CCDC102B EPN3 LGALS1 POSTN TNFAIP6

CCDC88A EPS8L2 LGALS4 PPFIA3 TNFSF4

CD14 EPS8L3 LILRB1 PPFIBP1 TNK1

CD163 EPYC LMCD1 PRCP TPST1

CD248 ERG LOX PRKCZ TRIB2

CD53 ESRRA LOXL1 PRKD1 TRIM22

CD59 ETHE1 LRRC15 PRR16 TST

CD74 EVC LRRC19 PRRG2 TTC38

CD86 EVI2A LRRC31 PRRX1 TTC39A

CD99 F2R LRRC32 PSAP TTLL12

CDH11 FAAH LTBP1 PTGIS TWIST1

CDH5 FAM168A LUM PTPRC TWSG1

CDHR5 FAM198B LY96 PXDN TXNDC15

CDK14 FAM83E MACF1 PXMP2 TYROBP

CDK17 FAP MAFB QKI UGCG

CDS1 FBN1 MAN2B1 RAB31 UNC13B

CDX1 FCER1G MAP3K8 RAB8B UQCRC1

CEACAM7 FCGR2A MAP4K4 RAI14 VAMP5

CEBPG FCGR2B MAP7 RARRES2 VCAM1

CES3 FCHSD2 MAR-1 RASGRP3 VCAN

CFI FGFR3 MEG3 RBMS1 VIM

CHI3L1 FN1 MFAP2 RECQL VIPR1

CHST11 FOXD2 MFGE8 RGCC VSIG4

CHST15 FPR3 MGP RGS1 WBP1L

CHSY1 FRAT2 MITF RGS2 WIPF1
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CLCN2 FSTL1 MLYCD RHOQ WISP1

CLDN7 FXYD3 MMP15 ROBO1 WSB1

CLEC2B FYN MMP2 SCPEP1 XDH

CLEC7A FZD1 MN1 SDC2 ZFAND5

CLIC4 GAS1 MNDA SEC31A ZG16

CNN3 GBP2 MOGAT2 SELENBP1 ZNF532

CNNM4 GCDH MOXD1 SEMA4G ZNF576

COL11A1 GDPD2 MPST Sept-11 ZYX

COL15A1 GEM MRC1 SERPINE1

COL16A1 GFPT2 MRC2 SERPINF1

COL1A1 GIPC2 MS4A4A SERPING1

COL1A2 GJA1 MS4A6A SERPINH1

B.6 Colorectal Cancer Subtype Pathways

B.6.1 LPD A Enriched Pathways

Table B.5 GO pathways over-represented in LPD A.

Pathway ID Description p-value Fold Enrichment

0015701 bicarbonate transport 4.83×10−5 24.46

0016266 O-glycan processing 1.64×10−4 17.94

0006730 one-carbon metabolic process 3.44×10−4 28.70

0007588 excretion 6.44×10−4 23.27

0030277 maintenance of gastrointestinal

epithelium

1.33×10−3 53.82

0006508 proteolysis 7.95×10−3 3.44
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2001225 regulation of chloride transport 9.15×10−3 215.28

0051453 regulation of intracellular pH 1.18×10−2 17.94

0030199 collagen fibril organization 1.38×10−2 16.56

0034220 ion transmembrane transport 1.58×10−2 5.13

0032849 positive regulation of cellular pH

reduction

1.82×10−2 107.64

0006810 transport 2.18×10−2 3.71

0001501 skeletal system development 2.51×10−2 6.29

0051216 cartilage development 3.00×10−2 10.95

0008104 protein localization 3.19×10−2 10.59

0030574 collagen catabolic process 3.48×10−2 10.09

0008152 metabolic process 4.20×10−2 5.13

0035725 sodium ion transmembrane trans-

port

4.42×10−2 8.85

0005975 carbohydrate metabolic process 4.58×10−2 4.95

0098911 regulation of ventricular cardiac

muscle cell action potential

4.93×10−2 39.14

Table B.6 KEGG pathways over-represented in LPD A.

Pathway ID Description p-value Fold Enrichment

00910 Nitrogen metabolism 2.29×10−4 31.74

04972 Pancreatic secretion 4.48×10−3 7.25

04964 Proximal tubule bicarbonate

reclamation

1.19×10−2 17.59

04960 Aldosterone-regulated sodium re-

absorption

3.23×10−2 10.38
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00071 Fatty acid degradation 3.71×10−2 9.63

01100 Metabolic pathways 4.80×10−2 1.66

Table B.7 Reactome pathways over-represented in LPD A.

Pathway ID Description p-value Fold Enrichment

1475029 Reversible hydration of carbon

dioxide

4.22×10−5 55.00

913709 O-linked glycosylation of mucins 4.00×10−4 13.98

1650814 Collagen biosynthesis and modi-

fying enzymes

7.29×10−3 9.85

977068 Termination of O-glycan biosyn-

thesis

1.03×10−2 19.04

2672351 Stimuli-sensing channels 1.27×10−2 8.05

Fig. B.15 Barplot of the top 20 (ordered by p-value) GO pathways over-represented in LPD
A.
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Fig. B.16 Barplot of the KEGG pathways over-represented in LPD A.

Fig. B.17 Barplot of the Reactome pathways over-represented in LPD A.

B.6.2 LPD B Enriched Pathways

Table B.8 GO pathways over-represented in LPD B.

Pathway ID Description p-value Fold Enrichment

0007155 cell adhesion 2.08×10−6 3.09

0006461 protein complex assembly 3.80×10−5 5.38

0006954 inflammatory response 1.36×10−4 2.84

0030279 negative regulation of ossifica-

tion

1.44×10−4 17.73
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0006935 chemotaxis 3.04×10−4 4.65

0006955 immune response 4.87×10−4 2.56

0030890 positive regulation of B cell pro-

liferation

5.71×10−4 8.73

0050731 positive regulation of peptidyl-

tyrosine phosphorylation

5.94×10−4 5.53

0008015 blood circulation 1.11×10−3 7.56

0006874 cellular calcium ion homeostasis 1.26×10−3 4.88

0050900 leukocyte migration 1.41×10−3 4.18

0007399 nervous system development 1.76×10−3 2.77

2000249 regulation of actin cytoskeleton

reorganization

3.60×10−3 12.61

0001525 angiogenesis 6.20×10−3 2.80

0090023 positive regulation of neutrophil

chemotaxis

6.45×10−3 10.31

0043065 positive regulation of apoptotic

process

7.00×10−3 2.46

0001938 positive regulation of endothelial

cell proliferation

7.27×10−3 4.93

0030198 extracellular matrix organization 7.94×10−3 2.89

0007088 regulation of mitotic nuclear divi-

sion

8.27×10−3 9.45

0030866 cortical actin cytoskeleton orga-

nization

8.27×10−3 9.45

0031100 organ regeneration 9.20×10−3 6.04

0009408 response to heat 9.90×10−3 5.91
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0090073 positive regulation of protein ho-

modimerization activity

1.02×10−2 18.91

0008285 negative regulation of cell prolif-

eration

1.04×10−2 2.15

0071560 cellular response to transforming

growth factor beta stimulus

1.06×10−2 5.79

0060021 palate development 1.08×10−2 4.48

0008360 regulation of cell shape 1.19×10−2 3.24

0002377 immunoglobulin production 1.26×10−2 17.02

0045727 positive regulation of translation 1.39×10−2 5.35

0045944 positive regulation of transcrip-

tion from RNA polymerase II

promoter

1.40×10−2 1.62

0001937 negative regulation of endothelial

cell proliferation

1.40×10−2 7.82

0097421 liver regeneration 1.40×10−2 7.82

0043066 negative regulation of apoptotic

process

1.49×10−2 1.99

0045766 positive regulation of angiogene-

sis

1.60×10−2 3.45

0030168 platelet activation 1.60×10−2 3.45

0050680 negative regulation of epithelial

cell proliferation

1.68×10−2 5.07

0045765 regulation of angiogenesis 1.68×10−2 7.32

0010628 positive regulation of gene ex-

pression

1.77×10−2 2.38
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0006928 movement of cell or subcellular

component

1.77×10−2 3.96

0070301 cellular response to hydrogen per-

oxide

1.78×10−2 4.98

0032211 negative regulation of telomere

maintenance via telomerase

1.81×10−2 14.18

0001974 blood vessel remodeling 1.83×10−2 7.09

0018108 peptidyl-tyrosine phosphoryla-

tion

1.86×10−2 2.97

0010718 positive regulation of epithelial

to mesenchymal transition

1.98×10−2 6.88

0050679 positive regulation of epithelial

cell proliferation

2.11×10−2 4.73

0042102 positive regulation of T cell pro-

liferation

2.11×10−2 4.73

0007160 cell-matrix adhesion 2.12×10−2 3.78

0009887 organ morphogenesis 2.30×10−2 3.70

0048821 erythrocyte development 2.78×10−2 11.35

0050930 induction of positive chemotaxis 2.78×10−2 11.35

0001657 ureteric bud development 2.88×10−2 5.97

0006469 negative regulation of protein ki-

nase activity

3.04×10−2 3.44

0008219 cell death 3.08×10−2 5.82

0033138 positive regulation of peptidyl-

serine phosphorylation

3.47×10−2 4.05
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0035984 cellular response to trichostatin

A

3.48×10−2 56.73

0060390 regulation of SMAD protein im-

port into nucleus

3.48×10−2 56.73

0032764 negative regulation of mast cell

cytokine production

3.48×10−2 56.73

0042981 regulation of apoptotic process 3.49×10−2 2.40

0051209 release of sequestered calcium

ion into cytosol

3.50×10−2 5.53

0070374 positive regulation of ERK1 and

ERK2 cascade

3.52×10−2 2.59

0007165 signal transduction 3.58×10−2 1.47

0071347 cellular response to interleukin-1 3.62×10−2 4.00

0008284 positive regulation of cell prolif-

eration

3.67×10−2 1.83

0045599 negative regulation of fat cell dif-

ferentiation

3.72×10−2 5.40

0001764 neuron migration 3.78×10−2 3.24

0050776 regulation of immune response 3.80×10−2 2.55

0006325 chromatin organization 3.95×10−2 5.28

0010977 negative regulation of neuron pro-

jection development

4.19×10−2 5.16

0030514 negative regulation of BMP sig-

naling pathway

4.43×10−2 5.04

0030838 positive regulation of actin fila-

ment polymerization

4.43×10−2 5.04
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0048666 neuron development 4.68×10−2 4.93

0071222 cellular response to lipopolysac-

charide

4.91×10−2 3.01

Table B.9 KEGG pathways over-represented in LPD B.

Pathway ID Description p-value Fold Enrichment

05144 Malaria 3.73×10−3 5.69

04068 FoxO signaling pathway 7.77×10−3 3.12

05205 Proteoglycans in cancer 1.03×10−2 2.56

04640 Hematopoietic cell lineage 1.05×10−2 3.74

05152 Tuberculosis 1.33×10−2 2.63

04145 Phagosome 1.48×10−2 2.79

04010 MAPK signaling pathway 1.93×10−2 2.20

04380 Osteoclast differentiation 2.18×10−2 2.84

05202 Transcriptional misregulation in

cancer

2.63×10−2 2.50

05150 Staphylococcus aureus infection 2.77×10−2 4.30

05323 Rheumatoid arthritis 3.96×10−2 3.17

Table B.10 Reactome pathways over-represented in LPD B.

Pathway ID Description p-value Fold Enrichment

202733 Cell surface interactions at the

vascular wall

3.71×10−3 5.73

2129379 Molecules associated with elastic

fibres

5.92×10−3 6.78
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422356 Regulation of insulin secretion 2.52×10−2 6.25

69166 Removal of the Flap Intermediate 2.89×10−2 11.05

1566948 Elastic fibre formation 4.62×10−2 8.59

Fig. B.18 Barplot of the top 20 (ordered by p-value) GO pathways over-represented in LPD
B.
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Fig. B.19 Barplot of the KEGG pathways over-represented in LPD B.

Fig. B.20 Barplot of the Reactome pathways over-represented in LPD B.

B.6.3 Pericol Enriched Pathways

Table B.11 GO pathways over-represented in Pericol.

Pathway ID Description p-value Fold Enrichment

0030198 extracellular matrix organization 2.51×10−27 8.73

0007155 cell adhesion 1.97×10−22 4.85

0030574 collagen catabolic process 7.51×10−16 12.43

0035987 endodermal cell differentiation 5.08×10−10 16.21

0006954 inflammatory response 2.09×10−9 3.46
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0030199 collagen fibril organization 2.93×10−8 11.22

0001525 angiogenesis 4.76×10−8 4.10

0050900 leukocyte migration 6.65×10−8 5.54

0022617 extracellular matrix disassembly 3.84×10−7 6.81

0042060 wound healing 6.81×10−7 6.47

0007165 signal transduction 7.94×10−7 1.99

0030206 chondroitin sulfate biosynthetic

process

1.93×10−6 12.73

0045766 positive regulation of angiogene-

sis

6.18×10−6 4.84

0002576 platelet degranulation 1.03×10−5 5.02

0010628 positive regulation of gene ex-

pression

1.06×10−5 3.19

0032967 positive regulation of collagen

biosynthetic process

1.68×10−5 12.11

0016525 negative regulation of angiogene-

sis

2.25×10−5 6.42

0016477 cell migration 2.92×10−5 3.70

0001503 ossification 3.03×10−5 5.47

0007229 integrin-mediated signaling path-

way

3.76×10−5 4.82

0001568 blood vessel development 3.82×10−5 8.38

0010575 positive regulation of vascular en-

dothelial growth factor produc-

tion

4.54×10−5 10.32

0042476 odontogenesis 4.54×10−5 10.32
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0001649 osteoblast differentiation 5.94×10−5 4.59

0007507 heart development 6.00×10−5 3.48

0035904 aorta development 6.33×10−5 13.26

0030335 positive regulation of cell migra-

tion

6.38×10−5 3.46

0001937 negative regulation of endothelial

cell proliferation

6.98×10−5 9.60

0042493 response to drug 8.79×10−5 2.75

0001886 endothelial cell morphogenesis 1.12×10−4 18.09

0071230 cellular response to amino acid

stimulus

1.57×10−4 6.77

0001558 regulation of cell growth 1.73×10−4 4.97

0001957 intramembranous ossification 2.96×10−4 26.53

0070208 protein heterotrimerization 3.19×10−4 14.21

0001666 response to hypoxia 4.07×10−4 3.24

0033627 cell adhesion mediated by inte-

grin

4.27×10−4 13.26

0070374 positive regulation of ERK1 and

ERK2 cascade

4.80×10−4 3.18

0030334 regulation of cell migration 5.18×10−4 4.84

0030336 negative regulation of cell migra-

tion

6.29×10−4 4.19

0051216 cartilage development 6.57×10−4 5.40

0001501 skeletal system development 6.76×10−4 3.49

0050679 positive regulation of epithelial

cell proliferation

7.28×10−4 5.31
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0050727 regulation of inflammatory re-

sponse

9.78×10−4 5.05

0051897 positive regulation of protein ki-

nase B signaling

1.21×10−3 4.26

0071560 cellular response to transforming

growth factor beta stimulus

1.35×10−3 5.68

0038123 toll-like receptor TLR1:TLR2

signaling pathway

1.85×10−3 39.79

0071727 cellular response to triacyl bacte-

rial lipopeptide

1.85×10−3 39.79

0010906 regulation of glucose metabolic

process

1.99×10−3 9.04

0071345 cellular response to cytokine

stimulus

1.99×10−3 9.04

0032355 response to estradiol 2.02×10−3 3.94

0048010 vascular endothelial growth fac-

tor receptor signaling pathway

2.15×10−3 4.42

0071222 cellular response to lipopolysac-

charide

2.16×10−3 3.52

0010759 positive regulation of

macrophage chemotaxis

2.22×10−3 14.47

0034446 substrate adhesion-dependent

cell spreading

2.46×10−3 6.28

0042981 regulation of apoptotic process 2.85×10−3 2.62

0030208 dermatan sulfate biosynthetic

process

2.91×10−3 13.26
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0050710 negative regulation of cytokine

secretion

2.91×10−3 13.26

0050921 positive regulation of chemotaxis 2.91×10−3 13.26

0006469 negative regulation of protein ki-

nase activity

3.43×10−3 3.62

0010951 negative regulation of endopepti-

dase activity

3.43×10−3 3.29

0008284 positive regulation of cell prolif-

eration

3.52×10−3 1.96

0048050 post-embryonic eye morphogene-

sis

3.64×10−3 29.84

0002248 connective tissue replacement in-

volved in inflammatory response

wound healing

3.64×10−3 29.84

0030207 chondroitin sulfate catabolic pro-

cess

4.64×10−3 11.37

0043434 response to peptide hormone 4.70×10−3 5.43

0009611 response to wounding 4.88×10−3 4.42

0001569 patterning of blood vessels 4.95×10−3 7.11

0006687 glycosphingolipid metabolic pro-

cess

5.18×10−3 5.31

0008015 blood circulation 5.18×10−3 5.31

0030512 negative regulation of transform-

ing growth factor beta receptor

signaling pathway

5.27×10−3 4.35
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0030203 glycosaminoglycan metabolic

process

5.63×10−3 6.86

0002063 chondrocyte development 5.69×10−3 10.61

0060326 cell chemotaxis 5.69×10−3 4.29

0010936 negative regulation of

macrophage cytokine production

5.96×10−3 23.87

0022614 membrane to membrane docking 5.96×10−3 23.87

0030449 regulation of complement activa-

tion

6.37×10−3 6.63

0051603 proteolysis involved in cellular

protein catabolic process

6.83×10−3 4.97

0007565 female pregnancy 7.00×10−3 3.58

0009749 response to glucose 7.08×10−3 4.10

0042127 regulation of cell proliferation 7.09×10−3 2.58

0031663 lipopolysaccharide-mediated sig-

naling pathway

8.04×10−3 6.22

0030855 epithelial cell differentiation 8.14×10−3 3.98

0048514 blood vessel morphogenesis 8.19×10−3 9.36

0007179 transforming growth factor beta

receptor signaling pathway

8.35×10−3 3.46

0032496 response to lipopolysaccharide 8.47×10−3 2.67

0051045 negative regulation of membrane

protein ectodomain proteolysis

8.80×10−3 19.90

0032964 collagen biosynthetic process 8.80×10−3 19.90

0008360 regulation of cell shape 8.80×10−3 2.84

0007568 aging 8.82×10−3 2.65
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0002755 MyD88-dependent toll-like re-

ceptor signaling pathway

8.97×10−3 6.03

0010718 positive regulation of epithelial

to mesenchymal transition

8.97×10−3 6.03

0071333 cellular response to glucose stim-

ulus

9.56×10−3 4.59

0010596 negative regulation of endothelial

cell migration

9.65×10−3 8.84

0006911 phagocytosis, engulfment 1.10×10−2 5.68

0043066 negative regulation of apoptotic

process

1.11×10−2 1.84

0048260 positive regulation of receptor-

mediated endocytosis

1.12×10−2 8.38

0008285 negative regulation of cell prolif-

eration

1.13×10−2 1.91

0007435 salivary gland morphogenesis 1.21×10−2 17.05

0034616 response to laminar fluid shear

stress

1.21×10−2 17.05

0046697 decidualization 1.30×10−2 7.96

0014911 positive regulation of smooth

muscle cell migration

1.30×10−2 7.96

0001676 long-chain fatty acid metabolic

process

1.49×10−2 7.58

0046718 viral entry into host cell 1.52×10−2 3.48

0033629 negative regulation of cell adhe-

sion mediated by integrin

1.59×10−2 14.92
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0010837 regulation of keratinocyte prolif-

eration

1.59×10−2 14.92

0072075 metanephric mesenchyme devel-

opment

1.59×10−2 14.92

0045630 positive regulation of T-helper 2

cell differentiation

1.59×10−2 14.92

0071407 cellular response to organic

cyclic compound

1.60×10−2 4.05

0043410 positive regulation of MAPK cas-

cade

1.60×10−2 3.44

0006915 apoptotic process 1.64×10−2 1.68

0042102 positive regulation of T cell pro-

liferation

1.71×10−2 3.98

0046426 negative regulation of JAK-STAT

cascade

1.75×10−2 4.97

0007411 axon guidance 1.90×10−2 2.50

0035924 cellular response to vascular en-

dothelial growth factor stimulus

1.91×10−2 6.92

0006898 receptor-mediated endocytosis 1.91×10−2 2.35

0006955 immune response 1.94×10−2 1.80

0002544 chronic inflammatory response 2.01×10−2 13.26

0044342 type B pancreatic cell prolifera-

tion

2.01×10−2 13.26

0021785 branchiomotor neuron axon guid-

ance

2.01×10−2 13.26

0000733 DNA strand renaturation 2.01×10−2 13.26
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0035988 chondrocyte proliferation 2.01×10−2 13.26

0001960 negative regulation of cytokine-

mediated signaling pathway

2.01×10−2 13.26

0007566 embryo implantation 2.06×10−2 4.74

0060348 bone development 2.06×10−2 4.74

0051496 positive regulation of stress fiber

assembly

2.06×10−2 4.74

0031623 receptor internalization 2.23×10−2 4.63

0014068 positive regulation of phos-

phatidylinositol 3-kinase

signaling

2.34×10−2 3.67

0071158 positive regulation of cell cycle

arrest

2.39×10−2 6.37

0007159 leukocyte cell-cell adhesion 2.39×10−2 6.37

0045087 innate immune response 2.40×10−2 1.76

0010977 negative regulation of neuron pro-

jection development

2.40×10−2 4.52

0048048 embryonic eye morphogenesis 2.47×10−2 11.94

0030168 platelet activation 2.58×10−2 2.77

0035025 positive regulation of Rho protein

signal transduction

2.65×10−2 6.12

0002224 toll-like receptor signaling path-

way

2.93×10−2 5.90

1903364 positive regulation of cellular pro-

tein catabolic process

2.97×10−2 10.85
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0045824 negative regulation of innate im-

mune response

2.97×10−2 10.85

0042535 positive regulation of tumor

necrosis factor biosynthetic pro-

cess

2.97×10−2 10.85

0032760 positive regulation of tumor

necrosis factor production

2.98×10−2 4.23

0046854 phosphatidylinositol phosphory-

lation

3.08×10−2 2.96

0007528 neuromuscular junction develop-

ment

3.22×10−2 5.68

0014047 glutamate secretion 3.22×10−2 5.68

0071260 cellular response to mechanical

stimulus

3.27×10−2 3.36

0071456 cellular response to hypoxia 3.37×10−2 2.90

0007169 transmembrane receptor protein

tyrosine kinase signaling path-

way

3.37×10−2 2.90

0042340 keratan sulfate catabolic process 3.51×10−2 9.95

1902287 semaphorin-plexin signaling

pathway involved in axon

guidance

3.51×10−2 9.95

0060394 negative regulation of pathway-

restricted SMAD protein phos-

phorylation

3.51×10−2 9.95
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0048662 negative regulation of smooth

muscle cell proliferation

3.53×10−2 5.49

0048008 platelet-derived growth factor re-

ceptor signaling pathway

3.53×10−2 5.49

0043542 endothelial cell migration 3.53×10−2 5.49

0050776 regulation of immune response 3.57×10−2 2.24

0060325 face morphogenesis 3.85×10−2 5.31

2000379 positive regulation of reactive

oxygen species metabolic pro-

cess

3.85×10−2 5.31

2000573 positive regulation of DNA

biosynthetic process

4.08×10−2 9.18

0051926 negative regulation of calcium

ion transport

4.08×10−2 9.18

0043568 positive regulation of insulin-like

growth factor receptor signaling

pathway

4.08×10−2 9.18

0045730 respiratory burst 4.08×10−2 9.18

0043518 negative regulation of DNA dam-

age response, signal transduction

by p53 class mediator

4.08×10−2 9.18

0001934 positive regulation of protein

phosphorylation

4.09×10−2 2.51

0030513 positive regulation of BMP sig-

naling pathway

4.19×10−2 5.13

0030324 lung development 4.20×10−2 3.14
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0007596 blood coagulation 4.27×10−2 2.16

0055114 oxidation-reduction process 4.33×10−2 1.55

0030154 cell differentiation 4.37×10−2 1.64

0007166 cell surface receptor signaling

pathway

4.38×10−2 1.89

0050873 brown fat cell differentiation 4.54×10−2 4.97

0014066 regulation of phosphatidylinosi-

tol 3-kinase signaling

4.61×10−2 3.06

0048146 positive regulation of fibroblast

proliferation

4.61×10−2 3.68

0042554 superoxide anion generation 4.68×10−2 8.53

2000353 positive regulation of endothelial

cell apoptotic process

4.68×10−2 8.53

0010812 negative regulation of cell-

substrate adhesion

4.68×10−2 8.53

0043537 negative regulation of blood ves-

sel endothelial cell migration

4.68×10−2 8.53

2000147 positive regulation of cell motil-

ity

4.68×10−2 8.53

0014912 negative regulation of smooth

muscle cell migration

4.68×10−2 8.53

0030194 positive regulation of blood coag-

ulation

4.68×10−2 8.53

0019221 cytokine-mediated signaling

pathway

4.70×10−2 2.43

0045471 response to ethanol 4.86×10−2 2.65
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0001764 neuron migration 4.86×10−2 2.65

0060548 negative regulation of cell death 4.88×10−2 3.62

0070555 response to interleukin-1 4.90×10−2 4.82

1902042 negative regulation of extrinsic

apoptotic signaling pathway via

death domain receptors

4.90×10−2 4.82

0090291 negative regulation of osteoclast

proliferation

4.95×10−2 39.79

0042495 detection of triacyl bacterial

lipopeptide

4.95×10−2 39.79

1905049 negative regulation of metal-

lopeptidase activity

4.95×10−2 39.79

0001300 chronological cell aging 4.95×10−2 39.79

0001798 positive regulation of type IIa hy-

persensitivity

4.95×10−2 39.79

1903225 negative regulation of endoder-

mal cell differentiation

4.95×10−2 39.79

0070483 detection of hypoxia 4.95×10−2 39.79

1905005 regulation of epithelial to mes-

enchymal transition involved in

endocardial cushion formation

4.95×10−2 39.79

0009756 carbohydrate mediated signaling 4.95×10−2 39.79

0009440 cyanate catabolic process 4.95×10−2 39.79

0061441 renal artery morphogenesis 4.95×10−2 39.79
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Table B.12 KEGG pathways over-represented in Pericol.

Pathway ID Description p-value Fold Enrichment

04512 ECM-receptor interaction 2.39×10−13 7.77

04510 Focal adhesion 3.72×10−10 4.17

05146 Amoebiasis 6.06×10−9 5.50

04151 PI3K-Akt signaling pathway 1.76×10−7 2.85

04145 Phagosome 3.02×10−7 4.09

05144 Malaria 2.23×10−5 6.27

04974 Protein digestion and absorption 2.33×10−5 4.54

05152 Tuberculosis 5.45×10−5 3.12

04380 Osteoclast differentiation 7.96×10−5 3.52

05205 Proteoglycans in cancer 2.46×10−4 2.76

05150 Staphylococcus aureus infection 3.09×10−4 5.12

04670 Leukocyte transendothelial mi-

gration

1.19×10−3 3.20

04611 Platelet activation 3.18×10−3 2.83

00532 Glycosaminoglycan biosynthesis

- chondroitin sulfate / dermatan

sulfate

3.46×10−3 7.68

04142 Lysosome 5.72×10−3 2.79

05222 Small cell lung cancer 6.05×10−3 3.25

04514 Cell adhesion molecules (CAMs) 6.22×10−3 2.60

04610 Complement and coagulation cas-

cades

6.70×10−3 3.56

05200 Pathways in cancer 8.29×10−3 1.80

04015 Rap1 signaling pathway 1.83×10−2 2.05
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04620 Toll-like receptor signaling path-

way

2.13×10−2 2.61

05323 Rheumatoid arthritis 2.36×10−2 2.79

05145 Toxoplasmosis 2.60×10−2 2.51

05140 Leishmaniasis 2.70×10−2 3.03

00920 Sulfur metabolism 3.24×10−2 10.24

04810 Regulation of actin cytoskeleton 3.90×10−2 1.90

Table B.13 Reactome pathways over-represented in Pericol.

Pathway ID Description p-value Fold Enrichment

3000178 ECM proteoglycans 2.74×10−20 11.65

216083 Integrin cell surface interactions 2.31×10−16 9.38

1442490 Collagen degradation 1.88×10−13 9.98

2022090 Assembly of collagen fibrils and

other multimeric structures

4.34×10−10 10.23

1650814 Collagen biosynthesis and modi-

fying enzymes

7.05×10−10 8.03

186797 Signaling by PDGF 9.41×10−10 12.60

3000171 Non-integrin membrane-ECM in-

teractions

1.36×10−8 10.08

3000170 Syndecan interactions 4.54×10−8 12.45

1474244 Extracellular matrix organization 2.56×10−6 15.69

202733 Cell surface interactions at the

vascular wall

3.35×10−6 6.85

2129379 Molecules associated with elastic

fibres

1.21×10−5 7.96
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1474228 Degradation of the extracellular

matrix

1.69×10−5 5.17

2022870 Chondroitin sulfate biosynthesis 1.75×10−5 11.76

3000157 Laminin interactions 2.11×10−5 8.96

114608 Platelet degranulation 2.90×10−5 3.88

1566948 Elastic fibre formation 1.38×10−4 11.20

3000480 Scavenging by Class A Receptors 1.82×10−4 10.61

2243919 Crosslinking of collagen fibrils 2.11×10−4 15.28

3595177 Defective CHSY1 causes TPBS 1.29×10−3 16.81

419037 NCAM1 interactions 1.37×10−3 5.60

166058 MyD88:MAL(TIRAP) cascade

initiated on plasma membrane

1.66×10−3 9.34

5602498 MyD88 deficiency (TLR2/4) 3.56×10−3 12.22

2022923 Dermatan sulfate biosynthesis 3.56×10−3 12.22

5603041 IRAK4 deficiency (TLR2/4) 3.56×10−3 12.22

114604 GPVI-mediated activation cas-

cade

6.01×10−3 4.20

2024101 CS/DS degradation 7.36×10−3 9.60

977606 Regulation of Complement cas-

cade

8.82×10−3 6.00

75892 Platelet Adhesion to exposed col-

lagen

9.00×10−3 8.96

2214320 Anchoring fibril formation 9.00×10−3 8.96

399956 CRMPs in Sema3A signaling 1.08×10−2 8.40

168179 Toll Like Receptor TLR1:TLR2

Cascade

1.21×10−2 16.81
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1592389 Activation of Matrix Metallopro-

teinases

1.57×10−2 5.09

416700 Other semaphorin interactions 1.76×10−2 7.08

3560783 Defective B4GALT7 causes EDS,

progeroid type

2.02×10−2 6.72

4420332 Defective B3GALT6 causes

EDSP2 and SEMDJL1

2.02×10−2 6.72

3560801 Defective B3GAT3 causes JDSS-

DHD

2.02×10−2 6.72

1236973 Cross-presentation of particu-

late exogenous antigens (phago-

somes)

2.18×10−2 12.60

3595172 Defective CHST3 causes SED-

CJD

2.18×10−2 12.60

3595174 Defective CHST14 causes EDS,

musculocontractural type

2.18×10−2 12.60

381426 Regulation of Insulin-like

Growth Factor (IGF) transport

and uptake by Insulin-like

Growth Factor Binding Proteins

(IGFBPs)

2.31×10−2 6.40

389357 CD28 dependent PI3K/Akt sig-

naling

2.62×10−2 6.11

210500 Glutamate Neurotransmitter Re-

lease Cycle

3.29×10−2 5.60
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1971475 A tetrasaccharide linker sequence

is required for GAG synthesis

4.05×10−2 5.17

1660662 Glycosphingolipid metabolism 4.35×10−2 3.73

210990 PECAM1 interactions 4.75×10−2 8.40

Fig. B.21 Barplot of the top 20 (ordered by p-value) GO pathways over-represented in
Pericol.

Fig. B.22 Barplot of the top 20 (ordered by p-value) KEGG pathways over-represented in
Pericol.
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Fig. B.23 Barplot of the top 20 (ordered by p-value) Reactome pathways over-represented in
Pericol.

B.7 CRC Differential Methylation

Table B.14 A differential methylation analysis performed on the TCGA-COAD methylation
dataset using Limma [65] and methylGSA [251]. Results restricted to only include genes
where the majority of CpG sites were significantly (adj p-value ≤ 0.05) hyper-methylated and
the genes were under expressed, or genes where the majority of CpG sites were significantly
(adj p-value ≤ 0.05) hypo-methylated and the genes were over expressed.

CG ID logFC P.Value adj.P.Val Gene Symbol

cg03817621 0.184648306 1.15e-07 5.6e-06 A1CF

cg16531903 0.11884799 6.09e-05 0.000909273 A1CF

cg24411946 0.22016005 2.13e-07 9.11e-06 A1CF

cg04919581 0.14541615 5.29e-08 3.08e-06 ACOT11

cg11177235 0.113410513 2.52e-05 0.000438634 ACOT11

cg13458781 0.142263087 3.27e-08 2.14e-06 ACOT11

cg04699460 0.044267614 0.000358867 0.003866349 ACSM3

cg10265472 0.012608956 0.008158775 0.045052703 ACSM3

cg00096810 -0.110286892 0.002060027 0.015616298 ADAMTS2

cg10208897 -0.061067412 0.004117343 0.026749801 ADAMTS2

cg20422099 -0.13978107 0.002715654 0.019368919 ADAMTS2
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cg02262923 -0.078592923 0.000365816 0.003927325 ADAP2

cg01129238 0.101639739 0.006460857 0.037749673 ADTRP

cg01699293 0.17530894 9.05e-09 8.17e-07 ADTRP

cg26761744 0.164732205 0.001991218 0.015215569 ADTRP

cg03431524 0.086159277 0.000680705 0.006485845 AGFG2

cg18991321 0.145084721 2.23e-08 1.6e-06 AGFG2

cg19543017 0.070686181 0.00056802 0.005606519 AGFG2

cg23606385 0.015390539 0.003513402 0.023672262 AGFG2

cg01540571 0.01050801 0.007379017 0.041743255 AGMAT

cg17385448 0.07926638 2.03e-07 8.77e-06 AGMAT

cg17759086 0.003439294 0.001073172 0.00932609 AGMAT

cg04812347 -0.096099184 4.85e-05 0.000754616 AIF1

cg18113826 -0.087750362 3.4e-07 1.32e-05 AIF1

cg19563932 -0.077175948 0.001821208 0.014197668 AIF1

cg21440587 -0.08380856 0.007305971 0.041406914 AIF1

cg25403205 -0.096843247 1.59e-08 1.25e-06 AIF1

cg17520539 -0.090004548 0.000307769 0.003414371 AKAP12

cg11496569 -0.075398438 0.004422985 0.028252391 AKT3

cg23166773 -0.081990816 4.45e-09 4.89e-07 AKT3

cg21054703 -0.05237527 0.005832398 0.034898937 ALOX5AP

cg08076018 -0.114920336 1.58e-05 0.000298933 ANGPTL2

cg11213150 -0.102155663 2.77e-07 1.12e-05 ANGPTL2

cg13508369 -0.062833282 2.52e-05 0.000439641 ANGPTL2

cg13662634 -0.102798218 3.58e-05 0.000586622 ANGPTL2

cg14281592 -0.111205077 3.35e-07 1.31e-05 ANGPTL2

cg09983301 -0.188427534 1.86e-08 1.4e-06 ANTXR1
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cg19130824 -0.074983986 9.13e-05 0.001268339 ANXA5

cg07434260 0.055145766 1.06e-05 0.000216256 AP1M2

cg08148553 0.021460037 0.003095218 0.021459338 AP1M2

cg15555932 0.051900916 2.85e-06 7.37e-05 AP1M2

cg22614759 -0.119737575 1.18e-06 3.61e-05 ARHGDIB

cg09935994 -0.040991561 0.008231202 0.04534706 ARL4C

cg24441922 -0.099206275 0.003754298 0.02492116 ARL4C

cg10062193 -0.224968933 1.44e-14 6.01e-11 ATP10D

cg03085712 0.013467253 0.007091268 0.040487287 ATP2C2

cg03548384 0.144232345 7.23e-08 3.91e-06 ATP2C2

cg06786050 0.121821902 1.09e-08 9.39e-07 ATP2C2

cg07277633 0.025477896 0.000292359 0.003277385 ATP2C2

cg27459353 0.026184642 7.9e-05 0.001125208 ATP2C2

cg15310871 -0.037876848 5.38e-10 1.09e-07 ATP6V1B2

cg16479633 -0.122554968 1.94e-06 5.38e-05 ATP6V1B2

cg22479161 -0.047728454 0.000199731 0.002401092 BASP1

cg02585702 -0.10585109 0.000917499 0.008234603 BCAT1

cg04011247 -0.127849014 0.005818576 0.034834323 BCAT1

cg04543413 -0.11182852 0.004469585 0.028476118 BCAT1

cg08724310 -0.13530639 0.001713177 0.013527503 BCAT1

cg09800500 -0.077653089 0.009103718 0.048953418 BCAT1

cg10764357 -0.127374332 0.002241639 0.016682348 BCAT1

cg20399616 -0.08627581 0.00033553 0.003657901 BCAT1

cg22229906 -0.158767998 0.000154382 0.001950156 BCAT1

cg23792314 -0.146503179 1.75e-07 7.8e-06 BCAT1

cg23930313 -0.109244935 0.00132155 0.011017504 BCAT1
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cg05663031 -0.074646508 3.51e-08 2.26e-06 BCL6

cg06070445 -0.051042125 0.000137304 0.001768387 BCL6

cg06164260 -0.113684483 2.27e-09 3e-07 BCL6

cg09643398 -0.027996284 0.000628828 0.006085838 BCL6

cg17394304 -0.070120704 1.36e-05 0.000264856 BCL6

cg23655939 -0.079771426 2.41e-07 1e-05 BCL6

cg00177496 0.015437558 0.000258542 0.002966641 BDH1

cg00456086 0.029721007 1.18e-05 0.000235277 BDH1

cg03792768 0.009801446 0.003047623 0.021198377 BDH1

cg07155478 0.039461261 2.39e-05 0.000420404 BDH1

cg09363194 0.002263322 0.006269644 0.036898919 BDH1

cg09610644 0.138932766 2.92e-07 1.17e-05 BDH1

cg16775939 0.176085299 9.58e-06 0.000198449 BDH1

cg19798702 0.199916986 1.16e-08 9.81e-07 BDH1

cg00820740 -0.039822452 0.003680517 0.024544529 BICC1

cg07690768 -0.083336769 0.002995867 0.020921047 BICD1

cg03280108 -0.112932168 1.4e-05 0.000270826 BNIP3L

cg18341905 -0.073406972 0.003990982 0.026121854 BNIP3L

cg02720155 0.166470964 4.73e-05 0.000737866 BTNL3

cg26081900 0.145516387 0.000229078 0.002686941 BTNL3

cg02288969 0.202110673 1.55e-07 7.06e-06 C1orf105

cg03748243 0.146747909 0.000271516 0.00308565 C1orf105

cg09989886 0.007099679 1.6e-05 0.000302159 C1orf105

cg11584111 0.008099298 0.002566075 0.018541165 C1orf105

cg11841239 0.036239636 0.003673737 0.024509215 C1orf105

cg03714163 0.012123344 4.71e-06 0.00011092 C1orf109
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cg06917450 0.083831513 8.7e-05 0.001220389 C1orf109

cg07997689 0.013043978 0.003251765 0.022295298 C1orf109

cg12339802 0.023352367 0.0024382 0.017822999 C1orf109

cg14170840 0.133859161 0.000774139 0.007186369 C1orf109

cg18172330 0.007265984 0.004230518 0.027307935 C1orf109

cg21010197 0.005191234 0.000921723 0.008261715 C1orf109

cg21933021 0.025668598 0.006728665 0.038900967 C1orf109

cg22449745 0.095895105 5.22e-07 1.86e-05 C1orf109

cg24088508 0.08489184 0.000428143 0.004462431 C1orf109

cg27170260 0.012614132 0.005946594 0.035413862 C1orf109

cg27170383 0.009617234 0.003940491 0.02586781 C1orf109

cg20314620 0.012132897 0.007491529 0.042221802 C1orf174

cg17612991 -0.072395537 0.00654993 0.038132287 C3

cg08890828 0.004634842 0.004039813 0.026367435 C5orf30

cg09671005 0.007061006 0.004073155 0.026534331 C5orf30

cg03449125 0.13772522 0.000192037 0.002325112 CAPN5

cg03547523 0.011219859 0.000558252 0.005527191 CAPN5

cg10548968 0.125656739 5.86e-09 5.95e-07 CAPN5

cg14918391 0.00596063 0.002911764 0.020468345 CAPN5

cg16641915 0.009978135 0.009223811 0.049438776 CAPN5

cg00350296 -0.121175447 5.62e-07 1.98e-05 CD248

cg07145284 -0.101339343 0.001598104 0.012811983 CD248

cg13860849 -0.079823146 0.000332922 0.003635481 CD248

cg18935353 -0.083467487 0.000356139 0.003840028 CD248

cg07440264 -0.091771543 0.001089405 0.009440235 CD59

cg08608126 -0.086343828 2.92e-06 7.51e-05 CD59
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cg09864245 -0.109420152 0.005737077 0.034480354 CD59

cg15382933 -0.087817492 1.43e-08 1.16e-06 CD59

cg16578387 -0.032030633 0.000904675 0.008142859 CD59

cg23903301 -0.119673075 2.44e-07 1.01e-05 CD59

cg06288788 -0.112779926 0.006645642 0.038554927 CDH11

cg00456593 0.155503637 6.4e-08 3.56e-06 CDHR5

cg03875235 0.15596109 7.74e-08 4.13e-06 CDHR5

cg05198900 0.123161829 6.19e-07 2.14e-05 CDHR5

cg07336987 0.124840134 2.64e-07 1.07e-05 CDHR5

cg08057038 0.09895496 3.04e-11 1.47e-08 CDHR5

cg11464053 0.101432852 0.00507154 0.03139266 CDHR5

cg13937462 0.143434368 1.62e-06 4.64e-05 CDHR5

cg14149701 0.098806389 2.54e-06 6.69e-05 CDHR5

cg15806880 0.138028767 1.01e-08 8.9e-07 CDHR5

cg16753939 0.144839798 3.36e-10 7.85e-08 CDHR5

cg22289115 0.114369376 3.76e-07 1.44e-05 CDHR5

cg27261397 0.135688561 1.87e-07 8.2e-06 CDHR5

cg03834767 -0.151861623 3.65e-05 0.000595565 CDK14

cg04331802 0.150180329 0.000102388 0.001390828 CDS1

cg04673465 0.138014312 1.98e-09 2.7e-07 CDS1

cg17084361 0.017995571 5.12e-05 0.000789476 CDS1

cg22884714 0.228713877 7.26e-08 3.92e-06 CDS1

cg00919055 0.132654046 4.63e-07 1.69e-05 CDX1

cg03545404 0.09067197 0.004642515 0.029331572 CDX1

cg09690765 0.295201947 1.17e-09 1.87e-07 CDX1

cg11117637 0.142456238 1.03e-07 5.12e-06 CDX1
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cg11503274 0.101046815 4.71e-06 0.000111061 CDX1

cg11524248 0.160599531 1.38e-06 4.1e-05 CDX1

cg15452204 0.157552555 3.96e-08 2.47e-06 CDX1

cg17378342 0.152668608 3.06e-08 2.03e-06 CDX1

cg17512474 0.117766528 1.09e-08 9.41e-07 CDX1

cg18424208 0.139737054 1.57e-07 7.14e-06 CDX1

cg23266594 0.119106484 5.64e-06 0.000128601 CDX1

cg24216701 0.138813432 1.44e-07 6.68e-06 CDX1

cg25132276 0.151766875 1.08e-07 5.31e-06 CDX1

cg26531174 0.190940469 3.76e-08 2.37e-06 CDX1

cg07922062 0.120426117 8.03e-05 0.001141028 CEBPG

cg15046693 0.090371507 1.21e-05 0.000240008 CEBPG

cg25876406 0.002362408 0.004219917 0.027256702 CEBPG

cg02256576 0.086043686 0.000170259 0.002110726 CES3

cg03447083 0.061689679 0.000438096 0.00454345 CES3

cg06799321 0.076921957 0.001051175 0.009173776 CES3

cg09407859 0.226602391 5.72e-05 0.000864371 CES3

cg26538442 0.139858448 0.002335779 0.017230773 CES3

cg19081101 -0.113995718 0.007217134 0.041016706 CHI3L1

cg01940855 -0.137227706 0.007887153 0.043916509 CHST11

cg06647068 -0.084929359 0.002951423 0.02068362 CHST11

cg07911905 -0.064799382 0.002501188 0.018179752 CHST11

cg11425280 -0.145475059 0.002228972 0.016607116 CHST11

cg05228404 -0.134349003 0.00383083 0.025301122 CHST15

cg09341154 -0.128623144 0.006890051 0.039620252 CHST15

cg04861869 -0.039848002 0.004169811 0.027007624 CHSY1
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cg07891271 -0.105015054 0.000836204 0.007644699 CHSY1

cg08165960 -0.110776267 3.92e-07 1.48e-05 CHSY1

cg14232082 -0.087364192 2.07e-06 5.68e-05 CHSY1

cg14397171 -0.068934205 0.000530782 0.005301579 CHSY1

cg15754630 -0.053719678 0.003895383 0.025641951 CHSY1

cg19589317 -0.088692387 0.000512164 0.005150314 CHSY1

cg20357538 -0.094690609 8.89e-07 2.86e-05 CHSY1

cg24312730 -0.021250976 0.002298188 0.017011453 CHSY1

cg08808811 0.007688369 0.000378283 0.00403612 CLCN2

cg22613010 0.007595998 0.004895525 0.030545168 CLCN2

cg00072720 0.034648724 5.92e-05 0.000888798 CLDN7

cg03186999 0.047292485 7.41e-06 0.000160885 CLDN7

cg05490983 0.060500025 2.95e-06 7.57e-05 CLDN7

cg13724311 0.171821652 1.27e-07 6.05e-06 CLDN7

cg15298719 0.095249664 9.09e-08 4.68e-06 CLDN7

cg17265693 0.038266049 0.000230988 0.002705655 CLDN7

cg24944395 0.029602163 3.83e-05 0.000620325 CLDN7

cg02913511 0.137770402 1.91e-07 8.36e-06 CNNM4

cg07224438 0.003052915 0.00156688 0.012602275 CNNM4

cg08313757 0.073339912 0.004122599 0.026774957 CNNM4

cg11158729 0.029257608 0.005706002 0.034333709 CNNM4

cg11464842 0.236148875 9.28e-06 0.000193314 CNNM4

cg12942038 0.228246503 4.27e-06 0.00010236 CNNM4

cg14228484 0.167335541 0.000239995 0.002790672 CNNM4

cg15009198 0.167641842 0.000906455 0.008155484 CNNM4

cg17383207 0.018359255 0.000174438 0.002152498 CNNM4



B.7 CRC Differential Methylation 230

cg19953799 0.275507855 2.25e-06 6.06e-05 CNNM4

cg21238414 0.008925947 0.000106641 0.0014381 CNNM4

cg00172849 -0.110547322 0.001013319 0.008911143 COL11A1

cg03520644 -0.163513669 0.000586213 0.005748702 COL11A1

cg20847625 -0.053014258 0.006116968 0.036212379 COL11A1

cg26436330 -0.195154503 0.001341379 0.011150196 COL11A1

cg19461644 -0.128642045 0.00283143 0.020031266 COL15A1

cg00160583 -0.058114244 0.000312839 0.003461021 COL16A1

cg00439089 -0.07185919 2.06e-05 0.000372258 COL1A1

cg02134839 -0.073187044 0.005672158 0.034182543 COL1A1

cg02827061 -0.064894259 0.001028916 0.009017077 COL1A1

cg03743861 -0.043119421 1.95e-07 8.48e-06 COL1A1

cg03799835 -0.058893599 0.001307671 0.010925715 COL1A1

cg11615029 -0.074988444 7.99e-10 1.44e-07 COL1A1

cg11993636 -0.082964658 1.37e-07 6.42e-06 COL1A1

cg16514513 -0.075506207 2.7e-08 1.86e-06 COL1A1

cg18405262 -0.055306379 2.76e-06 7.16e-05 COL1A1

cg24540710 -0.050277984 3.67e-05 0.000599104 COL1A1

cg25735490 -0.073271292 1.69e-08 1.31e-06 COL1A1

cg00765737 -0.14916473 2.49e-07 1.03e-05 COL4A2

cg04771838 -0.127286462 5.91e-07 2.06e-05 COL4A2

cg16872841 -0.122111096 2.47e-06 6.53e-05 COL4A2

cg13618741 -0.083147356 0.000689065 0.006548014 COL5A1

cg13969662 -0.080127426 0.006246275 0.036791313 COL5A1

cg24784350 -0.136596556 0.004882765 0.030487164 COL6A2

cg20185461 -0.142297073 0.000810098 0.007450748 COMP



B.7 CRC Differential Methylation 231

cg02308245 0.017323415 0.003262526 0.022349733 COX4I1

cg03303025 0.002993548 0.004261472 0.027461191 COX4I1

cg04399085 0.114412228 3.97e-09 4.49e-07 COX4I1

cg05744264 0.160011173 8.33e-06 0.000176666 COX4I1

cg15819333 0.156638699 1.42e-12 1.73e-09 COX4I1

cg21963318 0.027952284 0.000688862 0.006546712 COX4I1

cg19255191 0.008011924 0.000139931 0.001796561 COX5B

cg00574958 0.11044616 0.000441103 0.004568294 CPT1A

cg00941258 0.04897125 0.00131323 0.010963937 CPT1A

cg01260103 0.007900073 0.000720477 0.00678874 CPT1A

cg09737197 0.111436266 0.008187051 0.045166652 CPT1A

cg14073497 0.078051371 0.000210559 0.002507898 CPT1A

cg16296442 0.051365177 0.004461062 0.028437369 CPT1A

cg17058475 0.104474556 0.000322485 0.003544473 CPT1A

cg19081843 0.047314248 0.000422132 0.004412327 CPT1A

cg20562447 0.066516926 0.002064087 0.015641305 CPT1A

cg22911054 0.203425177 2.43e-08 1.71e-06 CPT1A

cg26192826 0.224317645 1.37e-07 6.4e-06 CPT1A

cg17679427 -0.086151782 0.000694183 0.006587723 CREM

cg00687714 0.219981355 9.49e-13 1.29e-09 CRYM

cg07666035 0.010796743 4.33e-05 0.000686794 CRYM

cg10757684 0.005852212 0.000212277 0.002524482 CRYM

cg23014871 -0.191911489 9.13e-15 4.11e-11 CSGALNACT2

cg24376955 -0.062151343 0.000407285 0.004281995 CSGALNACT2

cg00261832 -0.083321299 0.000309099 0.003426345 CTGF

cg18222609 -0.064748793 0.007416752 0.041906442 CTGF



B.7 CRC Differential Methylation 232

cg21919729 -0.044133015 0.001492655 0.012132414 CTSB

cg10980495 -0.02837531 0.001457828 0.011912658 CTSD

cg11946165 -0.051970785 2.28e-09 3e-07 CTSK

cg20802392 -0.075528249 0.000156608 0.001972803 CTSK

cg20817941 -0.067731169 2.07e-05 0.000373391 CTSK

cg24060908 0.176554272 8.8e-06 0.000185208 CWH43

cg00565882 -0.097337802 0.000272234 0.003092742 CYP1B1

cg01410359 -0.070432773 0.001901795 0.014682647 CYP1B1

cg02162897 -0.029479026 0.001664364 0.013222273 CYP1B1

cg02486145 -0.090835667 3.4e-06 8.5e-05 CYP1B1

cg03890222 -0.103133591 0.003815176 0.025221289 CYP1B1

cg06264984 -0.087491263 0.001337832 0.011127719 CYP1B1

cg09799983 -0.114275306 0.000300834 0.003352928 CYP1B1

cg16439198 -0.150278098 0.002461755 0.017956076 CYP1B1

cg20254225 -0.095746429 0.006270534 0.036903609 CYP1B1

cg11540204 0.231629411 1.5e-05 0.000287124 CYP2J2

cg26815229 0.024122411 0.00731849 0.04146848 CYP2J2

cg02824980 0.086557871 1.18e-09 1.88e-07 CYP4F12

cg05722906 0.060425749 3.38e-08 2.19e-06 CYP4F12

cg14711976 0.099118506 0.003397732 0.023058201 CYP4F12

cg23080427 0.092271194 1.2e-07 5.77e-06 CYP4F12

cg07602008 -0.030733803 1.48e-06 4.32e-05 CYR61

cg15648041 -0.062494147 0.004206213 0.027189594 CYR61

cg21091766 -0.065619952 0.001639088 0.013069182 DBN1

cg17239057 -0.094789785 1.97e-05 0.00035889 DEGS1

cg11217654 -0.055692851 1.48e-07 6.8e-06 DENND5A



B.7 CRC Differential Methylation 233

cg05080966 0.045363715 0.003268255 0.022379306 DGAT1

cg08079052 0.088388238 1.79e-05 0.000332189 DGAT1

cg11976048 0.009286064 0.004141081 0.026868116 DHRS11

cg13261938 0.10450984 2.9e-05 0.000493195 DHRS11

cg14076390 0.141301003 6e-06 0.000135282 DHRS11

cg19847411 0.005644689 0.003710842 0.024699706 DHRS11

cg24338748 0.0582815 0.001415241 0.01163137 DHRS11

cg01540102 0.185121572 2.2e-05 0.000392267 DOK4

cg02993352 -0.141376347 0.005891452 0.035173974 DPYSL2

cg10399402 -0.020787628 0.00429656 0.027634228 DPYSL2

cg10789956 -0.094553885 0.000859562 0.007814468 DPYSL2

cg19610383 -0.051922191 0.000384864 0.004094094 DPYSL2

cg15366353 -0.116888765 0.001488318 0.012105615 DSE

cg07946977 -0.152957903 2.48e-10 6.39e-08 DUSP10

cg00974629 -0.066476725 0.002397408 0.017589092 EDNRA

cg04045079 -0.147386236 0.001805774 0.014101578 EDNRA

cg05102394 -0.161445466 0.000377978 0.004033294 EDNRA

cg05618426 -0.096536432 0.004045487 0.02639707 EDNRA

cg14948448 -0.043538714 0.000118272 0.001564893 EDNRA

cg17073859 -0.053943078 0.00237362 0.017450772 EDNRA

cg20557687 -0.142466031 0.002936187 0.020600175 EDNRA

cg05385513 -0.155579386 0.000758659 0.007073076 EFEMP1

cg16100120 -0.173242736 0.000156009 0.001966692 EFEMP1

cg20786074 -0.130178994 0.000125965 0.001648391 EFEMP1

cg24719005 -0.132812096 0.000224772 0.00264623 EFEMP1

cg02586730 -0.05433554 0.002454857 0.017918301 EFEMP2



B.7 CRC Differential Methylation 234

cg11265839 -0.089393592 4.55e-07 1.67e-05 ELK3

cg14265043 -0.025583141 0.005894364 0.035187304 ELK3

cg05050341 -0.034151123 0.003913509 0.025733225 ENG

cg13531977 0.154965653 3.13e-05 0.000525473 EPB41L4B

cg14071612 0.045806128 0.003782067 0.025059246 EPB41L4B

cg14235574 0.175659986 5.21e-05 0.000800935 EPB41L4B

cg14306058 0.134579529 2.08e-06 5.68e-05 EPB41L4B

cg01687402 0.156926149 1.57e-06 4.55e-05 EPN3

cg04267101 0.062775567 0.00168957 0.013382085 EPN3

cg08096854 0.215720924 1.1e-09 1.79e-07 EPN3

cg08449531 0.013756541 0.000288548 0.003242182 EPN3

cg08842032 0.116219763 0.000458671 0.004711064 EPN3

cg09827751 0.060602093 8.58e-05 0.001206625 EPN3

cg10567637 0.022453754 0.000560965 0.005549192 EPN3

cg12791192 0.007260404 0.009214852 0.049399443 EPN3

cg16010178 0.062817868 3.25e-05 0.000541644 EPN3

cg24006361 0.011841436 0.006880961 0.039580854 EPN3

cg24236903 0.010972409 3.21e-05 0.000535806 EPN3

cg00491404 0.152557454 7.17e-10 1.34e-07 EPS8L3

cg00515905 0.177137038 2.25e-09 2.97e-07 EPS8L3

cg03956353 0.125180016 5.34e-08 3.1e-06 EPS8L3

cg23957643 0.131738654 3.73e-08 2.36e-06 EPS8L3

cg01613817 -0.118647713 0.00019861 0.002389719 ERG

cg04163967 -0.132850576 3.73e-08 2.36e-06 ERG

cg17228105 -0.071168012 0.004222695 0.027268317 ERG

cg23340514 -0.085309155 0.002461232 0.017953258 ERG



B.7 CRC Differential Methylation 235

cg03195230 0.00378182 0.000172199 0.002130179 ESRRA

cg03527086 0.070082439 1.32e-09 2.03e-07 ESRRA

cg03764506 0.005791764 0.000984268 0.008702823 ESRRA

cg01330762 0.007983178 9.37e-05 0.001294436 ETHE1

cg12984635 0.133647176 7.69e-09 7.24e-07 ETHE1

cg15012607 0.127187003 1.67e-05 0.000313601 ETHE1

cg16664233 0.007226988 0.000804258 0.007406318 ETHE1

cg25261059 0.040212417 0.004096048 0.026651026 ETHE1

cg14178794 -0.139717645 1.58e-07 7.18e-06 EVC

cg16418810 -0.115434524 0.001668494 0.013248169 EVC

cg17460447 -0.151332738 0.00894431 0.048299311 EVC

cg22473770 -0.104371814 0.000316067 0.003490006 EVI2A

cg23352695 -0.181916445 6.42e-14 1.82e-10 EVI2A

cg01134183 0.022596514 0.003470694 0.023452885 FAAH

cg06911238 0.198922922 2.11e-06 5.75e-05 FAAH

cg07168328 0.119371444 2e-05 0.000363549 FAAH

cg12671744 0.11143201 1.13e-05 0.000226754 FAAH

cg16267850 0.063387337 4.27e-06 0.000102423 FAAH

cg18261491 0.085739889 3.14e-06 7.98e-05 FAAH

cg25706281 0.068452233 2.62e-05 0.000453829 FAAH

cg04177684 0.127614793 3.55e-07 1.37e-05 FAM83E

cg10772322 0.189046734 1.56e-05 0.000296681 FAM83E

cg20082196 0.17434632 4.59e-05 0.000720693 FAM83E

cg27530053 0.115300686 0.008858816 0.04794984 FAM83E

cg25406989 -0.0888068 0.000199907 0.002402479 FBN1

cg07356342 -0.083890778 4.21e-06 0.000101306 FCER1G



B.7 CRC Differential Methylation 236

cg20609803 -0.094473946 3.66e-09 4.25e-07 FCER1G

cg26394055 -0.065544302 0.000261937 0.002999199 FCER1G

cg12643083 -0.113650241 0.001460219 0.011927523 FCGR2A

cg01335180 -0.059768502 0.003063648 0.021286661 FCGR2B

cg03105929 -0.125822265 0.000175028 0.002158498 FCGR2B

cg04094791 -0.033310686 0.006943982 0.039860691 FCGR2B

cg10815343 -0.068434002 2.33e-06 6.23e-05 FCGR2B

cg13139730 -0.034200644 0.004668508 0.029458205 FCGR2B

cg17508302 -0.134607074 1.03e-06 3.23e-05 FCGR2B

cg23270415 -0.042416796 8.91e-06 0.000187039 FCGR2B

cg13912027 -0.167186584 2.14e-05 0.00038297 FCHSD2

cg06883949 0.006993046 2.76e-06 7.16e-05 FGFR3

cg19870628 0.019875332 5.92e-06 0.000133859 FGFR3

cg21311834 0.231673987 3.6e-08 2.3e-06 FGFR3

cg02294302 0.116843876 1.37e-05 0.000267108 FOXD2

cg06611075 0.008677944 0.001534647 0.012401202 FOXD2

cg16657448 0.011196552 0.000539297 0.005369988 FOXD2

cg23659056 0.130945582 0.006246363 0.036791313 FOXD2

cg26518431 0.124165844 0.005014186 0.031125205 FOXD2

cg15800907 -0.122113167 4.37e-06 0.000104369 FPR3

cg08421900 0.005146575 2.3e-05 0.000407569 FRAT2

cg13680696 0.041871448 0.000972758 0.008624821 FRAT2

cg19105245 0.008478691 0.001393327 0.011486063 FRAT2

cg19649259 0.002448071 0.003133202 0.021665277 FRAT2

cg00091633 -0.082088615 3.72e-08 2.35e-06 FSTL1

cg13408152 -0.094537438 1.54e-05 0.00029276 FSTL1



B.7 CRC Differential Methylation 237

cg20114394 -0.040780199 0.002706183 0.019315807 FSTL1

cg00480115 0.196346909 9.42e-09 8.41e-07 FXYD3

cg01408817 0.125052892 2.22e-09 2.95e-07 FXYD3

cg02633817 0.1869328 1.95e-09 2.68e-07 FXYD3

cg02704949 0.123342716 8.48e-10 1.5e-07 FXYD3

cg03322974 0.008406406 9.9e-06 0.000204031 FXYD3

cg21122474 0.101912048 4.57e-08 2.75e-06 FXYD3

cg21304163 0.171410948 2.87e-09 3.53e-07 FXYD3

cg02816367 -0.138922148 0.003707223 0.024682313 FYN

cg05517541 -0.079904626 0.000298877 0.003336849 FYN

cg08130572 -0.200058011 1.14e-11 7.35e-09 FYN

cg14482998 -0.102865383 6.05e-09 6.08e-07 FYN

cg01480180 -0.072285067 0.000111392 0.001490182 FZD1

cg08714590 -0.092262137 5.61e-05 0.000849722 FZD1

cg17497608 -0.096832366 3.77e-05 0.000611898 FZD1

cg26447413 -0.107587705 0.004838525 0.030269548 GAS1

cg03619083 0.135761512 8.23e-07 2.68e-05 GCDH

cg07556193 0.111295535 0.006985432 0.040033063 GDPD2

cg25685838 0.106061012 0.007326822 0.041504894 GDPD2

cg00008544 -0.053651892 9.79e-06 0.000202092 GFPT2

cg09838217 -0.101925591 0.002394819 0.017574656 GFPT2

cg01074657 0.069819468 0.000326275 0.003577098 GIPC2

cg04912843 0.091184472 4.71e-07 1.72e-05 GIPC2

cg09107315 0.083432883 8.38e-07 2.72e-05 GIPC2

cg09662920 0.113862381 2.87e-08 1.94e-06 GIPC2

cg09826056 0.119326032 8.31e-07 2.71e-05 GIPC2



B.7 CRC Differential Methylation 238

cg19766489 0.149080155 1.48e-06 4.33e-05 GIPC2

cg24496666 0.060077152 6.99e-06 0.000153367 GIPC2

cg25288420 0.075479994 1.55e-05 0.000295201 GIPC2

cg03038418 0.105282202 5.73e-07 2.01e-05 GNA11

cg13960192 0.052460123 2.36e-05 0.000416216 GNA11

cg00028829 0.010279274 0.005902452 0.03522249 GOT2

cg06665322 0.194722472 1.26e-06 3.79e-05 GPA33

cg00620452 0.066487919 9.87e-05 0.00134982 GPD1L

cg19143336 0.120782421 7.61e-08 4.07e-06 GPD1L

cg19409588 0.003243707 0.000180401 0.002211263 GPD1L

cg21145686 0.080371178 0.000658748 0.006318589 GPD1L

cg19755435 -0.108503551 4.65e-07 1.7e-05 GPR65

cg09161043 -0.073569965 0.003866563 0.025490364 GPX7

cg18087326 -0.050567926 0.003155061 0.02178576 GPX7

cg18755653 0.003683892 0.006027006 0.035787327 HADH

cg02311725 -0.075228269 0.002233547 0.016635259 HCK

cg00141162 -0.114684365 9e-07 2.88e-05 HCLS1

cg02167021 -0.148642926 3.98e-06 9.66e-05 HCLS1

cg06577710 -0.116364293 3.61e-06 8.9e-05 HCLS1

cg01378515 -0.070575445 3.4e-05 0.000561696 HEG1

cg03440673 -0.094801136 0.005742908 0.034507543 HEG1

cg16143049 -0.069645783 0.000774135 0.007186369 HEG1

cg23174662 -0.096525322 0.000543876 0.005409196 HIF1A

cg02261294 0.066014691 0.007945177 0.044161988 HNRNPAB

cg02370807 0.009864433 0.000670948 0.006414167 HNRNPAB

cg06538757 0.012262158 4.92e-05 0.000763416 HNRNPAB



B.7 CRC Differential Methylation 239

cg07868885 0.00853327 0.003669136 0.024486356 HNRNPAB

cg08583763 0.016308761 1.79e-06 5.03e-05 HNRNPAB

cg10038259 0.006591194 0.004506142 0.028660152 HNRNPAB

cg22125717 0.120193709 0.000715412 0.006749315 HNRNPAB

cg01443318 0.161464138 3.1e-06 7.89e-05 HSD11B2

cg07545640 0.004179551 0.001546887 0.012479487 HSD11B2

cg07724674 0.011175522 0.000352685 0.003810425 HSD11B2

cg20981893 0.01829476 0.000134929 0.001743298 HSD11B2

cg27130954 0.031035632 3.15e-08 2.08e-06 HSD11B2

cg00413099 0.00310086 0.00070281 0.006654837 ID1

cg00494337 0.149926454 3.1e-07 1.23e-05 ID1

cg03154513 0.012883586 0.000288912 0.00324581 ID1

cg09923107 0.088225616 3e-05 0.00050686 ID1

cg21626886 0.023121014 7.63e-06 0.000164681 ID1

cg04690927 -0.232185307 0.000171704 0.002125384 IGFBP3

cg07910986 -0.130018739 0.000755507 0.007050491 IGFBP3

cg08541297 -0.129655345 0.002924676 0.020539424 IGFBP3

cg08831744 -0.150306319 0.002037323 0.015482411 IGFBP3

cg09619271 -0.170312435 0.000333518 0.003639782 IGFBP3

cg10094651 -0.231604472 0.000177115 0.002179146 IGFBP3

cg16447589 -0.17126944 0.00931167 0.049793113 IGFBP3

cg16460681 -0.161524951 0.005915883 0.035278227 IGFBP3

cg23455440 -0.180137288 0.001051214 0.009173914 IGFBP3

cg24772240 -0.140720821 0.000121997 0.001605439 IGFBP3

cg24942272 -0.173253673 0.001580683 0.012694212 IGFBP3

cg26434048 -0.196605598 2.25e-07 9.47e-06 IGFBP3



B.7 CRC Differential Methylation 240

cg03635766 -0.047486243 0.000884466 0.007998953 IGFBP4

cg00790071 -0.102639045 0.000204262 0.00244577 IL1R1

cg05886087 -0.127307627 1.36e-06 4.04e-05 IL1R1

cg27598107 -0.086364348 0.000847278 0.007725628 IL1R1

cg11926473 0.041749232 0.001065631 0.009276233 IMPA2

cg07914866 -0.162664832 0.00031685 0.003496214 IRAK3

cg12866960 -0.082293796 1.73e-09 2.47e-07 IRAK3

cg18177616 -0.119669475 0.0027056 0.019312865 IRAK3

cg02419321 -0.136108152 0.00035592 0.00383825 ITGA5

cg23795217 -0.156611568 0.000143425 0.001834036 ITGA5

cg09326409 -0.148878071 0.003747898 0.024886601 ITGAM

cg15337006 -0.077299933 1.92e-05 0.00035104 ITGAM

cg22490695 -0.093284594 0.002703677 0.019299829 ITGAM

cg13538571 -0.054802197 0.002043085 0.015516451 ITGBL1

cg01648999 0.082425418 0.000111497 0.001491284 KBTBD11

cg08867707 0.147249599 0.001310112 0.010942189 KBTBD11

cg09689137 0.095735216 0.000415144 0.004351683 KBTBD11

cg20910202 0.08755285 0.007561748 0.042531854 KBTBD11

cg23426958 0.063098295 0.001684391 0.013348971 KBTBD11

cg25021970 0.067372469 0.000705002 0.006672084 KBTBD11

cg27126872 0.090262092 6.65e-06 0.000147102 KBTBD11

cg07953201 -0.129312387 0.000490897 0.004977649 KIF26B

cg11912591 -0.062418507 0.002073087 0.015694869 KIF26B

cg15561613 -0.137097218 3.71e-07 1.42e-05 KIF26B

cg21301514 -0.113439195 3.44e-06 8.58e-05 KIF26B

cg26072254 -0.055222414 0.002250624 0.016733808 KIF26B



B.7 CRC Differential Methylation 241

cg23082393 -0.044733829 0.002536148 0.018378706 LAMA4

cg09803764 -0.103734425 1.79e-08 1.36e-06 LAMB1

cg12689670 -0.158148063 1.59e-08 1.25e-06 LAMC1

cg26809372 -0.033006232 0.005600527 0.033845599 LAMC1

cg17227967 -0.09771243 0.004085769 0.026600313 LAMP5

cg08463932 -0.048082039 0.004182441 0.027070391 LAPTM5

cg10001720 -0.096175135 8.17e-09 7.57e-07 LAPTM5

cg12732155 -0.093527794 0.000712902 0.006731315 LAPTM5

cg15459165 -0.071630644 0.000149345 0.001897846 LAPTM5

cg19919590 -0.103098971 0.001710848 0.013513352 LAPTM5

cg24459792 -0.126178091 8.47e-07 2.74e-05 LAPTM5

cg09451413 -0.101435911 0.000502272 0.005070144 LCP2

cg09672233 -0.092931561 8.95e-05 0.001247496 LCP2

cg11528914 -0.11255277 5.04e-05 0.000779172 LCP2

cg17127769 -0.120433863 3.43e-05 0.000566642 LCP2

cg10867751 0.043831315 7.12e-05 0.001033464 LDLRAP1

cg19759804 0.064887249 5.13e-08 3e-06 LDLRAP1

cg04420917 0.123819574 8.46e-08 4.42e-06 LGALS4

cg06394229 0.119779211 3.77e-08 2.38e-06 LGALS4

cg16731016 0.156602503 1.9e-07 8.3e-06 LGALS4

cg19419519 0.150013928 1.43e-09 2.16e-07 LGALS4

cg26510945 0.134749384 0.00030896 0.003425001 LGALS4

cg09719124 -0.073629346 4.98e-06 0.000116103 LMCD1

cg14455403 -0.064019571 0.000741612 0.006945696 LMCD1

cg26083045 -0.049430573 0.005753339 0.034553448 LMCD1

cg12183875 0.19913235 1.02e-07 5.08e-06 LRRC31



B.7 CRC Differential Methylation 242

cg10489463 -0.109819156 0.00368689 0.024574613 LTBP1

cg13213009 -0.127294252 0.000132711 0.001719513 LY96

cg23732024 -0.065098851 0.007499934 0.042256929 LY96

cg04000234 -0.099670626 0.000641078 0.006179926 MACF1

cg08456420 -0.069532482 4.24e-05 0.000674368 MACF1

cg18647268 -0.054823448 0.000735912 0.006904664 MACF1

cg21808448 -0.021527542 0.001033501 0.009050249 MACF1

cg22367631 -0.101947735 0.003852155 0.025411877 MACF1

cg00965748 -0.121637598 0.000186043 0.00226612 MAFB

cg16844989 -0.113240631 0.006403948 0.03749157 MAFB

cg27493965 -0.024738239 0.000693655 0.006583415 MAN2B1

cg25182066 -0.059204639 0.001320631 0.011010542 MAP3K8

cg01611777 -0.089142734 0.000635042 0.006135179 MAP4K4

cg25248045 -0.042302469 0.000678152 0.006467585 MAP4K4

cg02303324 0.08629019 0.000784937 0.007266409 MAP7

cg11114242 0.262091813 3.2e-09 3.84e-07 MAP7

cg12963560 0.079613105 6.24e-08 3.49e-06 MAP7

cg18872215 0.055403112 0.000584873 0.005737687 MAP7

cg19555986 0.042983053 0.002034939 0.015469824 MAP7

cg20026346 0.141833099 1.04e-06 3.25e-05 MAP7

cg20481343 0.004951951 0.004036346 0.026347843 MAP7

cg21462732 0.010736088 0.000712405 0.006727671 MAP7

cg24401026 0.232514634 6.82e-10 1.29e-07 MAP7

cg24584345 0.167330852 1.81e-06 5.08e-05 MAP7

cg00764369 -0.053240068 2.48e-06 6.57e-05 MEG3

cg04291079 -0.044013666 0.000277302 0.003140054 MEG3



B.7 CRC Differential Methylation 243

cg04304932 -0.091228297 1.04e-05 0.000212779 MEG3

cg04576764 -0.091237411 0.000218613 0.002586018 MEG3

cg05711886 -0.075218556 0.003612222 0.024183957 MEG3

cg09280976 -0.07907408 0.002628305 0.018886404 MEG3

cg10515315 -0.064985251 0.003376154 0.022949912 MEG3

cg10943497 -0.06401956 6.18e-09 6.18e-07 MEG3

cg11110759 -0.093782344 0.000344066 0.003732369 MEG3

cg12967319 -0.108911489 0.000263642 0.003015202 MEG3

cg14034270 -0.043537157 0.001155275 0.009893271 MEG3

cg14123427 -0.078944042 0.001124929 0.00968471 MEG3

cg14245102 -0.108469834 0.004140347 0.026865113 MEG3

cg15373285 -0.076850336 0.00571532 0.034380376 MEG3

cg15419911 -0.081342143 0.001056214 0.009208627 MEG3

cg23870378 -0.074040611 0.001884826 0.01458258 MEG3

cg26374305 -0.096071746 0.000156846 0.001975305 MEG3

cg04875062 -0.080659221 1.68e-07 7.54e-06 MFAP2

cg00961326 0.012820767 0.006999298 0.040090176 MMP15

cg16181803 0.008949616 7.54e-06 0.000163087 MMP15

cg20566643 0.008117261 0.001264803 0.01064095 MMP15

cg20722590 0.08442776 1.61e-05 0.000303727 MMP15

cg20751926 0.069971357 4.42e-05 0.000698275 MMP15

cg24306779 0.015973781 0.001218733 0.010327954 MMP15

cg27208052 0.054775683 0.000208378 0.002487154 MMP15

cg08133699 -0.02318553 0.00324695 0.022267336 MMP2

cg09530163 -0.12205862 0.003968161 0.026007342 MMP2

cg22950163 -0.079336185 0.007084858 0.040461188 MMP2



B.7 CRC Differential Methylation 244

cg12531542 0.198645313 1.78e-05 0.000330409 MOGAT2

cg15955277 0.192031784 2.79e-06 7.23e-05 MOGAT2

cg20938170 0.101047811 2.27e-07 9.57e-06 MOGAT2

cg25255988 0.124604655 1.6e-07 7.25e-06 MOGAT2

cg02179764 0.225085024 1.06e-07 5.24e-06 MPST

cg04129736 0.01590704 0.000415115 0.004351496 MPST

cg06230247 0.15035132 0.001874515 0.014520717 MPST

cg07494646 0.023751263 9.2e-06 0.000192029 MPST

cg07819160 0.160616904 0.005071409 0.031392341 MPST

cg08727202 0.097593889 1.8e-06 5.07e-05 MPST

cg12253469 0.157111081 0.00628294 0.036960144 MPST

cg17575915 0.15924199 1.17e-09 1.87e-07 MPST

cg11628739 -0.083647649 0.000344103 0.003732673 MRC2

cg08564601 -0.129923951 9.85e-06 0.000203195 MS4A4A

cg18025430 -0.071873074 0.001164672 0.009956523 MS4A4A

cg03055440 -0.037602474 6.22e-05 0.000925301 MS4A6A

cg24026212 -0.052788181 0.000327771 0.003590418 MS4A6A

cg22771999 -0.186467929 5.67e-06 0.000129235 MSN

cg01375994 -0.062504099 0.00766799 0.042988089 MXRA5

cg09293286 -0.038076341 1.16e-05 0.00023223 MXRA5

cg13581022 -0.051310869 2.06e-06 5.65e-05 MXRA5

cg12472603 -0.087577699 4.01e-07 1.51e-05 MXRA7

cg14042121 -0.065536791 3.31e-05 0.000550279 MXRA7

cg09975715 -0.017925755 0.008873378 0.048012056 MYH10

cg25921609 -0.039775869 7e-05 0.001020035 MYH10

cg01514487 0.147549765 1.54e-06 4.47e-05 MYO1A



B.7 CRC Differential Methylation 245

cg09541248 0.131750683 2.67e-08 1.84e-06 MYO1A

cg11276093 -0.100487318 5.85e-07 2.05e-05 MYOF

cg13669036 -0.097706051 7.53e-06 0.000162956 MYOF

cg14428166 -0.051989752 1.85e-05 0.000340554 MYOF

cg18991240 -0.152274808 1.1e-08 9.45e-07 NAGK

cg14494313 0.185644126 8.47e-05 0.001193196 NAT2

cg18736775 0.238720503 2.24e-05 0.000398436 NAT2

cg09472600 -0.114008101 7.21e-09 6.91e-07 NCF2

cg00950244 0.153243186 4.16e-05 0.000664541 NDUFAF4

cg11787828 0.024243429 0.005167608 0.031842006 NDUFAF4

cg11087503 -0.044121326 0.005154259 0.031782499 NID2

cg16695483 -0.111336963 0.008542482 0.046665354 NID2

cg25685519 -0.143569774 2.16e-06 5.86e-05 NID2

cg14520913 -0.074655952 0.002042491 0.015513055 NNMT

cg01575652 0.0795892 0.001042524 0.009113136 NOL12

cg14370507 0.207995782 1.27e-08 1.05e-06 NOL12

cg19884546 0.013543036 0.000665329 0.006369522 NOL12

cg03793270 -0.097788376 0.000165954 0.002066393 NOX4

cg17063929 -0.114862299 0.00083004 0.007597112 NOX4

cg01885839 -0.024337631 0.000283506 0.003196141 NREP

cg08651538 -0.049807249 0.008071129 0.044693276 NREP

cg25763127 -0.064417308 0.000148421 0.001887956 NRP1

cg27270412 -0.137956492 5.87e-05 0.000882851 NRP1

cg00557402 0.162952847 0.001251944 0.010554519 NXPE4

cg21833776 0.133025857 0.008261179 0.045479948 NXPE4

cg22223402 0.191486665 5.77e-05 0.000869924 NXPE4



B.7 CRC Differential Methylation 246

cg05524246 -0.131334811 0.004372619 0.028000042 OLFML2B

cg02390103 -0.115533744 0.001398145 0.011517394 OSMR

cg03138091 -0.14201413 1.2e-05 0.000238972 OSMR

cg05485663 -0.109050166 0.004540672 0.028832549 OSMR

cg15599832 -0.076753988 0.00011896 0.001572473 OSMR

cg17528648 -0.167653489 0.001775926 0.013918989 OSMR

cg19609242 -0.218510994 7.96e-08 4.22e-06 OSMR

cg22473846 -0.104848974 0.004046507 0.026401986 OSMR

cg26475085 -0.09324139 0.003961187 0.025970761 OSMR

cg04865264 0.028906885 5.62e-05 0.000850919 OVOL2

cg17507897 0.129193285 0.002087778 0.01578286 OVOL2

cg08893575 0.111814642 2.52e-07 1.04e-05 PAK4

cg09506385 0.007763597 3.14e-05 0.000526497 PAK4

cg12406027 0.044752942 1.17e-07 5.69e-06 PAK4

cg24710020 0.064919819 0.00729296 0.041346784 PAK4

cg07840446 -0.079687995 1.88e-05 0.000345742 PALLD

cg08947774 -0.099271944 0.000135591 0.001750763 PALLD

cg17044159 -0.099719143 1.86e-05 0.000342827 PAM

cg00035945 0.046306789 2.24e-07 9.44e-06 PARM1

cg04423976 0.099732954 7.56e-07 2.51e-05 PARM1

cg15871647 0.082472948 5.44e-05 0.000828587 PARM1

cg01535080 -0.119899146 0.004935231 0.030740605 PDE10A

cg04249522 -0.16406998 0.005904088 0.03522964 PDE10A

cg13351249 -0.100512368 0.001355086 0.011242187 PDE10A

cg16051195 -0.130337753 9.89e-06 0.000203768 PDE10A

cg17712241 -0.039077748 0.001990319 0.015211306 PDE10A



B.7 CRC Differential Methylation 247

cg04117986 -0.056297182 2.55e-05 0.00044358 PDGFRB

cg04173992 -0.056027048 1.11e-06 3.42e-05 PDGFRB

cg12727795 -0.116543653 0.00450249 0.028641528 PDGFRB

cg15924831 -0.026776313 0.003470171 0.023450947 PDGFRB

cg16429070 -0.116012273 0.000187381 0.00227926 PDGFRB

cg25110734 -0.114885134 0.000194886 0.002354218 PDGFRB

cg25440811 -0.124036107 0.008834257 0.047848098 PDGFRB

cg17815886 -0.046358051 1.19e-07 5.76e-06 PDLIM5

cg19674166 -0.029518334 0.007037385 0.040254499 PDLIM5

cg04044188 0.227723744 2.88e-06 7.43e-05 PDSS1

cg25196348 0.064586333 3.15e-05 0.000527884 PDSS1

cg09799714 0.222256295 4.39e-08 2.66e-06 PDZD3

cg01348757 0.14366513 0.003343615 0.022782287 PEX11A

cg08749443 0.159646008 7.49e-05 0.001078173 PEX11A

cg11526413 0.218840434 2.96e-07 1.18e-05 PEX11A

cg14154973 0.0313475 6.34e-05 0.000940306 PEX11A

cg17732044 0.023938603 6.96e-05 0.00101503 PEX11A

cg23328050 0.029771949 4.21e-05 0.00067105 PEX11A

cg24252910 0.006280033 0.006615955 0.038421527 PEX11A

cg00902516 -0.043486562 0.003359401 0.022868208 PFKFB3

cg03261682 -0.03807574 0.000364069 0.003911432 PFKFB3

cg05014727 -0.138083379 2.4e-07 9.99e-06 PFKFB3

cg08994060 -0.11853361 1.94e-07 8.45e-06 PFKFB3

cg12235073 -0.060164757 1.3e-11 7.87e-09 PFKFB3

cg16179674 -0.038628868 0.000213415 0.002535811 PFKFB3

cg17545652 -0.063655116 2.15e-05 0.000384417 PFKFB3



B.7 CRC Differential Methylation 248

cg26262157 -0.104413948 4.05e-07 1.52e-05 PFKFB3

cg27545615 -0.068477839 1.41e-05 0.000272871 PFKFB3

cg15928480 0.125068502 0.001930149 0.014846279 PIGR

cg03885270 -0.065781258 4.13e-05 0.000661304 PIP4K2A

cg07171687 -0.070001289 1.97e-05 0.000358814 PIP4K2A

cg09216670 -0.101983645 0.002361182 0.01738098 PIP4K2A

cg09273683 -0.108589469 2.54e-08 1.77e-06 PIP4K2A

cg14215711 -0.134425578 3.7e-08 2.34e-06 PIP4K2A

cg17277615 -0.064178307 8.36e-05 0.001179587 PIP4K2A

cg20641026 -0.037528841 0.000779199 0.007223755 PIP4K2A

cg25073089 -0.019958227 0.006499513 0.037921008 PIP4K2A

cg12488447 0.007171379 0.009287287 0.049690907 PIP5K1B

cg13442709 0.103140978 0.000131338 0.001705019 PIP5K1B

cg13634133 0.02012154 4.1e-05 0.000657166 PIP5K1B

cg02736228 0.170297634 4e-08 2.49e-06 PLEKHA6

cg07010486 0.101898478 4.4e-08 2.66e-06 PLEKHA6

cg08784911 0.107448514 2.33e-05 0.000411561 PLEKHA6

cg09150239 0.014092412 0.000958513 0.00852592 PLEKHA6

cg10094886 0.163590439 5.72e-09 5.85e-07 PLEKHA6

cg13056222 0.07103083 0.002383105 0.017506855 PLEKHA6

cg19403103 0.006641156 0.006332488 0.037184541 PLEKHA6

cg24734365 0.094810401 4.83e-06 0.000113156 PLEKHA6

cg26787863 0.099236183 0.003617343 0.024209243 PLEKHA6

cg00063773 0.081704025 6.37e-06 0.000142052 PLS1

cg05652551 0.232757899 9.48e-09 8.45e-07 PLS1

cg20824294 0.095246718 3.07e-05 0.000516326 PLS1



B.7 CRC Differential Methylation 249

cg05490233 -0.026539101 0.009093583 0.048914192 PLXND1

cg12415479 -0.125206696 0.000919223 0.008246104 PLXND1

cg16850690 -0.109413971 4.87e-07 1.76e-05 PLXND1

cg19727499 0.124146354 4.26e-07 1.59e-05 PPFIA3

cg13625187 -0.020927133 0.000808299 0.00743731 PPFIBP1

cg20912752 -0.024213277 0.004326093 0.027777284 PPFIBP1

cg04314111 0.182753659 1.08e-06 3.35e-05 PRKCZ

cg11227141 0.180629981 1.97e-09 2.69e-07 PRKCZ

cg12639453 0.084278948 0.000822705 0.007543321 PRKCZ

cg16269144 0.126127576 0.008859634 0.047952101 PRKCZ

cg17023856 0.091485809 0.004968313 0.030900016 PRKCZ

cg17815669 0.118694768 0.002562734 0.018523211 PRKCZ

cg22332339 0.255371017 5.63e-09 5.78e-07 PRKCZ

cg22865720 0.003642371 0.003290717 0.02250115 PRKCZ

cg24035370 0.010410715 0.003144151 0.021724059 PRKCZ

cg10077239 -0.103096733 0.000107585 0.001448707 PRKD1

cg10698355 -0.136692469 0.006516313 0.0379916 PRR16

cg22003366 -0.187743346 0.001459351 0.011922081 PRR16

cg25584626 -0.1462167 0.003694709 0.024616704 PRR16

cg26464221 -0.158557631 0.003351043 0.022822689 PRR16

cg00916255 -0.131186811 2.36e-07 9.84e-06 PRRX1

cg07149609 -0.163985176 0.000586658 0.005752783 PRRX1

cg07957294 -0.096257386 0.000261063 0.002991402 PRRX1

cg09010107 -0.124010779 1.35e-05 0.000263765 PRRX1

cg21914290 -0.140487105 0.000496924 0.005026766 PRRX1

cg24376434 -0.102681618 2.61e-08 1.8e-06 PRRX1



B.7 CRC Differential Methylation 250

cg00031402 -0.04554563 0.000513122 0.005157457 PSAP

cg08788055 -0.068494362 0.001565256 0.012592022 PTGIS

cg10772290 -0.097091219 0.003565289 0.023947467 PTGIS

cg01629007 -0.086861074 4.99e-06 0.000116304 PXDN

cg06599209 -0.163476788 1.05e-05 0.000214007 PXDN

cg08534653 -0.145710913 0.00884718 0.047901063 PXDN

cg09618102 -0.164260033 0.007188827 0.040891036 PXDN

cg12780678 -0.155106864 0.002616358 0.018820683 PXDN

cg19517718 -0.112227129 0.001499266 0.012176408 PXDN

cg21647182 -0.04969819 0.005257278 0.032264529 PXDN

cg25181651 -0.155255158 0.002422701 0.017734577 PXDN

cg26691059 0.216243203 1.24e-09 1.95e-07 PXMP2

cg17982102 -0.136477758 9.01e-06 0.000188857 RAB31

cg18456459 -0.15064537 1.37e-05 0.000266876 RAB31

cg17360854 -0.101836667 0.007899433 0.043960163 RBMS1

cg20472746 -0.115120629 2.35e-06 6.28e-05 RGCC

cg02586212 -0.075820979 8.84e-06 0.000185905 RGS1

cg04562217 -0.128753375 6.02e-05 0.000900619 ROBO1

cg08661007 -0.113978837 0.004340965 0.027849752 ROBO1

cg11980129 -0.122090529 0.000342384 0.003718604 ROBO1

cg15325658 -0.103690315 0.000149402 0.001898511 ROBO1

cg21865845 -0.133359615 8.79e-07 2.83e-05 ROBO1

cg07680533 0.091102395 6.22e-07 2.15e-05 SELENBP1

cg16911672 0.181899172 0.000377562 0.004030372 SELENBP1

cg17759475 0.148671679 1.64e-09 2.37e-07 SELENBP1

cg18515587 0.158272743 4.02e-07 1.51e-05 SELENBP1



B.7 CRC Differential Methylation 251

cg24480379 0.138075722 1.96e-07 8.51e-06 SELENBP1

cg24486037 0.165375403 9.27e-08 4.75e-06 SELENBP1

cg26065909 0.162902272 2.51e-07 1.03e-05 SELENBP1

cg21542842 -0.103186833 1.48e-07 6.79e-06 Sep-11

cg01975495 -0.079819935 6.88e-05 0.001005905 SERPINE1

cg17968347 -0.059453535 0.000347443 0.00376189 SERPINE1

cg11692409 -0.07892156 3e-06 7.68e-05 SERPINF1

cg24214470 -0.07118616 8.95e-06 0.000187719 SERPINF1

cg27102649 -0.083087473 3.35e-07 1.3e-05 SERPINF1

cg19453665 -0.026273465 0.007931149 0.044104441 SERPINH1

cg26104986 -0.070264853 0.000594207 0.005812704 SERPINH1

cg26679912 -0.135125791 0.000540917 0.005384766 SFRP4

cg12122241 -0.068203195 7.75e-06 0.000166906 SIRPA

cg14613594 -0.094209407 0.000168188 0.002089802 SIRPA

cg02794695 -0.116510982 7.42e-06 0.000161116 SLA

cg04756252 -0.111746257 8.19e-05 0.001159924 SLA

cg21653105 -0.047978957 3.14e-06 7.97e-05 SLA

cg22801799 -0.094855862 0.000171987 0.002128218 SLA

cg04275881 -0.124438496 6.74e-08 3.71e-06 SLAMF8

cg06764092 -0.120100716 9.2e-05 0.001275839 SLAMF8

cg07625783 -0.15481556 2.44e-08 1.71e-06 SLAMF8

cg17972058 -0.065494719 0.00024917 0.002878779 SLAMF8

cg15355952 -0.051139243 2.17e-08 1.57e-06 SLC1A3

cg21050001 -0.034943206 0.006404563 0.037494616 SLC1A3

cg04996020 0.199514525 9.61e-07 3.04e-05 SLC26A3

cg17268483 0.115342588 0.004784184 0.03000836 SLC27A2
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cg06567290 0.136081683 9.42e-06 0.000195737 SLC37A4

cg08998953 0.016842072 0.000139891 0.001796264 SLC37A4

cg17791936 0.092907713 0.008664715 0.047171079 SLC37A4

cg21561712 0.081942495 0.000749308 0.007004024 SLC37A4

cg01347702 0.152762715 1.78e-08 1.36e-06 SLC44A4

cg03045620 0.087153561 2.28e-06 6.14e-05 SLC44A4

cg04021562 0.063920997 6.08e-08 3.42e-06 SLC44A4

cg04567302 0.184896387 8.68e-09 7.92e-07 SLC44A4

cg05686323 0.120961022 0.001934579 0.014873704 SLC44A4

cg07185041 0.148221279 2.32e-07 9.73e-06 SLC44A4

cg07357081 0.084718674 2.3e-06 6.18e-05 SLC44A4

cg07363637 0.123175065 2.66e-07 1.08e-05 SLC44A4

cg07546508 0.11122955 6.23e-05 0.000927021 SLC44A4

cg09298971 0.087066376 0.007465083 0.042107444 SLC44A4

cg11726150 0.130910734 9.1e-07 2.91e-05 SLC44A4

cg11943056 0.146805789 1.72e-06 4.87e-05 SLC44A4

cg15821546 0.106310684 0.00421004 0.027206345 SLC44A4

cg16553272 0.117821092 3.08e-06 7.84e-05 SLC44A4

cg18856043 0.108732367 9.23e-07 2.94e-05 SLC44A4

cg19117051 0.117385658 7.67e-06 0.000165341 SLC44A4

cg23431175 0.092294133 5.14e-07 1.84e-05 SLC44A4

cg24529722 0.104423403 4.45e-07 1.64e-05 SLC44A4

cg24707219 0.137120373 6.78e-08 3.72e-06 SLC44A4

cg27003765 0.129644581 8.14e-08 4.29e-06 SLC44A4

cg27005847 0.137380284 1.43e-07 6.62e-06 SLC44A4

cg00292986 0.026336766 0.001396213 0.011504461 SLC9A2
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cg01272393 0.142646043 0.002504856 0.018200069 SLC9A2

cg11915641 0.026851992 0.006172237 0.036463271 SLC9A2

cg20050113 0.113390089 1.49e-08 1.19e-06 SLC9A2

cg21697381 -0.095299739 0.002013215 0.015341005 SLFN12

cg24447042 -0.114076716 0.008786387 0.047654645 SMARCA1

cg26010110 -0.188865417 0.009010294 0.048569748 SMARCA1

cg01041405 0.200269441 4.88e-05 0.000758975 SMPD3

cg03412735 0.046854471 0.003755301 0.024926986 SMPD3

cg18497162 0.129572427 7.56e-08 4.05e-06 SPHK2

cg09054633 -0.115810019 0.001916618 0.014770885 SPOCK1

cg18263365 -0.100089929 0.004680251 0.029511613 SPOCK1

cg18603028 -0.117752251 0.001915359 0.014763476 SPOCK1

cg02851793 -0.115628956 4.37e-06 0.000104432 SRGN

cg17342283 -0.108577524 0.000201897 0.002422179 SRGN

cg18278184 -0.097468123 0.007461358 0.042095461 SRGN

cg26522946 -0.141593261 6.25e-05 0.000928952 SRGN

cg27208307 -0.130701601 0.000225493 0.002652899 SRGN

cg01389506 -0.043459562 2.48e-06 6.56e-05 SSH1

cg01791669 -0.046701592 3.98e-06 9.66e-05 SSH1

cg07700680 -0.022496955 0.002106308 0.015898573 SSH1

cg07887608 -0.020278079 2.74e-05 0.000470293 SSH1

cg11114313 -0.040627755 1.2e-08 1.01e-06 SSH1

cg11699334 -0.056962089 0.000473688 0.004833347 SSH1

cg13033858 -0.148484614 6.23e-07 2.15e-05 SSH1

cg14854315 -0.031100585 0.001070424 0.00930806 SSH1

cg17446956 -0.051516053 0.000103496 0.001402847 SSH1
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cg19256314 -0.093163963 0.000839577 0.007669692 SSH1

cg21224380 -0.042808291 0.000763169 0.007105254 SSH1

cg21616405 -0.047889219 0.001784879 0.013972976 SSH1

cg22522688 -0.055642091 0.000484045 0.004919638 SSH1

cg23126152 -0.097003395 2.07e-09 2.79e-07 SSH1

cg25270574 -0.030191788 0.0058154 0.034822153 SSH1

cg26508200 -0.032606918 0.007881671 0.043895241 SSH1

cg27553890 -0.098639513 1.65e-12 1.93e-09 SSH1

cg04077662 -0.097295689 0.002823389 0.019985446 ST6GALNAC5

cg06201642 -0.138915009 0.001157056 0.009905351 ST6GALNAC5

cg09511846 -0.173921607 0.00694338 0.039857816 ST6GALNAC5

cg13463054 -0.179224325 0.001368513 0.011328196 ST6GALNAC5

cg13823136 -0.137191698 0.005833378 0.034902365 ST6GALNAC5

cg15100100 -0.158710554 0.007376443 0.04173227 ST6GALNAC5

cg16966815 -0.104741665 0.003003594 0.020964284 ST6GALNAC5

cg14365564 -0.029412132 0.004376269 0.028016344 STOM

cg12158889 0.098586558 1.88e-05 0.000345361 SUCLG1

cg07438401 0.123270175 2.98e-08 1.99e-06 SUCLG2

cg07703372 0.009558228 0.00260688 0.018770455 SUCLG2

cg13668339 0.173648911 8.84e-07 2.85e-05 SUCLG2

cg16414852 0.165896381 6.13e-07 2.12e-05 SULT1B1

cg23824376 -0.131220347 0.000137705 0.001772858 TENM3

cg27540367 -0.07845929 7.52e-07 2.5e-05 TGFB1

cg08470742 -0.173785849 0.008517192 0.046557382 THBS2

cg17608103 -0.176486619 0.001174174 0.010022387 THBS2

cg21652958 -0.194667161 0.002700437 0.01928296 THBS2
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cg23691781 -0.097700431 3.68e-08 2.33e-06 THEMIS2

cg00156427 -0.080990786 0.002304022 0.017045531 THY1

cg12508624 -0.077771236 0.003690451 0.024593987 THY1

cg13524082 -0.132017558 0.000638268 0.006158438 THY1

cg16566400 -0.123128896 0.004267495 0.027491511 THY1

cg01263877 0.063279338 0.006904857 0.039680404 TJP3

cg02489438 0.037252714 0.002310855 0.017083821 TJP3

cg10733063 0.073354273 0.008115007 0.044869199 TJP3

cg04120171 -0.163376622 0.007298107 0.041371816 TM6SF1

cg09682213 -0.09222304 0.00389696 0.02564935 TM6SF1

cg01157146 0.126553466 0.000661451 0.006339908 TMPRSS2

cg02613803 0.01340107 0.000843712 0.007700033 TMPRSS2

cg12384236 0.029010936 0.003933156 0.025832418 TMPRSS2

cg13489049 0.103759664 4.72e-08 2.81e-06 TMPRSS2

cg14982276 0.04023119 0.006395364 0.037455709 TMPRSS2

cg16084872 0.038591879 1.82e-05 0.000335516 TMPRSS2

cg24901042 0.044203805 0.000434304 0.004512749 TMPRSS2

cg26309194 0.048505249 0.000327248 0.003585871 TMPRSS2

cg01981433 -0.025119162 0.001689289 0.013380292 TNFAIP3

cg18287768 -0.036720648 0.000794083 0.007331202 TNFAIP3

cg18054943 0.054872648 0.000148777 0.001891598 TNK1

cg18632631 0.115600729 2.66e-05 0.000458892 TNK1

cg25499099 0.037630755 0.000340355 0.003700483 TNK1

cg06041363 0.07463485 0.000142792 0.001827832 TTC38

cg08796741 0.01131577 0.000683033 0.006502231 TTC38

cg16674248 0.17325242 4.15e-09 4.64e-07 TTC38
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cg00770085 0.024268442 0.001717828 0.013555646 TTC39A

cg03814321 0.101317082 0.003240371 0.022234881 TTC39A

cg05132999 0.16008967 1.9e-06 5.29e-05 TTC39A

cg07591515 0.136170043 2.72e-05 0.000467718 TTC39A

cg10653240 0.047396092 0.000788607 0.007292375 TTC39A

cg20942910 0.107946565 0.009298771 0.049734882 TTC39A

cg23271269 0.023592361 0.000271375 0.003084629 TTC39A

cg26351104 0.018431638 2.19e-06 5.92e-05 TTC39A

cg09177949 0.003085246 0.005849486 0.034977358 TTLL12

cg01202666 -0.116503661 0.001477033 0.012035077 TWIST1

cg02400740 -0.164499801 0.000485965 0.004936232 TWIST1

cg04917226 -0.123704483 0.001347648 0.011191029 TWIST1

cg05380019 -0.11532784 0.005383943 0.032857077 TWIST1

cg06243400 -0.130769915 0.000341931 0.00371491 TWIST1

cg14515453 -0.125271398 8.53e-05 0.001200064 TWIST1

cg18791205 -0.108632394 0.00686099 0.039490177 TWIST1

cg20121142 -0.152160755 0.000391618 0.004152218 TWIST1

cg23244488 -0.107610989 0.005664874 0.034152129 TWIST1

cg23603376 -0.131671211 0.002944459 0.020645133 TWIST1

cg27013696 -0.108839039 0.000264255 0.003020638 TWIST1

cg14655843 -0.084877935 1.52e-05 0.000289531 UGCG

cg02096633 0.019415573 1.57e-07 7.13e-06 UNC13B

cg06424576 0.016406399 0.001800914 0.01407264 UQCRC1

cg23902361 -0.062251668 0.001143675 0.009813246 VAMP5

cg17771652 -0.128150888 0.008972244 0.048410762 VCAN

cg23991622 -0.18008124 0.004238654 0.027349462 VIM
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cg03160740 0.017844679 2.97e-05 0.000501664 VIPR1

cg06783423 0.052963263 9.07e-06 0.000189896 VIPR1

cg09384400 0.113704207 2.75e-05 0.000471194 VIPR1

cg15185458 0.005289861 0.00604943 0.035890812 VIPR1

cg16180367 0.004734128 0.004996059 0.031034081 VIPR1

cg23517013 0.134728157 1.27e-06 3.82e-05 VIPR1

cg25968378 0.004478506 0.00106869 0.009295913 VIPR1

cg12124912 -0.095074612 3.45e-06 8.59e-05 VSIG4

cg00037952 -0.088071411 2.01e-07 8.69e-06 WBP1L

cg03161190 -0.134722 6.7e-07 2.27e-05 WBP1L

cg09038267 -0.043811381 0.000128201 0.001671968 WBP1L

cg14015502 -0.039634747 0.001884039 0.014577958 WBP1L

cg14939082 -0.095631819 0.000305051 0.003390679 WBP1L

cg15227982 -0.117444848 8.97e-07 2.88e-05 WBP1L

cg15615645 -0.109569318 2.87e-08 1.94e-06 WBP1L

cg17740322 -0.107096655 0.001769412 0.013879466 WBP1L

cg17894755 -0.090371482 0.000271849 0.00308873 WBP1L

cg23247968 -0.098453927 8.41e-05 0.001186298 WBP1L

cg25104397 -0.111821122 3.77e-06 9.23e-05 WBP1L

cg26640901 -0.104594274 6.31e-06 0.000140973 WBP1L

cg27517345 -0.100209443 3.07e-05 0.000516419 WBP1L

cg09842053 0.17374387 2.02e-08 1.48e-06 XDH

cg16862361 0.219221188 1.49e-09 2.21e-07 XDH

cg26767897 0.221560511 1.9e-08 1.43e-06 XDH

cg04125273 0.127860208 0.000264552 0.003023081 ZG16

cg06289826 0.085090239 0.000148217 0.001885941 ZG16
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cg21710408 -0.071808424 0.006646637 0.038557308 ZNF532

cg20332503 -0.084537156 0.000116924 0.001550258 ZYX

B.8 CRC Over-Represented Hyper/Hypo-Methylated Path-

ways

Table B.15 GO pathways over-represented in the TCGA-COAD methylation data.

Pathway ID Description Count Fold Enrichment p-adjusted

GO:0007155 cell adhesion 31 4.647951713 8.32E-09

GO:0030198 extracellular matrix organiza-

tion

20 7.022415524 5.67E-08

GO:0030574 collagen catabolic process 13 13.9789959 6.03E-08

GO:0001525 angiogenesis 15 4.629125928 0.001972279

GO:0030206 chondroitin sulfate biosyn-

thetic process

6 16.51672131 0.008504295

GO:0035987 endodermal cell differentia-

tion

6 15.29326047 0.010057799

GO:0016477 cell migration 12 4.801372474 0.010057799

GO:0007229 integrin-mediated signaling

pathway

9 6.25633383 0.019663004

GO:0030199 collagen fibril organization 6 10.58764187 0.04340959

GO:0045766 positive regulation of angio-

genesis

9 5.385887384 0.04458756

GO:0032967 positive regulation of collagen

biosynthetic process

5 14.96079829 0.046180941
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