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16 Abstract

17 1. Integrating food web indicators into ecological status assessments is central 

18 to developing effective management measures that can improve degraded 

19 ecosystems. This is because they can reveal how ecosystems respond to 

20 environmental change that cannot be inferred from studying habitat, species 

21 or assemblages alone. However, the substantial investment required to 

22 monitor food webs (e.g. via stomach contents analysis) and the lack of 

23 internationally agreed approaches to assessing them has hampered their 

24 development. 
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1 2. Inventories of trophic interactions have been collated worldwide and across 

2 biomes, and can be applied to infer food web structure and energy flow. Here, 

3 we compile a new marine dataset containing 8092 unique predator-prey 

4 interactions from 415,294 fish stomachs. We demonstrate how feeding guilds 

5 (i.e. groupings based on diet and life stage) could be defined systematically 

6 and in a way that is conducive to their application internationally across 

7 ecosystems; and apply them to the North Sea fish assemblage to 

8 demonstrate their responsiveness to anthropogenic pressures.

9 3. We found evidence for seven distinct feeding guilds. Differences between 

10 guilds were related to predator size, which positively correlated with piscivory, 

11 phylogeny, with multiple size-classes of a species often in the same guild, and 

12 habitat, as pelagic, benthic and shallow-coastal foraging was apparent. 

13 4. Guild biomasses were largely consistent through time at the North Sea-level 

14 and spatially aggregated at the regional level with change relating to changes 

15 in resource availability, temperature, fishing, and the biomass of other guilds. 

16 This suggests that fish biomass was partitioned across broad feeding and 

17 environmental niches, and changes over time were governed partly by guild 

18 carrying capacities, but also by a combination of covariates with contrasting 

19 patterns of change. Management of the North Sea ecosystem could therefore 

20 be adaptive and focused towards specific guilds and pressures in a given 

21 area. 

22 5. Synthesis and applications. We propose a food web indicator which has been 

23 explicitly called for to inform policy via food web status assessment as part of 

24 the European Union’s Marine Strategy Framework Directive and the indicator 
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1 toolkit supporting The Convention for the Protection of the Marine 

2 Environment of the North-East Atlantic (the ‘OSPAR Convention'). 

3

4 Keywords: feeding guilds, food web indicator, marine ecosystem, ecosystem 

5 structure and function, environmental change, fishing impacts, good environmental 

6 status, ecological status assessment

7

8 French translation of Title, Abstract and Keywords:

9 Titre: Un indicateur de guilde, basé sur la spécialisation alimentaire, pour 

10 appréhender l’impact des changement environnementaux sur la structure et le 

11 fonctionnement des écosystèmes marins

12

13 Résumé

14 1. L’intégration des indicateurs de réseaux trophiques dans les évaluations des 

15 statuts écologiques est essentielle pour développer des mesures de gestions 

16 efficaces des écosystèmes dégradés. De par leur nature intégrative, ces 

17 indicateurs peuvent dévoiler la façon dont les écosystèmes répondent aux 

18 changements environnementaux même lorsque ces réponses ne peuvent être 

19 déduites des études d’habitats, d’espèces ou d’assemblages effectuées 

20 séparément. Cependant l’investissement considérable nécessaire à la 

21 surveillance des réseaux trophiques (par ex. les analyses de contenus 

22 stomacaux) et l’absence d’une approche internationalement acceptée pour 

23 les évaluer a freiné leur développement.

24
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1 2. Les interactions trophiques ont été inventoriées à travers le monde et les 

2 biomes et peuvent être utilisés pour en déduire la structure des réseaux 

3 trophiques et les flux d’énergie. Nous avons compilé un nouveau jeu de 

4 données marines contenant 8 092 interactions uniques proie-prédateur à 

5 partir de 415 294 estomacs de poissons. Nous décrivons une manière de 

6 caractériser systématiquement les guildes alimentaires (ie. regroupement 

7 basé sur le régime alimentaire et le moment de la vie) et de manière propice à 

8 leur application dans tous les écosystèmes à l’échelle internationale; et nous 

9 les mettons en œuvre dans les assemblages des espèces de poissons de la 

10 Mer du Nord pour décrire leur réactivité aux pressions anthropogéniques. 

11

12 3. Nous avons mis en évidence sept guildes alimentaires distinctes. Les 

13 différences entre guildes sont liées à la taille des prédateurs (positivement 

14 corrélée avec la piscivorie), la phylogénie (plusieurs classes de taille d’une 

15 espèce sont souvent dans la même guilde), et l’habitat (les habitats 

16 pélagiques, benthiques et côtier peu profond sont mis en évidence).

17

18 4. Les biomasses des guildes sont essentiellement constantes à travers le 

19 temps à l’échelle de la Mer du Nord et agrégées spatialement à l’échelle 

20 régionale. Les fluctuations des biomasses sont dictées par la variation de la 

21 disponibilité alimentaire, la température, la pêche et la biomasse des autres 

22 guildes. Cela suggère que la biomasse des poissons est divisée entre de 

23 larges niches alimentaires et environnementales et que les changements 

24 temporels sont en partie contrôlés par la capacité de charge des guildes mais 
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1 aussi par une combinaison de covariables aux fluctuations opposées. La 

2 gestion des écosystèmes dans la Mer du Nord pourrait ainsi être adaptatif et 

3 se concentrer sur des pressions et guildes spécifiques dans une région 

4 donnée.

5

6 5. Synthèse et applications. Dans le cadre de la Directive Cadre Stratégie pour 

7 le Milieu Marin de l’Union Européenne, nous proposons un indicateur des 

8 réseaux trophiques, ouvertement réclamé pour éclairer les pratiques, via 

9 l’évaluation des statuts des réseaux trophiques, ainsi que la boite à outils de 

10 l’indicateur en appui à la Convention pour la protection du milieu marin de 

11 l'Atlantique du Nord-Est (Convention OSPAR).

12

13 Mot-clés: guildes alimentaires, indicateur de réseaux trophiques, écosystème marin, 

14 structure et fonction écosystémique, changement environnementale, impact de la 

15 pêche, bon état écologique, évaluation de l’état écologique

16

17

18 Introduction

19 Determining how anthropogenic and environmental stressors affect ecosystems 

20 is critical in ecological status assessment. Analysis of food webs is seen as a key 

21 component in evaluating ecosystem status because they reveal system-level 

22 phenomena that cannot be detected by studying focal species or assemblages alone 

23 (Cohen, Schittler, Raffaelli, & Reuman, 2009; Rombouts et al., 2013; Tam et al., 

24 2017). For instance, studies have shown that effects mediated via the food web can 
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1 include changes to resources (‘bottom-up’ effects), to predation pressure (‘top-down’ 

2 effects), lead to secondary extinctions, and these responses, among others, may 

3 interact (Brose et al., 2016; Dunne, Williams, & Martinez, 2002; Lynam et al., 2017; 

4 Wang & Brose, 2018). In the marine environment, an area we focus on here, impacts 

5 from overfishing and warming associated with climate change have been widely 

6 reported to manifest at the food web-level (Ciannelli et al., 2007; Heath, 2005; 

7 Planque et al., 2010; Scheffer, Carpenter, & De Young, 2005). Hence, marine food 

8 web indicator development has received much recent attention (e.g. Greenstreet et 

9 al., 2011; Rombouts et al., 2013; Queirós, Fernandes, Genevier, & Lynam, 2018).

10 Organismal body size has been described as a ‘super trait’ since it determines 

11 many other traits which can affect food web structure and energy flux, such as 

12 trophic level, access to resources, vulnerability to predation and sensitivity to 

13 perturbation (Brose et al., 2006; Cohen et al. 2009; Hirt et al., 2018; Petchey et al. 

14 2008; Woodward et al., 2005). This has led to the use of body size distributions (e.g. 

15 Jennings et al. 2001; Kerr & Dickie, 2001), such as proportion of large individuals 

16 (e.g. the large fish indicator; LFI; Engelhard et al., 2015; Greenstreet et al., 2011; 

17 Modica et al., 2014; Shephard et al., 2011), and the inclusion of species life-stages 

18 to interpret changes to food webs (Clegg, Ali, & Beckerman, 2018). Research 

19 conducted by The European Science Foundation Research Network (SIZEMIC) 

20 indicated that further synthesis of taxonomic information with body size distribution 

21 data could help to develop a universal indicator of ecological status (Petchey & 

22 Belgrano, 2010). Despite this, and specific calls for the development of food web 

23 indicators within regulatory frameworks such as OSPAR and the Marine Strategy 

24 Framework Directive (MSFD), a more synthetic approach that encapsulates body 
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1 size, taxonomy and feeding interactions has not yet been accepted into any indicator 

2 framework. 

3 Using functionally distinct ‘guilds’ or ‘groups’ that encapsulate taxonomic and 

4 trait information relevant to food web assessment has been widely advocated (e.g. 

5 EC, 2010; ICES, 2014, 2018; Rombouts et al., 2013; Shephard et al., 2015). Yet, the 

6 process of defining such groups has received less attention, often relying on either 

7 feeding ecology, habitat preference, taxon-based morphological information, or some 

8 expert judgement of a combination of these (e.g. Greenstreet et al. 1997; Heath, 

9 2005; Reecht et al. 2013; Shephard et al., 2014; but see Garrison & Link, 2000). This 

10 makes comparisons across systems challenging because any difference could have 

11 a methodological basis. Another approach would be to comprehensively survey 

12 feeding interactions. However, this would be prohibitively expensive (Gray et al., 

13 2015; Ings et al., 2009), especially given the dearth of feeding information for the 

14 lower tropic levels in marine food webs (Rombouts et al., 2013), and this is before 

15 more complex spatial and/ or temporal changes in communities (e.g. via seasonal 

16 migrations) or interactions between small and large individuals are considered. Thus, 

17 despite the many potential advantages of food web assessment, and further 

18 integration of taxonomic and body size data into this, defining guilds and gathering 

19 feeding interaction data remains a significant challenge. 

20 Inventories of trophic interactions with predator-prey body sizes have been 

21 collated worldwide and across biomes (e.g. Brose et al., 2005; Gray et al., 2015; 

22 Pinnegar, 2014). Information from these can be applied to assess within- and cross-

23 system changes in food web structure and energy flow in a repeatable, standardised 

24 way. For instance, based on species lists collated during long-term UK-wide 

Page 7 of 51 Journal of Applied Ecology



8

1 monitoring of running waters, Gray et al. (2016) used a feeding link inventory to infer 

2 food web structure and thereby asses biotic recovery following widespread 

3 improvements in water quality. Feeding inventories such as the ‘Integrated Database 

4 and Portal for Fish Stomach Records’ (DAPSTOM; Pinnegar, 2014) and ICES ‘Year 

5 of the Stomach’ database (ICES, 1997; www.ices.dk/marine-data/data-

6 portals/Pages/Fish-stomach.aspx) exist for marine ecosystems but have not yet 

7 been applied to develop food web indicators. We combine these databases to 

8 produce the most comprehensive dataset of trophic interactions for the North East 

9 Atlantic (NEA) and its marginal seas. These data are then used to establish ‘feeding 

10 guilds’ (henceforth guilds, defined here as predators that have many prey taxa in 

11 common; Garrison & Link, 2000) for a range of juvenile and adult size classes per 

12 species using an approach that could be reproduced where taxonomic, feeding 

13 interaction and ontogenetic trait data exist. We then use these guilds to assess 

14 changes in fish populations in the North Sea as a case study. In doing so, our aim 

15 was to assess the applicability of guilds as the basis of an indicator for food webs to 

16 support OSPAR Quality Status Assessments (and fulfil the candidate indicator 

17 requirement ‘biomass and abundance of functional groups’) and Good 

18 Environmental Status (GES) assessments to meet the needs of the European MSFD 

19 and national reporting (e.g. UK Marine Strategy).

20 Specifically, we test for distinct guilds and partitioning of fish biomass across 

21 them, how this varies in space and time, and relate these to anthropogenic and 

22 environmental stressors. Because guilds integrate biomass structure with the 

23 processes that cause it, such as predation (e.g. variation in piscivore biomass), 

24 energy flux and resource limitation (e.g. via dynamic relations between guilds), 
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1 recruitment and ontogeny (i.e. taxa occur across multiple guilds because their diet 

2 changes through ontogeny), we use the distribution and dynamics of guild 

3 biomasses as a measure of ecosystem structure and functioning. Hence, we assess 

4 whether change in the biomass of guilds in the North Sea was indicative of changes 

5 in ecosystem structure and functioning between 1985-2014, and whether adaptive 

6 management over that period (i.e. reductions in fishing activity) were detectable. We 

7 test the following hypotheses: i) there are distinct guilds in the trophic interaction 

8 dataset; ii) guild biomasses, and thus food web structure and ecosystem functioning, 

9 vary in space; iii) spatiotemporal change in guild biomasses are related to changes 

10 in resource availability (bottom-up), temperature (which can be a combination of 

11 direct and indirect effects impacting both bottom-up and top-down processes, e.g. 

12 see Lynam et al., 2017), inter-guild predation and fishing (top-down effects). Our aim 

13 was two-fold: firstly, to develop a reproducible method for defining guilds and, 

14 secondly, to assess whether they could be applied to reveal ecosystem-level 

15 responses to stressors and thus offer potential as a food web indicator. 

16

17

18 Materials and Methods

19 Feeding guild classification

20 DAPSTOM is an ongoing initiative digitizing fish stomach records. The 

21 database contains information collected between 1836-2013 on 187 predator 

22 species (most occurring in northern European groundfish surveys). ICES Year of 

23 The Stomach Dataset contains records from 35 fish species between 1980-1991 

24 sampled in the North Sea. Both datasets have information on predator-prey 
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1 interactions for given sea areas and years. The new trophic interaction dataset 

2 spans the NEA (Fig. S1), contains 8092 unique predator-prey interactions from 

3 415,294 fish stomachs, representing 155 predatory fish taxa and 1643 prey taxa. 

4 Guilds are defined here as a group of predators that have many prey taxa in 

5 common, and whose prey differentiate it from other predator guilds. We pooled all 

6 observed feeding links for five size classes of each predator taxa (usually predator 

7 species; predator groupings are thus referred to as taxa-by-size-classes) across both 

8 space and time to produce an aggregated diet for each. We pooled in this way 

9 because stomach contents analysis captures only a snapshot of a predator’s diet, 

10 predators are typically gape-limited (i.e. body size is an important determinant of 

11 what prey are available to a predator), the developmental stage of fish is important 

12 for stock assessment, and fishing is known to disproportionately remove large fish 

13 from high trophic levels (Greenstreet et al., 2011; Shephard et al., 2012; Shin et al., 

14 2005). Taxa-by-size-class categories were defined as: <3 cm considered larvae (Lv); 

15 small juvenile fish (Js) of 3 cm to half of length at maturity; juvenile-medium fish (Jm) 

16 from half of length at maturity to length at maturity; medium fish (M) from length at 

17 maturity to half-length at infinity; and large fish (L) above half-length at infinity. 

18 Length at maturity and length at infinity were estimated for fish taxa using the R 

19 package Fishlife (Thorson, Munch, Cope, & Gao, 2017). 

20 Any rarefaction to test for the number of stomachs required to reach a dietary 

21 asymptote would be confounded here by the differences in spatial and temporal 

22 distribution of sampling effort. For example, the number of samples required to 

23 classify the diet of a predator one year may be different from another year, or other 

24 predator species in the same year, simply because samples varied in their spatial 
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1 distribution. Our aim therefore was to group fish into guilds based on their having 

2 similar predatory roles given the broadest understanding of predator-prey 

3 interactions and in a way that was insensitive to variation in sampling effort across 

4 predators. Hence, we selected only taxa-by-size-classes with 30+ stomach samples 

5 in the trophic interaction dataset to avoid inaccurate representation of diets. In 

6 addition, we use the presence of prey taxonomic ‘family’ to account for changes in 

7 predator-prey interactions through space and/or time, which will be strongly 

8 influenced by prey availability and sampling effort (e.g. Pinnegar, Trenkel, Tidd, et 

9 al., 2003; Woodward et al., 2010). Using prey species identity (e.g. rather than 

10 family) or a quantity (e.g. % occurrence) could mean we interpret predators to be 

11 selecting different prey and/ or at different rates when in fact they are feeding on 

12 similar taxa at quantities driven by their relative abundance in the environment. An 

13 additional concern was that the diet width of predators with more stomach data could 

14 be broader due to sampling bias (e.g. Table S1). We attempt to standardise the data 

15 by using the median number of prey families exploited (n = 21) as a threshold for 

16 maximum diet width thereby excluding rarely consumed prey for highly-sampled 

17 predators (i.e. to make sampling across predators more consistent, we use all data 

18 for the majority of predators, but remove rare prey from the minority of predators with 

19 the most data). We also distinguish fish larvae (<=3 cm) as prey from other fish (>3 

20 cm), as feeding on larvae is analogous to zooplanktivory as opposed to piscivory, 

21 and use the lower taxonomic classification of ‘order’ for larvae due to the difficulty in 

22 resolving their taxonomy. Guilds were assigned in R using the stats package (R 

23 Development Core Team, 2018) and based on cluster analysis using the ‘ward D2’ 

24 agglomeration method on Sørensen dissimilarities on binary data. The optimum 
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1 number of feeding guilds (i.e. clusters) was assessed using the average silhouette 

2 width (Kaufman & Rousseeuw, 2009), gap statistic (Tibshirani, Walther, & Hastie, 

3 2001) and elbow method.

4 We explore differences between guilds by relating covariates to non-metric 

5 multidimensional scaling (nMDS) dimensions and generate p-values based on n = 

6 999 permutation tests using the envfit function in the R package vegan (Oksanen et 

7 al., 2015). Specifically, we assess whether variation in predator size, the occurrence 

8 of different prey functional groups (e.g. benthic, planktonic; using World Register of 

9 Marine Species classifications), prey types (after Pinnegar, 2014), prey phyla and 

10 variation in sampling effort across predators (i.e. number of stomachs) were 

11 significant explanatory variables in our ordination. 

12

13 Data and statistical modelling to assess changes in guild biomass and 

14 correlations with covariates

15 We investigate changes in biomass of guilds based on processed survey data 

16 (Moriarty, Greenstreet, & Rasmussen, 2017) and make use of the Greater North Sea 

17 otter trawl data in quarter 1 (i.e. the International Bottom Trawl Survey, henceforth 

18 trawl data; Moriarty & Greenstreet, 2017). We adjusted for the area swept to 

19 estimate the absolute biomass of each species and length category at the ICES 

20 statistical rectangle-scale. Feeding guilds were allocated based on taxa and size 

21 category to estimate the annual biomass of each guild in each grid cell.

22 To estimate annual fishing pressure at the same scale, beam and otter trawl 

23 effort (fishing hours) was compiled for the period 1985-2014 after Couce, 

24 Schratzberger, & Engelhard (2019). Pelagic trawling impacts were estimated using 
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1 landings reported by the Scientific, Technical and Economic Committee for Fisheries 

2 (2017). Annual estimates for pelagic landings for the complete guild biomass time-

3 series was not possible so only mean pelagic landings were assessed. As an 

4 estimate of resource availability, annual averages of zooplankton density were 

5 calculated for hydrodynamic regions (after Capuzzo et al., 2017; see also Van 

6 Leeuwen, Tett, Mills, & Van Der Molen, 2015) between 1985-2014 from the 

7 Continuous Plankton Recorder (CPR, https://www.cprsurvey.org/data/our-data/; 

8 Batten et al., 2003; SAHFOS, 2018). Mean annual sea bed temperature data were 

9 calculated using the data product published by the Copernicus Marine Environment 

10 Monitoring Service (http://marine.copernicus.eu) for the MyOcean project (see 

11 Wakelin et al., 2015).

12 We modelled annual estimates of fish biomass for the guilds at location  and 𝑠

13 time  (from 1985, , to 2014, ),  (a 7 dimensional vector), as a function 𝑡 𝑡 = 1 𝑡 = 30  𝑮𝑠,𝑡

14 of top-down effects (beam trawl effort, , and otter trawl effort, ), 𝑉𝑏𝑒𝑎𝑚,𝑠,𝑡 𝑉𝑜𝑡𝑡𝑒𝑟,𝑠,𝑡

15 bottom-up effects (zooplankton abundance, , and pelagic fish landings, ) 𝑉𝑧𝑜𝑜,𝑠,𝑡 𝑉𝑝𝑒𝑙,𝑠,𝑡

16 and temperature, . To account for temporal and spatial correlation in the data, 𝑉𝑡𝑒𝑚𝑝,𝑠,𝑡

17 we used a mixed effect model (Fig. 1). 

18 For each location , we calculated the mean value of the covariates across all 𝑠

19 30 years,

20

21

22

𝑽𝒔 =
1

30

30

∑
𝑡 = 1

𝑽𝑠,𝑡, (1)
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1 where . For some of the covariates 𝑽𝑠,𝑡 = (𝑉𝑡𝑒𝑚𝑝,𝑠,𝑡,𝑉𝑜𝑡𝑡𝑒𝑟,𝑠,𝑡,𝑉𝑏𝑒𝑎𝑚,𝑠,𝑡,𝑉𝑝𝑒𝑙,𝑠,𝑡,𝑉𝑧𝑜𝑜,𝑠,𝑡)′

2 there was evidence of quadratic effects, . We defined 𝑼𝑠 = (𝑉𝑡𝑒𝑚𝑝,𝑠
2,𝑉𝑜𝑡𝑡𝑒𝑟,𝑠

2,𝑉𝑏𝑒𝑎𝑚,𝑠
2)′

3 the expected guild biomass at location s as

4

5

6 where  is a 7-dimensional vector,  is a  matrix and  is a  𝜽 𝐵𝜇 7 × 5 𝐵𝑝𝜇 7 × 3

7 matrix. The dynamics of the covariates, , at location  and time  were described 𝑽𝑠,𝑡 𝑠 𝑡

8 by 

9

10

11 where  is a 7-dimensional vector and  follows an independent auto 𝜷𝑣,𝑠 𝝐𝑠.𝑡

12 regressive model of order 1 (Chib, Omori, & Asai, 2009), i.e.,

13

14

15 where the diagonal elements of  and  are  and  respectively, and the 𝑃𝜖 Σϵ 𝝆𝜖 𝝈2
𝜖

16 off-diagonal elements are 0. The rate of change in the guild biomass at location  𝑠

17 was vector defined as

18

19

20 where  is a 7-dimensional vector,  is a  matrix,  is sampled from a 𝝁𝛽 𝐵𝛼 7 × 5 𝜼𝑠

21 spatial auto-regressive model with correlation parameter  and variance  (Ver 𝝆𝜂 𝝈2
𝜂

22 Hoef, Peterson, Hooten, Hanks, & Fortin, 2018), and .  describes the 𝝎𝑠 ∼  𝑁(𝟎,Ω) Ω

23 covariance of the rate of change between guilds. The guild biomass at location  and 𝑠

24 time  was𝑡

(2)𝝁𝑠 = 𝜽  +  𝐵𝜇𝑽𝒔 + 𝐵𝑝𝜇𝑼𝑠,

𝑽𝑠,𝑡 =  𝑽𝑠 +  𝑡𝜷𝑣,𝑠 +  𝝐𝑠.𝑡 (3)

𝝐𝑠,𝑡 ∼ 𝑁(𝑃𝜖𝝐𝑠,𝑡 ― 1,Σ𝜖), (4)

𝜷𝑠 =  𝝁𝛽 + 𝐵𝛼𝜷𝑣,𝑠 +  𝜼𝑠 +  𝝎𝑠 (5)

Page 14 of 51Journal of Applied Ecology



15

1

2

3 where  is the expected guild biomass at location , defined in Equation 2, , 𝝁𝑠 𝑠 𝜷𝑠

4 defined in Equation 5 and  follows an independent auto-regressive model of order 𝜻𝑠,𝑡

5 1 with parameters  and . Due to the dimensionality and correlation of the 𝝆𝜁 𝝈2
𝜁

6 uncertain parameter space, we fitted the model using No U-turn Hamiltonian Monte 

7 Carlo (Hoffman & Gelman, 2011) in the R package Stan (Gelman, Lee, & Guo, 

8 2015). 

9

10 Fig. 1. A directed acyclic graph (DAG) of the model. 

11

12 Using Bayes factors (ratios of the likelihood probability) we can evidence the 

13 relationship between the biomass of guilds and covariates in space and over time. 

𝑮𝑠,𝑡 = 𝝁𝑠 + 𝑡𝜷𝑠 + 𝜻𝑠,𝑡 (6)
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1 We focus primarily on results which surpass the more stringent thresholds suggested 

2 by Gelman & Robert (2014; Bayes factors <=0.04 and >=25 indicate strong to 

3 compelling evidence for a negative or positive relationship, respectively) but note 

4 less compelling relationships following Kass & Raftery (1995) which could 

5 correspond with p values of 0.05 (Bayes factors between >0.04 to 0.333 and 3 to 

6 <25 indicate evidence for a negative and positive relationship, respectively).

7 We complement this finer spatial scale approach using structural change 

8 analysis (Zeileis, Kleiber, Walter, & Hornik, 2003; Zeileis, Leisch, Hornik, & Kleiber, 

9 2015) to test for significant sustained temporal change in guild biomass at the whole 

10 system level. Further details of data generation and statistical modelling are given in 

11 Supporting Materials and Methods.

12

13 Results

14 Feeding guild classification

15 There were diet data for 220 taxa-by-size-classes (73 predator taxa) and 

16 multiple distinct guilds were evident (nMDS axes 1-2; r2 = 0.68, p = 0.001; we 

17 selected seven as an optimum based on Fig. S2), supporting our first hypothesis that 

18 multiple guilds are identifiable (Fig. 2; S3; S4; Tables S1-S3). Omnivory was 

19 ubiquitous, with fish, benthic and planktonic prey occurring in the diet of all guilds, 

20 albeit to quite different levels. Arthropoda, specifically crustaceans, were the most 

21 frequently encountered prey phylum across all but a piscivorous guild (Table S2). 

22 Differences in the diet of guilds were related to the size of predators, which positively 

23 correlated with piscivory, and negatively correlated with % Annelida, Mollusca and 

24 Arthropoda, among other prey (Fig. 2; S4; Table S3). Differences between guilds 
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1 were also related to habitat as, for example, planktonic and benthic foraging guilds 

2 were apparent, and these correlated with planktivory and benthivory gradients (i.e. 

3 predator clustering based on prey presence data was supported by the relative 

4 occurrence of prey functional groups to predator diets). The number of stomachs 

5 processed and the number of observations for each taxa-by-size-class were not 

6 significant explanatory variables for discriminating between guilds (Table S3), 

7 indicating that differences in sample size were not driving guild differences. The 

8 following seven guilds were identified: 1) ‘Generalist planktivore’; 2) ‘Zooplanktivore’; 

9 3) ‘Coastal benthivore’; 4) ‘Generalist benthivore’; 5) ‘Specialist benthivore’; 6) 

10 ‘Zoobenthivore’; and 7) ‘Piscivore’. Guilds are described in detail in Supporting 

11 Results.
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Fig. 2. a) Differences between guilds in nMDS represented by standard error ellipses 

with % occurrence of prey functional groups and predator length in cm (Size); b) significant 

% occurrence of prey phyla recorded in predator stomach contents. c) Variation in guild 

biomasses on a Log10 scale over the study period in the North Sea. GP = ‘Generalist 

planktivore'; ZP = ‘Zooplanktivore’; CB = 'Coastal benthivore’; GB = ‘Generalist benthivore '; 

SB = 'Specialist benthivore'; ZB= 'Zoobenthivore'; PI = 'Piscivore'; NG = ‘No guild’. The 

respective number of taxa-by-size-classes are represented in brackets.
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1

2 Guild-level assessment of North Sea Otter trawl data

3  All guilds identified in the NEA stomach contents data were present in the trawl 

4 data, with corresponding information for 175 taxa-by-size-classes representing 

5 99.7% of the biomass (Fig. 2; Table S1; S4). Three guilds made up 93.9% of the 

6 biomass: the Piscivore guild (33.6%) which was dominated by a range of whiting 

7 (Merlangius merlangus), grey gurnard (Eutrigla gurnardus) and cod (Gadus morhua) 

8 size classes; the Generalist planktivore guild (31.1%) was dominated by juvenile 

9 herring (Clupea harengus), followed by adult herring and a range of size classes of 

10 Norway pout (Trisopterus esmarkii) and mackerel (Scomber scombrus; i.e. forage 

11 fish); and the Specialist benthivore guild (29.2%) contained a range of size classes 

12 of haddock (Melanogrammus aeglefinus), dab (Limanda limanda), plaice 

13 (Pleuronectes platessa) and sole (Soleo soleo). The Zooplanktivore (4.7%), 

14 Generalist benthivore (0.5%), Zoobenthivore (0.5%), Coastal benthivore (0.1%), 

15 guilds represented a tiny fraction of the surveyed biomass (see also Supporting 

16 Results; Table S4; Fig. S5, S6).

17 Guilds were widely distributed but their biomass was spatially aggregated within 

18 the North Sea, confirming our second hypothesis that ecosystem structure and 

19 function vary in space (Fig. 3). The Piscivore and Zoobenthivore guilds aggregated 

20 in the west, Specialist and Generalist benthivore guilds in the north, the Coastal 

21 benthivore and Zooplanktivore guilds in the south, and Generalist planktivores were 

22 more patchy aggregating around Dogger bank and in the north, among other areas.

23 Guild biomasses related to environmental and anthropogenic covariates in 

24 space and over time, supporting our third hypothesis that resource availability, 
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1 temperature and fishing effects are important drivers of change in ecosystem 

2 structure and function (Table 1; S5). The majority of guild and covariate spatial 

3 correlations were strong to compelling. For example, Piscivore guild biomass 

4 correlated positively with otter trawling, but negatively with pelagic landings, 

5 temperature and zooplankton density, and was not related to beam trawling; and 

6 otter trawling correlated negatively with Coastal benthivore biomass, with no 

7 relationship to Zooplanktivore biomass, and positively with all other guild biomasses 

8 (Figs. 3-4). 

9 Temporal correlations between guilds and between guilds and covariates were 

10 all weak. Temperature correlated dynamically and positively with Zooplanktivore 

11 biomass, and negatively with Generalist benthivore and Piscivore biomass. 

12 Zooplankton density correlated dynamically and positively with Zoobenthivore 

13 biomass. Negative dynamical relationships existed between beam trawling and 

14 Zoobenthivore and Piscivore biomasses highlighting potential negative impacts from 

15 fishing and recovery from it on these guilds. However, weak positive dynamical 

16 correlations were also evident between beam trawling and Zooplanktivore, 

17 Generalist benthivore and Specialist benthivore biomasses (Figs. 5-6). There was no 

18 evidence for negative dynamical correlations between guilds (i.e. top-down inter-

19 guild control; Fig. 5), but only weak positive correlations. Despite marked regional 

20 changes in guild biomasses (Fig. 5) and large within-guild variation in the distribution 

21 of biomass between taxa-by-size-classes (Fig. S6), sustained changes at the North 

22 Sea-scale were less apparent. Change in Zooplanktivore and Generalist planktivore 

23 guilds was driven by changes in the surveyed biomass of individual species within 

24 them, namely increasing juvenile sprat (Sprattus sprattus) and decreasing herring, 
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1 respectively (Fig. 2c; S6; S7), with shorter-term fluctuations evident in the Piscivore 

2 and Coastal benthivore guilds.

3

4 Table 1. Positive and negative relationships based on Bayes factors evident 

5 following mixed effect modelling for spatial (denoted by *) and dynamic correlations 

6 between guild biomasses and covariates. Columns represent guilds: GP = 

7 ‘Generalist planktivore'; ZP = ‘Zooplanktivore’; CB = 'Coastal benthivore’; GB = 

8 ‘Generalist benthivore '; SB = 'Specialist benthivore'; ZB= 'Zoobenthivore'; PI = 

9 'Piscivore'; related to covariates (rows). Compelling evidence for a negative (<0.01 = 

10 ---) or positive (>100 = +++) relationship; strong evidence for a negative (>0.01 to 

11 0.04 = --) or positive (25 to <100 = ++) relationship; evidence of a negative (>0.04 to 

12 0.333 = -) or positive (3 to <25 = +) relationship (see Table S5 for Bayes factors).  

13

 GP ZP CB GB SB ZB PI
Temperature* --- +++ +++ --- --- +++ ---
Otter trawling* +++ --- +++ +++ +++ +++
Beam trawling* +++ +++ + - --- --  
Pelagic landings* --- + --- --- - ---
Zooplankton* +++ +++ +++ ---  --- ---
Temperature + - -
Otter trawling  
Beam trawling + + + - -
Zooplankton +  
ZP +  
CB  
GB +  
SB + +  
ZB + +  
PI +  + + + +  

14

15

16
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1

2 Fig. 3. Mean feeding guild biomass distribution between 1985 and 2014 across ICES 

3 statistical rectangles in the North Sea. 
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1
2 Fig. 4. Mean covariate distributions between 1985 and 2014 across ICES statistical 

3 rectangles in the North Sea. Zooplankton density per m3 has been calculated for 

4 hydraulic zones following Capuzzo et al., (2017).

5

Page 23 of 51 Journal of Applied Ecology



24

1

2 Fig. 5. Feeding guild biomass change over time between 1985 to 1999 and 2000 to 

3 2014 across ICES statistical rectangles in the North Sea.

4

5
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1

2 Fig. 6. Change in mean annual fishing effort, zooplankton density and sea bed 

3 temperature ( ̊C) between 1985-1999 and 2000-2014 across ICES statistical 

4 rectangles in the North Sea. Zooplankton density has been calculated for 

5 hydrodynamic zones following Capuzzo et al. (2017).

6

7 Discussion

8 Guild assessment represents a synthesis of taxonomic- and size-based 

9 approaches, supplemented with dietary information, that can reveal higher-level 

10 phenomena undetectable to its component parts if considered independently. For 

11 instance, temporal variation in Generalist benthivore and Piscivore guilds (Fig. 5) 
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1 were less apparent at the North Sea scale (Fig. 2c) because of contrasting regional 

2 responses. Sustained changes were most apparent in guilds dominated in the 

3 survey by individual species. This highlights regional changes in food web structure 

4 and functioning but also points to guild carrying capacities. In studies of the fish 

5 community in the western Atlantic, Garrison & Link (2000) and Auster & Link (2009) 

6 found guild biomasses to be remarkably consistent through time despite fishery-

7 induced perturbations on species within guilds. Given guild composition may change 

8 dramatically through time (Fig. S6; see also Auster & Link, 2009; Garrison & Link, 

9 2000) and in response to multiple drivers, guild biomasses were likely sustained via 

10 high functional redundancy analogous to the insurance hypothesis (Yachi & Loreau, 

11 1999): whereby change in a species biomass is offset by contrasting change in 

12 another within the same guild such that guild biomass, which reflects the contribution 

13 of particular energy pathways to fish biomass, is relatively stable over time. Guild 

14 biomass is therefore likely constrained by the amount of available energy, the 

15 number of species able to exploit it, and changes to it highlight where pressures 

16 manifest at the system-level. This, in turn, provides critical new insights into whether 

17 changes are caused by energetic constraints and/ or environmental change, for 

18 instance, which is valuable information within the ecosystem approach to fisheries 

19 that could help to develop a more holistic understanding of anthropogenic impacts on 

20 ecosystems.

21 Our findings complement the powerful size-structuring widely reported to belie 

22 food web taxonomic structure (Brose et al., 2006; Clegg et al., 2018; Jennings, 2005; 

23 Jennings et al., 2001). For instance, fish with markedly different foraging strategies 

24 and evolutionary histories, e.g. dab, herring and saithe, grouped together as larvae 
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1 and juveniles in the Zooplanktivore guild, but larger size classes of those species 

2 were grouped in different guilds suggesting divergence in foraging through ontogeny 

3 related to taxonomy and size, with many large apex predators in the Piscivorous 

4 guild. Moreover, the unique spatial distributions and unique correlations between 

5 each guild and the covariates suggests even apparently similar guilds, e.g. 

6 benthivores (Table 1; Fig. 3), provide useful information about how foraging 

7 behaviour changes in space and over time. This highlights the complex interactions 

8 between species, size classes and diet embedded in the guild classifications which 

9 would not be considered if based on one or two of those components. 

10 Our results show that the optimal number of guilds was between four to nine, 

11 with no clear threshold of change using the elbow method (Fig. S2). We based our 

12 case study assessment on the North Sea using seven as an intermediate value but 

13 recognise a simpler or more complex approach could be justified and depends on 

14 the question. If the need was to understand relative changes in planktivory in its 

15 most simple form, the first split between planktivores and those more benthivorous 

16 and/or piscivorous in the dendrogram could be used (Fig. S3). To get a more 

17 nuanced understanding of change with distinctions in the type of planktivory (e.g. 

18 specialist planktivores versus zooplanktivores, the former of which preys on the 

19 latter) and benthivory (e.g. coastal versus generalist) then more complex solutions 

20 would be justifiable. We see this as a strength of our approach because feeding 

21 guilds are hierarchically structured much like how taxonomic or other trait information 

22 has been organised. We provide a table in the Supporting Material which details the 

23 branches for up to nine feeding guilds so future assessments can choose which level 

24 of complexity suits their need (Table S6). And, because it is a data-driven, 
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1 reproducible approach, new information can be systematically integrated to 1) further 

2 resolve the number of feeding guilds that can be confidently characterised, 2) their 

3 composition and 3) test if seasonal to annual changes in feeding behaviour provides 

4 evidence for dynamical classifications. Feeding interactions could, for example, be 

5 further spatiotemporally resolved by future targeted stomach content sampling (e.g. 

6 under-sampled taxa-size-class feeding interactions, Table S1) using conventional 

7 and emerging molecular techniques (e.g. see Pompanon et al., 2012), inferring from 

8 similar predators where species-level data are sparse (e.g. following Gray et al., 

9 2015) and also via predictive modelling (Link, 2004; O’Gorman et al., 2019; Petchey 

10 et al. 2008). 

11 Our mixed effect model and structural change analysis provide a 30-year 

12 overview of change at the ICES statistical rectangle scale with annual ecosystem-

13 scale temporal dynamics, respectively. Stronger spatial rather than temporal effects 

14 were evident in the mixed effect model largely due to the level of change in space 

15 relative to change over time in both responses and covariates (Figs. 3-6). For 

16 example, the spatial difference in mean annual temperature is ~4  ̊C, whereas the 

17 largest change over time was ~0.8  ̊C. By comparing findings across analyses we 

18 were able to better understand both the spatiotemporal scale and potential causes of 

19 change. For instance, Zooplanktivores showed a consistent increasing trend at the 

20 North Sea scale (Fig. S7). Coupled with the results from the finer-scale assessment 

21 that shows a positive dynamical correlation with temperature (Table 1 and Figs. 5-6), 

22 this suggests Zooplanktivores (mostly juveniles of sprat and herring) were prospering 

23 where waters warmed most. Piscivores and Generalist benthivores did not show 

24 sustained declines over time despite having negative dynamical correlations with 
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1 temperature. This is likely because of contrasting patterns of change in their 

2 biomasses with increases where warming was relatively low and decreases in 

3 coastal areas where warming was higher (Figs. 5-6). Using the temperature-guild 

4 relationships evidenced here, future simulations could build on species-based 

5 approaches (e.g. Cheung et al., 2009), to make predictions about how ecosystem 

6 structure and function could be affected as warming becomes more pronounced.  

7 The positive temporal correlations between guilds reported here could be 

8 caused by several factors potentially acting simultaneously: one guild received 

9 recruits from another, their resources and responses to environmental change were 

10 correlated, and one or both consume the other without exerting top-down forcing. 

11 Since fishing fleets target adult size classes and can quickly adapt to spatiotemporal 

12 changes in target species biomass, the relationship between guild biomasses and 

13 fishing are also likely to be complex. For instance, positive spatial correlations 

14 between otter trawling and Specialist benthivore and Piscivore biomass were in line 

15 with our expectations. However, the negative spatial correlation between the 

16 Genralist planktivore guild and pelagic landings (used here as a proxy for fishing 

17 pressure on planktivorous fish; Engelhard et al., 2014), was not, possibly because 

18 juvenile biomass dominated this guild and the fishery targets adult fish across the 

19 Zooplanktivore and Genralist planktivore guilds which have contrasting distributions. 

20 Moreover, despite overall reductions in demersal fishing effort occurred during the 

21 study period (Fig. 6; Couce et al. 2019), there was only weak evidence of negative 

22 impacts from fishing and recovery from it at the guild-level, possibly due to dynamic 

23 fleet behaviour and/ or the long lag time expected for the recovery of fish 

24 communities (Fung et al., 2013; Shephard et al., 2013). There were also likely 
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1 indirect or spurious (i.e. coincidental) positive dynamical correlations between beam 

2 trawling and Zooplanktivore guild biomass. Given that we include juvenile and adult 

3 life stages across many fish taxa, there is potential for more complex guild-covariate 

4 spatiotemporal lags than was explored here. Future work could consider developing 

5 an approach to test for these more subtle but important lagged relationships and 

6 thereby further refine our understanding of responses to more heterogeneous and 

7 dynamic pressures such as fishing and resource availability (Fountalis, Dovrolis, 

8 Bracco, Dilkina, & Keilholz, 2018; Probst, Stelzenmüller, & Fock, 2012).To further 

9 understand how between-guild and guild-covariate correlations determine fish 

10 biomass distribution and their relative importance, future refinements could integrate 

11 acoustic survey data to better capture variation in pelagic fish populations and beam 

12 trawl survey data for benthic fish via Bayesian spatial multispecies modelling (e.g. 

13 Juntunen, Vanhatalo, Peltonen, & Mäntyniemi, 2012), for instance. Catchability 

14 corrections were not implemented here, but future research could estimate 

15 undersampling of some species due to behavioural responses (e.g. schooling, net 

16 avoidance) and/ or limitations of the gear to catch particular size classes. Intra-guild 

17 indicators and synthesis with existing indicators would be another logical future 

18 development. A guild’s size structure could be used to assess impacts from fishing 

19 via the Typical Length indicator (OSPAR 2017a) or the 95% percentile of the length 

20 frequency distribution (Probst et al., 2012) and through change in species 

21 composition via the Mean Maximum Length Indicator (Fisher, Frank, & Leggett, 

22 2010; OSPAR 2017b). Measures such as intra-guild evenness and species richness 

23 could help to reveal key energetic pathways and the level of intra-guild redundancy. 

24 For example, we expect functional redundancy to be more constrained in guilds and 
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1 areas dominated by a single species, hence where food web structure and 

2 ecosystem function are likely to vary most and be least resilient to change. And 

3 changes in total fish biomass, such as the decline ~2006 in the North Sea largely 

4 driven by the decrease in Generalist planktivore biomass, highlight the importance of 

5 particular guilds to system-wide structure and functioning (Figs. S6-S7). 

6 Developments such as these could therefore enable a more synthetic approach to 

7 understanding changes in ecosystem structure and functioning than has yet been 

8 achieved within the indicator framework. 

9 Effective ecosystem management will need to consider how large-scale 

10 pressures, such as nutrient availability and temperature, and more localised and 

11 heterogeneous human activities, such as fishing, may interact (e.g. Capuzzo et al., 

12 2017). In combination with a suite of indicators relating to species composition and 

13 size structure of communities, guild assessment could enable targeted advice for 

14 fishing-levels to offset impacts of increasing temperature and/ or decreasing primary 

15 production, for instance, which cannot be managed directly in the short-term or 

16 locally. Comparable guild assessment could be applied in other marine systems (e.g. 

17 Garrison & Link, 2000) making the approach potentially applicable as part of a 

18 global-scale Integrated Ecosystem Assessment (DePiper et al., 2017). This will be 

19 informative to gauge how larger contrasts in environmental drivers, such as fishing 

20 and temperature, act on ecosystem structure and function, and thus enable a more 

21 predictive approach than was possible here. Moreover, the notion that, by 

22 supplementing organismal size with taxonomic information and feeding behavior, the 

23 potential for a universal indicator of ecological status could be more rigorously 

24 tested.  
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We propose fish feeding guilds (i.e. groupings based on diet and life stage) as a food web indicator to inform 
policy via food web status assessment as part of the European Union’s Marine Strategy Framework Directive 
and the indicator toolkit supporting The Convention for the Protection of the Marine Environment of the 
North-East Atlantic (the ‘OSPAR Convention'; letter codes represent taxa and size category, e.g. COD.L = large 
cod, see Table S1) 
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