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ABSTRACT

The canonical view of the Maritime Continent (MC) diurnal cycle is deep convection occurring

over land during the afternoon and evening, tending to propagate offshore overnight. However,

there is considerable day-to-day variability in the convection, and the mechanism of the offshore

propagation is not well understood. We test the hypothesis that large-scale drivers such as ENSO,

the MJO and equatorial waves, through their modification of the local circulation, can modify

the direction or strength of the propagation, or prevent the deep convection from triggering in the

first place. Taking a local-to-large scale approach we use in situ observations, satellite data and

reanalyses for five MC coastal regions, and show that the occurrence of the diurnal convection

and its offshore propagation is closely tied to coastal wind regimes we define using the using the

𝑘-means cluster algorithm. Strong prevailing onshore winds are associated with a suppressed

diurnal cycle of precipitation; while prevailing offshore winds are associated with an active diurnal

cycle, offshore propagation of convection and a greater risk of extreme rainfall. ENSO, the MJO,

equatorial Rossby waves and westward mixed Rossby-gravity waves have varying levels of control

over which coastal wind regime occurs, and therefore on precipitation, depending on the MC

coastline in question. The large-scale drivers associated with dry and wet regimes are summarised

for each location as a reference for forecasters.
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Significance statement. Extreme precipitation can be life-threatening in the Maritime Continent30

region, for example due to flash floods and landslides. The main form of variability of convective31

storms is the diurnal cycle, but this can bemodulated by large-scale weather drivers. By quantifying32

the effect of these drivers on local-scale weather regimes for a range of Maritime Continent33

locations, we identify which drivers are most important (and in which phase) to consider when34

understanding the local risk of extreme rainfall. Given that these large-scale drivers may be forecast35

with greater skill than is possible for quantitative precipitation forecasts, this study provides crucial36

extra information for forecasters to aid prediction of life-threatening weather conditions.37

1. Introduction38

The Maritime Continent (MC; figure 1), the archipelago situated on the equator between 90°E39

and 160°E, experiences some of the most intense rainfall on Earth, due to its location in the40

Indo-Pacific warm pool (Ramage 1968). Convection exhibits a strong diurnal cycle driven by the41

land-sea temperature contrast, with the heaviest rainfall over land generally occurring in the late42

afternoon and evening, and over ocean in the early morning. In some regions, such as south-west of43

Sumatra, north-west of Borneo, north and south of Java, and north of New Guinea, convection can44

propagate offshore overnight (e.g., Qian 2008; Love et al. 2011). Several physical mechanisms have45

been proposed for the nocturnal offshore propagation, including roles for gravity waves (Warner46

et al. 2003; Mapes et al. 2003; Love et al. 2011; Hassim et al. 2016), cold pool outflow (Mori et al.47

2004; Wu et al. 2009) and the land-sea breeze circulation (Houze et al. 1981).48

The diurnal convection and its propagation vary in strength day-to-day, and on some days at any49

given location in the MC it may not occur at all. We use a novel local-to-large scale framework, as50

explained below, to investigate the hypothesis that these forms of local variability are influenced51
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by large-scale drivers through their control on the local circulation, and to quantify the relative52

contributions of such drivers for a range of locations in the MC.53

Previous work has shown an interaction between the diurnal cycle and the intraseasonal54

Madden-Julian Oscillation (MJO; e.g., Oh et al. 2012; Peatman et al. 2014; Birch et al. 2016;55

Vincent and Lane 2016; Sakaeda et al. 2020; Qian 2020; Muhammad et al. 2021). The MJO56

consists of alternating large-scale envelopes of active and suppressed convection, propagating57

slowly eastwards at the equator, from the Indian Ocean across the MC into the Pacific (Madden and58

Julian 1971, 1972). Changes in the diurnal cycle account for 81% of the variability in land-based59

precipitation during an MJO cycle, with the largest diurnal amplitude occurring just ahead of the60

active MJO envelope (Oh et al. 2012; Peatman et al. 2014).61

The El Niño-Southern Oscillation (ENSO) also modulates the MC diurnal cycle, enhancing it62

during El Niño events and suppressing it during La Niña events. As a result, even though El Niño63

suppresses MC convection and La Niña enhances MC convection on the large scale, precipitation64

anomalies over the islands have the opposite sign (Rauniyar and Walsh 2013). Several types of65

convectively-coupled equatorial wave also modulate the diurnal cycle as they propagate through66

the MC, affecting the probability of extreme rainfall (Ferrett et al. 2020; Lubis and Respati 2021).67

According to Sakaeda et al. (2020), equatorial Kelvin waves predominantly modulate the diurnal68

amplitude over ocean and over land to a lesser extent, with the strongest convection leading the69

active convection phase of the wave. Baranowski et al. (2016) showed that Kelvin waves may70

enhance the diurnal cycle over Sumatra and Borneo depending on the time of day of their arrival,71

due to phase locking. Sakaeda et al. (2020) also showed equatorial Rossby waves modulate the72

diurnal cycle more strongly over ocean than land; and over land the strongest diurnal cycle leads73

the convective phase of the wave on the east side of islands, but lags on the west side. Nocturnal74

offshore propagation of convection from south-west Sumatra, north-west Borneo and south Java75

4



is enhanced by the active phase of a Kelvin wave; . Ahead of the convective phase of a Rossby76

wave,while the propagation is enhanced for south-west Sumatra and suppressed for north-west77

Borneo ahead of a Rossby wave.78

In diagnosing such scale interactions, most studies use a large-to-local scale approach,79

compositing local conditions as a function of the large-scale state. However, the diurnal cycle80

is still variable even within an MJO phase. An example is the offshore propagation south-west81

of Sumatra, which is strongest in a composite sense during MJO phase 2, but on any individual82

day during that phase the propagation may be weak or non-existent. This means the large-to-local83

scale approach is of limited use for forecasters. Given the potential for convection in this region to84

produce dangerous and possibly life-threatening conditions (e.g., Xavier et al. 2014; Ferrett et al.85

2020; Mohd Nor et al. 2020; Lubis and Respati 2021), we require further metrics.86

Therefore, we adopt a local-to-large scale approach, considering first the local conditions87

associated with propagating convection, before understanding how these local regimes are set88

up by phenomena at larger scales. This novel approach, combined with the use of in situ data from89

one of the few intensive atmospheric field campaigns to have been carried out in the region, allows90

us to quantify the large-scale drivers’ influence on the coastal winds over several MC locations; and91

thus document which large-scale drivers are key to determining when and where intense convection92

associated with extreme rainfall is likely to occur.93

2. Data and methods94

a. Field campaign observations95

Weuse observations from two Japanese field campaigns associatedwith theYears of theMaritime96

Continent (YMC; Yoneyama and Zhang 2020) International programme, located around Bengkulu97
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in Sumatra (figure 1). These are referred to as “pre-YMC” (2015 campaign, November–December98

2015) and “YMC” (2017 campaign, November 2017 – January 2018). We use radiosonde99

observations of wind from both campaigns from Bengkulu, from 2015/11/09 to 2015/12/25 and100

2017/11/16 to 2018/01/15 (108 days in total). Radiosondes were released every 3 hours at 00, 03,101

. . . , 21 UTC; or 07, 10, 13, 16, 19, 22, 01, 04 local time (LT), taking LT to be UTC+7. Data are102

linearly interpolated to the same pressure levels as used in the European Centre for Medium-range103

Weather Forecasting (ECMWF) Fifth Reanalysis (ERA5; Hersbach et al. 2020; see below).104

b. Other data sets105

To diagnose precipitation, including the offshore propagation of rainfall, Global Precipitation106

Measurement (GPM;Heale et al. 2019) data sets are used. GPMdata are provided every 30minutes107

on a 0.1° × 0.1° grid. The “high-quality” data set (GPM-HQ) uses intercalibrated observations108

from passive microwave (PMW) instruments on a number of satellites, which are gridded then109

further calibrated using monthly gauge accumulations. The PMW satellites are largely “satellites110

of opportunity” (that is, their orbits, operations and so on are out of the control of the GPMmission)111

and there are missing regions between swaths. The Integrated Multi-satellitE Retrievals for GPM112

(IMERG) algorithm fills these gaps to provide a complete gridded product, at the same temporal113

and spatial resolutions. We use IMERG version 06, which fills gaps by morphing the GPM-HQ114

data according to motion vectors derived from total column water vapour in the Modern-Era115

Retrospective analysis for Research and Applications, version 2 (MERRA-2; Gelaro et al. 2017).116

Where possible, we use GPM-HQ as this includes only the direct measurements of precipitation117

from PMW instruments (with calibration). When producing composites over a long time period118

(𝑂 (102) or more days), the effects of missing data are negligible. However, when the number of119

days is small (𝑂 (101)) we use IMERG, to benefit from the improved data coverage. We use GPM120
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during December, January and February (DJF) for the period of its availability, from DJF 2000/01121

to 2019/20. For simplicity, we always exclude 29 February from DJF.122

When extending our analysis beyond the field campaign periods, where possible we use hourly123

ERA5 for all 41 available DJFs, from 1979/80 to 2019/20. ERA5 is on a 0.25° grid. We also use the124

ECMWF interim reanalysis (ERA-Interim; Dee et al. 2011) when comparing wind values against125

those in equatorial waves (see below). MJO phases are defined using the Realtime Multivariate126

MJO (RMM) indices (Wheeler and Hendon 2004). To investigate the effect of ENSO we use127

the Oceanic Niño Index (ONI; Climate Prediction Center 2020) version 5, which is the 3-month128

running mean of the monthly Niño3.4 anomaly (with the subtracted climatology being a 30-year129

mean updated every 5 years). El Niño and La Niña events are defined as a period of at least130

5 months with ONI ≥ 0.5°C or ≤ −0.5°C, respectively. All other times are defined as neutral131

ENSO phase. We also analyse tropical cyclone (TC) tracks, using the International Best Track132

Archive for Climate Stewardship (IBTrACS; Knapp et al. 2010).133

We use a data set of equatorial waves identified using the methodology of Yang et al. (2003) and134

described in Ferrett et al. (2020). Wind and geopotential height data are regridded to a 1° grid and135

filtered to retain variability with period 2–30 days and zonal wavenumbers 2–40. Eastward- and136

westward-components are separated out in wavenumber-frequency space and projected onto the137

theoretical horizontal structures of equatorial Kelvin, 𝑛 = 1 Rossby (R1), 𝑛 = 2 Rossby (R2) and138

westward mixed Rossby-gravity (WMRG) waves, using a meridional trapping scale of 6° (Yang139

et al. 2003). This is performed using ERA-Interim from 1997 to 2018, separately at each pressure140

level. The resulting data set consists of the wind and geopotential height anomaly contributions141

from each wave type.142
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c. 𝑘-means clustering143

To differentiate between coastal wind regimes, the 𝑘-means clustering algorithm is used144

(MacQueen 1967). 𝑘-means is an iterative algorithm which sorts data points into clusters by145

minimizing the total Euclidean distance between a cluster’s data points and theirmean. For example,146

in section 3a we cluster zonal wind 𝑢 from 108 days of 3-hourly radiosondes, concatenating the147

8 sondes each day to produce a field of shape 108 days × 8 times of day × 16 pressure levels.148

We use 𝑘-means to sort each day into a cluster, hence we are clustering 108 data points in149

8×16 = 128-dimensional space.150

The number of clusters 𝑘 is an a priori choice which is made subjectively, albeit with physical151

justifications as detailed in the text, having run the algorithm for a range of 𝑘 values. The152

initialization of the algorithm is random, with no guarantee that different initializations will153

converge to the same result. Therefore, a number of initializations are performed and the best154

solution is selected (i.e., that which produces the minimal total Euclidean distance). For field155

campaign data, 500 initializations are performed; when extending to 41 DJFs, this is increased to156

20,000. These values were chosen by experiment as sufficient to make the results of the clustering157

robust. To avoid confusion, we label the clusters from observations (section 3a) as 0, 1, . . . ,158

(𝑘 − 1); and the clusters from reanalysis (sections 3b,c) as A, B, . . . . Coastal wind clusters are159

always ordered by the mean value of the cluster centre field, from the most strongly onshore to the160

most strongly offshore.161

d. Coastal wind associated with large-scale drivers162

To investigate possible large-scale causes of the coastal wind regimes derived from 𝑘-means163

clustering, we quantify the contribution of several large-scale drivers to the wind at a given coastal164

location using the following methods. ERA-Interim is used throughout for consistency since it is165
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the reanalysis used in the equatorial waves data set. Here we assume the required coastal wind is166

𝑢850, although the same technique is also applied to meridional wind 𝑣850 for certain coastlines.167

The 850 hPa level is chosen as it is one of the levels used in the RMM indices to monitor the MJO168

and it is representative of all levels of the wind clusters.169

For Kelvin, R1, R2 and WMRG waves we take 𝑢′850, where the prime denotes an anomaly,170

directly from the equatorial waves data set (see section 2b) and average along the nominal coastline171

in the respective coloured box in figure 1.172

To derive a 𝑢′850 value associated with ENSO, we take the monthly ONI values and, to avoid173

having a sharp jump at the start of each month, apply a 31-day running mean. We take the daily174

mean ERA-Interim 𝑢850 averaged along the nominal coastline and subtract the climatology and175

leading 3 harmonics of the seasonal cycle to produce a time series of 𝑢′850. We take these 𝑢
′
850176

values and the daily smoothed ONI values, for all 39 available DJFs (1979/80 to 2017/18), and177

perform least-squares linear regression:178

𝑢′850(𝑡) = 𝑚oni×ONI(𝑡) + 𝑐oni, (1)

where 𝑡 is time, and 𝑚oni and 𝑐oni are the parameters to be fitted.179

Similarly, we perform linear regression with the RMM indices to find 𝑢′850 associated with the180

MJO. However, because there are two RMMs we need to perform multiple linear regression and181

because they are not independent we need to include a cross-term, which represents the fact that182

the prevailing wind at the coast does not necessarily blow in opposite directions in opposite MJO183

phases:184

𝑢′850(𝑡) = 𝑚1×RMM1(𝑡) +𝑚2×RMM2(𝑡) +𝑚3×RMM1(𝑡) ×RMM2(𝑡) + 𝑐rmm, (2)

where 𝑚1, 𝑚2, 𝑚3 and 𝑐rmm are the parameters to be fitted, and the RMM time series are taken185

from Wheeler and Hendon (2004). Note that, although 𝑢′850 is not modelled as a linear function of186
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the RMMs, equation 2 is linear in the fitted parameters, so least-squares multiple linear regression187

can be used to find the parameter values.188

3. Results189

a. Pre-YMC and YMC field campaign observation periods190

This section of the analysis uses observations from the field campaigns on the south-west coast191

of Sumatra. Several of the possible mechanisms for offshore propagation of convection mentioned192

in section 1 depend either directly or indirectly on land-sea breezes. Therefore, we explore the193

variability in land-sea breeze and its relation to diurnal convection, including offshore propagation.194

We also wish to investigate the development of each land-sea breeze regime in terms of large-scale195

phenomena. Since phenomena such as the MJO and most equatorial waves are (close to the196

equator) predominantly associated with variations in zonal not meridional wind, we analyse the197

zonal component 𝑢 only at this stage. The zonal and meridional components were also rotated to198

onshore and alongshore components, and the the analysis repeated using the onshore component199

only (not shown); this did not substantially change the results.200

We take 𝑢 from the 108 days of 3-hourly radiosondes at Bengkulu, performing 𝑘-means clustering201

as described in section 2c. By experiment, it was found that 𝑘 = 3 best represents the land-sea202

breeze regimes (figures 2a–c; other 𝑘 values not shown). This achieves the best balance between203

separating out physically distinct regimes (with 𝑘 = 2 being too few) while preserving a reasonable204

sample size for each cluster (for 𝑘 = 4, one of the clusters has only 4 days). Moreover, with 𝑘 = 4205

two of the clusters are very similar to cluster 0 in figure 2a so are not physically distinct.206

The clusters consist of strong onshore winds all day (cluster 0), moderate onshore winds all day207

(cluster 1) and offshore winds all day except near to the ground in the afternoon (cluster 2). The208
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diurnal anomaly profiles of 𝑢 (relative to the cluster’s own daily mean profile; figures 2d–f) are209

broadly similar for each cluster, but the daily mean is sufficiently different that only the offshore210

cluster (2) has an absolute change in wind direction at any level (figure 2c). The diurnal anomalies211

show all three clusters have the strongest onshore wind in the afternoon, but slightly earlier (13 LT)212

in the offshore cluster (2) than in the onshore clusters (0 and 1; 16 LT). The strong land-sea breeze213

is shallow, reaching up to around 925 hPa, close to a typical boundary layer depth over ocean.214

However, in the onshore clusters (0 and 1) the wind is onshore at all levels shown at the time of the215

strongest sea breeze, whereas the offshore cluster (2) has a return flow between 925 and 775 hPa at216

this time.217

The clustering of the land-sea breeze is a valuable tool as it neatly divides the days into distinct218

diurnal convection regimes. Figure 3 shows the composite diurnal cycle of precipitation as219

Hovmöller diagrams using IMERG data in the red dashed box of figure 1, averaged along the220

coastline direction. The diagrams are composited over each cluster, with time of day running221

down the page and extended 12 hours into the next day, to capture the full offshore propagation.222

Distances on the horizontal axis are negative offshore (to the south-west) and positive onshore (to223

the north-east).224

Although all three clusters have a discernible diurnal cycle over both land and sea, the offshore225

cluster (2) alone exhibits the canonical view of heavy precipitation (around 2 mm hr−1) over land226

near the coast at 13–19 LT, propagating offshore during the evening and night-time. All the227

precipitation over the sea is associated with this propagation, which extends into the following228

afternoon. There appear to be two modes of propagation, causing the propagation region to widen229

from about 19 LT onwards, with the two modes becoming distinct around 04–07 LT. Preceding the230

convection is a corresponding propagating region of suppressed conditions.231
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In the strong onshore cluster (0) the propagation is mostly in the same direction as the wind,232

progressing inland before continuing to propagate over the sea to the north-east of Sumatra.233

Precipitation over the sea reduces in the afternoon and evening but is on a larger scale than the234

organised propagation in the offshore cluster (2), suggesting it is associated with a large-scale235

phenomenon such as the MJO. Precipitation over land does not feature a strong burst near the coast236

in the afternoon and evening as in the offshore cluster (2), indicating a suppression of the canonical237

diurnal cycle. Cluster 1 has features which are elements of each of the other clusters, with coherent238

propagation inland and weak precipitation propagating offshore. While the offshore cluster (2) has239

strong convection on the sea-facing flanks of the mountains (see orography at the bottom of the240

plot), the strongest precipitation in the moderate onshore cluster (1) is inland, the other side of the241

mountain range. Hence, the stronger convection always favours the leeward side of the mountains.242

To investigate possible large-scale causes of the coastal wind regimes and therefore understand243

which large-scale conditions can lead to each convection regime, we consider the zonal wind at244

Bengkulu associated with a number of large-scale drivers and compare them to the total wind.245

Daily mean 𝑢′850 values associated with several drivers are computed as described in section 2d246

and shown in figure 4. The linear regression of 𝑢′850 onto ONI (equation 1) to derive the ENSO247

contribution is shown in figure 5a. The plot shows considerable variability in 𝑢′850 which is not248

explained by variability in ONI, due to other factors (which, according to our hypothesis, are249

mainly the other large-scale drivers in figure 4). By modelling the response to ENSO as linear250

and regressing onto ONI, we aim to estimate the contribution to 𝑢′850 which arises from ENSO251

forcing alone. Similarly, multiple linear regression of 𝑢′850 onto the RMM indices was performed252

(equation 2) to find the MJO contribution and the resultant surface in RMM space is shown as a253

contour plot in figure 5b.254
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Time series are plotted for ENSO (dark green curve), the MJO (dark blue), Kelvin (orange),255

R1 (dark pink), R2 (light pink) and WMRG (light blue). If the large-scale drivers described here256

account for the total wind field, then the sum of the six coloured curves and the mean seasonal cycle257

(climatology plus leading 3 harmonics; thin black dotted curve in figure 4), which is shown by258

the thick black solid curve, should match the total field shown in grey. During the 2015 campaign259

(figure 4a) there is a close match between the two. For approximately the first month of the260

campaign the wind was offshore and all days were in the cluster 2 except 26 and 27 November,261

when the wind was moderately onshore in cluster 1. The time series show this was caused by an262

R1 wave propagating through the region. From 12 December onwards the winds again shifted263

to being onshore, with all days being in cluster 1 or 0. On these days the sum of the large-scale264

contributions in(thick black) does not match the total field so well, but both are positive and the265

strongest contribution is from the MJO. As discussed in section 2d, the MJO 𝑢′850 may be less266

accurate than for the other drivers considered, which may explain the discrepancy between the267

thick black and grey curves on these days. However, the MJO 𝑢′850 calculation is still sufficiently268

accurate to indicate days when the MJO is chiefly responsible for the coastal wind regime, such as269

the example discussed here.270

In the 2017 campaign (figure 4b) there were no offshore cluster (2) days. The main difference271

between the two campaigns was an El Niño event in 2015/16 and a La Niña event in 2017/18.272

Hence, the 𝑢′850 contribution from ENSO is approximately −3.5 m s
−1 in the 2015 campaign and273

approximately +1.3 m s−1 in the 2017 campaign. Individual peaks and troughs in the grey and274

solidthick black curves for the 2017 campaign tend to match each other, with the Kelvin, R1275

and R2 waves generally dominating variability on time scales of under a week. There are some276

periods when the magnitude of the grey and solidthick black curves differ considerably, such as277

22–30 November and 4–15 January. Such periods tend to have either a strong MJO signal or a278
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nearby TC (any day with a TC centre within 10° geodesic of Bengkulu according to IBTrACS is279

shown with a red star).280

Thus, we have examples from the field campaign periods of ENSO, the MJO and equatorial281

waves (although there is no considerable contribution from WMRG waves) controlling the coastal282

wind regimes at Bengkulu (figure 4); and we find that these coastal wind regimes themselves283

determine the regimes of the diurnal cycle of convection (figure 3). In the following subsection we284

extend the analysis beyond the field campaign periods and perform a more quantitative analysis of285

the contributions of the large-scale drivers.286

b. Extension to 41 DJFs along Sumatran coastline287

Although the analysis thus far has the advantage of using in situ observations to determine the288

wind regimes, it is limited to a few weeks in just two boreal winters, and is based on wind at a289

point location. Using ERA5 we now extend the analysis spatially and temporally. To confirm290

that ERA5 is an appropriate research tool for this study, we take ERA5 𝑢 at Bengkulu on the291

108 field campaign days and perform 𝑘-means clustering again (not shown), to compare against the292

radiosonde clusters in figure 2. The results are very similar, although the ERA5 land-sea breeze293

circulation is slightly weaker and deeper than in the radiosondes. Therefore, we accept that the294

land-sea breeze in ERA5 is verified by the observations and we are confident that ERA5 is realistic295

enough to use it for our analysis.296

We restrict ourselves to DJF, matching approximately the season already considered in section 3a,297

but extend the analysis to the 41 DJFs available in ERA5, going back to December 1979.298

Furthermore, noting that convection tends to be spatially heterogeneous and wanting to capture as299

much of the convection and its propagation as possible, we extend the analysis region to the entire300
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solid red box in figure 1. Thus we cover as much of the coastline as possible where it is fairly301

straight whilst avoiding Siberut, the largest of the Mentawai Islands just offshore from Sumatra.302

We take hourly ERA5 𝑢 averaged along the nominal west coastline of Sumatra indicated by the303

thick red line in figure 1 and cluster the 3,690 days from DJFs 1979/80 to 2019/20 (excluding304

29 February for simplicity). Whereas for point data at Bengkulu we chose 𝑘 = 3 to give us distinct305

physical regimes, for this case it was found by experiment that 𝑘 = 4 was preferable (figures 6a–d),306

and we label these A, B, C and D. Clusters A (strong onshore) and D (offshore) correspond to307

clusters 0 and 2 respectively in figures 2a,c but are spatially smoother due to averaging over more308

days. Clusters B (moderate onshore) and C (weak onshore) both roughly correspond to cluster 1 in309

figure 2b. These two clusters, and in particular their corresponding offshore Hovmöller diagrams310

of precipitation (figures 7b,c – see below), are distinct enough to warrant both being included in the311

analysis without either suffering from a small sample size (indeed, they are the two most frequent312

clusters).313

The diurnal anomalies for each cluster (figures 6e–h) are very similar to each other, with daytime314

onshore winds beginning at low levels and rapidly spreading to higher levels in all cases. This is315

unlike the observed diurnal anomalies in figures 2d–f. In observations, the differences in diurnal316

anomalies between clusters may be due to errors associated with the convective parametrization317

scheme in the ERA5 model (e.g., Birch et al. 2015; Love et al. 2011); land-air feedbacks which the318

ERA5 model is unable to capture; or the small sample size if these anomalies vary considerably319

between days.320

To create the Hovmöller diagrams of precipitation (figure 7) we use GPM-HQ, since we are321

compositing over enough days for the lesser data coverage to be unimportant. Both the strong and322

moderate onshore clusters (A and B) exhibit large-scale precipitation over the sea with almost all323

propagation being inland. The weak onshore cluster (C), although similar to cluster B in the 𝑢324
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field, is not associated with large-scale heavy rain over the sea. The weak onshore (C) and offshore325

(D) clusters, while very different in 𝑢, have similar precipitation Hovmöller diagrams, differing326

only in that inland propagation is stronger than offshore for cluster C, and vice versa for cluster D.327

The probability of extreme precipitation, defined here as exceeding the 99th percentile for the328

daily mean DJF, varies by cluster (figure 8). In the weak onshore (C) and offshore (D) clusters, over329

the south-west coast and just offshore, the probability of extreme rainfall can be around 50% more330

than average (over 70% more in some areas). In the strong and moderate clusters (A and B) the331

probability is reduced by a similar amount. Where there is a greater chance of extreme rainfall over332

and around the south-west coast region in clusters C and D, the Hovmöller diagrams in figure 7333

show that these are due to precipitation systems forming over land and propagating offshore, not334

propagating in from the sea.335

The results of section 3a suggest ENSO and the MJO each play a role in determining the coastal336

wind regime at Bengkulu. Now, with a much larger data set, we examine the relationship between337

these phenomena and the wind clusters for the full south-west Sumatra coast. Figure 9a shows338

the number of days in each ENSO phase and figure 9b shows the same separated out by cluster.339

Consistent with the findings from the field campaigns (figure 4), La Niña events are more often340

associated with more onshore wind (accounting for 52% of the strong onshore cluster (A) days)341

and El Niño events with more offshore wind (58% of the offshore cluster (D) days). The large-scale342

circulation component of ENSO consists of a strengthened Walker circulation during La Niña and343

weakened during El Niño, so La Niña events are associated with large-scale ascent over the MC344

and El Niño with large-scale suppression. Therefore, we expect large-scale convergence into the345

MC region in the lower troposphere during La Niña events, consistent with winds blowing onshore346

over the south-west coast of Sumatra; and large-scale divergence out of the MC during El Niño,347

consistent with winds blowing offshore.348
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Figures 9c,d show the equivalent statistics for theMJO. Days with RMMamplitude < 1 are shown349

in grey as “no MJO”. See the figure caption for a list of regions experiencing active large-scale350

convection in each MJO phase. Cluster A, with the strongest onshore wind and weakest diurnal351

cycle of precipitation, favours phases 4–6 (each accounting for 15–25% of cluster A days); while352

cluster D, with offshore wind and the strongest diurnal cycle of precipitation, favours phases 8353

and 1–3 (11–15% of cluster D days). This is consistent with existing theories of MJO propagation,354

with surface easterlies which blow offshore from Sumatra occurring ahead of the MJO when it355

is over the Indian Ocean (e.g., Matthews 2000). It is also consistent with Peatman et al. (2014),356

who showed the strongest diurnal cycle occurs just to the east of the active MJO; and the diurnal357

cycle is most greatly suppressed just ahead of the suppressed MJO. Here we see the offshore wind358

regime, associated with a strong diurnal cycle, favouring MJO phases when the active envelope359

is propagating through the Indian Ocean and approaching the MC, with this regime becoming far360

less common once the envelope reaches the MC in phases 4 and 5. Similarly the onshore wind361

regime, with a suppressed diurnal cycle, favours MJO phases when the active envelope has already362

propagated through the western MC where Sumatra is located, and is propagating into the west363

Pacific Ocean, with the suppressed envelope now approaching Sumatra.364

Although figure 9 shows some correspondence between the clusters and both ENSO and theMJO,365

there are examples of every ENSO phase and every MJO phase coinciding with every wind cluster366

(although some are so rare that they are difficult to discern in the plot). Hence, while previous367

studies such as Rauniyar and Walsh (2013), Rauniyar and Walsh (2011) and Peatman et al. (2014)368

demonstrate the variation of the diurnal cycle by large-scale environment in a composite sense,369

we show here that ENSO or MJO phase do not uniquely determine the diurnal cycle regime and,370

from an operational forecasting perspective, is not sufficient information to issue a forecast of the371

likelihood or otherwise of severe thunderstorms in our region of interest. This very concern is372
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why in section 1 we chose a local-to-large scale approach by examining the local diurnal cycle and373

understanding what large-scale conditions are associated with different regimes, as opposed to the374

large-to-local scale approach of other studies.375

Section 3a also showed equatorial waves partially determine the wind cluster. Figures 10b,g376

show composites of wind and geopotential height anomalies at 850 hPa summed over all four of377

the identified equatorial wave types (clusters A and D only) for the period covered by the waves data378

set (1997/98 to 2017/18), which is a subset of the ERA5 period. For comparison, the composite379

wind anomaly from ERA-Interim (the same reanalysis as was used for the wave identification) is380

shown in figures 10a,f. If the wind field in these clusters were determined entirely by the identified381

equatorial waves then panels (a) and (b) would match, as would panels (f) and (g). In fact, we382

have already seen that ENSO and the MJO also contribute to determining the wind regime, but383

there are broad similarities between the ERA-Interim composites and the wave composites which384

confirm the waves also have a substantial contribution. Note that the ERA-Interim composites385

have a considerably larger amplitude than the wave composites due to the filtering applied before386

the identification of the waves, as explained in section 2b. Applying the same filtering before387

compositing the winds as in figures 10a,f (not shown) gives values of similar amplitude to the wave388

composites, as well as removing some features not associated with the waves.389

In the strong onshore cluster (A; figure 10b) there are cyclonic circulation patterns either side390

of the equator, slightly stronger and with a larger zonal extent in the southern hemisphere, which391

are also seen in figure 10a. In the offshore cluster (D; figure 10g) there is an anti-cyclone in392

the southern hemisphere and a small region of anti-cyclonic vorticity around 5°N, 90°E in the393

northern hemisphere. Again, the southern hemisphere vorticity in figure 10f is in approximately394

the same location, and the vorticity in the northern hemisphere is weak but also visible, albeit395

slightly further north (around 10°N). The asymmetry about the equator, with stronger anomalies in396

18



the southern hemisphere, is because the clustering is performed over the southern half of Sumatra397

only. Southern hemisphere structures are more coherent in the composites whereas any variability398

between hemispheres causes northern hemisphere structures to be partially averaged over.399

Figures 10c,h, 10d,i and 10e,j show, respectively, the Kelvin, R1 and R2 contributions to400

figures 10b,g. The WMRG contribution (not shown) is negligible. Figures 10d,i indicate the401

onshore wind regime is associated with the low-pressure (cyclonic) phase of an R1 wave and the402

offshore regime with the high-pressure (anti-cyclonic) phase. R1 is the largest contributor to the403

total wave composites in figures 10b,f. The theoretical R1 structure is symmetrical about the404

equator in geopotential height, while R2 is anti-symmetric. Therefore, if the real circulation has405

some asymmetry it can project onto both R1 and R2. Here, R2 reinforces the R1 signal in the406

southern hemisphere, where the analysis region is located (see figure 1) and opposes it in the407

opposite hemisphere, due to R1 being more coherent in the hemisphere of the analysis region.408

Given how precisely the pressure centres of R1 and R2 line up in longitude, we conclude that the409

projection onto both R1 and R2 arises from the same circulation pattern, which mostly resembles410

the theoretical R1 structure but with some asymmetry.411

The winds in the Kelvin wave composites (figures 10c,h) contribute very little to the composite412

windare small in magnitude but their composite structures are coherent, with the high-pressure413

phase associated with the onshore regime and the low-pressure phase with the offshore regime.414

Thus, Kelvin waves may be an indicator of the likely coastal wind regime even though their415

contribution is too small to be the cause of the coastal wind directionalthough Kelvin waves are416

correlated with the coastal wind, their contribution is small.417

The analysis of figure 4 in section 3a suggested that, during the field campaign periods, ENSO,418

the MJO and equatorial waves all played a role in determining the coastal wind regime. In this419

section we have demonstrated the role of these large-scale drivers during 41 DJFsover a longer420
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time period. We now demonstrate that these drivers are sufficient to explain nearly all of the421

variability in the coastal wind. As in figure 4, the wind from the identified equatorial waves and422

the wind regressed onto ONI and the RMMs were summed, along with the mean seasonal cycle,423

and compared to the total field from ERA-Interim. This was carried out for all 421 DJFs (1997/98424

to 2017/18) covered by all the contributing data sets; the seasons 1997/98, 1998/99 and 1999/2000425

are shown as examples in figure S1. The residual between the grey and solidthick black curves was426

calculated for each day and a histogram of the absolute value is presented in figure 11. Blue bars427

show the number of days in each bin and the orange curve is the cumulative distribution, displayed428

as a percentage. The distribution peaks in the lowest bin; a similar histogram (not shown) of the429

signed residual (i.e., not the absolute value) is symmetrical about 0, so there is no overall tendency430

for the theoretical value to be more onshore or more offshore than the true value.431

The majority of days have a residual < 1.4 m s−1. The vertical red line is the season-mean432

standard deviation in coastal 𝑢850. On 83% of days the residual is less than one standard deviation,433

indicating that our theoretical coastal wind reconstructed from the large-scale drivers has a high434

degree of accuracy. Inaccuracies may result from inaccuracies in computing the associated wind435

for each driver or due to the influence of other drivers such as TCs.436

c. Extension to other MC coastlines437

Sections 3a and 3b investigated the wind regimes on the south-west coast of Sumatra, how they438

relate to the diurnal cycle of convection and what large-scale conditions give rise to each regime.439

This region was chosen because of the in situ data from the pre-YMC and YMC field campaigns,440

and ERA5 was used to extend the analysis to gain more robust results. We now use ERA5 to repeat441

the analysis over the other MC coastlines in figure 1: north-west Borneo, north Java, south Java442

and north New Guinea.443
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Again, ERA5 wind between 1000 hPa and 500 hPa was averaged along the nominal coastline444

and the 𝑘-means algorithm was used with 𝑘 = 4. For north-west Borneo, as for south-west445

Sumatra, zonal wind 𝑢 was used; but 𝑣 was used for the other three coastlines as they are oriented446

approximately east-west. Clusters were again sorted with cluster A being the most onshore and D447

the most offshore. Clusters A and D only are shown in figures 12a–h. Values of 𝑣 tend to be weaker448

than 𝑢 so the colour bar shown applies to three of the coastlines only; the north-west Borneo clusters449

use the same colour bar as south-west Sumatra (figure 6). Because onshore wind is always plotted450

as positive, the north Java and north New Guinea plots show −𝑣. GPM-HQ composite Hovmöller451

diagrams are shown for clusters A and D only in figures 12i–p, with the mean orography plotted452

beneath panels (m)–(p).453

The north-west Borneo clusters are similar to south-west Sumatra, except the mean 𝑢 is less454

westerly so the onshore cluster is weaker and the offshore cluster is stronger. The associated455

precipitation is also similar to Sumatra, with large-scale precipitation dominating in the onshore456

regime and organised offshore propagation, preceded by a propagating region of suppression, in457

the offshore regime.458

Since Java is a long, thin island oriented east-west, the winds over the north and south coasts459

are very similar (albeit plotted with the opposite sign in figures 12b,f and 12c,g). Thus, north460

Java’s strong onshore cluster (A) approximately corresponds to south Java’s offshore cluster (D),461

and vice versa. The exception is the land-sea breeze within the boundary layer, which is always462

anomalously onshore during the day, peaking around 13–14 LT. The same correspondence is seen463

in the Hovmöller diagrams in figures 12j,n and 12k,o, remembering that the positive onshore464

direction is southward for north Java and northward for south Java. However, the relationship465

between wind regime and propagation of convection is different for Java from the Sumatra and466

Borneo cases. Java has strong northward propagation (i.e., offshore for the north coast and inland467
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for the south coast) regardless of wind direction (i.e., in both clusters A and D). However, the strong468

southward propagation (i.e., inland for the north coast and offshore for the south coast) occurs only469

when the wind is from the north (i.e., cluster A for north Java and cluster D for south Java).470

North New Guinea has a very different coastal wind structure from the other coastlines471

investigated here, with all four clusters having onshore wind almost all day in at least the lowest472

part of the troposphere (up to around 825 hPa in cluster D; up to around 650 hPa in cluster B; and473

over the entire range 1000–500 hPa in clusters A and C, albeit weakly in cluster C). Convection474

over New Guinea is strongest on the north and south flanks of the New Guinea Highlands, which475

run east-west across the middle of the island and can be seen in the orography cross-section476

below figure 12p. The mean altitude along the section is around 2.2 km and the maximum is477

around 4.8 km, which is considerably higher than the orography on the other islands studied; and478

the mountains are considerably further from the coast (hundreds rather than tens of kilometres).479

Convection forms on both flanks of the mountain range regardless of coastal wind cluster, as also480

found by Hassim et al. (2016) in convection-permitting simulations. The convection propagates481

away from the mountains in both directions, but more strongly on the leeward side.482

As for south-west Sumatra, we now investigate the large-scale drivers associated with the wind483

regimes at each coastline and quantify the extent to which they account for the variability in484

clusters (figure 13). The impact of ENSO is weaker over north-west Borneo (𝑚oni from equation 1485

is −0.74 m s−1 °C−1 with a correlation of 𝜌 = −0.28; figure 13a) than south-west Sumatra (𝑚oni =486

−1.38 m s−1 °C−1 with 𝜌 = −0.41; figure 5a). The impact of ENSO over the other three coastlines487

is negligible (|𝑚oni | is never larger than 0.15 m s−1 °C−1; figures 13d,g,j). The impact of the488

MJO is also less for north-west Borneo than south-west Sumatra, with the values in figure 13b489

around half the magnitude of figure 5b. For the other coastlines (figures 13e,h,k), the values are490

small (up to around 0.7 m s−1) compared to the magnitude of the clusters (around ±3 m s−1; see491
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figures 12b–d,f–h), suggesting the MJO also has a limited role in determining the wind regime for492

these coastlines. It is notable that the cross-term in equation 2 is very small for south-west Sumatra493

and north-west Borneo (the surfaces in figures 5b and 13b and nearly flat) but is much larger for494

the other coastlines.495

Composites of 850 hPa wind anomaly and equatorial waves for clusters A and D are shown for496

selected coastlines south Java in figure 14 and north NewGuinea in figure 15. Each figure shows the497

contributions from R1 (panels (c) and (h)), R2 (panels (d) and (i)) and WMRG (panels (e) and (j))498

waves. Equivalent plots for the other coastlines are in the supplementary material – north-west499

Borneo (figure S2; Kelvin, R1 and R2 contributions are shown) is very similar to south-west500

Sumatra; and north Java (figure S3) is very similar to south Java as discussed below, but for a501

change of sign due to being on the opposite coast.502

For south Java, R1 and WMRG waves both contribute strongly to 𝑣850 over the coast, in each503

cluster. The strong onshore cluster (A) has the R1 high pressure centres just west of Java so504

the eastern edge of the southern hemisphere anti-cyclone contributes positive 𝑣 over the coastline505

(figure 14c). For the offshore cluster (D), the low pressure centres are just west of Java (figure 14h).506

WMRG waves consist of a quadrupole in pressure centred on the equator, with one phase having507

high pressure to the south-west and north-east, and low pressure to the north-west and south-east.508

This results in a dipole of vorticity, with clockwise rotation to the east and anti-clockwise to the509

west. This is the WMRG phase which exists in cluster A (figure 14e), with the vorticity centres510

located either side of Java and the two regions of vorticity together contributing positive 𝑣 over the511

south coast. The opposite phase, with the opposite signs of pressure anomaly and vorticity, is seen512

in cluster D (figure 14j).513

For north New Guinea, by far the greatest contributor to coastal wind is WMRG waves514

(figures 15e,j). R1 waves are very weak in the composites for both clusters shown (figures 15c,h),515
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suggesting they do not have a consistent phase in these clusters, so they cancel each other out during516

the averaging. R2 waves have much more coherent structures than R1 so, unlike for south-west517

Sumatra (see section 3b), there is strong R2 propagation. LikeWMRGwaves, R2 has a quadrupole518

pressure structure but further away from the equator. Centred on the equator are regions of519

clockwise and anti-clockwise vorticity, with the western edges of these regions contributing to 𝑣520

over the coast in clusters A and D (figures 15d,i). In Cluster A, the western edge of a high pressure521

region is to the north of New Guinea and a low pressure region to the south; and vice versa for522

cluster D.523

In section 3b it was shown that the residual 𝑢850 for south-west Sumatra, when calculating the524

total wind as the sum of the mean seasonal cycle and the six drivers investigated (ENSO, MJO525

and four equatorial waves), is less than one standard deviation on 83% of days (figure 11). The526

equivalent histograms for the other coastlines are figures 13c,f,i,l. The percentage of days with527

residual less than one standard deviation is 78% for north-west Borneo, 82% for north Java, 83%528

for south Java and 79% for north New Guinea. Again, this indicates the large-scale phenomena529

investigated can, to a high degree of accuracy, explain the total wind seen over the coastlines530

studied, thus exerting a control on the diurnal cycle of convection.531

4. Summary and discussion532

The MC has a pronounced diurnal cycle of precipitation due to warm oceans and a large number533

of islands, with the land-sea temperature contrast creating the conditions for deep convection in the534

afternoon and evening as moist air converges over land. On some islands the convection may be535

enhanced by significant orography. A weaker diurnal cycle exists over ocean and in some locations536

is modified by convection propagating offshore overnight. However, there is a lack of consensus537

regarding the mechanism of offshore propagation and its forcing by the large scale. Sources of538
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variability in the diurnal cycle have been investigated in the literature but further understanding is539

required, including quantifying the contributions of large-scale controls. This is expected to aid540

forecasters in predicting the occurrence of extreme rainfall. Previous work has uncovered scale541

interactions with large-scale phenomena such as ENSO, the MJO and equatorial waves, but the542

variability of the diurnal cycle within any given phase of these phenomena is still considerable.543

This study takes a fresh approach to diagnosing the interaction between the diurnal cycle and the544

large-scale environment. We take a local-to-large scale approach, rather than the large-to-local scale545

technique of producing local composites conditional on the large scale. We use a combination of in546

situ observations, satellite measurements and reanalysis data to investigate these scale interactions.547

We test the hypothesis that a range of large-scale drivers exert a control onMC precipitation through548

their modulation of the coastal wind regimes, and quantify the relative contributions of each driver.549

The 𝑘-means clustering algorithm is used to define the coastal wind regimes, first using 108 days550

of field campaign radiosonde data on the coast of Sumatra before extending the analysis using551

ERA5 to 41 DJFs and the other coastlines labelled in figure 1. For most coastlines, the regime with552

strong onshore winds all day has suppressed convection over land and an active region of convection553

over the sea, with a lower than average probability of extreme rainfall (above the 99th percentile)554

occurring. The regime with predominantly offshore winds produces the canonical diurnal cycle555

with strong convection over the land, a higher than average probability of extreme rainfall, and556

propagation offshore overnight. This is consistent with Yokoi et al. (2019) who showed, also557

using the pre-YMC and YMC observations, that around 800 hPa the wind is more offshore from558

south-west Sumatra on days with offshore propagation than on days without.559

The 850 hPa wind anomaly associated with ENSO, theMJO and convectively-coupled equatorial560

waves was computed at each coastline, and used to quantify the contribution of each of these drivers561

to the coastal wind regime. The sum of these contributions explains the total wind to a high degree562
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of accuracy, with the residual value having an amplitude smaller than one standard deviation on563

78% and 83% of days. Remaining discrepancies are likely due to deficiencies in the technique564

for deriving the wind associated with each driver, or the influence of other drivers such as TCs,565

tropical depressions, cold surges, Borneo vortices or the Indian Ocean dipole. Composites of566

large-scale conditions with large residuals (not shown) suggest that the largest inaccuracies tend to567

be associated with either active phases of the MJO or R1 waves.568

It is important to note that studies such as Peatman et al. (2014), which show the mean diurnal569

cycle of precipitation for each MJO phase, do not necessarily imply that the diurnal cycle plotted570

will always occur on days in that phase. Rather, the results of such papers are true only in a571

composite sense. MJO phase alone does not determine the small-scale weather regime and it572

cannot be used to predict the local distribution of thunderstorms on an individual day. Instead, a573

combination of large-scale phenomena, whichmay occur in any combination, should be considered.574

Figure 16 summarises the drivers contributing to the onshore and offshore wind regimes for each575

coastline, with details of which phase of the large-scale phenomenon contributes to each cluster.576

Drivers are listed if the 1997/98 to 2017/18 DJF variance in their associated coastal 850 hPa wind577

(see figure S1 for the first three years) exceeds 10% of the variance of the total value, for each578

coastline (all variances are listed in table S4). The schematic diagrams in figure 17 indicate how579

these drivers affect coastalwind and show the associated variability in precipitation. Cumulonimbus580

clouds indicate deep convection and cumulus clouds indicate less intense precipitation. Grey arrows581

indicate propagation of convection, with the strength of propagation shown by the arrow size.582

For south-west Sumatra there is a strong contribution from Rossby waves. Deep convection583

over the mountains and nocturnal offshore propagation are more likely during the high pressure584

phase of the R1 wave. The stronger high pressure signal is in the southern hemisphere because the585

coastline is in that hemisphere. When there is some asymmetry in the Rossby wave signal there is586

26



also some projection onto the R2 structure. Therefore, the two wave types are considered together587

in the top row of figure 16 and the asymmetry is illustrated in figure 17e. The opposite phase, with588

low pressure centres, is associated with more moderate, large-scale precipitation which propagates589

onshore (figure 17a). The same result is found for north-west Borneo (figures 17b,f), but with590

the stronger signals in the northern hemisphere because the coastline investigated is north of the591

equator.592

The MJO and ENSO also contribute to the coastal wind for south-west Sumatra. The enhanced593

diurnal cycle is most often found in phases prior to the arrival of the active MJO envelope (8–3),594

consistent with Oh et al. (2012), Peatman et al. (2014) and other studies, when the wind is more595

offshore. The diurnal cycle is more suppressed during phases 4 to 6. El Niño is associated with596

offshore wind, consistent with large-scale suppression and low-level divergence over the region;597

and is therefore associated with an enhanced diurnal cycle, consistent with Rauniyar and Walsh598

(2013). The effect of ENSO is weaker over north-west Borneo than south-west Sumatra, possibly599

because the ENSO wind signal is due to large-scale convergence or divergence at the edge of the600

MC region. However, north-west Borneo does have a contribution from the MJO, with onshore601

and offshore wind regimes tending to occur one phase later than over south-west Sumatra due to602

the longitudinal difference.603

Over Java and north New Guinea, where the coastal wind we consider is meridional, there is604

no substantial contribution from ENSO or the MJO, which is consistent with the fact that both605

these phenomena are associated with anomalies in a zonal overturning circulation. Variability in606

coastal wind regimes instead arises from the propagation of Rossby and WMRG waves. Since607

Java is a thin island in the north-south direction, onshore wind on the north coast often coincides608

with offshore wind on the south coast, and vice versa. The control of large-scale drivers on the609

coastal wind regimes is, therefore, roughly the same at each coastline but for a change of sign in610
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wind direction (see yellow and blue rows of figure 16) so only south Java is shown in figure 17611

(panels (c) and (g)). Rossby waves projecting onto R1 and R2 again have a strong contribution over612

Java, as do WMRG waves. Deep convection occurs over the Java mountains in both the onshore613

and offshore wind regimes, with northward propagation occurring in both. Southward propagation614

also occurs in both regimes but is considerably stronger when winds are offshore from the south615

coast.616

Over north New Guinea, WMRGwaves have the greatest contribution to coastal wind. Although617

the variance in coastal wind due to R1 waves is 14.9% of the variance in the total coastal wind,618

composites do not show a coherent signal (figures 15c,h) so there is no consistent phase of the wave619

associated with a given wind regime. Therefore, we do not provide information about the phase of620

these waves in figure 16 and we omit them from figures 17d,h. However, there is a coherent signal621

for R2 waves. The R2 structure has high and low pressure centres located away from the equator,622

and vorticity centred on the equator, as indicated in figures 17d,h. It is these equatorial vorticity623

centres which contribute to wind on the north New Guinea coast.624

The New Guinea highlands are higher and broader than most of the orography in other MC625

regions studied in this paper (see figure 1). Unlike on other islands, there are two distinct regions626

of convective initiation, on the north and south flanks of the mountain range. As shown by the627

schematic diagram and as was seen in the Hovmöller diagrams in figures 12l,p, the most intense628

precipitation forms on the leeward side of the mountains. In both regimes the convection on the629

north side propagates northwards and on the south side propagates southwards, with the strongest630

propagation arising from the more intense convection.631

The stark differences in the results for Java and north New Guinea, compared with south-west632

Sumatra and north-west Borneo, demonstrate the diversity in the behaviour of the diurnal cycle633
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across the MC. More work is required to understand the differences in the underlying physical634

mechanisms occurring in each location.635

In summary, we have shown that the strength and absolute wind direction within the coastal636

land-sea breeze circulation exerts a strong control on the diurnal convection and offshore637

propagation over MC coastlines. Our local-to-large scale method, using a clustering algorithm, is a638

powerful tool which has allowed us to identify what large-scale conditions set up each local regime.639

The summary information in figure 16 and figure 17 have applications for forecasting in the region.640

Global NWPmodels struggle to forecast the local-scale spatial and temporal distribution of rainfall641

accurately in the tropics, at least partly due to errors in convection parametrization schemes (e.g.,642

Birch et al. 2015; Argüeso et al. 2020). However, large-scale drivers can be forecast skilfully643

several days or weeks in advance. For example, operational forecasting systems may skilfully644

predict the MJO on time scales of 3–4 weeks (e.g., Klingaman and Woolnough 2014; Kim et al.645

2014); and Rossby andWMRGwaves on time scales of around 1 week (e.g., Yang et al. 2021). Our646

results allow forecasters to harness such skill through understanding the impact of the large-scale647

environment and suggest there may be opportunities to infer the risk of high-impact weather from648

predicted large-scale weather regimes (cf. Neal et al. 2016, 2020). This information can be used649

alongside NWP forecasts to improve prediction of extreme rainfall.650
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clustering in figure 2. (e–h) As (a–d) but plotted as a diurnal anomaly; that is, with the841

respective daily mean profile for each cluster subtracted. . . . . . . . . . . . 45842
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99th percentile, so the climatological probability is 0.01 everywhere. Data are regridded to849

0.25° for plotting purposes. . . . . . . . . . . . . . . . . . . . 47850

Fig. 9. (a) Number of days in DJFs 1979/80–2019/20 in each phase of ENSO. (b) As (a) but851

separately for each of the clusters in figure 6. (c,d) As (a,b) but for the MJO, with grey852

indicating RMM amplitude < 1. MJO large-scale convection is active over the Indian Ocean853

in phases 2–3, the MC in 4–5, the western Pacific Ocean in 6–7, and the western hemisphere854

and Africa in 8–1; and is suppressed in the corresponding opposite phases. . . . . . . 48855

Fig. 10. Composites at 850 hPa for clusters A and D from figures 6a,d. (a,f) Daily mean horizontal856

wind anomaly using ERA-Interim reanalysis data. (b,g) Daily mean horizontal wind and857

geopotential height anomalies from structures of equatorial waves, summed over Kelvin, R1,858

R2 and WMRG waves. (c,h) As (b,g) but for Kelvin wave contribution only. (d,i) As (b,g)859

but for R1 wave contribution only. (e,j) As (b,g) but for R2 wave contribution only. All860

composites use a subset (21 DJFs) of the days in figure 6, for 1997/98 to 2017/18. . . . . 49861

Fig. 11. Histogram of the absolute value of the residual south-west Sumatra coast 𝑢850, with the862

theoretical value computed as the sum of the contributions from the MJO, ENSO, equatorial863

Kelvin, R1, R2 and WMRG waves, and the mean seasonal cycle. For the example days864

shown in figures 4 and S1, this is the absolute difference between the grey and solidthick865

black curves. Blue bars show the number of days in each bin (left vertical axis); orange curve866

shows the cumulative distribution as a percentage (right vertical axis); and red line shows867

the inter-annual standard deviation of 𝑢850, averaged over each day of DJF. . . . . . . 50868

Fig. 12. (a–h) As figure 6 but extended to the other coastlines shown in figure 1, for 𝑘 = 4 (clusters B869

and C not shown). 𝑢 and 𝑣 after each coastline name indicate whether zonal or meridional870

wind was clustered. Wind in the onshore direction is plotted in red and the offshore direction871

in blue, with cluster A as the most onshore cluster. For north Java and north New Guinea this872

requires the sign to be reversed so −𝑣 is plotted. Note that panels (a) and (e) use the same873

colour bar (not shown here) as figure 6. (i–p) As figure 7 but for the clusters shown here in874

panels a–h. . . . . . . . . . . . . . . . . . . . . . . . 51875

Fig. 13. Top two rows as figure 5 and bottom row as figure 11, but for (a–c) north-west Borneo,876

(d–f) north Java, (g–i) south Java and (j–l) north New Guinea. For middle row, colours are877

chosen so that red is always onshore wind. For bottom row, tick marks up to 600 (number of878

days in each bin; left axis) relate to blue bars; and horizontal grid lines and tick marks up to879

100 (cumulative distribution as a percentage; right axis) relate to orange curves. . . . . . 52880

Fig. 14. (a,b,f,g) As figure 10 but for south Java clusters A and D (see figures 12c,g). (c,h) R1,881

(d,i) R2 and (e,j) WMRG contributions only. . . . . . . . . . . . . . . 53882

Fig. 15. As figure 14 but for north New Guinea clusters A and D (see figures 12d,h). . . . . . . 54883

Fig. 16. Summary of the large-scale drivers with the strongest control on coastal wind regime, and the884

phases associated with the strongest onshore and offshore regimes, for each of the coastlines885

analysed. Forcings are listed if the variance in their associated 𝑢′850 or 𝑣
′
850 (depending on886

the coastline) is at least 10% of the variance in the full 𝑢850 or 𝑣850 field during DJFs 1997/98887

to 2017/18; for a full list, see table S4. Colours correspond to the boxes in figure 1, with888

more intense shades highlighting larger contributions to the variability. *For coastlines other889
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is high enough to be listed here, their phase is not consistent within each cluster and their893

contribution to coastal 𝑣850 is weak in a composite sense (see figures 15c,h). . . . . . . 55894

Fig. 17. Schematic diagram of important large-scale drivers, and their effect on convection and its895

propagation, for strong onshore and offshore coastal wind regimes for theMaritime Continent896

coastlines detailed in figure 16. North Java is not shown due to its similarity to the results for897

south Java (with onshore and offshore reversed). Dark grey cumulonimbus clouds indicate898
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Grey arrows indicate propagation, with the largest arrow in an image indicating the strongest900

propagation (not to scale between images). These are drawn with reference to the Hovmöller901

diagrams in figures 7 and 12i–p. Coloured arrows indicate the wind direction associated902

with large-scale drivers. H and L refer to high and low pressure centres. For 𝑛 = 1,2 Rossby903
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Fig. 2. (a–c) Diurnal cycle of vertical profile of zonal wind from radiosondes at Bengkulu during the 108 days

2015/09/11–2015/12/25 and 2017/11/16–2018/01/15. Days are sorted into 3 clusters using the 𝑘-means algorithm

(see main text for details), with the number of days in each cluster shown above each panel. Clusters are ordered

according to the mean value of zonal wind averaged over time and pressure. Radiosonde data are every 3 hours

and interpolated to the same pressure levels used by the ERA5 reanalysis, from 1000 to 500 hPa, as indicated by

the tick marks. Local time is taken to be UTC+7. (d–f) As (a–c) but plotted as a diurnal anomaly; that is, with

the respective daily mean profile for each cluster subtracted.

912

913

914

915

916

917

918

41



07

13

19

01

07

13

 lo
ca

l t
im

e 
(a) Cluster 0 (34 days)

500 250 0 250 500
distance onshore  /  km

0
1000

m
 A

SL
(b) Cluster 1 (43 days)

500 250 0 250 500
distance onshore  /  km

(c) Cluster 2 (31 days)

500 250 0 250 500
distance onshore  /  km

0.2 0.4 0.6 0.8 1.0 1.2 1.4
mm
hr 1

Fig. 3. Hovmöller diagrams of the composite diurnal cycle of precipitation from IMERG for each of the

clusters in figure 2, extended by 12 hours to 19 LT (12 UTC) the following day. Precipitation is composited over

the red dashed box in figure 1 and averaged along the coastline, every 30 minutes. The mean orography is shown

below each panel in metres above sea level (ASL).
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zonal wind  /  m s 1

Fig. 4. Time series of 𝑢850 (grey) from ERA-Interim at Bengkulu during the two field campaigns. Coloured

curves show 𝑢′850 due to ENSO (dark green; regression onto ONI), the MJO (dark blue; multiple regression onto

RMMs), equatorial Kelvin (orange), R1 (dark pink), R2 (light pink) and WMRG (light blue) waves (identified in

ERA-Interim). Thin bBlack dotted curve shows the mean seasonal cycle. Thick bBlack solid curve is the sum

of the six coloured curves and the mean seasonal cycle. Red stars indicate a TC centre within 10° geodesic of

Bengkulu. (All TCs shown are in the southern hemisphere.) Red, green and blue boxes denote clusters from

figures 2a–c.
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(a) Regression of u850 onto ONI

Fig. 5. (a) Linear regression of south-west Sumatra coast𝑢′850 ontoONI index ofENSO, according to equation 1.

The data points used for the regression are shown in grey. 𝜌 is the correlation coefficient. (b) Multiple linear

regression of south-west Sumatra coast 𝑢′850 onto RMM indices of the MJO, according to equation 2. Areas with

no MJO days in the 39 DJFs used are greyed out.
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Fig. 6. (a–d) Hourly ERA5 zonal wind averaged along the nominal coastline of the solid red box (south-west

Sumatra) in figure 1, clustered using the 𝑘-means algorithm. 41 DJFs (1979/80–2019/20, excluding 29 February)

are used with 𝑘 = 4 (see main text for details of the choice of 𝑘) and clusters labelled A, B, C and D to avoid

confusion with the 𝑘 = 3 clustering in figure 2. (e–h) As (a–d) but plotted as a diurnal anomaly; that is, with the

respective daily mean profile for each cluster subtracted.
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Fig. 7. Hovmöller diagrams of the composite diurnal cycle of precipitation from GPM-HQ for each of the

clusters in figure 6. These composites use a subset (20 DJFs) of the days in figure 6 as GPM is not available

before the year 2000.
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Fig. 8. Fractional change (expressed as a percentage), relative to climatology, of the probability of extreme

precipitation occurring in each cluster, using daily mean IMERGGPM-HQ rainfall for the 20 DJFs from 2000/01

onwards. Extreme precipitation is defined as exceeding the 99th percentile, so the climatological probability is

0.01 everywhere. Data are regridded to 0.25° for plotting purposes.
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Fig. 9. (a) Number of days in DJFs 1979/80–2019/20 in each phase of ENSO. (b) As (a) but separately for

each of the clusters in figure 6. (c,d) As (a,b) but for the MJO, with grey indicating RMM amplitude < 1. MJO

large-scale convection is active over the Indian Ocean in phases 2–3, the MC in 4–5, the western Pacific Ocean

in 6–7, and the western hemisphere and Africa in 8–1; and is suppressed in the corresponding opposite phases.
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Fig. 10. Composites at 850 hPa for clusters A and D from figures 6a,d. (a,f) Daily mean horizontal wind

anomaly using ERA-Interim reanalysis data. (b,g) Daily mean horizontal wind and geopotential height anomalies

from structures of equatorial waves, summed over Kelvin, R1, R2 and WMRG waves. (c,h) As (b,g) but for

Kelvin wave contribution only. (d,i) As (b,g) but for R1 wave contribution only. (e,j) As (b,g) but for R2 wave

contribution only. All composites use a subset (21 DJFs) of the days in figure 6, for 1997/98 to 2017/18.
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Fig. 11. Histogram of the absolute value of the residual south-west Sumatra coast 𝑢850, with the theoretical

value computed as the sum of the contributions from the MJO, ENSO, equatorial Kelvin, R1, R2 and WMRG

waves, and the mean seasonal cycle. For the example days shown in figures 4 and S1, this is the absolute

difference between the grey and solidthick black curves. Blue bars show the number of days in each bin (left

vertical axis); orange curve shows the cumulative distribution as a percentage (right vertical axis); and red line

shows the inter-annual standard deviation of 𝑢850, averaged over each day of DJF.
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Fig. 12. (a–h) As figure 6 but extended to the other coastlines shown in figure 1, for 𝑘 = 4 (clusters B and C

not shown). 𝑢 and 𝑣 after each coastline name indicate whether zonal or meridional wind was clustered. Wind

in the onshore direction is plotted in red and the offshore direction in blue, with cluster A as the most onshore

cluster. For north Java and north New Guinea this requires the sign to be reversed so −𝑣 is plotted. Note that

panels (a) and (e) use the same colour bar (not shown here) as figure 6. (i–p) As figure 7 but for the clusters

shown here in panels a–h.
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Fig. 13. Top two rows as figure 5 and bottom row as figure 11, but for (a–c) north-west Borneo, (d–f) north

Java, (g–i) south Java and (j–l) north New Guinea. For middle row, colours are chosen so that red is always

onshore wind. For bottom row, tick marks up to 600 (number of days in each bin; left axis) relate to blue bars;

and horizontal grid lines and tick marks up to 100 (cumulative distribution as a percentage; right axis) relate to

orange curves.
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Fig. 14. (a,b,f,g) As figure 10 but for south Java clusters A and D (see figures 12c,g). (c,h) R1, (d,i) R2 and

(e,j) WMRG contributions only.
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Fig. 15. As figure 14 but for north New Guinea clusters A and D (see figures 12d,h).
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Fig. 16. Summary of the large-scale drivers with the strongest control on coastal wind regime, and the phases

associated with the strongest onshore and offshore regimes, for each of the coastlines analysed. Forcings are

listed if the variance in their associated 𝑢′850 or 𝑣
′
850 (depending on the coastline) is at least 10% of the variance

in the full 𝑢850 or 𝑣850 field during DJFs 1997/98 to 2017/18; for a full list, see table S4. Colours correspond

to the boxes in figure 1, with more intense shades highlighting larger contributions to the variability. *For

coastlines other than north New Guinea, identified R2 waves appear to be an artefact of the same circulation

pattern which projects more strongly onto the theoretical R1 structure, so the two are shown in combination.

**For north New Guinea, although the variance associated with R1 waves is high enough to be listed here, their

phase is not consistent within each cluster and their contribution to coastal 𝑣850 is weak in a composite sense (see

figures 15c,h).
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