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Dip coating is a common technique used to cover a solid surface with a thin liquid film,
the thickness of which was successfully predicted by the theory developed in the 1940s by
Landau & Levich (Acta Physicochem. URSS, vol. 17, 1942, pp. 141–153) and Derjaguin
(Acta Physicochem. URSS, vol. 20, 1943, pp. 349–352). In this work, we present an
extension of their theory to the case where the dipping bath contains two immiscible
liquids, one lighter than the other, resulting in the entrainment of two thin films on the
substrate. We report how the thicknesses of the coated films depend on the capillary
number, on the ratios of the properties of the two liquids and on the relative thickness
of the upper fluid layer in the bath. We also show that the liquid/liquid and liquid/gas
interfaces evolve independently from each other as if only one liquid were coated, except
for a very small region where their separation falls quickly to its asymptotic value and
the shear stresses at the two interfaces peak. Interestingly, we find that the final coated
thicknesses are determined by the values of these maximum shear stresses.

Key words: thin films, coating, multiphase flow

1. Introduction

The process of dip coating aims to deposit a thin liquid layer on the surface of an
object by withdrawing the latter from a liquid bath in which it is initially immersed.
This simple technique is employed in many industrial processes in order to modify the
properties of a solid surface (Scriven 1988), with applications ranging from anti-corrosion
treatments and optically modified glasses, to surface functionalisation of bio-implants.
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The hydrodynamics of dip coating has been known for nearly 80 years. The original
description of this process dates back to the now classical work of Landau & Levich
(1942), followed by the contribution of Derjaguin (1943), who included the effect of
gravity. We will refer to their description of the one-liquid dip-coating problem as the
LLD theory. Later on, when the relevant mathematical tools became available, the rigorous
asymptotic theory underlying these initial developments was proposed by Wilson (1982).

Nurtured by practical applications, experimental and theoretical aspects of dip coating
have continued to attract scientific attention ever since, as highlighted by the recent review
by Rio & Boulogne (2017). New effects and regimes have been found to arise from the
use of partially wetting (Snoeijer et al. 2008; Tewes et al. 2019) or textured (Seiwert,
Clanet & Quére 2011) solid substrates, non-Newtonian liquids (Hurez & Tanguy 1990;
Maillard et al. 2016), surface active molecules (Park 1991; Scheid et al. 2010; Champougny
et al. 2015) or jammed hydrophobic micro-particles (Dixit & Homsy 2013; Ouriemi &
Homsy 2013) adsorbed at the liquid/gas interface. The two latter cases can be regarded as
stepping stones to multi-phase dip-coating situations. Indeed, interfacial particle rafts were
shown to behave as two-dimensional elastic sheets floating on top of the liquid bath (Vella,
Aussillous & Mahadevan 2004), while surfactant monolayers at liquid/gas interfaces are
known to exhibit analogues to two-dimensional liquid or gaseous phases (Vollhardt &
Fainerman 2010).

Beyond these analogies, the dip-coating configuration in which the bath contains two
immiscible liquids, one floating on top of the other, has never been explored. The
objective of the present paper is to extend the LLD dip-coating theory to describe
liquid entrainment at such a gas/liquid/liquid compound interface. Processes occurring
at compound interfaces, for example made of a layer of oil floating on water, raise interest
in the context of environmental science or semiconductor electronics. The surface of
the oceans can be seen as a compound interface, due to the presence of the sea surface
microlayer (Hardy 1982; Liss & Duce 2005) and even more so in the event of an oil spill
(Fingas 2015), hence the relevance of processes such as bubble bursting (Feng et al. 2014;
Stewart et al. 2015) or bouncing (Feng et al. 2016) at gas/liquid/liquid interfaces. These are
examples of elementary processes that occur at the millimetric or sub-millimetric scale in
the ocean and whose physics is related to the one we consider in this work. In a different
context, dip coating through a compound interface, consisting of lifting a substrate through
a layer of carbon-nanotube-laden ink floating on top of a water bath, was experimentally
investigated by Jinkins et al. (2017). They showed the potential of this method, known
as floating evaporative self-assembly in the context of semiconductor electronics, for the
deposition of well-aligned carbon nanotube arrays.

In the present study, we will restrict ourselves to the situation in which both liquid phases
are dragged, giving birth to a superposition of two liquid films on the substrate. It is worth
mentioning the connection of this configuration to the model introduced by Seiwert et al.
(2011) to describe the dip coating of a textured solid with a single liquid phase. In that
work, the effect of the texture was modelled as a secondary, uniform layer made of a fluid
with a viscosity higher than that of the coating liquid. Finally, in a different geometry,
the entrainment of a thin liquid film at a liquid/liquid interface has been described in the
context of lubricant-infused surfaces (Li et al. 2019). When a water droplet is sliding on
an oil-imbibed surface, thin oil films observed behind, beneath or around the droplet have
been shown to obey similar scaling laws as in the LLD theory (Daniel et al. 2017; Kreder
et al. 2018).

Our theoretical investigation of dip coating through a gas/liquid/liquid compound
interface, leading to the deposition of a double liquid coating, is organised as follows.
In § 2, we develop the problem formulation and comment on the various dimensionless
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Figure 1. Sketch of the flow configuration described in this work: a solid plate is pulled vertically at constant
speed through a compound bath made of a lighter liquid (2) on top of a denser one (1). The liquid 1/liquid 2
and liquid 2/air interfaces are denoted by (I) and (II), respectively.

control parameters. Our results are presented and discussed in §§ 3 and 4. In § 3, we focus
on the typical interfacial shapes and flow structures obtained from the numerical solutions
of the model. These observations allow us to rationalise quantitatively the asymptotic
film thicknesses coated on the substrate, highlighting the universality of the entrainment
mechanism (viscous stresses vs capillary suction). In § 4, we examine the dependence of
the film thicknesses on a number of dimensionless control parameters of the problem.
Importantly, we show that the existence of a physically meaningful second film is limited
to specific, finite regions in the parameter space. In § 5, we comment on the scope and
limitations of our model in relation to disjoining pressure effects and partial wetting
conditions between the two liquids. Finally, § 6 is devoted to the conclusions.

2. Description of the model

2.1. Dimensional flow equations
We present here the dimensional formulation of the two-liquid dip-coating problem
sketched in figure 1. A solid plate is vertically lifted at a constant speed U through a
stratified bath made of two immiscible liquid layers. This bath consists of a pool of liquid
1 (with density ρ1 and viscosity μ1), covered by a layer of liquid 2 (with density ρ2 < ρ1
and viscosity μ2), which has a thickness ΔH far from the plate. The interface between
liquid 1 and 2, denoted by (I), has an interfacial tension σ12, while the interface between
liquid 2 and the surrounding air, denoted by (II), has a surface tension σ2a. Both liquids
1 and 2 are supposed to perfectly wet the plate. However, at this stage, we do not impose
perfect wetting conditions between liquids 1 and 2. In other words, the spreading factor
S = σ1a − (σ2a + σ12), where σ1a denotes the surface tension of liquid 1, can be either
positive or negative for the moment (see e.g. De Gennes, Brochard-Wyart & Quéré 2013).
We will discuss the effect of the wetting properties of liquid 2 on liquid 1 in § 2.6 and later
on in § 5.1.

We consider the problem to be steady and two-dimensional in space, described by the
horizontal coordinate x and the vertical coordinate z (see figure 1). As the plate crosses
the compound bath, we assume it entrains two thin films: a lower film of liquid 1 with
thickness h1(z) and an upper film of liquid 2 with thickness δh(z) = h2(z) − h1(z). The
velocity fields are u1ez + v1ex and u2ez + v2ex in liquids 1 and 2, respectively.

Following the approach by Landau & Levich (1942) and Derjaguin (1943), we describe
the flow of each phase in the transition region, referred to as the dynamic meniscus, that
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connects the films of constant thickness downstream to the static meniscus upstream. For
each liquid, the vertical extent of the static meniscus is assumed much larger than the
corresponding film thickness, allowing us to apply the lubrication theory to the flow. In
this steady lubrication approach, the momentum conservation equations in the z-direction
read

0 = −∂p1

∂z
+ μ1

∂2u1

∂x2 − ρ1g, (0 < x < h1(z), z > 0) (2.1)

0 = −∂p2

∂z
+ μ2

∂2u2

∂x2 − ρ2g, (h1(z) < x < h2(z), z > ΔH). (2.2)

The x-independent pressures pi (i = 1, 2) are related to the atmospheric pressure pa and to
the interfacial curvatures κi through

p1 = p2 − σ12κ1, (0 < x < h1(z), z > 0) (2.3)

p2 = pa − σ2aκ2, (h1(z) < x < h2(z), z > ΔH), (2.4)

p2 = pa + ρ2g(ΔH − z), (x > h1(z), 0 < z ≤ ΔH), (2.5)

where, for i = 1, 2,

κi = ∂2hi

∂z2

[
1 +

(
∂hi

∂z

)2
]−3/2

. (2.6)

Denoting Q1 the flow rate of liquid 1 (i.e. under interface (I)) and Q2 the total flow rate of
liquids 1 and 2 (i.e. under interface (II)), the quasi-steady thickness-averaged continuity
equations read

∂Qi

∂z
= 0 for i = 1, 2. (2.7)

The expressions relating the flow rates Qi with the flow velocities, ui and the locations of
the interfaces hi will be provided below, once the dimensionless formulation is introduced.

2.2. Non-dimensionalisation
A convenient choice for the length scale to non-dimensionalise the problem is the capillary
length �c based on the properties of liquid 1 in the absence of the buoyancy effect created
by liquid 2, defined as

�c =
√

σ12

ρ1g
. (2.8)

Note that �c neither represents the scale of the static meniscus of liquid 1, nor the one
of liquid 2. The ‘physical’ dimensional capillary lengths associated with the menisci of
liquids 1 and 2 are respectively �c,1 = √

σ12/(ρ1 − ρ2)g and �c,2 = √
σ2a/ρ2g, whose

dimensionless versions indeed appear in the static configuration presented in § 2.4 ((2.34)
and (2.35), respectively). The independent and dependent variables of the problem are
made dimensionless as follows:

(x, z) −→ �c (x, z) (2.9)

(h1, h2) −→ �c (h1, h2), (2.10)
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Dip coating with two liquids

( p1, p2) −→ σ12/�c ( p1, p2), (2.11)

(u1, u2, v1, v2) −→ U (u1, u2, v1, v2). (2.12)

The thickness of the layer of liquid 2 is also scaled by �c, still keeping the same
notation: ΔH −→ �cΔH. The capillary number is introduced as Ca = μ1U/σ12. Also,
the following dimensionless parameters are defined:

M = μ2

μ1
, Σ = σ2a

σ12
, R = ρ2

ρ1
. (2.13a–c)

Based on these definitions, the dimensionless momentum equations deduced from (2.1)
and (2.2) read

0 = Π1 + Ca
∂2u1

∂x2 , (0 < x < h1(z), z > 0) (2.14)

0 = Π2 + M Ca
∂2u2

∂x2 , (h1(z) < x < h2(z), z > ΔH), (2.15)

where the dimensionless pressure gradients are

Π1 = ∂κ1

∂z
+ Σ

∂κ2

∂z
− 1, (0 < x < h1(z), z > ΔH) (2.16)

Π2 = Σ
∂κ2

∂z
− R, (h1(z) < x < h2(z), z > ΔH). (2.17)

For 0 < z ≤ ΔH, (2.16) must be replaced by

Π1 = ∂κ1

∂z
− 1 + R. (2.18)

Notice that the pressure gradient Π1 and its derivative are continuous at z = ΔH, as
Π2 smoothly approaches 0 as z → 0+. In the above expressions, κ1 and κ2 are the
dimensionless curvatures, which are still given by (2.6) after non-dimensionalisation.
Equations (2.14) and (2.15) can be integrated with respect to x across the corresponding
layers, using the following boundary conditions:

Stress-free at x = h2 :
∂u2

∂x
= 0, (2.19)

Velocity continuity at x = h1 : u1 = u2, (2.20)

Stress continuity at x = h1 :
∂u1

∂x
= M

∂u2

∂x
, (2.21)

No slip at x = 0 : u1 = 1. (2.22)

After obtaining the vertical velocity fields u1 and u2 (whose expressions are given in
Appendix A), we compute the dimensionless flow rate Q1 in the lower layer and the total
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dimensionless flow rate Q2 carried by the two layers

Qi = Ca
∫ hi

0
ui(x) dx = Ca hi + Π1Fi1 + Π2Fi2, (2.23)

with i = {1, 2} and

F11 = h3
1

3
(2.24)

F12 = (h2 − h1)
h2

1
2

(2.25)

F21 = h3
1

3
+ (h2 − h1)

h2
1

2
(2.26)

F22 = (h2 − h1)
3

3M
+ h1 (h2 − h1)

2 + (h2 − h1)
h2

1
2

. (2.27)

Replacing the flow rates Qi given by (2.23) in the continuity (2.7) – which remain
unchanged upon non-dimensionalisation – we arrive at a system of two fourth-order
ordinary differential equations. This system is closed by implementing eight boundary
conditions as follows. Far up from the reservoir, we impose that the thicknesses of the
coated films converge asymptotically to constants: for i = {1, 2}, ∂hi/∂z = ∂2hi/∂z2 = 0
when z → +∞. Towards the reservoir, the static menisci connect to the flat surfaces of
liquids 1 and 2. We therefore impose that κ1 = 0 and ∂h1/∂z → ∞ at z = 0 for liquid 1;
and κ2 = 0 and ∂h2/∂z → ∞ at z = ΔH for liquid 2.

2.3. Scaling and simplification
The problem consisting of (2.7), along with (2.23) and the above-mentioned boundary
conditions, could be solved numerically for h1 and h2. However, in order to gain physical
insight into the scalings governing the different regions of the flow, we further simplify the
problem using the matched asymptotic expansion treatment proposed by Wilson (1982) in
the case of the one-liquid LLD flow.

The film thicknesses hi and the vertical coordinate z are rescaled with a dimensionless
parameter ε as hi = εĥi and z = εα ẑ. This technique will allow us to find the spatial scales
at which viscous stress and capillary pressure gradient are equally important or, in other
words, to find the scale of the dynamic menisci. The small parameter ε can be interpreted
as the ratio between the length scale (in the direction perpendicular to the plate) at which
viscous effect are important, and the capillary length. Requiring that the curvatures κi
are of order unity (so dimensional curvatures are of order �−1

c ) when the films approach
the static menisci, we find α = 1/2 (Wilson 1982). Expanding (2.7) and (2.23)–(2.27) for
ε � 1 and retaining terms up to order ε1/2 yields

∂

∂ ẑ

[
Ca
ε3/2 ĥi +

(
∂3ĥ1

∂ ẑ3 + Σ
∂3ĥ2

∂ ẑ3 − ε1/2

)
F̂i1 +

(
Σ

∂3ĥ2

∂ ẑ3 − ε1/2R

)
F̂i2

]
= 0, (2.28)

where F̂ij are the functions defined in (2.24)–(2.27) but in terms of ĥi instead of hi. One
assumption that we make here is that the dynamic meniscus region is located above z =
ΔH. This means that the two interfaces h1(z) and h2(z) are defined there. Note that the
curvatures are reduced to the second derivatives of the thicknesses, as the next term in
their expansion is of order ε.
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Liquid 1
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x

z

g

(I)

(II)

Liquid 2

zcl,1

zcl,2

Δzcl

0

Air

Figure 2. Sketch of the static configuration: an immobile vertical plate is wetted by a compound bath at rest,
made of a lighter liquid (2) on top of a denser one (1). The liquid 1/liquid 2 and liquid 2/air interfaces, denoted
by (I) and (II), climb up to heights zcl,1 and zcl,2, respectively. The distance between the two corresponding
contact lines on the plate is therefore Δzcl = zcl,2 − zcl,1.

Analogously to the formulation developed in Wilson (1982) for the one-liquid case,
(2.28) encompasses the effects of both capillary- and gravity-driven drainage on the
steady-state film thicknesses. In this work, we will focus on the case where capillary effects
prevail over gravity. In (2.28), viscous stresses will be of the same order as capillary ones if
ε = Ca2/3, which is the same scaling obtained in the one-liquid case by Landau & Levich
(1942). Finally, at leading order, the equations satisfied by the thicknesses are

∂

∂ ẑ

[
ĥi + ∂3ĥ1

∂ ẑ3 F̂i1 + Σ
∂3ĥ2

∂ ẑ3

(
F̂i1 + F̂i2

)]
= 0. (2.29)

The boundary conditions far from the liquid bath remain unchanged, as compared with
the full formulation (developed in the last paragraph of 2.2): ĥ′

i = ĥ′′
i = 0 for ẑ → +∞,

where the prime denotes the derivative with respect to ẑ. On the contrary, the boundary
conditions near the reservoir have to be imposed through an asymptotic matching with
the static menisci, as our ability to rigorously implement these boundary conditions at the
liquid bath was lost when the curvature was linearised and gravity was neglected.

2.4. Asymptotic matching with the static menisci

2.4.1. Static configuration
For the purpose of asymptotic matching, we briefly study the static configuration depicted
in figure 2. Setting Ca = 0 in (2.14) and (2.15) (which also implies Qi = 0) leads to Π1 =
Π2 = 0, or equivalently

∂κ1

∂z
+ R − 1 = 0, (2.30)

Σ
∂κ2

∂z
− R = 0. (2.31)

As done in the one-liquid case (see for instance Landau & Lifshitz (1987), chapter 7,
page 243), these equations can be integrated to find the exact solutions for the shape of
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the static menisci h1(z) and h2(z). Since our purpose is to use these solutions to obtain
asymptotic matching conditions for the dynamic thin film equations (2.29), we only need
the approximated shape of the static interfaces (I) and (II) near the contact lines on the
plate, i.e. close to positions zcl,1 and zcl,2, respectively.

Because h1(zcl,1) = h2(zcl,2) = 0 (by definition) and h′
1(zcl,1) = h′

2(zcl,2) = 0 (perfect
wetting conditions on the plate), the Taylor expansions of the meniscus profiles in the
vicinity of the contact lines read, for z ≤ zcl,2:

h1 = 1
2κ1(zcl,1)

(
z − zcl,1

)2
, (2.32)

h2 = 1
2κ2(zcl,2)

(
z − zcl,2

)2
. (2.33)

By solving (2.30) and (2.31), using the definition (2.6), we obtain the expressions for the
curvatures at the contact lines,

κ1(zcl,1) =
√

2(1 − R) at zcl,1 =
√

2/(1 − R), (2.34)

κ2(zcl,2) =
√

2R/Σ at zcl,2 = ΔH +
√

2Σ/R, (2.35)

for interfaces (I) and (II) respectively.

2.4.2. Asymptotic matching
In the one-liquid case, thanks to the invariance of the problem in the ẑ-direction, imposing
the value of the curvature in the limit ẑ → −∞ is enough to perform the asymptotic
matching (Landau & Levich 1942). In our two-liquid case, however, we benefit from
the invariance along ẑ only for one of the interfaces because the relative position of
interfaces (I) and (II) far from the plate is fixed (they are separated by a given distance
ΔH). Consequently, the boundary conditions in the limit ẑ → −∞ not only result from
imposing the curvatures of the two static menisci, but also require specifying how far
apart the interfaces are. In order to fulfil these two conditions, the film thicknesses ĥi are
required to follow the parabolic approximations of the static menisci ((2.32) and (2.33)),
expressed in terms of the rescaled variables ĥi = Ca−2/3hi and ẑ = Ca−1/3z

ĥ1 = 1
2

√
2 (1 − R)

(
ẑ − ẑcl,1

)2
, (2.36)

ĥ2 = 1
2

√
2R/Σ

(
ẑ − ẑcl,2

)2
, (2.37)

in the limit ẑ → −∞. We have introduced ẑcl,i = zcl,i Ca−1/3, where zcl,i denotes the
dimensionless location where interfaces (I) and (II) (for i = 1 and 2 respectively) meet
the plate in the static configuration and for perfect wetting conditions. Note that the
matching between the dynamic and the static menisci will occur within a vertical distance
of order �c Ca1/3 from the contact lines of the hydrostatic solutions. For ε1/2 = Ca1/3 � 1
(condition to neglect gravity in the dynamic menisci, see §§ 2.3 and 2.6), this distance is
much smaller than the capillary length, therefore justifying that the static menisci can be
approximated by parabolas.

2.5. Dimensionless control parameters
The problem formulated above depends on a large number of dimensionless control
parameters: Ca, R, Σ , M and ΔH. For the sake of conciseness, we will restrict our analysis
to the parameters that are expected to have the largest impact on the flow structure and
whose effect cannot be easily accounted for by some scaling argument.
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Parameter Definition Value or range

Capillary number Ca = μ1U/σ12 10−3 (fixed)
Floating layer thickness ΔH = ΔH(dim)/�c 2.57–5.20
Density ratio R = ρ2/ρ1 0.885 (fixed)
Surface tension ratio Σ = σ2a/σ12 0.333; 0.667; 1.0; 1.27
Viscosity ratio M = μ2/μ1 10−2–101

Table 1. Main dimensionless control parameters of the problem and corresponding values or ranges explored
in this work.

We can estimate practically relevant orders of magnitude by considering a system made
of a 40 % glycerol aqueous solution (liquid 1) with a floating layer of silicone oil (liquid 2).
The corresponding densities are ρ1 = 1100 kg m−3 for the glycerol solution (Takamura,
Fischer & Morrow 2012) and ρ2 = 970 kg m−3 for the oil, yielding a density ratio R =
0.885. The liquid 1/liquid 2 interfacial tension and liquid 2/air surface tension are σ12 = 30
and σ2a = 20 mN m−1, respectively, yielding Σ = 0.667. Finally, the viscosity of the
glycerol solution is μ1 = 3.6 mPa s (Takamura et al. 2012) and silicone oils can have a
viscosity μ2 ranging from a fraction of a milliPascal second to hundreds of Pascal seconds,
while keeping their other properties (density and surface tension) roughly constant. The
values and ranges chosen in our computations for the dimensionless control parameters
are summarised in table 1 and discussed in the following.

2.5.1. Capillary number Ca and floating layer thickness ΔH
Importantly, after rescaling the problem as described in § 2.3, the capillary number Ca
disappears from the formulation (see (2.29)), except in the matching conditions (2.36)
and (2.37). In the static menisci, with which the matching is performed in the limit ẑ →
−∞, the dimensionless thickness ΔH of the floating layer remains related to the rescaled
distance Δẑcl between the contact lines of liquids 1 and 2 (see § 2.4) through

Δẑcl Ca1/3 = ΔH +
√

2Σ

R
−
√

2
1 − R

. (2.38)

Thus, for given fluid properties, changing the capillary number Ca has the same effect as
changing the thickness ΔH. For this reason, throughout this work, we will vary only ΔH
while keeping Ca = 10−3 constant. This specific value was chosen in order to meet the
condition Ca1/3 � 1, ensuring that gravity effects are negligible in the dynamic meniscus
region, while being relevant in many applications (Rio & Boulogne 2017). The values of
ΔH explored in this work correspond to the range where solutions with two coated films
were found to exist, i.e. between ΔH = 2.57 and 5.20 for our values of Ca, Σ and R.

2.5.2. Density ratio R
The density ratio will be set to R = 0.885 (corresponding to the glycerol solution/silicone
oil system described above) throughout this study. We choose to keep this parameter
constant since, in practice, R will most of the time be of this order with aqueous solution/oil
systems.
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2.5.3. Surface tension ratio Σ

Four values of the surface tension ratio will be explored: Σ = 0.333, 0.667 (corresponding
to the glycerol solution/silicone oil system described above), 1.0 and 1.27. These values
are chosen around 1, which is what can be achieved with most common fluids.

2.5.4. Viscosity ratio M
For glycerol solution/silicone oil systems, the viscosities of both phases can be tuned over
several orders of magnitude by varying the glycerol concentration in the water phase and
changing the average chain length in the oil phase. Consequently, the values of viscosity
ratio explored will span several decades, from M = 10−2 to about 101, the exact upper
value being limited by the existence of solutions with two coated films, as will be shown
in § 4.1.

2.6. Validity conditions of the model

2.6.1. Stability of the hydrostatic configuration
For the static configuration of figure 2 to exist in practice, we need the stability of the
floating layer to be warranted. So far, no assumption has been made on the (dimensional)
spreading coefficient S = σ1a − (σ2a + σ12) of liquid 2 on liquid 1. In the case where S >

0, the hydrostatic configuration where liquid 2 forms a continuous layer in the bath will
be stable regardless of the thickness of this layer, at least as long as long range molecular
forces (e.g. van der Waals) can be neglected (Léger & Joanny 1992). This is the case for the
40 % glycerol aqueous solution/silicone oil system described above, for which σ1a = 70
mN m−1 (Takamura et al. 2012), leading to S = 20 mN m−1 > 0.

In the case where S < 0, however, the floating layer will be stable only above a
certain critical thickness ΔHc (De Gennes et al. 2013). This critical thickness, made
dimensionless with the capillary length �c, can be written with our notations

ΔHc =
√

−2S

R(1 − R)
, (2.39)

where S = S/σ12 < 0 is the dimensionless spreading coefficient. For ΔH < ΔHc, the
floating layer is metastable and, if perturbed, will dewet (Brochard-Wyart, Martin & Redon
1993).

2.6.2. Negligible gravity
We included gravity in our first, most general formulation developed in §§ 2.1 and
2.2. When performing the appropriate scaling in the dynamic menisci, retaining only
leading-order terms (see § 2.3), we showed that the gravity term can be neglected provided
ε1/2 � 1, that is to say Ca1/3 � 1. Note that this condition, which is met for our value of
Ca = 10−3, is the same as in the one-liquid LLD problem (de Ryck & Quéré 1998).

2.6.3. Negligible inertia
Even at low capillary numbers, inertial effects may also arise when low-viscosity liquids
are used. In our model, scaled as presented in § 2.3, the conditions for inertia to be
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negligible as compared with viscous and capillary terms read

in liquid 1 We = Re Ca � 1, (2.40)

in liquid 2 We = Re Ca � min(Σ/R; M/R), (2.41)

where We is the Weber number (Rio & Boulogne 2017), Re = ρ1U�c/μ1 the Reynolds
number (based on the properties of liquid 1) and Ca the capillary number (as defined in
§ 2.2). Taking the above-mentioned 40 % glycerol aqueous solution as liquid 1 and Ca =
10−3, we find We ≈ 4 × 10−3, showing that conditions (2.40)–(2.41) are fulfilled in the
whole range of parameters explored in our work (see table 1).

Additionally, in the general formulation where gravity is still present, neglecting inertial
forces as compared with gravitational ones in both liquid films requires Re Ca2/3 � 1, that
is to say We � Ca1/3, which is fulfilled for our parameters. Note that the softer condition
Re Ca2/3 ∼ 1 (i.e. We ∼ Ca1/3) is sufficient in the dynamic menisci, as gravity effects are
already small there.

3. Results: flow morphology and entrainment mechanism

In this section, we will present and discuss the typical shape of interfaces (I) and (II)
(§ 3.1), as well as the flow structure in the dynamic menisci (§ 3.2), obtained by solving
the model described in § 2 using the pseudo-transient numerical strategy described in
Appendix B. Based on the observation of these results, we will propose a simplified,
geometrical description (§ 3.3) allowing us to derive scaling laws for the asymptotic
thickness of the coated liquid films (§ 3.4).

3.1. Shape of the interfaces
Figure 3(a) allows us to appreciate the typical shape of interfaces (I) and (II), as well as
their matching to the static menisci (parameters Σ = 0.667, R = 0.885, M = 1, Ca =
10−3 and ΔH = 3.404). We focus on scales of the order of Ca2/3 and Ca1/3, on the
horizontal and vertical axes, respectively. The regions displayed correspond to the dynamic
menisci and thin liquid films dragged on the plate. Interfaces (I) (separating liquids 1
and 2) and (II) (between liquid 2 and air) are represented by blue and orange solid lines,
respectively. These are the dynamic solutions obtained by solving (2.29), but plotted in
their dimensionless non-rescaled form hi = ĥiCa2/3 so that they may be represented on the
same graph as the static menisci. The blue and orange dashed lines, obtained by solving
the static equations (2.30) and (2.31) respectively, show the shapes of the static menisci
expected when the plate is not moving and the liquids have zero contact angle with it
(perfect wetting conditions). The location of the plate is outlined by the thick vertical
grey line at x = 0. In addition to the static menisci themselves, their parabolic expansions,
given by (2.32) and (2.33), are displayed with magenta and red dotted lines. Towards the
bath, figure 3a shows that interfaces (I) and (II) (solid lines) approach these parabolic
expansions, as required by the matching conditions (2.36) and (2.37). Using the common
terminology in matched asymptotic expansions, this illustrates that the parabolas described
by (2.32) and (2.33) are simultaneously the inner limits (i.e. close to the plate) of the outer
solutions (static menisci) and the outer limits (approaching the bath) of the inner solutions
(thin liquid films computed using lubrication theory).

Further downstream from the menisci, interfaces (I) and (II) get very close to each other
(until they can no longer be told apart at the scale of the plot) and flatten out to converge
towards their asymptotic positions. Figures 3(b) and 3(c) allow us to better appreciate
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5.5(a) (b)

(c)

Interface (I) (dynamics)

Interface (II) (dynamics)

Static meniscus (I)

Static meniscus (II)

Parabolic approx. (I)

Parabolic approx. (II)

z

z
5.0

4.5

4.0

3.5

3.0

2.5
0 0.2 0.4

x
0.6 0 0.2 0.4

x
0.6
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10–4

100

10–2

10–2

δh∞

δh = h2 – h1

�z

�z

δh

100

4

5

Figure 3. Shape of the interfaces and matching to the static menisci for Σ = 0.667, R = 0.885, M = 1, Ca =
10−3 and ΔH = 3.403. (a) In the dynamic meniscus region, the interfaces (solid lines) depart from the static
solutions (dashed lines) to connect to two thin films of uniform thicknesses (that can barely be distinguished at
this scale). The dotted lines show the parabolic approximations of the static menisci near the plate, used in the
matching conditions (2.36) and (2.37). (b) The horizontal distance δh = h2 − h1 between interfaces (I) and (II)
exhibits a strong and localised decrease towards its asymptotic value δh∞ (black dashed line). (c) Similarly, the
vertical distance Δz between interfaces (I) and (II) also plummets, shortly before the two interfaces reach their
asymptotic positions in the x-direction.

this convergence by looking at, on the one hand, the evolution of the horizontal distance
δh = h2 − h1 between interfaces (I) and (II) with the vertical coordinate z (panel b) and, on
the other hand, the evolution of the vertical distance Δz between these interfaces with the
horizontal coordinate x (panel c). Both panels reveal a very abrupt decay of the distance
between interfaces (I) and (II) as they approach their asymptotic positions x = h1,∞ and
x = h2,∞, respectively. Asymptotically, the uniform and steady thicknesses bounded by
these interfaces are h1,∞ for the film of liquid 1 (referred to as lower film) and δh∞ =
h2,∞ − h1,∞ for the film of liquid 2 (referred to as the upper film).

Remarkably, the thickness of the upper film is much smaller than that of the
lower one: in the example of showed in figure 3, δh∞ = 1.97 × 10−4 while h1,∞ =
1.33 × 10−2 or, in terms of rescaled quantities, δĥ∞ = δh∞ Ca−2/3 = 1.97 × 10−2 while
ĥ1,∞ = h1,∞ Ca−2/3 = 1.33. Note that, with this normalisation, the rescaled thickness
for a one-liquid Landau–Levich–Derjaguin film would simply be ĥLLD = 0.9458, as the
corresponding dimensional thickness is equal to 0.9458 �c Ca2/3 (Landau & Levich 1942).
As we will see further on in § 4, this feature (δĥ∞ � ĥ1,∞) is observed in all the parameter
ranges explored in this work. We can already notice that differences in the properties of
liquids 1 and 2 are not sufficient to account for such a discrepancy because the dimensional
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capillary lengths �c,1 and �c,2, corresponding to interfaces (I) and (II) respectively,
remain of the same order of magnitude: �c,2/�c,1 = √

Σ(1/R − 1) = 0.208–0.406 for all
parameters considered in our study (see table 1). As we will develop in next paragraphs,
the difference in the order of magnitude of h1,∞ and δh∞ is connected to the very different
flow patterns conveying liquid into the lower and upper films.

3.2. Flow structure
In this paragraph, we turn our attention to the structure of the flow in the dynamic meniscus
region. As an example, figure 4 displays various relevant flow magnitudes, obtained for
parameters Σ = 0.667, R = 0.885, M = 1, Ca = 10−3 and ΔH = 3.404, as functions of
the vertical coordinate ẑ. In figure 4(a), we plot the streamlines in the dynamic menisci
for liquid phases 1 (in blue) and 2 (in orange). The corresponding analytical expressions
for the velocity fields are given in Appendix A by (A1) and (A2) for liquid 1 and (A3)
and (A4) for liquid 2, respectively. While, as expected, the plate drags the lower liquid up,
streamlines reveal that the flow in the vicinity of interface (I) (liquid 1/liquid 2 interface,
thick blue line) is actually going downwards upstream the stagnation point (blue dot).
The consequences of this flow pattern on the coated liquid films can be better understood
by looking at the main physical effects at play: viscous entrainment by shear stresses
at the dragging interfaces (plate/liquid 1 for the lower phase, liquid 1/liquid 2 for the
upper phase) and capillary suction generated by corresponding interfacial curvatures. The
former is presented in figure 4(b), where the dimensionless rescaled shear stress at different
interfaces of interest is plotted as a function of the vertical coordinate ẑ, while the latter
is quantified in figure 4(c), displaying the dimensionless rescaled pressure gradient as a
function of ẑ.

Let us first focus on the viscous stresses, which promote liquid film entrainment. The
solid black line in figure 4(b) represents the shear stress τ̂01, defined by (A9), at the
interface between the plate and liquid 1 in our two-liquid configuration. For comparison,
the dashed red line shows the shear stress τ̂LLD at the plate/liquid interface in the one-liquid
film coating problem; the corresponding expression is given by (A11a,b). Both curves
exhibit qualitatively the same shape: the shear stress at the plate increases progressively
as the height above the surface of the bath increases, goes through a maximum and then
decays back to zero as ẑ keeps increasing. This is in sharp contrast with the trend followed
by the shear stress τ̂12 at interface (I), separating liquids 1 and 2 (solid blue line, defined by
(A10)). The shear stress at interface (I) is found to be essentially zero everywhere, except
for a small peak in a narrow region (around ẑ ≈ 24 in this example), which coincides
with the zone where interfaces (I) and (II) get very close to each other (see figure 3 and
§ 3.1). This observation is consistent with the streamlines of figure 4(a) that show that
liquid 2 is essentially recirculating on top of liquid 1, as no shear is transmitted along
most of interface (I). Note that the shear stress at interface (II) (separating liquid 2 and the
atmosphere) is identically zero, as set by the boundary condition (2.19).

We now turn to the capillary pressure gradients, which impede thin liquid film
entrainment. Figure 4(c) displays the dimensionless rescaled pressure gradient 
̂1 (blue)
and 
̂2 (orange) in liquid phases 1 and 2, defined by (A5) and (A6), respectively. Again,
the two liquid phases exhibit very different behaviours: the lower liquid is subjected to a
mild pressure gradient, spread over distances of several units in ẑ. On the contrary, there
is virtually no pressure gradient in the upper liquid, except for a high peak around ẑ ≈ 24,
which also corresponds to the region of highest shear stress (in absolute value) at the liquid
1/liquid 2 interface.
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(a) (b) (c)
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Figure 4. Flow structure for dimensionless parameters Σ = 0.667, R = 0.885, M = 1, Ca = 10−3 and ΔH =
3.403 as a function of the vertical coordinate ẑ. (a) Streamlines in liquid 1 (blue) and liquid 2 (orange). (b)
Shear stresses at the plate/liquid 1 interface, τ̂01 (black solid line), and at the liquid 1/liquid 2 interface, τ̂12
(blue solid line). (c) Pressure gradients in liquid 1, 
̂1 (solid blue line), and in liquid 2, 
̂2 (solid orange line).
For comparison, the red dashed lines represent the corresponding magnitudes in the one-liquid LLD theory:
shear stress at the plate/liquid interface, τ̂LLD (b), and pressure gradient in the liquid, 
̂LLD (c).

3.3. Geometrical approach: virtual contact point
Let us focus on the region where we observe the peak in the shear stress at the liquid/liquid
interface, τ̂12, and in the pressure gradient in the upper film, 
̂2. Figures 4(b) and 4(c)
show that this region is very narrow in the vertical direction, as compared with the overall
extension of the dynamic menisci. Moreover, figure 3(b) reveals that, concomitantly, the
distance between interfaces (I) and (II) decays quickly down to the asymptotic one, δh∞.
For these reasons, we find meaningful to model this region as a point, called the virtual
contact point, where interfaces (I) and (II) virtually meet. Note that, in general, this point
does not coincide with a stagnation point at interface (I), as can be seen in the example
of figure 4. The vertical coordinate of the virtual contact point is denoted by z∗. In the
following, all quantities evaluated at this point will be marked by an asterisk.

Introducing the virtual contact point allows us to develop a geometrical, asymptotic
(‘zoomed-out’) description of the flow, as sketched in figure 5. By construction, we have
δh � h1, and asymptotically δh∞ � h1,∞, downstream of the virtual contact point. We
therefore simplify the geometry in this region, assuming that interfaces (I) and (II) are
merged into a single interface (III) with effective dimensionless surface tension 1 + Σ . In
this framework, the different interfaces pictured in figure 5 can be described as follows.

(i) Interface (I): in the region below the virtual contact point, the very small shear stress
acting on interface (I) (see figure 4b) implies that this surface can be regarded as
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U

σ12

σ2a

x

z

g

(III)

(II)

(I)

σ12 + σ2a

Virtual

contact point

Liquid 1

Liquid 2

hI

hII

hIII

ΔH

z*

Air

0

Figure 5. Sketch showing the virtual contact point, where interfaces (I) and (II) are assumed to come into
contact. Above this point, located at height z∗, interfaces (I) and (II) merge into a single interface, denoted by
(III), with an effective surface tension equal to the sum of that of interfaces (I) and (II).

shear free. As a consequence, the lower liquid 1 bounded by this interface behaves
as a one-liquid Landau–Levich film.

(ii) Interface (II): the upper liquid 2 is bounded by the approximately shear-free interface
(I) and the rigorously shear-free interface (II). Consequently, the pressure gradient
inside this liquid must be zero, which is consistent with figure 4(c).

(iii) Interface (III): in the region above the virtual contact point, by construction, the
dynamics of the effective interface (III) also obeys the one-liquid Landau–Levich
equation.

This simplified description will be useful to explain some of the most salient features
of the two-liquid flow using well-known properties of its one-liquid counterpart. More
specifically, we will show that the asymptotic film thicknesses can be rationalised, and
even quantitatively predicted to some extent, looking at the flow variables at the virtual
contact point.

3.4. Scaling laws for the film thicknesses
The results presented in figure 4 show that the two main competing forces – viscous
stresses and capillary pressure gradient – reach their extreme values in the vicinity or
at the virtual contact point. This suggests that the amount of liquid entrained in each film
may be rationalised by considering solely the local shear stresses around that location. In
what follows, we use scaling arguments – in the spirit of the ones developed, for instance,
in Champougny et al. (2015) – to relate the (dimensionless rescaled) shear stresses at the
virtual contact point to the steady-state (dimensionless rescaled) thicknesses of the coated
liquid films, namely ĥ1,∞ for liquid 1 and δĥ∞ for liquid 2.

3.4.1. Lower film thickness ĥ1,∞
In the case of the lower film, the shear stress responsible for liquid entrainment is the
one at the plate/liquid 1 interface (black solid line in figure 4b). In dimensional terms, the
maximum shear stress must be of the order of the viscosity times the plate velocity divided
by the minimum thickness, i.e. that of the film

− τ01,∗ ∼ μ1U
h1,∗

. (3.1)
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2.5(a) (b)

ĥ1,∞ δĥ∞
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1.5

1.0

3.5

10–3

10–3 10–2 10–1

10–2

10–1

M3.0

Linear fit (slope = 0.67) Linear fit (slope = 1.29)
0.02

5

2

1

0.5

0.2

0.1

0.05

Σ = 0.33
Σ = 0.67
Σ = 1.00
Σ = 1.27

Σ = 0.33
Σ = 0.67
Σ = 1.00
Σ = 1.27

2.52.01.5

(–τ̂12,*
)2R–3/2Σ–1/2    –1–τ̂01,*

Figure 6. Comparison of the asymptotic thicknesses ĥ1,∞ and δĥ∞ obtained numerically with the predictions
of scaling laws derived from the virtual contact point model for (a) the lower film (3.2) and (b) the upper
film (3.6). The solid lines are best linear fits, yielding prefactors 0.67 and 1.29 for the lower and upper films,
respectively. The data presented correspond to various values of Σ (symbol shape), M (greyscale) and ΔH (not
marked).

In this expression, the star indicates that the quantities are evaluated at the virtual contact
point. The dimensional thickness and stress are related to their dimensionless rescaled
counterparts through h1,∗ = ĥ1,∗ �c Ca2/3 and τ01,∗ = τ̂01,∗ (σ12/�c) Ca1/3, respectively,
yielding −τ̂01,∗ĥ1,∗ ∼ 1. Making the approximation that the film thickness has already
reached its asymptotic value at the virtual contact point, namely that ĥ1,∞ ≈ ĥ1,∗, we
arrive at

ĥ1,∞ ∼ −τ̂−1
01,∗. (3.2)

In figure 6(a), we plot the lower film thickness ĥ1,∞ as a function of the inverse of the shear
stress at the virtual contact point, −τ̂−1

01,∗, for a variety of Σ , M and ΔH. All numerical
data are found to collapse on a single master curve, which is convincingly adjusted by a
linear fit (solid black line) with a prefactor equal to 0.67, therefore supporting the scaling
law (3.2). Note that the presence of a second lighter fluid always causes the lower film
thickness ĥ1,∞ to be larger than that of a one-liquid Landau–Levich film ĥLLD = 0.9458.

3.4.2. Upper film thickness δĥ∞
In the case of the upper film, the shear stress responsible for liquid entrainment is the one
at interface (I), i.e. at the liquid 1/liquid 2 interface (blue solid line in figure 4b). Unlike
the one at the plate, the velocity at interface (I) is not given a priori but depends in a
non-trivial way on the parameters of the problem. For this reason, we cannot start from
the definition of the shear stress, as we did in the case of the lower film. Instead, we write
that, around the virtual contact point, the total shear force at interface (I) must balance the
capillary suction exerted by interface (II). Denoting by � the streamwise extension of the
virtual contact point region (typically the width of the peaks in τ̂12 and Π̂2 in figure 4),
this force balance reads in dimensional terms

− τ ∗
12� ∼ σ2a

δh∗
�2 δh∗. (3.3)
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Additionally, matching the curvatures of the dynamic and static menisci of liquid 2
imposes (still using dimensional quantities)

δh∗
�2 ∼ 1

�c,2
, (3.4)

where we recall that �c,2 = √
σ2a/ρ2g is the capillary length related to interface (II). This

condition is analogous to the asymptotic matching condition with the static meniscus
introduced by Landau & Levich (1942) in the one-liquid dip-coating problem. Combining
(3.3) and (3.4), we arrive at the dimensional scaling expression

δh∞ ∼ �c,2

(
−τ12,∗

�c,2

σ2a

)2

, (3.5)

where we approximated δh∞ ≈ δh∗. Using the definitions δh∞ = δĥ∞�cCa2/3 and
τ12,∗ = τ̂12,∗(σ12/�c) Ca1/3, we finally express (3.5) in terms of the rescaled dimensionless
variables

δĥ∞ ∼ (−τ̂12,∗
)2 R−3/2Σ−1/2. (3.6)

In figure 6(b), we plot the upper film thickness δĥ∞ as a function of the right-hand
term of (3.6) for a variety of Σ , M and ΔH. When plotted in this way, the numerical data
are found to collapse on a reasonably linear master curve. The linear fit (solid black line)
yields a prefactor equal to 1.29, showing that (3.6) can be used to estimate the upper film
thickness δĥ∞.

To conclude, perhaps the most important lesson learnt from scalings (3.2) and (3.6) is
the universality of the entrainment mechanism. Given the values of the shear stresses at
the virtual contact point (τ̂01,∗ for liquid 1, τ̂12,∗ for liquid 2), the amount of fluid dragged
in each film can be readily estimated using the same ideas exposed in the original work of
Landau & Levich (1942).

4. Results: parametric dependence of film thicknesses

In this section, we turn our attention to the parametric dependence of the asymptotic
thicknesses of the coated liquid films, ĥ1,∞ for the lower film and δĥ∞ for the upper
film. The main control parameters varied in our study are the dimensionless floating
layer thickness ΔH, the viscosity ratio M and the surface tension ratio Σ (see § 2.5).
Importantly, our results reveal that double coating solutions only exist in finite areas of
the parameter space, which we dub existence islands (§ 4.1). We will propose arguments
explaining some trends and boundaries observed for the film thicknesses as a function of
ΔH (§§ 4.2 and 4.3).

4.1. Thickness maps in the M − ΔH parameter space
In figure 7, the asymptotic film thicknesses are presented as colour maps in the M − ΔH
parameter space for four different values of the surface tension ratio Σ . Panels (a,c,e,g)
show the lower film thickness ĥ1,∞ while (b,d, f,h) displays the upper film thickness δĥ∞.
For an easier quantitative reading, cuts along the M and ΔH directions for the surface
tension ratio Σ = 1.27 are presented in figure 8. Panels (a,c) show the variation of the
lower film thickness ĥ1,∞ with M for fixed values of ΔH (figure 8a) and with ΔH for fixed
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Figure 7. Asymptotic thicknesses ĥ1,∞ (lower film, a,c,e,g) and δĥ∞ (upper film, b,d, f,h), shown as colour
contour maps in the (M, ΔH) parameter space. Each row corresponds to a different surface tension ratio Σ .
The red dashed lines enclose the ‘existence islands’ of a double coating, namely the areas in the parameter
space where δĥ∞ ≥ 5 × 10−4. The values of ĥ1,∞ obtained outside these islands are shaded.
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Figure 8. Cuts of the thickness maps presented in figures 7(g) and 7(h) (Σ = 1.27), within the existence island
enclosed in the dashed red contour. The top panel shows the variation of (a) the lower film thickness ĥ1,∞ and
(b) the upper film thicknesses δĥ∞ with the viscosity ratio M, for constant values of the floating layer thickness
ΔH. The bottom panel shows the variation of the same quantities (on (c) and (d), respectively) with the floating
layer thickness ΔH, for constant values of the viscosity ratio M.

values of M (figure 8c). Similarly, (b,d) display the variation of the upper film thickness
δĥ∞ with the same parameters M (figure 8b) and ΔH (figure 8d).

Together, figures 7 and 8 reveal dramatic qualitative and quantitative differences
between the lower and upper coated films. As already observed and rationalised in
§ 3, the lower film exhibits final thicknesses ĥ1,∞ of order unity (as expected from the
Landau–Levich scaling, see § 3.4), while the upper film reaches steady-state thicknesses
δĥ∞ that are about 10−3 to 10−2 times smaller. Not only are the lower and upper film
thicknesses very disparate, but they also depend very differently on the control parameters.
Figures 7(a), 7(c), 7(e) and 7(g) reveal that the thickness of the lower film weakly depends
on the viscosity ratio M and grows monotonically with the depth of the floating layer ΔH.
On the contrary, figures 7(b), 7(d), 7( f ) and 7(h) show that the thickness δĥ∞ of the upper
film depends non-monotonically on both M and ΔH, exhibiting a maximum whose exact
position in the (M, ΔH) parameter space depends on the surface tension ratio Σ .

Around this maximum, the upper film thickness decreases in all directions, eventually
going down to values reaching our numerical accuracy (δĥ∞ ≈ 5 × 10−4, dashed red lines
in figure 7). We observed that increasing the resolution of our numerical scheme barely
affects the position of the red contours, leading us to conclude that there is no solution
with two entrained films beyond these limits (black areas in figure 7b,d, f,h). The zones
of the (M, ΔH) parameter space enclosed within the red dashed contours will therefore

922 A26-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

54
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f E

as
t A

ng
lia

 (U
EA

), 
on

 2
9 

Ju
l 2

02
1 

at
 1

2:
48

:2
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.541
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


L. Champougny and others

Quantity Σ = 0.33 Σ = 0.67 Σ = 1.00 Σ = 1.27 Source

(a) Lowest ΔH 3.16 2.94 2.72 2.57 figure 7
ΔHmin 3.30 2.94 2.67 2.48 (4.1)

(b) min (ĥ1,∞) 1.27 1.09 1.01 0.97 figure 7
inf (ĥ1,∞) 1.18 1.01 0.93 0.89 (4.6)

Table 2. Comparison between some features of the results presented in figure 7 and the corresponding values
predicted using simplified approaches (§ 5), for different values of the surface tension ratio Σ . The quantities
extracted from figure 7 are evaluated in the limit M � 1 and within the existence islands (red dashed contours),
where a double coating solution exists. These quantities are (a) the lower limit in ΔH of the existence islands
and (b) the minimum values of the asymptotic lower film thickness ĥ1,∞.

be referred to as existence islands for the double-layer coating. Note that values of the
lower film thickness ĥ1,∞ can still be obtained outside these islands (see shaded areas in
figure 7a,c,e,g). However, since the theory used to obtain them postulates the presence of
two entrained liquid films, only the data enclosed in the existence islands – where a double
coating solution exists – can be discussed.

4.2. Minimum and maximum ΔH for the existence of two films
The very different scales on the M and ΔH axes in figure 7 highlight that the existence
islands extend only along a finite range of values of ΔH, getting narrower and narrower as
Σ increases, while they span several orders of magnitude in M values. In this paragraph,
we aim at providing some physical arguments to rationalise this observation.

The existence islands exhibit a relatively well-defined lower boundary in ΔH, which
becomes independent of the viscosity ratio M for M � 1. This limit can be understood
from hydrostatic considerations. A necessary condition to have two entrained films is that
the static menisci of the two liquids touch the plate, as depicted in figure 2. In other words,
the apparent contact line of the upper interface should lie above that of the lower one. For
this to occur, the distance between the apparent contact lines of the lower and the upper
menisci, Δzcl, must be positive. Combining (2.34) and (2.35) this condition translates into

ΔH ≥ ΔHmin =
√

2
1 − R

−
√

2Σ

R
. (4.1)

The values of ΔHmin predicted by (4.1) for surface tension ratios Σ = 0.33, 0.67, 1.00 and
1.27 are presented in table 2 and displayed in figures 7(b), 7(d), 7( f ) and 7(h) as dashed
white lines. Comparison to the numerical data reveals a good agreement with the lower
limit of the existence islands for M � 1.

Regarding the maximum ΔH for the existence of a double-film configuration, ΔHmax,
the physical origin is different. For the upper film to be dragged, shear must be transmitted
from the plate to the interface between the two liquids. However, the region where the plate
exerts shear on the lower film is limited to an extension of order Δẑ ∼ 10 in the streamwise
direction, as can be seen in figure 4(b). This means that if the virtual contact point – where
the two interfaces come close to each other – is outside this limited region in ẑ, no shear
can be transferred to the liquid/liquid interface, and thus the upper film cannot be dragged.
In terms of ΔH, (2.38) allows us to translate the extension Δẑ ∼ 10 into

ΔHmax − ΔHmin ∼ 10 Ca1/3. (4.2)
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Dip coating with two liquids

The condition Ca1/3 � 1 (see §§ 2.3 and 2.6) explains why we expect the existence islands
to span only along a reduced extension in ΔH. In our particular case where Ca = 10−3,
(4.2) predicts island extensions of the order of unity in ΔH, which is compatible with the
data displayed in figure 7.

4.3. Effect of ΔH on the lower film thickness ĥ1,∞
In this paragraph we use the equivalent description presented in § 3.3 to explain the effect
of the floating layer thickness ΔH on the asymptotic thickness ĥ1,∞ ≈ ĥIII,∞ of the lower
film (see figure 5). To do so, we first examine the curvatures of the different interfaces
represented in figure 5 and make the following observations.

(i) Interface (I): since interface (I) behaves as in the one-liquid LLD theory, its curvature
ĥ′′

I decays monotonically with ẑ (see Appendix C). The maximum curvature,√
2(1 − R), is found in the limit ẑ → −∞, corresponding to the lower static

meniscus.
(ii) Interface (II): since the pressure gradient in liquid 2 is approximately zero, interface

(II) has a constant curvature, given by that of the upper static meniscus: ĥ′′
II =√

2R/Σ .
(iii) Interface (III): for the same reason as interface (I), the curvature of interface (III)

decreases monotonically with ẑ, reaching its maximum value ĥ′′
III,∗ at its lowest point,

i.e. the virtual contact point.

Taking again advantage of the fact that interface (III) can be described by the one-liquid
LLD theory, we approximate (see (C5))

ĥIII,∞ ≈ 1.336

(1 + Σ)2/3ĥ′′
III,∗

. (4.3)

Moreover, the condition that the pressure inside liquid 1 must be continuous across the
virtual contact point determines the value of the curvature of interface (III) at this location.
On the one hand, the pressure slightly downstream the virtual contact point is given
by the capillary pressure jump across interface (III), (1 + Σ) ĥ′′

III,∗. On the other hand,
just upstream that point, the pressure is equal to the sum of the capillary pressure jumps
across interfaces (II) and (I), which are respectively Σ ĥ′′

II,∗ and ĥ′′
I,∗. Requiring pressure

continuity at the virtual contact point leads to

ĥ′′
III,∗ = ĥ′′

I,∗ + Σ ĥ′′
II

1 + Σ
. (4.4)

Combining (4.3) and (4.4), we arrive at the following expression, relating the asymptotic
lower film thickness to the curvature of interface (I) at the virtual contact point

ĥ1,∞ ≈ ĥIII,∞ ≈ 1.336 (1 + Σ)1/3

ĥ′′
I,∗ + √

2ΣR
. (4.5)

4.3.1. Monotonic behaviour of ĥ1,∞ with ΔH
This simplified view allows us to explain why ĥ1,∞ grows monotonically with the
thickness of the floating layer, ΔH. As this parameter grows, the virtual contact point,
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L. Champougny and others

where interfaces (I) and (II) meet, displaces up downstream or, in other words, ẑ∗ increases.
Since ĥ′′

I is a decreasing function of ẑ, the larger ẑ∗, the lower the corresponding curvature
ĥ′′

I,∗ of interface (I). We therefore deduce that ĥ′′
I,∗ decays with ΔH. Finally, (4.5) allows

us to conclude that ĥ1,∞ must be a monotonically increasing function of ΔH, as observed
in our numerical results in figures 7 and 8.

4.3.2. Lower bound for ĥ1,∞
Elaborating on these ideas, we can also provide a lower bound for the asymptotic thickness
of the lower film. If the virtual contact point is displaced far upstream (ẑ → −∞, i.e. closer
to the liquid bath), it will eventually reach the region where the curvature of interface (I)
has its asymptotic (maximum) value: ĥ′′

I,∗ = √
2(1 − R). Substituting this value in (4.5)

yields a lower bound for the lower film thickness

inf (ĥ1,∞) ≈ 0.9458
(1 + Σ)1/3

√
1 − R + √

ΣR
. (4.6)

We can compare the predictions of (4.6) to the values of ĥ1,∞ observed in figure 7. To
do so, we should restrict ourselves to the area of the parameter space enclosed in the
dashed red line (where solutions for two entrained films exist) and to the limit M � 1, in
which the simplified geometrical model is valid. As shown in table 2, the minimum values
min (ĥ1,∞) obtained from the simulations are not only compatible with the lower bounds
provided by (4.6) but also follow a similar trend with Σ .

5. Discussion

In this last section, we discuss some limitations of our hydrodynamic model in relation to
practically relevant effects, such as partial wetting conditions between the two liquids and
long range intermolecular forces across the upper film, when it is sufficiently thin.

5.1. Partial wetting conditions
As mentioned in § 2.6, the stability of a floating layer of liquid 2 on liquid 1 depends
on the dimensionless spreading parameter S = S/σ12 = Σ ′ − (Σ + 1), where we have
introduced Σ ′ = σ1a/σ12. For S > 0, the floating layer is stable regardless of its thickness
while, for S < 0, only floating layers of dimensionless thickness ΔH > ΔHc given by
(2.39) are stable (De Gennes et al. 2013). In § 4.2, we estimated the minimum floating layer
thickness ΔHmin needed for a double liquid film to be entrained (4.1). In partial wetting
conditions, our hydrodynamic description of the configuration of figure 1 is therefore
warranted as long as ΔHmin > ΔHc. This translates into the following condition on the
dimensionless spreading parameter

−
(√

R −
√

Σ(1 − R)
)2

< S < 0, (5.1)

or, equivalently, on the dimensionless liquid 1/air surface tension Σ ′

1 + Σ −
(√

R −
√

Σ(1 − R)
)2

< Σ ′ < 1 + Σ. (5.2)
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Dip coating with two liquids

5.2. Thinness of the upper film and disjoining pressure effects

As can be seen in figure 7, the dimensionless rescaled thickness of the upper film, δĥ∞,
is of the order of 10−3 to 10−2 in the range of parameters explored. The corresponding
dimensional thickness, δh∞ = �cCa2/3 × δĥ∞, is therefore expected to be in the range
20–200 nm for the typical values Ca = 10−3 and �c ≈ 2 mm. Albeit small, these
thicknesses are withing reach of techniques such as reflection interference contrast
microscopy, as exemplified by the recent measurements of Kreder et al. (2018) on the
oil layer wrapping water droplets advancing on lubricant-infused surfaces.

Given the thinness of the upper liquid film, one may wonder in which conditions
intermolecular long-range forces would be expected to have a noticeable effect on the
upper film dynamics. These interactions in the film are usually quantified by the disjoining
pressure isotherm (Derjaguin & Churaev 1978), which measures the relative force acting
between its two interfaces as a function of their separation. For asymmetric films made
of a pure liquid, such as our upper film of liquid 2, the disjoining pressure isotherm
only contains van der Waals interactions, whose nature (attractive or repulsive) depends
on the sign of the Hamaker constant A (Israelachvili 2011). Following the approach of
Champougny et al. (2017), the effect of van der Waals interactions can be included in our
formulation by adding a disjoining pressure gradient Π̂d to the capillary pressure gradients
Π̂1 and Π̂2 defined in Appendix A. Considering only non-retarded van der Waals forces
(Léger & Joanny 1992) and using the rescaling exposed in §§ 2.2 and 2.3, the disjoining
pressure gradient reads

Π̂d = Ca−2A ĥ′
2 − ĥ′

1

(ĥ2 − ĥ1)4
, (5.3)

where A = A/2πσ12�
2
c is a dimensionless Hamaker constant. Using the values of Ca, σ12

and �c reported in § 2.5, as well as the typical dimensional Hamaker constant |A| ≈ 10−20

J for water–oil–air systems (Israelachvili 2011), we estimate A ≈ 1.6 × 10−14.
The upper film thickness δĥcrit∞ at which the disjoining pressure gradient becomes of the

order of the capillary one can be estimated by requiring

Π̂2 = −Σ ĥ′′′
2 ∼ Π̂d = Ca−2A ĥ′

2 − ĥ′
1

(ĥ2 − ĥ1)4
. (5.4)

In the rescaled variables used here, ĥ2,∞ ∼ ĥ1,∞ is of order unity, and so is the
characteristic distance Δẑ over which the thicknesses vary. Thus, we have ĥ′′′

2 ∼ 1 and
ĥ′

2 − ĥ′
1 ∼ ĥ2 − ĥ1 = δĥ∞, yielding

δĥcrit
∞ ∼

(
|A| Ca−2 Σ−1

)1/3
. (5.5)

With the values of A and Ca given above, we arrive at thresholds δĥcrit∞ ∼ 3.6 × 10−3,
2.9 × 10−3, 2.5 × 10−3 and 2.3 × 10−3 for Σ = 0.333, 0.667, 1.00 and 1.27, respectively.
For each Σ , this means that the parts of the existence islands where δĥ∞ � δĥcrit∞
(essentially the edges, see figure 7) may be affected by disjoining pressure. Conversely,
disjoining pressure effects are not expected to play a significant role in the interior of the
existence islands. Note that the above reasoning allows us to estimate when van der Waals
interactions are expected to influence the value of the asymptotic thickness of the upper
film. A detailed discussion of the effect of long-range intermolecular forces on the stability
of such a film (Fisher & Golovin 2005; Bandyopadhyay & Sharma 2006) lies beyond the
scope of the present work.
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6. Conclusions

In this work, we investigated the dip-coating flow generated by a plate lifted at constant
speed through a stratified bath made of two immiscible liquids, focusing on the case
when both of them are entrained on the plate. We presented first a general formulation
within the framework of the lubrication approximation that includes the full (nonlinear)
expression for the curvature and the effect of gravity. Following a similar scheme as Wilson
(1982), we then simplified the problem for small capillary numbers Ca1/3 � 1. Using this
asymptotic formulation, we explored the effect of some of the control parameters on the
asymptotic thicknesses of the resulting thin liquid films. We mostly focused our attention
on the viscosity ratio M and the thickness of the floating layer ΔH, as these parameters
could be varied more easily in experiments. For completeness we also showed results for
a limited number of values of the surface tension ratio Σ , although this parameter would
be harder to vary experimentally using common liquids.

We could rationalise the numerical results by examining the flow in the narrow zone
where the liquid/liquid and liquid/air interfaces get very close, which we dubbed virtual
contact point. We showed that the shear stresses at the plate and at the liquid/liquid
interface at that point alone are sufficient to predict the thicknesses of the two films,
through simple scaling laws derived from the original ideas of Landau & Levich (1942).
Regarding the influence of the different control parameters of the problem, we found
that the thickness ĥ1,∞ of the lowermost film is barely affected by the viscosity ratio
M. This is a consequence of the shear stress at the interface separating the two liquids
being negligible as compared with the one at the plate/lower liquid interface. On the
contrary, the thickness of the floating layer, ΔH, has a strong impact on ĥ1,∞, which
grows monotonically with ΔH. In this two-liquid configuration, the thickness of the lower
film is always larger than the corresponding thickness for a one-liquid Landau–Levich
flow. The thickness δĥ∞ of the uppermost film exhibits a comparatively more complex
behaviour, showing a non-monotonic trend with both M and ΔH, with a maximum for a
given pair of these parameters. More importantly, there is a finite range of values in the
(M, ΔH) parameter space where δĥ∞ takes physically realisable values, which amounts to
say, where a solution with two entrained films exist.

In summary, we provided evidence that a dip-coating configuration with two entrained
films is feasible using existing liquids and we developed the framework to understand and
predict the corresponding entrained thicknesses. The present theory of plate coating could
also be extended to fibre coating provided the curvatures of the static menisci, near the fibre
and in perfect wetting conditions, are modified to account for the second principal radius of
curvature contributing primarily to the capillary suction mechanism (Quéré 1999). In the
limit of a fibre radius b � �c, the adaptation is straightforward and consists in replacing√

2/�c by 1/b in the expressions for the two static menisci.
From the point of view of applications, two improvements for industrial dip-coating

processes could be envisioned based on the present findings:

(i) Since adding a floating liquid layer has been shown to increase the thickness of
the lower coated layer, this double-layer configuration could be used to reduce
the number of passes in multi-pass dip-coating processes (Li, Haertling & Howng
1993; Petropoulos et al. 1997), without having to add undesired additives such as
surfactants or nanoparticles.

(ii) Since the upper film is up to 103 times thinner than the lower one, this configuration
could be used to deposit thin layers of a very viscous fluid (e.g. polymers),
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Dip coating with two liquids

which would be impossible otherwise, at least at speeds compatible with industrial
production. Naturally, this would require the removal of the lower layer, for example
by taking advantage of a porous substrate (Aradian, Raphael & De Gennes 2000).
This could be of interest in the fabrication of enhanced textile (Hu 2016) or porous
membranes (Jesswein et al. 2018).
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Appendix A. Velocity field and shear stress

Here, we provide expressions for the velocity field, pressure gradients and shear stresses
used to compute the data shown in figures 4 and 6. The vertical velocities, ûi, arise from
solving (2.14) and (2.15) with boundary conditions (2.19)–(2.22), while the horizontal
ones, v̂i, come from solving the continuity equation. In the following expressions, a hat
is used to denote rescaled variables, as introduced in § 2.3.

A.1. Velocity field in fluid 1

û1 = u1 = 
̂1

(
x̂2

2
− ĥ1x̂

)
− 
̂2x̂

(
ĥ2 − ĥ1

)
+ 1, (A1)

v̂1 = v1 Ca−1/3 = 
̂′
1

(
− x̂3

6
+ ĥ1

x̂2

2

)
+ 
̂′

2
x̂2

2

(
ĥ2 − ĥ1

)
+ 
̂1

x̂2

2
ĥ1

+ 
̂2
x̂2

2

(
ĥ′

2 − ĥ′
1

)
. (A2)

A.2. Velocity field in fluid 2

û2 = u2 = −
̂1
ĥ2

1
2

+ 
̂2

[
1
M

(
x̂2

2
− ĥ2x̂ − ĥ2

1
2

+ ĥ1ĥ2

)
− ĥ1

(
ĥ2 − ĥ1

)]
+ 1, (A3)

v̂2 = v2 Ca−1/3 = 
̂′
1x̂

ĥ2
1

2
− 
̂′

2
M

[
x̂3

6
− ĥ2x̂2

2
+ x̂

(
− ĥ2

1
2

+ ĥ1ĥ2 − Mĥ1

(
ĥ2 − ĥ1

))]
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+ 
̂1x̂ĥ1ĥ′
1 − 
̂2

M

[
−ĥ′

2
x̂2

2
+ x̂

(
−ĥ1ĥ′

1 +
(

ĥ1ĥ2

)′ − M
(

ĥ1

(
ĥ2 − ĥ1

))′)]
+ C(ẑ). (A4)

The function C(ẑ) is the one that guarantees v̂1(ẑ, ĥ1) = v̂2(ẑ, ĥ1). In these equations, the
prime denotes the derivative with respect to ẑ. Moreover, the linearised rescaled pressure
gradients 
̂1 and 
̂2 and their derivatives with respect to ẑ, 
̂′

1 and 
̂′
2, are given by


̂1 = lim
Ca→0

Ca1/3Π1 = −ĥ′′′
1 − Σ ĥ′′′

2 (A5)


̂2 = lim
Ca→0

Ca1/3Π2 = −Σ ĥ′′′
2 (A6)


̂′
1 = −ĥ′′′′

1 − Σ ĥ′′′′
2 (A7)


̂′
2 = −Σ ĥ′′′′

2 . (A8)

Note that taking the limit in expressions (A5) and (A6) amounts to simultaneously
neglecting the gravity term in the definitions of the pressure gradients Πi ((2.16) and
(2.17)) and to linearising the curvature, i.e. to setting κi ≈ h′′

i .
Finally, the shear stresses at the plate/liquid 1 interface, τ̂01, and at the liquid 1/liquid 2

interface, τ̂12, are

τ̂01 = Ca−1/3τxz(x = 0) = −
̂1 ĥ1 − 
̂2

(
ĥ2 − ĥ1

)
, (A9)

τ̂12 = Ca−1/3τxz(x = h1) = −
̂2

(
ĥ2 − ĥ1

)
. (A10)

In figure 4(b,c), we also show the shear stress at the plate and the derivative of the
pressure gradient, corresponding to the one-liquid Landau–Levich–Derjaguin problem.
Their respective expressions are

τ̂LLD = ĥ1ĥ′′′
1 and 
̂LLD = −ĥ′′′

1 . (A11a,b)

Appendix B. Time-dependent formulation and numerical method

Although we ultimately seek for steady-state solutions of the problem, as described in § 2,
we develop here a quasi-steady formulation (§ B.1), where the unsteady terms are kept in
the mass conservation equations. This formulation allowed us to find the steady numerical
solutions for h1 and h2 by time marching (§ B.2). The fact that we reach the steady solution
by time marching ensures that the steady state is stable.

B.1. Time-dependent formulation
In the framework of our quasi-steady formulation, the dimensional thickness-averaged
continuity equations (2.7) are replaced by

∂hi

∂t
+ ∂Qi

∂z
= 0, for i = 1, 2, (B1)

while the momentum conservation equations (2.1) and (2.2) remain unchanged.
Non-dimensionalisation is performed as explained in § 2.2, making the time dimensionless
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with the capillary time, namely

t −→ t �cμ1/σ12. (B2)

Equations (B1) are unaltered upon non-dimensionalisation and the flow rates Qi are
still given by (2.23). Using the rescaling and simplifications developed in § 2.3, the
quasi-steady equations satisfied by the film thicknesses at leading order are

∂ ĥi

∂t
+ ∂

∂ ẑ

[
ĥi + ∂3ĥ1

∂ ẑ3 F̂i1 + Σ
∂3ĥ2

∂ ẑ3

(
F̂i1 + F̂i2

)]
= 0, (B3)

where the F̂ij are the same as in the steady formulation (2.24)–(2.27).

B.2. Numerical method
The system of (B3) with the boundary conditions described in §§ 2.3 and 2.4 for ẑ → ±∞
are discretised in space using first-order one-dimensional finite volumes in a staggered
grid. The thicknesses are defined at nodes placed at the centre of the elements, while the
flow rates,

q̂i = ĥi + ∂3ĥ1

∂ ẑ3 F̂i1 + Σ
∂3ĥ2

∂ ẑ3

(
F̂i1 + F̂i2

)
, (B4)

are defined at nodes located at their boundaries. The resulting set of ordinary differential
equations for the discretised thicknesses, ĥi, is then time marched with the routine odeint
implemented in the scientific package SciPy of Python.

To impose the upstream boundary conditions as we approach the static meniscus, which
in the scaled variables is equivalent to ẑ → −∞, we set ĥ1 to a large value, say ĥ1,b =
100, and then we vary ĥ2 at that boundary, ĥ2,b, along a range of values larger than ĥ1,b.
Notice that, numerically, we can impose these boundary conditions at ẑ = 0 without loss of
generality, thanks to the translational invariance of the problem. For every pair (ĥ1,b, ĥ2,b)
we can then compute Δẑcl = ẑcl,2 − ẑcl,1 using (2.36) and (2.37) and, finally, relate this
parameter to ΔH using (2.34) and (2.35).

Besides imposing ĥ1 and ĥ2 at the upstream boundary of the numerical domain, we also
need to impose the second derivatives (taken from the static meniscus solution) there, for
which purpose we use a non-centred finite-difference scheme. The same approach is used
to impose the boundary conditions at the downstream boundary (corresponding physically
to ẑ → ∞), where we set ∂ ĥ/∂ ẑ = ∂2ĥ/∂ ẑ2 = 0. In our numerical method, this boundary
condition is applied at ẑ = 60, a value sufficiently large so that the results do not depend
on it.

As for the initial conditions, although the formulation introduced in this paper is able
to describe transient phenomena, here, we are only interested in the long-term, steady
solution. For this reason we start the time-marching procedure from initial conditions that
do not represent any actual physical configuration but that satisfy the boundary conditions
described above. In particular, we use a linear function of decaying exponentials, which
ensures a smooth start-up of the time-marching procedure, namely,

ĥ1(ẑ, 0) =
√

2(1 − R) exp (−Lẑ)/L2, (B5)

ĥ2(ẑ, 0) =
√

2R
Σ

exp (−Lẑ)/L2, (B6)

where the constant L has the value L = 1 for all the simulations reported here.
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Appendix C. One-liquid Landau–Levich vade mecum

In this appendix, we derive some properties of the classical one-liquid dip-coating flow
(Landau & Levich 1942) that are relevant for the discussion of its two-liquid counterpart.
For a single-phase LLD flow, the film thickness ĥ obeys the differential equation

ĥ∞ = ĥ + sĥ′′′ ĥ3

3
, (C1)

where s represents a dimensionless surface tension. For instance, if we wish to apply this
equation to interface (I), s = 1, while for interfaces (II) and (III) (see figure 5) it would be
s = Σ and s = 1 + Σ , respectively. To write this equation, the thickness ĥ and streamwise
coordinate ẑ have been made dimensionless with a capillary length times Ca2/3 and Ca1/3,
respectively. Using this notation, ĥ∞ represents the dimensionless flat film thickness, far
above the bath, and is equivalent also to the dimensionless flow rate transported by the
film.

We start by proving that the approximate film curvature, ĥ′′, decays monotonically with
ẑ, i.e. moving up along the plate. In a first step, we introduce the change of variables
η = ĥ/ĥ∞ and ξ = ẑ/(ĥ∞s1/3), which yields

1 = η + η′′′ η3

3
, (C2)

where the prime denotes now the derivative with respect to ξ . In a second step, as
suggested in Landau & Levich (1942), we take advantage of the autonomous character
of the equation to reduce its order through the substitution η′ = −F1/2. In terms of this
function F, the interface curvature becomes η′′ = 1

2 dF/dη and (C2) turns into

d2F
dη2 = 6 (η − 1)

η3F1/2 . (C3)

Since, by definition, η > 1, this equation reveals that d2F/dη2 > 0 and therefore that
dF/dη = 2η′′ grows monotonically with the film thickness η. Likewise, since the film
thickness decreases monotonically with the height ẑ, as η′ = −F1/2 < 0, we can conclude
that the interfacial curvature η′′ also decreases monotonically as we move up along the
plate.

Regarding the flat film thickness, ĥ∞, it is possible to relate it to the curvature in the
limit η � 1, that is, where the film connects with the static meniscus. Integrating (C3)
with the initial conditions F = dF/dη = 0 at η = 1, as suggested in Landau & Levich
(1942), we get dF/dη(η → ∞) = 2η′′(η → ∞) = 2.673.

In terms of the original variables ĥ and ẑ,

K = d2ĥ
dẑ2 (ẑ → −∞) = η′′(η → ∞)

s2/3ĥ∞
, (C4)

where we denoted the curvature of the static meniscus near the wall by K. In perfect
wetting conditions, K = √

2. Finally,

ĥ∞ = 1.336
s2/3K

. (C5)

This result shows that, the higher the curvature far away from the flat film region, the
thinner the film thickness. This has been used in § 4.3 to understand the variation of lower
film thickness ĥ1,∞ with ΔH and to estimate a lower bound for this quantity.
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