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ABSTRACT

Two-dimensional vertical impact of a rigid blunt body onto a floating ice plate is studied. The problem is coupled and unsteady. The liquid is
inviscid, incompressible, and of infinite depth. The ice floe is modeled as a thin viscoelastic plate of constant thickness. The plate edges are
free of bending stresses and shear forces. The upper surface of the plate is covered with a viscoelastic layer of constant small thickness and
negligible inertia. The reaction force of this soft layer is predicted by a nonlinear and one-dimensional Winkler-Kelvin-Voigt model, which
does not permit a contact between the rigid body and the ice plate. The soft layer may describe either the presence of snow on the ice or a
layer of crushed ice in the place of impact, or can be considered as a way of regularization of problems with concentrated loads. The rigid
body touches the upper surface of the soft layer and then suddenly starts to move downward with constant velocity. It is shown that the
strains in the ice plate caused by the impact are weakly dependent on the characteristics of the soft layer. The magnitudes and distributions
of the strains are studied depending on the length of the ice plate, retardation time of the ice model, thickness of the plate, shape of the rigid
body, place of impact, and the impact speed. The value of the retardation time in the soft layer model is discussed with relation to the ice
crushing by impact.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0047443

I. INTRODUCTION

The vertical impact by a rigid blunt body onto a floating ice plate
is studied within the linear theory of hydroelasticity. The motivation
for this study comes from ship navigation and performance of the con-
ventional free fall lifeboats in icy waters. The effect of a single ice floe
on slamming loads for sea-going ships and conventional lifeboats is of
particular concern, see Lubbad and Loset (2011) and Re and Veitch
(2003). Khabakhpasheva et al. (2018b) studied this problem for short
ice floes, which were modeled as rigid plates, and symmetric impact
conditions. For larger floes, their elastic responses to impacts should
be taken into account. Vertical impacts on infinite floating ice plates
were studied theoretically and numerically by Tkacheva (2007), Kozin
and Pogorelova (2006), Pogorelova (2010), and Korobkin (2000) using
the linear theory of potential flows. These authors investigated bending
stresses in an elastic floating ice plate caused by an impact on it. Sodhi
(1989, 1998) studied the vertical penetration of floating ice plates by
an indentor, where the ice fracture plays a major role. The vertical
impacts received less attention than the interaction of floating ice
plates with vertical walls of offshore structures, see Nakazawa and
Sodhi (1990), for example, where the ice fracture and the resulting

forces are of main concern. The problem of horizontal impact on a
floating ice sheet is not considered in the present paper.

The problem of impact onto floating elastic plate is similar to the
problem of aircraft landing on very large floating platform, see
Watanabe et al. (1998), Kashiwagi (2004), and Qiu (2007). However,
in the present problem, the impact loads are not given, and they do
not move along the plate as a landing aircraft. Impact onto elastic
plate, which is placed on water surface, was studied by Shams et al.
(2017). The strength of the point impact load was given. The problem
was formulated as an integrodifferential equation with respect to the
plate deflection and solved by a finite element method.

The vertical impact onto a floating ice floe is studied here as
unsteady, linear, two-dimensional, and coupled problem of hydroelas-
ticity. The hydrodynamic loads and elastic ice response are determined
at the same time. The ice deflection is described by the equation of vis-
coelastic Euler plate of constant thickness, see Brocklehurst et al.
(2011) and Shishmarev et al. (2019). In contrast to many other studies
of ice response to impact on it, we do not assume impact loads but cal-
culate them as part of the solution together with the region of contact
between the impacting rigid body and the elastic ice plate. It is known
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that such a contact region may consist of several intervals of contact,
the positions and lengths of which are determined by the condition
that the surface of the rigid body is above the deformed ice plate at any
time instant after the impact and the loads acting on the plate are posi-
tive. The contact may occur at separate points within some simplified
models of elasticity. The problems with concentrated unknown loads
and inequalities for elastic deflections and loads are challenging both
theoretically and computationally. A practical approach to such prob-
lems is to introduce a viscoelastic soft layer between the impacting
body and the ice, see Khabakhpasheva et al. (2018b). This layer can
model either some physical properties of the ice surface, as in
Khabakhpasheva et al. (2018b), the presence of snow on the ice or can
be considered as a way of regularization of problems with concen-
trated loads, or as a penalty method to satisfy the inequality concern-
ing the positions of the body surface and the floating ice plate, see Kerr
(1964) and Younesian et al. (2019) for more details.

Practical problems of navigation in ice and vertical impact on ice
floes are three-dimensional. However, for an elongated body falling on
ice floe with a small heel angle, the floe deflections and stresses in the
floe at the middle of the body, where they are maximum, can be
approximated as two-dimensional. Such approximation of three-
dimensional problems by a sequence of two dimensional ones is well
known in ship hydrodynamics as the strip theory, see Gerritsma and
Beukelman (1967) and Loukakis and Scfavounos (1978), for elongated
ships with small forward speed. Gravity effects and waves radiated by
each section of the ship hull are included in ship strip theories. In con-
trast, local stresses induced by the wave impact on ship hull and/or
ship slamming in waves are usually studied both numerically and
experimentally within two-dimensional hydroelastic models without
account for gravity, viscosity, and surface tension effects, see Faltinsen
et al. (1997). These effects can be neglected during the impact stage,
which is of short duration with small displacements of impacting bod-
ies. Inertia and dynamic hydroelastic effects play the major role in elas-
tic impact problems and are described using the so-called added-mass
matrix for elastic modes of the elastic structure. The experiments con-
firm that the long-crested wave impact onto elastic plate produces
two-dimensional stress distributions in the plate at a short distance
from the plate edges. To estimate possible damage to a ship hull caused
by slamming, we need a reliable estimate of the maximum local bend-
ing stresses, which is provided by the two-dimensional theory. Three-
dimensional effects reduce local stresses, see Faltinsen et al. (1997).
The problem of a rigid body impact onto a floating elastic plate, which
is studied in this paper, is close to the problem of wave impact onto an
initially dry and horizontal elastic plate, see Korobkin and
Khabakhpasheva (2006), with the following differences. In the prob-
lems of wave impact, the wetted part of the plate increases in time,
which makes the problem complicated and difficult to study. In our
present problem, the elastic plate is in contact with water during the
impact stage, and a rigid body impacts the upped surface of the plate.

Motivation for the present study comes, in particular, from the
performance and launching a standard free fall lifeboat in ice-covered
water. A lifeboat cannot be launched onto continuous ice, but it can be
launched in emergency conditions on water covered with some ice
floes, if the floes are small enough and not thick. The problems with
survival craft in icy water and some experimental campaigns with
such craft are described by Gudmestad and Solberg (2019). Lau et al.
(2006) write about launching of survival craft on ice-covered waters

“The standard free fall lifeboat in accordance with IMO (2016) provi-
sions includes arrangements that allow only a lowering aft of the ship.
It is impossible for a vessel to launch free fall lifeboat onto ice. If a life-
boat should be lowered onto ice, the slope of the bottom of the boat
hull must be considered and equipment for limiting the heel must be
provided.” For example, totally enclosed lifeboat Viking Norsafe
Maggie-10.7 has a length of 10.7m with a beam of 3.3m and height of
3.55m. The estimated mass of the boat with 90 persons inside is
12.7 tons. This lifeboat is elongated and, being lowered without a heel
angle onto an ice floe, provides two-dimensional stresses in the floe
except near both ends of the craft. To estimate stresses in the floe, this
lifeboat can be approximated as a cylinder of radius 1.6m. The impact
speed of the boat on the floe is about 1m/s if the boat is released 5 cm
from the ice surface.

The two-dimensional problem of a body collision with an ice floe
is relevant also to the problem of a submarine surfacing from under
the ice, see Conley (1997) and Ye et al. (2020), for example. The sur-
facing problem is different from the problem of this paper because of
the hydrodynamic forces between the ice and the approaching sub-
marine. However, the hydrodynamic forces are neglected in Ye et al.
(2020). The ice plate is of small constant thickness. The ice is modeled
as brittle-plastic material. Numerical and experimental results for
three-point bending of columnar ice are compared in Sec. 4.1 of the
paper by Ye et al. (2020). The rigid body in these test calculations is
not of small curvature as in the present paper. However, the mecha-
nism of the ice failure is the same, as in the present paper, with a crack
developed on the opposite surface of the ice plate due to bending of ice
and tensile stresses there. Crushing of ice in the place of indentation
has not been observed, which can be explained by slow motion of the
rigid indenter. The numerical stresses in the ice plate increased almost
linearly in time before the ice plate breaking into two pieces in 3 s.
Comparison of the numerical stresses and the experimental ones is
fairly good. The loads were applied slowly, which suggest that the ice
response was quasi-static. In another test problem, with the impact on
ice by a circular cylinder, the impact velocity was 0.1m/s, see Sec. 4.2
in Ye et al. (2020), and the calculations were performed for around 3 s
after the start of the ice-body interaction. In models of submarine sur-
facing, rigid motions of the ice are restricted, the interaction is slow,
and hydrodynamic forces can be neglected. The present paper is
focused on impact loads with rigid and elastic motions of the ice being
of the same order, and hydrodynamic loads playing important role.

Another application of two-dimensional formulations to practical
three-dimensional problems in ice-covered waters comes from the
performance of high-speed vessels. The corresponding approximate
theory known as 2DþT theory is well validated for open water, see
Sun and Faltinsen (2011). We unaware of application of this theory to
icy waters and level ice. However, we think that 2DþT theory can be
useful for the study of dynamic response of high-speed vessels in
Arctic navigation as well. Within the 2DþT theory, we introduce a
stationary vertical control plane normal to the direction of the vessel
motion, if the vessel motion is stationary, and consider the flow and
ice response only in this plane within the two-dimensional, unsteady,
and non-linear formulation, see Tassin et al. (2013). The two-
dimensional flow and ice response in the control plane are equivalent
to the problem of a body impact onto the ice sheet, which is studied in
the present paper. However, in contrast to the formulation of the pre-
sent paper, the impacting body within the 2DþT theory changes its
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shape in time, see Tassin et al. (2013), which makes the problem more
complicated than the present one. To include heave and pitch motions
of the vessel, one needs to introduce several 2D vertical planes and for-
mulate equations for dynamic motions of the vessel. Sun and Faltinsen
(2011) showed that three-dimensional local corrections should be
introduced at the rear part of the vessel to improve the predictions of
the vessel motions by the 2DþT theory compared with the experi-
mental results on rough-water performance of planning boats.
Application of the 2DþT theory to high-speed vessels in Arctic is chal-
lenging because the level ice can be broken by the vessel moving on it.
We expect that a combination of the 2DþT theory with the model of
impact onto an ice floe with a preexisting crack, see Korobkin and
Khabakhpasheva (2018), can provide a consistent theory of navigation
in Arctic.

We are unaware of experiments with large rigid body impact
onto a floating ice plate, where the ice is broken by bending. Impact
and penetration through a floating ice plate of small rigid indentors
was studied by many authors, see Sodhi (1989, 1998) and the referen-
ces therein. For small body impact, the ice crushing and fracture near
the impact place play the major role. For large rigid bodies, as studied
in the present paper, ice crushing is less important than bending
stresses in the ice plate. The present paper is focused on bending
stresses in a floating ice plate, which are caused by vertical impact on
this plate. The speed of the rigid body during its impact on a floating
ice plate is assumed constant, which corresponds to a heavy body such
as a lifeboat with 90 persons inside, as mentioned above. The problem
of a rigid body impact with a variable in time speed, which should be
calculated as a part of the solution together with the impact loads and
ice response, can be studied by using the approach of the present
paper, see a similar study but for short ice plates, where the elastic plate
motions are small, in Khabakhpasheva et al. (2018b). The problem of
free-falling body impact is not considered in this paper. Note that
three-dimensional effects are more pronounced and important for
impacts by small bodies than for impacts by large elongated bodies,
which are typical in naval field.

There are many parameters in the impact problem. To limit the
number of the parameters, we limit ourselves to parabolic shapes with
the only parameter R, which is the radius of the body surface curvature
at the point of impact. Only the shape of the part of the body surface,
which is in contact with the floating plate, is important for interaction.
The shape of the rest of the body does not matter for the stresses in
the ice plate caused by impact. We assume that the rigid body does
not become wet during the impact. The speed of the body V is con-
stant and equal to 1m/s in most of the calculations. This corresponds
to the case of heavy body impact onto an ice floe. The effect of the
impact speed on the strains in ice is studied in Sec. IVB. All calcula-
tions here are performed for R¼ 5m. The maximum strain in the ice
plate decreases with increase in R for a constant impact speed V. In
the limiting case of a rigid body with flat bottom and of the same
length as the ice floe, there are no elastic motions of the plate with zero
strains in the plate.

Elastic characteristics of the ice are taken from the available litera-
ture. These characteristics depend on temperature and structure of ice.
Schulson (1999) reports that Young’s modulus of the ice may vary
from 9MPa to 12GPa, for example. The tensile strength of ice varies
from 0.7 to 3.1MPa, see Petrovic (2003). Schulson (1999) wrote
“Brittle behaviour sets in at higher strain rates. Under tension ice

breaks after lengthening 0.01–0.1% through trans-granular cleavage.
The tensile strength is rate independent and is only slightly thermally
dependent, rising by less than 25% upon decreasing temperature from
–5 �C to –20 �C.” In our notations, it gives the yield strain �Y in the
range from 100 to 1000 microstrains (lstrain). The reference yield
strain is taken as 80ls in the present study. Note that in the case of
impulsive loading, the maximum values of elastic strains at a point of
the structure or over the structure at a given time instant are not
enough to conclude about a crack initiation in the structure and its fol-
lowing failure. Petrov and Morozov (1994) argued that this is an aver-
aged, both in time and space, stress in a structure and should be used
as a measure of the structural failure instead of stress at a point and at
a certain time instant. They formulated a criterion for fracture, which
includes the fracture incubation time and the characteristic size of a
fracture process zone. Bratov and Petrov (2007) wrote “The incubation
time is constant for a given material and does not depend on problem
geometry, the way a load is applied, the shape of a load pulse or its
amplitude… the characteristic size of a fracture process zone is con-
stant for the given material and chosen scale.” This criterion was suc-
cessfully applied to explain some experimental data. It was included in
a peridynamic model of dynamic crack initiation, see Ignatev et al.
(2020). This criterion of structural fracture implies that the ice plate
impacted by a rigid body can survive even the strain at a single point
and at a certain time instant achieves the yield value. The incubation
time is of order of several microseconds. For example, it is equal to
44ls for gabbro-diabase, see Peck (2018). The process of a crack initi-
ation and/or crack growth caused by impact loads is more complicated
and requires a special analysis. This explains why we do not terminate
our calculations when the local strain approaches the selected yield
value. The problems of a crack initiation and crack growth are not
considered in this paper. The model developed in this paper is robust
and quick in producing reliable results. It can be used for preliminary
estimates of floating ice response to vertical impact on it.

In contrast to some investigations of ice response, where the
hydrodynamic effects are neglected, see Ye et al. (2020), we study here
only the cases, where a floating elastic plate response strongly depends
on hydrodynamic loads. We study problems of hydroelasticity, where
the flow is caused by elastic plate motions, and the elastic plate
motions are affected by the hydrodynamic loads. The problems of
hydroelasticity are coupled. The flow, hydrodynamic pressure, and the
plate response should be determined at the same time. Initially, the
floating plate and the liquid are at rest. Then, the plate is suddenly
accelerated by an impacting body. The initial interaction stage, when
the plate is accelerated, starts to vibrate, and then separates from the
impacting body, is of short duration. Gravity, surface tension, and vis-
cous effects are negligible during this short stage compared with inertia
of the plate and liquid. The flow is potential, see Korobkin and
Pukhnachov (1988). The displacements of both the plate and the liq-
uid are small, which make it possible to linearize the equations of
motion and the boundary conditions and impose the linearized
boundary conditions at the initial position of the flow boundary. The
resulting linearized problem has periodic in time solutions if the struc-
tural damping is neglected. There is no hydrodynamic damping in this
formulation because both the gravity and liquid viscosity are neglected
in the leading order. The lowest period T1 of such solutions, which are
known as wet modes, depends on the plate length, plate rigidity, and
the liquid density. The plate response to the impact strongly depends
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on the hydrodynamic loads if the duration of impact is close to T1, see
Faltinsen et al. (2004). If the impact loads are applied during the initial
stage, which is longer than T1, then the hydrodynamic loads are less
important and can be treated as quasi-static ones, as it was done by Ye
et al. (2020). In this paper, we consider impact conditions and the
characteristics of the floating plate, see Sec. IVA, such that the dura-
tion of the impact stage is close to T1 and the plate response is strongly
affected by the hydrodynamic loads. The problems, where the hydro-
dynamic and structural parts are strongly coupled, are still difficult to
solve numerically, see Korobkin and Malenica (2016), because a
hydrodynamic CFD solver and a structural FEM solver need an inter-
face, allowing them to solve the hydrodynamic and structural prob-
lems at the same time.

Detailed analysis of the ice response requires a finite-element
model (FEM) of ice with an account for its type, temperature, salinity
and other characteristics of a particular ice, and a computational fluid
dynamic (CFD) model of hydrodynamic forces during the impact on
floating ice. An FEM of ice should include models of ice fracture with
a crushing and an initiation of cracks, and a model of ice porosity, see
Ye et al. (2020). Such an CFDþFEM model contains many parame-
ters, values of which are different for different ice types and different
impact conditions. Dedicated experiments are needed to fit the param-
eters to the experimental results, see Sebastiuo (2013), who treats a
model fitting as an art. Blind tests should be performed to justify the
model and the values of the parameters. This is a time-consuming pro-
cedure, which should be done again for another ice in another place.
These difficulties with modeling of everything in full details explain
the need for parsimonious models, which explain and reasonably pre-
dict physical processes with a minimum number of parameters. The
principle of parsimony implies that research should search for simple
measurement and theoretical models that use the minimum number
of parameters needed to explain a given phenomenon, see Raykov and
Marcoulides (1999). A parsimonious model explains a phenomenon
and identifies the most interesting cases, but the numerical results
should be computed by more detailed models.

II. FORMULATION OF THE PROBLEM

The two-dimensional unsteady problem of a rigid body impact
onto a floating viscoelastic ice plate covered with a thin viscoelastic
layer of another material, which is called below a soft layer, is studied.
The plate of a length 2L and a thickness hi is floating on the liquid sur-
face. Initially, the liquid is at rest and occupies a lower half-plane,
y< 0. In the Cartesian coordinate system xOy, see Fig. 1, the interval
y ¼ �d;�L < x < L corresponds to the lower flat surface of the
plate, where d is the draft of the plate, d ¼ hiðqi=qÞ, qi is the ice den-
sity, and q is the liquid density. The upper surface of the ice plate is at

the level y ¼ �d þ hi. The ice plate is thin, hi=L� 1, in this study.
The soft layer on the top of the ice plate is of constant thickness he.
A rigid body touches the upper surface of the soft layer at a single
point, y¼ ye and x¼ x0, where �L < x0 < L and ye ¼ he þ hi � d.
The position of the body surface at a time t is described by the
equation, y ¼ ye þ f ðxÞ � Vt, where f ðx0Þ ¼ 0 and f(x)> 0 for
x 6¼ x0. The shape function f(x) is taken parabolic in this study,
f ðxÞ ¼ ðx � x0Þ2=ð2RÞ, where R being the radius of curvature of
the parabola.

At some instant of time, taken as initial one, t¼ 0, the body sud-
denly starts to move downward with a constant speed V pushing the
soft layer and the ice plate into the liquid. The liquid is assumed ideal
and incompressible. The flow generated by the impact is assumed
two-dimensional and potential. During the early impact stage, both
the equations of the ice plate deflection and the equations of the flow
can be linearized. The boundary conditions of the hydrodynamic part
of the problem can also be approximately linearized and imposed on
the initial liquid level, y¼ 0. The flow caused by an impact is inertia
dominated with gravity, viscous effects, and surface tension playing
minor roles because of short duration of the impact stage, see
Greenhow (1987) and Khabakhpasheva and Korobkin (2013) for justi-
fication of this approximation.

These assumptions lead us to a linearized unsteady problem of
hydroelasticity. However, the relation between the impact load and the
ice plate deflection is non-linear. We shall determine the deflection of
the viscoelastic ice plate, the stresses in the plate, and the impact loads
acting on the plate together with the corresponding intervals, where
the loads are applied, during the early stage of impact when the ice
deflection and the rigid body displacement are small.

The position of the ice/liquid interface is described by the
equation y ¼ �d þ wðx; tÞ, where w(x, t) is the deflection of the ice
plate, see Fig. 2. The vertical displacement of the rigid body is
shown as s(t) in Fig. 2, where sð0Þ ¼ 0 and s0ð0Þ ¼ V . For constant
velocity of impact, we have s(t)¼Vt. The ice deflection is governed
by the following equation of thin viscoelastic plate, see Squire et al.
(1996):

m
@2w
@t2
þ EJ 1þ si

@

@t

� �
@4w
@x4
¼ pðx; tÞ � 1þ se

@

@t

� �
Peðx; tÞ

ðjxj< L; t > 0Þ; (1)

where E is the Young’s modulus of the ice, J ¼ h3i =12 is the moment
of inertia of the ice plate cross section, m ¼ hiqi is the mass of the ice
plate per unit area, and p(x, t) is the hydrodynamic pressure acting on
the ice/liquid interface. The edges of the plate are free of bending
stresses and the shear force,

FIG. 1. Initial positions of the floating ice plate and the rigid body.
FIG. 2. Deflection of the ice plate and compression of the soft layer on the top of
the ice plate by the impacting body.
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@2w
@x2
ð6L; tÞ ¼ 0;

@3w
@x3
ð6L; tÞ ¼ 0: (2)

Initially, the ice plate is at rest,

wðx; 0Þ ¼ 0;
@w
@t
ðx; 0Þ ¼ 0 ðjxj < LÞ: (3)

The reaction force, ð1þ se@=@tÞPeðx; tÞ, of the soft layer to the rigid
body impact is assumed to be given by a nonlinear one-dimensional
Winkler-Kelvin-Voigt model and depends on the current local thick-
ness of the layer and its time derivative, where se is the retardation
time responsible for the energy dissipation in the soft layer. Here,
Peðx; tÞ ¼ KGðdÞ, where dðx; tÞ is the relative compression of the
layer if d > 0, K is the rigidity of the material of the soft layer, and the
function GðdÞ is such that GðdÞ ¼ 0 for d � 0, which is in places
without contact between the rigid surface and the soft layer, GðdÞ � d
for small positive d, which corresponds to Hooke’s law, and
GðdÞ ! 1 as d! 1, which is where the rigid surface approaches the
surface of the ice plate. This function is taken in the form
GðdÞ ¼ d=ð1� dÞ, where

dðx; tÞ ¼ he � hðx; tÞ
he

; hðx; tÞ ¼ f ðxÞ � Vt � wðx; tÞ þ he; (4)

where h(x, t) is the vertical distance between the ice upper surface and
the rigid surface of the body. The intervals of contact between the sur-
face of the rigid impacting body and the soft layer are defined by the
inequality hðx; tÞ < he. The relative compression of the soft layer,
dðx; tÞ, is not small in the present model.

The hydrodynamic pressure, p(x, t), in the plate equation (1) is
given by the linearized Bernoulli equation without account for the
hydrostatic pressure,

pðx; tÞ ¼ �qutðx; 0; tÞ; (5)

where the velocity potential uðx; y; tÞ is the solution of the following
boundary-value problem:

r2u ¼ 0 ðy < 0Þ; @u
@y
¼ @w
@t

ðjxj < L; y ¼ 0Þ;

u ¼ 0 ðjxj > L; y ¼ 0Þ; u! 0 ðx2 þ y2 !1Þ:
(6)

The flow under the plate is caused by both rigid and elastic motions of
the impacted plate, which are small during the impact stage of short
duration. The deflections of the floating plate are small compared with
the plate length. This makes it possible to linearize the equations of the
flow together with the boundary conditions, and impose the boundary
conditions at the initial liquid level, y¼ 0, see Korobkin and
Pukhnachov (1988). The linearized dynamic, which the hydrodynamic
pressure at the free surface is equal to the atmospheric pressure, and
the kinematic, which the liquid particles on the free surface move
together with this surface, free-surface conditions provide uðx; 0; tÞ
¼ 0 and ð@u=@yÞðx; 0; tÞ ¼ ð@g=@tÞðx; tÞ, where jxj > L, see equa-
tion (5). The equation y ¼ gðx; tÞ describes the elevation of the free
surface caused by the impact. The velocity potential uðx; y; tÞ satisfies
the Laplace’s equation in the linearized flow domain, y< 0, the linear-
ized body boundary condition at the linearized position of the plate
lower surface, jxj < L; y ¼ 0, and decays at infinity far from the plate.
Note that the kinematic boundary condition on the free surface is not
included in the hydrodynamic problem (6). This condition is needed if

the wetted part of the plate changes in time, see Korobkin and
Pukhnachov (1988). However, in the present problem of impact onto
a floating plate, the wetted part of the plate does not change in time.
Therefore, the kinematic condition ð@u=@yÞðx; 0; tÞ ¼ ð@g=@tÞðx; tÞ,
where ðjxj < L; y ¼ 0Þ, is considered here as the equation for the free-
surface elevation, where the derivative ð@u=@yÞðx; 0; tÞ is obtained
from the hydrodynamic problem (6) and initially gðx; 0Þ ¼ 0. Note
that the fact that the boundary conditions are imposed on the initial
level of the liquid does not mean that the free surface is stay at y¼ 0
during the impact. The shape of the free surface is calculated by inte-
grating the kinematic condition in time. Moreover, within the linear-
ized hydrodynamic model (6), the vertical velocity of the free surface
at the plate edges is square-root singular. As a result, the elevation of
the free surface at the plate edges behaves as gðx; tÞ ¼ Oð½x2 � L2��

1
2Þ

as jxj ! Lþ 0. Such shape of the free surface is not physical and has
been corrected through the local asymptotic and numerical analysis of
the flow close to the plate edges, see Iafrati and Korobkin (2004, 2008).
These arguments explain a particular shape of the free surface sketched
in Fig. 2, see also Fig. 6 from Iafrati and Korobkin (2004).

Note that the hydrostatic pressure, �qgwðx; tÞ, is neglected in
the Bernoulli equation (5) compared with the dynamic component
of the pressure. The ratio of these two components, qut=ðqgwÞ, where
u ¼ OðwL=TÞ from (6) and T is the duration of the impact stage, is
of the order OðgT2=LÞ, which is small for short duration of the
impact stage and long plates, see conditions of numerical calculations
in Sec. IV.

The formulated problem (1)–(6) is coupled. The ice deflection,
w(x, t), and the strains in the ice plate depend on the hydrodynamic
pressure, see equation (1), which, in turn, depends on the ice deflection
through the kinematic boundary condition in (6) on the surface of the
ice plate. The present formulation assumes that the lower surface of
the ice plate is in contact with the liquid at any time during the impact
stage. This implies that the edges of the floating plate are not allowed
to exit from the liquid, and both possible cavitation and ventilation
caused by the ice plate vibration are not included in the model. This
assumption can be validated a posteriory by analyzing the hydrody-
namic pressure p(x, t) along the plate,�L < x < L.

Dimensionless variables are used below. They are denoted by the
same symbols as the corresponding dimensional variables but with
tilde. The half-length of the ice plate L is taken as the length scale, x
¼ L~x and y ¼ L~y . The thickness he of the soft layer is taken as the dis-
placement and deflection scale, w ¼ he~wð~x;~tÞ and t ¼ ~the=V . The
displacement scale was chosen to accurately resolve in time the com-
pression of the soft layer and correspondingly the loads acting on the
ice plate. This is, the plate deflection can be much greater than he but
it should be much smaller than L. The scale of the velocity potential
LV follows from the kinematic condition on the ice/liquid interface.
Then, the scale of the hydrodynamic pressure is qV2L=he. The
strains eðx; tÞ are of particular concern in the impact problem of
hydroelasticity. In the dimensionless variables, eð~x;~tÞ ¼ esc~w~x~x ð~x;~tÞ
on the lower surface of the ice plate with the strain scale
esc ¼ hihe=ð2L2Þ. Positive value of the strain implies that this part of
the lower surface of the ice is in tension. This may lead to ice cracking
in this place if the strain is greater than the so-called yield strain eY ,
see Brocklehurst et al. (2011), where eY ¼ 8� 10�5.

In the dimensionless variables (tilde is dropped below), the plate
equation (1), the edge (2), and initial (3) conditions read
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a1
@2w
@t2
þ b 1þ ~si

@

@t

� �
@4w
@x4
¼ �a

@u
@t
� 1þ ~se

@

@t

� �
GðdÞ

ðjxj < 1; t > 0Þ; (7)

@2w
@x2
ð61; tÞ ¼ 0;

@3w
@x3
ð61; tÞ ¼ 0; (8)

wðx; 0Þ ¼ 0;
@w
@t
ðx; 0Þ ¼ 0 ðjxj < 1Þ; (9)

where

dðx; tÞ ¼ wðx; tÞ þ t � d̂ðx � �Þ2;

GðdÞ ¼ d
1� d

ð0 < d < 1Þ; GðdÞ ¼ 0 ðd < 0Þ:
(10)

The velocity potential uðx; y; tÞ is the solution of the following
boundary-value problem,

r2u ¼ 0 ðy < 0Þ; @u
@y
¼ @w
@t

ðjxj < 1; y ¼ 0Þ;

u ¼ 0 ðjxj > 1; y ¼ 0Þ; u! 0 ðx2 þ y2 !1Þ:
(11)

There are seven dimensionless parameters in the formulated
problem,

a1 ¼
qihiV

2

Khe
; b ¼ EJhe

L4K
; a ¼ qLV2

Khe
;

~si ¼
siV
he

; ~se ¼
seV
he

; d̂ ¼ L2

2Rhe
; � ¼ x0

L
;

(12)

all of them are in the plate equation (7) and in the definition of the rel-
ative compression of the soft layer, dðx; tÞ, see (10).

III. NORMAL MODE METHOD

The formulated problems (7)–(11) of vertical impact on a float-
ing ice floe are solved by the normal mode method (Kvalsvold, 1994;
Korobkin, 1998; Korobkin and Khabakhpasheva, 1998; Korobkin and
Khabakhpasheva, 2006). The ice deflection is sought in the form

wðx; tÞ ¼
X1
n¼1

anðtÞwnðxÞ; (13)

where wnðxÞ are the so-called normal modes of the dry elastic plate
and anðtÞ are the principal coordinates of the modes, which are to be
determined. The normal modes are non-zero solutions of the eigen-
value problem,

d4wn

dx4
¼ k4nwn ð�1 < x < 1Þ;

d2wn

dx2
¼ 0;

d3wn

dx3
¼ 0 ðx ¼ 61Þ;

(14)

where kn is a spectral parameter, n 	 1. There are two modes, n¼ 1
and n¼ 2, with k1 ¼ k2 ¼ 0, which correspond to rigid motions of
the plate,

w1ðxÞ ¼
1ffiffiffi
2
p ; w2ðxÞ ¼

ffiffiffi
3
2

r
x: (15)

The modes starting from n¼ 3 correspond to elastic deflections of the
plate,

wnðxÞ ¼ An cos ðknxÞ þ Bn sin ðknxÞ þ Cne
�knð1þxÞ þ Dne

�knð1�xÞ;

(16)

where kn is a real positive root of the equation

coshð2knÞ cos ð2knÞ ¼ 1 (17)

and the coefficients An, Bn, Cn, andDn in (16) are

An ¼
1ffiffiffi

2
p

coskn
; Bn ¼ 0; Cn ¼

1ffiffiffi
2
p
ð1þ e�2knÞ

;

Dn ¼ Cn; n ¼ 2mþ 1; An ¼ 0; Bn ¼
1ffiffiffi

2
p

sin kn
;

Cn ¼
�1ffiffiffi

2
p
ð1� e�2knÞ

; Dn ¼ �Cn; n ¼ 2mþ 2:

(18)

The modes (15) and (16) are orthonormal,ð1
�1

wnðxÞwmðxÞ dx ¼ dnm; (19)

where dnn ¼ 1 and dnm ¼ 0 for n 6¼ m, and n;m 	 1. For large n, we
find

kn ¼
p
4
ðn� 2Þ þ O e�

p
2nð Þ; jCnj ¼

1ffiffiffi
2
p þ O e�

p
2nð Þ:

The series (13) and the hydrodynamic problem (11) suggest the
following series for the velocity potential:

uðx; y; tÞ ¼
X1
n¼1

_anðtÞunðx; yÞ; (20)

where the overdot stands for time derivative, _aðtÞ ¼ da=dt, and
unðx; yÞ are the solution of (11) with @un=@yðx; 0Þ ¼ wnðxÞ in the
interval �1 < x < 1. The potentials unðx; yÞ do not depend on the
motions of the ice plate.

Substituting (13) and (20) in (7), and using (14), (19), and (9), we
obtain the following system of ordinary differential equations for the
coefficients anðtÞ:

d~a
dt
¼ �ða1I þ aSÞ�1 ~u þ ~sibD~a þ ~se~P

� �
;

d~u
dt
¼ bD~a þ~P; ~að0Þ ¼ 0; ~uð0Þ ¼ 0:

(21)

Here, ~a ¼ ða1; a2; a3;…ÞT is the vector of unknown coefficients
in (13), I is the unit matrix, D is the diagonal matrix,
D ¼ diagðk41; k42; k43;…Þ, note that k1 ¼ k2 ¼ 0, and S is the added-
mass matrix with the elements Snk,

Snk ¼
ð1
�1

ukðx; 0ÞwnðxÞ dx; (22)

and the elements of the vector ~Pðt;~aÞ ¼ ðP1ðt;~aÞ;P2ðt;~aÞ;
P3ðt;~aÞ;…ÞT are given by the integrals

Pnðt;~aÞ ¼
ð1
�1

Gðdðx; tÞÞwnðxÞ dx; (23)
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with the relative compression dðx; tÞ given by (10). The auxiliary vec-
tor~u ¼ ðu1ðtÞ; u2ðtÞ; u3ðtÞ;…ÞT is needed to calculate the time deriv-
atives _anðtÞ.

The integrals (23) are evaluated numerically at each time step of
the integration of system (21). The interval �1 < x < 1 is derived in
Ni subintervals xj < x < xjþ1, where xj ¼ �1þ ðj� 1ÞDx;
Dx ¼ 2=Ni; 1 � j � Ni þ 1. For given vector~a and time t, we calcu-
late wðxj; tÞ by (13) and dðxj; tÞ by (10). Only subintervals, where
dðx; tÞ > 0, matter. In such subintervals, Gðdðx; tÞÞ is linearly approx-
imated, and the integrals for each such subintervals are evaluated ana-
lytically. In this way, we calculate the integrals (23) accurately even for
large n.

In the dimensionless variables, the impact pressure, ~Piðx; tÞ, act-
ing on the ice plate through the soft layer is calculated by

~Piðx; tÞ ¼ 1þ~se
@

@t

� �
~Peðx; tÞ; d¼wðx; tÞþ t� d̂ðx� �Þ2;

~Peðx; tÞ ¼
d

1�d
ð0< d< 1Þ; ~Peðx; tÞ ¼ 0 ðd< 0Þ

(24)

with its scale being equal to the rigidity coefficient of the soft layer K.
Note that

~Piðx; tÞ ¼
d

1� d
þ ~se
ð1� dÞ2

1þ @w
@t

� �
ð0 < d < 1Þ;

~Piðx; tÞ ¼ 0 ðd < 0Þ

is not equal to zero at the initial contact point, x ¼ �, at t¼ 0, where
~Peð�; 0Þ ¼ 0 and ~Pið�; 0Þ ¼ ~se because of the viscous properties of the
soft layer. Therefore, dissipative properties in the soft layer are
expected to make both the impact load and ice plate response smooth
in time but not just after the impact instant, when these properties
increase the loads. Initially, the interval, where the impact load is
applied, starts from a single point x ¼ �. Special treatment of the prob-
lem is needed for this early stage because the interval of loading
quickly increases in time.

The matrix S is symmetric, Snk¼ Skn, where n 	 1 and k 	 1.
The elements of this matrix are given by analytical formulas through
kn, the coefficients in (18), and Bessel functions, J0ðknÞ; J1ðknÞ;
I0ðknÞ; I1ðknÞ. These formulas are not given in this paper. The non-
linear system of ordinary differential equations (21) is truncated and
integrated in time by the fourth-order Runge-Kutta method.

IV. NUMERICAL RESULTS

Calculations are performed for ice plates with the Young modu-
lus E ¼ 4:2� 109 Pa and density qi ¼ 917 kg/m3. Density of water is
q¼ 1000 kg/m3. The impacting rigid body is parabolic with a radius of
curvature R¼ 5m. The thickness of the soft layer is he¼ 1 cm. Elastic
characteristics of the ice plate, shape of the rigid body, and the thick-
ness of the soft layer do not vary in the present calculations. We focus
our study on dependence of the ice plate response on viscous proper-
ties of both the ice and the soft layer, length and thickness of the plate,
place of impact, and impact speed. The effects of the body shape and
the soft layer thickness on viscoelastic plate response require additional
study. Larger radius R of the body curvature and larger thickness of
the soft layer are expected to increase the region, where the impact
loads are applied to the plate, which lead to a decrease in the plate
deflections and, as a result, to a decrease in strains in the plate.

A. Viscous effects on impact loads and strains

To investigate the effects of both the rigidity coefficient of the soft
layer, K, and the retardation times of the soft layer, se, and of the ice
plate, si, on the impact loads and strains in the ice plate, five cases are
considered, see Table I. In these calculations, the velocity of impact is
V¼ 1m/s, thickness of the ice plate is hi¼ 15 cm, and the half-length
of the plate is L¼ 2.5m.

The system (21) is truncated to 2Nmod equations of first order,
where Nmod is the number of terms retained in the series (13) for the
ice plate deflection. The number Nmod is determined for each case
from Table I separately by investigating the convergence of the strains
eðx; tÞ as the number increases. The strains are more sensitive to the
number of retained terms than the deflection (13). For all cases from
Table I, Nmod¼ 20 was found to provide accurate solutions, see Table
II and Fig. 10 at the end of this subsection. All calculations are per-
formed up to the dimensional time 0.25 s, which corresponds to the
maximum displacement of the body 25 cm. Then, the ice plate deflec-
tions are smaller than 0.25m, which is 1/10 of the half-length of the
plate. The linear theory of hydroelasticity and the model of thin visco-
elastic ice plate are justified for such small deflections.

The system (21) is integrated in the dimensionless variables. For
example, the values of the dimensionless parameters (12) for case 4
from Table I and impact at the center of the plate, x0 ¼ 0, are

a1 ¼ 0:013 755; b ¼ 0:000 302 4; a ¼ 0:25;

~si ¼ 1; ~se ¼ 10; d̂ ¼ 62:5; � ¼ 0:

For case 5, the parameters a; a1, and b are five times greater than those
shown above. The dimensionless time step is selected as 10�4 for case

TABLE I. Parameters of calculations.

K (MPa) se ðsÞ si ðsÞ

Case 1 1 0 0
Case 2 1 0.1 0
Case 3 1 0 0.01
Case 4 1 0.1 0.01
Case 5 0.02 0.1 0.01

TABLE II. Maxima of the normal mode coefficients, maxjanðtÞj, during the impact
stage, 0 < t < 0:25 s, calculated for Cases 1, 2, and 4.

Case 1 Case 2 Case 4
n an an an

3 5.96522 6.00713 4.27796
5 0.81520 0.53939 0.23748
7 0.12792 0.12802 0.03944
9 0.03016 0.03574 0.00997
11 0.00969 0.01549 0.00404
13 0.00399 0.00688 0.00175
15 0.00173 0.00354 0.00092
17 0.00086 0.00217 0.00050
19 0.00045 0.00123 0.00030
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1, which is without dissipation both in the ice and in the soft layer,
and 5� 10–4 for all other cases. The time step depends on accurate res-
olution of the impact loads and the relative compression dðx; tÞ. If the
time step is too large, then the computed compression dðx; tÞ could be
greater than 1 at a subsequent time step, which is not allowed in the
present model. The strains are calculated by the formula

eðx; tÞ ¼ esc
XNmod

n¼3
anðtÞw00nðxÞ; esc ¼

hehi
2L2

; (25)

where esc ¼ 120 microstrains (lstrain) for the present impact condi-
tions, 1l strain ¼ 10�6. Note that the scale of the elastic strains and
calculated strains, see below, can be greater than the yield strain eY of
the ice. Formally, for the present impact conditions, the ice plate is pre-
dicted to be broken at the very early stage of the impact with a crack
formed at the lower surface of the plate. The growth of the crack and
its effect on the strains in the plate are not covered in the present
study, see Korobkin and Khabakhpasheva (2018) for a model of a
crack development by impact onto a floating plate.

The relative compressions of the soft layer, dð0; tÞ, at the impact
point, x¼ 0, for the cases from Table I are shown in Fig. 3(a) as func-
tions of the dimensional time. Note that he¼ 1 cm in the present cal-
culations. Therefore, the vertical axis in Fig. 3(a) can be considered as
the depth of penetration of the impacting body into the soft layer mea-
sured in centimeters. Negative values of dð0; tÞ mean that the rigid
body is above the soft layer at the distance �dhe from its upper
surface.

Velocity of the rigid body is 1m/s. Time t¼ 0.1 s corresponds to
the body displacement 10 cm. Without account for viscous effects in
both the ice plate and the soft layer, see Fig. 3(a) case 1, the ice plate
bounces from the moving body surface three times. The ice plate
bounces twice because of elasticity of the soft layer, and the third time
at t 
 0:15 s because of elastic vibration of the plate. It is possible that
the body touches the soft layer again after t¼ 0.25 s, but then the ice
plate displacement will be greater than 0:1L, and the linearization of
the hydrodynamic problem is not justified. Lines 2, 3, and 4 in Fig.
3(a) demonstrate the importance of dissipation in both the soft layer
and ice plate for the interaction of the ice plate with the moving body.
The lines 2 and 4 are close to each other, which indicates that the dissi-
pation in the soft layer is more important for the impact loads than
viscous properties of the ice. The impact energy is well dissipated in
cases 2–4, but finally, the ice plate still separates from the body surface
due to the elastic vibration of the plate. For the reduced rigidity coeffi-
cient, K¼ 0.02MPa in case 5, the soft layer is compressed almost

completely with d being close to 1, but finally, the ice plate still sepa-
rates from the body surface. However, the separation occurs later than
for other cases.

To study the effect of the retardation times on the dimen-
sional impact loads, they are decomposed as, see dimensionless
equation (24),

Pi ¼ Peðx; tÞ þ Psðx; tÞ; Peðx; tÞ ¼ KGðdÞ; Psðx; tÞ ¼ se
@Peðx; tÞ
@t

:

For the cases 1 and 3, where se ¼ 0, we have Piðx; tÞ ¼ Peðx; tÞ.
Evolutions of the elastic part of the impact loads, Peð0; tÞ, at the
impact point for all five cases are shown in Fig. 3(b). It is seen that this
component strongly depends on the retardation time of the soft layer.
The curves 2, 4, and 5, which correspond to se ¼ 0:1 s but different
for si and K, are close to each other and very different from the curves
1 and 3, which are for se ¼ 0.

Distributions of the impact loads, Piðx; tÞ, along the part of the
ice plate, which is in contact with impacting body, are shown in Fig. 4
for cases 1 and 3. The soft layer is pure elastic without account for vis-
cous effects in these cases.

In case 1, see Fig. 4(a), the rigid parabolic body is in contact with
the soft layer three times during the initial 0.15 s. The length of the
contact region does not exceed 70 cm for the 5m long plate and the
radius of the body curvature 5m. Figure 3(a) shows that dð0; tÞ < 0:6
for case 1, which provides the maximum contact interval jxj < 24 cm
without account for the plate bending. The actual contact interval is
longer than this prediction, which is related to the deflection of the ice
plate caused by the impact.

The viscoelastic plate, see Fig. 4(b) for case 3, does not separate
from the impacting body during the initial 0.15 s, but the loads are
smaller than in case 1, except the very initial stage, see also Fig. 3(b).
The contact interval is within jxj < 24 cm, which indicates that the
deflections of the plate in case 3 are much smaller than in case 1. One
may conclude that viscous properties of the ice plate reduce the plate
deflections making the plate behave as a more rigid one.

Viscous properties of the soft layer affect the impact loads. The
evolutions of the impact pressure, Pið0; tÞ by blue lines, together with
its elastic, Peð0; tÞ by black lines, and viscous, Psð0; tÞ by red lines,
components at the point of initial impact x¼ 0 are shown in Fig. 5 for
cases 2, 4, and 5 with se ¼ 0:1 s and different si and K. Note that
Peð0; 0Þ ¼ 0 in all cases but Psð0; 0Þ ¼ seKV=he, which gives
Pið0; 0Þ ¼ 10MPa in cases 2 and 4, and Pið0; 0Þ ¼ 0:2MPa in case 5,
see Fig. 5.

FIG. 3. The relative compression of the soft layer (a), and dimensional pressure (b) at x¼ 0 as functions of the dimensional time t for the cases 1–5. Line numbers correspond
to the case numbers from Table I. The soft layer is compressed there, where 0 < dð0; tÞ < 1.
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The elastic component, Peð0; tÞ, is smooth and positive in all
cases, but the viscous component, Psð0; tÞ, is negative at the end of the
impact, see Figs. 5(a)–5(d), and oscillating at the beginning of impact
if si ¼ 0, see Fig. 5(a). This leads to tensile impact loads at the end of
impact stage and high loads at the beginning of impact within a model
of viscoelastic soft layer. To confirm the accuracy of calculated impact
loads in case 2, they were computed with different number of retained
modes, see Fig. 5(b).

Distributions of the impact loads, Piðx; tÞ, and their elastic
components, Peðx; tÞ, in time and along the ice plate are shown in
Fig. 6 for cases 2, 4, and 5 with se ¼ 0:1 s. Figure 6 confirms the
conclusions drawn on the basis of Fig. 5 that the viscous proper-
ties of the soft layer increase the loads at the beginning of the

impact stage and make the loads negative at the end of the impact
stage.

Deflections of the ice plate are also affected by the viscous proper-
ties of both the ice and the soft layer, see Fig. 7. The symmetric deflec-
tions of the ice plate for the same impact conditions are compared for
case 1 (left) without any viscosity in the system and case 4 (right) with
se ¼ 0:1 s and si ¼ 0:01 s. The ice plate is relatively short in these cal-
culations. Only the heave rigid mode, w1ðxÞ, and the lowest even elas-
tic mode, w3ðxÞ, are pronounced in the shapes of the plate shown in
Fig. 7. The second even elastic mode, w5ðxÞ, can be recognized only
for case 1 at t¼ 0.015 s. Vibrations of the plate are well pronounced.
The plate becomes almost flat by the end of the impact stage in both
cases.

FIG. 5. Impact pressure Pið0; tÞ (blue lines) and its components Peð0; tÞ (black lines) and Psð0; tÞ (red lines) for cases 2 (a), 4 (c), and 5 (d). (b) Pið0; tÞ for case 2 calculated
with 20, 30, and 40 modes at the very beginning of the impact.

FIG. 4. Distributions of impact loads Piðx; tÞ for cases 1 (a) and 3 (b).
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Maximum strain magnitudes along the plate, maxjeðx; tÞj, where
jxj < L, as functions of dimensional time are shown in Fig. 8 for cases
1–5 together with the positions along the plate, where the maximum
strains are achieved. It is seen that the absolute maximum strains are
achieved at the center of the plate at early stage, when the displace-
ment of the rigid body is less than 10 cm. If maxjeðx; tÞj is not
achieved at the plate center, see Figs. 8(c) and 8(d), then the values of
the strains are much smaller than the absolute maximum strains with
the first elastic modes are not providing the major contribution. The
strains are higher with stronger vibrations for si ¼ 0. Figure 8(b)
shows that the strains are weakly dependent on the characteristics of
the soft layer.

The strains eðx; tÞ along the upper surface of the ice plate during
the impact stage are shown in Fig. 9 for cases 1–5. The upper surface
of the plate is in compression initially but then in tension because of
the plate elastic vibration at the end of the impact stage. The strains
are calculated even after the impact stage.

The coefficients of the rigid heave mode, a1ðtÞ, and two lowest
elastic symmetric modes, a3ðtÞ and a5ðtÞ, see equation (13), are shown
as functions of time in Fig. 10(a) for cases 1, 2, and 4. The coefficients
of higher elastic modes oscillate at higher frequencies with their mag-
nitudes delaying quickly with the mode number, see Table II for mag-
nitudes of elastic modes during the impact stage.

Strains eðx; tÞ at three points of the upper ice plate surface calcu-
lated for case 4 with 20 and 12 modes are shown in Fig. 10(b). This fig-
ure confirms good accuracy of the present calculations by the normal
mode method.

One may conclude that the viscoelastic models of ice and the soft
layer provide reliable strain distributions with 20 normal modes: 2
rigid, 9 even, and 9 odd elastic modes, for impact conditions of this
subsection.

In the following subsections, strains in the ice plate are investi-
gated for case 4 (si ¼ 0:01 s, se ¼ 0:1 s, and K¼ 1MPa) and different
impact speeds, plate length, and thickness.

FIG. 6. Elastic component Peðx; tÞ (left) and the total impact load Piðx; tÞ (right) in cases 2, 4, and 5.
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FIG. 7. Positions of the body surface and deflections of the ice plate in case 1 (left) and case 4 (right) for time instants t ¼ 0; 0:015; 0:03; 0:045; and 0:06 s (a), and
t ¼ 0; 0:05; 0:1; 0:15; and 0:2 s (b).

FIG. 8. Maximum strain magnitudes along the plate, maxjeðx; tÞj, where jxj < L, for cases 1, 2, and 4 (a) and 3, 4, and 5 (b) together with the positions where the maximum
strains are achieved, (c) and (d) correspondingly.
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B. Maximum strains in ice plate

In this section, we investigate maximum strain magnitudes,

emaxðtÞ ¼ max
0�x�L

jeðx; tÞj;

as functions of time in the viscoelastic ice plate depending of plate
thickness hi, plate length L, and impact velocity V. Calculations of the

strains eðx; tÞ are performed by formula (25) with 20 modes. It will be
shown that the scaled maximum strain

êmax ð̂tÞ ¼
hiVp

LV
emax; Vp ¼

ffiffiffiffi
E
qi

s

FIG. 9. The strains eðx; tÞ along the upper surface of the ice plate during the impact stage in cases 1–5.

FIG. 10. (a) Coefficients anðtÞ of the modes with n ¼ 1; 3; and 5 as functions of time in cases 1 (blue lines), 2 (black lines), and 4 (red lines). (b) Evolutions of the strains
eðx; tÞ at three points, x ¼ 0; 0:5, and 1 m, of the upper ice plate surface in case 4 calculated with 20 modes (colored lines) and 12 modes (black lines).
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as a function of the scaled time t̂ ¼ t=T1 is weakly dependent on
the impact conditions. The periods of the first natural wet mode T1
for different thickness and length of the floating ice plate are shown
in Table III.

The strains emaxðtÞ and êmaxð̂tÞ are depicted for the impact speed
of 1m/s and different plate thickness, Fig. 11, and plate length, Fig. 12.
The figures show that the scaled strains weakly depend on the parame-
ters of the ice plate. These strains for different impact speeds and a
plate length of 5m and a thickness 15 cm are shown in Fig. 13. Finally,
three mixed cases are shown in Fig. 14, justifying that the introduced

scaled strains as functions of the scaled time correctly describe the
dependence of the strains in the ice plate on the parameters of impact.
Note that êmaxð̂tÞ is smaller than 0.7, which gives the following esti-
mate of the strains in ls:

jeðx; tÞj < 0:7� 106
LV
hiVp

:

The yield strain is equal to 80ls for ice. Therefore, a floating ice
plate would not be cracked by impact if the impact conditions satisfy
the inequality LV=hi < 114Vp � 106. For the Young’s modulus of the
ice E ¼ 4:2� 109 Pa and the density of ice qi ¼ 917 kg/m3, we have
V p¼ 2140m/s, and the condition of no damage to the ice plate
becomes V < ðhi=LÞ � 0:24m=s. In the theory of thin plate, the ratio
hi=L should be smaller than 1/10 at least. Therefore, a thin ice plate
is not broken by an impact only if the impact speed is smaller than
2 cm/s. For the upper limit, 1000ls, of the yield strain for ice, see
Schulson (1999), the limiting impact speed increases up to 0.3m/s. We
conclude that long ice plates are unlikely to survive vertical impacts at
constant speeds. The long ice plates break into initially two and then
possibly even more shorter plates, each of them can be modeled as vis-
coelastic thin but shorter plate. These shorter plates are more likely to
survive during the continuing interaction with the impacting body. If
some of these shorter plates are very short, then they can be treated as
rigid plates, see Khabakhpasheva et al. (2018b). Criteria of the ice plate
cracking are not certain and depend on particular ice type and the
applied load. Once a crack is initiated, it decreases the loads in the ice
plate and can grow if the stresses in the plate are still large. The present
results, see Fig. 9, suggest that the first crack starts from the lower sur-
face of the plate and propagates toward the upper surface of the plate,

TABLE III. Natural periods of the first wet mode T1 for different plate thickness and
plate length.

hi (m) L (m) T1 (s)

0.10 2.5 0.25
0.15 2.5 0.143
0.20 2.5 0.098
0.25 2.5 0.073
0.30 2.5 0.058
0.15 1.5 0.0455
0.15 2 0.085
0.15 2.5 0.143
0.15 3 0.22
0.15 3.5 0.318
0.25 3 0.1115
0.10 2 0.147

FIG. 11. Maximum strains emaxðtÞ (a) and êmaxðtÞ (b) for hi ¼ 0:1, 0.15, 0.2, 0.25, and 0.3 m, L¼ 2.5 m, and V¼ 1 m/s. Colors of lines are the same in (a) and (b).

FIG. 12. Maximum strains emaxðtÞ (a) and êmaxðtÞ (b) for L¼ 1.5, 2, 2.5, 3, and 3.5 m, hi ¼ 0:15 m, and V¼ 1m/s. Colors of lines are the same in (a) and (b).
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breaking finally the plate into two ones if the load is strong enough,
see Korobkin and Khabakhpasheva (2018) for a model of crack propa-
gation through the thickness of a floating plate.

C. Rigid body impact onto long ice plates

Figure 7 with deflections of an ice plate caused by a rigid body
impact demonstrates that only lowest elastic modes are important for
relatively short plates. Both plate deflections and bending stresses in
the plate behave differently for longer plates. We may expect that the
plate deflections near the impact place are weakly dependent on the
plate length. However, at a distance from the impacting body, the plate
length plays the major role.

We are concerned with long and thin plates in this section.
Calculations are performed for ice thickness hi¼ 10 cm, thickness of
the soft layer he¼ 1 cm, rigidity coefficient of the soft layer K¼ 1MPa,
radius of the curvature of the rigid body surface R¼ 5m, retardation
time of ice si ¼ 0:01 s, and retardation time of the soft layer
se ¼ 0:1 s. The impact speed is 1m/s in all calculations of this section.
The number of the retained normal modes, Nmod¼ 49, was found to
be suitable for accurate describing interaction between water, floating
ice plate, and the impacting body for ice plates with a length up to
40m. The longer the plate, the more modes should be retained.

Deflections of ice plates with lengths L¼ 20, 30, and 40m and an
impact at the plate centers are shown in Fig. 15(a) at time instants
t ¼ 0:5; 1; 1:5, and 2 s. Near the body, the deflections are close to each
other, but far from the body, the deflections are very different. Figure
15(b) shows deflections for plates with lengths 10 and 20m, where
jxj < 12:5m. Edge effect is strong for the short plate even near the

body. Strains on the lower surface of the plate are shown in Fig. 15(c)
at t¼ 1 and 2 s for L¼ 20 and 40m. In contrast to the deflections, the
strains are sensitive to the plate length even near the body surface. The
maximum strain is achieved at the impact point x¼ 0, where the
shape of the plate approaches the shape of the rigid body. The strain at
a point on the surface of the ice plate is equal to half-thickness of the
plate 1

2 hi multiplied by the plate curvature at this point. The plate cur-
vature at the impact point approaches the curvature of the body, which
provides the estimate of the strain 10 000 lstrain. Compare this esti-
mate with the calculated strain at the plate center at t¼ 2 s.

The strains eð0; tÞ at the plate center as functions of dimensional
time for plates of lengths 10, 20, 30, and 40m are shown in Fig. 16. All
lines approach 10 000lstrain, which corresponds to the radius of cur-
vature of the impacting body. The shorter the plate, the higher the
strain vibrations.

Figures 17–19 show deflections of the plate and strains along the
lower surface of the plate with a L¼ 20m impacted at different places.
Other parameters of impact are given at the beginning of this subsec-
tion. Figures 17–19(a) and 19(b) are for the early stage of impacts, and
Figs. 17–19(c) and 19(d) are for the later stage. It is seen that this long
ice plate does not bounce from the body surface with time as for a
shorter plate in Fig. 7. The higher elastic modes provide important
contributions to both deflections and strains during the early stage, see
Figs. 17–19(a) and 19(b), but they are less important at the later stage,
when high-frequency vibrations of the plate decay because of viscous
properties of the ice. Figures 17(d) and 18(d) show that the strains
achieve their maximum value 10 000lstrain at the impact point. The
strains are smaller for the impact close to the plate edge, see Fig. 19(d).
It is interesting to note that both the deflections and strains are

FIG. 13. Maximum strains emaxðtÞ (a) and êmaxðtÞ (b) for V¼ 0.25, 0.5, 1, and 2 m/s, hi ¼ 0:15 m, and L¼ 2.5 m. Colors of lines are the same in (a) and (b).

FIG. 14. Maximum strains emaxðtÞ (a) and êmaxðtÞ (b) for three cases specified in (b). Colors of lines are the same in (a) and (b).
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relatively small in the main part of the plate for impact close to the
plate edge, see Fig. 19. However, the deflections at another edge of the
plate are of the order of the body displacement during the early stage,
see Fig. 19(a). This effect can be explained by the flexural waves, see
Morse (1948), generated by the impact and propagating along the
plate toward another edge of the plate. Reflection of dispersive flexural
wave from the plate free-free edge increases the deflection of the edge.

Morse (1948) studied flexural waves in an Euler beam of infinite
length caused by an initial deflection of the beam. To support our find-
ing about large deflection of the opposite edge of the plate, we calcu-
lated unsteady response of the plate as in Figs. 17–19 but placed on a
soft elastic foundation. A point load of the constant magnitude was
applied instantly at the right edge of the plate. It was shown that the
maximum deflection of the left edge of the plate occurs shortly after
the impact and is just 10% smaller than the plate deflection at the edge
of the impact. In contrast, the maximum deflection of the center of the
pate is twice smaller than the deflection at the impact edge. Similar
results are reported on hydroelastic response of a ship segmented
model subject to bow-flare slamming measured in model experiments,
see Jiao and Ren (2016). The measured accelerations of the model bow
due to slamming loads were of order of 4m/s2, and the measured
accelerations of the model stern caused by whipping were of order of
2m/s2, see Fig. 10 in Jiao and Ren (2016). The free-free ends of the
ship segmented model vibrated at higher amplitude than the inner
part of the model. Figure 19(a) shows the plate deflections shortly after
the impact on the right edge of the plate. If there is no damping in the
floating plate, then the flexural waves generated by the impact on the
right edge propagate toward the left edge with its amplitude decaying

FIG. 15. (a) Positions of the body (blue lines), and deflections of the plates with lengths of 20m (red lines), 30m (deep blue lines), and 40m (green lines) at time instants
t ¼ 0, 0.5, 1, 1.5, and 2 s. (b) Closed view of the plate deflection near the body surface for plate lengths of 20 m (red line) and 10 m (black line). (c) Strains on the lower sur-
face of the plate lengths of 20 m (red lines) and 40 m (green lines) at t ¼ 1 and 2 s.

FIG. 16. Strains at x¼ 0 as functions of time for L¼ 10, 20, 30, and 40 m.
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only due to dispersion of the waves. It is interesting that a sinusoidal
wave propagating along a dry semi-infinite free-free beam from infin-
ity toward the edge of the beam causes deflection of the edge, which is
2
3
2 times greater than the amplitude of the incident wave. Viscous
properties of the plate force the disturbances due to the impact decay
with a distance from the place of the impact. However, the results
shown in Figs. 17–19 are obtained for small retardation time,
si ¼ 0:01 s. For larger retardation times of the floating plate, the plate
deflections are expected to be more visibly localized near the impact
place.

Strains at different points of the initial impact are shown in Fig.
20. The strains are close to each other for jx0j � 0:5L. For impacts far
from the edges, the shape of the plate approaches the body shape near

the impact place, see Figs. 15, 17, and 18. If the impact occurs close to
the plate edge, the strains become smaller initially but then grow in
time.

V. CONCLUSION

Two-dimensional impact of a rigid body onto a floating ice floe
has been studied with a focus on relatively long plates and blunt con-
vex bodies. The hydrodynamic loads, ice deflection, bending stresses
in the ice plate, and the impact loads are determined simultaneously
during the initial stage of impact, when the ice and body displacements
are small, but the bending stresses in the ice are maximum. A thin vis-
coelastic layer was placed on the top of the floating plate to model the
properties of the ice surface including a layer of snow or crushed ice

FIG. 17. Impact at x¼ 5 m. Deflections (a) and strains (b) at t¼ 0.05, 0.1, 0.15, and 0.2 s (c). Deflections (c) and strains (d) at t ¼ 0:5; 1; 1:5, and 2 s. Deflections are shown
by red lines, the body positions by blue lines, and the strains are by green lines.
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crystals. The flow of the liquid caused by the ice plate deflection is
described by the linearized potential flow theory during this early
stage. The ice plate deflection is calculated by the normal mode
method.

It was shown that the soft layer does not significantly affect the
stresses in the ice plate and plate deflection but, on the other hand,
make calculations of the impact loads regularly. Viscous properties of
the soft layer allow to describe the interaction of the rigid body with
floating ice in a more realistic way without multiple bouncing of the
ice from the impacting body. Nevertheless, the ice plate finally sepa-
rates from the body surface after a short impact stage due to elastic
oscillation of the plate. This is a non-obvious effect. The model of
inelastic collision on a floating body, see Joukowski (1884), which was

used by Khabakhpasheva et al. (2018b) for short ice floes with negligi-
ble elastic motions, suggests that the separation of two impacting bod-
ies is governed by the rate of impact energy dissipation in a soft layer
between the bodies. The present results showed that impacting bodies
may separate if at least one of the bodies is elastic and vibrates because
of the impact.

Viscous properties of the soft layer increase significantly the ini-
tial impact loads and make them negative near the end of the impact
stage. As a result of large and concentrated impact loads, the plate
vibrates initially at a high frequency. However, shortly after this early
stage, these vibrations vanish because of viscosities of both the soft
layer and the ice plate. It is not intuitively clear that a viscoelastic
cover, which could be designed to mitigate impact loads, increases the

FIG. 18. Impact at x¼ 10m. Deflections (a) and strains (b) at t¼ 0.05, 0.1, 0.15, and 0.2 s (c). Deflections (c) and strains (d) at t ¼ 0:5; 1; 1:5, and 2 s.
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loads because of viscous properties of the cover. Viscous characteristics
of the cover play different roles for slow and impulsive loading.
Roughly speaking, a viscoelastic cover is “more rigid” for impulsive
loads than just a corresponding elastic cover. Another surprising effect
of viscous properties of the cover was observed at the end of the
impact stage before the elastic plate separates from the impacting rigid
body. The viscous effects lead to tensile stresses in the cover, which do
not occur for elastic cover, see Fig. 5. During the main part of the
impact stage, the deflections of the ice plate and the strains in it are
well described with few lowest modes of the dry plate vibration.

The maximum strains along the plate were analyzed as functions
of time for central impacts. It was shown that the maximum strains
are proportional to the impact speed and length of the plate, and

inverse proportional to the plate thickness. The evolution of the corre-
spondingly scaled strains is well described using the dimensionless
time, where the timescale is the period of first wet mode of the plate.
The absolute maximum of the scaled strains was found to be 0.7 for
the considered range of impact conditions. Note that the strains in the
viscoelastic plate peak during the impact stage before the plate sepa-
rates from the impacting body, see Fig. 9. Free vibration of the plate
after the separation releases the strains.

Impact at any point of the floating plate was studied for relatively
long and thin plates. Such plates are flexible. Large number of modes
is required to describe the strains in such plates accurately during the
early stage. The maximum strain in the plate was shown to be achieved
at the impact point, if the impact occurs far enough from the plate

FIG. 19. Impact at x¼ 18 m. Deflections (a) and strains (b) at t¼ 0.05, 0.1, 0.15, and 0.2 s (c). Deflections (c) and strains (d) at t ¼ 0:5; 1; 1:5, and 2 s.
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edges, and to be weakly dependent on viscoelastic properties of the
soft layer. The maximum strain corresponds to the plate deflection,
where the plate shape approaches the shape of the impacting body.
The strains are smaller than the yield strain for the ice, only for either
very low speeds of impact or small curvature of the rigid body surface.
If the impact occurs close to the plate edge, then the edge penetrates
deep into water, and the presence of water on the upper surface of the
plate, as well as the direct interaction of the water with the body sur-
face, should be included in the model.

The present model makes it possible to investigate the ice
response to impact on its surface in a wide range of impact conditions.
The model can be used also for analysis of impacts onto artificial float-
ing thin structures. The theoretical predictions of the present model
were compared with the CFD results in Korobkin et al. (2020). The
Navier-Stokes equations are solved numerically with a finite-volume
method from the OpenFOAM opensource CFD software. The hydro-
dynamic pressure is calculated with the CFD solver that uses a deform-
ing mesh method to account for the deflection of the ice plate. The
CFD solution is discrete in space and time, whereas the structural
modal model is discrete in time, but uses a basis of continuous mode
shapes. Due to the finite representation of the spatial discretization,
the CFD solution effectively limits the number of structural modes
that can be used. The CFD results are presented in Fig. 10 for the
deflection of the viscoelastic plate impacted at the center by a rigid
body, and for the pressure distribution in the liquid under the plate.
The CFD results showed that the pressure along the ice/water interface
can be higher and lower than the atmospheric pressure. However, the
total pressure is still higher than the vapor pressure for water, which is
about 0.6 kPa at 0 �C temperature.

The predictions by the present linearized hydrodynamic model
were compared with the CFD results by Khabakhpasheva et al.
(2018b), see Fig. 5 in this paper, for short floating plates and free fall-
ing body. It was shown that theoretical and numerical predictions of
the body and plate displacements, velocities, and accelerations during
the impact are very close to each other. This indicated that the linear-
ized hydrodynamic model can be used for predictions of motions dur-
ing the short impact stage.

The model will be developed further by including preexisting and
new cracks on the plate surface, with a growth of the cracks in time up
to complete breaking of the plate into two parts. The obtained results
showed that the impact onto a floating ice floe at a constant speed
always generates strains in the ice floe, which are higher than the yield
strain value. We may conclude that the highest deceleration of a free

fall lifeboat occurs during the initial short impact stage, when the ice
floe is still continuous. Zakki et al. (2016) wrote about lifeboat launch-
ing on open water “The international regulations require that a lifeboat
for free fall launching should be able to give protection against impact
accelerations when it is launched with its full occupants and equip-
ment from at least the maximum designed height. Since the height of
offshore structure to the water surface is significantly high, during the
water entry phase the acceleration response of the free fall lifeboat
might cause an injury to the occupants. The special hull form design
should be applied to reduce the acceleration.” How to use conven-
tional lifeboat in icy waters is still an open question. Some recommen-
dations were given by Maki et al. (2017), Khabakhpasheva et al.
(2018b), and Chen et al. (2019) by both CFD and theoretical analysis,
who showed that free fall launching without direct contact of the life-
boat with ice floes is safe; the increase in the lifeboat deceleration
caused by floating ice floes is less than 5% if the gap between the life-
boat and the nearest ice flow is greater than 1/5 of the lifeboat beam,
see Fig. 2 in Khabakhpasheva et al. (2018a). The corresponding esti-
mates of the maximum lifeboat deceleration in the case of the boat
impact with an ice floe have not been obtained so far. We expect that
helpful recommendations about the design of lifeboats for icy waters
can be derived using the present model in terms of the thickness of ice
floe and its dimension for safe launching of the boat. To arrive at such
recommendations, the present model should be extended to include
free fall of the body, as it was done in Khabakhpasheva (2018b), and
crack propagation, as in Korobkin and Khabakhpasheva (2018). The
viscoelastic model of ice should be more practical including the techni-
ques to determine the ice characteristics in field conditions, see
Marchenko et al. (2021) for such models and techniques.

The presented model can be developed further to include crash-
ing of ice in the impact place in a one-dimensional way introducing a
front of crushing and its dynamics depending on the impact loads.
Available ice impact models including ice crushing were reviewed by
Kim (2014). We expect that ice crushing by the impact of a rigid body
with a small curvature of its surface will be less pronounced than for
small indentors, and crushing can be reasonably well described using
1D approximation.
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