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Abstract

This paper uses constructs from machine learning to define pairs of learning tasks that either

shared or did not share a common subspace. Human subjects then learnt these tasks using

a feedback-based approach and we hypothesised that learning would be boosted for shared

subspaces. Our findings broadly supported this hypothesis with either better performance on

the second task if it shared the same subspace as the first, or positive correlations over task

performance for shared subspaces. These empirical findings were compared to the behav-

iour of a Neural Network model trained using sequential Bayesian learning and human per-

formance was found to be consistent with a minimal capacity variant of this model. Networks

with an increased representational capacity, and networks without Bayesian learning, did not

show these transfer effects. We propose that the concept of shared subspaces provides a

useful framework for the experimental study of human multitask and transfer learning.

Author summary

How does knowledge gained from previous experience affect learning of new tasks? This

question of “Transfer Learning” has been addressed by teachers, psychologists, and more

recently by researchers in the fields of neural networks and machine learning. Leveraging

constructs from machine learning, we designed pairs of learning tasks that either shared

or did not share a common subspace. We compared the dynamics of transfer learning in

humans with those of a multitask neural network model, finding that human performance

was consistent with a minimal capacity variant of the model. Learning was boosted in

the second task if the same subspace was shared between tasks. Additionally, accuracy

between tasks was positively correlated but only when they shared the same subspace. Our

results highlight the roles of subspaces, showing how they could act as a learning boost if

shared, and be detrimental if not.

Introduction

Recent advances in machine learning have delivered human-like levels of performance across

a variety of domains from speech and image recognition [1] to language understanding [2]

and game-playing [3]. These advances have been achieved, in the main, using neural network

models with very large numbers (e.g. millions) of parameters that are estimated using very

large numbers (e.g. millions) of data points. The requirement for such a huge amount of
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training data places limits on the tasks that can be learnt and is at odds with much of the psy-

chology literature on human learning which suggests that concepts can be learnt using very

few examples. One way of achieving such “data-efficient” learning is to leverage information

learnt on one task to more efficiently learn another. Subfields of machine learning that have

been using this approach include Multitask Learning (learning multiple tasks simultaneously)

[4, 5], Transfer Learning (learning tasks sequentially) [6, 7] and Continual Learning [8, 9]

(learning an indefinite number of tasks sequentially). This paper uses constructs from the

machine learning literature to better understand how humans learn across multiple tasks.

Our starting point is the original Multitask Learning architecture proposed by Caruana

et al. [4] in which generalisation across tasks is achieved using shared parameters. This archi-

tecture comprises a feature module, which can be shared across tasks, and an output module

which is task-specific. In the original “hard-parameter sharing” architecture [5] the parameters

defining the feature model are identical across tasks. Mathematically, this feature model

defines a subspace that is shared across tasks. The idea that shared subspaces are useful for

learning over multiple tasks has previously been highlighted, for example, under the term

“structure learning” [10].

This paper uses an experimental design in which participants learn a pair of tasks that either

do or do not share a common subspace. We investigate how learning proceeds with the

hypothesis that learning will be facilitated for tasks that share a common subspace. Facilitation

of learning could be manifested as faster and/or more accurate learning. We restrict ourselves

to linear subspaces so that the shared features are a reduced-dimension linear projection of the

input space, leaving nonlinear subspaces to subsequent experiments.

In additional modelling work we make use of a second construct from the Multitask Learn-

ing literature—that of “soft-parameter sharing” [5]. Here, a second task does not share exactly

the same feature model, but parameters determining the features are constrained to be similar.

We use a Sequential Bayesian learning algorithm for neural network training, also known as

Elastic Weight Consolidation (EWC) [11], in which the prior over feature parameters for a sec-

ond task is given by the posterior over feature parameters from the first. This is implemented

by having two parameters for each network connection, a “mean” and a “precision”, which

together specify a Gaussian probability distribution. Bayesian estimation results in high preci-

sions for those connections that have strongly adapted to data, and lower precisions for those

that have not. Having a high precision makes connections more resilient to being overwritten

on subsequent tasks. This is the mechanism for preventing so-called “catastrophic interfer-

ence” (see [11] and [12] for discussion of potential neurobiological substrates). In this paper

we use Sequential Bayesian learning over tasks and over mini-batches of data within a single

task. This produces learning dynamics both within and between tasks, and the model predicts

facilitation of learning (or “positive transfer” [13]) in tasks that share a common subspace. We

compare these simulation results to empirical findings.

Overall, the paper presents a novel experimental task, empirical results on behavioural data,

theoretical results from computer simulation, highlights similarities between them, and dis-

cusses ideas for future work in this area. We propose that the concept of shared subspaces pro-

vides a useful framework for the experimental study of human multitask and transfer learning.

Materials and methods

Ethics statement

All participants gave informed written consent, and the study procedure was approved by the

local institutional review board of the University of East Anglia, UK. At the end of the experi-

ment, participants received course credits for their participation.
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Notations

Our model-based analysis (see below) is described mathematically using the notation defined

here. We use N(x; m, Λ) to denote a multivariate Gaussian density over x with mean m and

precision matrix Λ. The transpose of vector x is written xT. 1RK denotes an R-by-K matrix of

ones, Ak• is the kth column of A and A•k is the kth row of A. The delta function Δab takes the

value 1 if a = b and zero otherwise, vec(A) vectorises the matrix A into a column vector and

the sigmoid function is given by

sðxÞ ¼
1

1þ exp ð� xÞ
ð1Þ

Participants

A total of ninety-six volunteers from the University of East Anglia (mean age = 19.90,

SD = 1.36, 17 male) participated in the experiment. Data from seven participants became

unavailable due to computer network synchronization errors. A further nine participants were

discarded because they performed below chance level in both tasks. We performed our analysis

on the remaining sample of 80 participants (mean age = 19.80, SD = 1.34, 13 male). All of

them were naive to the purpose of the experiment.

Apparatus and stimuli

The experiment was performed in a dimly lit room with participants seated 60 cm away from a

computer display with their head supported by a chin-rest. Stimuli were presented on a

23-inch HP Elite Display 240c monitor using the Psychophysics Toolbox [14] for Matlab

(Mathworks) running on Windows 7.

Two virtual “pies” (1˚ × 1˚ visual angle) were displayed at 1˚ from the central fixation point.

Each pie was divided into six slices with from one up to five slices that could be filled with red

colour, making a total of twenty-five combinations. The slices of the two pies were filled in a

mirrored way as shown in Fig 1. The stimuli were presented on a dark grey background.

Procedure

As we can see in Fig 1 each trial started with a black fixation cross presented at the center of

the screen for an interval of 1000 ms. Afterwards, the stimuli appeared and stayed on screen

Fig 1. (A) Experimental Stimuli. (B) Trial Structure. (A) Each pie on the left/right side was combined with each pie

on the right/left side, creating 25 potential configurations. (B) Each trial started with a fixation cross. Afterwards, two

pies appeared and participants had up to 2.5 sec to respond. Confirmation of the choice was then given and feedback

was provided.

https://doi.org/10.1371/journal.pcbi.1009092.g001
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for 2500 ms maximum or until a response was made. Responses were made on a standard key-

board, the “g” indicated sun/heads prediction in Task 1/2 and “j” indicated rain/tails in Task

1/2. Responses not given within the required time constitute “missed trials”. Right after the

button press, confirmation of the choice was given for 500 ms. Finally, feedback was provided,

saying “correct” if the prediction was correct, “incorrect” if it was not and “too slow” for a

missed trial.

The experiment took about one hour to complete and was composed of two tasks, compris-

ing 250 trials each (10 repetitions per configuration) divided into 5 blocks, each of 50 trials.

For the first task subjects had to make sun/rain decisions, as in the classic Weather Prediction

Task [15], and for the second task they made heads/tails decisions (“Coin Prediction Task”).

The mappings from stimulus to reward (correct/incorrect) were specified as described in the

following section.

At the end of each task, we probed participants knowledge. We first asked them to describe

the way they approached the task. We then gave them a list of six strategies (where only one

was correct) and asked them to tick the one that resembled the most the one they used. Finally,

we presented them with a timeline of the task asking to mark the point in time in which they

started using that strategy.

Stimulus-reward maps

Four different Stimulus-Reward Maps, or “Reward Functions”, were used over the course of

the experiment (but only two per subject), as shown in Fig 2. The underlying subspaces were

operationalized by defining a common feature that, when represented, reduced the task to an

approximate rule. In one case this was addition, in the other subtraction. Mathematically, the

reward functions were generated using log-quadratic (Sub1, Add1) or log-linear (Sub2, Add2)

mappings as follows. For the log-quadratic maps (Sub1, Add1), the probabilistic structure was

Fig 2. Stimulus-reward maps. Each gray scale image plots the reward probability (given button press “g” i.e. choosing

Sun for Task 1 and Heads for Task 2) as a function of stimulus, u. The variables u1 and u2 denote the number of slices

in the left and right pie stimuli, respectively. Each task can be implemented using two-stages of processing. For

example, for the Sub1 and Sub2 maps the first stage requires extraction of a feature, x = u1 − u2. For Add1 and Add2

the required feature is x = u1 + u2. Tasks which use the same stimulus to feature space function (ie. subtraction or

addition) are said to share the same subspace.

https://doi.org/10.1371/journal.pcbi.1009092.g002
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specified by making the log-odds of the outcome a quadratic function of stimulus characteris-

tics. Flipping the sign of a single parameter in this mapping changes the Sub1 map to the Add1

map. That is

log
pðyt ¼ 1Þ

pðyt ¼ 0Þ

� �

¼ ðut � mÞ
TWðut � mÞ þ w0

W ¼ 2:4�
� 0:71 wd

wd � 0:71

" #

m ¼ ½3; 3�
T

w0 ¼ 4

ð2Þ

where wd = −0.71 produces the Sub1 map and wd = 0.71 produces the Add1 map. If, for each

cue, subjects choose the option with the highest probability, then the correct classification rate

would be 95 per cent. This is the maximum possible for the Sub1 and Add1 tasks.

We also defined tasks using a log-linear model which can produce, for example, the Sub2

map shown in Fig 2. Although generated from different models (log-linear versus log-qua-

dratic), from a multitask learning perspective this task is similar to the Sub1 task in that the rel-

evant feature for both tasks is x = u2 − u1 ie. subtraction. The Add2 map was similarly defined.

The maximum performance levels for the Sub2 and Add2 maps were both 93 per cent.

Additionally, these maps could be approximately described using the following rules:

Sub1—“Choose Sun if the difference in pie slices is zero”; Sub2—“Choose Heads if there more

are slices on the left than right”; Add1—“Choose Sun if the sum of slices makes a full pie”;

Add2—“Choose Heads if the sum of slices is greater than six”.

Experimental design

Each participant did two tasks, in the first one they had to learn the association between stimuli

and weather outcome (sun or rain); in the second one they had to learn the association

between stimuli and a coin toss outcome (heads or tails). Subjects were also explicitly

instructed that the mapping in the second task was different. These two tasks were carried out

on the same day in a 1 hour long experiment. The stimulus to outcome mapping in task 1 was

specified by either the Sub1 or Add1 map. Task 2 was specified by either the Sub2 or Add2

map. Participants were assigned to either a “Same-Subspace” (Same) or “Different-Subspace”

(Diff) group according to the logic of Table 1. There are 20 subjects per “condition” and 40

subjects per group.

Additionally, orthogonal subgroups of participants had a minimum 12 seconds break

between one learning block and another whereas another orthogonal subgroup had minimum

Table 1. Subjects and groups.

Condition Task 1 Task 2 Subspace Subjects

1 Add1 Add2 Same 20

2 Sub1 Sub2 Same 20

3 Add1 Sub2 Diff 20

4 Sub1 Add2 Diff 20

Subjects were assigned to one of Same or Different Subspace Groups in a between-subjects design. Each of the Same/Different groups comprises data from two

conditions e.g. data from the same subspace group is from both Add1-Add2 and Sub1-Sub2 conditions. There were 20 subjects assigned to each condition. For all

subjects, Task 1 was presented as a weather prediction task and Task 2 as a coin prediction task.

https://doi.org/10.1371/journal.pcbi.1009092.t001
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120 seconds break between one block and another, in a two-by-two between-subject design

(with factors of subspace and break-length). However, the break-length factor is ignored in the

data analyses presented in this paper.

Given that participants are required to make Sun/Rain decisions and learn incrementally

via feedback, Task 1 is reminiscent of the classic Weather Prediction Task (WPT) [16, 17].

However, a major difference is that in our tasks there is a hidden structure in the stimulus-

reward mappings that can be discovered by subjects. Further, Task 1 is also similar to the Con-

figural and Elemental Learning tasks defined by Duncan et al. [18], with elemental tasks con-

taining a hidden structure (the log-odds of an outcome being a linearly separable function of

stimuli). However, the hidden structure we have specified is a linear subspace lying within

a non-linear (quadratic) mapping. Task 1 also shares similarities with the Feature-based

Multi-Armed Bandit (FMAB) task of Stojic et al. [19] in that the reward probability is a func-

tion of bivariate stimuli. However, FMAB uses a linear function and participants make a

multi-way (rather than binary) decision on each trial.

Neural network model

This section describes a Neural Network model that we hope provides insight into some of the

computational processes that may be engaged when solving Multitask learning problems.

Learning in this model uses a sequential Bayesian estimation algorithm, similar to the Elastic

Weight Consolidation approach [11], in which the prior over feature parameters for a second

task is given by the posterior over feature parameters from the first. Bayesian learning for neu-

ral networks was first proposed by Mackay [20], and Bishop’s textbook [21] provides a com-

prehensive introduction to the methodology. A novel aspect of our modelling work is that we

implement sequential Bayesian learning over both tasks and mini-batches of trials within

tasks, allowing the model to predict learning dynamics at the time scale of tens of trials. The

neural network models are exposed to exactly the same stimuli and stimulus-reward maps pro-

vided to experimental participants, and in the results section we compare simulations from

these models with empirical findings.

In the machine learning literature, Multitask Learning means training a neural network

simultaneously on data with multiple output labels but where the inputs are of the same type,

for example, learning to detect multiple types of object from the same visual images [4, 7].

Whereas, Transfer Learning means training a network sequentially on data from task A and

then task B, but only tuning the final layer or layers using data from task B [6, 7]. We have

designed our neural network model to accommodate both types of learning (using a mini-

batch buffer to potentially store trials from multiple tasks) although our empirical data is from

a transfer task.

Fig 3 shows our neural network model. It has a dynamic structure in which new output sub-

networks are added as new tasks are encountered. New connections are created from units

trained on previous tasks to units created for the new task. It is via these “Transfer Connec-

tions” that transfer of knowledge from one task to another is possible.

Value network. Let rt be a Bernoulli reward signal received after taking decision dt = k
where k = {1, 2} e.g. {Sun, Rain} in Task 1, and {Heads, Tails} in Task 2. A neural network is

used to estimate the value (defined as the “expected reward” or “reward probability” [22]) to

be obtained when choosing k = 1, 2

vnt1 � pðrt ¼ 1jdt ¼ 1Þ

vnt2 � pðrt ¼ 1jdt ¼ 2Þ
ð3Þ
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An artificial agent making decisions using these values takes a decision on trial t for task n
by sampling from the Bernouilli distribution vnt . Here we assume that the task variable st = n is

known (i.e. agent performs task st on trial t), that is, we have no task ambiguity.

We start our description of the neural net model at the output stage (top of Fig 3). In what

follows x variables denote the hidden unit output values, w and W connection strengths, b
biases, and a the activations before entering the activation function that produces the output of

each node. Superscripts 1, 2 and n denote first and second hidden layers and nth output sub-

network. For each of n = 1‥N output subnetworks we have

vnt1 ¼ sð~an
t Þ

vnt2 ¼ 1 � sð~an
t Þ

~an
tk ¼

XH

j¼1

~wn
j ~x

n
tj þ

~bn

~xn
t ¼ Pnx2

t

ð4Þ

where Pn is a selection matrix which selects those H second layer units that belong to the nth

output subnetwork. As our experimental paradigm involves binary decisions the above formu-

lation with sigmoid functions suffices. More generally, with K> 2 potential actions, as with

multi-armed bandits, values would need to be defined using softmax functions [21]. For k = 1‥

Fig 3. Neural network architecture. Sensory inputs, ut (where t indexes trial number), map onto feature detectors in

the first hidden layer, x1
t , according to Eq 6. The corresponding weight matrix W1 defines the feature subspace. Hidden

units in a second hidden layer, x2
t , further transform these (Eq 5) so that the output unit for the nth task, vnt , can

provide task-specific value estimates for decision making (Eq 4). Here we depict two output networks, one for each

task (weather prediction and coin prediction). Connections in blue exist when learning task 1 and are augmented by

those in red when learning task 2. For the modelling results in this paper we used a minimal capacity network, having a

single unit in the first hidden layer, and an increased capacity network having two units in the first hidden layer.

https://doi.org/10.1371/journal.pcbi.1009092.g003
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H2 nodes in the second hidden layer we have

x2
tk ¼ f2ða2

tkÞ

a2
tk ¼

XH1

j¼1

W2

kjx
1

tj þ b2

k

ð5Þ

where f2() is the activation function of the second-layer units and W2
k specifies the dependency

of the layer two hidden units on the layer one units. This reflects the structure shown in Fig 3.

For k = 1‥H1 nodes in the first hidden layer we have

x1
tk ¼ f1ða1

tkÞ

a1
tk ¼

XD

j¼1

W1

kjutj þ b1

k

ð6Þ

where f1() is the activation function of the first-layer units, and D is the dimension of the input

vector (i.e. number of inputs). A number of choices are available for the activation functions

including Gaussian Error Linear Units (GELUs), f(x) = xF(x) where F is the Cumulative Den-

sity Function of the Gaussian distribution, Rectified Linear Units (RELUs), f(x) = max(0, x),

Cosine Units, f(x) = cos(x) and linear units, f(x) = x. See [6] for a discussion of their relative

merits. In this paper, for the first hidden layer we use linear units, and for the second hidden

layer we use GELU units for Task 1 (as the mapping to output is nonlinear) and linear units

for Task 2 (as the mapping to output is linear).

We augmented the inputs with a third input, ut3 = 6, reflecting the maximum number of

slices in a pie, a variable readily available to human subjects. Thus we have D = 3 and the Add

subspace can be represented with the weights W1
k� ¼ ½1; 1; � 1�

T
(sum of number of slices is

maximal) and the Sub subspace with the weights W1
k� ¼ ½1; � 1; 0�

T
(difference in number of

slices is zero).

We write the weights and biases that parameterise the neural network as {W, b}. Optimisa-

tion and statistical inference on these parameters is best described (and implemented in

generic code) by first transforming them into a vector format [23]. We write this transforma-

tion generically as θ = Pack[W, b]. For example, given a single task this Pack function is

y ¼ ½vecðW1Þ;vecðW2Þ; ~w1; b1; b2; ~b1� ð7Þ

Given two tasks we have

y ¼ ½vecðW1Þ;vecðW2Þ; ~w1; ~w2; b1; b2; ~b1; ~b2� ð8Þ

After parameter estimation, we use the UnPack function to recover {W, b}.

Sequential Bayesian learning. We update model parameters not after each trial, but

rather after a “mini-batch” or “block” of training trials. In this paper we use Sequential Bayes-

ian learning (SBL) over tasks where separate blocks contain data from different tasks, and over

blocks of learning trials within each task. We define the jth block of training data, Rj, to com-

prise the input and task variables along with the decisions made by an agent and the rewards

received. We write this as Rj = {rt, dt, st, ut} for t 2 τj where τj is the set of all trials in the jth
block.

In this paper, once a block of training data has been used for offline learning it is then dis-

carded. To make best use of this data we use SBL so that information is efficiently propagated

from one block to the next. We define Yj to denote all blocks of data up to and including block

j. That is Yj = {R1, R2, . . ., Rj}. Bayesian estimation of θ proceeds over blocks such that the prior
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over θ is updated to a posterior using Bayes rule

pðyjYjÞ ¼
pðRjjyÞpðyjYj� 1Þ

pðRjÞ
ð9Þ

The likelihood of the jth block of data, p(Rj|θ), is defined in the following section (on “Model

Likelihood”). We use a Laplace approximation to compute the posterior density, p(θ|Yj), (see

“Posterior Distribution” section below) which does not require explicit computation of the

denominator term p(Rj). We use a Gaussian prior over θ that factorises over parameters

pðyjYj� 1Þ ¼
YP

i¼1

Nðyi;mj� 1ðiÞ; lj� 1ðiÞÞ ð10Þ

where mj−1 is the prior mean, λj−1 is the prior precision and P is the number of network

parameters. For the first learning episode on the first task the prior is initialised with mean,

mj−1 = 0P, and prior precision λj−1 set so that hidden units with more inputs have smaller

weights [23]. Given data Rj from the first learning episode, SBL is used to compute the poste-

rior distribution. This is also chosen to factorise over parameters

mj ¼ MAPðRj;mj� 1; lj� 1Þ

ljðiÞ ¼ lj� 1ðiÞ þ
X

t2t

vtkð1 � vtkÞZtðiÞ
2

ZtðiÞ �
d~an

t

dyi

ð11Þ

Here MAP refers to a gradient-based offline algorithm (see “MAP Estimation” section below)

that finds the maximum-a-posterior parameters. That is, the parameters that are a-posteriori

most likely. A fully factorised Laplace approximation is used to estimate the posterior preci-

sions (see “Posterior Distribution” section below). The quantity ηt(i) is referred to as the “out-

put sensitivity” (the variable ~an
t produces the network output as shown in Eq 4). Intuitively,

network parameters θi that cause larger changes in the output will be better determined by the

data and so be estimated more precisely.

The following sections on “Model Likelihood”, “Prior Distribution”, “Joint Distribution”,

“MAP Estimation” and “Posterior Distribution” break down each of the above steps into more

detail, but can be skipped if technical details are not of interest.

In SBL, as with all dynamic Bayesian models (such as the HMM or Kalman Filter), the pos-

terior from one learning episode becomes the prior for the next, as shown by Eq 9 which is

applied recursively. If we were working with linear Gaussian models then SBL over J mini-

batches would be exactly equivalent to Bayesian learning from a single batch (comprising all

exemplars) [21]. However, as we are using a fully factorised Laplace approximation in a non-

linear model, its an empirical matter as to whether this procedure works well. The SBL

approach, also known as Elastic Weight Consolidation (EWC), has previously been used for

multitask learning of high-dimensional pattern recognition problems in the machine learning

literature [11]. Here we apply SBL over mini-batches of data, as well as over tasks.

Model likelihood. Let rt be a Bernoulli reward signal received after taking action dt = k.

This paper employs an offline learning approach (similar in concept to offline Reinforcement

Learning [24]), in which data is stored in a memory buffer. This buffer contains all inputs

observed, task variables specified, decisions made and rewards received over a given set of
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trials, Rj = {ut, st, dt, rt}. The likelihood over the jth batch of data is then given by

pðRjjyÞ ¼
Y

t2tj

pðrtjdt; st; utÞ

pðrtjdt; st; utÞ ¼ ½vntk�
rt ½1 � vntk�

ð1� rtÞ

ð12Þ

where k = dt is the selected action, n = st is the selected task, ut is the sensory input on trial t,
and vntk is the output of the value network. The Log Likelihood is

log pðRjjyÞ ¼
X

t2tj

Lt

Lt ¼ rt log vntk þ ð1 � rtÞ log ð1 � vntkÞ
ð13Þ

We refer to the quantity Lt as the sample log likelihood as it is based on a single data sample.

The gradient, gt, of the sample log likelihood is derived in the Supporting Information and

computed using backpropagation. The Hessian (curvature) matrix is given by

Hði; i0Þ ¼
d2 log pðRjjyÞ

dyidyi0
ð14Þ

As in [11] we compute the Hessian using an outer-product approximation [25].

H ¼ �
X

t2tj

vntkð1 � vntkÞZtZ
T
t

ZtðiÞ ¼
d~an

t

dyi

ð15Þ

where k and n index the decisions made and tasks undertaken on trial t. The output sensitivity,

ηt, can be computed using back-propagation (see S1 Text).

Prior distribution. The log prior is given by

log pðyjYj� 1Þ ¼
XP

i¼1

logNðyi;mj� 1ðiÞ; lj� 1ðiÞÞ

¼ �
P
2
log ð2pÞ þ

1

2

XP

i¼1

ð loglj� 1ðiÞ � lj� 1ðiÞ½yi � mj� 1ðiÞ�
2
Þ

ð16Þ

with gradient and curvature given by

d log pðyÞ
dyi

¼ � lj� 1ðiÞ½yi � mj� 1ðiÞ�

d2 log pðyÞ
dy2

i

¼ � lj� 1ðiÞ
ð17Þ
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Joint distribution. We can then define the log joint density and its gradient as

J ¼ log pðRjjyÞ þ log pðyjYj� 1Þ

dJ
dyi

¼
d logpðRjjyÞ

dyi
þ

d logpðyÞ
dyi

¼
X

t2tj

gt

0

@

1

A � lj� 1ðiÞ½yi � mj� 1ðiÞ�

ð18Þ

where gt is the gradient of the sample log likelihood derived in the Supporting Information

and computed using backpropagation. Bayesian learning from data set Rj can then proceed by

ascending the gradient of the log joint to reach a local maximum of the posterior density.

Inclusion of the prior term ensures that parameter estimates are constrained to be similar to

values found useful for previous blocks of data or for previous tasks (see last term in above

equation).

Importantly, the prior precision λj−1 controls the strength of this effect, and this quantity

increases in proportion to the number of data samples so far observed (in sequential Bayesian

Learning for linear Gaussian models the posterior precision equals the prior precision plus the

data precision and therefore always increases—See “Posterior Distribution” in S1 Text). This

leads to the desirable property that the connection parameters converge to high precision solu-

tions and is the mechanism described by Kirkpatrick et al. [11] for protecting previously learnt

representations.

MAP estimation. Offline learning proceeds using gradient ascent. For the implementa-

tion in this paper, rather than using fixed step size updates we use a line search algorithm [26].

Specifically, on iteration it of batch learning we use

yðit þ 1Þ ¼ yðitÞ þ a
dJ
dy

ð19Þ

where dJ
dy is the gradient of the log-joint. Optimal values for α are found using a single-variable

bounded nonlinear function minimisation (implemented using fminbnd.m in Matlab (Math-

works, Inc) with step sizes bounded between 0 and 1) to minimise the negative Log Joint. If

the above does not result in a decreased cost function (increased Log Joint) the maximum step

size is reduced by a half and the process repeated. This can occur for a further three halvings of

the maximal step size.

All θ values are initialised by sampling from the prior. This is a stochastic process which

leads to different results on each simulation run. Other than this sampling process, the optimi-

sation is deterministic. Additionally, we found that the posterior landscape contains local max-

ima. We therefore implemented a multistart optimisation procedure in which optimisation is

re-initialised (with a different sample from the prior) until a satisfactory solution was found

(see e.g. [27] for alternative multistart approaches). This was defined as a solution with an aver-

age trial likelihood of at least pcT = 0.60. This is computed by dividing the log likelihood (Eq

13) by the number of trials and then exponentiating, and is also equivalent to the average prob-

ability of being correct [28]. If no such solution is found within a maximum of maxstarts
starts the best solution is returned. For the results in this paper we used maxstarts = 3, the

motivation for which is described in the results section.
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Posterior distribution. We compute the posterior distribution over θ given data, Yj, from

blocks 1 to j. We use an approximate posterior based on a factorised Laplace approximation

pðyjYjÞ ¼
YP

i

pðyijYjÞ

pðyijYjÞ ¼ Nðyi;mjðiÞ; ljðiÞÞ

ð20Þ

where the posterior mean mj is the MAP estimate of θ found on the jth block of data (see

above section). From the Laplace approximation we have

ljðiÞ ¼ Ljði; iÞ

Lj ¼ � H þ Lj� 1

ð21Þ

where the posterior precision, Λj, is the sum of the data precision (−H) and the prior precision.

Given we only need the diagonal elements of the Hessian we can write

ljðiÞ ¼ lj� 1ðiÞ þ
X

t2tj

vntkð1 � vntkÞZtðiÞ
2

ð22Þ

Results

Behavioural results

Our main hypothesis is that learning will be facilitated for tasks that share a common subspace

where facilitation of learning could be manifested as faster and/or more accurate learning. In

order to test the effect of subspace on participants performance, we divided the analysis into

two parts. First, we calculated how participants performance in the second task was correlated

to that in the first, and then tested whether these correlations differed as a function of sub-

space. Second, we performed a two-way mixed ANOVA with dependent variable accuracy and

independent variables of task (first or second) and subspace (same or different).

Positive versus negative correlations in same versus different subspace. Participants

performance in Task 2 correlated with their performance in Task 1 when the second task was

in the same (r(38) = 0.42, p = 0.007) but not different (r(38) = −0.089, p = 0.584) subspace. The

two correlations were significantly different from each other (Fisher’s z-transform z = 2.31,

p = 0.021).

We then tested whether this effect depended on the Task 1 subspace (Add/Sub) with data

and lines of best fit shown in Fig 4. For addition, participants performance in Task 1 signifi-

cantly correlated with their Task 2 performance for the same (r(38) = 0.583, p = 0.007) but not

different (r(38) = −0.236, p = 0.317) subspace. These two correlations were significantly differ-

ent from each other (Fisher’s z-transform, z = 2.647, p = 0.008). The signs of the effects and sig-

nificant inferences are consistent with the overall picture.

In the subtraction condition, participants performance in Task 1 was not significantly cor-

related with their Task 2 performance for the same (r(38) = 0.317, p = 0.174) or different (r(38)

= −0.129, p = 0.588) subspace. These two correlations were not significantly different from

each other (Fisher’s z-transform, z = 1.333, p = 0.182). The signs of the effects are consistent

with the overall picture but there were no significant inferences.

We do not know why there would be no significant correlations for the Sub subspace but

note that the variance of Task 1 accuracies is significantly lower for Sub1 than Add1 (Std
Dev = 0.06 for Sub, 0.11 for Add, Levene’s test F(1, 78) = 10.94, p = 0.001). Generally, lower

variances make it more difficult to detect co-variances/correlations.
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Increases in Task 2 accuracy for same versus different subspace. We then performed a

two-way mixed design ANOVA with dependent variable accuracy and independent factors of

(i) task (1/2) and (ii) subspace (same/different). Overall, we found only a main effect of task

(Task, F(1,78) = 103.71, p< 0.001; Subspace, F(1,78) = 2.043, p = 0.156; interaction, F(1,78) =

1.674, p = 0.199). We then performed two separate two-way mixed design ANOVAs for the

Add and Sub subspaces. For Add, only the main effect of task was significant (Tasks, F(1,38) =

29.845, p< 0.001; Subspace, F(1,38) = 0.024, p = 0.876; interaction, F(1,38) = 0.001, p = 0.974).

For Sub, we found all the main effects and the interaction to be significant (Tasks, F(1,38) =

100.86, p< 0.001; Subspace, F(1,38) = 5.669, p = 0.022; interaction, F(1,38) = 5.195, p = 0.028).

The increases in Task 2 accuracy for Same versus Different Subspace were 4.3% overall, 8.2%

for Task 1 = Sub1, and 0.4% for Task 1 = Add1. See the Supporting information for plots on

the mean accuracies for each combination of Task 1/2.

Overall, the empirical subspace effects are a significant correlation difference for the Add

subspace, and a significant interaction (improvement in mean accuracy) for the Sub subspace.

Modelling results

We used the neural networks described earlier with the following model and optimisation

parameters: 4 hidden units per output sub-network, convergence tolerance = 0.001, accuracy

threshold pcT = 0.60, MaxIterations = 64, and GELU activation functions in the output sub-

networks for Task 1. GELU were preferred over RELU activation functions as, in preliminary

work, they produced more similar performance levels on Sub1 and Add1 mappings. For the

Task 2 output sub-networks we used linear activations. This was motivated by the fact that

these tasks are linear functions of the first layer hidden units and, empirically, this led to better

performance on Task 2. We then ran Sequential Bayesian Learning in one of two modes: SBL

over tasks, and SBL over blocks (and tasks). The following sections on “Minimal Capacity Net-

work”, “Increase Capacity Network” and “Reduced Precision Representation” are based on the

SBL over Tasks approach.

Fig 4. Correlations over subjects. For Task 1 = Add1 (right panel), performance in Task 2 is significantly positively

correlated with performance in Task 1 when the second task is in the same subspace (blue line and crosses), but

negatively when Task 2 is in a different subspace (red line and circles), and the difference in these correlations is

significant. For Task 1 = Sub1 (left panel), these effects are not significant although the pattern is similar.

https://doi.org/10.1371/journal.pcbi.1009092.g004
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Sequential Bayesian learning over tasks. First, we created a data set for each mapping as

follows. We used 100 input stimuli, ut, drawn from a uniform distribution covering input

space. These inputs were presented to a neural net model whose parameters were sampled

from their prior distribution (see Eq 10 and the following paragraph). This network then made

decisions, dt, by sampling from neural net outputs (see Eq 3—highly stochastic decisions as

none of its parameters were yet tuned) and received rewards rt according to one of the map-

pings from the behavioural experiment (Sub1, Add1, Sub2, Add2—see section on “Stimulus-

Reward Maps”). This created a data set, Rj = {ut, st, dt, rt} with t = 1‥100, for that mapping.

This was repeated to create a data set for each mapping. The accuracy of a model was then

measured using the average probability of being correct (also known as the average trial likeli-

hood—see section on “MAP Estimation”) as computed over the training data.

We then tuned the accuracy of Task 1 learning to broadly match the behavioural data, by

changing the maximum number of “starts”, maxstarts, of the multistart optimisation algo-

rithm (see MAP Estimation section). We obtained average task accuracies of 0.56, 0.63, 0.67,

0.69 and 0.73 for maxstarts equal to 1, 2, 3, 4 and 8 respectively. This parameter helps the

optimiser avoid local maxima by restarting the optimisation with a different initialisation. In

what follows we used maxstarts = 3 and ran 40 simulations per Task 1/2 combination as

per the human experiments. Because we were using SBL over tasks, the prior over network

parameters for Task 2 was the posterior from Task 1 (see Eq 9). We emphasise that no model

parameters were specifically tuned to the particular subspace (Add or Sub) or to individual

subject data. The models were simply provided with the above parameter settings, and the

same stimuli and reward functions provided to the participants.

Minimal capacity network. Here we present results obtained with a minimal capacity
neural network model having only a single hidden unit in the first layer.

For Task 1 = Sub1, Task 1 performance was 0.66, and Task 2 performance was 0.77 for

same and 0.64 for different subspaces. Same-subspace Task 2 accuracies were significantly

higher than Task 1 accuracies (t(39) = 4.76, p< 0.001) and Task 2 accuracies were significantly

higher for same versus different subspace (t(39) = 3.46, p = 0.001). The correlation between

Task 2 and Task 1 performance was significantly positive (r = 0.38, p = 0.017) for same sub-

space and negative (r = −0.78, p< 0.001) for different subspace.

For Task 1 = Add1, Task 1 performance was 0.64, and Task 2 performance was 0.76 for

same and 0.65 for different subspaces. Same-subspace Task 2 accuracies were significantly

higher than Task 1 accuracies (t(39) = 4.79, p< 0.001) and Task 2 accuracies were significantly

higher for same versus different subspace (t(39) = 2.57, p = 0.014). The correlation between

Task 2 and Task 1 performance was significantly positive (r = 0.47, p = 0.002) for same sub-

space and negative (r = −0.68, p< 0.001) for different subspace.

Thus, these modelling results show transfer effects of the sort exhibited in the behavioural

data i.e. both increases in Task 2 performance, and correlations between Task 1 and Task 2

performance.

Quantitatively, the standard deviations of hidden unit parameters were 24 times smaller in

the posterior (after learning Task 1) than the prior (before Task 1). The figure of 24 is an aver-

age over all weights in the hidden unit and over both Add and Sub Tasks. The precisions were

thus 242 = 576 times higher in the posterior (after Task 1) than the prior (before Task 1). As

the prior (before Task 2) is set to the posterior (after Task 1) this strongly constrains the Task 2

solution to be close to the Task 1 solution (see last term in last row of Eq 18).

Increased capacity network. We then repeated the simulations but this time with an

increased capacity neural network model having two hidden units in the first layer. All transfer

effects disappeared.
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For Task 1 = Sub1, Task 1 performance was 0.65, and Task 2 performance was 0.79 for

same and 0.79 for different subspaces. Same-subspace Task 2 accuracies were significantly

higher than Task 1 accuracies (t(39) = 6.87, p< 0.001) but Task 2 accuracies were not signifi-

cantly higher for same versus different subspace (t(39) = −0.023, p = 0.982). Correlations

between Task 2 and Task 1 performance were not significant for same (r = 0.05, p = 0.743) or

different (r = 0.26, p = 0.110) subspace.

For Task 1 = Add1, Task 1 performance was 0.61, and Task 2 performance was 0.78 for

same and 0.78 for different subspaces. Same-subspace Task 2 accuracies were significantly

higher than Task 1 accuracies (t(39) = 6.67, p< 0.001) but Task 2 accuracies were not signifi-

cantly higher for same versus different subspace (t(39) = 0.118, p = 0.907). Correlations

between Task 2 and Task 1 performance were not significant for same (r = −0.31, p = 0.053) or

different (r = 0.04, p = 0.786) subspace.

These results show that no transfer effects were evident in the increased capacity network,

suggesting that a minimal capacity network may be an important factor underlying the beha-

vioural results.

Quantitatively, the standard deviations of hidden unit parameters were 19 times smaller in

the posterior (after learning Task 1) than the prior (before Task 1). The figure of 19 is an aver-

age over all weights in both hidden units and over both Add and Sub Tasks. The precisions

were thus 192 = 361 times higher in the posterior (after Task 1) than the prior (before Task 1).

This is a smaller increase than for the minimal capacity network, thus rendering Task 2 solu-

tions somewhat less constrained to be similar to Task 1 solutions (see last row of Eq 18). How-

ever, we expect that the main factor in the loss of transfer effects is the increased

representational capacity of the network (the required subspace for the Task 2 mapping can be

implemented by either hidden unit or distributed over both).

Reduced precision representation. We also repeated the simulations with the minimal

capacity network but this time resetting the posterior precision of network parameters from

Task 1 to their prior precision at the beginning of learning. All transfer effects disappeared.

For Task 1 = Sub1, Task 1 performance was 0.62, and Task 2 performance was 0.78 for

same and 0.77 for different subspaces. Same-subspace Task 2 accuracies were significantly

higher than Task 1 accuracies (t(39) = 6.43, p< 0.001) but Task 2 accuracies were not signifi-

cantly higher for same versus different subspace (t(39) = 0.307, p = 0.761). Correlations

between Task 2 and Task 1 performance were not significant for same (r = 0.17, p = 0.302) or

different (r = −0.30, p = 0.063) subspace.

For Task 1 = Add1, Task 1 performance was 0.67, and Task 2 performance was 0.77 for

same and 0.77 for different subspaces. Same-subspace Task 2 accuracies were significantly

higher than Task 1 accuracies (t(39) = 3.55, p = 0.001) but Task 2 accuracies were not signifi-

cantly higher for same versus different subspace (t(39) = 0.086, p = 0.932). Correlations

between Task 2 and Task 1 performance were not significant for same (r = 0.07, p = 0.670) or

different (r = −0.00, p = 0.983) subspace.

These results show that no transfer effects were evident with reduced precision representa-

tions, suggesting that Bayesian estimation may be an important factor underlying the beha-

vioural results.

Reducing the posterior precision effectively removes the protection afforded by Sequential

Bayesian Learning to the newly learnt representation, thus allowing it to be overwritten when

learning Task 2 (quantitatively, the precision variable, λj−1, in the last row of Eq 18 is on aver-

age 576 times smaller than for the minimal capacity network—see above section). This results

in Task 2 solutions being only very weakly constrained to be similar to Task 1 solutions,

thereby eliminating the subspace effect.
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Sequential Bayesian learning over blocks and tasks. We now report results using

Sequential Bayesian Learning over blocks and tasks for the minimal capacity model. We chose

our block size to be 25 trials as preliminary analysis (see S1 Text on “Within-versus-Between

Block Learning”) found there was demonstrable learning within the 50 trial blocks in the

empirical data. In SBL over blocks and tasks, the prior over network parameters for learning

from data block j is the posterior from block j − 1 (see Eq 6). Decisions on data from block j
were made by the network before training on that data. The accuracy of a model was assessed

using the average probability of being correct (also known as the average trial likelihood—see

section on “MAP Estimation”), as computed over the test data set (we refer to this as “test

data” as the model has not yet been trained on it). Learning accuracies were then averaged

over neighbouring 25-trial blocks to present the model learning curves in Fig 6 (right panel).

The equivalent learning curves for the behavioural data are shown in the same Figure (left

panel). The empirical data show averages over 80 subjects, 40 in each group (same/different

subspace). The simulated data are from a minimal capacity neural net as described above, with

40 simulations per group. The simulated data exhibit similar transfer effects to the behavioural

data.

For Task 1 = Sub1, Task 1 performance was 0.62, and Task 2 performance was 0.67 for

same and 0.54 for different subspaces. Same-subspace Task 2 accuracies were significantly

higher than Task 1 accuracies (t(39) = 3.21, p = 0.003) and Task 2 accuracies were significantly

higher for same versus different subspace (t(39) = 3.61, p< 0.001). The correlation between

Task 2 and Task 1 performance was significantly positive (r = 0.74, p< 0.001) for same sub-

space and negative (r = −0.56, p< 0.001) for different subspace. These were significantly dif-

ferent from each other (Fisher’s Z transform: p< 0.001, z = 6.77).

For Task 1 = Add1, Task 1 performance was 0.62, and Task 2 performance was 0.68 for

same and 0.54 for different subspaces. Same-subspace Task 2 accuracies were significantly

higher than Task 1 accuracies (t(39) = 2.90, p = 0.006) and Task 2 accuracies were significantly

higher for same versus different subspace (t(39) = 3.42, p = 0.002). The correlation between

Task 2 and Task 1 performance was significantly positive (r = 0.81, p< 0.001) for same sub-

space and negative (r = −0.58, p< 0.001) for different subspace. These were significantly dif-

ferent from each other (Fisher’s Z transform: p< 0.001, z = 7.64).

The behavioural and neural net data are therefore similarly matched in terms of the positive

versus negative correlations for same versus different subspace, and relative increases in Task 2

performance for same versus different subspace. But there are also a number of discrepancies.

For example, accuracies at the beginning of the second task experience a sudden drop for the

model but not for behaviour, and increases in performance are rather sudden for the model

but more gradual for behaviour. These discrepancies are addressed in the Discussion.

Discussion

We found evidence from our behavioural results in support of our main hypothesis that learn-

ing would be facilitated (positive transfer) for tasks that share a common subspace. However,

the nature of these transfer effects depended on the subspace. For the Add subspace, transfer

effects manifested as positive correlations between Task 2 and Task 1 accuracy (Fig 4, right

panel). Whereas for the Sub subspace, transfer effects manifested as higher average accuracy in

Task 2 (Fig 5, top right). We do not have an explanation as to why these transfer effects should

be different. Clearly, more empirical data is required over a larger number of paired tasks to

investigate further.

In our modelling work we found that a minimal capacity neural net model, with a single

unit in the first hidden layer, trained using sequential Bayesian learning produced transfer
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effects that were broadly consistent with the empirical data (Fig 6). This model produced posi-

tive correlations between Task 1 and Task 2 accuracy, and differences in Task 2 accuracy, for

both subspaces. We then investigated two variants of this approach. First, an increased capacity

model with two units in the first hidden layer. Second, a reduced precision model in which

sequential Bayesian learning was interfered with by reducing the posterior precision after

Fig 5. Increases in Task 2 Accuracy for Same versus Different Subspace. The barplots show the mean accuracies for

Tasks 1 and 2 as a function of whether the second Task is in the same subspace as the first. These results are shown

separately for Task 1 = Sub1 (top row) and Task 1 = Add1 (bottom row). For Task 1 = Sub1 there is a significant

increase in Task 2 accuracy (of 8.2%) for same versus different subspace (top right). For Task 1 = Add1, mean Task 2

performances are not significantly affected by subspace (bottom right). The error bars indicate the standard error of

the mean.

https://doi.org/10.1371/journal.pcbi.1009092.g005

Fig 6. Behavioural and Model Learning Trajectories. The behavioural learning trajectories are averaged over 40

subjects for each of the Sub and Add subspaces. The model learning trajectories are 40 simulations from the minimal

capacity neural net model for each of the Sub and Add subspaces. Each block comprises 50 trials and the vertical line

denotes that blocks 1 to 5 are from Task 1, and 6 to 10 from Task 2. All error bars indicate the standard error of the

mean and the red and blue curves have been offset to improve readability.

https://doi.org/10.1371/journal.pcbi.1009092.g006
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learning Task 1 to its prior level. All transfer effects disappeared for both of these variants indi-

cating that both a minimal capacity “bottleneck” and sequential Bayesian learning are neces-

sary mechanisms for replicating behavioural findings in this modelling framework.

Negative transfer effects

In our behavioural experiments participants only performed Task 1 once, and were not told

that they would be performing it again. This may have led to an expectation that they would

not need to retain Task 1 representations. If this were the case, an increased capacity network

would not be needed; a minimal capacity representation would suffice that could be overwrit-

ten during the second task. However, we do not know the subject’s expectations because they

were not explicitly manipulated. This does however motivate a future experiment. If partici-

pants were to be told that they will be tested again on Task 1, after learning Task 2, then the

prediction is that we will not see negative transfer effects when Task 2 is in a different subspace

to Task 1. Such an experiment would speak to a distinction in the neural network literature [8]

in which two of the major approaches in the area of transfer/continual learning are to use (i)

dynamic architectures in which new representational capacity is added for each new task to be

performed and (ii) regularisation approaches in which a fixed architecture is used but regulari-

sation prevents forgetting.

Future modelling work

There are a number of discrepancies between the model and behavioural learning trajectories.

First, accuracies at the beginning of the second task experience a sudden drop for the model

but not for the behavioural trajectories. This is likely an artefact of using a modelling approach

in which parameters are updated after each block of trials rather than after each trial. This nec-

essarily means that accuracies on the first block of the second Task will be close to chance

level.

Second, for the Sub subspace data, same/different trajectories appear to converge towards

the end of Task 2 for the behavioural data but not for the model. This might suggest, for exam-

ple, that there is a recovery mechanism in place in which tight inappropriate priors (inappro-

priate for different subspace subjects) are replaced by vaguer priors, allowing a more standard

learning trajectory to evolve. In preliminary work we had proposed a mechanism in which the

prior precision is gradually reduced if learning does not go well. This could be replaced by

more formal models, for example with mixture model priors allowing switching from one

prior to another during learning. However, as this empirical effect is only evident for one of

the experimental groups (Sub not Add) we have decided to postpone further modelling until

more data is available.

The model we have presented employs a within-block multistart optimisation procedure

such that if estimated parameters do not provide a sufficiently good solution, the estimation is

repeated, with a total of maxstarts = 3 model fits allowed per block. This serial model fit-

ting process is biologically implausible but could potentially be implemented using parallel

architecture and may fit in with evidence that up to three or four decision making strategies

can be simultaneously updated and monitored [29]. One possibility for future modelling, how-

ever, would be to use a moving window of samples to which the model is fitted, rather than

splitting the samples into non-overlapping blocks. This would remove the “blockiness” of the

results referred to above, and the inherent stochasticity of the approach may remove the need

for multistart optimisation. Such an approach has been used to good effect in recent work on

dynamical models [30].
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Elemental and configural learning

One distinction in the category learning literature is between elemental (or linear feature-

based) learning and configural (or object-based) learning. Duncan et al. [18] showed that peo-

ple switch between learning styles as a function of the empirical contingencies in the data (e.g.

elemental if reward functions are indeed a linear function of features). They also noted, how-

ever, that a proportion of participants persisted with a configural strategy even when a more

efficient elemental strategy would have sufficed.

In a similar experiment, Farashahi et al. [31] showed that people shift from elemental to

configural representations as they learn. They describe an elemental RL agent in which values

are learnt for each discrete setting (out of M settings) of each input variable (out of D inputs)—

thus requiring up to D ×M values to be learnt. The overall value of a stimulus is then given by

a linear combination of feature values. This is to be contrasted with an “object-based” RL

agent which learns a value for each object (or “configuration”). Given that there are MD possi-

ble objects, this requires learning a potentially much larger set of parameters. Empirical results

demonstrated that people initially employed a (linear) feature based strategy and later switched

to an object-based one. This took place even when the true contingencies were not linear.

One of the goals of the current paper was to explore mechanisms underlying learning of

rather general nonlinear mappings (which are in turn composed of an input to latent space

function (subspace) and a latent space to output function). Both elemental and configural

learning approaches are, however, highly suboptimal for these tasks, the elemental strategy

because it is linear, and the configural strategy because it is statistically inefficient (having a

number of parameters that grows exponentially). More specifically, an elemental learning

strategy could be applied for the Sub2 and Add2 linear value mappings in the current study,

but would be unsuccessful for the Sub1 and Add1 reward functions which are nonlinear. A

configural strategy would be highly inefficient for any of the tasks due to the large number of

configurations, MD = 25.

Learning accuracy across mappings

There is a long-standing debate in the category learning literature about whether and how

humans can learn non-linearly separable categories [32–34]. Medin et al. [33] and Levering

et al. [34] both find that non-linearly separable categories are easier to learn than linearly sepa-

rable ones. Their experiments used three binary input features (resulting in only 8 unique

stimulus vectors, 6 of which were shown during learning) and binary classification labels.

Importantly, the input vectors were chosen so that the “well-formedness” of the categories

(and therefore, presumably, the maximum achievable classification rates) were matched across

linear and nonlinear tasks.

For the tasks in the current paper, the maximum achievable classification rates were closely

matched across the linear (93 per cent) and nonlinear (95 per cent) tasks. In contrast to previ-

ous work, we found that the linear mappings were easier to learn than the non-linear map-

pings (mean accuracy = 73.5% for linear, 58.9% for nonlinear, see Supporting information for

further details). However, as the linear tasks were always performed after the nonlinear tasks,

this could be due to an order effect, or indeed the transfer effects that are the main interest of

this paper. The linear/nonlinear issue could be addressed in a future experiment in which par-

ticipants learn just a single task.

There is a literature on “human function learning” that presents participants with data

points sampled from one-dimensional functions and asks them to predict where future sam-

ples will be drawn from [35, 36]. This literature shows that people have a preference for linearly

increasing rather than decreasing completions i.e. positive rather than negative functions.
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These findings on 1-dimensional functions are perhaps difficult to extrapolate to the 2-dimen-

sional functions used in the current paper. Empirically, we did not find that (collapsing across

task 1 and 2) the add subspace functions were learnt more accurately than the subtract sub-

space functions (see S1 Text for details). One difference we did find was that more participants

correctly declared the rule underlying the Sub2 map than the Add2 map (see S1 Text).

Rule-based learning

Subjects who performed the Sub1 and Sub2 or Add1 and Add2 tasks did better (than those

who performed Sub1 and Add2 or Add1 and Sub2), but was this really because the tasks were

in the “same subspace”. Are there not other similarities among these tasks? For example, that

both required the same logical operation or rule-based operation as an intermediate step? This

speaks to a body of work in rule-based learning. One approach to this topic is the “Rational-

Rules (RR)” model [37] which formalizes a statistical learner that operates over the space of

Boolean propositional logic expressions e.g. “A or B”, “A and B”, “A or (B and C)”. In an fMRI

study, Ballard et al. [38] found that the pattern of striatal responses was more consistent with

prediction errors derived from such a rule-learning model than a Reinforcement Learning

model. We accept therefore that there could be an ambiguity in interpretation here and that

resolution of this issue requires further empirical work, perhaps with experiments using non-

linear and/or multivariate subspaces that are not readily expressible using rational rules.

Declarative learning

In additional statistical analysis presented in S1 Text we show that subjects who were able to

declare a correct rule-based strategy also showed a stronger subspace effect. We also show,

however, that subjects who performed better in the first task also showed a stronger subspace

effect. Further analysis then showed these two effects to be moderately collinear (as those who

declared a correct rule-based strategy also performed better on the first task). Therefore, with

the current data, we are unable to infer which of these factors (declarative learning or accurate

learning) drives the subspace effect. Again, further experiments are required perhaps using

nonlinear and/or multivariate subspaces.

Creation or selection of representations?

Are new representations created i.e. features learnt? Or, are pre-existing representations prior-

itized as potentially useful and selected from, as proposed by Collins and Koechlin [29]. For

example, there may be representations in brain regions encoding for numerosity [39] that

already encode differences and sums over numbers of items. An additional component in the

model proposed in [29] is a process that creates new stimulus-response mappings from old

ones. It could be that the offline learning algorithm we have described in this paper, or some

similar process, plays this creative role.

Structure learning

This paper fits in more broadly with previous studies of structure learning which show that

people take advantage of shared structure across tasks. For example, Costa et al. [40] studied

rhesus monkeys taking part in a probabilistic two-armed bandit reversal learning task in

which monkeys were exposed to a distribution of reversal times and were able to make use of

this information during decision making. Tomov and Gershman [41] studied people engaged

in a novel two-step decision making task, finding evidence that human subjects use a multitask

learning strategy that maps previously learned policies to novel scenarios. As with our paper,
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the rewards were a function of multiple input features and this changed across tasks. In theo-

retical and simulation work, Franklin and Frank [42] address the problem of transfer learning

in a Markov Decision Process context by designing a non-parametric Bayesian agent that can

generalise across state-transition functions, reward functions or both.

Radulescu et al. [43] review recent research which suggests that, in complex learning tasks,

human behaviour is consistent with an integrative model in which approximate Bayesian

inference acts as a source of selective attention, allowing Reinforcement Learning (RL) to

focus on the relevant dimensions for decision making. Within the Bayesian approaches, Latent

Causal Models (also known as Non-Parametric models) organise experience into similar epi-

sodes, and Probabilistic Programming allows rules based on logical operations to be inferred.

In principle, it may be possible to adapt the Latent Causal Model framework to the study of

transfer learning, for example, by allowing for common causes among tasks but adapting con-

tingencies between causes and outputs. This is an avenue we will explore in future work.

Transfer learning

The study of transfer learning has a long history in psychology [13], and more recently in the

fields of cognitive training and cognitive neuroscience [44]. A key qualitative concept here is

the notion of near versus far transfer where distance reflects how similar the different learning

contexts are. This may naturally map onto the quantitative measures defined in Bayesian

learning e.g. the probability density of task-two feature parameters under the task-one poste-

rior. Noack et al. [45] propose a theory-driven approach to studying transfer effects in cogni-

tive training research. They argue that data should be analysed within the context of

theoretically motivated (using hierarchical cognitive process models) and/or latent factor anal-

ysis methods, so that inferences can be made at the level of latent processes. The work in this

paper concurs with this latent and hierarchical perspective, but whereas Noack et al. decon-

struct existing batteries of cognitive tasks, our goal is to design new tasks with better defined

relationships among latent and observed variables.

Building on long established models of cognitive control, Musslick and Cohen [46] present

a three-layer neural network architecture with stimulus layer, hidden layer and output layer

but augmented with task units that affect the hidden and output layers. Learning in these net-

works allows a mapping between task and hidden units such that irrelevant hidden units are

inhibited. The network is trained on multiple tasks with simulations showing interference

between tasks that required activation of common hidden units (representations). By adding

temporal persistence to the hidden and output layer activations (reflecting the dynamics

observed in biological networks) they were able to explain well-established phenomena such as

the psychological refractory period. This important issue of task switching and maintenance

has been neglected in our paper. We have instead assumed that only the relevant output sub-

network is engaged while the other is inhibited, without providing a mechanism for this.

Flesh et al. [47] compared human learners and neural net learners in transfer learning tasks

involving categorisation of naturalistic images of trees. As expected, the neural network suf-

fered from catastrophic forgetting when samples of each task were blocked rather than inter-

leaved. Conversely, human performance was better if the samples were blocked rather than

interleaved. They showed that neural net performance on blocked data could be improved by

pre-training using a generative model approach. This was implemented using an autoencoder

in which a two-dimensional “bottleneck” layer enabled learning of the appropriate two-dimen-

sional subspace. This subspace comprised the two relevant features that predicted reward

across tasks and is analogous to the one-dimensional subspaces studied our paper.
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Wu et al. [48] studied the transfer of knowledge between spatial and conceptual domains.

They specified a series of two-dimensional reward maps which were identical over both

domains and found transfer effects from spatial to conceptual domains but not vice-versa.

Impressively, transfer was examined using eighty different reward maps (rather than the four

examined in the current paper). Subject’s behaviour was well described by Gaussian Process

(GP) models (as in [19]). GPs are an ideal choice for the goals of their study but do not break

down mappings compositionally as in the current paper (such that mappings can share a sub-

space but have different subspace to reward functions).

Wang et al. [49] present simulations of a meta-reinforcement learning agent in which a

recurrent neural network, posited to reside in prefrontal cortex, has adjustable parameters that

are trained using RL, not on a single task, but instead in a dynamic environment comprising a

series of related tasks. The activation dynamics of this network then manifest a second within-

task RL algorithm that is automatically tuned to the task at hand. The model explains a broad

variety of well-established phenomena including an updated version Harlow’s original learn-

ing to learn (multitask learning) paradigm in which, after a series of learning episodes, mon-

keys (and the Meta-RL agent) exhibit single-shot learning.

Yang et al. [50] also present simulations of a recurrent neural net model of frontal cortex

showing how it can learn twenty different cognitive tasks. Interestingly their model employs a

regularisation approach, similar to the EWC method used in this paper, to prevent parameters

of ‘older’ tasks being overwritten during learning. They also analyse the representations formed

noting that transfer can be mediated either by clustering of parameters over tasks or by the

development of compositional representations (of the sort investigated in the current paper).

Machine learning

The role of task units examined in Musslick and Cohen [46], in which task units can inhibit

hidden units, has been examined as a potential mechanism for aiding multitask learning by

Masse et al. [51]. Their studies, using high-dimensional pattern recognition problems, also

examined an alternative “gating” strategy in which task units could directly “gate” hidden unit

activations (thus mimicking neuromodulation in the brain), such that a proportion of hidden

units are gated (set to zero) for any given task. Both of these proposals were examined in com-

bination with EWC [11] with the findings being that the gating strategy produced better

empirical results.

The starting point of our paper was to leverage recent conceptual and algorithmic progress

in machine learning to define new experimental psychology tasks and computational models,

with the longer term goal of better understanding human multitask and transfer learning. To

do this we made use of a sequential Bayesian regularization approach to prevent catastrophic

forgetting. This literature, however, is rich with other quantitative ideas about how to define

relationships among tasks which could inform the design of future experiments. These include,

for example, “sluice” and “cross-stitch” networks [5] which automatically infer how to share

subspaces at multiple hierarchical levels and across multiple tasks. Sequential Bayesian learn-

ing for neural networks is also being applied to the more challenging problem of continual

learning and is producing state-of-the-art performance on benchmark problems [52].

Supporting information

S1 Text. Supporting information contains the derivations of the neural network model

and further analyses of the behavioural data.

(PDF)
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