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Abstract—Deep learning has recently been intensively studied
in the context of image compressive sensing (CS) to discover and
represent complicated image structures. These approaches, how-
ever, either suffer from nonflexibility for an arbitrary sampling
ratio or lack an explicit deep-learned regularization term. This
paper aims to solve the CS reconstruction problem by combining
the deep-learned regularization term and proximal operator. We
first introduce a regularization term using a carefully designed
residual-regressive net, which can measure the distance between
a corrupted image and a clean image set and accurately identify
to which subspace the corrupted image belongs. We then address
a proximal operator with a tailored dilated residual channel
attention net, which enables the learned proximal operator to
map the distorted image into the clean image set. We adopt an
adaptive proximal selection strategy to embed the network into
the loop of the CS image reconstruction algorithm. Moreover,
a self-ensemble strategy is presented to improve CS recovery
performance. We further utilize state evolution to analyze the
effectiveness of the designed networks. Extensive experiments
also demonstrate that our method can yield superior accurate
reconstruction (PSNR gain over 1 dB) compared to other com-
peting approaches while achieving the current state-of-the-art
image CS reconstruction performance. The test code is available
at https://github.com/zjut-gwl/CSDRCANet.

I. INTRODUCTION

The theory of compressive sensing (CS) has drawn consid-
erable research interest as a joint sampling and compression
approach [1]. CS indicates that a sparse or compressible high-
dimensional signal can be reconstructed from a limited number
of measurements by utilizing prior knowledge [2]. As CS
can reduce the amount of information to be observed and
processed while maintaining a reasonable reconstruction of
the sparse or compressible signal, it has been widely used
in applications such as medical imaging [3], image compres-
sion [4], single-pixel cameras [5], and snapshot compressive
imaging [6].

Since CS reconstruction is an ill-posed problem, reliable
prior information must be used to constrain the solution
space [7]. Traditional CS focuses on hand-crafted regular-
ization, in which prior information comes from years of
experience. For instance, nonlocal prior models dominated
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the field of CS reconstruction before deep-based models
became popular. [8] proposes a hybrid structural nonlocal
model that exploits nonlocal self-similarity priors from both
the internal and external image corpora. [9] further applies
a Gaussian mixture model to learn mutually complementary
information from external and internal nonlocal similar priors.
[10] integrates the nonlocal self-similarity priors along with
self-supervised learning, which can reduce the group sparsity
residual. These hand-crafted CS reconstruction methods are
usually solved by forming an optimization problem that often
has theoretical convergence guarantees. However, these hand-
crafted prior approaches often lead to unsatisfactory results,
especially in cases with low sampling ratios, as they suffer
due to ignoring collected data information.

To address the above shortcomings in traditional hand-
crafted approaches, a recent trend in CS reconstruction is
to take advantage of deep neural networks to discover and
represent complicated image structures. Generally, these deep-
based methods fall into two categories: end-to-end approaches
and plug-and-play approaches. Specifically, the basic idea of
end-to-end approaches is to directly learn a network that maps
CS measurements into the original signals. Some advanced
end-to-end approaches are designed based on the unfolding
of some optimization iterative algorithms onto deep neural
networks. For instance, ISTA-Net+ [11] replaces the soft-
thresholding step in the traditional iterative soft-thresholding
algorithm with a learning-based threshold operator. ADMM-
CSNet [12] casts the iterative ADMM algorithm for sparse
regularization into a deep architecture. AMP-Net [13] solves
the image CS problem by unfolding the iterative denoising
process of the approximate message passing algorithm. Such
end-to-end approaches have interpretability while still being
able to reconstruct images quickly.

However, end-to-end deep-based CS reconstruction methods
suffer from non-flexibility, as they need to train different mod-
els for different sampling ratios. A trained end-to-end model
will not work well if some elements of measurements are lost
directly, meaning it is inapplicable for adaptive sensing [14].
As shown in Fig. 1, a model-fixed end-to-end approach cannot
reconstruct the image accurately once the measurement loss
rate increases to some level. SCSNet [15] achieves a scalable
CS end-to-end net by using a greedy strategy to search the
most important measurement bases. However, SCSNet still
needs to update the network parameters for different sampling
ratios, and the complexity of greedy searching is no less than
that of retraining the model at a high sampling ratio. Except
for non-flexibility, to deal with different image resolutions and
ease the computational burden, end-to-end methods sample
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Fig. 1. Tllustration of Lena reconstructed by AMP-Net, OPINE-Net+ and the
proposed method if randomly losing some measurements at a 0.10 sampling
ratio.
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and reconstruct images block-by-block, requiring deblocking
modules to eliminate the blocking artifacts, which may lead
to poor visual quality.

In addition to deep end-to-end approaches, deep plug-and-
play approaches have also been extensively studied, which
replace some components in traditional hand-crafted prior
methods with deep neural networks [16]. These deep-based
plug-and-play approaches have the advantages of both the
interpretability of hand-crafted prior methods and the powerful
feature expression ability of deep neural networks, maintaining
the measurement fidelity term while reducing the regulariza-
tion term efficiently [17]. For example, LDAMP [18] utilizes
the denoising convolutional neural network (DnCNN) [19]
in place of the traditional image denoising step in D-AMP
algorithms, and has achieved state-of-the-art CS reconstruction
performance [20], while [21] presents a hybrid plug-and-play
framework for CS reconstruction that combines a deep image
Gaussian denoiser with nonlocal low-rank priors. The per-
formance of deep plug-and-play approaches depends mainly
on the regularization term and the corresponding proximal
operators. As shown in Fig. 2, simply replacing the DnCNN
in LDAMP with other denoisers can lead to different CS
reconstructed PSNRs. Thus, pairing a well-designed deep-
learned regularization and the corresponding proximal operator
can improve the CS reconstruction performance.

This paper aims to design an effective CS reconstruction
method using deep-learned regularization and a proximal op-
erator. We exploit the elaborately designed residual-regressive
net (RRN) and the dilated residual channel attention net
(DRCAN) to simulate the regularization term and proximal
operator, respectively. We then embed two designed neural net-
works into the loop of the proximal gradient descent algorithm:
RRN as the regularization term for noise-level estimation
and DRCAN as a proximal operator for image denoising,
in which the self-ensemble strategy can further enhance the
reconstruction performance. From the state evolution analysis,
we see that our efficient noise-level estimator and denoiser can
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Fig. 2. Illustration of different denoising performances and the corresponding
CS reconstructed performances. The X-coordinate refers to the average
denoising PSNRs of images with white noise of variance 25, and the Y-
coordinate refers to the average CS reconstructed PSNRs at a 0.10 sampling
ratio. The results are evaluated based on the union of Set8 and Waterloo140.

improve the final CS reconstruction performance. Extensive
experiments also show that the proposed method can yield
much better CS reconstruction results than the current state-
of-the-art methods in terms of both quantitative metrics and
subjective visual quality. In summary, the contributions of this
work are as follows:

o We introduce a tailored residual-regressive network for
regularization, which can measure the noise level of the
reconstructed image accurately.

e We design a dilated residual channel attention network
as the proximal operator, which can efficiently denoise a
corrupted image.

o We adopt an adaptive proximal operator selection strat-
egy to embed the designed regularization and proximal
operator into the proximal momentum-gradient descent
algorithm.

o We utilize state evolution to analyze the effectiveness
of the designed networks, and our experimental results
demonstrate that the proposed method achieves promising
performance.

The remainder of this paper is organized as follows. Section

II introduces the background of the image CS optimization
problem. Section III presents the architectures of our designed
networks for the deep-learned regularization term and proxi-
mal operator. Property analysis of the denoiser and noise-level
estimator is presented in Section IV, followed by performance
evaluation in Section V. Section VI presents our conclusions.

II. BACKGROUND
A. Image CS Problem

Image CS is used to reconstruct a clean image x € R™ only
from its m (m < n) randomized linear observations y € R™,
ie.,

y = oz, ey

where @ is a short-fat sensing matrix satisfying the mutual
coherence property. Since the sensing matrix ¢ is rank-
deficient, there exist an infinite number of feasible solutions
satisfying Eq. 1, which makes such underdetermined systems
hard to solve [22]. Such a challenging ill-posed inverse
problem requires some prior information about the image to



constrain the solution space, which can be represented as an
optimization problem with the following form:

xzargnéinF(a:)—F)\G(m), ()

where F(x) and G(z) are respectively the fidelity term and
regularization term, and where ) is a regularization parameter
balancing the contributions of the two terms. The fidelity
term ensures that the possible solution is consistent with
the CS measurement process, and Euclidean distance in the
measurement domain is the usual choice, i.e.,

1
F(z) = 5 ly — @3, (3)

The regularization term G(z) is used to guarantee that the
possible solution satisfies the prior information. Designing
and exploiting the regularization term are the main challenges
when using the image CS reconstruction algorithm [23].

B. Regularization Term for Image CS

The basic idea of existing image CS algorithms is to
design robust image regularization terms, which can integrate
information loss in undersampling measurements. In general,
existing studies fall into two categories: hand-crafted regular-
ization and deep-learned regularization.

Popular hand-crafted regularizations for image CS include
sparsity-based [1-norm (|| - ||1), gradient-based TV-norm (|| -
|lTv), and nonlocal self-similarity-based rank-norm (|| - |.).
Various optimization algorithms can be applied to solve the CS
optimization problem with hand-crafted regularization, such as
the iterative shrinkage algorithm [24], approximate message
passing (AMP) method [25], and Douglas-Rachford splitting
method [26]. BM3D-CS [27] and NLR-CS [28] are usually
taken as benchmark methods due to their high performance
for CS image reconstruction. However, these hand-crafted
methods require heavy computation and usually involve some
manually chosen parameters when they are hard to determine.

In addition to traditional hand-crafted regularization, recent
work has shown that better empirical performance is achieved
when deep neural networks are applied. Deep-learned regu-
larization achieves better performance due to its ability to
learn realistic image priors from a large amount of training
data [29]. In general, the deep deep -learned priors are
contained in the designed network architecture and trained
weights [30]. One popular strategy is to maintain the fidelity
term while replacing hand-crafted regularization components
with neural networks that map from corrupted image space
to clean image space [31]. In this way, image CS methods
such as LDAMP [18] can efficiently exploit deep-learned prior
information. A well-designed deep-learned regularization can
help to train the relative proximal operator and enhance the
explainability of the deep-learned image CS algorithms.

C. Proximal Momentum-Gradient Descent for CS problem

1) Proximal Gradient Descent: Proximal gradient descent
(PDG) offers a general framework for solving the optimization
problem represented in Eq. 2, which decouples the fidelity
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Fig. 3. Convergence with iteration £ of PGD and PMGD. The results are
averaged over 8 test images from Set8 at a 0.10 sampling ratio.

term and regularization term by alternating between the pro-
jecting step and gradient descent step. Starting from x° and
adopting a step size «, the overall iterative procedure of PGD
can be expressed as

vF =V F(z"), 4)
R =Prox(xk — av®), 5)

where Prox(Z) finds z € C' such that |z — || is minimized,
and the gradient of F'(-) at point 2 can be expressed as

VF(z*) = T (®z —y). (6)

This two-step splitting method decouples the proximal opera-
tor from the specifics of CS reconstruction iteration, which is
a suitable plug-and-play framework combining deep networks,
as it does not need to train different networks for different CS
sampling ratios. Such a CS framework allows people to use
different proximal operators in the iteration resolving process.

2) Proximal Momentum-Gradient Descent: Approximate
message passing (AMP) [32] introduces an extra momentum
item into Eq. 4 to accelerate PGD, i.e.

ok =AM L VR (), @)
zF*1 = Prox(z® — aw®). (8)

The momentum term v*~1v*~1 gives gradient descent a short-

term memory by adding a fraction of the update vector of the
past time step to the current update vector [33].

The parameter 7’“_1 defines the amount of momentum,
which balances the effect of local gradient VF(z*) on the
iteration process and prevents the iteration from becoming
trapped in a shallow local minimum. One can update 7* using
the divergence of Prox(-) at point 2% — av* [25], i.e.,

7k = iV - Prox(z® — av®). )
m

Based on [34], the divergence term can be estimated with a
fast Monte Carlo approximation method. The divergence of
Prox at any point Z can be calculated by

V - Prox(7) = €' (Prox(Z + €) — Prox(#)),  (10)

where € ~ N(0,1) is a standard normal random vector.
As shown in Fig. 3, the proximal momentum-gradient de-
scent (PMGD) framework achieves faster and more accurate
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Fig. 4. The architecture of residual-regressive net as regularization and dilated residual channel attention net as proximal operator.

convergence results than the PGD framework. In this paper,
we included two types of deep networks within the loop of
the PMGD to simulate the regularization term and proximal
operator.

III. DEEP-LEARNED REGULARIZATION AND PROXIMAL
OPERATOR FOR IMAGE CS RECONSTRUCTION

In this section, we first present an adaptive proximal opera-
tor selection strategy. Next, we describe the architectures of the
residual-regressive net (RRN) and the dilated residual channel
attention network (DRCAN), which are associated with the
learned regularization and the corresponding proximal oper-
ator, respectively. Furthermore, we describe a self-ensemble
strategy to enhance CS reconstruction performance. Finally,
we detail the training strategy for the RRN and the DRCAN.

A. Adaptive Proximal Operator selection

We apply an adaptive proximal operator selection strategy to
enhance flexibility in the applicable sampling ratios. Specif-
ically, we divide the 2-dimensional image space into multi-
ple subspaces according to the distortion distance estimated
by G(-). In PMGD, we select the corresponding proximal
operation Prox(-) according to the subspace to which the
intermediate image (2" —av") belongs (see Fig. 5). That is, the
distortion distance & obtained by G(-) determines the weights
of the proximal operator, i.e., Prox(-) = P;(-).

Accurate distortion distance estimation is important for de-
termining the weights of the deep network [35]. For the learned
regularization term, we use a well-trained residual-regressive
network that can accurately determine the distortion distance
o. Additionally, the proximal operator plays an important
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Fig. 5. Adaptive selection of proximal operator Prox(-) based on deep-
learned regularization G(-) term.

role in the PMGD algorithm. The learned proximal operator
resembles the projection on the clean image manifold; this can
be interpreted as a denoiser that removes aliasing artifacts [36].
In this work, we train both the regularization term G(-) and the
corresponding multiple off-the-shelf proximal operators Pj(-).

B. RRN for Learned Regularization

We set the noise level as the regularization term and design
a residual-regressive net to measure the noise level o of
the corrupted image. Specifically, we assume that the original
image x, lies in a set C, which can be intuitively thought of as
the manifold of the pristine images. Considering any corrupted
image Z outside the set C, we use a deep net G(-) measuring
a certain kind of distortion distance between Z and pristine
image set C.

Our noise-level estimation network is composed of two ma-
jor parts: the residual operation and the regressive operation.
Supposing w, h and c to be the width, height, and channel
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image at a 0.10 sampling ratio at the 3rd and 10th iterations (k = 3 and 10)
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Fig. 7. Intermediate features before (top) and after (below) channel attention
operation. Features are selected from the 2nd CAL of the 1st RCAB in
DRCAN.

of the input image, respectively, our noise-level estimation
network can be formulated as

6% = Ry (Rao((z® — aw)) — (2% — aw®)). (11)
where R(-) refers to two stacked residual blocks that extract
a w X h X 64 x 64 size feature and R, (+) refers to the mapping
of the extracted feature to the regularization value through 6
convolutions with a stride of 2, one average pooling, and a
final fully connected layer (see Fig. 4 (a)).

Fig. 6 illustrates the accuracy of our noise-level estimator,
where the ground truth residual coefficients are calculated by
z, — (¥ — aw¥), the ground-truth density is calculated by
V|zo — (z%F — av¥)||/n, and the estimated density is calcu-
lated by G(z* — av®). As seen by comparing histograms, our
estimated density is a good fit for the ground-truth residual
density.
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Fig. 8. Regularization term value GG before and after the proximal operation
with iteration k£ of PMGD. The results are averaged over 8 test images from
Set8 at a 0.10 sampling ratio.

Iteration-2 Iteration-3 Iteration-4

Iteration-1

Fig. 9. Intermediate results before (top) and after (below) the P; (-) operation,
ie., top: ¥ — v¥; bottom: zFt! = P (zF — vF).

C. DRCAN for Learned Proximal Operator

The core function of PMGD is to map the distorted image
to the pristine image set C. Based on the learned noise-level
estimator G, we can learn a projection function P that maps
a corrupted image to the pristine image set C'.

In our deep network, we take advantage of some recent
progress in the field. Specifically, we adopt into the de-
sign a channel attention mechanism, dilated convolution, and
multiple skip connections. The architecture of the proposed
network for the proximal operator is illustrated in Fig. 4(b),
and is primarily composed of sixteen stacked dilated channel
attention layers (dilated CAL) and multiple skip connections.

In convolution layers, each channel-wise feature represents a
different component of the signal extracted by the correspond-
ing filter. Some channels focus on the complanate regions,
while some focus more on the texture or edge regions. An
intuitive strategy is to adjust the weights of channel-wise fea-
tures adaptively instead of treating them equally. The channel
attention mechanism allows the net to effectively exploit the
interdependencies among feature channels. Denoting f; as the
input feature of the i-th CAL, the CAL operation can be
formulated as

Jir1 = fi+ (Rio Cy)(fi) - Ci(fa), (12)
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where C; represents stacked dilated convolution layers to
extract intermediate features, and R; represents a series of
downsampling operations to extract the channel-wise rescaling
factor. Fig. 7 shows the intermediate features before and
after the channel attention operation, from which we can
see that CAL can suppress some noise-like structures. Thus,
we employ the channel attention mechanism to enhance the
feature extraction ability of the network.

Furthermore, eight dilated CALs group into a dilated resid-
ual channel attention block (DRCAB), in which the relative
dilation factors of dilated CALs are set to 1, 2, 3, 4, 4, 3,
2, and 1. Dilated convolution can expand the capacity of
the receptive field while not increasing the number of filter
weights. There exists a short skip connection in each dilated
CAL, a medium skip connection in each dilated RCAB, and
a long skip connection from the initial to the end of the
whole net. Such a recursive residual connection design allows
multiple pathways through which information can flow.

Fig. 8 shows the effectiveness of the designed DRCAN. It
can be seen that the value of the regularization term G falls to a
small value after using Pj (-), which conforms to the function
of the proximal operation. Fig. 9 also shows the reconstructed
images before and after DRCAN for the first four intermediate
iterations, from which we can observe that the top ones have
significant noise, while those below are increasingly closer to
the real image as iteration increases.

D. Self-Ensemble Strategy

To enhance the potential CS reconstruction performance of
our model, we further adopt the self-ensemble strategy, which
is widely used in single image superresolution [37]. We apply
rotations and flips on the image to generate an additional
seven augmented inputs 7;(x;), where T; represents geometric
transformations, as shown in Fig. 10. We then apply the deep
networks Pjx(-) on each T;(x;) to obtain eight corresponding
outputs. After that, we apply an inversing transformation
T~1(-) on the eight denoised outputs and average the inversing
transformed outputs together for the final self-ensemble result.
Thus, if adopting the self-ensemble strategy in PGMD, the
relevant Eq. 4 should be revised to become

8
1
2 = 3 ZZ;(T[1 o Py o Tj)(zF — aw®).

13)

TABLE I
RANGE OF DISTORTION DISTANCE FOR DIFFERENT SUBSPACE NUMBER
No. Range of o
2 (0,100] (100,+00)
10 (0,10] (10,20] (20,40] (40,60] (60,80]
(80,100] (100,150]  (150,300]  (300,500]  (500,4-c0)
(0,5] (5,10] (10,15] (15,20] (20,30]
17 (30,40] (40,50] (50,60] (60,70] (70,80]
(80,90] (90,100] (100,125]  (125,150]  (150,300]
(300,500]  (500,+00)

E. Training Strategy

In our model, image space is partitioned into multi-
subspaces, where each subspace has its own learned proximal
operator. We first train the deep-learned regularization G(-)
estimating noise level, after which we train the learned proxi-
mal operator for each subspace. We corrupt the original clean
images z, in the training set C' by adding different noise level
ranges ¢ and adopt the mean square error (MSE) losses

G = arg mén B, c5)ll6 — G(zo + 7€)%, (14)
and

P, =arg rrlgin B, ollzo — Po(zo + o€)|?, (15)
to train G(-) and P,(-), respectively, where z, € C, € ~
N(0,1), and & ~ U(0,600). Table I shows the noise range o
designed for a different number of subspaces, where the noise
range is gradually refined as the subspace number increases.
In the process of training the proximal operator, we initialize
the network weights for the refined noise range using the well-
trained network weights for the relatively coarse noise range.

IV. PROPERTY ANALYSIS

Taking the designed DRCAN as the proximal operator and
utilizing the designed RRN to adaptively select the proximal
operator, the PGMD recursion process represented in Eq. 7
and Eq. 8 can be formulated as

P = ALkl L VR (2R) (16)
& = G(a" — av®) (17)
zF = P (2 — avk). (18)

From Eq. 16 to Eq. 18, one can see that the final reconstruction
performance is affected mainly by two operations, the noise-
level estimator G(-) and proximal operator P, (-), which are
also the components we simulate with deep networks.

A. State Evolution

We utilize state evolution (SE) to describe the dynamical
behavior of the recursion process described in Eq. 16 to Eq.
18.

Taking x, as the original image and defining the errors of

the k-th iterative results as
qk —gk

hF =2k ok — 2,

19)
(20)

— X,



we can obtain the error recursion formulated as

hE =(I — ®0T)g" + /¥ ("t - g, @D
6F =G(x, + A", (22)
"t =Py (o + hF) — z,, (23)

which provides a convenient means for analysis of the interme-
diate MSE. Let #* and o* be the standard deviations of ¢* and
h¥, respectively. Then if ® has i.i.d. entries and m,n — oo,
SE refers to the following recursion process [25], [38],

2

2 _ M ok—1\2
(%) == (01", 4
% =Gz, + o¥e) (25)
(0% = B Pos (o + o)~ 2ol @26)

where € ~ N(0,1) is independent of x,. In other words, the
empirical intermediate MSE can be estimated by SE [39], i.e.,
1
—|| Ps« Psi(zo+0"e)—x,|%}. (27)
n

1
(o) =0l = — B

B. SE with ideal noise level

We first define the denoising level, u(Ps,0), of denoiser
P;(+) for a certain noise level o,

E.||Ps(zo + 0€) — 1,|? B
sup =

: (28)
z,eC no

M(P5'70-),

where C' is a set of natural images.

Assume that we can obtain the ground-truth value o* of
each intermediate result (z, + h*) through an ideal noise-
level estimator, and that we can tune or choose the parameters
of the denoiser based on ¢*. Then, according to Eq. 26 and
Eq 28, we have

(") =

where pF =
P_«(-) for noise level o®
Eq. 29, we have

1 2
~E{[[Por (w0 + 0%€) = zo|*} < ¥ - ()", 29)

w(Pyr, o ) is the denoising level of denoiser
. Further, substituting Eq. 24 into

(69)° < k- (65 < (PG b - (07 Gy
Then, it is clear that
k
(6%)” < ( Hu = ([T 1eyl*, @b
1=0

if initializing 2° with zero vector. From Eq. 31, we can see
that a smaller denoising level i can lead to a smaller upper
bound on the reconstructed MSE, guaranteeing the accuracy
of the final reconstructed results.

C. SE with estimated noise level

For the real implementation of the iterative process, we can-
not obtain the ground-truth value of the noise level. However,
the following two properties still hold for the iterative process
using an estimated noise level:

1) Better noise-level estimation leads to better CS recovery;

2) Better denoiser leads to better CS recovery.

. 10°
—-~DRCAN-+ideal noise level £ —o—DRCAN-+ideal noise level
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Fig. 11. Denoising level curve comparisons. The X-coordinate represents

noise level o, and the Y-coordinate represents the denoising level calculated

by max,, cc M, where C' is the union of Set8 and

Wdter100140 (a) Denomng level curve of DRCAN with different noise-level
estimators; (b) Denoising level curve of different denoisers with the ideal
noise-level estimator.

For the first property, since Eq. 15 optimizes the parameters of
P, for the noise level o, P; exhibits a degraded performance
compared with P, if dealing with x, 4+ o€ and o # &, i.e.,

E (|| Py (zo+ 0¢€) _xOHQ) < Ec([|Ps(z0 +0€) _$0H2)v (32)

Considering Eq. 28 and Eq. 32, we have u(P,,0) < u(Pj,0).
Further, considering Eq. 31, we have

k k
([T B, o™y < (ST o @I,

i=0 i=0

(33)

which means that an accurate noise-level estimator can lead to

a smaller upper bound of reconstructed MSE. For the second

property, let P} be a denoiser which is better than P? in the
following sense:

E(|P5(z0+0¢) —20|*) < Ec(||P3 (20 +0€) —,|*), (34)
from which we have p(P},0) < p(PZ,0). Similar to the
first property, the second property also holds. Thus, one can
improve CS reconstruction performance based on these two
properties.

Our method achieves an accurate noise-level estimator and
efficient image denoiser by exploiting the elaborately designed
residual-regressive net and the dilated residual channel atten-
tion net. Fig. 11 (a) illustrates the denoising level curves of the
proposed DRCAN with different noise-level estimators, and
Fig. 11 (b) illustrates the denoising level curves of different
denoisers with the ideal noise-level estimator (i.e. the ground-
truth noise-level value). PRN involves using a plain regressive
net to estimate noise level and has a structure similar to RRN
but without the residual operation, which revises Eq. 11 into

= Ry (Ro((x* — av))). Fig. 11 shows that the designed
RRN and DRCAN can achieve a promising denoising level
curve. The denoising level curve when using RRN is almost
coincident with that when using the ideal noise level, while
the curve when using PRN is only coincident with the ideal
curve at high noise levels and is above the ideal curve at low
noise levels, meaning that the plain structure has a relatively
poor ability to estimate faint noise levels.



Fig. 13. Eight standard test images (Set8).

TABLE II
COMPARISON OF AVERAGE PSNR RESULTS WITH HAND-CRAFTED
METHODS ON SET8 AND WATERLOO 140 DATASETS.

Sampling Ratio

Datasets Methods 005 01 015 02 025 03
BCSSPL 2301 2507 2651 2767 2857 129.46
TV-CS 2404 2769 2960 3101 3223 3351
St NLR-CS 2686 3104 3346 3560 3730 3806
BM3D-CS 2652 3138 3354 3522 3668 37.99
DRCAN+RRN 2956 3303 3520 3674 3790 3921
DRCAN+RRN+  29.69 3312 3532 3684 38.03 3936
BCSSPL 2211 2374 2482 2570 2649 2725
TV-CS 2247 2537 2703 2835 2953 3067
Waterloo-140 NLR-CS 2457 2738 2941 3119 3268 3352
BM3D-CS 2422 2772 3000 3178 3332 3472
DRCANARRN 2621 2967 3177 3355 3503 3647
DRCAN+RRN+ 2645 2976 3184 3382 3511 3671

V. EXPERIMENTAL RESULTS

In this section, we provide a performance evaluation of the
proposed image CS reconstruction method. We first describe
the datasets for experiments and the parameter settings for
the network training. We then compare the proposed method
with state-of-the-art CS reconstruction methods. After that, we
analyze the contribution of each component in the proposed
method through the use of ablation experiments. Next, we
provide the computational time of the proposed method.
Finally, we test our method on noisy data.

A. Experimental Setting

1) Dataset: To train the proposed models, we collect a
large dataset including 500 images from Berkeley’s BSD-

500 datasets [41], 900 images from the DIV2K dataset [42],
and 20,000 randomly selected images from the ImageNet
database [43]. For all models, we crop training patches as
192 x 192, adding image rotation and flipping operations.
To evaluate all competing methods, we use 2 datasets. One
test dataset contains 140 images of size 256 x 256 from the
Waterloo Exploration Database [40], as shown in Fig. 12,
which are broadly grouped into 7 categories (20 images in
each class): human, animal, plant, landscape, cityscape, still-
life, and transportation. Another test dataset contains 8 widely
used standard images of size 256 x 256, as shown in Fig. 13.
Note that none of those test images are included in the training
dataset, and all images are converted to grayscale.

2) Training and Testing: All the training and testing pro-
cesses were carried out on a PC with an Intel i5 CPU and
Nvidia RTX 2070 GPU. We use PyTorch to train the designed
networks, including 60 epochs. The ADAM optimizer was
used to train the network with settings 5; = 0.9, 82 = 0.999,
and € = 1078, The learning rate was initialized as 10~* and
halved every 10 epochs. It takes approximately one day to train
the noise-level estimation net G(-) and one learned proximal
operator P, (-) for a certain range of noise levels o. For the
testing process, we restrict the model to 20 iterations, take «
as 1, and set the number of image subspaces to 17.

B. Comparison with State-of-the-Art Methods

In this subsection, we first compare the performance of
the proposed method with some hand-crafted CS image re-



TABLE III TABLE IV
COMPARISON OF PSNRS WITH DEEP-BASED METHODS ON SET8 COMPARISON OF AVERAGE PSNRS WITH DEEP-BASED METHODS ON
DATASET. WATERLOO 140 DATASET.
Sampling Ratio Sampling Ratio

Images Methods 001 005 0.0 5 04g20 030 040 050 Images Methods 001 005 0.0 5 o.gzo 030 040 050
ISTA-Net 838 2120 2351 2497 2987 3285 3549 ISTA-Net 1856 23.00 2641 2808 32.19 3444 3659
ISTA-Net+ 1853 2161 2352 2672 3013 3398 36.65 ISTA-Net+ 1866 2350 2651 2970 32.62 34.84 37.04
CSNet+ 2177 2376 2441 2669 3122 3472 3826 CSNet+ 2265 2655 2861 3185 3423 3638 3830
SCSNet 21.80 2373 2443 2684 3143 3516 3858 SCSNet 22.68 2655 2890 3197 3434 3649 3855
Barbara OPINE-Net+ 2098 2353 2473 2752 3217 3545 3947 Animal OPINE-Net+  21.64 2646 2957 3231 3485 3697 39.76
AMP-Net 2105 2379 2476 2879 3353 37.12 39.87 AMP-Net 2175 2590 2949 3127 3548 37.80 39.99
LDAMP 19.72 2289 2599 3279 3603 3797 39.15 LDAMP 2081 2582 28.63 3286 3565 38.19 4020
DRCAN+RRN 2034 2575 2991 3465 3676 3881 40.6l DRCAN+RRN 2195 2675 29.85 33.57 3660 3883 4091
DRCAN+RRN+ 1646 2605 30.10 34.92 36.86 38.95 4091 DRCAN+RRN+ 2039 2687 29.92 3380 3672 3924 41.61
ISTA-Net 1847 2332 2727 2909 3460 37.05 3939 ISTA-Net 16,78 2043 23.69 2522 30.15 32690 3501
ISTA-Net+ 1851 2373 2741 3128 3522 37.84 3991 ISTA-Net+ 1691 2082 2389 2725 3078 33.16 3559
CSNet+ 2198 2726 2998 3340 3584 3803 4038 CSNet+ 2018 2362 2574 2866 31.00 33.04 3497
SCSNet 2202 2723 30.11 3357 3630 38.62 40.97 City SCSNet 20.19 2368 2594 2882 31.19 3334 3545
Boat OPINE-Net+  21.14 2724 3094 3390 3682 3923 4223 -scape OPINE-Net+ 1942 2374 2692 2950 32.14 3455 37.72
AMP-Net 2123 27.64 3069 3466 37.60 40.17 4215 AMP-Net 19.69 2380 2676 2925 33.02 3543 37.63
LDAMP 1933 2560 30.17 3481 3792 39.89 41.28 LDAMP 17.75 2344 2705 3164 3462 3703 39.03
DRCAN+RRN  21.14 2796 3200 36.09 3870 40.66 41.83 DRCAN+RRN  19.87 2552 29.16 3294 36.09 3845 40.63
DRCAN+RRN+ 18.15 28.03 3209 3615 3889 40.87 42.40 DRCAN+RRN+ 1894 2576 2925 3318 3627 39.02 4147
ISTA-Net 726 2052 2346 2515 30.04 3200 3401 ISTA-Net 17.14 2206 2605 2780 3338 3609 3854
ISTA-Net+ 1732 2099 2376 2725 3035 3236 3432 ISTA-Net+ 1720 2242 2621 30.16 3411 3672 39.18
CSNet+ 2032 2346 2557 2863 3071 3247 34.03 CSNet+ 2096 2535 27.69 3135 3395 3632 3820
Camera SCSNet 2038 23.62 2571 2853 30.65 3238 3434 SCSNet 2099 2539 28.12 3166 3433 3659 38.62
o OPINE-Net+  19.99 2396 2688 2956 31.58 33.60 36.18 Human OPINE-Net+ 2053 2586 29.69 3292 3586 38.16 41.30
AMP-Net 19.99 2415 2684 2945 3247 3440 3632 AMP-Net 20.68 2528 2938 3154 3643 38.81 40.89
LDAMP 1796 2492 29.10 3212 3336 37.57 38.85 LDAMP 1841 2530 29.69 3419 3739 3991 41.54
DRCAN+RRN 2073 2723 3009 3403 36.72 39.61 41.66 DRCAN+RRN 2002 2649 31.03 3509 3851 4091 4298
DRCAN+RRN+ 1881 2747 3037 3412 37.02 39.64 4180 DRCAN+RRN+ 18.18 27.05 3114 3571 3874 4142 43.83
ISTA-Net 2021 2652 3278 3298 39.17 4138 43.12 ISTA-Net 1048 2295 2563 2674 3004 3191 33.74
ISTA-Net+ 2034 2746 3349 3695 4022 4230 44.18 ISTA-Net+ 19.81 2350 2575 2821 3042 3216 3401
CSNet+ 2677 3237 3504 3866 4059 42,18 4374 CSNet+ 2351 2635 2796 3020 3198 33.60 3521
SCSNet 2674 3231 3517 3846 4082 4266 4433 Land SCSNet 2351 2642 2805 3022 3204 3371 3536
Foreman  OPINE-Net+ 2389 31.19 3664 3892 4111 43.14 45098 -scape OPINE-Net+ 2220 2594 2831 3033 3223 3394 36.18
AMP-Net 2372 3253 3532 3925 4145 4347 4532 AMP-Net 2223 2618 2837 30.13 3263 3439 36.13
LDAMP 2374 3418 3680 40.00 4226 43.67 44.66 LDAMP 2164 2577 2785 3075 3270 3450 3620
DRCAN+RRN 2846 3491 3793 40.53 4287 4464 46.02 DRCAN+RRN  23.09 2646 28.62 3146 3371 3568 37.58
DRCAN+RRN+ 1234 3505 37.93 40.67 4298 4485 46.20 DRCAN+RRN+ 2281 2653 28.66 3155 3391 3608 38.30
ISTA-Net [0.80 2490 30.13 3154 3641 38.04 39.66 ISTA-Net 1791 21.87 2538 2687 3143 3380 36.04
ISTA-Net+ 2000 2584 3049 3427 37.07 38.64 4033 ISTA-Net+ 18.02 2233 2551 2876 3198 3434 36.64
CSNet+ 24.14 3007 3260 3539 3790 3954 41.89 CSNet+ 2161 2538 2746 3079 33.11 3526 37.02
SCSNet 24.18 3015 3269 3555 3792 3981 4220 SCSNet 2162 2538 2770 3093 3336 3546 37.29
House OPINE-Net+  22.10 29.90 3403 3635 3820 39.70 42.07 Plant OPINE-Net+  20.64 2530 2862 3149 3410 3619 39.04
AMP-Net 2307 3051 3409 37.13 3877 4041 43.03 AMP-Net 2062 2520 2839 3039 3464 3688 38.87
LDAMP 2237 3271 3473 3723 39.19 4051 42,04 LDAMP 1862 2460 27.65 3179 3454 3669 383l
DRCAN+RRN  26.65 3379 3600 38.12 40.11 4190 4347 DRCAN+RRN 2095 2561 2891 3284 3570 37.82 39.95
DRCAN+RRN+ 1451 33.89 3603 3816 40.16 42.00 43.66 DRCAN+RRN+ 19.60 2579 28.99 3310 3587 3843 40.78
ISTA-Net 1829 2328 2744 2872 33.19 3561 37.88 ISTA-Net 1701 2111 2459 2628 3135 3402 3634
ISTA-Net+ 1854 2399 2750 3058 3374 36.13 3846 ISTA-Net+ 1707 2151 2477 2838 3193 3437 36.83
CSNet+ 2243 2687 29.19 3226 3486 37.17 39.19 CSNet+ 2064 2450 2669 3008 3290 3534 3727
SCSNet 2241 2686 2929 3236 3522 37.66 39.90 Still SCSNet 20.67 2453 2689 3024 3319 3563 37.76
Lena OPINE-Net+ 2134 2695 3009 33.06 3581 3805 40.82 life OPINE-Net+ 1978 2448 2795 3092 3412 3642 39.62
AMP-Net 2136 2718 29.86 3338 3635 3877 41.02 AMP-Net 19.98 2406 2771 3005 3473 3727 3943
LDAMP 1960 27.61 3144 3639 39.18 41.10 4227 LDAMP 1842 2431 2788 3284 3592 3824 40.20
DRCAN+RRN 2225 28.67 32.87 3695 39.72 4195 4384 DRCAN+RRN  20.19 2590 29.63 34.09 37.19 3953 4152
DRCAN+RRN+ 21.14 28.89 3290 37.02 39.86 4210 4394 DRCAN+RRN+ 1829 2617 2975 3442 3753 40.16 4249
ISTA-Net 1499 2026 2558 27.17 3404 3696 39.56 ISTA-Net 17.10 2127 2497 2637 3153 3404 3644
ISTA-Net+ 1501 2052 2572 3029 3480 37.69 40.22 ISTA-Net+ 17.19 2164 2519 2862 3220 3457 3701
CSNet+ 18.07 2555 2858 3276 3506 37.06 38.84 CSNet+ 2059 2432 2656 29.65 3183 3384 3561
SCSNet 18.05 2552 2888 3286 3558 3791 4001 . SCSNet 20.59 2438 2679 2976 3205 3403  36.00
Monarch ~ OPINE-Net+  17.63 2543 2994 3325 3623 3846 41.62 TASPOT OPINE-Net+  20.06 2474 2822 3093 3359 3582 39.06
AMP-Net 1762 2594 2971 3408 37.10 39.53 41.74 -tation AMP-Net 2028 2433 2799 2941 3419 3657 3875
LDAMP 1550 2467 29.88 3475 3838 40.66 42.25 LDAMP 1857 2490 2876 3327 36.16 38.68 40.52
DRCAN+RRN  18.14 2695 31.04 3586 38.74 41.06 42.65 DRCAN+RRN  20.55 26.82 3047 34.69 3749 3995 4201
DRCAN+RRN+ 1675 27.04 3105 3577 3889 4131 43.17 DRCAN+RRN+ 19.03 27.01 30.59 34.95 37.90 40.62 43.02
ISTA-Net 1790 2225 2621 28.12 3260 3502 36.84 ISTA-Net 1771 2183 2525 12677 3144 3386 36.10
ISTA-Net+ 18.06 2297 2637 3009 3291 3531 3726 ISTA-Net+ 17.84 2225 2541 2873 3201 3431 36.61
CSNet+ 2223 2561 2811 3134 3384 3609 3820 CSNet+ 2145 2515 2724 3037 3271 3483 36.65
SCSNet 2230 2546 28.10 3129 3413 3641 3826 SCSNet 2146 2519 2748 3052 3293 3504 37.00
Parrot OPINE-Net+  21.02 2592 2934 3250 3521 3745 39.83 Average OPINE-Net+  20.61 2522 2847 3120 3384 3601 3895
AMP-Net 2123 2287 2920 3006 3585 3822 40.30 AMP-Net 2075 2497 2830 3029 3445 3674 388l
LDAMP 2040 3029 3327 3723 39.62 4139 4273 LDAMP 19.18 2488 2822 3248 3528 37.60 3943
DRCAN+RRN  23.02 3098 3440 37.73 40.10 4152 4321 DRCAN+RRN 2095 2621 29.67 33.55 3647 3874 40.80
DRCAN+RRN+ 2148 3112 3446 37.88 40.19 4205 43.65 DRCAN+RRN+ 19.61 2645 2976 3382 3671 39.28 41.64

ISTA-Net 1816 2278 2705 2847 3374 3612 3824

ISTA-Net+ 1829 2339 2728 3093 3431 3678 3892

CSNet+ 2221 2687 29.19 3239 3500 37.16 39.32

SCSNet 2223 2686 2930 3243 3526 3758 39.82

Average  OPINENets 2101 2676 3032 3313 3589 3813 4102  using a randomly scrambled block Bernoul!l matrix (SBBM)'
AMP-Net 2116 26.83  30.06 3335 3664 3901 4122 SBBM belongs to structurally random matrices and maintains

LDAMP 1983 2786 3142 3567 3824 4035 4165
DRCAN+RRN 2258 29.56 3303 3674 3921 4119 4201  the mutual coherence property [45].
DRCAN+RRN+ 1746 29.69 3312 3684 3936 4147 4322 We denote the proposed method as 'DRCAN+RRN’ and

the proposed method with a self-ensemble strategy as 'DR-
CAN+RRN+’. Table II provides the average PSNR results
construction methods (including BCS-SPL [24], TV-CS [44], of the competing methods on the Set§ and Waterloo140
NLR-CS [28], and BM3D-CS [27]) at different sampling ratios  datasets, in which we highlight the best results in bold. From



TABLE V
COMPARISON OF AVERAGE PSNR RESULTS ON THE TEST DATASET USING
RANDOMLY PERMUTED CODED DIFFRACTION MEASUREMENTS.

Sampling Ratio

Images Methods 005 0.10 0730
BM3D-CS [27] 2648 32.82 37.28

LDAMP [18] 29.31 3384 38.79

Se8 ADMM-Net [12] 28.27 32.64 37.85
DRCAN+RRN 31.49 3584 40.55

BM3D-CS [27] 24.13  28.81 33.54

Waterloo LDAMP [18] 2599 30.69 36.88
~140 ADMM-Net [12] 25.87 29.67 35.04
DRCAN+RRN 28.16 32,53 37.93

Table II, one can see that our method significantly outperforms
the compared hand-crafted methods with all sampling ratios.
Specifically, our method outperforms NLR-CS and BM3D-
CS by 2.29 dB and 1.95 dB on the Waterloo140 dataset at a
sampling ratio of 0.10.

We further compare our method with some advanced deep-
based CS image reconstruction methods (including ISTA-
Net+ [11], CSNet+ [46], SCSNet [15], OPINE-Net+ [47],
AMP-Net [13], and LDAMP [18]) on the Set8 and Water-
loo140 datasets. Table III provides the PSNR values of the
competing methods for every image in Set8, and Table IV lists
the average PSNR results of seven classes of Waterloo140.
From Table IIT and Table IV, one can see that the proposed
method achieves the best performance in most sampling ratio
cases, even without self-ensembles. For instance, the proposed
method outperforms LDAMP by 1.61 dB and 1.45 dB at a
sampling ratio of 0.10 for the Set8 and Waterloo140 datasets,
respectively.

In addition to randomly scrambled block Bernoulli measure-
ments, we also evaluated our method on the testing dataset
with 0.05, 0.10, and 0.20 sampling ratios using randomly per-
muted coded diffraction measurements. Table V provides the
average PSNR results for testing images, which indicate that
our method outperforms the compared methods. Specifically,
our method outperforms LDAMP and ADMM-Net by 1.76 dB
and 2.70 dB on the Set8 dataset at a sampling ratio of 0.20.

To facilitate the evaluation of subjective qualities, Fig. 14
presents the parts of reconstructed images. The zoomed por-
tions show that the reconstruction quality of the proposed
method can restore sharper details with fewer artifacts. In
particular, using the self-ensemble strategy can further enhance
some edge details that are hard to restore. All of these testing
results indicate that our method surpasses the existing state-of-
the-art image CS reconstruction methods both in quantitative
results and perceptual quality.

C. Ablation Studies

1) Ablation Studies with Different Convolution Kernels:
To verify the effects of the designed DRCAN, we modify the
baseline designed network and compare their reconstruction
performance. We mainly test the effects of dilatation convolu-
tion, convolution kernel size, and the number of subspaces on
the reconstructed performance. Comparing the 4th column and
the 7th column of Table VI, one can see that using dilation
convolution can achieve relatively high PSNR improvement at

TABLE VI
COMPARISON OF AVERAGE PSNR RESULTS ON THE TEST DATASET USING
DIFFERENT CONVOLUTION KERNELS AND SUBSPACE NUMBERS.

w/o Dilation use not use use use use

Images kernal size 3x3 5x5 5x5 5x5 5x5

subspace no. 17 17 2 10 17
0.05 29.05 29.36 21.39 2946  29.56
0.10 32.36 32.85 2222 3296 33.03
Set8 0.15 34.60 35.16 25.06 35.11 3520
0.20 36.33 36.71 27.54  36.66 36.74
0.25 37.70 37.89 28.83 37.89 37.90
0.30 38.87 39.16 29.59  39.15 39.21
0.05 25.90 26.14 2040 26.15 26.21
0.10 29.15 29.50 2149 2946  29.67
Waterloo 0.15 31.37 31.76 24.02 3171 3177
-140 0.20 33.13 33.54 26.26  33.50 33.55
0.25 34.62 35.01 2748 3501 35.03
0.30 35.94 36.35 28.29  36.36 3647

a low sampling ratio and insignificant improvement at a high
sampling ratio, with an approximately 0.20 dB gain at a 0.05
sampling ratio and only a 0.05 dB gain at a 0.30 sampling
ratio for Set8. Further comparing the 3rd column and the 7th
column, one can see that the convolution kernel with 5 x 5
size achieves a more stable improvement than the kernel with
3% 3 size both at low and high sampling ratios. Considering the
trade-off between the computational burden and reconstruction
performance, we choose the convolution kernel size as 5 x 5.

2) Ablation Studies with different Subspace Numbers:
In our iterative CS reconstruction method, the intermediate
corrupted images are attributed to some subspace based on the
measured distortion distances. Considering that each subspace
has its own individual-learned proximal operator mapping the
noisy image to clean image sets, more subspaces can achieve
better learned proximal operators and vice versa. To verify
the effectiveness of the number of subspaces, the 5Sth, 6th,
and 7th columns of Table VI provide the PSNR results of
the proposed method with the same settings except for the
subspace number. We can see that increasing the subspace
number from 2 to 10 brings a notable gain of approximately
5.75 dB, while increasing the subspace number from 10 to
17 spaces brings a gain of approximately 0.06 dB at a 0.05
sampling ratio for Waterloo140. Considering that a subspace
number larger than 17 would only bring a gain of less than
0.06 dB, we choose the number of subspaces as 17.

3) Ablation Studies on Network Components: We further
remove some core components from the DRCAN and RRN
baseline designs to verify their impact on CS reconstruction
performance. The original DRCAN contains two residual
channel attention blocks (RCABs), and each RCAB further
contains 8§ channel attention layers. For the ablation study of
DRCAN, we can reduce the number of RCABs in DRCAN
to one and obtain the DRCAN(1B) architecture. Additionally,
we remove the channel attention operation in CAL and obtain
the DRCAN with no channel attention, dubbed DRCAN(NC).
For the ablation study of RRN, we construct a plain regressive
net, which has the same structure as RRN except without
residual operation. Table VII provides the average PSNRs
of the different combinations of noise-level estimators and
denoisers, from which we can see that the 2-RCAB structure
using channel attention (i.e. DRCAN) achieves approximately
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(g) 30.11 dB (h) 30.94 dB (i) 30.69 dB () 30.17 dB (k) 32.00 dB (1) 32.09 dB

Fig. 14. Reconstructed boat at sampling ratio 0.1 using Bernoulli measurements. (a) Original image; (b) NLR-CS [28]; (c) BM3D-CS [27]; (d) ISTA-Net [11];
(e) ISTA-Net+ [11]; (f) CSNet+ [46]; (2) SCSNet [15]; (h) OPINE-Net+ [47]; (i) AMP-Net [13]; (j) LDAMP [18]; (k) DRCAN+RRN; (1) DRCAN+RRN+.

TABLE VII
AVERAGE PSNR COMPARISONS USING DIFFERENT COMBINATIONS OF NOISE-LEVEL ESTIMATORS AND DENOISERS ON SET8 AND WATERLOO 140.

Sampling Ratio

0.01 0.05 0.10 0.20 0.30 0.40 0.50
DRCAN(IB+RRN 2215 2873 31.68 3552 38.00 39.08 40.44
DRCAN(NC)+RRN 2254 2941 3222 3625 3839 3893 39.52
DRCAN+PRN 2257 2893 3143 3481 3840 4096 42.17
DRCAN+RRN 22.58 2956 33.03 36.74 39.21 4119 4291
DRCAN(IB+RRN  20.78 25.83 28.74 3245 3492 3675 3831
Waterloo DRCAN(NC)+RRN 2094 26.17 2925 3294 35.19 36.69 37.98
-140 DRCAN+PRN 2092 26.14 2873 3225 3543 37.82 38.90
DRCAN+RRN 2095 2621 29.67 33.55 3647 38.74 40.80

Images Methods

Set8

TABLE VIII
AVERAGE PSNR RESULTS ON THE TEST DATASETS USING DNCNN AND DRCAN COMBINED WITH DIFFERENT NOISE-LEVEL ESTIMATORS.

Sampling Ratio

Datasets Methods 0.1 0.2 0.3
Bernoulli  Diffraction  Bernoulli  Diffraction  Bernoulli  Diffraction
preNN+ Il 3140 33.84 35.67 38.79 38.24 42.36
Set8 DnCNN+RRN 31.67 34.10 35.71 38.85 38.70 42.70
DRCAN+% 32.76 35.62 36.57 40.15 39.03 43.33
DRCAN+RRN 33.03 35.84 36.74 40.55 39.21 43.59
DnCNN+% 28.22 30.69 3248 36.88 35.28 40.39
Waterloo-140 DnCNN+RRN 28.63 31.10 32.73 36.49 35.44 40.56
DRCAN+@ 29.57 3242 33.06 37.17 35.87 41.71
DRCAN+RRN 29.67 32.53 33.55 37.93 36.47 42.05
TABLE IX

AVERAGE PSNR AND RUNNING TIME(SECONDS) COMPARISON OF DIFFERENT IMAGE SIZES.

Methods PSNR(dB) / Times(s)

128x128 256x256 512x512 1024x1024
BCS-SPL 20.94/3.403 21.87/6.101 22.65/26.613 23.46/86.311
Hand TV-CS 20.35/33.383  21.26/108.149  21.92/418.571  22.56/1644.189

-crafted NLR-CS 20.00/37.701  20.66/145.909  21.15/597.557  21.64/2466.751
BM3D-CS 26.78/2.184 30.38/8.895 32.31/37.754 34.63/154.466
ISTA-Net+ 25.62/0.004 28.01/0.005 30.10/0.005 32.34/0.006

CSNet+ 27.59/0.021 29.29/0.29 31.08/0.073 33.36/0.235
SCSNet 27.94/0.02 29.55/0.03 31.22/0.102 33.50/0.377
Deep OPINE-Net+ 28.85/0.006 31.11/0.008 32.99/0.008 35.64/0.009
-based AMP-Net 28.02/0.027 29.93/0.031 31.95/0.076 34.80/0.253
LDAMP 26.81/0.388 30.94/0.512 32.70/1.035 35.12/3.352

DRCAN+RRN  28.95/0.652 31.70/0.921 33.44/2.232 35.67/6.185
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Fig. 15. Iteration PSNRs (dB) of the reconstructed images at a sampling ratio of 0.1. The Y-coordinate represents the average PSNRs of the reconstructed

images, and the X-coordinate represents the iteration number.

0.93 dB and 0.42 dB boosts versus the 1-RCAB structure
(i.e. DRCAN(1B)) and no-channel attention structure (i.e. DR-
CAN(NC)) at 0.10 sampling ratio. Replacing PRN with RRN
achieves approximately 0.94 dB boosts at a 0.10 sampling
ratio for the Waterloo140 dataset. All of these results show
the effectiveness of the designed networks.

4) Ablation Studies using different Noise-Level estimators:
In our iterative CS reconstruction method, noise level esti-
mation is a crucial step that determines the parameters of the
adopted denoiser. Under the assumption of z* and v* in Eq. 18
being the pure clean image and noise [18], [39], traditional
methods utilize the intermediate feature ””k% to estimate the
noise level, ignoring the noise component in the intermediate
result z*. Table VIII presents the average CS reconstructed
PSNR of methods that combine DnCNN and DRCAN with
different noise-level estimators. Note that DnCNN+% is
similar to the LDAMP method described in [18]. Comparing

DnCNN+RRN and DnCNN+%, one can see that simply

replacing the noise estimator of LDAMP from w with
RRN brings about 0.25 dB and 0.41 dB improvement for
the Set8 and Waterloo140 datasets at a 0.10 sampling ratio.
Fig. 15 shows the iterative reconstructed PSNR results of
different combinations, from which one can also see that
DRCAN+RRN includes a better and more stable reconstructed
iterative process.

D. Computational Time with Different Image Resolutions

Here, we compare the computational time of CS recon-
struction algorithms using different image resolutions. We
randomly selected five 1024 x 1024-sized images from the Im-
ageNet dataset which are not contained in the training set. We
then obtained their corresponding images of sizes 512 x 512,
256 x 256, and 128 x 128 by bicubic downsampling. Table IX
presents the average computational time and reconstructed
PSNR of test images. The proposed method can achieve the
best PSNR results for all image resolutions. Additionally,

£

(2) 28.19 dB

(h) 30.79 dB

(i) 31.31 dB

Fig. 16. Reconstructed Lena from noisy measurements at a 0.3 sampling
ratio. (a) Original image; (b) Noisy image; (c) ISTA-Net+; (d) CSNet+; (e)
SCSNet; (f) OPINE-Net+; (g) AMP-Net; (h) LDAMP; (i) DRCAN+RRN.

one can see that end-to-end deep-based CS reconstruction
algorithms (e.g., ISTA-Net+, CSNet+, SCSNet, and OPINE-
Net+) run faster than plug-and-play algorithms (e.g., LDAMP
and Proposed), and the running time of all methods rises as
the image size increases.

E. Performance on Noisy Data

Here, we conduct image CS reconstruction from noisy CS
measurements to demonstrate the robustness of the proposed
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Fig. 17. PSNRs (dB) of the reconstructed images from noisy measurements at sampling ratio 0.3. The Y-coordinate represents the PSNRs of the reconstructed
images, and the X-coordinate represents the PSNRs of the measured noisy images.

method with respect to noise. In this case, we distort the CS
measurements by corrupting the original images with different
levels of Gaussian noise. The measurement ratio is fixed at
0.30, and measured images with PSNRs between 23.50 dB
and 42.08 dB are generated by varying the standard deviation
of the Gaussian noise added to the original image. Fig. 17
presents the average PSNR results for various noise levels for
different algorithms. This demonstrates that the reconstruction
performance degrades for all competing methods as the noise
level increases, while our method is less affected by noise.
Fig. 16 shows the reconstructed Lena from noisy measure-
ments. Both PSNR and subjective quality comparison results
show the efficiency and robustness of the proposed method in
the presence of noise.

VI. CONCLUSION

In this paper, we have developed a novel framework for
image CS reconstruction based on learned regularization and
proximal operators. The proposed framework leverages the
PMGD algorithm to solve the CS optimization problem and
utilizes the elaborately designed residual-regressive net and
the dilated residual channel attention net to simulate the
regularization term and proximal operator, respectively. Mean-
while, we partition the image into multi-subspaces, where
each subspace has its own proximal operator mapping images
contained in the subspace into the clean subspace. Further-
more, we introduce the self-ensemble strategy to improve CS
reconstruction performance. State evolution analysis indicates
the effectiveness of the designed networks. Experimental re-
sults also demonstrated that the proposed method outperforms
existing state-of-the-art NLR-CS and LDAMP algorithms in
terms of PSNR and visual perception with both noiseless and
noisy settings.

Regarding our future work, one interesting topic is to design
a more powerful deep architecture by using U-net structure,

dense connection, self-attention strategy, and other deep net-
work techniques. This will address the research gap pertaining
to the performance of the developed strategy proportions with
respect to the representation ability of the deep net for the
proximal operator. Another promising direction is to apply the
proposed framework in CS-based applications, such as image
encryption, fast MRI, snapshot imaging, etc.
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