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Forest Habitat Fragmentation Apply
Even to Rarely Detected Organisms
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Abstract

Neotropical snakes have extremely low detection rates, hampering our understanding of their responses to habitat loss and

fragmentation. We addressed this gap using a limited sample (50 individuals, 16 species) across 25 variable-size insular forest

fragments within a hydroelectric lake and four adjacent mainland continuous forest sites, in Central Brazilian Amazonia. The

number of species recorded on forest islands (1.55 � 0.78) was much lower than that at continuous forest sites (5.0 � 3.1),

with no snakes being recorded at twelve islands smaller than 30 ha. As such, snake assemblages were positively affected by

forest area, explaining 48% of the number of species, and negatively affected by island isolation. The markedly higher number

of species recorded across continuous forest sites likely results from the availability of riparian habitats, which have virtually

disappeared from the archipelagic landscape given the widespread inundation of lowland areas. To prevent further severe

biodiversity loss, including those of poorly known rare taxa, conservation policies should avert the additional construction of

mega-dams that create myriad of small islands, in addition to extensive reservoir lakes from which all riparian habitats are

eliminated.
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Introduction

Habitat loss and fragmentation worldwide are driving

unprecedented biodiversity losses (Haddad et al., 2015;

Sala et al., 2000). In the tropics, hydropower develop-

ment has become one such driver, often creating exten-
sive archipelagic landscapes of forest islands. These

islands consist of forest patches corresponding to previ-

ous hilltops, that are now isolated within a hostile open-

water matrix (Jones et al., 2016). Analogous to patterns

observed for oceanic islands (Wilson & Willis, 1975), the
effects of insular habitat fragmentation can be assessed

in light of Island Biogeography Theory (MacArthur &

Wilson, 1967), which predicts lower numbers of species

in small, isolated habitat remnants. Although there is a

growing number of studies examining species responses
to this type of habitat disturbance, most of them are

skewed towards birds and mammals (Jones et al., 2016).
Within reptiles, the cryptic habits, effective camou-

flage, and typical nocturnality of snakes render them
rarely detectable, exacerbating the costs of field surveys

in tropical forests (Fraga et al., 2014). As a consequence,
notwithstanding insights from temperate (Kjoss &
Litvaitis, 2001; Luiselli & Capizzi, 1997) and sub-
tropical regions (Wang et al., 2012), snake responses to
habitat loss and fragmentation in the tropics are still
poorly understood. Given their characteristics, including
specific habitat requirements (Fraga et al., 2011, 2018),
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thermal constraints and limited mobility (Fitch & Shirer,

1971), snakes are expected to be particularly sensitive to

habitat disturbance. In fact, declines in snake popula-

tions have been widely reported (Doherty et al., 2020),

which are considered to exert serious consequences on

ecosystem functioning given their ecological roles as

meso- and top-predators (Zipkin et al., 2020).
Given the overall lack of knowledge on snake resil-

ience to habitat fragmentation and the extremely high

cost associated with their surveys in tropical forests (e.g.

up to US$120 per individual encountered; Fraga et al.,

2014), we here assess to what degree snake responses to

habitat loss and fragmentation can still be detected

based on an incomplete landscape-scale species invento-

ry that was incidentally collected using a survey design

primarily targeting lizards and small mammals. Data on

snake assemblages were collected using 100 L-pitfall

trapping which, despite the low trapping success

(Ribeiro-J�unior et al., 2011, but see Cechin & Martins,

2000), are particularly useful to record small-bodied and

(semi-) fossorial snakes (Ribeiro-J�unior et al., 2008). We

surveyed 25 variable-size islands and four continuous

forest sites within the Balbina Hydroelectric Reservoir

and its immediate surroundings in Central Brazilian

Amazonia. By the time sampling was carried out, islands

had been isolated for 27 years which, given the longevity

of relatively small bodied-size snakes (e.g., six to 10 years

for Colubridae and Dipsadidae, Ernst & Zug, 1996;

�3 years for Elapidae, Oliveira et al., 2005), is enough

to allow up to nine generations to elapse. We therefore

assumed that snake assemblages surveyed in this study

had reached an extinction-colonization equilibrium. We

hypothesized that many species have been gradually

driven to local extinction in smaller and more isolated

islands (MacArthur & Wilson, 1967), which are also

subjected to more intense edge effects (Benchimol &

Peres, 2015a; Malcolm, 1994).

Methods

This study was carried out in the archipelagic Balbina

landscape in central Brazilian Amazonia (centroid coor-

dinates: 1�4103300S, 59�3805700W; Figure 1A). The Balbina

reservoir was formed in 1986, following the completion

of a major dam on the Uatum~a River, a left-bank trib-

utary of the Amazon River. Within the 443,772-ha

hydroelectric reservoir, a primary forest area of

312,900 ha was flooded (FUNCATE/INPE/ANEEL,

2000) and 3,546 forest islands were created. Most islands

consist of dense closed-canopy terra-firme forest. The

mean annual temperature in this region is 28�C and

the mean annual rainfall is 2,376 mm (IBAMA, 1997).
We surveyed 25 islands ranging in size from 0.55 to

14,660 ha (mean� SD: 199� 344 ha), and isolation dis-

tances from each focal island to the nearest mainland CF

ranged from 44 to 11,872 m (4,351� 3,386 m). As a

Figure 1. Overview of the study area and snake species recorded. (A) Surveyed sites within the Balbina Hydroelectric Reservoir of
Central Brazilian Amazonia: 25 islands (in red and highlighted by a 1,000-m buffer contour) and four continuous forest sites (CF1, CF2, CF3
and CF4; indicated by red rectangles). (B) Aerial photographs illustrating a mainland continuous forest site (from Google Earth: earth.
google.com/web/), a large, a midsize and small island (photo credit: E. M. Venticinque). (C) Example of species recorded: only in continuous
forest sites (1st row), in both continuous forest and islands (2nd row), only at islands (3rd row) and the two unique species recorded on
mid-size islands (4th row). No species were recorded on small islands (�30 ha).
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baseline, we also surveyed four control continuous forest
(CF) sites that are widely distributed throughout the res-
ervoir and spaced apart by 200 m and 1,500 m from the
nearest reservoir margin. Overall, CF sites were charac-
terized by the nearby presence of riparian habitats
(<500m). In the particular case of CF2, half of the sam-
pling sites therein (N¼ 5) were positioned alongside
riparian forest habitat along �7 m-wide perennial
streams. Due to logistical constraints, riparian habitat
could not be sampled at other CF sites, so that all but
five sampling sites within CF2 were positioned across an
elevation gradient comparable to that of the surveyed
islands.

Terrestrial and fossorial snakes were surveyed using
60-m long traplines, each of which consisting of three
pitfall traps (buried 100-L buckets 68� 57 cm) spaced
20-m apart and connected by a 50-cm high plastic
fence, as adapted from Ribeiro-J�unior et al. (2011). The
number of traplines placed at each sampling site was
approximately proportional to its area. This allowed us
to obtain a higher number of individuals at larger forest
sites, where overall trap density, and consequently the
probability of an individual moving near a trap, was
lower (Table S1 in Supplementary Material 1). When
analysing the data, however, we accounted for potential
effects of a higher sampling effort at larger sites by
including the corresponding sampling effort as an offset
variable. Given the spatial restrictions on small islands,
alternative smaller traplines were established therein (see
details on sampling effort per site in Table S1).

Surveys were carried out from April to November in
2014 and in the same season in 2015, thereby excluding
months of particularly high precipitation in the study
area. We sampled 67 traplines during 16 consecutive
days at each site over two field seasons, except for two
CF sites which were sampled only during either the first
or second field season (Table S1). In total, we sampled
5,952 pitfall-trap-days. In each field season, we sampled
simultaneously a set of 10–15 trap-lines. Different sets of
trap-lines were surveyed during separate occasions, yet
in the same order in both sampling seasons to minimise
any seasonal effects. All traps were checked on a daily
basis, captured snakes were identified in situ, considering
the most recent taxonomic updates (Uetz et al., 2020),
and immediately released in the trapsite vicinities.
Snakes of a given species and similar body size were
never captured along the same transect, so it is highly
unlikely that any given individual was double-counted.
This study followed the guidelines provided by the
American Society of Ichthyologists and Herpetologists
(Beaupre et al., 2004) and the institutional animal care
and use committee of the Federal University of Rio de
Janeiro (CEUA-CCS UFRJ, 2010), and was approved
by the appropriate Brazilian government agency
(SISBIO license No. 39187-4).

Based on high-resolution RapidEye! satellite imag-
ery and using the ArcMap software (Environmental
Systems Research Institute, 2018), at the landscape-
scale, we calculated the Proximity index, which takes
into account the distance to nearby islands and their
aggregate area within a 500-m buffer around the sam-
pling site (PROX; McGarigal et al., 2012), and the linear
distance to continuous forest (DIST). At the patch-scale,
we calculated the island area (AREA) and shape, as the
island area divided by the perimeter (SHAPE) (see detailed
description of each variable in Table S2). Whenever
included in the analysis, CF sites were assigned AREA

values one order of magnitude larger than our largest
island (14,660 ha). To improve model fitting, AREA and
PROX were log-transformed prior to analysis.

Due to the low numbers of snakes recorded, we
summed the number of records for each sampling site
during the two field seasons, and within sampling sites
where more than one trapline was deployed. Also, given
the overall low sampling sufficiency observed (see esti-
mated sample coverage in Table S1 and rarefaction
curves in Figure S1), we calculated the estimated
number of species using the function ‘ChaoRichness’,
an asymptotic diversity estimation function correspond-
ing to the order of Hill numbers: q¼ 0, using the
‘iNEXT’ R package (Hsieh et al., 2020). For subsequent
analyses, we retained both the observed (Sobs) and the
estimated number of species (Sest).

Patterns and predictors of both observed and estimat-
ed numbers of snake species were examined using
Generalized Linear Models (GLMs) fitted with a
Poisson and a Gamma distribution with a log-link func-
tion, respectively. To overcome any potential bias due to
the inevitably higher sampling effort on larger forest
sites, we considered sampling effort, defined as log10
number of trap-days, as an offset variable in all the
models performed. Patch and landscape variables were
highly correlated when both islands and CF sites were
considered, but not when only islands were considered
(except for AREA and SHAPE, r> 0.75). For this reason,
GLMs were first performed considering only forest area
as an explanatory variable, both including and excluding
CF sites. To examine thresholds beyond which species
responses change abruptly, we applied a piecewise
regression model including Sobs as the response and
AREA (log10 x) as the explanatory variable (Toms &
Lesperance, 2003), using the ‘segmented’ R package
(Muggeo, 2017).

We then repeated GLMs for Sobs and Sest considering
all the uncorrelated variables – AREA, PROX and DIST –
across the 25 forest islands. A candidate model set was
constructed using all additive combinations of the
explanatory variables, and with the offset variable
describing the sampling effort. Models were ordered
according to Akaike Information Criterion values
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corrected for small sample sizes (AICc: Burnham &

Anderson, 2002), using the ‘MuMIn’ R package

(Barto�n, 2016). The relative importance (RI) of each

variable contained in the set of more plausible models

(i.e. models having DAICc values between 0 and 2, con-

sidering DAIC¼AICi – AICmin in which i¼ ith model)

was then obtained by the sum of the Akaike weights of

the models where that variable was included (Rhodes et

al., 2009). Explanatory variables were standardized

(x¼ 0, r¼ 1) before fitting each model to the data to

place coefficient estimates on the same scale.

Results

On the basis of 5,952 trap-days, we recorded 50 snakes

representing 16 species, 11 genera and six families, across

11 of the 25 islands surveyed and all four CF sites. Six

species were exclusively recorded at CF sites, five on

islands, and another five species were common to both

sites (Table S3, Figure 1C). The most abundant species

were the Dipsadidae Atractus torquatus (N¼ 9 records)

and the Elapidae Micrurus hemprichii (N¼ 8), while only

one individual (singletons) was recorded for five species.

Excluding one record of an exceptionally large

Lancehead pitviper Bothrops atrox (2,100 cm), snake

mean body length (�SD) was relatively small: 660�
270 cm (200–1,000) (Figure S2).

The number of species recorded on forest islands

(1.55 � 0.78) was much lower than that at CF sites

(5.0 � 3.1). This difference held true when considering

the estimated number of species (islands: 0.84 � 1.30, CF

sites: 10.08 � 8.49; Table S4). In fact, AREA positively

affected Sobs when both including (b¼ 0.760, P< 0.001;

R2¼ 0.506) and excluding CF sites (b¼ 0.923, P¼ 0.010;

R2¼ 0.484). This was also observed for Sest (including

CF: b¼ 1.664, P< 0.001, R2¼ 0.645; excluding CF: b¼
2.898, P< 0.001, R2¼ 0.399) (Table S5). Snake species

could no longer be found below the island size threshold

of 32.5 ha (Figure 2).
When additional metrics related to island isolation

across the 25 forest islands surveyed were considered,

observed numbers of species was primarily negatively

affected by distance to mainland (RI¼ 0.83), but posi-

tively affected by proximity to other islands or continu-

ous forest sites (RI¼ 0.50) and island size (RI¼ 0.21)

(Table S6). The estimated number of species was best

predicted by island size (b¼ 3.738, P< 0.001).

Discussion

Forest patch area is the most important predictor of the

persistence of multiple vertebrate taxa across nearly the

same set of survey sites at the Balbina archipelago,

including mid-large vertebrates (91%: Benchimol &

Peres, 2015b), small mammals (69%: Palmeirim et al.,

2018), lizards (87%: Palmeirim et al., 2017) and birds

(81%: Aure�lio-Silva et al., 2016). Despite the small

sample size, forest area also explained �50% of the

diversity of snakes at the Balbina archipelago. Our

results are in agreement with general power of species-

area relationships in explaining the remaining species

diversity retained in the aftermath of habitat loss and

insular fragmentation (Drakare et al., 2006; Lomolino,

2000). Similar findings were reported for snake assemb-

lages on reservoir islands in sub-tropical China (Wang et

al., 2012) and temperate fragmented landscapes (Kjoss &

Litvaitis, 2001; Luiselli & Capizzi, 1997). Considering

our disconcerting ignorance on the impacts of habitat

Figure 2. Species-Area Relationships of Snake Assemblages Across 25 Islands and Four Continuous Forest Sites Across the Balbina
Archipelago Landscape, Considering the (A) Observed and (B) Estimated Number of Species. The vertical dashed line in (A) indicates the
island size threshold (32.5 ha) below which all snake species could no longer be found. Lines are the model adjusted and shaded areas
represent the 95% confidence regions. Boxplots indicate the median, 1st and 3rd quartiles, and minimum and maximum values of the
observed/estimated number of species in continuous forest (CF) sites; dots indicate observed values.
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loss and fragmentation on neotropical snakes, the clear

species-area relationship reported here represents an

important preliminary tool in predicting extinctions of
forest serpent species across archipelagic landscapes. In

addition, island isolation further apparently imposed a

barrier for at least the relatively small-bodied snakes

recorded in this study. Indeed, smaller-bodied snakes

may be less adept at crossing the aquatic matrix, as

noticed for other reptile species (Jenkins et al., 2007;
Schoener & Schoener, 1984), which inhibits their recolo-

nization of more isolated islands.
Although we were still able to detect snake responses

to habitat loss and insular fragmentation, the very low
number of snake records (N¼ 50) compared against our

considerable sampling effort (5,952 trap-days) suggests

that pitfall trapping is relatively inefficient in compre-

hensively surveying snake assemblages at Balbina.

Indeed, we expected to have recorded only one-quarter

(16 species) of the total snake diversity (up to 65 species)
that likely occurs in this region, as observed on the basis

of long-term research carried out at a terra firme forest

120-km from our study area, the Duke Reserve (Fraga et

al., 2013). Most species we recorded were relatively

small, terrestrial or fossorial (Fraga et al., 2013), with
large-bodied and most arboreal species being able to

immediately exit even the 68-cm deep 100-L pitfall buck-

ets following captures (AFP, pers. obs.). Yet, given that

small-bodied snakes are also those that are least known

across the Neotropics (Vilela et al., 2014), our results

highlight that opportunistic data recorded from suffi-
ciently large pitfall traps (>68 cm in depth) can be

used to improve our knowledge on those smaller species,

although the applicability of our conclusions is limited in

terms of arboreal and aquatic species.
The markedly higher species richness recorded across

mainland CF sites is likely to result from the availability

of riparian habitats therein, which have virtually disap-

peared from the archipelagic landscape given the wide-

spread inundation of lowland areas. In Amazonian

forests, riparian habitats harbour a unique set of snake
species (Fraga et al., 2011). Therefore, the consistent

suppression of lowland forest areas by hydropower

infrastructure, including major riparian habitats, is

expected to have an enormous impact on snake assemb-

lages, as already observed for lizards (Palmeirim et al.,
2017). Further investigation is still needed to obtain con-

sistent information on snake responses to habitat loss

and fragmentation in island systems. Notwithstanding,

to prevent further severe biodiversity loss, including

those of poorly known rare taxa, conservation policies
should avert the additional construction of mega-dams

that create a myriad of small islands, in addition to

extensive reservoir lakes from which riparian habitats

are eliminated.
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