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Why is polyandry such a common mating behaviour when it exposes females to a range of significant

fitness costs? Here, we investigated whether polyandry protects females against reduced male fertility
caused by thermal stress from heatwave conditions. Sperm production and function are vulnerable to
heat, and heatwave conditions are forecast to increase as our climate warms, so we examined these
effects on female reproduction and mating behaviour in the flour beetle, Tribolium castaneum, a pro-
miscuous ectotherm model in which fertility is damaged by environmental warming. We tested whether
polyandrous matings, or polyandrous sperm stores, protect females against reduced male fertility caused
by heatwave conditions, and whether females flexibly adjust their remating behaviour to enable fertility
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climate change with males exposed to heatwave conditions halved female offspring production, but opportunities to
iig;g?;ction mate with five of these males allowed normal female reproductive output. By contrast with this fertility
sperm improvement following polyandrous mating opportunities, there was no protective benefit for females
Tribolium already carrying sperm stores from multiple males, which suffered similar heatwave damage within the

female tract as monogamous sperm stores. Importantly, female polyandry was flexible to male condition,
with females showing greater motivation to remate with new males if their previous mate had been
damaged by heatwave exposure, enabling a rapid reproductive rescue. Our results reveal that flexible
polyandry enables females to rescue their fertility when male reproductive function is compromised by

heatwave conditions, a phenomenon that may become more prevalent under climate change.
© 2021 The Authors. Published by Elsevier Ltd on behalf of The Association for the Study of Animal
Behaviour. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/lice
nses/by-nc-nd/4.0/).

Polyandry, when females mate with multiple males (Hosken &
Stockley, 2003; Pizzari & Wedell, 2013), ‘is both ubiquitous and
common in nature’ (Taylor, Price, & Wedell, 2014, page 377). In a
comprehensive review exploring 203 population estimates of
multiple paternity using microsatellites in 160 animal species,
polyandry was found in 89% of populations (Taylor et al., 2014). This
ubiquity is puzzling, because polyandry increases the opportunity
for sexual conflict by exposing females to a recognized range of
significant fitness costs, including vulnerability to predation or
abiotic stress, time wasting, reduced paternal care, desertion or
infanticide, male manipulation, disease transmission, mate in-
compatibility, physical trauma and even death (Arnqvist & Rowe,
2005; Parker, 2006). Polyandry also enables sexual antagonism to
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operate within the genome (Arnqvist & Rowe, 2005; Parker, 2006).
Why therefore, given the generally high reproductive potential of
individual males, and the widespread costs to females of mating
with multiple males, is polyandry such a common mating pattern
throughout the animal kingdom? Here, we experimentally inves-
tigated whether polyandry can protect females against risks of
reduced fertility following thermal stress from heatwave condi-
tions, extreme weather events which are forecast to increase in a
warming world (Christidis, Jones, & Stott, 2015; IPCC, 2007; Otto,
2016; Raftery, Zimmer, Frierson, Startz, & Liu, 2017; Yin et al., 2018).

Explanations for the adaptive significance of polyandry can be
grouped broadly into three themes: (1) convenience polyandry, (2)
indirect benefits and (3) direct benefits. (1) Convenience polyandry
occurs when females allow multiple mating as a form of damage
limitation against the costs of resisting male sexual harassment
(Boulton, Zuk, & Shuker, 2018). Most operational sex ratios mean
that males are selected to mate at a higher rate than females, which
creates sexual conflict over mating frequency (Bateman, 1948;
Trivers, 1972; Kvarnemo & Simmons, 2013). Convenience
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polyandry can partly resolve this sexual conflict if the costs to fe-
males of accepting multiple matings are lower than the costs of
resisting; empirical evidence for this situation exists, for example,
in the mating struggles of water striders (e.g. Rowe, Arnqvist, Sih, &
Krupa, 1994; Boulton et al., 2018). (2) Polyandry can also provide
indirect benefits if multiple mating allows females to harvest ‘good’
genes for their offspring. Polyandry will strengthen sexual selec-
tion, heightening the struggle between males to reproduce, thereby
applying a tighter filter on the male breeding population and
theoretically allowing females to capture better genes for their
offspring. Empirical evidence from a number of systems and sce-
narios shows that, despite the short-term costs (Arnqvist & Rowe,
2005), polyandry can indeed provide females with longer-term
genetic benefits (e.g. Jennions and Petrie, 2007, Radwan, 2004,
Neff and Pitcher, 2004, Tregenza & Wedell, 1998, Michalczyk et al.,
2011, Price, Hodgson, Lewis, Hurst, & Wedell, 2008, Taylor et al.,
2014, Lumley et al., 2015, Godwin, Lumley, Michalczyk, Martin, &
Gage, 2020), including under selection from thermal stress
(Parrett & Knell, 2018). (3) Finally, polyandry can confer direct
benefits to females if multiple mating is associated with increases
in male reproductive investment via paternal care, protection or
nuptial feeding (Gwynne, 1984; Arnqvist & Nilsson., 2000;
Simmons, 2005), or through the assurance of functional sperm and
fertility (Wetton & Parkin, 1991; Griffith, 2007; Hasson & Stone,
2009; Pizzari, Levlie, & Cornwallis, 2004; Radwan, 2003;
bib_Reinhardt_and_Ribou_2013Reinhardt & Ribou, 2013; Sheldon,
1994; Sutter et al., 2019). In this study, we examined whether
risks of poor male fertility and sperm damage from elevated envi-
ronmental temperature can be countered by polyandry.

Infertility has been documented across a range of invertebrate
and vertebrate taxa in nature (Garcia-Gonzdlez, 2004; Rhainds,
2010), so polyandry could exist as a form of insurance for females
against mating exclusively with an infertile or subfertile male
(Griffith, 2007; Hasson & Stone, 2009; Sheldon, 1994). Females will
clearly suffer profound reproductive costs from lineage extinction if
they are paired exclusively with a male that is unable to fertilize, so
the evolution of polyandry has been theorized as one mechanism to
guard against the risk of female reproductive failure (Hasson &
Stone, 2009; Sheldon, 1994; Yasui & Yoshimura, 2018). Compara-
tive analyses across 58 bird species, where egg hatching success can
be readily measured, showed that an average of 12% of all eggs
failed to hatch in nature (although relationships with mating pat-
terns were not evident; Morrow, Arnqvist, & Pitcher, 2002). In a
study across 30 insect species in eight Orders, the median per-
centage of infertile matings that failed to yield offspring was 22%
(Garcia-Gonzalez, 2004). There is, therefore, evidence for some risk
of compromised fertility in nature and, although poor fertility can
occur for a number of reasons (Morrow et al., 2002), it is clear that
females will be under strong selection to defend their significant
reproductive investment against any risk of compromised sperm
function (Griffith, 2007; Hasson & Stone, 2009; Sheldon, 1994).

One environmental factor that can compromise male fertility
through damage to sperm production and function is thermal
stress. It has long been established that male fertility in endotherms
is sensitive to the universal abiotic variable of temperature, and
studies in mammals and birds have shown that environmentally
relevant increases in thermal regime can diminish male repro-
ductive potential (e.g. Thonneau, Bujan, Multigner, & Mieusset,
1998; Setchell, 2006; Paul, Melton, & Saunders, 2008; Hansen,
2009; Hurley, McDiarmid, Friesen, Griffith, & Rowe, 2018). In
many mammalian species, for example, the testes are external to
the body, allowing them to be maintained at 2—8 °C below core
temperature (Harrison & Weiner, 1948; Banks, King, Irvine, &
Saunders, 2005), and experiments have shown that this testicular
cooling is essential to maintain normal fertility in such species

(Mieusset et al., 2006; Skinner & Louw, 1966; Wettemann, Wells,
Omtvedt, Pope, & Turman, 1976; Jannes et al., 1998; Banks et al.,
2005). A number of studies have shown that environmentally
relevant warming can damage male fertility (Burfening, Elliott,
Eisen, & Ulberg, 1970; Tablado, Revilla, & Palomares, 2009; Lopez-
Gatius, 2003), and this male reproductive sensitivity to heat is
now increasingly recognized in ‘cold-blooded’ ectotherms, where
physiological function will be more directly influenced by the
thermal environment. In Drosophila melanogaster fruit flies, for
example, population viability drops off above 30 °C, because this is
the rearing temperature at which males typically become sterile
(David et al., 2005), and male thermal fertility limits can predict
drosophilid species distribution better than viability limits (Parratt
et al,, 2020).

Likewise, in Tribolium flour beetles, experimental heatwave
conditions that are 5—7 °C above the population productivity op-
timum of 35 °C damage sperm production and viability, causing
reduced fertility and reductions in offspring fitness (Sales et al.,
2018, 2021). A single such heatwave halves fertility, while a sec-
ond heatwave renders males almost sterile, whereas females are
resilient to heat stress unless they are carrying sperm from previous
matings, which become damaged if they suffer heat exposure in
storage (Sales et al., 2018, 2021). Because fertility can be compro-
mised by the thermal environment, and because climate change
will create a greater incidence of more extreme heatwave condi-
tions, we therefore explored whether polyandry can shield females
from male reproductive damage caused by heatwave conditions.
Using the model insect Tribolium castaneum, representative of a
huge number of coleopteran species, we examined whether (1)
polyandrous mating opportunities or (2) storing sperm from mul-
tiple males can protect females from reduced male fertility or
sperm damage caused by heatwave exposure. Having established
how polyandry benefits females under heatwave-induced
compromised fertility, we then tested the hypothesis that females
show facultative polyandry, flexibly modifying their remating
behaviour depending on the heatwave exposure and fertility status
of their previous mate. Our study closely follows that by Sutter et al.
(2019) who examined flexible polyandry in relation to heat stress
and male infertility in Drosophila pseudoobscura. However, as well
as confirming the general findings of Sutter et al. (2019) in a
different model system, we also assessed the ‘postcopulatory’
benefits of polyandrous sperm stores for female fertility when
sperm are damaged within females by heatwave conditions, and
we also examined in more detail how female remating behaviour
responds to male infertility, and the specific consequences of that
for reproductive rescue. As climate change increases the frequency,
duration and intensity of heatwaves (Christidis et al., 2015; IPCC,
2007; Otto, 2016; Raftery et al., 2017; Yin et al., 2018), under-
standing how reproductive behaviour responds to thermal stress is
becoming more relevant (Walsh et al., 2019).

METHODS
Ethical Note

Ethical approval for the research was granted by UEA's Animal
Welfare and Ethical Review Board; no invasive procedures were
applied, and beetles were maintained and treated under conditions
that would be encountered in their natural environment as a hu-
man commensal and pest of stored products.

Insect Maintenance

We maintained T. castaneum flour beetles from the Krakow Super-
Strain (KSS) in a controlled environment at 30 °C and 60 + 10%
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relative humidity under a 16:8 h light:dark photoperiod, as previ-
ously described (Dickinson, 2018; Sales et al., 2018; Vasudeva et al.,
2019). Small stock populations were reproduced by ca. 600 adults
across nonoverlapping generations (ca. 35 days) and maintained with
ad libitum fodder consisting of 90% organic flour and 10% brewers’
yeast (Doves Farm Foods Ltd, Hungerford, U.K. and ACROS Organics,
Antwerp, Belgium) topped with a layer of oats for traction. We ob-
tained experimental beetles by isolating and sexing pupae from the
stocks and keeping them in single-sex groups of 20 individuals in
6 cm petri dishes with 15 ml of fodder. After adult eclosion, in-
dividuals were allowed a further 12 +2 days in their single-sex
groups to reach reproductive maturity before being randomly
assigned to their treatment. During maturation, we marked adults of
one sex on the dorsal thorax using a nontoxic water-based marker
(Uniposca, www.posca.com) for identification. Experimental treat-
ment groups were blinded or anonymously coded before the start of
the assays until the completion of all data collection.

Heatwave Exposture

We exposed sexually mature beetles (12 +2 days post adult
eclosion) in single-sex groups to heatwave conditions for 5 days at
42 + 1°C and 60 + 10% relative humidity, 7 °C above the 35 °C op-
timum for population productivity in T. castaneum (Mickel &
Standish, 1947, Howe, 1956; Sokoloff, 1974). This thermal treatment
consistently damages the subsequent fertility of adult males (Sales
et al.,, 2018, 2021). Heatwaves are commonly defined when tem-
peratures exceed the normal average maxima by 5 °C or more for at
least 5 days (Frich et al., 2002), although variability will obviously
occur in the natural environment compared with our stable exper-
imental conditions. Temperature extremes of 42 °C or more have
been recorded in the natural environment across 103 countries
(Mherrera, 2016). Heatwave conditions were applied using an A.B.
Newlife 75 Mk4 forced-air incubator (A.B. Incubators, Ipswich, U.K.).
Control beetles were treated the same as heat-exposed beetles,
except kept throughout at 30°C. Any males that died were dis-
carded, with the heatwave treatments resulting in the deaths of 29 of
300 males (9.6%) compared to 21 of 240 controls (8.8%); there was no
significant difference in survival between the two treatments (me-
dian survival for both treatments 90%; quasibinomial generalized
linear model, GLM: b [~95% confidence interval, CI] = —0.11 [-0. 83,
0.61], t=-0.31, P=0.763; Fig. Al). Treatment temperatures were
within 1 °C of the experimental set point, checked using a 35—45 °C
mercury incubation thermometer (G.H. Zeal Ltd, London, U.K.) cali-
brated to United Kingdom Accredited Service standards (Charnwood
Instrumentation Services Ltd, Coalville, U.K.). Following heat stress
and control treatments, we maintained all individuals in common
garden conditions at 30 + 1 °C for 24 h, before being used in breeding
experiments at 30+ 1 °C.

Benefits of Polyandry When Males Experience Heatwaves

We gave reproductively mature adult KSS females that had been
maintained throughout in standard 30 °C conditions mating op-
portunities with either a single mature male (monandrous regime)
or five mature males (polyandrous regime). All adults were
unmated and 18 +2 days posteclosion at the start of the repro-
ductive fitness assay, and were given a 48 h mating opportunity in
either 7 ml vials with 3 ml of fodder (monandrous pairs) or 5 cm
petri dishes and 15ml of fodder (polyandrous groups). As
T. castaneum displays promiscuous mating behaviour, exposure of
females to five males will typically result in sperm storage from
multiple males (Pai & Yan, 2003; Fedina & Lewis, 2008; Lumley
et al., 2015). Males exposed to heatwave conditions also readily
mate and inseminate females across a 48 h mating opportunity,

even though their sperm may be compromised (Sales et al., 2018).
In approximately half of these monandrous and polyandrous
treatments, the males had been exposed to 5 days of 42 °C heat-
wave conditions which had completed 24 h before the start of
mating opportunities, and the other half were age-matched control
males that had been maintained throughout at 30 °C. Following the
48 h monandrous or polyandrous mating opportunity, we moved
females to oviposit individually in 5 cm petri dishes containing
15 ml of fodder for 20 days, in two 10-day oviposition blocks to
prevent overlapping generations and limit larval competition,
before discarding them. We therefore scored reproductive output
of each female as the number of offspring successfully produced
over 20 days of oviposition (Sales et al., 2018), which represents half
of a female's lifetime offspring production under these conditions,
and also correlates significantly with her total offspring production
under these conditions (R?> = 0.55, P = 0.001, N = 46, Figure 2.3 in
Dickinson, 2018). We compared reproductive fitness between fe-
males that had been given mating access to either 30 °C control or
42 °C thermal treatment males, in either monandrous or poly-
androus conditions (Fig. 1a ; monandrous mating opportunities
with a 30 °C control male: N = 57; monandrous mating opportu-
nities with a 42 °C heat stress male: N = 59; polyandrous mating
opportunities with 30°C control males: N =56; polyandrous
mating opportunities with 42 °C heat stress males: N = 60).

Benefits of Polyandry When Stored Sperm Experience Heatwaves

As well as disruption of sperm development and viability in
males, the function of sperm stored within the female reproductive
tract after insemination is compromised by heat stress exposure of
females, halving future offspring production (Sales et al., 2018, 2021).
We therefore measured whether sperm stores in females given the
opportunity to mate polyandrously were more resilient to fertility
damage from thermal stress, compared with those of females storing
sperm following monandrous mating opportunities with single
males. As above, females were provided with 48 h mating oppor-
tunities with control males that had been maintained throughout at
30°C, either with single males (to generate monandrous sperm
stores) or five males (to generate polyandrous sperm stores). Assays
of female mating behaviour show that females will mate with
multiple males under these conditions (Michalczyk et al., 2011), and
that males can inseminate multiple females (Lumley et al., 2015).
After the 48 h mating opportunities, we discarded the males.
Approximately half of the females were exposed to 5-day 42 °C
heatwave conditions, and the other half to standard 30 °C control
conditions, after which all were maintained for 24 h in a common
garden environment of 30 °C. Following this treatment, females
were moved to oviposit individually in 5 cm petri dishes containing
15 ml of fodder for two 10-day periods, with the resulting repro-
ductive output scored as the number of adult offspring emerging.
Reproductive output of each female was therefore the number of
offspring successfully produced over 20 days of oviposition (Sales
et al., 2018), and we compared the fitness of females that were
either carrying monandrous or polyandrous sperm stores, following
30°C control or 42 °C heatwave conditions (Fig. 1b; monandrous
sperm stores exposed to 30°C conditions: N = 46; monandrous
sperm stores exposed to 42 °C heat stress: N = 32; polyandrous
sperm stores exposed to 30°C conditions: N = 43; polyandrous
sperm stores exposed to heat stress: N = 40).

Female Remating Behaviour
To assess whether females use flexible polyandry to improve

their reproductive output after mating with a male whose
fertility had (potentially) been compromised by heat exposure,
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Figure 1. Design of four experiments investigating the adaptive significance of polyandry in response to damaged male fertility due to heatwaves (42 °C). Central factors (mating
regime, temperature treatment) of the fully factorial design as well as reponse variables of interest (reproductive output, remating behaviour) are highlighted in dark grey.
Polyandrous mating opportunities are represented with square male symbols (consistent with Figs. 2—5). (a) Female reproductive fitness outcome following mating opportunities
with control males (blue, 30 °C) or heatwave-exposed males (dark red, 42 °C) under polyandry or monogamy. (b) Reproductive fitness outcome of females exposed to heatwaves
with polyandrous or monogamous sperm stores. (c) Behavioural observations of females after being mated with a control or heatwave-exposed male. (d) Fitness consequences of
flexible polyandrous remating among females that were initially mated to a control or a heatwave-exposed male.

we conducted female remating behaviour and reproductive
fitness rescue trials. The remating behaviour trials were con-
ducted in three separate experimental blocks, with each block
using beetles bred from a different generation and stock. To
minimize observer bias, we coded experimental females prior to
the behavioural assays so their treatment group could not be
identified during the behavioural assays. We paired unmated
adult females (18 +2 days posteclosion) monandrously for 24 h
mating opportunities in 7 ml vials containing 3 ml of fodder with
either (1) a male that had been exposed to 5 days of 42 °C heat
stress conditions (completed 24 h before the start of the assay) or
(2) a control male that had been maintained at 30 °C throughout.
Males were all unmated and 18 +2 days posteclosion. We sepa-
rated pairs after 24 h to allow the females to oviposit in isolation,
and a further 24 h later all females were provided with a second
tester male to record remating behaviour. The tester males were
all unmated, 18 +2 days posteclosion, and maintained
throughout at 30 °C. Following introduction of both adults to an
empty 7 ml vial, we observed each pair for 30 min at 30 °C and
60% relative humidity (in batches of 5—10 experimental pairs per
observer). Mating success, latency to mate, the number of
copulatory mounts and copulation duration were recorded for
each pair (Fig. 1c). We scored successful matings when copula-
tory coupling lasted more than 33 s, which is the average mini-
mum mating period indicating successful spermatophore transfer
in T. castaneum (Edvardsson and Arnqvist, 2005; Droge-Young,
Belote, Perez, & Pitnick, 2016).

To establish whether previous complete mating failure could
influence our remating behaviour results, we incubated the vials
that our tester females oviposited in between their first and second
mating opportunity, and counted emerged offspring after 35 days
of incubation. In addition, we directly assayed the frequency of
sperm transfer for a random subset of 24 females paired monoga-
mously with males that had been previously exposed to 42 °C heat
stress conditions. After the females had had a 24 h mating oppor-
tunity at 30 °C, we decapitated them and placed them on a clean
glass slide for dissection in a 30 ul drop of insect saline (0.9% NaCl)
under an Olympus SZX9 binocular microscope. The entire repro-
ductive tract was isolated and removed, placed under a
22 x 22 mm cover slip and scored for the presence of spermato-
phores in the bursa and/or sperm in the bursa or spermatheca
(Sales et al., 2018).

Reproductive Fitness Rescue Following Remating

To measure the fitness benefits of female remating, we ran two
additional experimental blocks in which we first gave females 24 h
mating opportunities with either a single control or 42°C
heatwave-exposed male, as described above. To measure repro-
ductive fitness consequences of remating opportunities, we pro-
vided these females with a 30 min remating opportunity with a
new control male (behaviour not recorded), after they had been
ovipositing alone for 10 days (in a 5 cm petri dish with 15 ml of
fodder). After the 30 min remating opportunity, females were
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returned to a new labelled 5 cm petri dish with 15 ml of fodder for
another 10-day oviposition period under standard conditions.
Offspring produced from this oviposition period were counted
when they emerged (35 days later) as adults, and we used this score
to compare reproductive fitness benefits of remating for females
after they had been initially paired with either heatwave-exposed
or control males (Fig. 1d). To compare fitness benefits of remating
versus no remating, a control set of females were exposed in par-
allel to the same initial mating opportunities (males exposed to
42 °C heatwaves versus 30 °C controls), but then denied the op-
portunity to remate, providing baseline reproductive output data
under enforced monogamy following pairing with heatwave-
exposed versus normal males.

Statistical Analyses

We carried out all analyses using R Studio (RStudio Team, 2019;
v 1.2.5019 and 1.2.5033) in R version 3.6.1 (R Development Core
Team, 2017) and figures were generated using the ‘ggplot2’
(Wickham, 2016) and ‘beeswarm’ packages (Eklund, 2016). Data
sets were summarized using ‘tidyverse’ (Wickham et al., 2019) and
‘Rmisc’ (Hope, 2013) packages. Specific approaches for individual
results are described below. Across experimental blocks, any rep-
licates where the individual died during an experiment were
censored (N =18). Assumptions for data distributions were
checked to determine the relationship between the mean and
variance of the response variable and the appropriate error distri-
butions (Crawley, 2012), and model residuals were checked for
violations of assumptions using the ‘DHARMa’ package (Hartig,
2020). All biological replication produced here was included in
the formal analysis. Where relevant, experimental blocks were
added in as a fixed effect with three levels (Thomas et al., 2015).

Mating with heatwave-exposed males

We used a linear model (LM) to analyse female reproductive
fitness (total offspring production over two 10-day periods)
following monandrous versus polyandrous mating opportunities
with heatwave-exposed versus control males. We entered mating
regime (monogamous versus polyandrous mating opportunity)
and male treatment temperature (30 °C or 42 °C) as predictors,
including their interaction.

Heatwave exposure of stored sperm

Similarly, we analysed reproductive fitness of females exposed
to heatwave versus control conditions (female temperature) and
carrying monandrous versus polyandrous sperm stores (mating
regime) with an LM, including female temperature, their mating
regime and the interaction between the two as explanatory
variables.

Female remating behaviour

The proportion of females that successfully remated was ana-
lysed using a quasibinomial GLM (‘logit’ link) to account for over-
dispersion, combining females that remated and that did not
remate using the cbind function, and including male treatment and
experimental block as explanatory variables. Mating latency, the
number of mounts and copulation duration of females that mated
(221 of 309 females) were analysed with linear mixed-effects
models (LMMs) in the ‘lme4’ package, version 1.1—21 (Bates,
Machler, Bolker, & Walker, 2015). To satisfy assumptions about
the distribution of residuals, we log transformed mating latency
and copulation duration, and square-root transformed the number
of mounts. We included the treatment (control or heatwave) of the
female's previous mate and experimental block as fixed effects.

Consequences of female remating

We attempted to analyse female reproductive output after being
paired previously with a control or heatwave-treated male using
zero-inflated models in ‘glmmTMB’ (Brooks et al., 2017) with a
Gaussian distribution for the conditional part of the model. How-
ever, complete separation (see the Hauck—Donner effect) occurred
because none of the control females failed to produce offspring
after their first mating. Hence, we analysed producing any offspring
versus failure to do so as a binary outcome using chi-square tests,
and fecundity among females with nonzero offspring counts using
LMMs. The full LMM included male treatment (heatwave versus
control), mating regime (polyandry versus monandry), egg-laying
period (after the second versus first mating opportunity), as well
as all possible interactions as fixed effects. We included female ID
nested within experimental block as random intercepts. We were
not able to fit random slopes between the first and second egg-
laying period for individual females due to model convergence is-
sues. We performed backwards model selection to remove
nonsignificant terms, starting with interaction terms. We used
Satterthwaite's method, implemented in ImerTest (Kuznetsova,
Brockhoff, & Christensen, 2017).

RESULTS
Benefits of Polyandry when Males Experience Heatwaves

Polyandrous mating opportunities with standard control males
did not change the reproductive output of females compared with
those mating monandrously (b [~95% Cl] = —1.65 [-27.6, 24.3],
t1228 = —0.125, P=0.901). However, there was a clear benefit of
polyandry for females when breeding with males whose repro-
ductive potential had been damaged through exposure to 42 °C
heatwave conditions, evidenced by a strong interaction between
male treatment and mating regime (Fig. 2; b = 119.0 [82.8, 155.2],

400
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1 1
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Figure 2. Offspring production of females mated either monandrously (circles) or
polyandrously (squares) with males previously exposed to control (blue) or heatwave
(dark red) conditions. Large symbols and error bars represent mean and associated
approximate 95% confidence intervals, with raw data shown as small symbols.
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t1228 =6.47, P<0.001). Polyandrous mating opportunities
cancelled out the detrimental effect of male heatwave treatment on
monandrous females (b=113.7 [139.3, 88.1], tj28= —8.75,
P < 0.001), enabling full reproductive rescue. Monandrous matings
with heatwave-exposed males resulted in a halving of female
reproductive fitness, while opportunities for polyandry enabled
females to rescue their reproductive fitness back up to the same
levels as those following matings with control males (Fig. 2).

No Benefits of Polyandry for Sperm Stored through Heatwaves

By contrast with our finding that a polyandrous mating oppor-
tunity enabled females to rescue their reproductive fitness when
male fertility had been compromised by heatwave exposure, we
found no evidence for any equivalent protective benefit from
holding sperm stores from multiple males (Fig. 3). Previous
T. castaneum research has shown that heatwave conditions damage
sperm in female storage, which then reduces female fertility (Sales
et al., 2018). Our results here confirmed that sperm were damaged
in storage when females were exposed to heat stress conditions,
causing a subsequent halving in female fertility (main effect of
temperature: b = —119.5 [-143.0, —95.9], t1157 = —9.96, P < 0.001).
Importantly, this fertility reduction occurred irrespective of
whether females had been given previous opportunities to store
sperm from one versus five males (mating regime: b = 9.0 [-12.7,
30.7], t1157 =0.82, P=0.417; interaction: b = —9.5 [-42.0, 23.0],
t1157 = —0.57, P = 0.568).

Female Remating Behaviour

Females showed flexible remating behaviour depending on the
heatwave exposure and fertility status of their previous mate

400

300 -

200

Offspring production [95% CI]

e f

1 1
Monandry Polyandry

Heatwave 42 °C

1
Polyandry
Control 30 °C

1
Monandry

Figure 3. Offspring production of females mated either monogamously (circles) or
polyandrously (squares) before being exposed to 30 °C (control, blue) or 42 °C (heat-
wave, dark red) conditions, respectively. Large symbols and error bars represent mean
and associated approximate 95% confidence intervals, with raw data shown as small
symbols.

(Fig. 4). Compared to control females, females that had been given
a mating opportunity with a 42 °C heatwave-exposed male (Fig. 2;
Sales et al., 2018, 2021) were more likely to remate when provided
with a new male (Fig. 4a; quasibinomial GLM: b = 0.89[0.63, 1.15],
t=6.87, P=0.021). These females previously paired with a
heatwave-exposed male were also quicker to copulate (Fig. 4b;
LM on log-transformed latency: b= -3.10, [-0.92, -5.29],
t1217 = —2.84, P < 0.001), and engaged in more sexual behaviour
with the new male (Fig. 4c; LM on square root-transformed
number of mounts: b =0.58, [0.37, 0.79], t1217 = 5.49, P < 0.001).
Once engaged in copula with the new male, mating duration was
similar irrespective of whether the female's previous mate had
been exposed to a heatwave or not (Fig. 4d; LM on log-
transformed duration: b=0.05, [-0.08, 0.18], ty217=0.76,
P =0.446).

Incubating vials that females oviposited in for the first 24 h
prior to their second mating opportunity revealed that 73%
(127/174) of females produced some viable offspring after being
paired with a heatwave-exposed male. Although, this propor-
tion was higher for females paired with control males (126/
134 =94%; x21 =214, P<0.001), it demonstrates that females
did not simply refuse to mate with heatwave-exposed males.
Moreover, among females initially paired with heatwave-
exposed males, polyandry levels were not significantly higher
if females had failed to produce any viable offspring (35/
47 =75% versus 102/128 = 82%; 21 =0.81, P=0.368). Finally,
our subset of 24 females that were dissected after a 24 h mating
opportunity with a heatwave-exposed male showed that 22
(92%) had a spermatophore present in their bursa copulatrix
(Fig. A2), similar to levels previously reported (Sales et al.,
2018). Thus, a high proportion of females had been mated
and inseminated by heatwave-exposed males, and increased
polyandry was not simply a result of a higher incidence of
previous mating failure.

Fitness Consequences of Polyandry

Importantly, those females that had previously been given
mating opportunities with a 42°C heatwave-exposed male
gained an immediate reproductive fitness improvement if they
were given an opportunity to remate polyandrously with a new
control male, restoring offspring production to the same level as
that shown after matings with control males with normal
fertility (Fig. 5). Only females that had initially been paired with
a heatwave-exposed male, but were given an opportunity for
polyandry, differed in their likelihhod of having zero offspring
between the first and the second 10-day period (25/42 = 60%
versus 0/42 = 0%; % =32.8, P<0.001). Females paired with
control males almost never failed to produce offspring, and many
females paired with heatwave-exposed males but denied a
remating opportunity remained sterile throughout (chi-square
tests: all P> 0.474). Variation in nonzero fecundity among fe-
males was also explained by interactions between male treat-
ment, mating regime and laying period (Fig. A3). Specifically,
both the interactions between male treatment and laying period
and between mating regime and laying period were retained
during model selection (Fq 1143 = 6.55, P=0.012 and Fy 1135 =10.1,
P=0.002, respectively). This means that remating with new
males was beneficial to females initially mated to heatwave-
exposed males because it prevented females from failing to
produce any offspring, and additionally increased the fecundity
among offspring-producing females (Fig. 5). A similar pattern
was seen when females that produced no offspring were
excluded (Fig. A3).
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Figure 4. Remating behaviour of females previously mated to males exposed to control (blue) or experimental heatwave conditions (dark red). (a) Percentage of females remating
(three experimental replicates connected by grey lines), (b) latency to remate, (c) number of mounts and (d) copulation duration. Larger squares and error bars denote mean and
approximate 95% confidence intervals based on (a) model predictions, (b, c¢) raw data back-transformed from a square-root transformation and (d) raw data back-transformed from
a log transformation. (a) Raw data are shown as smaller symbols, with symbol area proportional to sample size (numbers indicated inside squares). (b, c, d) Shaded areas (violin
plots) represent the density distribution of raw data. Asterisks indicate significant differences based on (a) generalized and (b, ¢, d) linear mixed models. *P < 0.05; ***P < 0.001.
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Figure 5. Offspring production of females first mated to control males or heatwave-exposed males and then after 10 days either not allowed to remate (enforced monandry) or
allowed to remate (polyandry). Large symbols and error bars show means and approximate 95% confidence intervals. Raw data are shown alongside, with symbol area representing
the number of identical outcomes. Figure A3 also presents these data for all females that produced some offspring.

DISCUSSION

Our experiments

confirm

that reproduction is
compromised by male or spermatozoal exposure to experimental

clearly

heatwave conditions (Sales et al., 2018, 2021), but that opportu-
nities for mating polyandrously can shield females from this
reduced male fertility. In the absence of thermal stress, monan-
drous versus polyandrous mating opportunities provided females
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with similar levels of full reproductive output (Fig. 2). However, if
males' fertility had been compromised as a result of heatwave
exposure, mating exclusively with just one male reduced a female's
reproductive fitness by a half, whereas females provided with
polyandrous mating opportunities with five such males were able
to rescue their fertility to normal, full levels (Fig. 2). Importantly, we
showed that females gained these fertility benefits by facultatively
increasing their rate of polyandry: females remated faster, more
often and at a higher rate with a new male if previously paired with
males whose fertility had been damaged by heatwave conditions
(Fig. 4).

We assessed both ‘copulatory’ and ‘postcopulatory’ reproduc-
tive benefits to females from polyandry, and were able to show that
it is the opportunity for polyandrous mating, rather than the
maintenance of polyandrous sperm stores, that enables these
fertility improvements for females. Heatwave exposure to females
that had already mated and stored sperm led to a subsequent
halving in female reproductive output, irrespective of whether a
female's sperm stores had been previously acquired through
monandrous or polyandrous mating opportunities (Fig. 3). How-
ever, the opportunity to mate polyandrously after males had been
exposed to fertility-damaging heatwave conditions allowed fe-
males to avoid compromised reproduction (Fig. 2). Heat stress
exposure to male T. castaneum reduces sperm number, viability and
movement through the female reproductive tract (Sales et al.,
2018). Polyandrous mating could enable females to either accu-
mulate adequate sperm numbers in the bursa and spermatheca for
full fertility or filter damaged or nonviable sperm away from the
fertilization set. Once in female storage, however, and irrespective
of whether they came from single or multiple males, we found that
sperm (and therefore female fertility) were vulnerable to heatwave
damage.

Despite the recognized costs (Hosken & Stockley, 2003; Arnqvist
& Rowe, 2005; Parker, 2006; Pizzari & Wedell, 2013), widespread
polyandry (Taylor et al., 2014) has been theorized to evolve for
insurance against risks of male infertility and the termination of a
female's reproductive lineage (Sheldon, 1994; Hasson & Stone,
2009; Yasui & Yoshimura, 2018). Natural infertility is widely
recognized (Garcia-Gonzdlez, 2004; Rhainds, 2010), and mating
with multiple males has been shown to guard against risks of
mating failure or male infertility in a range of vertebrate and
invertebrate taxa (e.g. Sakaluk & Cade, 1980; Gibson & Jewell, 1982;
Wetton & Parkin, 1991; Sheldon, 1994; Delisle & Hardy, 1997;
Krokene et al., 1998; Arnqvist & Nilsson, 2000; Pizzari et al., 2004;
Uller & Olsson, 2005; Hasson & Stone, 2009; Forbes, 2014),
including in T. castaneum (Pai, Bennett, & Yan, 2005). Here, we
detail the benefits of polyandry for females facing a halving in their
reproductive output due to compromised male fertility following
thermal stress. Recent work with D. pseudoobscura has found
similar results (Sutter et al., 2019), with heat-exposed, subfertile
males being slower and less successful to mate, and females then
showing a doubling in their likelihood of subsequent mating to
enable reproductive rescue after first mating with these subfertile
males. Research is now needed to measure the prevalence of male
fertility damage by thermal extremes in the natural environment,
and therefore the extent of natural and sexual selection for poly-
andry to improve reproductive success following heatwaves.

In addition to showing that polyandry guards females against
heatwave-induced poor male fertility, we also found that female
T. castaneum facultatively vary their remating behaviour with new
males depending on their immediate need for fertility rescue. Fe-
males previously paired with a male that had experienced a 5-day
42 °C experimental heatwave, and therefore suffering sperm
damage and an average halving of reproductive potential (Fig. 2;
Sales et al., 2018; Sales et al., 2021), were (1) more likely to remate

with a new male, (2) did so sooner when the opportunity was
provided and (3) engaged in more sexual behaviour (Fig. 4). Of the
females previously mated to a heatwave-exposed male, 80%
remated polyandrously within 30 min of observation when given
the opportunity of mating with a new male, compared with 63% of
females previously paired with a normal fertility male (Fig. 4a).
Within these higher remating frequencies, females previously
mated to a subfertile, heatwave-exposed male also showed a
shorter latency to remate, on average gaining copula within 9 min
of the second male's introduction versus almost 13 min for females
previously paired to a control male (Fig. 4b). Females that had
previously been paired with heatwave-exposed males also dis-
played greater sexual activity when given access to a second male,
engaging in almost twice as many copulatory mounts compared to
females previously mated to a normal fertility male (Fig. 4c).
Although we can link female remating behaviour to reduced sperm
number, viability and presence in the T. castaneum female repro-
ductive tract (Sales et al., 2018), there is also the possibility that
thermal stress denatures male seminal fluid proteins, which in-
fluence female remating behaviour in other insects (e.g. Chapman,
2001; Liu & Kubli, 2003). Notably, we can be sure that these
changes in female remating behaviour were not due to mating or
insemination failure by their previous heatwave-exposed mates,
because dissections showed that more than 90% of these males had
successfully transferred spermatophores to females, and most fe-
males had some, albeit reduced, reproductive output after mating
with a heatwave-exposed male.

To support these findings for facultative polyandry, we also
showed that remating by females, even when only given a 30 min
opportunity, enabled rapid fertility rescue to normal levels for
those females suffering reproductive limitations due to their pre-
vious mate's poor fertility. Moreover, for these females previously
paired to males that had been exposed to heatwaves, female
reproductive output was restored to normal levels for at least 10
days across the second half of a 20-day experimental oviposition
period (Fig. 5). These combined findings reveal that females vary
their remating behaviour adaptively according to their fertility
status, using flexible polyandry to recover reproductive output
when it is most needed. Facultative polyandry to enable female
fertility rescue or protection has been recorded across a number of
conditions and species (e.g. birds: Wetton & Parkin, 1991; reptiles:
Friesen, Uhrig, & Mason, 2014; insects: Kraaijeveld & Chapman,
2004, Landeta-Escamilla, Hernandez, Arredondo, Diaz-Fleischer, &
Pérez-Staples, 2016, Sutter et al., 2019). However, this behaviour
may be context- or species-dependent, because other studies have
found that female remating behaviour and polyandry are unaf-
fected by fertility or sperm storage status (e.g. Morrow et al., 2002;
Harmer, Radhakrishnan, & Taylor, 2006; Abraham et al., 2014;
Kriiger et al., 2019). Studies of natural systems have even shown
that females may preferentially mate with males that confer low
fertility, owing to their high-ranking reproductive status causing
sperm depletion (Preston, Stevenson, Pemberton, & Wilson, 2001;
Warner, Shapiro, Marcanato, & Petersen, 1995).

Conclusions

In summary, we found that female T. castaneum used polyandry
as a behavioural strategy to improve their reproductive fitness
when faced with risks of poor fertility as a consequence of heat-
wave damage to males and their sperm (Figs. 2 and 3; Sales et al.,
2018; Sales et al., 2021). Females deployed this polyandrous
behaviour flexibly according to proximate fertility needs (Fig. 4),
allowing them to balance the costs of multiple mating (Arnqvist &
Rowe, 2005) against the benefits of replenishing reduced, damaged
or nonviable sperm stores (Fig. 5). As our climate warms,
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heightened atmospheric volatility is forecast to increase the fre-
quency, intensity and duration of heatwaves (Otto, 2016, Yin et al.,
2018, Christidis et al.,, 2015, IPCC, 2007, Raftery et al., 2017).
Reproductive sensitivity and potential to adapt to such climate
extremes is therefore important to understand (Walsh et al., 2019),
especially given the recent discovery that drosophilid species dis-
tributions are determined primarily by male thermal fertility limits,
and not viability or lethal thresholds (Parratt et al., 2020).

Data Availability

All raw data and code in support of this study are available to
download at https://doi.org/10.5061/dryad.
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Appendix
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Figure A1. Survival of males, from collection at pupal stage to after the heatwave or control treatment. Pupae were kept in groups of 20 in 6 cm petri dishes with 15 ml of fodder (15
groups for heatwave treatment, 12 for control treatment).
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Figure A2. Percentage of females that after a 24 h mating opportunity with a heatwave-exposed male were found to have a spermatophore and/or sperm present in the bursa
copulatrix and the spermatophore, respectively. Mating vials were also incubated to check for the presence of offspring 35 days later. Numbers represent numbers of females.
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Figure A3. Offspring production of females first mated to control males or heatwave-exposed males and then after 10 days either not allowed to remate (enforced monandry) or
allowed to remate (polyandry). Results are shown for females with nonzero reproductive output (see Fig. 5). Here, we excluded females that had failed to produce any offspring in
one of their laying vials. Large symbols and error bars show means and approximate 95% confidence intervals. Raw data are represented by violin plots.
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