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New strategies to fight bacteria and fungi are necessary in view of the problem of

iatrogenic and nosocomial infections combined with the growing threat of increased

antimicrobial resistance. Recently, our group has prepared and described two new

readily available materials based on the combination of Rose Bengal (singlet oxygen

photosensitizer) and commercially available cationic polystyrene (macroporous resin

Amberlite® IRA 900 or gel-type resin IRA 400). These materials showed high efficacy

in the antimicrobial photodynamic inactivation (aPDI) of Pseudomonas aeruginosa. Here,

we present the photobactericidal effect of these polymers against an extended group

of pathogens like Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, and

the opportunistic yeast Candida albicans using green light. The most interesting finding

is that the studied materials are able to reduce the population of both Gram-positive

and Gram-negative bacteria with good activity, although, for C. albicans, in a moderate

manner. In view of the results achieved and especially considering the inexpensiveness

of these two types of photoactive polymers, we believe that they could be used as the

starting point for the development of coatings for self-disinfecting surfaces.

Keywords: ESKAPE, antimicrobials, polystyrene, broad-spectrum, photodynamic inactivation, singlet oxygen

INTRODUCTION

Nosocomial infections are growing in importance day by day and constitute a serious problem
for public health, causing important human and economical loses. In the future, it is expected
that bacterial and fungal infections will be a major cause of death worldwide (1). These infections
are mainly originated by a growing number of bacteria and fungi with strong resistance to
chemotherapeutical drugs, and special attention is paid to the development of strategies that deal
with the well-defined group of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter
species) (2).
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Other important sources of nosocomial infections
are opportunistic fungal pathogens, especially in
immunocompromised patients (3). In particular, several
Candida spp. are widely recognized as majorly responsible for
the morbidity and mortality caused by opportunistic microbes
in healthcare settings (4). Similarly, the emergence of Candida
spp. resistant to antifungal drugs is also widely recognized and
therefore has become a global health problem (5). Despite the
intensive work carried out in order to develop alternatives to the
current drug treatments (6, 7), the most realistic approach to
fighting antimicrobial-resistant microorganisms continues to be
the prevention of contagion.

Nosocomial infections arise mainly from the growth of
microorganisms in surfaces in close contact to patients, for
instance orthopedic implants, catheters, and gastroesophageal
tubes. Therefore, the development of antimicrobial coatings
engineered for use in medical devices is of great practical
interest. Several strategies have been developed in the past to
make surfaces with antimicrobial properties, and the literature is
abundant in reviews about this topic (8, 9). Thus, it is possible
to design surfaces with antifouling properties that inhibit the
adherence of microorganisms by controlling, for example, the
surface hydrophobicity (10). Also, there is relevant research on
the development of coatings with intrinsic antimicrobial features
by the incorporation of biocide compounds (11–13).

An emerging strategy to fight hospital-acquired infections is
the so-called antimicrobial photodynamic inactivation (aPDI)
(14–17). This approach has been developed in parallel with
the photodynamic therapy (PDT) of cancer (18, 19), although
in recent times it has attracted a renewed interest (14, 15,
20–26). It is based on the killing of microorganisms by
reactive oxygen species (ROS), for instance singlet oxygen and
radicals, which in turn are generated due to the absorption
of light by a photosensitizer in the presence of oxygen.
Since the mechanistic aspects of the processes involved are
very well-described elsewhere, the reader is referred to any
of the excellent reviews published in the literature about
photosensitization (27–33).

Based on this strategy, we reported recently (34) on simple
and inexpensive photosensitizing materials based on the ionic
attachment of the anionic singlet oxygen photosensitizer Rose
Bengal (RB) on commercial cationic polystyrene (Amberlite R©

IRA 900 and IRA 400). The materials previously described by
our group were able to eradicate completely the population of
P. aeruginosa under irradiation [reduction of 8 log10 colony
forming units (CFU) per milliliter]. In the present work, we
extend the evaluation of these materials as aPDI agents against
other relevant pathogens as well as the yeast C. albicans. The
results presented here indicate that these photoactive polymers
could be good starting points for the development of coatings
for medical devices that prevent hospital-acquired infections.
It has to be noted that the use of ionic exchange for the
preparation of photoactive materials can be traced back to the
pioneering work ofWilliams et al. on polymers for photocatalytic
applications (35).

The present investigation can be enclosed within the
interdisciplinary emerging field of materials for aPDI, which use

typically biopolymers or synthetic organic macromolecules as
supports (20, 22, 36–39).

MATERIALS AND METHODS

Synthesis and Characterization of the
Polymeric Photosensitizers
The photosensitizing polymers RB@Pmp and RB@Pgel were
prepared from RB sodium salt (Sigma-Aldrich) and the ion
exchange resins Amberlite R© IRA-900 (Pmp) and Amberlite R©

IRA-400 (Pgel), respectively (chloride forms, both from Sigma-
Aldrich). The synthesis and characterization are reported
elsewhere (34).

Microorganisms and Growth Conditions
The Gram-positive bacterial strains E. faecalis ATCC 29212 and
S. aureus ATCC 29213, Gram-negative E. coli ATCC 25922, as
well as the yeast strains of C. albicans ATCC 10231 were acquired
from the American Type Culture Collection (ATCC, Rockville,
MD, USA).

Microorganisms seeded on Columbia Blood Agar (Oxoid R©;
Madrid, Spain) were cultured aerobically overnight at 35◦C.

Antimicrobial Photodynamic Inactivation
Experiments
The inoculum was prepared by adding colonies in distilled
water (Gibco R©, Thermo Fisher, Spain) and adjusted to 0.50 ±

0.03 on the McFarland scale for bacteria and to 5.00 ± 0.03
on the McFarland scale for C. albicans (microbial suspensions
containing >108 bacteria/ml and >106 yeasts/ml, respectively).

Ten experimental groups for each strain were prepared with
the inocula. They were prepared using 10 different RODAC plates
and dropping a volume of 5ml of the microbial suspensions into
each one and then 200mg of the photoactive polymer RB@Pmp

(group I), or the same amount of control Pmp resin (without RB;
group II), or 200mg of the photoactive polymer RB@Pgel (group
III), or the same amount of control Pgel resin (without RB; group
IV), or no resin was added (group V). These five groups were
subjected to irradiation, and in parallel, another five groups were
kept in darkness as controls (groups VI to X).

Supplementary Figures 1A,C show the setup used.
The samples were shaken (mode: orbital 15 rpm; Grant BioTM

PS-M3D 3D Multi-Function Rotator) during the irradiation
(groups I to V) or during the time corresponding to the
irradiation period (groups VI to X).

The source light used was a light-emitting diode lamp
(Showtec LED Par 64 Short 18 × RGB 3-in-1 LED, Highlite
International B.V., Spain) emitting at 515 ± 10 nm (green
range matching the excitation spectrum of RB in the polymers;
Supplementary Figure 1D). Supplementary Figure 1B shows
the LED emission spectrum. The irradiation was performed using
a total light dose up to 200 J/cm2, keeping a 17-cm distance
between the LEDs and the RODAC plates (light irradiance,
5.8 mW/cm2).

Final loading of RB in the polymers was 1.5mg RB/g resin,
that is, a concentration of 60µg/ml or 5.9 × 10−5 M (200mg of
RB@Pmp or RB@Pgel in 5ml of microbial suspension).
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No incubation time after the addition of the polymers to the
microbial suspension was used, that is, when the polymers are
added is when t = 0 is established and the irradiation or darkness
time begins to be counted.

Aliquots from the RODAC plates were taken every time
equivalent to a 20-J/cm2 light dose (57.6min of illumination or
darkness) up to a maximum of 200 J/cm2 (9.6 h of illumination);
the appropriate dilutions were made and they were seeded
in blood agar plates and incubated overnight at 35◦C. The
antimicrobial effect was determined by counting the number of
CFU per milliliter on the plate using the Flash & Go automatic
colony counter (IUL, S.A, Spain). The aliquots had a volume
of 10 µl (0.2% of the initial sample volume). The dilutions or
the direct seeding in the plates for counting were carried out
according to previous experiments in order to count the range
{>0, <200} CFU/agar plate. Higher volumes of aliquots were
taken in cases where, according to the preliminary experiments,
the CFU number in the plates from the aliquot of 10 µl planted
undiluted was 0 CFU/agar plate (i.e., bacterial or fungal growth
is expected to be <100 CFU/ml; this equates to bacterial samples
where the logarithmic reduction reaches or exceeds 6 log10 or≥4
log10 for C. albicans).

In these cases, the volume removed was 100 µl (2% of the
initial sample volume) and the maximum volume taken was 1ml
(20% of the initial sample volume) in the points where there were
<10 CFU/ml (the logarithmic reduction reaches or exceeds 7
log10 in the bacterial samples or ≥5 log10 for the yeast samples).

All experiments were performed three times: five groups for
irradiation + five groups for darkness (=10) for each type
of polymer (×2); it was performed for each microorganism
(×6) in three replicates of the experiment (×3). Graphs of
the results and statistical analysis were done using GraphPad
Prism 8. The results are expressed as mean and standard
deviation. Differences between groups were compared by analysis
of variance.

RESULTS AND DISCUSSION

The polymeric supports used in this study, Amberlite R© IRA-900
and IRA-400, are commercially available ion exchange resins used
in diverse fields, from catalysis to chromatography. They consist
of cross-linked polystyrene with appended trimethylammonium
groups (with chloride anions). The difference between both
resins is the degree of cross-linking: Amberlite R© IRA-900 (Pmp)
presents a high degree of cross-linking, and hence permanent
porosity, giving rise to a macroporous structure. On the other
hand, Amberlite R© IRA-400 (Pgel) presents a lower degree of
cross-linking and lacks permanent porosity, thus presenting a
gel-type structure in the presence of the appropriate compatible
solvent. Preparation of the photo-antimicrobial conjugates
involving these resins and RB was easily done by the exchange of
chloride ions present in the original Amberlite R© polymers (Pmp

and Pgel), by RB anions, yielding the final polymers RB@Pmp

and RB@Pgel, respectively. More details about the synthesis and
characterization of the materials can be found in our previous
work (34).

The photodynamic activity of the materials using green light
(515 nm) was tested against two strains of Gram-positive bacteria
such as E. faecalis and S. aureus and two strains of Gram-negative
bacteria, specifically E. coli and P. aeruginosa. We have recently
reported on the photodynamic activity of both Amberlite R©

polymers (Pmp and Pgel) against P. aeruginosa (34), and therefore
the results for this Gram-negative bacteria are included in
the present work for comparison purposes. In addition, the
photoactivity against C. albicans is also presented in this study
in order to have a fungal representative. Overall, we present a
broad-spectrum photo-antimicrobial analysis of these polymers
based on cationic polystyrene and RB.

Activity Against Gram-Positive Bacteria
Both RB@Pmp and RB@Pgel materials present a high efficiency
against Gram-positive E. faecalis at a total light dose of 200
J/cm2, with a total eradication of the bacterium population
(8 log10 CFU/ml). At lower exposures to light (100 J/cm2),
differences between both polymers can be noticed, showing the
gel matrix to have a better performance than the macroporous
one (Figure 1 and Supplementary Figures 2, 3). Additionally,
the corresponding controls in the dark as well as the polymeric
matrices Pmp and Pgel without a photosensitizer show some
activity, with log10 reductions of CFU per milliliter in the range
of 0.5–2 units. This partial activity can be, in principle, attributed
to the presence of ammonium groups in the polymeric matrices,
which are known to have antimicrobial effects by triggering
bacterial envelope destruction (40).

Several studies have described the photodynamic killing of
planktonic suspensions of E. faecalis by different photosensitizing
materials (Table 1 shows some representative examples).
Although the different experimental setups used make a direct
comparison of bibliographic data difficult, we would like to
illustrate the effectiveness of our systems against different
bacterial pathogens in the context of other materials studied
for the same goal. It is worth noting the activity of chitosan
nanoparticles functionalized with RB (CS-RB) (43) causing a
notable reduction of E. faecalis viability. Moreover, the dark
toxicity of the reported nanoparticles was significant, indicating
that the cationic matrix is also playing an important role in such
bactericidal effect.

For S. aureus, the bacterial viability reduction after irradiation
is dependent on the polymer used. The activity for RB@Pgel
is better than for RB@Pmp at lower light doses, but similar at
200 J/cm2 (5.5–7 log10) (Figure 2 and Supplementary Figures 2,
3). The results of the RB-containing polymers in the dark also
demonstrate a significant activity, as denoted by a reduction
of 3 log10 in the count of S. aureus population (at the end
of the kinetics). It can be hypothesized that part of the dark
toxicity of RB@Pgel and RB@Pmp could be originated by the fact
that RB was recently found to be a potent inhibitor for SecA
ATPase activity, which is essential in protein translocation in
bacteria (44). Thus, if some photosensitizer is transferred from
the polymers to the bacteria during the course of the experiments,
this could originate some reduction of the CFU per milliliter.
However, more experiments are needed in order to confirm
this activity. This process seems very unlikely since, according
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FIGURE 1 | Survival curves corresponding to the photodynamic inactivation of Enterococcus faecalis. Every point is the average of three independent experiments.

Error bars correspond to the standard deviations. Legend titles: Irr, irradiated samples; Dark, controls in the darkness; C, control, only microbial suspension; RB@Pgel ,

Amberlite® IRA-400 (Pgel) loaded with Rose Bengal (RB); Pgel , Pgel resin without RB; RB@Pmp, Amberlite® IRA-900 (Pmp) loaded with RB; Pmp, Pmp resin without RB.

TABLE 1 | Representative examples reported in the literature of Enterococcus faecalis inactivation caused by photosensitizing materials.

Photosensitizer Support Initial load (log10 CFU/ml) Load reduction (1log10 CFU/ml) References

Indocyanine green Nano-graphene oxide 5 2.81 (41)

Porphyrin Magnetic silica NPs 5 5 (42)

Rose Bengal Chitosan NPs 8 8 (43)

Rose Bengal Pmp (IRA900) 8 8 This work

Rose Bengal Pgel (IRA400) 8 8 This work

to preliminary assays, no leaching out of RB takes place, as
determined spectrophotometrically, after keeping both RB@Pmp

and RB@Pgel submerged in water for several weeks.
The photoinactivation of this pathogen by different

photoactive materials has been extensively reported in the
literature. Some recent representative examples of planktonic
studies are shown in Table 2. Typical reductions of the bacterial
population range from 4 to 6 log10 CFU/ml. We have previously
reported the notable activity of the hexanuclear molybdenum
cluster [Mo6I8Ac6]

2− when loaded in the same polymeric
matrices used in the present work for both Gram-positive and
Gram-negative bacteria. These polymers exhibited a slightly
better performance than RB@Pmp and RB@Pgel, with a 7–8
log10 reduction in the populations of S. aureus (49). Some
questions are still open regarding the use of molybdenum
hybrid polymers for the coating of medical devices, in front
of the RB-loaded polymers presented here, like the unknown
toxicity of the molybdenum clusters as well as the higher cost
of preparation.

Activity Against Gram-Negative Bacteria
It is known that Gram-negative bacteria are more resistant to
photodynamic inactivation than Gram-positive bacteria due to
their highly organized outer wall (22). It has been reported
that an effective inactivation of Gram-negative bacteria requires
the presence of cationic photosensitizers, and in consequence,
it has been found that RB is relatively inefficient against these
bacteria in its free form, but highly effective in combination with
adjuvants like cationic peptides (50) or core–shell silver–silica
nanoparticles (51). It must be noted that the positive effect of
cationic residues (not belonging strictly to the photosensitizer)
was described earlier for chlorin e6 conjugated to poly-L-lysine
(52). Thus, we decided to investigate the RB inhibitory effect
when it is supported on the cationic Amberlite resins. The results
obtained using RB@Pmp and RB@Pgel demonstrate that RB
becomes an efficient photosensitizer against the Gram-negative
bacteria E. coli at a total light dose of 200 J/cm2, with a
reduction of CFU per milliliter of ∼5.5 log10 units (Figure 3 and
Supplementary Figure 3). In this case, no important differences
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FIGURE 2 | Survival curves corresponding to the photodynamic inactivation of Staphylococcus aureus. Every point is the average of three independent experiments.

Error bars correspond to the standard deviations. Legend titles: Irr, irradiated samples; Dark, controls in the darkness; C, control, only microbial suspension; RB@Pgel ,

Amberlite® IRA-400 (Pgel) loaded with Rose Bengal (RB); Pgel , Pgel resin without RB; RB@Pmp, Amberlite® IRA-900 (Pmp) loaded with RB; Pmp, Pmp resin without RB.

TABLE 2 | Recent examples reported in the literature of Staphylococcus aureus inactivation caused by photosensitizing materials.

Photosensitizer Support Initial load (log10

CFU/ml)

Load reduction

(1log10 CFU/ml)

References

Porphyrin Dipyrromethane polymeric films 7–7.8 4–5 (45)

Electropolymerizable Zn(II)

porphyrin containing carbazoyl

groups

Polymeric films from polymerization of the porphyrin 6 6 (46)

Methylene blue Methacrylate polymer doped with montmorillonite 8–8.7 4.8 (47)

Rose Bengal Sol–gel hybrid coatings based on alkyl silanes 4.4 4.4 (48)

[Mo6 I8Ac6 ]
2− Pmp (IRA900) 8 8 (49)

[Mo6 I8Ac6 ]
2− Pgel (IRA400) 8 7 (49)

Rose Bengal Pmp (IRA900) 8 5.5 This work

Rose Bengal Pgel (IRA400) 8 7 This work

were detected between the gel and macroporous polymers, as can
be seen from the data at 100 J/cm2 (Supplementary Figure 2).

The photoinactivation of E. coli as a model of Gram-
negative bacterium has been thoroughly studied in the past.
Some recent examples using photosensitizing materials are
shown in Table 3. Interestingly, Bilici et al. (53) reported
a remarkable activity of indocyanine green loaded in
superparamagnetic iron oxide nanoparticles. However,
they combined photodynamic therapy with photothermal
therapy to trigger antibacterial phototoxicity, which cannot be
comparable with our system or any of the other studies presented
in Table 3.

The activity against P. aeruginosa of RB@Pmp and RB@Pgel
was recently reported by us (34) and is included in this study for
comparison to the rest of the pathogens. A complete eradication
of this species (8 log10 CFU/ml) was observed with both polymers

when light was applied (Figure 4 and Supplementary Figures 2,
3). Also, an important dark toxicity of the polymers (∼6
log10 CFU/ml reduction) was observed, indicating that the
polymeric matrix is also playing an important role, probably
due to the presence of the ammonium groups that can interact
efficiently with the external wall of the bacterium cell (57).
This activity is comparable to that reported for methylene blue
encapsulated in porous silica nanoparticles (58) and for chitosan
used as a carrier of Toluidine blue O (59) that also induced a
reduction of 8 log10 CFU/ml, and for the aforementioned system
involving indocyanine green loaded in superparamagnetic iron
oxide nanoparticles, which induced a reduction of 12 log10
CFU/ml (53). Nevertheless, in these cases, the activity of the
materials in the dark is negligible or very low. The corresponding
comparative table for this bacterium can be found in the cited
publication (34).
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FIGURE 3 | Survival curves corresponding to the photodynamic inactivation of Escherichia coli. Every point is the average of three independent experiments. Error

bars correspond to the standard deviations. Legend titles: Irr, irradiated samples; Dark, controls in the darkness; C, control, only microbial suspension; RB@Pgel ,

Amberlite® IRA-400 (Pgel) loaded with Rose Bengal (RB); Pgel , Pgel resin without RB; RB@Pmp, Amberlite® IRA-900 (Pmp) loaded with RB; Pmp, Pmp resin without RB.

TABLE 3 | Recent examples reported in literature of Escherichia coli inactivation caused by photosensitizing materials.

Photosensitizer Support Initial load (log10 CFU/ml) Load reduction (1log10 CFU/ml) References

Indocyanine green Superparamagnetic iron oxide NPs 12 12 (53)

Porphyrin Metal organic framework/cotton fabrics 8 6 (54)

Porphyrin Silica-coated magnetite NPs 6 3.1 (55)

Cationic Pd(II) porphyrin Polyacrylamide hydrogel 6 2.93 (56)

Rose Bengal Sol–gel hybrid coatings based on alkyl silanes 4.4 4.4 (48)

Rose Bengal Pmp (IRA900) 8 5.5 This work

Rose Bengal Pgel (IRA400) 8 5.5 This work

Activity Against Candida albicans
The antifungal activity of polymers RB@Pmp and RB@Pgel
was evaluated and the CFU per milliliter values after aPDI
treatment presented in Figure 5 and Supplementary Figures 4,
5. Reductions of 1.5–3.0 log10 CFU/ml are observed against
C. albicans for all the polymers, in both irradiated and dark
conditions. It seems that some toxicity is related to the polymeric
matrices Pmp and Pgel; hence, RB direct photodynamic action
seems to be not very important for C. albicans. As expected,
light alone did not show any inhibition. The dark activity of
the polymers (around 2.5 log10 CFU/ml) is probably connected
to the presence of the positively charged groups on the surface
of the polymer since several materials containing ammonium
compounds have been reported to exhibit antifungal properties
(60, 61). On the other hand, the scarce photoactivity of RB
against C. albicans has been reported previously (62), which
might probably rely on features such as the thickness of the yeast
cell wall. However, it is not discarded for future studies that
an increase in the concentration of the photosensitizer would

lead to enhanced photoactivities. Finally, it can be said that a
slightly better performance of the macroporous resin is observed
in Figure 5 as compared to the gel-type one, probably due to the
higher specific surface of the Pmp material.

Reports on the photoinactivation of C. albicans and
other opportunistic Candida non-albicans species using
photoactive solid materials are scarce. Table 4 summarizes
some representative examples. The best results are obtained
with a cationic phthalocyanine electrostatically attached to
poly(propylene)-based films, which caused a 4 log10 decrease
of the C. albicans population (65). Good results were observed
as well when anionic porphyrin was used as a photosensitizer,
but mainly when it was conjugated with platinum nanoparticles,
showing a 3.95 log10 CFU/ml decrease (64).

An important question that can arise, for all the
microorganisms studied, is the potential formation of biofilms
during the time that the experiment is running. Although this
is always possible, (a) the continuous agitation of the samples
minimizes this possibility and (b) typical conditions for biofilm
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FIGURE 4 | Survival curves corresponding to the photodynamic inactivation of Pseudomonas aeruginosa. Every point is the average of three independent

experiments. Error bars correspond to the standard deviations. Legend titles: Irr, irradiated samples; Dark, controls in the darkness; C, control, only microbial

suspension; RB@Pgel , Amberlite® IRA-400 (Pgel) loaded with Rose Bengal (RB); Pgel , Pgel resin without RB; RB@Pmp, Amberlite® IRA-900 (Pmp) loaded with RB; Pmp,

Pmp resin without RB. Adapted from (34). Copyright 2020 with permission from Elsevier.

FIGURE 5 | Survival curves corresponding to the photodynamic inactivation of Candida albicans. Every point is the average of three independent experiments. Error

bars correspond to the standard deviations. Legend titles: Irr, irradiated samples; Dark, controls in the darkness; C, control, only microbial suspension; RB@Pgel ,

Amberlite® IRA-400 (Pgel) loaded with Rose Bengal (RB); Pgel , Pgel resin without RB; RB@Pmp, Amberlite® IRA-900 (Pmp) loaded with RB; Pmp, Pmp resin without RB.

formation like extended incubations (24–72 h) are avoided.
Nevertheless, this fact should always be taken into account in
studies involving surfaces.

Throughout this study, we are assuming that the killing
of the microorganisms involves, very likely, singlet oxygen
(type II mechanism), provided that RB is a well-known

generator of this ROS upon visible light excitation in solution
(67, 68). However, since some type I photoactivity has
also been described for this photosensitizer (via superoxide
anion) (69), this pathway cannot be ruled out completely
in the complex environment created by the polymer matrix.
Nevertheless, the existence of natural defensive agents like
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TABLE 4 | Representative examples reported in literature of Candida albicans inactivation caused by photosensitizing materials.

Photosensitizer Support Initial load (log10 CFU/ml) Load reduction (1log10 CFU/ml) References

Porphyrin Polysilsesquioxane 6 2.5 (63)

Anionic porphyrin Pt nanoparticles 8 3.95 (64)

Porphyrin Silica-coated magnetite NPs 6 2.5 (55)

Cationic phthalocyanine Poly(propylene) 6 4 (65)

Toluidine blue/Rose Bengal Cellulose acetate 5.3 0.9 (66)

Rose Bengal Pmp (IRA900) 6 3 This work

Rose Bengal Pgel (IRA400) 6 1.5 This work

superoxide dismutase (SOD) makes the involvement of this
ROS in the mechanism of cell death very unlikely. A
more in-depth study would be needed to afford some
clarification on this question, but this is out of the scope of
this work.

CONCLUSION

The aPDI capacity of RB@Pmp and RB@Pgel was addressed
against both Gram-positive (S. aureus and E. faecalis) and Gram-
negative (E. coli and P. aeruginosa) bacteria as well as the
pathogenic yeast C. albicans. At a high total light dose (200
J/cm2), both groups of bacteria reduced their populations (5–8
log10 CFU/ml) in the presence of the photoactive polymers and
light in a statistically significant manner (p < 0.01 to p < 0.0001,
depending on the specific case; see Supplementary Material).
Only for C. albicans was the observed photodynamic action
scarce, although the effect of the polymeric matrix in the
dark is the cause of around 2.5 log10 of CFU/ml reduction
(statistically significant, with p < 0.05) and could be of interest
for further studies.

Finally, we would like to stress that, only as a proof-
of-concept, despite anionic photosensitizers, like RB, being
largely considered ineffective for the inactivation of Gram-
negative bacteria, we have shown that, when combined
with commercial supports like cationic exchange resins,
the resultant systems can be efficient materials against
bacterial pathogens. The polymers described here lack the
complexity of the other systems described in the literature,
but it is precisely the accessibility of the starting materials
that makes this combination an appealing option for new
practical developments.
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