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Global warming drives changes in Earth’s cloud cover, which in turn
have the potential to strongly amplify or dampen climate change.
This ‘cloud feedback’ is the single most important cause of un-
certainty in Equilibrium Climate Sensitivity (ECS) – the equilibrium
global warming following a doubling of atmospheric carbon dioxide.
Using data from Earth observations and climate model simulations,
we here develop a novel statistical learning analysis of how clouds
respond to changes in the environment. We show that global cloud
feedback is dominated by the sensitivity of clouds to surface temper-
ature and tropospheric stability. Considering changes in just these
two factors, we are able to constrain global cloud feedback to 0.43 ±
0.35 W m-2 K-1 (90% confidence), implying a robustly amplifying ef-
fect of clouds on global warming and only a 0.5% chance of ECS be-
low 2 K. We thus anticipate that our new approach will enable tighter
constraints on climate change projections, including its manifold so-
cioeconomic and ecological impacts.
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C louds have long been recognized as the leading source of1

uncertainty in Earth’s climate response to anthropogenic2

forcing through their key role in modulating the global energy3

balance. While a combined assessment of all available lines4

of evidence – theory, modeling and Earth observations – sug-5

gests that cloud feedback is likely positive, i.e. amplifies global6

warming (1–3), so far a narrow constraint on this feedback has7

remained elusive. This is reflected in the broad 90% confidence8

interval for cloud feedback (−0.09 to +0.99 W m−2 K−1) esti-9

mated in a recent assessment under the auspices of the World10

Climate Research Programme (WCRP; 3), which relied both11

on a review of existing studies and expert judgment. Part12

of the challenge stems from the variety of physical processes13

contributing to the net cloud feedback, involving the inter-14

action of clouds with both solar (shortwave) and terrestrial15

(longwave) radiative fluxes (4).16

Uncertainty in cloud feedback has persisted because each17

line of evidence comes with its limitations and challenges.18

Theory cannot provide precise projections. Global climate19

models (GCMs) are unable to explicitly represent small-scale20

cloud processes on their coarse spatial grids, resulting in large21

spread in their simulation of cloud feedback (4, 5). High-22

resolution models may better represent such cloud processes,23

but limitations in computational power prevent climate change24

experiments on global grids (6). Most of the available observa-25

tional estimates of cloud feedback are restricted to particular26

regions and circulation regimes such as tropical subsidence27

regions (7–11) or extratropical mixed-phase clouds (12, 13),28

and are uncertain owing to the short satellite record of global29

cloud-radiative measurements and the numerous, co-varying30

meteorological factors controlling clouds.31

Statistical learning framework. Here we develop a novel statis- 32

tical learning analysis to calculate an observational constraint 33

on global cloud feedback that significantly improves on previ- 34

ous estimates and does not require high-resolution simulations 35

or observations. The method is based on cloud-controlling 36

factor analysis (7, 8, 10, 11, 14–16), where we assume that 37

cloud-radiative anomalies at grid point r, dC(r), can be ap- 38

proximated as a linear function of anomalies in a set of M 39

relevant meteorological cloud-controlling factors dXi(r): 40

41

42

dC(r) ≈
M∑

i=1

∂C(r)
∂Xi(r)

· dXi(r) =
M∑

i=1

Θi(r) · dXi(r). [1] 43

Θi(r) represents the sensitivities of C(r) to the controlling fac- 44

tors. As a key difference to previous studies (7, 8, 10, 11, 14) 45

focused on grid-point-wise relationships, e.g. between sur- 46

face temperature at point r and C(r), we here model cloud- 47

radiative anomalies at grid point r as a function of the control- 48

ling factor variables within a 105◦× 55◦ (longitude × latitude) 49

domain centered on r (see Figs. 1 and S1 for an example). 50

The contribution of each controlling factor to dC(r) is then 51

obtained by the scalar product of the spatial vectors Θi(r) 52

and dXi(r). 53

Different from previous work, we use ridge regression (17) 54

to avoid overfitting when including this large number of predic- 55

tors in the regressions (Materials and Methods). Importantly, 56

this statistical learning approach allows us to robustly esti- 57

mate sensitivities Θi(r) despite the presence of many collinear 58

predictors and the limited sample size available from the short 59
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Fig. 1. CMIP mean shortwave cloud-radiative sensitivities to surface temperature,
ΘTsfc , and estimated inversion strength, ΘEIS (Eq. 1) for a sample 5◦×5◦ target
grid box in the Southeast Pacific (82.5◦ W, 17.5◦ S; black box). Radiative anomalies
are normalized for a one–standard deviation (σ) anomaly in the controlling factors,
based on monthly variability. See Fig. S1 for the remaining three controlling factors.

record of satellite observations (18–20).60

We include five controlling factors Xi quantifying sur-61

face temperature, estimated boundary-layer inversion strength62

(21, 22), lower- and upper-tropospheric relative humidity, and63

mid-tropospheric vertical velocity (see Materials and Methods64

and Supporting Information). Each regression thus yields five65

spatial maps of sensitivities at each point r, Θi(r) (Figs. 166

and S1). To estimate these sensitivities from GCMs and obser-67

vations, we apply ridge regression to monthly 5◦ × 5◦ gridded68

data covering the period March 2000 – September 2019. For69

models, we use data of 52 GCMs from the Coupled Model70

Intercomparison Project phases 5 and 6 (CMIP5/6; 23, 24),71

while for observations we use global satellite cloud-radiative72

data combined with four reanalysis datasets of meteorologi-73

cal variables (Materials and Methods). For each GCM and74

observational dataset, we apply separate ridge regressions at75

each grid point r for longwave or shortwave cloud-radiative76

anomalies C(r).77

As an innovation relative to previous analyses based on78

purely local predictors, our approach allows us to learn how79

cloud-radiative variability depends on spatial patterns of cloud-80

controlling factors – a central advance given that cloud forma-81

tion is part of a large-scale coupled system (25, 26). Another82

advantage of our approach is that non-local predictors should83

be less impacted by the local cloud-radiative feedback on Tsfc,84

which can otherwise lead to biases in the estimation of the85

sensitivity to surface temperature (27).86

Prediction model. Once the sensitivities have been estimated,87

we predict the local cloud feedback λC(r) using only the two88

controlling factors surface temperature (Tsfc) and estimated89

inversion strength (EIS; Materials and Methods):90

λC(r) = dC(r)
dT

≈ ΘTsfc (r) · dTsfc(r)
dT + ΘEIS(r) · dEIS(r)

dT ,

[2]91

where the controlling factor responses per unit global warming,92

dTsfc(r)/dT and dEIS(r)/dT , are estimated for each GCM93

from an integration with step-like CO2 forcing (Fig. S2A–B;94

Materials and Methods). Prior work has shown that surface95

temperature and stability account for most of the forced re-96

sponse of marine low clouds (7, 8), and jointly explain a large97

fraction of forced and unforced variability in the global radia-98

tive budget (28). Here we will demonstrate that these two99

factors also explain most of the inter-model spread in global100

cloud feedback. By using only controlling factors related to101
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Fig. 2. (A) Actual vs. predicted global-mean cloud feedback for 52 CMIP models
(circles) and the multi-model mean (square). The one-to-one line is shown in solid
black. Dashed lines represent the least-squares fit (black) and the 5–95% prediction
intervals (blue). Blue curves represent probability distributions for the observational
estimates (amplitudes scaled arbitrarily). (B) Ranges of cloud feedback values for the
IPCC AR5, the WCRP assessment, the CMIP models, and the new observational
constraint. Thin and thick bars denote 90% and 66% confidence intervals, respectively.
Black horizontal bars indicate the medians for the IPCC, WCRP and observational
estimates, and the mean for the CMIP models. No 66% interval was provided for the
IPCC cloud feedback estimate.

temperature, we keep our prediction model as simple as pos- 102

sible and ensure to include only factors that are external to 103

the clouds. Accounting for additional factors at the regression 104

training stage in Eq. 1 only serves to ensure that the cloud 105

sensitivities to Tsfc and EIS are accurately estimated, condi- 106

tional on fixed humidity and vertical velocity – a necessary 107

step given that these environmental factors strongly covary 108

on monthly timescales. The sensitivity of our results to the 109

inclusion of additional predictors in Eq. 2, or to a change in 110

the size of the regional domain used in the ridge regressions, 111

is discussed in the Supporting Information. 112

An observational constraint on cloud feedback. Underlying 113

Eq. 2 is the assumption that the sensitivities learned from 114

present-day climate according to Eq. 1 are time-scale invariant, 115

i.e. that they describe both monthly unforced cloud-radiative 116

responses to Tsfc and EIS and long-term cloud feedbacks (11). 117

To validate this assumption, we use GCMs to compare the 118

cloud feedbacks predicted using Eq. 2 to the actual values 119

derived from abrupt-4xCO2 simulations (Materials and Meth- 120

ods). To achieve this, we make a prediction for each GCM 121

by multiplying the model-specific sensitivities and controlling 122

factor responses (Eq. 2), adding up the local longwave and 123

shortwave components, and taking the area-weighted mean. 124

We find that these predictions are in excellent agreement with 125

the actual GCM cloud feedbacks (r = 0.87 across the 52 126

CMIP models; Fig. 2A, black circles), closely following a one- 127

to-one relationship. We highlight that this result has been 128

achieved using just under 20 years of monthly GCM data 129

in each case (equivalent to the length of the satellite record) 130

to learn the cloud-controlling sensitivities. The method has 131

skill for both the longwave and shortwave components of the 132

feedback (Fig. S3A–B); we obtain a higher correlation for 133

the shortwave feedback (rSW = 0.87 vs rLW = 0.68), which 134

dominates the overall model spread. 135

We can then obtain an observational constraint on cloud 136

feedback by substituting observed estimates of ΘTsfc and 137

ΘEIS into Eq. 2. While we do not constrain the CO2-driven 138
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dTsfc/dT and dEIS/dT observationally, uncertainty in cloud139

feedback is known to arise primarily from the sensitivities140

Θi (8), and is in fact dominated by the sensitivity to surface141

temperature ΘTsfc (Fig. S4). By combining the four sets of142

observed sensitivities with the 52 sets of GCM-based control-143

ling factor responses, we obtain a probability distribution for144

the predicted cloud feedback that accounts for uncertainties145

in the observed sensitivities and in the future environmental146

changes (x-axis of Fig. 2A, solid blue curve; Materials and147

Methods). We convolve this probability distribution with the148

prediction error (dashed blue curves in Fig. 2A) to yield an149

observationally-constrained distribution for the cloud feed-150

back (y-axis of Fig. 2A, solid blue curve; Materials and Meth-151

ods). This yields a central estimate of 0.43 W m−2 K−1 for152

the net global cloud feedback, with confidence intervals 0.22–153

0.63 W m−2 K−1 (17–83%) and 0.08–0.78 W m−2 K−1 (5–95%;154

Fig. 2B). This indicates a likelihood of negative global cloud155

feedback of less than 2.5%. The constraint constitutes a 68%156

reduction relative to the IPCC AR5 ‘very likely’ range (Fig. 2B,157

dark red bar; note that no ‘likely’ range was provided), and a158

35% reduction with respect to the more recent WCRP assess-159

ment range (Fig. 2B, light red bar). However, we note that a160

direct comparison with comprehensive assessments has to be161

made with caution given the different methodologies; contrary162

to the WCRP and IPCC assessments, our new constraint does163

not rely on expert judgment and focuses on a single line of164

evidence in the form of the most recent cloud satellite data165

and meteorological reanalyses.166

The central estimate of the constrained cloud feedback167

lies remarkably close to the CMIP mean (0.42 W m−2 K−1),168

supporting the validity of GCM predictions in a multi-model-169

mean sense. However, observations suggest substantially less170

positive longwave cloud feedback and more positive shortwave171

cloud feedback compared with GCMs (Table S1, Fig. S3C–D):172

the observational best estimates are 0.14 and 0.35 W m−2 K−1,173

respectively, versus 0.41 and 0.01 W m−2 K−1 for the CMIP174

mean (but note that the observational confidence intervals175

encompass the CMIP mean values). In the next section, we176

interpret these differences by considering the contributions177

from individual regions and cloud regimes to global feedback.178

Regional and regime-based cloud feedback constraints. The179

global cloud feedback is the net result of distinct cloud feed-180

back mechanisms occurring in different parts of the world.181

Evidence suggests that three main processes are at play: a182

positive longwave feedback associated with rising cloud tops,183

consistent with Fixed Anvil Temperature theory (29, 30); a184

likely positive (but uncertain) shortwave feedback linked to185

decreasing tropical low cloud amount (7–11, 14–16, 31–33);186

and a negative shortwave feedback at high latitudes, associated187

with increasing cloud opacity as cloud phase changes from ice188

to liquid (12, 13, 34, 35). The relative importance of these189

processes strongly varies spatially. To illustrate this, we show190

maps of predicted and actual net cloud feedback, λC(r), in191

Fig. 3. Observations and GCMs are in good agreement in terms192

of the broad features of the spatial cloud feedback distribution,193

with positive feedback across most of the tropics to middle194

latitudes (especially in the eastern tropical Pacific and in195

subtropical subsidence regions), and negative feedback in high-196

latitude regions. This pattern results from large and opposing197

longwave and shortwave changes, particularly in the tropical198

Pacific (Fig. S5E–F). Much of this signal is dynamically-driven,199

A  Observations, predicted

B  CMIP models, predicted

C  CMIP models, actual

−4.0 −2.0 −1.0 0.5 1.0 1.5 2.0 3.0 4.0−3.0 −1.5 −0.5

W m−2 K−1

Fig. 3. (A) Predicted cloud feedback based on observed cloud responses to controlling
factors (Eq. 2), calculated by averaging the sensitivities across the four reanalyses
(Figs. S8–S9), and multiplying with the CMIP mean changes in controlling factors
(Fig. S2A–B). (B) CMIP mean predicted cloud feedback. (C) CMIP mean actual
cloud feedback. In (A), hatching denotes regions where the sign of the prediction is
consistent for any choice of the set of sensitivities (based on one of four reanalyses)
and controlling factor responses (based on one of 52 CMIP models). In (B) and (C),
hatching denotes regions where 90% of the models agree on the sign of the feedback.

reflecting an eastward shift of the ascending branch of the 200

Walker circulation (and associated humidity changes) whose 201

effect is not captured by the prediction (Fig. S2C–E). We 202

have verified that the spatial patterns of tropical longwave and 203

shortwave feedback are very well predicted if relative humidity 204

and vertical velocity are included as extra predictors in Eq. 2, 205

to capture the dynamical changes (Supporting Information 206

and Fig. S6). This dynamical signal largely cancels out for 207

the net feedback (Fig. 3C), as expected for deep convective 208

clouds. Dynamical signals also tend to cancel out in the global 209

mean (36), explaining why our prediction captures the global 210

longwave and shortwave feedbacks well (Fig. S3). 211

Correlation maps of actual versus predicted feedbacks indi- 212

cate that our prediction method is skillful on a grid point basis 213

for the net feedback, particularly so in the regions with the 214

largest inter-model spread in cloud feedback (Fig. S7A, grey 215
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contours); the regional prediction is somewhat less skillful for216

the individual longwave and shortwave components, however,217

especially in those tropical areas where dynamical changes218

play a role (Fig. S7B–C).219

We note that the spatial pattern of net cloud feedback220

(shortwave plus longwave) is determined primarily by the221

shortwave cloud-radiative sensitivity to surface temperature222

(Figs. S8–S9). The observed and modeled sensitivities are in223

excellent agreement with our physical understanding of how224

clouds respond to environmental changes (4, 8, 14–16, 33, 37),225

reinforcing confidence in our results. Further discussion of226

these sensitivities is given in the Supporting Information. Con-227

sistent with previous observational studies (7, 8, 10, 15, 16),228

the dominant Tsfc–mediated cloud response is partly counter-229

acted by changes in EIS, which increases with warming across230

most of the tropics (38), promoting low cloud formation and231

thus enhanced shortwave reflection (Figs. S2B and S10). EIS232

also induces negative cloud-radiative responses in deep convec-233

tive regions such as the Maritime Continent; this suggests EIS234

may serve as a proxy for factors relevant to deep convection,235

such as the convective available potential energy.236

In addition to being calculated globally as in Fig. 2, the237

cloud feedback constraints can be determined for specific cloud238

regimes. We distinguish between low and non-low cloud re-239

gions in the tropics and extratropics, and identify these regions240

according to the relative magnitudes of longwave and short-241

wave cloud feedbacks in the GCMs (5, 39) (Fig. S11 and Table242

S1; Materials and Methods). By design, longwave cloud feed-243

back is near zero in low cloud regions. The regime breakdown244

in Fig. S11 shows that the differences in longwave and short-245

wave global cloud feedbacks between models and observations246

arise primarily from tropical and extratropical non-low clouds247

(panels F–G), with a minor additional contribution from low248

clouds over tropical land (compare panels C and D). The ob-249

servationally inferred non-low cloud longwave and shortwave250

feedbacks are suggestive of a decrease in high cloud area with251

warming, a possibility supported by observations and theory252

(40, 41) but thought to be underestimated by GCMs (42).253

Near-neutral longwave feedback is also consistent with expert254

judgment that the longwave radiative impacts of changing255

high cloud altitude and area will approximately cancel out256

(3).257

For low clouds, our observational constraint points toward258

weakly positive feedback (Fig. S11B–E and Table S1), lower259

than prior expert assessments (3, 11) but in agreement with a260

more recent analysis (16). Our low cloud feedback estimate261

thus appears inconsistent with the large positive values simu-262

lated by some CMIP6 models, particularly in the extratropics263

(5). Further comparison of our results with prior low cloud264

feedback studies is provided in the Supporting Information.265

Implications for ECS. We now consider how our revised range266

for the cloud feedback translates into reduced uncertainty267

for global warming projections. The ECS is related to effec-268

tive radiative forcing F and net climate feedback λ through269

ECS = −F/λ. To assess the implications of our cloud feed-270

back constraint on ECS, we therefore regress −1/ECS against271

the predicted cloud feedback (Fig. 4A). The two variables are272

well correlated (r = 0.71), confirming the key role of cloud273

feedback for inter-model spread in ECS (1, 4, 43) (r = 0.74274

for −1/ECS versus actual cloud feedback). The observational275

constraint translates into a probability distribution for ECS276
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Fig. 4. (A) Negative inverse of equilibrium climate sensitivity (−1/ECS) vs predicted
cloud feedback for 52 CMIP models (circles) and the multi-model mean (square).
Dashed lines represent the least-squares fit (black) and the 5–95% prediction intervals
(blue). Blue curves represent probability distributions for the observational estimates
(amplitudes scaled arbitrarily). Note that the y-axis on the right-hand side is in units of
ECS. (B) Ranges of ECS values based on the IPCC AR5, the WCRP assessment, the
CMIP models, and the observational constraint. The thick blue and red bars denote
66% confidence intervals. Black horizontal bars indicate the CMIP mean and the
median (50% quantile) of the observational constraint. No central ECS estimate was
provided in the IPCC AR5 report.

(Materials and Methods) with central value 3.2 K, and con- 277

fidence intervals 2.6–4.2 K (17–83%; Fig. 4B, blue bar) and 278

2.3–5.2 K (5–95%). The former is considerably (49%) narrower 279

than the IPCC AR5 ‘likely’ (17–83%) range of 1.5–4.5 K, and 280

agrees well with the slightly narrower 66% ECS range pro- 281

posed by the WCRP assessment (2.6–3.9 K), which accounts 282

for multiple lines of evidence and expert judgment rather than 283

being based solely on cloud-radiative observations. Impor- 284

tantly, the constraint also confirms that ECS lower than 2 K is 285

extremely unlikely (0.5% probability). Our 66% ECS interval 286

is consistent with CMIP models near the middle of the range, 287

suggesting that in a multi-model-mean sense, GCMs provide 288

a realistic representation of climate sensitivity. 289

Our results demonstrate that a careful process-oriented 290

statistical learning analysis of observed monthly variations in 291

clouds and meteorology over a relatively short period (fewer 292

than 20 years) can provide a powerful constraint on global and 293

regional cloud feedbacks. Our global constraint implies that 294

a globally positive cloud feedback is virtually certain, thus 295

strengthening prior theoretical and modeling evidence that 296

clouds will provide a moderate amplifying feedback on global 297

warming through a combination of longwave and shortwave 298

changes. This positive cloud feedback renders ECS lower than 299

2 K extremely unlikely, confirming scientific understanding 300

that sustained greenhouse gas emissions will cause substantial 301

future warming and potentially dangerous climate change. 302

Materials and Methods 303

Observational and model data. We use monthly gridded CERES- 304

EBAF Edition 4.1 data, the state of the art in terms of satellite 305

observations of the Earth’s radiative budget (44). The CERES 306

record is characterized by its high temporal stability (45), which 307

makes it suitable for climate studies. We analyze top-of-atmosphere 308

longwave and shortwave cloud-radiative effect, estimated in a man- 309

ner consistent with GCMs (46). For the controlling factors, we use 310

monthly surface and pressure level data from four reanalyses: CFSR 311

(47), ERA5 (48), JRA-55 (49), and MERRA2 (50). The calculation 312

of the cloud-radiative sensitivities for GCMs and observations is 313

based on the period March 2000 to September 2019, to match the 314
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period available for CERES observations at the time of writing. For315

CMIP simulations, this period straddles two experiments, histori-316

cal and one of the Representative Concentration Pathways (RCPs,317

CMIP5) or Shared Socioeconomic Pathways (SSPs, CMIP6). We318

therefore concatenate the historical and RCP4.5 (CMIP5) or SSP2-319

4.5 (CMIP6) integrations for each model, except for BCC-ESM1,320

where we use SSP3-7.0 since SSP2-4.5 data was unavailable. For the321

calculation of the controlling factor responses under climate change,322

cloud feedbacks and ECS (see below), we use 150 years of parallel323

piControl and abrupt-4xCO2 annual-mean data. We include data324

from 25 CMIP5 and 27 CMIP6 GCMs that provided all necessary325

variables and experiments at the time of writing, using only the326

first ensemble member for each experiment:327

• CMIP5: ACCESS1.0, ACCESS1.3, BCC-CSM1.1, BCC-328

CSM1.1(m), BNU-ESM, CanESM2, CCSM4, CNRM-CM5,329

CSIRO-Mk3.6.0, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M,330

GISS-E2-H, GISS-E2-R, HadGEM2-ES, INMCM4, IPSL-331

CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR, MIROC5,332

MIROC-ESM, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3,333

NorESM1-M;334

• CMIP6: ACCESS-CM2, ACCESS-ESM1.5, BCC-CSM2-335

MR, BCC-ESM1, CESM2, CESM2-WACCM, CNRM-CM6.1,336

CNRM-ESM2.1, CanESM5, EC-Earth3-Veg, FGOALS-f3-L,337

FGOALS-g3, GFDL-CM4, GISS-E2.1-G, HadGEM3-GC31-LL,338

INM-CM4.8, INM-CM5.0, IPSL-CM6A-LR, MIROC-ES2L,339

MIROC6, MPI-ESM1.2-HR, MPI-ESM1.2-LR, MRI-ESM2.0,340

NESM3, NorESM2-LM, NorESM2-MM, UKESM1.0-LL.341

All CERES, reanalysis and CMIP data were remapped to a common342

5◦ × 5◦ grid prior to analysis, using conservative remapping for343

radiative fluxes and bilinear interpolation for other variables.344

Cloud-radiative anomalies. In Eqs. 1–2 we denote cloud-radiative345

anomalies in a general sense as dC. Here we introduce the specific346

measures of longwave (LW) and shortwave (SW) cloud-radiative347

anomalies used in our statistical learning analysis. We first define348

dR as LW and SW cloud-radiative effect anomalies (dCRELW,349

dCRESW), adjusted at each grid point r and monthly time step t350

for non-cloud effects (51):351

dRLW(r, t) = dCRELW(r, t) +AT
LW(r, t) +Aq

LW(r, t) +AF
LW(r, t),

dRSW(r, t) = dCRESW(r, t) +Aq
SW(r, t) +Aa

SW(r, t),
[3]

352

where A denotes a LW or SW adjustment for the impact of anomalies353

in temperature T , water vapor q, surface albedo a, and the LW354

radiative forcing FLW. The adjusted CRE anomalies calculated in355

this manner reflect the radiative impact of changes in the physical356

properties of clouds, excluding non-cloud influences (apart from the357

impact of insolation on dRSW, discussed below). The calculation358

of these adjustments is explained in the Supporting Information.359

We choose to retain the seasonal cycle in our analysis, since360

it contains a large signal in the controlling factors and the asso-361

ciated cloud-radiative responses (see additional discussion in the362

Supporting Information). Hence, all anomalies are defined relative363

to the time-mean, annual-mean climatology of the observational364

period. However, defining anomalies in this way means that dRSW365

(Eq. 3) contains a large signal unrelated to physical cloud proper-366

ties, due to the seasonal cycle of insolation. Instead we therefore367

use cloud reflectivity for the calculation of the SW cloud-radiative368

sensitivities:369

αC = −(dRSW +RSW)/SW↓, [4]370

where RSW is the time-mean CRESW climatology (relative to which371

dRSW was calculated) and SW↓ denotes monthly downward SW372

radiation at the top of the atmosphere. It is necessary to account373

for RSW in the calculation of αC because the term RSW/SW↓374

contributes to the annual cycle of αC . We then obtain cloud reflec-375

tivity anomalies, dαC , by subtracting the time-mean climatology376

of αC at each point. Compared with dRSW, dαC is considerably377

less affected by insolation, but a residual effect remains because378

seasonal variations in solar zenith angle affect cloud albedo (52).379

For the calculation of the sensitivities we therefore use dRLW and380

dαC for the LW and SW components, respectively. The SW cloud381

sensitivities, initially in reflectivity units, are converted back to382

radiative flux units by multiplying by annual-mean insolation.383

Cloud-controlling factors. We include the following five controlling 384

factors in the ridge regression analysis (Eq. 1): 385

• Surface temperature (Tsfc); 386

• Estimated inversion strength (EIS), a measure of lower- 387

tropospheric stability relative to a temperature-dependent 388

moist adiabatic lapse rate (22); over land areas, we use the 389

simpler stability metric of Klein et al. (21), defined as the 390

difference in potential temperature between 700 hPa and the 391

surface; 392

• 700 hPa relative humidity (RH700); 393

• Upper-tropospheric RH: defined as the vertically-averaged RH 394

in the 200-hPa layer below the tropopause (53) (RHtrop); 395

• 500 hPa vertical velocity (ω500). 396

Only the first two, Tsfc and EIS, are used in the prediction model 397

(Eq. 2); the remaining three controlling factors merely serve to 398

ensure that the cloud-radiative sensitivities to surface temperature 399

and stability are accurately estimated, holding relative humidity 400

and the dynamics fixed. The motivation for using a simpler lower- 401

tropospheric stability metric over land (instead of EIS) is that the 402

standard EIS formula (22) is based on theoretical assumptions that 403

only hold over sea surfaces. Further discussion of our choice of 404

controlling factors is in the Supporting Information. 405

Cloud-radiative sensitivities. We use ridge regression (17) to estimate 406

the sensitivities Θi(r), which minimizes the cost function 407

Jridge(r,Θ) =
n∑

t=1

(
Yt(r)−

M∑
i=1

Θi(r) ·Xi,t(r)
)2

+

α(r)
M∑

i=1

‖Θi(r)‖2,

[5] 408

where M = 5 controlling factors and n = 235 months. The predic- 409

tand Yt(r) is a measure of longwave (dRLW, Eq. 3) or shortwave 410

(dαC , Eq. 4) cloud-radiative variability at time t, while Xi,t(r) 411

represents a spatial map of controlling factor i at time t covering a 412

105◦ longitude × 55◦ latitude domain centered on the target box r. 413

This results in a total number of predictors P = (5 factors) × (21 414

× 11 grid boxes) = 1155, which would lead to overfitting in MLR 415

regressions. Next to avoiding overfitting in such contexts, ridge 416

regression is known for its good performance in managing ill-posed 417

problems with many collinear predictors (18, 19, 54). 418

The first term in Eq. 5 is the MLR least squares error which, 419

as discussed, tends to overfit the data given large P , leading to 420

low skill for out-of-sample predictions. Ridge regression addresses 421

overfitting through the second l2-norm regularization term, which 422

penalizes large absolute values for Θ, modulated by the choice of 423

the regularization parameter α(r). To approximate optimal α(r), 424

we use 5-fold cross-validation (54) searching over α(r) ∈ [0, 10−12, 425

3×10−12, 1×10−11, 3×10−11, ..., 1×1012, 3×1012] and evaluate 426

according to the R2 scores (coefficients of determination) across 427

the validation sets. Statistical learning approaches of this kind are 428

commonplace in high-dimensional machine learning regressions. We 429

standardize each predictor variable to zero mean and unit standard 430

deviation to ensure that all controlling factors are considered equally 431

and so that the absolute magnitudes of the resulting sensitivities 432

are reflective of their relative physical importance. This yields 433

sensitivities in units of W m−2 σ−1 (Figs. S8–S9). 434

Our results are not sensitive to the precise choice of predictor 435

domain size, but sensitivity calculations showed reduced skill for 436

substantially larger or smaller domain sizes (see Supporting Infor- 437

mation). Note that while the maximum number of predictors P is 438

1155 for our choice of domain, this value is smaller for locations 439

r close to the poles, because the domains are truncated at 90◦ 440

latitude. Furthermore, because visual inspection of the monthly αC 441

values reveals artifacts at high solar zenith angles, we exclude cloud 442

reflectivity samples where the monthly-mean solar zenith angle is 443

larger than 80◦, calculated based on a local time of 10:30AM, the 444

equator-crossing time of the Terra satellite (44). For consistency, 445

this criterion is applied to both observations and GCMs. 446
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4×CO2 responses, feedbacks, and ECS. The controlling factor re-447

sponses per unit global warming (dTsfc/dT and dEIS/dT in Eq. 2)448

and cloud feedbacks are calculated as the slopes of Gregory regres-449

sions (55) at each point onto global-mean surface air temperature.450

For cloud feedbacks, we use adjusted longwave and shortwave CRE451

anomalies in the regressions (see above). ECS is determined as452

the x-intercept of a Gregory regression of net top-of-atmosphere453

radiative imbalance versus global-mean surface air temperature.454

In all cases, we use abrupt-4xCO2 annual anomalies, calculated455

relative to the parallel piControl 150-year climatology.456

Observational constraints. The uncertainty in the cloud feedback457

constraint is calculated in several steps. First, we obtain a proba-458

bility distribution of the observational prediction λC,p (x-axis of459

Fig. 2A, solid blue curve) by combining the uncertainties due to460

the sensitivities, quantified by σΘ, with those due to the control-461

ling factor responses, σX . To obtain σΘ, we multiply each of the462

four reanalysis estimates of Θi with the CMIP mean controlling463

factor responses dXi/dT (Eq. 2), take the area-weighted average,464

and calculate the standard deviation across these four estimates of465

λC,p. We follow the same procedure for σX , but multiplying each466

of the 52 estimates of dXi/dT with the mean observed Θi. These467

uncertainties are then combined in quadrature, σp =
√
σ2

Θ + σ2
X ,468

to yield the uncertainty for the observational prediction λC,p.469

Next, the uncertainty in λC,p is convolved with the prediction470

error implied by the fit of the actual cloud feedback λC,a versus λC,p,471

calculated via standard least-squares regression formulae (56), whose472

5–95% interval is represented by dashed blue curves in Fig. 2A. This473

yields a probability distribution for λC,a on the y-axis of Fig. 2A:474

P (λC,a) =
∫ +∞

−∞
P (λC,a|λC,p)P (λC,p) dλC,p, [6]475

where the conditional probability P (λC,a|λC,p) represents the pre-476

diction error. P (λC,a) is calculated numerically by Monte Carlo477

sampling, with a sample size of 107, and we apply a Gaussian kernel478

smoother to the result with a standard deviation of 0.01 W m−2 K−1479

to obtain the final probability distribution function. The constraints480

for global longwave and shortwave cloud feedbacks (Fig. S3), for481

individual cloud types and regions (Fig. S11), and for ECS (Fig. 4)482

are obtained via the same procedure. For ECS, the Gaussian kernel483

smoother uses a standard deviation of 0.1 K.484

The prediction error used in the calculation of the constraints485

includes the effects of methodological error (e.g. due to relevant486

controlling factors not being accounted for, or non-linearities in the487

feedbacks), and sampling error (due to using a short time period488

for the calculation of the sensitivities). Hence, the constraints489

calculated via Eq. 6 account for all relevant uncertainties, namely:490

inaccurate observations of Θi; uncertain future responses dXi/dT ;491

sampling error (and resulting uncertainty in the regression slopes);492

and methodological error.493

Feedbacks by cloud type. For each GCM we classify each grid point494

as a low or non-low cloud region according to the relative magnitudes495

of the longwave and shortwave feedbacks. Following previous work496

(5, 39), non-low clouds are defined to occur where the ratio of497

the absolute magnitudes of the longwave and shortwave feedbacks498

exceeds tan(22.5◦) ≈ 0.42, i.e. where the longwave feedback is499

relatively large. Note that the resulting values in Fig. S11 are scaled500

by the area fractions associated with each region and cloud type,501

so as to represent contributions to global-mean feedback.502
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