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Abstract19

The Maritime Continent (MC) is a region subject to high impact weather (HIW) events,20

which are still poorly predicted by numerical weather prediction (NWP) models. To im-21

prove predictability of such events, NWP need to be evaluated against accurate measures22

of extreme precipitation across the whole MC. With its global spatial coverage at high23

spatio-temporal resolution, the Global Precipitation Measurement (GPM) dataset is a suit-24

able candidate. Here we evaluate extreme precipitation in the Integrated Multi-Satellite25

Retrieval for GPM (IMERG) V06B product against station data from the Global Historical26

Climatology Network (GHCN) in Malaysia and the Philippines. We find that the high intra-27

grid spatial variability of precipitation extremes results in large spatial sampling errors when28

each IMERG gridbox is compared with individual co-located precipitation measurements,29

a result that may explain discrepancies found in earlier studies in the MC. Overall, IMERG30

daily precipitation is similar to station precipitation between the 85th and 95th percentile,31

but tends to overestimate above the 95th. IMERG data were also compared with radar data32

in western Peninsular Malaysia for sub-daily timescales. Allowing for uncertainties in radar33

data, the analysis suggests that the 95th percentile is still suitable for NWP evaluation of34

extreme sub-daily precipitation, but that the rainfall rates diverge at higher percentiles.35

Hence, our overall recommendation is that the 95th percentile be used to evaluate NWP36

forecasts of HIW on daily and sub-daily time scales against IMERG data, but that higher37

percentiles (i.e., more extreme precipitation) be treated with caution.38

Plain Language Summary39

Extreme rainfall is a major hazard in many parts of the tropics, leading to flooding40

and social and economic impacts. Accurate weather forecasting of extreme rainfall events41

is needed by national and regional government planners and disaster relief organisations, as42

well as by agriculture and industry. The skill of weather forecast computer models needs43

to be tested against a reliable data set of observed rainfall, so that scientists can improve44

the models to give better forecasts of extreme rainfall. Observed rainfall data sets need45

to be evaluated prior to their use for testing models. Here, we evaluate the reliability46

of the IMERG rainfall data set for this purpose. IMERG is based on satellite and rain47

gauge measurements of rainfall from across the planet. We focus on the area known as the48

western Maritime Continent. After comparing IMERG rainfall against local measurements49

of rainfall from weather radar in Malaysia, and weather station data across the region, the50

recommendation is that IMERG can be used as a reliable measure of fairly extreme rainfall51

(the top 5% of daily rainfall totals), but tends to overestimate and therefore should be used52

with caution for very extreme rainfall (the top 1% of daily rainfall totals).53

1 Introduction54

Precipitation has a considerable impact on human society. In excess, precipitation55

produces devastating floods that have a high destructive capacity for both infrastructure and56

human lives. Conversely, a lack of precipitation can lead to drought, lack of drinking water57

and crop failure. Being one of the wettest places on Earth, the Maritime Continent (MC)58

separates the Indian Ocean from the Pacific and encompasses the countries of Indonesia,59

Malaysia and the Philippines, among others. This region experiences significant extreme60

precipitation (Hai et al., 2017; Warlina & Guinensa, 2019), which, combined with the high61

vulnerability of the local population (Takama et al., 2017; Karki, 2019; Abd Majid et al.,62

2019; Cabrera & Lee, 2020), can lead to severe consequences. Accurate prediction of extreme63

precipitation in the MC is therefore of crucial importance for society. Numerical weather64

prediction (NWP) models still struggle to correctly predict such extreme events in the MC.65

Progress in the prediction of extreme precipitation needs accurate evaluations of NWP. This66

requires the use of an accurate observation system of actual precipitation.67
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Current observations of precipitation are made through the use of station gauge net-68

works, ground-based radars, and satellite measurements. While prone to errors due to69

evaporation and wind effects (Lorenz & Kunstmann, 2012; Maggioni et al., 2016; Du et al.,70

2018), gauge measurements are expected to be more accurate as they provide a direct mea-71

sure of precipitation (Sun et al., 2018). However, gauge measurements are limited by their72

localised (point) spatial nature (Kidd et al., 2017), which result in sampling errors when in-73

terpolated onto larger areas (Lorenz & Kunstmann, 2012; Rana et al., 2015). Ground-based74

radars can significantly increase the extent of precipitation observations, and still retain75

a high spatial resolution. However, because of the indirect way in which they measure76

precipitation, ground-based radar are affected by errors from contamination, attenuation77

of signal, and the uncertainty associated with the reflectivity–rain-rate (Z–R) relationship78

(Iguchi et al., 2009; Berne & Krajewski, 2013; Maggioni et al., 2016). Furthermore, the MC79

is poorly covered by ground-based measurements of precipitation (Kidd et al., 2017). Hence,80

NWP evaluation in the MC particularly relies on satellite precipitation measurements, with81

their potentially global spatial coverage. Although errors in estimation methods still remain82

(Derin et al., 2016; Camici et al., 2018), the use of precipitation data from satellites has83

increased and has enabled new applications (Kucera et al., 2013; Kirschbaum et al., 2017).84

To benefit from the advantages of both satellite (higher spatial coverage) and gauge85

measurements (higher accuracy), considerable effort has been invested in the development86

of mixed gauge–satellite precipitation datasets (Huffman et al., 1995; Xie & Arkin, 1997;87

Huffman et al., 2007; Adler et al., 2018; Huffman et al., 2019). The Global Precipita-88

tion Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) is one89

such dataset. The IMERG precipitation dataset was built with the use of over ten satel-90

lites, including the GPM Core Observatory satellite launched in 2014. It carries the Ku-91

and Ka-band Dual-frequency Precipitation Radar (DPR) and the GPM Microwave Im-92

ager (GMI) sensors, two of the most sophisticated satellite precipitation sensors currently93

in space (Skofronick-Jackson et al., 2018). These instruments are complemented by both94

Passive Micro-Wave (PMW) and Infra-Red (IR) sensors on board the IMERG satellite con-95

stellation.96

The IMERG product has been evaluated in many locations globally (Sharifi et al., 2016;97

Prakash et al., 2016; Omranian & Sharif, 2018; Fang et al., 2019; Kim et al., 2017; Dezfuli98

et al., 2017; Mayor et al., 2017; Navarro et al., 2019), and is generally an improvement99

with respect to its predecessors. Thus, IMERG is a suitable candidate for the systematic100

evaluation of NWP extreme precipitation in the MC. However, IMERG is not exempt from101

errors, some of which are already well documented (J. Tan et al., 2016; Oliveira et al.,102

2016; O et al., 2017; O & Kirstetter, 2018; J. Tan et al., 2019). The IMERG precipitation103

estimates were shown to better match gauge data at the monthly timescale than at the104

daily/sub-daily timescales (M. L. Tan & Duan, 2017; Yuda et al., 2020).105

Although accurate at measuring mean precipitation rates, such global satellite precipi-106

tation products often show deficiencies in their representation of extreme precipitation, and107

their accuracy may be regionally and climatically dependent (Rajulapati et al., 2020). The108

IMERG product does not seem to be an exception; it underestimates extreme precipita-109

tion over Mexico (Mayor et al., 2017), the eastern coast of the United States (J. Tan et110

al., 2016), Singapore (M. L. Tan & Duan, 2017), and Austria (O et al., 2017), and over-111

estimates extreme precipitation in the central Amazon (Oliveira et al., 2016), the Tibetan112

plateau (Zhang et al., 2018), and the Netherlands (Gaona et al., 2016). Previous analysis113

of IMERG performance over the MC (M. L. Tan & Duan, 2017; M. L. Tan & Santo, 2018;114

J. Tan et al., 2019; Yuda et al., 2020; Liu et al., 2020) found that IMERG underestimates115

extreme precipitation and performs better during the wettest season. However, these studies116

were subject to potentially large spatial sampling errors, i.e., errors incurred when interpo-117

lating gauge precipitation data onto the IMERG grid. By degrading the same precipitation118

product onto different spatio-temporal resolutions, Behrangi and Wen (2017) showed that119

these errors can be large, especially over land areas. Similarly, Tian et al. (2018) and Tang120
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et al. (2018) found that rain gauge density has a large impact on IMERG skill metrics over121

China.122

Previous IMERG evaluation studies in the MC were done over relatively short periods123

of 1–2 years. By definition, extreme precipitation is very infrequent, hence small sample sizes124

may have a detrimental effect here. Consequently, these studies do not provide a practical125

range of precipitation from which IMERG can be used with the aim of evaluating extreme126

precipitation events simulated by NWP in the MC.127

Therefore, the objective of the present study is to reassess the performance of IMERG128

in the detection of extreme precipitation over the MC, with an estimation of spatial sampling129

error, and to provide practical information for use in NWP evaluation. For this purpose,130

the IMERG V06B dataset is evaluated against the Global Historical Climatology Network131

(GHCN) gauge dataset over Malaysia and the Philippines, and against a ground-based132

weather radar dataset from western Peninsular Malaysia. Section 2 describes the precipi-133

tation datasets used in this study. Section 3 presents an evaluation of IMERG in the MC.134

Finally, Section 4 describes key findings and practical guidance for the use of IMERG in135

NWP evaluation.136

2 Data137

2.1 IMERG data138

The main analysis in this study is based on the Integrated Multi-Satellite Retrievals139

(IMERG) product, version V06B, from the Global Precipitation Measurement (GPM)140

project (Huffman et al., 2019). This product is based on measurements from a constella-141

tion of satellites, equipped with Passive Micro-Wave (PMW) and geo-infrared (IR) sensors.142

The PMW measurements give more accurate direct estimations of precipitation rate but143

have limited spatial and temporal coverage. Meanwhile, the IR measurements only measure144

precipitation indirectly, but have almost complete spatial and temporal coverage.145

The PMW precipitation estimates are first converted from brightness temperature to146

precipitation rate following the Goddard profiling algorithm (GPROF) (Kummerow et al.,147

2015) or the Precipitation Retrieval and Profiling Scheme (Kidd et al., 2018). Among PMW148

satellites, the GPM core observatory is considered to carry the most advanced instruments149

for precipitation detection (Skofronick-Jackson et al., 2018). It was launched in February150

2014 and is the successor to the Tropical Rainfall Measuring Mission (TRMM, Huffman et151

al. (2007)) satellite, which was launched in 1997. As well as providing accurate precipitation152

measurements for the IMERG product, the TRMM satellite and the GPM core observatory153

serve for the inter-calibration of the whole IMERG PMW satellite constellation, in their154

respective eras. Several studies have identified improvements of precipitation estimates by155

IMERG relative to its predecessors in South East Asia (Prakash et al., 2016; Kim et al.,156

2017; M. L. Tan & Duan, 2017; F. Xu et al., 2019).157

Prior to inter-calibration, the TRMM and GPM core observatory estimates are sea-158

sonally corrected over land areas by the climatological values from the Global Precipitation159

Climatology Project (GPCP) satellite-gauge product (Adler et al., 2018). The PMW inter-160

calibration is achieved through quantile matching, using a method similar to Miller (1972);161

Krajewski and Smith (1991). The IR data, which essentially measure cloud top features162

rather than precipitation directly, are trained and calibrated against the PMW estimates163

using an artificial neural network cloud classification system (PERSIANN-CSS; Nguyen et164

al. (2018)).165

All precipitation estimates are gridded on to a 0.1◦ × 0.1◦ longitude–latitude spatial166

grid. A Kalman smoother is then used to combine all precipitation estimates into a single167

half-hourly estimate (Joyce & Xie, 2011). In this step, the closest PMW estimates forward168

and backward in time from the analysis time of the half-hourly window are propagated to169
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the analysis time using precipitable water vapor motion vectors from the Goddard Earth170

Observing System Forward Processing (IMERG early and late runs; GEOS FP; Keller et al.171

(2021)) or the Modern-Era Retrospective Analysis for Research and Applications, version 2172

(IMERG final run; MERRA-2; Gelaro et al. (2017)). A weighted average of the two resultant173

estimates is then performed. The IR data are used only if the nearest PMW measurement174

is more than 30 minutes from the target time. In this, the IR estimates are incorporated175

into a Kalman filter in the form of an observation correcting the PMW “forecast”. The176

resulting half-hourly estimates over land are then multiplied by the ratio between the Global177

Precipitation Climatology Centre (GPCC) (Schneider et al., 2008) monthly gauge estimate178

with the monthly sum of half-hourly estimates derived in the early steps of the IMERG179

algorithm. This step is only performed in the final version of the product, which is used in180

the present study. The IMERG product is thus a multi satellite-gauge precipitation dataset181

for which data are provided with a 30-minute time interval on a global 0.1◦ × 0.1◦ grid.182

The diurnal cycle of precipitation is reasonably well captured by IMERG, when com-183

pared to rain gauge (J. Tan et al., 2019; Li et al., 2018; Mayor et al., 2017; O & Kirstetter,184

2018; Tang et al., 2016; Zhang et al., 2018) or ground-based radar precipitation estimates185

(Oliveira et al., 2016), although a phase delay of about 40 minutes was found in the presence186

of frozen hydrometeors aloft (O et al., 2017; O & Kirstetter, 2018; J. Tan et al., 2019; You187

et al., 2019). Potential sources of IMERG errors were attributed to the precision of the in-188

struments on board the satellite constellation (J. Tan et al., 2016; Li et al., 2018). IMERG189

retrievals that only used IR measurements were found to be the least accurate, because pre-190

cipitation is measured indirectly from cloud-top brightness temperatures. However, PMW191

sensors tend to underestimate warm cloud precipitation (Dinku et al., 2007; Shige et al.,192

2013), which can affect the performance of IMERG (O & Kirstetter, 2018). The IMERG193

algorithm itself was sometimes identified as a source of error, notably through its morphing194

and GPROF precipitation retrieval schemes (J. Tan et al., 2016; Oliveira et al., 2016).195

In this study, 19 years of the IMERG precipitation dataset from 1 January 2001 to 31196

December 2019 over Malaysia and the Philippines (Fig. 1) were used. When IMERG data197

were compared to radar data, IMERG accumulations were calculated only using data from198

times at which radar data were also available.199

2.2 GHCN station data200

The Global Historical Climatology Network (GHCN) dataset comprises several mete-201

orological variables measured by surface weather stations across the Earth (Menne, Durre,202

Korzeniewski, et al., 2012; Menne, Durre, Vose, et al., 2012). Data are available at daily203

(UTC) time resolution, and have undergone a common suite of quality assurance reviews204

(Durre et al., 2010). In the present study, only the daily mean precipitation data from205

Malaysia and the Philippines were used to evaluate the IMERG data. First, the gauge time206

series were truncated to the IMERG period examined (2001–2019) to ensure time coher-207

ence between both datasets. Then, only GHCN stations having at least 1000 days of data208

within this period were selected for analysis. The GHCN dataset also included weather209

station time series from Indonesia but the lengths of these time series did not satisfy the210

latter criteria. The exact locations of the gauges used are shown in Fig. 1. The gauges are211

spread over large areas with different climate characteristics. Previous studies found that212

IMERG may have variable skill, depending on regional characteristics within the Maritime213

Continent (M. L. Tan & Santo, 2018). Hence, six groups of weather stations were defined214

in the following regions (red markers in Fig. 1): Western Peninsular Malaysia (5 stations);215

Eastern Peninsular Malaysia (3 stations); Northwest Borneo (6 stations); Western Philip-216

pines (except mountain regions, 6 stations); Eastern Philippines (11 stations); Philippines217

mountain region (1 station).218
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Figure 1. Topography of the Maritime Continent (shaded). Locations of GHCN stations are

shown by red markers: diamonds for western Peninsular Malaysia; upward triangles for eastern

Peninsular Malaysia; downward triangles for northwest Borneo; stars for western Philippines; circles

for eastern Philippines; a square for the mountain Philippines station.

2.3 Radar data219

Data from an S-band Doppler weather radar at Subang, Kuala Lumpur (101.559oE,220

3.145oN), operated by MetMalaysia, were also used to evaluate the IMERG data. There221

are 89 days of radar data in a period spanning 94 days, from 11 January to 15 April 2019.222

The radar measurements were calibrated first using a relative calibration against clutter223

points and second using the DPR aboard GPM, following Warren et al (2018) and Louf224

et al. (2019). Following calibration, the radar data were interpolated on to a Cartesian225

grid at 2-km height above the radar location, from which precipitation values were retrieved226

using the Weather Surveillance Radar (WSR) Z–R relationship (Fulton et al., 1998). The227

WSR Z-R relationship is known to give correct estimations for convective precipitation. The228

Marshall–Palmer (Marshall and Palmer, 1947) and the Rosenfeld (Rosenfeld et al.,1993) Z–229

R relationships, which perform well for stratiform and tropical precipitation (respectively),230

were also tested and taken into account in the study in the form of uncertainties.231

Instantaneous precipitation values are provided every 10 minutes, at 0000, 0010,232

0020, . . . 2350, each day. The spatial resolution of the radar data is 0.0045◦, or approx-233

imately 400 m. A spatial bilinear interpolation was performed on the radar data, to map234
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Figure 2. Total accumulated precipitation from the Subang radar, from 11 January to 15

April 2019. The locations of the GHCN stations are shown by red diamonds. Topography is line

contoured, with an interval of 500 m (blue for the 0 meter level and black for the other levels). The

green line delimits the low-land grid points used in this study.

it from its original grid to the 0.1◦ IMERG grid, for comparison. Both the 0.0045◦ and the235

0.1◦ radar data were used in this study, the 0.0045◦ radar data being used as an estimate236

of pointwise precipitation in order to quantify the spatial sampling error.237

The Subang radar is located on the coastal plain of western peninsular Malaysia, with238

the prominent Titiwangsa mountain range to the east (Fig. 2). The mountains clearly block239

the radar signal to the east, as evidenced by the near zero accumulations in this region.240

Hence, all radar grid points over and to the east of the Titiwangsa mountains were removed241

from the analysis.242

The IMERG data are available every 30 minutes, at 0015, 0045, 0115, . . . , 2345, each243

day. When there is no passive-microwave measurement in the corresponding 30 minutes244

windows, the IMERG values are calculated as an average of the closest previous passive-245

microwave measurement advected forward in time by MERRA-2 motion vectors, and the246

closest following passive-microwave measurement advected backward in time by MERRA-2247

motion vectors. Infra-red precipitation data are also incorporated in the calculation when248

no passive microwave measurements are available within ± 30 minutes of the time window.249

This effectively gives an approximately 25-minute mean precipitation value (O et al., 2017).250

Hence, for direct comparison of “instantaneous” radar and IMERG data, the two closest251

instantaneous radar values (backward and forward in time) from the IMERG output time252

were averaged. For example, the IMERG precipitation value at 1415 was compared with253

the average of the instantaneous 1410 and 1420 radar precipitation values. For the sake254

of simplicity, this average is still referred to as “instantaneous” in this study. While such255

–7–



manuscript submitted to Earth and Space Science

an averaging procedure is the best estimate of precipitation intensity between two radar256

output time steps, it tends to underestimate extremes of instantaneous precipitation (and257

conversely, overestimate low precipitation). This averaging procedure was only carried out258

for the comparison of “instantaneous” precipitation values.259

Rainfall accumulations were also calculated from the 10-minute instantaneous radar260

data, for periods of 30 minutes, and 1, 3, 6, 12, and 24 hours. A weighted average was261

calculated from all instantaneous precipitation measures within the period. Each 10-minute262

instantaneous radar scan was interpreted as the representation of averaged precipitation263

over a 10-minute window centered on the nominal time and the weightings were chosen264

accordingly.265

There was a significant fraction of missing radar data (13%). Gaps in the radar time266

series were filled using linear time interpolation before the accumulations were calculated.267

To reduce potential errors from this interpolation, all accumulation periods for which more268

than half of the data were missing were discarded from the analysis. This restriction does269

not completely avoid errors, especially for the longest accumulation periods. A discussion270

of these errors is provided in Section 3.271

2.4 Topography data272

The General Bathymetric Chart of the Oceans (GEBCO) topography data set was used273

to distinguish between sea, lowland and mountain regions. It was regridded from its native274

30 arc-second resolution to the coarser 0.1◦ × 0.1◦ longitude–latitude IMERG grid (Fig. 1).275

3 Validation of IMERG precipitation data over the Maritime Continent276

277

3.1 Comparison of IMERG with GHCN station data278

First, IMERG precipitation is evaluated against the GHCN dataset over the six re-279

gions of interest: Western Peninsular Malaysia, Eastern Peninsular Malaysia, Northwestern280

Borneo, Northwestern Philippines, Eastern Philippines, and a high elevation (mountain)281

station located in the Western Philippines. The correlation coefficient, root mean square282

error (RMSE), and relative bias were calculated for daily, weekly and monthly precipitation283

accumulations (Table 1). For the relative bias, we first calculated the bias and then we284

divided it by total accumulated precipitation over the time period (thus this metric does285

not vary with time scale). All of these statistics were initially calculated for each station286

(using the time series of IMERG precipitation from the nearest grid point, on the 0.1× 0.1◦287

IMERG grid) and then averaged over the region.288

Correlation coefficients of daily precipitation values range from 0.5 in Western Peninsu-289

lar Malaysia to 0.74 in Eastern Peninsular Malaysia, while correlation coefficients of monthly290

precipitation values are typically above 0.8. In each region, the correlation coefficient in-291

creases with increasing accumulation time, and RMSE decreases with increasing accumula-292

tion time. This increase in performance of IMERG at the seasonal time scale compared with293

the daily time scale was also observed in Singapore (M. L. Tan & Duan, 2017), Bali (Yuda294

et al., 2020), and the USA (J. Tan et al., 2017). Our analysis of daily correlation coefficients295

and RMSEs in Malaysia confirms and extends the results of M. L. Tan and Santo (2018)296

who used an earlier version of IMERG and a shorter time period.297

Although the daily correlation coefficient values reflect a moderate–to–good represen-298

tation of IMERG in capturing the day–to–day variability of precipitation, the high daily299

RMSE values in every location emphasise the magnitude of errors in IMERG precipitation300

intensity, ranging from 13.6 mm day-1 in Western Peninsular Malaysia up to 33.2 mm day-1
301

at the sole mountain station in the Western Phillipines. The relative bias tends to be pos-302

itive for low-level land locations, but IMERG displays a substantial negative bias at the303
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sole mountain station of −28%. With only one mountain station we cannot conclude that304

this bias is a consistent feature, but this result is consistent with previous findings that305

passive microwave sensors may underestimate warm orographic rain because they use ice306

loads for their detection of precipitation (Dinku et al., 2007; Derin et al., 2016; Kim et307

al., 2017; R. Xu et al., 2017; O & Kirstetter, 2018; Navarro et al., 2019). It is also worth308

noting that IMERG does not explicitely account for orographic enhancement, unlike Global309

Satellite Mapping of Precipitation (GSMaP) which should have an improved representation310

of precipitation over mountainous regions (Yamamoto & Shige, 2015).311

These statistics were calculated from the comparison of time series of local GHCN gauge312

measurements with time series of 0.1◦ gridded IMERG precipitation (Section 2). We expect313

that the pointwise precipitation measurements will not be representative of the average314

precipitation over the relatively large 0.1 × 0.1◦ (approximately 120 km2) area covered by315

the IMERG nearest grid point. This discrepancy is referred to as the spatial sampling error,316

and is examined quantitatively below.317

Table 1. Correlation coefficients, root mean square error (RMSE), and relative bias, of IMERG

precipitation versus GHCN precipitation, and (in italics) the Subang radar data on the 0.1 × 0.1◦

IMERG grid vs the radar data on its native grid, for daily, weekly, and monthly accumulation

times. The relative bias does not vary with timescale.

Location Duration Correlation RMSE Relative
coefficient (mm day-1) bias (%)

Western 1 day 0.50 13.6 +15.9
Peninsular Malaysia 7 days 0.63 5.3

30 days 0.74 2.7
Radar (vs itself) 1 day 0.72 9.16 +11.4

Eastern 1 day 0.74 14.4 +2.2
Peninsular Malaysia 7 days 0.88 5.59

30 days 0.94 2.73

Northwestern 1 day 0.57 18.1 +12.7
Borneo 7 days 0.69 7.23

30 days 0.82 3.48

Northwestern 1 day 0.63 22.6 +16.5
Philippines 7 days 0.78 9.24

30 days 0.85 5.04

Eastern 1 day 0.62 19.4 +1.3
Philippines 7 days 0.73 7.85

30 days 0.83 3.92

Mountain 1 day 0.56 33.2 −28.0
Western 7 days 0.73 15.1

Philippines 30 days 0.83 8.69

3.2 Spatial sampling error between IMERG and GHCN precipitation318

Several studies evaluated the uncertainties related to the sampling of precipitation319

measurements when estimating areal precipitation (Villarini et al., 2008; Behrangi & Wen,320

2017; Tian et al., 2018; Tang et al., 2018). Here, the spatial sampling error is estimated321
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by comparing the native resolution Subang radar precipitation (on a 0.0045◦ grid) against322

itself, but regridded onto the coarser 0.1◦ IMERG grid. The “Radar” row in Table 1 shows323

the daily correlation coefficient, RMSE, and relative bias from these calculations. These324

statistics were initially calculated for each radar grid point at native resolution and the325

nearest 0.1◦ neighbour, and subsequently averaged over all low-land grid points (delimited326

by the green lines in Fig. 2).327

As the same product is being compared at two different spatial resolutions, the cal-328

culated values of correlation coefficient, RMSE and relative bias can be interpreted as the329

optimum values attainable, given the spatial sampling error between a 0.1o area-averaged330

precipitation dataset and a (nearly) point-wise precipitation dataset in Western Peninsular331

Malaysia. The daily radar–radar correlation coefficient is only 0.72, i.e., significantly less332

than the maximum theoretical value of 1. This is a similar value to that of Tang et al. (2018),333

who used a high density gauge network in the Ganjiang River basin (South China) to assess334

the expected sampling error. It shows that the sampling error contributes substantially to335

reducing the correlation coefficient for the IMERG–GHCN comparison, which has a value336

of 0.5.337

A similar conclusion can be drawn for the RMSE which is 9.2 mm day-1 for the radar–338

radar comparison. Contributions to mean square error (MSE) can be added linearly, whereas339

those to RMSE cannot. With this in mind, the radar–radar MSE has a value that is 45%340

of the value of the IMERG–GHCN MSE. Hence, approximately 45% of the IMERG–GHCN341

MSE can be attributed to the spatial sampling error, with the remainder being a “genuine”342

physical error between the two systems. Finally, the radar–radar relative bias is +11.4%,343

compared with +15.9% for the IMERG–GHCN comparison. Hence, approximately two344

thirds of the IMERG–GHCN relative bias can be accounted for by spatial sampling error,345

the remainder being again a “genuine” bias between the two different data sets.346

It is likely that precipitation extremes contribute disproportionately to the high RMSE347

values observed in all the regions. We define extreme precipitation days as those on which348

the precipitation rate exceeds 20 mm day−1, in either IMERG or GHCN (or both). Retain-349

ing only extreme precipitation days, we were able to retrieve 86% of the MSE in Western350

Peninsular Malaysia, confirming that high RMSE values are almost entirely due to discrep-351

ancies between IMERG and GHCN measurements on extreme precipitation days.352

To investigate the distribution of errors for such events, the probability density function353

(PDF) of daily precipitation differences between IMERG and the three nearest GHCN354

stations in the Subang area was calculated, following the method of Holloway et al. (2012).355

Precipitation bins were defined following a regular logarithmic increase in magnitude from356

0.5 mm day−1 to 100 mm day−1 for both positive and negative differences. The PDF at357

bin i was calculated using the following formula:358

P (i) =
n(∆pri < ∆Pr < ∆pri+1)

N × (∆pri+1 −∆pri)
, (1)

where n(∆pri < ∆Pr < ∆pri+1) designates the number of extreme precipitation days (as359

defined above) for which the precipitation difference (∆Pr) is within the bin limits set by360

∆pri and ∆pri+1, and N is the total number of extreme precipitation days.361

The resulting distribution of IMERG versus GHCN daily extreme precipitation dif-362

ferences is bi-modal with one local maximum near −20 mm day−1 and another one near363

+20 mm day−1 (solid line in Fig. 3). The maximum near +20 mm day−1 mostly reflects364

precipitation events that occurred in the IMERG data but did not occur in the GHCN365

stations, and vice-versa for the maximum near −20 mm day−1. Notably, such discrepancies366

are more frequent (note the logarithmic vertical axis in Fig. 3) than events where the dif-367

ference in precipitation intensity is less than 20 mm day−1. There is also a non-negligible368

frequency of events for which the differences between IMERG and GHCN daily precipita-369

tion are much higher, above 50 mm day−1. These events contribute the most to the RMSE.370
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Figure 3. Probability density function (PDF) of the difference between IMERG and GHCN

daily precipitation, for the three GHCN weather stations closest to the Subang radar (solid line).

The PDF of the difference between daily land precipitation from the Subang radar on its native

grid and the radar precipitation averaged over the nearest IMERG grid box (dashed line) is also

shown for ease of comparison. Both PDFs are conditioned on extreme daily precipitation, defined

as days for which at least one of the products exhibits daily precipitation above 20 mm day−1.

These observations are not reassuring for the use of IMERG in evaluating NWP of extreme371

precipitation, unless they are the consequence of the spatial sampling error.372

To ascertain whether the very large IMERG–GHCN precipitation differences can be373

attributed to the spatial sampling error, we examine the equivalent PDF for differences374

between the two different spatial resolutions of the Subang radar data. Each 0.0045◦ radar375

daily precipitation data point was subtracted from the daily precipitation estimate of its376

nearest 0.1◦ grid point equivalent. The PDF of the radar data (dashed line in Fig. 3) was377

constructed, retaining only the low land radar grid points for a better comparison with378

the IMERG–GHCN distribution. The two distributions are very similar. The radar–radar379

distribution also displays a bimodal shape with local maxima at ±20 mm day−1 and a380

local minimum at 0 mm day−1 of the same amplitude as the IMERG–GHCN distribution.381

This again highlights the large contribution of the spatial sampling error in explaining the382

large RMSE values, especially for extreme precipitation. This error cannot be ignored for383

a correct validation of IMERG extreme precipitation in the Maritime Continent, which in384

turn will serve for NWP evaluation.385
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3.3 Evaluation of IMERG reliability for extreme precipitation thresholds386

Extreme precipitation is often defined in relative terms by using the local statistical387

distribution of precipitation to calculate a threshold such as the 95th percentile of precip-388

itation over a given accumulation period. In this context, it is useful to know for which389

percentiles IMERG gives reliable estimates and those that should be avoided when using390

IMERG for NWP evaluation.391

3.3.1 Subang region of Western Peninsular Malaysia392

To evaluate the reliability of IMERG at various percentile thresholds we examine a393

quantile–quantile plot of IMERG versus GHCN precipitation for the three Malaysian sta-394

tions closest to the Subang radar for northern winter (October–March; blue line in Fig. 4).395

The uncertainty of the percentile values is shown by error bars that cover the 95% confi-396

dence interval. If there was a perfect correspondence, the blue line would follow the black397

1:1 control line.398

However, in practice there will be errors due to spatial sampling (Section 3.2) and other399

sources. The spatial sampling error can be accounted for by the use of radar data at both400

the 0.1◦ and native (0.0045◦) resolution, giving an expected theoretical quantile–quantile401

relationship due to spatial sampling alone (solid green control R–R line in Fig. 4). The solid402

green spatial sampling line does not follow the black 1:1 line. In particular, for extreme403

precipitation (95th and higher), the green line is below the 1:1 line, indicating that the404

(e.g.,) 95th percentile of radar precipitation on the native high resolution grid is larger than405

the 95th percentile of radar precipitation on the coarser IMERG grid. This neatly illustrates406

that the effect of spatial averaging is to reduce extremes. This effect works in the opposite407

sense at the lower percentiles. Here, the green line is above the 1:1 line. Hence, a very low408

rainfall rate (of a given value, e.g., 0.5 mm day-1) is more likely to be observed in low spatial409

resolution data than in high resolution data, due to spatial aggregation. In summary, we410

would not expect the IMERG–GHCN quantile–quantile line to follow the black 1:1 line,411

because of the spatial sampling effect. We might expect it to follow the green R–R control412

line, however.413

The control R–R quantile–quantile (solid green) line was calculated using the radar data414

with time interpolation to fill the missing values. For a rough estimation of the interpolation415

uncertainty, the R–R quantile–quantile line was recalculated by substituting missing values416

with zero (green dashed line in Fig. 4). This lies below the original control R–R line for the417

whole range of precipitation percentiles with a difference of about 25%.418

The radar precipitation product itself presents multiple uncertainties that need to be419

taken into account in the analysis. In particular, the reflectivity–rainfall (Z–R) relationship420

is a substantial source of uncertainty. These uncertainties were taken into account in our421

study by the use of three different Z–R relationships: Marshall–Palmer (Marshall et al.,422

1947), Rosenfeld (Rosenfeld et al., 1993), and WSR (Fulton et al., 1998). The Marshall–423

Palmer relationship resulted generally in the weakest rainfall rates, with the Rosenfeld424

relationship produced the highest rainfall rates, and the WSR relationship led to rainfall425

rates in between. Solid particles such as hail can also alter the radar signal by amplifying it.426

The uncertainty related to that was estimated by capping extreme reflectivities at 53 dB.427

The uncertainty linked to potential hail contamination is non-negligible, although weaker428

than that linked to the Z-R relationship (not shown). In the following, we use the WSR429

Z-R relationship without capping as default. The total radar uncertainties were calculated430

using the minimum and maximum values of the 6 radar estimates emanating from the 3431

different radar Z–R relationships with and without cap. The union of the 95% confidence432

intervals of these minimum and maximum values was taken to account for the percentile433

uncertainty. The resulted intervals are represented by a shaded grey area and the IMERG434

95% confidence intervals are represented by errors bars in Fig. 4).435
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Figure 4. Quantile–quantile diagram of GHCN daily precipitation of the three weather stations

at Subang in Fig. 2 versus their nearest neighbour IMERG daily precipitation (blue line). Quantiles

are calculated at 5% intervals from the 50th to the 95th percentile, then at the 97.5th, 99th, and

99.9th percentiles. The red markers highlight the 50th (square), 95th (diamond) and 99th (asterisk)

percentiles. Error bars show the 95% confidence interval. The black line shows the 1:1 control line.

To account for spatial sampling error, the green lines represent the quantile–quantile diagram of

Subang radar daily precipitation in low-land areas versus the corresponding (nearest neighbour)

daily precipitation of the Subang radar averaged on the IMERG grid, with temporal interpolation

over missing values (solid green line; control R–R), and by substituting each instantaneous missing

value by zero (green dashed line). The grey shading corresponds to the merged 95% confidence

intervals of the green lines.

The blue IMERG–GHCN quantile-quantile line remains within the two green control R–436

R lines from the 60th (approximately 1.5 mm day−1) to the 95th percentile (35 mm day−1),437

thus displaying a high fidelity in estimating this range of precipitation values. In particular,438

the 95th quantile is consistent with the control R–R line (solid green line, using interpolation439

for missing values) with a relatively low uncertainty of about 20%. The 95th percentile thus440

appears to be a reliable choice for evaluation of extreme precipitation in NWP against441

IMERG.442

For percentiles above the 95th, IMERG remains close to GHCN (i.e., close to the black443

1:1 control line), but increasingly deviates above the solid green R–R control lines for higher444

percentiles. Indeed, the 99th percentile of IMERG is approximately 70 mm day−1 against445

an expected value of about 50 mm day−1 (from the green R–R lines). The 99th percentile of446

IMERG lies beyond the R–R uncertainty envelope, which means that the overestimation is447

significant. This reflects a tendency for IMERG to overestimate very extreme precipitation448
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and reach values that tend to be higher than expected for its resolution. It should be noted449

that IMERG values are corrected by GPCC monthly accumulations (Section 2.1). Given450

that only one GPCC station was used to make this correction in Malaysia (M. L. Tan &451

Santo, 2018), it may not be surprising that IMERG precipitation extremes have the same452

magnitude as station precipitation extremes, and thus overestimate area averaged precipita-453

tion extremes. The fact that IMERG remains close to GHCN for these extreme percentiles454

can be useful for estimating the potential values that extreme precipitation could reach in455

local areas. However, these high percentiles are not recommended for NWP evaluations456

against IMERG since NWP are gridded products that usually do not output such local457

point measures of precipitation.458

IMERG tends to overestimate the number of low precipitation rate days459

(< 1.5 mm day−1, or the 60th percentile), compared to the solid green R–R line. The460

overestimation is significant for precipitation below < 0.9 mm day−1 where the IMERG line461

lies above the R–R uncertainty envelope. It should be noted that percentiles below the462

50th were not represented in Fig. 4 because they are all equal to 0 mm day−1 for GHCN,463

and thus do not fit a log–log representation. The number of dry days is lower for IMERG464

than for GHCN (not shown). Non-meteorological targets such as insects affect the radar465

retrievals, making it impossible to detect dry days and thus evaluate more accurately if466

IMERG detects less dry days than it should at its resolution.467

3.3.2 Other regions in the Maritime Continent468

We now investigate whether these conclusions hold for areas outside of the Subang469

area (Western Peninsular Malaysia) and for seasons other than northern winter, using six470

selected areas in Malaysia and in the Philippines (Fig. 5). The absence of a high resolution471

dataset equivalent to the radar in Subang makes it difficult to precisely determine IMERG472

performance against the location-specific spatial sampling error in these regions. However,473

in most regions, the percentile relationships between IMERG and GHCN are very similar474

to the one observed in Subang: IMERG displays higher precipitation rates than GHCN for475

percentiles below the 90th percentile and is similar to GHCN for percentiles above the 90th476

percentile. This is the case in Western Peninsular Malaysia, Eastern Peninsular Malaysia,477

Northwest Borneo, and Western Philippines during northern summer, and Eastern Philip-478

pines during northern winter. While the optimal percentile cannot be precisely determined479

for these regions, the similarity with Subang suggests that the IMERG 95th percentile is also480

likely to be a suitable percentile to evaluate NWP extreme precipitation against in these481

regions. Conversely, higher percentiles are not recommended for NWP evaluation as they482

will tend to overestimate area averaged precipitation.483

The performance of IMERG also shows seasonal dependence (Oliveira et al., 2016;484

M. L. Tan & Santo, 2018). This is particularly true in both the Western and Eastern485

Philippines (Fig. 5d,e). Indeed, IMERG displays higher precipitation rates than GHCN for486

every precipitation percentile during northern winter in the Western Philippines, whereas487

this is only the case for the lowest precipitation during northern summer (Fig. 5d). Thus,488

the positive bias for IMERG extreme precipitation is stronger during northern winter in the489

Western Philippines. This stronger overestimation might be explained by enhanced errors490

in the IMERG morphing scheme in this region, which is subjected to easterlies during the491

northern winter, such that most of the precipitating systems (including tropical cyclones)492

come from the east and cross the Cordillera Central mountain range. The propagation of493

precipitation in IMERG is based on the motion of total precipitable water vapor fields of the494

MERRA-2 reanalysis that may underestimate the mountain blocking effect on precipitation495

due to its relatively coarse spatial resolution. The use of IMERG for NWP evaluation of496

extreme precipitation in this region during northern winter should therefore be approached497

with caution.498
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Figure 5. Quantile–quantile diagrams of GHCN daily precipitation versus nearest grid point

IMERG daily precipitation during northern winter (October–March, blue) and northern summer

(April–September, red) for: (a) Western Peninsular Malaysia, (b) Eastern Peninsular Malaysia, (c)

North Western Borneo, (d) Western Philippines, (e) Eastern Philippines, (f) Mountain Philippines.

The red markers highlight the 50th (square), 95th (diamond) and 99th (asterisk) percentiles. The

black line shows the 1:1 control line.

In the Eastern Philippines, the weak precipitation is underestimated by IMERG during499

northern winter but overestimated in northern summer (Fig. 5e); the rainfall matches GHCN500

station data above the 90th percentile for both seasons, suggesting that the 95th percentile501

choice for evaluating extreme precipitation also holds during the northern winter in this502

region.503

The case of the mountain Philippines station (Fig. 5f) remains undetermined because504

of the use of only one GHCN station, on the western side of the Cordillera Central mountain505

range. In mountain regions, the statistical distribution of precipitation extrema will vary506

spatially within a single IMERG grid box (approximately 11 km) due to topographic effects507

largely absent in coastal land areas. Indeed, precipitation will tend to be systematically508

heavier at high altitude than low altitude or on the windward side compared to the leeward509

side of individual mountains. These patterns of precipitation will persist between events,510

in contrast to the more random spatial distribution of rainfall over flat topography. These511

topographic controls will lead to spatial biases even in perfect observations.512

Overall, the 95th percentile appears to be a suitable choice for evaluating NWP daily513

precipitation in most of the regions evaluated here. However, this choice of percentile may514

not necessarily be appropriate for sub-daily precipitation extremes, which are examined in515

Section 3.4.516
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Figure 6. Quantile–quantile diagrams of precipitation accumulation from the Subang radar

averaged onto the IMERG grid, versus precipitation accumulation from IMERG. In each panel,

accumulations are shown for instantaneous precipitation (blue line), 1 hr (green), 6 hr (grey), and

24 hr (red). (a) Low-land grid points only, using the whole time period with interpolation over

missing radar data values. (b) As (a), but only using data for periods where radar data exists. (c),

(d) As (a) and (b) but for sea grid points. The black line shows the 1:1 control line. The markers

highlight the 50th (square), 95th (diamond) and 99th (asterisk) percentiles.

3.4 Evaluation of sub-daily IMERG precipitation accumulation against517

radar518

The Subang radar makes it possible to evaluate IMERG precipitation on sub-daily519

time scales. By comparing the IMERG data to the radar data gridded onto the same 0.1◦520

IMERG grid, the spatial sampling error disappears. The uncertainties related to the Z–521

R relationship and potential hail contamination are evaluated in a similar way as in the522

previous section. The resultant intervals, as well as the IMERG 95% confidence intervals523

are represented by errors bars in Fig. 6. The uncertainties are far larger for the radar data524

than the IMERG data (Fig. 6), mainly associated with the choice of the Z–R relationship.525

Sub-daily rainfall accumulations in IMERG were evaluated against radar data by con-526

structing quantile–quantile diagrams of IMERG accumulated precipitation against 0.1◦ grid-527

ded radar accumulated precipitation, for various accumulation times (from instantaneous528
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to daily), for low-land and sea grid points separately (Fig. 6). Despite the uncertainties,529

the comparison over land (Fig. 6a) shows that IMERG overestimates the lowest precipita-530

tion amounts compared to the radar, for all accumulation time scales from instantaneous531

to daily. This overestimation is consistent with the previous daily comparison with GHCN532

station data. For higher percentiles, IMERG tends to underestimate extreme precipitation533

for sub-hourly timescales compared with radar. Note that this underestimation only holds534

for the highest percentile used here, i.e. the 99.9th percentile, thus corresponding to a very535

small number of cases.536

Overall, the results for sea grid points are qualitatively similar to those for the land537

grid points (Fig. 6c, d). The overestimation of IMERG at low precipitation intensities is538

similar to the land case. The underestimation of IMERG sub-hourly extreme precipitation539

is less pronounced and no more robust than over land. Similarly to the land regions, the540

temporal interpolation error does not significantly affect the quantile-quantile relationship541

between IMERG and radar in the sea areas around Subang (Fig. 6d).542

In contrast to the IMERG-GHCN comparison, we do not find any overestimation of543

daily IMERG precipitation at percentiles above the 95th percentile and there are no robust544

differences between IMERG and radar percentiles for longer accumulation times. In addi-545

tion to the aforementioned radar uncertainties, there are several possible explanations for546

this. Temporal interpolation was necessary to fill gaps in the radar data, which may have547

induced errors; we estimate the potential impact of these by drawing a similar quantile-548

quantile diagram retaining only periods without any missing values (Fig. 6b). While this549

subsetting induces a significant decrease in the number of events (from 89 days to 10 days),550

the qualitative findings remain the same and they are also replicated over the sea (Fig. 6c,551

d). We therefore conclude that our findings are not dependent on the temporal interpola-552

tion method. Another potential reason for the apparent discrepancy between the radar and553

GHCN comparisons is the difference of period considered in each comparison. The IMERG554

versus GHCN comparison was done using nearly 20 years of data between 2001 and 2019555

(without removing missing values) whereas the IMERG versus radar comparison is done556

with spatially aggregated data from 11 January to 15 April 2019. The 95% confidence inter-557

val error bars drawn in the IMERG–GHCN comparison account for the uncertainty linked558

to the representativeness of chosen period for the distribution of precipitation. However,559

these same errors bars in the IMERG–radar comparison mostly account for the spatial rep-560

resentativeness rather than the temporal representativeness, since time series from many561

grid points (86) were aggregated in this case compared to 3 for the GHCN-GPM com-562

parison. Consequently, qualitative differences between the comparisons can be observed563

without contradiction. This suggests that although IMERG tends to overestimate the very564

high percentiles of daily precipitation, this overestimation is not necessarily present for all565

heavy precipitation events.566

3.5 Representation of the diurnal cycle by IMERG567

One of the major issues of NWP is its ability to correctly represent the diurnal cycle568

of precipitation. This is especially important for precipitation extremes, which often re-569

sult from a complex interaction between the diurnal cycle and large-scale, slowly-evolving570

forcings. With its 30-minute output frequency, the IMERG product appears to be a good571

candidate to evaluate the diurnal cycle in NWP models. In this section, we use the Subang572

radar to assess the fidelity of IMERG in capturing the diurnal cycle of precipitation. Fig. 7573

shows the 90th, 95th, 99th percentile and mean instantaneous precipitation as a function574

of the time of day, for both the Subang radar and IMERG in both low-land and sea grid575

points. Despite the large uncertainties, IMERG agrees with the radar data with regards to576

the mean precipitation peak time in both low-land and sea areas. Mean precipitation peaks577

at about 6 UTC+8 over the sea and at 17 UTC+8 over the low-land areas for both IMERG578

and radar (Fig. 7a). For most times, the mean precipitation intensities are not significantly579
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Figure 7. Mean (a), 90th (b), 95th (c), and 99th percentile (d) of instantaneous precipitation

as of function of the time of the day for the IMERG product and for the Subang radar averaged

on the IMERG grid. Diurnal cycles are represented for both land (red) and sea (blue) grid points.

The grey shading areas display the 95% confidence intervals.

different between IMERG and radar, although the uncertainty in the radar data is very580

large.581

This good agreement of mean precipitation hides some disparities in the statistical dis-582

tribution of instantaneous precipitation, as seen previously in the quantile-quantile diagrams583

(Fig. 6). At the 90th percentile, IMERG consistently overestimates precipitation compared584

with the radar, especially for the peaks. The 95th percentile of IMERG precipitation re-585

mains quite close to the radar 95th percentile of precipitation especially over the sea. In586

the low-land areas, the IMERG 95th percentile precipitation peak is still stronger than the587

radar one but the differences are generally not significant with respect to the Z-R relation-588

ship uncertainty. However, the 99th percentile of precipitation tends to be underestimated589

by IMERG compared with the radar at the precipitation peak times in both land and sea590

regions. Despite these deficiencies in the amplitude of the diurnal cycle of extreme precip-591

itation, the diurnal phase of extreme precipitation (the 90th 95th, and 99th percentiles) is592

reasonably well captured by IMERG.593

4 Conclusion594

Precipitation extremes have dramatic impacts on the population of the Maritime Con-595

tinent. Improved predictions of such events can help to mitigate their negative effects. The596

evaluation of NWP models against reliable observation datasets is essential in order to un-597

derstand model deficiencies. In this study, we evaluated the ability of the IMERG satellite598

product to detect extreme precipitation with the purpose of assessing its suitability for use599

in NWP model evaluations in the Maritime Continent.600
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We evaluated the global skill of IMERG with respect to the GHCN weather station601

dataset in Malaysia and in the Philippines. Our findings are similar to previous compar-602

isons of IMERG with station data, with the best performance for longer accumulation times.603

However, we showed that the comparison of 0.1◦ grid versus pointwise precipitation is sub-604

jected to a spatial sampling error. Using the high resolution radar at Subang, we were able605

to estimate this spatial sampling error in western Peninsular Malaysia. We found that the606

sampling error may represent around 45% of the mean square error of daily precipitation be-607

tween the GHCN weather station data and IMERG. This suggests that the skill of IMERG608

in detecting daily precipitation may have been underestimated in previous studies in this609

area and likely in the whole Maritime Continent.610

When the spatial sampling error described above is taken into account, IMERG was611

found to overestimate low intensity daily precipitation. The overestimation of low precip-612

itation may be due to erroneous detection of precipitation by IR sensors, as suggested by613

previous studies. Meanwhile, for very extreme precipitation over the 95th percentile, the614

IMERG precipitation coincides with the GHCN measurements in most regions. Given the615

identified spatial sampling error, this implies that IMERG is overestimating very extreme616

daily precipitation compared to the true area-averaged daily precipitation. This coincidence617

of both IMERG and GHCN extreme daily precipitation percentiles may be related to the618

use of only one gauge per grid point in the GPCC gauge–analysis product (which serves for619

the calibration of IMERG), as individual gauges unavoidably have higher extreme values620

than a grid average.621

The use of radar data in western Peninsular Malaysia makes it possible to estimate622

more precisely the ideal choice of percentile to evaluate NWP extreme daily precipitation623

against IMERG. Our analysis shows that it is preferable to use the 95th percentile rather624

than the 99th percentile of daily precipitation to evaluate NWP against IMERG in western625

Peninsular Malaysia. We estimated that the IMERG 95th percentile is accurate with less626

than 20% potential error. Therefore, a 20% difference between NWP and IMERG is the627

minimum threshold for identification of model deficiencies, at least for the case of daily628

extreme precipitation at 0.1o horizontal resolution.629

The lack of other very high resolution observational datasets in the Maritime Continent630

prevented us from performing the analysis with the same degree of confidence in the other631

selected areas. However, it was found that IMERG daily extreme percentiles match with632

those of GHCN in (the whole of) western Peninsular Malaysia, Eastern Peninsular Malaysia,633

Northwest Borneo, western Philippines during northern summer, and in eastern Philippines.634

Assuming that the 0.1◦ spatial variability of daily extreme precipitation does not vary much635

between regions, this implies that the findings for western Peninsula Malaysia are applicable636

across all these regions and likely across the whole Maritime Continent. Therefore it is not637

recommended to use very extreme percentiles for NWP evaluation against IMERG in these638

regions.639

We found robust overestimation of low-level sub-daily IMERG precipitation when com-640

pared against Subang radar data. This overestimation was found for percentiles up to641

the 99th percentile for sub-hourly precipitation. However, very extreme (above the 99th642

percentile) sub-hourly precipitation was found to be robustly underestimated by IMERG643

compared to the radar in low-land areas. The differences of extreme precipitation at longer644

accumulation times were not significant at the 95% confidence interval when considering the645

uncertainties linked to the radar Z-R relationship and potential hail contamination on radar646

reflectivities. Further work aimed at reducing these uncertainties could help in diagnosing647

more precisely the behavior of IMERG, which would in turn improve the evaluation of NWP648

forecasts of extreme precipitation across the Maritime Continent.649

The mean diurnal cycle of precipitation is fairly well reproduced by IMERG both in650

timing and intensity when compared with radar data. However, the peaks of precipitation651

remain either overestimated for percentiles below the 95th percentile or underestimated for652
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percentiles above the 95th. This suggests that the 95th percentile of sub-hourly precipitation653

would also be preferable to higher percentiles for evaluation of NWP diurnal peak precipi-654

tation against IMERG. Finally, there was no obvious decrease of IMERG performances over655

the sea despite the absence of gauges.656

In conclusion, we find that the spatial sampling error of precipitation can not be ne-657

glected when comparing IMERG against point-wise observations, particularly for extreme658

precipitation. Taking this into account, the combined evaluation of station and radar data659

supports the key finding that IMERG data is reliable for use in evaluating NWP simula-660

tions of extreme precipitation at the 95th percentile, with lower reliability at both higher661

and lower percentiles.662
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