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Abstract

Prostate cancer is a considerable clinical problem worldwide, with large amounts of
variation seen in the clinical outcome of patients with apparently similar disease.
The diagnostic and prognostic tool-sets currently available to clinicians lack both
sensitivity and specificity, not taking into account the molecular variability of the
disease. The successful development of non-invasive prognostic biomarker tests has
the potential to impact the large numbers of patients with a clinical suspicion of
prostate cancer but that ultimately do not require invasive investigation and stressful
follow-up.

The Movember Global Action Plan 1 (GAP1) Urine Biomarker Consortium had
the aim of developing of a muti-modal urine test for the accurate discrimination of
disease status. The consortium of 12 collaborating institutes collected 1,258 urine
samples that were subsequently assayed by a range of biochemical techniques. The
main aim of this thesis was to apply statistical learning techniques to these data in
order to robustly develop prognostic models for prostate cancer.

The Prostate Urine Risk (PUR) model was developed using solely NanoString data
from cell-free RNA samples, and reported strong utility for predicting the outcome of
an initial prostate biopsy (AUCs > 0.70 for Gleason ≥ 3+4 and ≥ 4+3). Addition-
ally displaying remarkable use in an active surveillance sub-cohort, PUR identified
patients at a higher apparent risk of disease progression, reporting a hazard ratio =
8.23 (95% CI: 3.26 - 20.81).

The effects of altering the statistical methodology applied to the data were quan-
tified, where ensemble algorithms presented the best solution to capturing the most
amount of information. Using this information a machine learning framework was de-
signed to produce multivariable risk prediction models incorporating strong internal
validation compliant with the TRIPOD reporting guidelines.

This framework was used to construct three risk models, each integrating informa-
tion from different fractions of urine. All showed strong potential for clinical utility,
reporting AUCs in excess of 0.8 for predicting Gleason ≥ 3+4, and approaching AUC
= 0.9 for ruling out the presence of any cancer on biopsy. The net benefit of adopt-
ing these risk models was determined via simulation of a population-level cohort,
where each model has the potential to result in large reductions to the numbers of
unnecessary biopsies currently undertaken.

In conclusion, the analyses presented here demonstrate the large amount of infor-
mation that can be captured within urine. If these models are validated in future
studies by the proposed clinical trial designs they could dramatically change the treat-
ment pathway for prostate cancer, reducing costs to healthcare systems and ultimately
unnecessary stress to patients.
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Chapter 1

Introduction

Cancers form a group of diseases characterised by abnormal cell growth with the potential to
invade or spread to other parts of the body. Cancer arises from multiple acquired heritable
genetic mutations that drive disease progression. Typically, cancer is a disease of old age,
though some cancers such a leukaemia or brain cancers are particularly prevalent in young
children1. Cancer requires multiple genetic and epigenetic alterations to be acquired before
a cell can escape growth regulation and proliferate uncontrollably, invading surrounding
and distant tissues, disrupting the body’s basic functions, and potentially causing death.

Prostate cancer is remarkably common in Western society, accounting for 26.3% of
all male cancers diagnosed in the United Kingdom in 2015, more than any other single
cancer1. It is so common in fact, that autopsy studies have shown detectable prostate
cancer is present in 24 - 40% of men at the time of their death2,3. We are still unsure
as to why prostate cancer is so common and what causes it to appear in so many men
before their deaths, the prostate has even been described as an inherently precancerous
organ, predetermined to develop dysplasia and cancer as we age4. Survival rates following
diagnosis are very good, with current 10-year survival reaching approximately 84% in the
UK1, making prostate cancer a disease that men more commonly die with rather than from.
However, due to such a high prevalence and subsequent rates of diagnosis, prostate cancer
still accounts for 13% of all UK male cancer deaths1.

Considering the application of significant scientific effort over past decades, the clinical
appraisal of patients suspected of having prostate cancer still primarily relies on prostate-
specific antigen (PSA) levels, a single broad and error-prone blood biomarker. Taken in
isolation, 75% of men in the PSA “grey zone” (4 - 10 ng/mL) have been found to not
have prostate cancer on biopsy5. Confirmation of disease status is via invasive needle
biopsy that in and of itself suffers from sampling problems, leading to both over- and
underestimation of disease status. Current biopsy techniques can result in more negative
results than cancer findings, although this can vary from centre to centre6–8. There is a
clear need for clinically implementable tools able to selectively identify those men that can
be safely removed from clinical pathways and adequately stratify those men harbouring
disease that requires intervention.

An opportune point for the triage and risk assessment of patients suspected to harbour
prostate cancer would be prior to an initial biopsy. This would allow the lowest risk patients
to forgo invasive biopsy whilst simultaneously identifying high-risk patients in need of fast-
tracking through to more aggressive treatment options. Liquid biopsy techniques that are
minimally- or non-invasive have gained huge traction in biomarker discovery for a multitude



of malignancies9,10. Both the ductal nature of the prostate and interconnected nature of
the male urological system make urine an ideal means for holistically sampling the prostate
non-invasively. Sloughed-off cells, secreted proteins, nucleic acids and extracellular vesicles
from normal and cancerous prostate tissue can all find their way into the urine through
prostatic ducts that drain into the urethra8,10–15.

Figure 1.1: Workflow illustration of data sources from the Movember GAP1
Urine Biomarker project. Individual laboratories analysed samples, gener-
ating data and analysing indivudal datasets where possible.

In 2012, the Movember Global Action Plan 1 (GAP1) initiative was launched; a global
collaboration between multiple institutes focusing on developing new biomarker candidates
for prostate cancer in urine, plasma, serum and extracellular vesicles. A prime aim of
the GAP1 urine biomarker initiative was to develop a multi-modal urine test for the dis-
crimination of disease state. The consortium of 12 collaborating institutes across seven
countries analysed a total of 1,258 samples across a range of analytical methods including
transcriptomic, proteomic, methylation and ELISA assays (Figure 1.1. Due to limitations
in the amount of material obtained from samples, not all analyses could be performed on
every sample, however sufficient overlap was present in a number of key assays that will be
explored later.

The focus of this thesis explores how machine learning can be utilised to optimally and
robustly harness the information contained across multiple fractions of urine, in order to
develop a non-invasive test for prostate cancer. As a first step I explore how transcriptomic
data available from a single urinary fraction can be used to accurately discriminate disease
status in patients. I then progress to improve upon this method using more robust statistical
methodology and data processing before describing an encompassing framework for the
rapid prototyping of predictive models. I apply this framework as part of data integration
studies across differing methods of assaying urine, to successfully develop three multimodal
& multivariable models which demonstrate the potential for clinical utility, named ExoMeth,
ExoGrail and ExoSpec. The ExoMeth model is a multivariable risk prediction model that
incorporates information from clinically available parameters, cellular methylation targets,
and cell-free RNA gene information. Able to predict biopsy outcome with clinically useful
precision, ExoMeth displays the potential to reduce biopsy rates by >65%, if externally
validated and implemented. With this considered, in my final chapter I describe the design
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of a clinical validation trial for the developed predictive models and use RNA sequencing
data to suggest new targets for future biodiscovery trials.

1.1 My guiding philosophy - robust, reproducible and rele-
vant analyses

The vast majority of cancer biomarkers fail to translate to the clinic; with only 1% of
published discoveries entering clinical practice16,17. The lack of uptake could be attributed
to a variety of issues, including a lack of robustness by identifying dataset-specific features
or by sub-optimal statistical practice. Additionally, some biomarkers may not answer a
clinically relevant question, or are cost prohibitive for the predicted effect sizes. Such is
the case with the PCA3 test, a urine test for predicting biopsy outcome in patients with
a previously negative biopsy, that has been recently recommended against by the National
Institute for Clinical Excellence (NICE) due to being uneconomical for the reported clinical
utility5.

In this thesis I try to avoid these pitfalls by holding statistical robustness, quantitative
reproducibility and clinical relevance as key tenets throughout my analyses:

• Robustness is achieved by the extensive use of bootstrap resampling, simulation, and
the avoidance of point-estimates or over-reliance on P values for interpretation of
results.

• Through documented structuring of analysis scripts and the adoption of statistical
programming best practice, all results can be quantitatively reproduced if required.

• The clinical utility and translational potential of models are assessed by the use of
clinically relevant endpoints and the quantification of effect sizes if models were to be
applied at a population level.

1.1.1 TRIPOD guidelines

In 2008, Glasziou and colleagues assessed the reporting quality of 80 trials and systematic
reviews in health research, finding over half of them to be inadequate18. There are several
reasons that make inadequate reporting problematic. Insufficient details concerning the
design and implementation of a trial leave readers without the ability to critically appraise
the reliability of published results and their interpretations. Additional ethical and moral
reasons highlight the need for adequate reporting19.

As a result of this the EQUATOR (Enhancing the QUAlity and Transparency Of health
Research) Network was established as an international initiative to improve the quality
of healthcare research through the promotion of transparent and accurate reporting20.
Through the EQUATOR Network several guidelines have now been developed, encom-
passing recommendations for clinical trials, prognostic markers, genetic risk prediction, and
most importantly for these works, guidelines for the Transparent Reporting of a multivari-
able prediction model for Individual Prognosis Or Diagnosis (TRIPOD)21.
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Figure 1.2: Types of prediction model studies covered by the TRIPOD state-
ment. D = development data; V = validation data. Adapted from the
TRIPOD Statement

The TRIPOD guidelines are a set of recommendations for the reporting of studies de-
veloping, validating, or updating a prediction model, whether for diagnostic or prognostic
purposes, most of which form the focus of this thesis. Additionally TRIPOD describes
the types of prediction model study designs and provides an evidence level hierarchy for
assessing the development and validation of such studies (Figure 1.2).

With this considered, the analyses reported in Chapter 6 and Chapter 7 fully adhere to
these reporting guidelines. Similarly, the validation clinical trials in Chapter 8 are designed
to ensure that evidence generated is of the highest quality and few, if any, additional trials
are required before clinical implementation becomes a tangible goal.
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1.2 Aims and objectives of this thesis

1.2.1 Aims

To utilise the data available from the Movember GAP1 Urine Biomarker project to its fullest
extent by developing robust, reproducible models for risk prediction that assess multiple
streams of data in a urine sample.

1.2.2 Objectives

• To describe the current clinical pathway for prostate cancer patients and identify the
need for more precise tests.

• To develop a risk prediction model using NanoString data, with validation in a sub-
cohort.

• To assess whether different machine learning algorithms and training labels can be
used to improve model performance and provide more clinical utility.

• To investigate the use of resampling methods and the bootstrap to maximally utilise all
available data in small, high-dimensionality datasets without compromising robustness
or reproducibility.

• To apply this framework to all available overlaps of urine data of an appropriate sample
size (n > 200 typically) from the GAP1 study to develop predictive risk models.

• To design clinical validation trials for these models to expediate their adoption in
clinical practice

• To identify targets and modalities of interest for future biodiscovery studies.

1.3 Chapter overview
• Chapter 2: Background information is given on prostate cancer, the current toolset

available to clinicians and the need for more advanced biomarkers.

• Chapter 3: Detailed descriptions of all methods applied in this thesis are given,
serving as a reference for analytical and statistical methods.

• Chapter 4: This chapter describes the development and validation of a four-group
risk prediction model for prostate cancer and the application of this model to an active
surveillance sub-cohort.

• Chapter 5: Improvements to this model are investigated in this chapter by exploring
different combinations of machine learning algorithms, training labels, and resampling
strategies.

• Chapter 6: This chapter describes the structure of a semi-automated machine learn-
ing framework for biodiscovery in overlapping datasets. Using the findings from the
previous chapter, the Framework implements Random Forests for both feature selec-
tion and model creation, whilst creating comparator models from individual datasets.

• Chapter 7: In this chapter the Framework is applied to a number of overlapping
datasets, developing both promising models and negative results.
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1.4. Thesis output

• Chapter 8: The results from all previous chapters are considered as a whole, dis-
cussing the strengths and weaknesses of the analyses within this thesis. A clinical
trial design to validate the analyses presented is proposed.

1.4 Thesis output
This thesis has produced: peer reviewed papers; talks at academic conferences; intellectual
property; and preprints. Full details of these outputs are described below.

1.4.1 Peer reviewed papers

• Shea P. Connell et al. (2020) Development of a multivariable risk model integrating
urinary cell DNA methylation & cell-free RNA data for the detection of significant
prostate cancer, The Prostate, 2020 (1 - 12). doi:10.1002/pros.23968

• Shea P. Connell et al. (2019). A four-group urine risk classifier for predict-
ing outcomes in patients with prostate cancer. BJU International, 124(4). doi:
10.1111/bju.14811

1.4.2 Papers under review

• Shea P. Connell et al. (2020) Development of a risk model integrating cell-free RNA
& proteomic data for the pre-biopsy detection of prostate cancer from urine, TBD

• Shea P. Connell et al. (2020) Integration of urinary EN2 and cell-free RNA in devel-
oping a multivariable risk model for the detection of prostate cancer in biopsy naieve
patients, TBD

1.4.3 Invited talks & accepted posters

• Detecting clinically significant prostate cancer with urine: A multivariable
risk model integrating urinary proteomic and cell-free RNA data - Poster,
talk European Society for Urological Research 2019, Porto, Portugal.

• Using urine to diagnose prostate cancer: developing two multimodal diag-
nostic models reproducibly within R - Invited Talk, R/Medicine 2019, Boston,
USA.

• Predicting outcome in prostate cancer patients using a multi-signature risk
classifier, derived from urinary extracellular vesicles - Poster, European Asso-
ciation of Cancer Researchers Tracking Cancer 2019. Awarded Clinical and Metastasis
Poster Prize.
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Chapter 2

Background

2.1 Summary
In this chapter I provide an overview of the main biological and medical concepts and
approaches relevant to both the treatment of prostate cancer and the projects explored
in this thesis. I provide a brief anatomical description of the prostate, the epidemiology
and clinical presentation of prostate cancer and the current toolsets used by clinicians in
the appraisal of prostate cancer. Some of the leading existing non-invasive methods for
the detection of prostate cancer are discussed and framed in the context of clinical utility.
Finally, the applications of machine learning for biomarker discovery and development are
discussed, considering the benefits and limitations to medical settings and prostate cancer
specifically.

2.2 Cancer and the prostate
A polygenic disease, cancer requires multiple genetic and epigenetic alterations to be ac-
quired before a cell can escape growth regulation and proliferate uncontrollably. Typically
a disease of old age, acquired genetic mutations are compounded over time to drive can-
cer progression, though some cancers such as leukaemia or brain cancers are particularly
prevalent in young children1. The hallmarks of cancer comprise eight biological capabili-
ties, detailed fully by Hanahan et al.22,23, but briefly, are; sustaining proliferative signalling,
evading growth suppressors, activating invasion and metastasis, enabling replicative immor-
tality, inducing angiogenesis resisting cell death, reprogramming of energy metabolism and
evading immune destruction. Basic research aims to underpin the specific mutations and
alterations to biological pathways that drive prostate cancer, however this is outside of the
scope of the current work and readers are directed to excellent articles by Gundem et al.24
and Schlomm et al.4 for further information.



2.2. Cancer and the prostate

2.2.1 The Prostate

Figure 2.1: The zonal anatomy of the prostate gland (adapted from The
Canadian Cancer Society)

The prostate is a fibromuscular secretory gland of the male reproductive system approxi-
mately the size of a walnut, forming the sexual accessory tissue with the Cowper and Littre
glands, seminal vesicles and ampullae25. The composition of the prostate is approximately
70% glandular, with the remaining 30% composed of fibromuscular stroma. The tissue of
the prostate is formed of many branching ducts, surrounded by the stroma, itself formed
of connective tissue and muscle fibres (Figure 2.1). The cells lining these ducts produce
prostatic fluid, an alkaline liquid with high levels of zinc, polyamines and citric acid26.
The prostatic fluid also contains some secretory proteins and proteolytic enzymes including
prostate specific antigen (PSA), a key biomarker used in the diagnosis of prostate cancer
that is usually involved in liquefying semen immobilised within the seminal coagulum27.

The human prostate is anatomically defined in terms of zones, as described by the works
of McNeal28–30 and detailed in Figure 2.1. The prostate is split into:

1. Peripheral Zone
The peripheral zone comprises up to 65% of the mass of a healthy prostate, but
accounts for the origin of 70 to 80% of prostatic carcinomas31,32. This high proportion
of reported diagnoses may be influenced by the proximity to the rectum, where it the
most readily sampled area for biopsy and digital rectal examination31,32.

2. Anterior fibromuscular stroma
This region of the prostate overlies the urethra anteromedially, meeting the smooth
muscle of the bladder neck and external urethra sphincter. As opposed to the over-
sampling of the peripheral zone, the anterior zone represents a historically under-
represented zone by diagnosis, despite being reported to account for 20% of all prostate
cancer in radical prostatectomy samples and cancers in this region are associated with
higher prostate cancer-specific mortality33–35.
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3. Central Zone
The central zone forms approximately 30% of the total glandular mass, with ducts
fanning perpendicular to the ejaculatory duct. Tumours originating here have been
reported to be associated with more aggressive disease, but only account for approx-
imately 2.5% of reported cancers36,37

4. Transition Zone
Two lobes of glandular tissue bordering the urethra form the transition zone, where
benign prostatic hyperplasia (BPH, a non-malignant enlargement of the prostate)
originates. Accounting for only 5% of the total prostate volume, incidence of cancer is
reported to vary from 4% to over 20% and has been associated with more favourable
outcomes38,39.

2.2.2 Prostate Cancer

“The prostate is a precancerous organ that inevitably develops dysplasia and
cancer over time” — Schlomm et al. (2015)4

Prostate cancer is diagnosed remarkably frequently in high-income countries, accounting
for 26% of all cancer diagnoses in the UK in 20171. Indeed, autopsy studies have shown
that prostate cancer is present in 25 to 40% of men of all ages at the time of their death,
increasing with age and approaching 85% in 81 to 95 year-old patients2,40,41, leading some
to believe that the prostate is an inherently abnormal tissue4. Despite this exceptional
frequency, only a small percentage of cancers progress to become clinically apparent5. Less
than 15% of detected cancers progress to kill the patient within 10 years of diagnosis, which
when coupled with the high incidence, makes prostate cancer responsible for the largest
number of male cancer deaths in the UK1.

Some tumours are undeniably aggressive, progressing rapidly and requiring immediate
clinical intervention with curative intent, whilst a large proportion show very slow growth
and are indolent in nature. Determining which patients will require treatment and those
that do not need any intervention is a key clinical issue for many healthcare systems. This
issue is non-trivial and is one of the main focuses of this thesis.

2.3 The diagnostic and prognostic toolsets for prostate can-
cer

Diagnosis of prostate cancer in the United Kingdom typically follows published guidelines
from the National Institute of Health and Care Excellence (NICE), whilst in the EU it is the
European Association of Urology (EAU) and USA guidelines by the American Urological
Association (AUA). All regularly review available literature and update their guidelines to
recommend or rescind treatments, procedures and medicines in light of emerging evidence-
based research, though the most recent update from NICE will be the focus of this section5.
Broadly speaking, there are four key tools used to provide clinicians with adequate informa-
tion to make initial treatments about decision at the time of diagnosis: serum PSA levels,
digital rectal examination (DRE), multi-parametric magnetic resonance imaging (mpMRI)
and needle biopsy.
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2.3.1 PSA

Prostate specific antigen (PSA) is a glycoprotein encoded by the KLK3 gene. Secreted by
the epithelial cells of the prostate, and not produced by any other organ in the body, PSA
is theoretically the ideal marker for prostate-specific diseases. PSA can be detected in the
serum of healthy patients as well as those with prostate cancer where elevated levels are
associated with increasing disease severity. However, elevated PSA can also be caused by
more benign conditions including BPH and prostatitis, or be influenced by external factors
such as physical and sexual activity and even by temperature42–44. Despite the observed
variability, PSA remains the most widely used biomarker for the early detection of prostate
cancer.

Since clinical adoption of PSA levels in the 1980s, the reported incidence of prostate
cancer has steadily risen, whilst the proportion of patients dying prostate cancer-specific
deaths has decreased45. Historically, widespread PSA screening was a strategy employed by
healthcare systems to aid the early detection of prostate cancer, though this resulted in the
over-diagnosis and subsequent over-treatment of patients with indolent disease. As such,
NICE, the AUA and the EAU all advocate against the use of routine PSA screening. Instead,
PSA testing is typically triggered by one of the following circumstances, or symptoms that
can be associated with prostate cancer:

• Patients older than 50 years of age who request a PSA test.
• Lower urinary tract symptoms (LUTS), such as nocturia, urinary frequency, hesitancy,

urgency or retention.
• Erectile dysfunction
• Visible haematuria
• Unexplained symptoms that could be due to metastatic prostate cancer, such as bone

pain, weight loss or lower back pain.

The clinical application of PSA from its use for triggering a biopsy as a result of elevated
PSA through to assessing relapse following treatment is discussed below.

2.3.2 Digital Rectal Examination

The digital rectal examination (DRE) is a clinical technique used to assess the prostate by
palpation for size, firmness, discernible nodules or lumps that may indicate the presence
of prostate cancer, or need for further investigations. A DRE is performed often as one
of the first clinical lines of investigation when lower urinary tract symptoms are reported
by the patient, or some other clinical suspicion exists. Performed by a general practitioner
(GP) or urologist a DRE is performed by inserting a finger into the rectum of a patient
and palpating the prostate through the wall of the colon. However, as only the posterior of
the prostate can be felt by DRE, anteriorly located cancers or cancers not impacting the
prostatic capsule cannot be felt. Efficacy of the DRE is questionable, as the results can vary
according to clinician, position of the prostate or body mass of the patient, whilst nodules
can not be apparent upon a repeat examination. With a reported sensitivity of 51% and
specificity of 59%, the DRE in isolation is of little diagnostic use46

2.3.3 Needle Biopsy

Currently the only method to definitively diagnose prostate cancer is via needle biopsy of
the prostate and subsequent histopathological identification of tumour tissue5. Tissue is
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commonly obtained through one of two methods, a trans-rectal ultrasound-guided (TRUS)
biopsy or trans-perineal template prostate mapping (TPM) biopsy. TRUS biopsies usually
collect 10 to 12 tissue cores through the wall of the rectum and into the prostate under a
local anaesthetic. TPM biopsy can collect upwards of 24 cores through the perineum using
TRUS or mpMRI information to map a template of the prostate to a grid and avoiding the
urethra and under a general anaesthetic by NICE guidelines5. Both methods are associated
with some degree of sampling error both in over- and under-estimation of disease status in
the case of a cancer finding, estimated for TRUS-biopsy to be 29% and 14%, respectively47.
Where a negative biopsy outcome is recorded, TRUS biopsy is associated with far higher
rates of false negatives, reported to reach 20 - 30% when compared to TPM biopsy48.

Figure 2.2: Representation of idealised Gleason patterns in tissue samples.
Gleason patterns 1 and 2 are theorised and are not observed in prostate
tissue. Adapted from The National Institute for Health

Tissue obtained from needle biopsy is appraised for the presence and advancement of
cancer by means of the Gleason score. The Gleason score is a grading system for identifying
the histological morphology of prostate tissue as a measure of cellular differentiation49,50.
Since its inception almost half a century ago, the Gleason score has been gradually and
repeatedly refined by pathologists to remain as one of the most important single markers
available to clinicians50–52. Calculated as the sum of two patterns, the Gleason score is the
sum of the most prevalent and second most common patterns when reporting biopsy out-
comes (Figure 2.2). In radical prostatectomy samples, Gleason score may also be reported
with a tertiary pattern51.
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Figure 2.3: Prostate cancer-specific survival for patients diagnosed by TRUS
biopsy with tumours of differing total Gleason scores. Adapted from Egevad
et al. (2002), reported P < 0.001.

The Gleason score is still the most useful prognostic tool currently available (Figure
2.3), with no superior tool identified in the 50 years since its inception. The grading of
tissue biopsy requires significant time and skilled pathologists and, even then, changes in
assigned Gleason scores have been observed due to operator and location biases53. As will
be discussed below, the nature of needle biopsy itself has drawbacks in sampling error and
infection risks. Compounded by the multifocal nature of prostate cancer, finding a new and
objective method of holistically assessing prostate health is key to improving patient care.

2.3.4 MRI

The latest addition to the NICE guidelines in 2019 was the adoption of multiparametric
magnetic resonance imaging (mpMRI) as a first-line triage device prior to biopsy for patients
with a clinical suspicion of prostate cancer (from PSA, LUTS, DRE or combination of the
three) that are eligible for radical treatment5. Previously mpMRI was only formally recom-
mended to patients following a negative initial biopsy, where a clinical suspicion remained54.
As a non-invasive imaging technique, mpMRI makes a good first-line investigation to filter
patients with benign or indolent conditions from the clinical pathway without the need
for needle biopsy. Reported on the 5-point Likert scale prostate imaging-reporting and
data system (PI-RADS), imaging data is scored by trained radiologists according to the
likelihood of finding clinically significant prostate cancer on biopsy, defined as any one of:
Gleason score ≥ 7, tumour volume >0.5 mL, or extraprostatic extension55.

The 2019 NICE guidelines for the clinical use of mpMRI as a first-line option prior to
biopsy are based on three studies; Porpiglia et al.,56 the PRECISION trial from Kasivis-
vanathan et al.57 and the PROMIS trial, reported in Ahmed et al.58. Both Porpiglia et
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al. and Kasivisvanathan et al. used a PI-RADS score of 3 as a threshold for biopsy and
showed that up to twice as many people with clinically significant cancers were likely to be
identified through the use of mpMRI-influence biopsy rather than prostate biopsy alone.
The PROMIS trial provided evidence that there is still a chance of missing clinically signif-
icant disease at that threshold and so NICE has still maintained that biopsy should not be
definitively ruled out for patients with a PI-RADS score of 1 or 25,58

2.3.5 TNM Staging

Upon confirmation of localised prostate cancer in a tissue biopsy the tumour is staged
according to the tumour, node, metastasis (TNM) standardised system for malignant tu-
mours. As described and maintained by the Union for International Cancer Control, it is
comprised of three main parts with subsections for further description:

• T – size and extent of the primary tumour:
– TX – Primary tumour could not be assessed
– T0 – No evidence of primary tumour
– T1 – Clinically insignificant tumour neither palpable or visible in imaging

∗ T1a – Incidental histological finding in less than 5% of tissue
∗ T1b – Incidental histological finding in more than 5% of tissue
∗ T1c – Tumour identified via needle biopsy

– T2 – Tumour confined within the prostate
∗ T2a – Tumour in half or less of one lobe
∗ T2b – Tumour in more than one half of one lobe
∗ T2c – Tumour in both lobes, but still confined to prostate gland

– T3 – Tumour exhibits extra-capsular extension beyond the prostate
∗ T3a – Extra-capsular extension
∗ T3b – Invasion of the seminal vesicles by the tumour

– T4 – Fixed tumour or invasion of surrounding organs other than the seminal
vesicles.

• N – presence/absence and extent of regional lymph node metastasis:
– NX – Regional lymph nodes cannot be assessed
– N0 – No regional lymph node metastasis
– N1 – regional lymph node metastasis

• M – presence/absence of distant metastasis:
– M0 – No distant metastasis
– M1 – Distant metastasis

∗ M1a – Non-regional lymph nodes
∗ M1b – Bones
∗ M1c – Other sites with or without bone disease

The above describes clinical staging, the extent of cancer at time of diagnosis. Pathological
staging describes tumour extent following radical prostatectomy (RP), often providing a
more accurate classification due to biopsy sampling error and other factors. Pathological
staging criteria are almost identical to clinical staging, though there is no T1 classification
for pathological TNM.
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2.4 The current clinical pathway for patients
The current clinical journey from clinical suspicion through to diagnosis, prognosis and
treatment of prostate cancer, as described by NICE, the EAU or AUA, is a complex one.
There is no single absolute path for any given man from presenting with symptoms, being
diagnosed with a prostatic adenocarcinoma, and being offered treatment with curative intent
or placed onto a protocol of active surveillance, or, unfortunately in some cases, provided
with palliative care.

Current NICE guidelines for the treatment of patients suspected to have prostate can-
cer can be broadly categorised into three distinct sections; detection and diagnosis, active
surveillance, and management. The focus of the work in this thesis is primarily on the
prognosis of prostate cancer biopsy outcomes with a secondary focus on prediction in active
surveillance, therefore the curative treatment of prostate cancer will not be covered in de-
tail. It’s additionally important to state that while NICE and other organisations provide
the official guidelines, clinical practice can, and does, diverge dramatically from them. For
example, the Movember GAP3 Active Surveillance project supplies hugely varying proto-
cols for the management of lower risk patients and from personal communications, some
clinicians are moving away from TRUS biopsy towards MRI-guided and template biopsies.

2.4.1 Diagnosis

Patients presenting at primary care with a clinical suspicion of prostate cancer are offered
a PSA test and a DRE. Causes for suspicion include lower urinary tract symptoms (LUTS;
increased frequency or urgency of urination, incontinence, painful urination or excessive
nocturia for example), erectile dysfunction, haematuria, or other unexplained symptoms
that could be the results of metastatic disease such as bone pain and weight loss. Pa-
tients over the age of 50, or with familial history can also request a PSA test at primary
care. However, careful consideration and discussion concerning the potential benefits and
limitations of the PSA test are required before performing the test in all cases.

As previously discussed, an elevated PSA alone is not definitive evidence of prostate
cancer, but the results of a DRE can supplement an elevated PSA result to aid clinical
decision making. With most detected cancers located in the peripheral zone, it is reported
that a tumour >0.2 mL can be detected by clinician DRE59 and in up to 18% of cases a
tumour is detected by DRE alone, in the absence of elevated PSA levels59.

If a clinical suspicion of prostate cancer remains following the results of a DRE and PSA
test, patients are next offered mpMRI or prostate biopsy, dependent on local resources and
consideration of the patient’s eligibility for radical treatment. Where mpMRI is undertaken
it is common practice to omit prostate biopsy for patients with a PI-RADS score of 1 or
2, instead opting for PSA surveillance at 3 to 6 month intervals unless patient-reported
symptoms indicate the need for further investigation. Biopsy is usually offered to patients
with a PI-RADS score of 3 or more and NICE recommend that the decision to refer patients
for confirmatory needle biopsy be made on the combined results of the DRE, PSA test,
associated risk factors (race, familial links etc) and mpMRI. Consideration towards the
overall health and co-morbidities of the patient, where a discussion concerning the potential
of living with the diagnosis of clinically insignificant cancer are also undertaken. Risk
calculators and nomograms for risk estimation at this point prior to biopsy exist, and
can be used by clinicians to estimate the risks of many different endpoints such as seminal
vesicle invasion or predicted Gleason on biopsy60,61. However, the calculators require strong
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external validation and calibration, and the Predict tool is the only one currently endorsed
by NICE guidelines5,62.

The current NICE guidance for needle biopsy of the prostate is MRI-influenced TRUS
biopsy, with NICE recommending against TPM biopsy as a first-line choice5. This rec-
ommendation is based on the intensive resource requirements to undertake a TPM biopsy;
with general anaesthetic and extensive histological analysis of the at least 24 cores taken.

2.4.2 Risk Stratification and Prognosis

Several systems exist for stratifying patients into categories based on the severity of their
disease following a confirmed diagnosis of prostate cancer. The most common system, used
by NICE and EAU is the D’Amico Risk Classification for prostate cancer, designed to assess
the five-year risk of biochemical recurrence following radical therapy, D’Amico Risk uses a
combination of PSA, Gleason score and tumour staging attained prior to treatment63 (Table
2.1). This risk categorisation forms the backbone of the clinical pathway and is utilised to
inform the decision of putting prostate cancer patients forward for radical treatment, active
surveillance or watchful waiting.

Table 2.1: D’Amico risk stratification parameters for patients with localised
prostate cancer

Risk Level PSA Gleason Score Clinical Staging
Low <10 ng/mL and 6 or below and T2a
Intermediate 10 - 20 ng/mL or 7 or T2b/c
High >20 ng/mL or 8 or above or T3

2.4.3 Treatment or Active Surveillance?

Methods for the treatment for prostate cancer with curative intent are broadly grouped
into surgical, radiotherapy and chemotherapy-based approaches or some combination of the
above. The side-effects of any treatment are not insignificant, with urinary incontinence and
erectile dysfunction widely reported following radical prostatectomy (RP) in 47% and 36%
of patients, respectively64, whilst the risk of adverse cardiovascular events are significantly
increased under a regimen of androgen deprivation therapy65. These life-altering side-effects
are the prime reason for reducing the overall rates of treatment for patients that do not
strictly require it.

Using the D’Amico system, most patients currently diagnosed with Low risk disease in
the UK generally forgo immediate treatment and instead are enrolled onto a program of
Active Surveillance (AS). The aim of AS is to delay or avoid altogether the treatment
of patients until it is clear that intervention is essential, with the goal to avoid over-
treatment and the side-effects of treatment without adversely influencing prostate cancer-
specific mortality.5,66,67 A typical active surveillance regime by NICE standards include
repeated PSA measurement at 6 month intervals, with a repeat biopsy at 2 years follow-
ing initial enrolment5. The clinical trigger points for intervention with curative intent are
highly variable and depend on the attending clinician68, ranging from threshold levels and
doubling time of PSA to adverse histology or a volume increase on mpMRI8,68
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Figure 2.4: The generalised clinical pathway for prostate cancer patients
enrolled onto active surveillance programs.A patient can elect for, or refuse
treatment at any point within this pathway.

The generalised clinical pathway for patients on active surveillance is relatively well-
defined by NICE, although it is important to note that patients can decide at any point to
forgo any treatment or biopsy, or to elect for treatment with curative intent (Figure 2.4).
Rates of self-election for treatment can be exceptionally high in some cohorts, with a large
study finding that 32.8% of patients on an AS protocol received radical therapy without
meeting the criteria for progression within 10 years of enrolment69.

An issue with AS is the lack of a formal mechanism for ceasing active surveillance for
those that fail to show any signs of progression, other than by self-election by the patient,
the clinician’s discretion or, unfortunately, by death. In practice, this means that once
patients are placed onto AS, they are monitored until their disease spreads and requires
treatment, or they die from other causes. Nevertheless, active surveillance has proven to
be one of the best contemporary methods for protecting patients with favourable prognoses
from unnecessary treatment, where rates of metastasis in well-managed cohorts can be as
low as 0.1 - 2.8%70.

Even with high rates of treatment, both for-cause and self-election, the disease-specific
mortality rates at 10 years following diagnosis are not drastically different between those
receiving treatment and those that do not69. Therefore, for patients with life expectan-
cies of less than 10 years or with significant co-morbidities that effect their eligibility for
radical treatment, watchful waiting is generally chosen. Watchful waiting involves similar
surveillance as AS protocols, however the treatment on detection of disease progression is
palliative rather than curative5.
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2.5 The clinical problem
Prostate cancer is not only biologically heterogeneous, it is also clinically diverse, where
no two patients with the same clinical presentation will share identical outcomes; not all
patients diagnosed will need treatment, whilst others will critically require intervention to
save their life. Deciphering the best methods to adequately stratify these patients is where
the clinical problem arises. Currently neither researchers nor clinicians can achieve this to
satisfactorily avoid over-diagnosis and over-treatment. Reported rates of over-diagnosis vary
widely, from 1.7% to 67%, dependent on population sampled and the criteria used to send
patients forward for biopsy40. Due to the uncertainty and current inability to accurately
prognosticate patients, many with disease thought not to be of immediate concern will
self-elect for radical treatment, itself not free of consequences, whilst others may refuse
treatment altogether through a perceived lack of benefit.

Prostate cancer has historically been over-diagnosed; patients have received a diagnosis
of an indolent form of the disease, one that would not have otherwise become clinically
apparent or significant enough to be life-altering in the absence of a diagnosis, where Gleason
3+4 is considered to be the key threshold. Over-diagnosis has both immediate and long-
term impacts for patients and healthcare systems alike. In the short-term patients must
face the knowledge that they have cancer, with the anxiety this brings causing some to seek
life-altering treatment, regardless of a prognosis71,72.

Due to the ageing population of the United Kingdom, the incidence of prostate cancer
is projected to grow by upwards of 65%73. As incidence increases, so too will the num-
bers of patients inappropriately biopsied, diagnosed with indolent disease and potentially
receive radical therapy which has large ramifications for quality of life. The life-altering re-
sults of radical treatment are pronounced; erectile dysfunction and urinary incontinence are
reported in a large proportion of patients following radical prostatectomy (RP) (47% and
36%, respectively), whilst the risk of an adverse cardiovascular event is significantly elevated
for patients receiving androgen deprivation therapy65. Even the side-effects of receiving a
needle biopsy are not insignificant; physical and mental distress, haematuria, painful uri-
nation and in some cases, life threatening sepsis58 have all been reported5. This illustrates
the clear and immediate need for clinically implementable tools able to precisely and non-
invasively identify patients that can either be safely removed from treatment pathways, or
those requiring further follow up.

2.5.1 PSA reliability, or lack thereof

Serum PSA measured in isolation is a poor predictor of prostate health, as reported by
NICE 75% of patients with an elevated PSA have been found to not have prostate cancer
on biopsy5. PSA levels are not specific to cancer and are influenced by many factors,
lacking the specificity to discriminate between benign conditions such as BPH or infection
and indolent cancer from aggressive. Additionally, due to a lack of standardisation in
commercial PSA assays, significant discordance between PSA readings has been reported
between different commercial suppliers74,75. This means that if different assay kits are used
between care centres, the reported PSA levels may be systematically higher or lower than
initially reported at the patient’s primary care centre.

The European Randomised Study of Screening for Prostate Cancer (ERSPC) showed
that PSA-based screen resulted in a 20% reduction of prostate cancer-specific mortality,
though at the cost of 40% of all patients diagnosed in the study posessing a clinically
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insignificant level of disease76. These findings overall meant a reported 24% reduction in
overall quality of life years gained due to PSA screening77 and an important limitation of
the ERSPC study was the choice of a sole PSA threshold of 3 ng/mL to trigger biopsy, as
opposed to a more reasoned approach considering the other risk factors detailed above.

Similarly, the Cluster Randomised Trial of PSA Testing for Prostate Cancer (CAP)
trial observed no benefits in overall mortality rates as the result of a low-intensity PSA
screening intervention in approximately 500,000 UK men6. Even within the control arm
of the CAP trial, most biopsies performed according to NICE guidelines were negative for
cancer on biopsy (personal communication with Richard Martin, lead author). Indeed,
within the datasets explored throughout this thesis, patients were found to not have cancer
with serum PSA levels ranging from 4 - 30 ng/mL, detailing the reliability issues serum
PSA measurement faces as a prognostic tool in isolation.
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2.5.2 Sampling error of biopsy

Figure 2.5: Examples of sampling errors in detecting clinically significant
tumours for both tissue biopsy (A to D) and in MRI (D). A – random error,
missing tumour in needle biopsy. B – Random error, attributing lower risk
due to biopsy location and volume of tumour present. C – Systematic error
due to lesion that is located anteriorly in the prostate, an area that is under
sampled by biopsy. D – Technical "multifocality" error, small volume high-
grade tumour missed due to the resolution limit of MRI and sampling size
and position in tissue biopsy

Any method of sampling the prostate will be associated with some degree of error, the only
solution to this is exhaustive survey of the whole organ, defeating the purpose of sampling.
However, for a sampling strategy to be considered fit for purpose, the measurements taken
and results reported must be representative of the whole. TRUS, and to a less extent
TPM, biopsy do not meet this criteria particularly well. TRUS, whilst the only method
actively recommended by NICE, suffers from four important sampling errors, both random
and systematic, that drastically impact its clinical utility as a tool for diagnosis of patients
(Figure 2.5). Indeed, two cross-sectional studies examined the utility of TRUS biopsy
compared to mpMRI58 and systematic template biopsy78, led to NICE concluding that
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whilst a cancer-positive TRUS biopsy leads to a very large increase (Likelihood Ratio >10)
in the probability of significant (Gleason ≥ 7) disease being present, the opposite is not
true; a negative TRUS biopsy does not meaningfully alter the likelihood of disease being
present79.

Biopsy itself is not without risk, possible complications associated with TRUS biopsy
include bacterial infections, haematuria, painful urination and in some cases, life threatening
sepsis. Infectious complications affect 1 - 4% of patients undergoing TRUS biopsy80, whilst
severe sepsis has been described in 0.1 - 3.5% of patients following a TRUS biopsy81. One
study from Ontario, Canada reported that the hospital admission rate for infection-related
complications within 30 days of the procedure increased from 1.0% in 1996 to 4.1% in 2005.81
The reported incidence of urinary tract infections (UTI) after TRUS biopsy typically ranges
between 2% and 6% with approximately 30%-50% of these patients having accompanying
bacteremia80.

2.5.3 Variability and costs of MRI

Whilst mpMRI has now been fully integrated into current clinical pathways, some questions
and uncertainty still remains concerning the accuracy found in tightly controlled studies that
pre-date NICE recommendation. It was observed in the PROMIS trial that 27% of biopsy-
naïve patients with elevated PSA and non-suspicious mpMRI results could avoid a biopsy58.
However, this performance was recorded under the strict controls of a clinical trial, where
MRI scanners were carefully calibrated and systematically monitored by an external clinical
research organisation (CRO)58. Indeed, Walz reports that several centres were unable to
participate in the PROMIS trial due to the quality of their MRI scanners, despite having
expert radiologists on staff82.

Even in the case of expert radiologists, it has been reported that there is considerable
variability in PI-RADS score assignment between operators and significant changes in cancer
detection rates where 13-60% of patients with a PI-RADS score <3 harboured clinically
significant prostate cancer.83 Coupled with the fact that mpMRI is not a cheap technique,
with costs ranging from approximately £700 to £1332 dependent on modelled scenario84,
there is clearly some room for improvements to be made in the non-invasive assessment of
biopsy-naïve men.

2.5.4 Risk stratification is not fit for purpose

Due to the aforementioned heterogeneity and complexity of prostate cancer, we currently
lack a consistent system for accurately sub-typing tumours differing in prognosis or treat-
ment response based upon the expression of a few key genes, similar to the ERBB2 over-
expressing, basal and subliminal subtypes of breast cancers85. In its current guise, D’Amico
risk stratification does not accurately predict the outcome of an individual patient with
definitive certainty, instead categorising patients into one of three broad Risk groups based
upon clinically available information (Table 2.1). If all tumours presenting with identical
clinical symptoms behaved identically this would not be an issue, however as discussed,
these clinically identical tumours can, and are, genetically disparate. Similarly to PSA
and Gleason scoring no superior tools are currently available, and the D’Amico Risk clas-
sification system has been repeatedly shown to possess clinical utility above anything else
available86,87.

A key compromise employed by the D’Amico system for clinical simplicity is the broad
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categorisation of PSA, a continuous measure that retains more information if kept con-
tinuous. By D’Amico a patient presenting with a PSA of 19.9 mg/mL has substantially
improved survival odds compared to a man with a PSA of 20 mg/mL. Simultaneously this
same patient is expected to be at similar risk as someone with half the PSA. Of course, this
can be overcome with some leeway in categorisation and experienced clinicians are highly
unlikely to treat it as a hard-line. Nevertheless, this does mean that more clinical expertise
and nuance is required rather than a standardised system or model that can appropriately
appraise patients.

Other risk stratification models do exist and are implemented in other healthcare sys-
tems, such as the cancer of the prostate risk assessment (CAPRA) score88. CAPRA utilises
a 0 - 10 score and, similarly to D’Amico, stratifies patients based upon the predicted risk of
recurrence following radical prostatectomy63,88. Whilst CAPRA has been demonstrated to
discriminate prostate cancer better than D’Amico through multiple studies88–90, there is no
mention of CAPRA in NICE or EAU guidance on diagnosis, likely due to the requirements
of detailed histopathological information at the time of scoring that, in my experience is
not always available.

2.6 Biomarker discovery and development
The methods described above assess patients on average, providing benefit across a pop-
ulation or cohort, but lacking specificity or confidence in individual patients. This non-
specificity is not aided by the treatment of patients based on the clinical appearance of
their cancer, with little consideration for the underlying biology and intracellular environ-
ment of individual tumours. Personalised medicine and more specific biomarkers could be
used to provide an alternative approach to this, guiding diagnosis and treatment based
upon precise disease-specific markers collected from the prostatic transcriptome, proteome,
genome, epigenome, or from any combination of these.

The concept of personalised medicine has brought about changes in how researchers
consider pathogenesis, taking a more holistic approach considering altered biological path-
ways and processes as a whole rather than the historical search for individual biomarkers
of disease state. Complex diseases, such as cancer, have complex causes and so, this change
has been of particular benefit to such polygenic diseases that typically involve large num-
bers of genes, molecular processes and environmental factors all acting simultaneously to
invoke the functional changes observed at the tissue and cellular level91. With the ad-
vent of high-throughput technologies a multitude of genomic and proteomic biomarkers
have already been identified as potential predictors for prostate cancer. The aforemen-
tioned complexity of prostate cancer means that there is a very low likelihood of a single
biomarker existing that is capable of explaining a large amount of variance and possessing
clinical utility. Instead, it is more likely that clinical benefit can be derived in from panels of
already known biomarkers rather than searching for and testing of, novel targets identified
through basic research. Such a “targeted” biodiscovery trial was the focus of the Movember
GAP1 Urine Biomarker project, and subsequently, this thesis. Through the application of
machine learning methods and robust analyses, I hypothesise that a multiplexed panel of
already known biomarkers can be generated with potential for strong clinical utility for a
urine-based biomarker test.

It is my opinion that the most societal, clinical and economical benefit would come from
such a multiplexed biomarker panel that could be administered non-invasively to triage
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patients prior to any invasive and costly needle biopsy. With suitable predictive accuracy
such a panel would enable repeated monitoring for those considered at risk, reducing the
burden of stress and uncertainty for patients. This of course, is unlikely to be stumbled
upon and so, directed studies aiming to incorporate such a test into current clinical pathways
would need to be carefully designed and considered, rather than attempting to implement
wholesale change to how patients are treated. Indeed, before NICE or another clinical body
would consider advocating adoption of a test, substantial scientific efforts are required in
clinical trials, epidemiological studies and cost-benefit analyses, no small feat. A good
example of this is the developers of the PCA3 urine test detailing the approximately 12-
year long journey they took from basic discovery of the DD3 gene through to approval by
the US Food and Drug Administration of the PCA3 urine biomarker test, predicting the
likelihood of a cancer finding on re-biopsy of a patient92.

2.6.1 Why urine?
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Figure 2.6: Oblique coronal section of the prostate showing the branching
pattern of the prostatic ducts, where medial transition zone ducts penetrate
the sphincter. Adapted from Abdominal Key

Liquid biopsy is a minimally invasive technique that has gained large scale adoption in
prospecting for novel biomarkers of urologic malignancies in recent years, with blood, urine
and semen all explored10. The average age range of those presenting with prostate cancer
somewhat precludes the use of semen as a universally convenient source of biomarkers.
Whilst venepuncture is simple, the proteolytic activity of serum is higher than in urine and
the large volume of blood in humans dilutes the concentration of biomarkers dramatically93.
It is the ductal nature of the prostate and interconnectedness of the male urological system
that makes urine potentially the optimal means for convenient sampling of almost the
entire prostate directly (Figure 2.6). Sloughed off cells, secreted proteins, nucleic acids and
extracellular vesicles from both normal and cancerous tissue can all find their way into the
urine through these prostatic ducts that drain into the urethra12–15.

Following a DRE it has been well-documented that cells from the prostate, proteins, and
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markers strongly associated with prostate cancer such as PCA3 and the TMPRSS2:ERG
gene-fusion can be detected within the urine12–15. Indeed, several urine-based tests for
use in diagnosing prostate cancer have now been developed and are in various stages of
validation (see Section 2.6.2), showing that urine-based liquid biopsy may very well have
the potential to augment the wide-spread use of invasive tissue biopsy. There are of course
several technical complications that need to be surmounted for urine sampling to be widely
adopted; urine samples exhibit large variability between samples, dependent on factors such
as sample volume, protein concentration, pH, RNA yield and, if a DRE is performed, DRE
efficiency. Much of this variation can be accounted for with adoption of strict collection
protocol, and to some extent, mitigated with normalisation and careful selection of markers
robust to such variation.

2.6.2 Existing urine biomarker tests

Several prognostic biomarkers and clinical tests have been developed for a range of uses
throughout the clinical pathway of prostate cancer. Each has their own specific use, many
filling the niches where PSA fails to perform, such as when to repeat a negative biopsy
where clinical suspicion remains, or predicting cancer specific mortality from a biopsy sam-
ple. Some have been established and FDA-approved for a number of years, whilst others
are relatively new and are still being evaluated for clinical efficacy. Despite the demon-
strable clinical utility of these tests, they have yet to reach widespread clinical adoption.
Furthermore, most of the currently approved or marketed biomarkers for prostate cancer
to-date are tissue-based assays relying on tumour samples from a needle biopsy which, as
previously discussed, is less than ideal in its currently implemented form. Regardless of
needle biopsy accuracy, the requirement for tissue precludes the use of tissue-based tests as
triage devices and so are not within the scope of this thesis.

The PCA3 test

Prostate cancer antigen gene 3 (PCA3 ) is a prostate-specific non-coding RNA that was
originally described as the DD3 gene in 1999 by Bussemakers et al.94. PCA3 is expressed
at rates 60 to 100 times higher in prostate cancer tissue than in normal tissue and transcripts
can be detected in the urine sediment13. Twelve years after the initial discovery, the PCA3
test gained FDA approval, and uses quantitative amplification of PCA3 and PSA transcripts
in the urinary cell pellet from post-DRE samples, scaled to KLK3 levels. Licensed by Gen-
Probe, the clinical application of the test is to predict the likelihood of a cancer finding on
a repeat biopsy, following an initial negative one. This is a grey area in the clinical pathway
where the uncertainty surrounding biopsy accuracy can mean a clinical suspicion remains
if PSA levels and the DRE indicated the presence of disease.

The PCA3 test has been shown to have lower sensitivity than serum PSA, but sig-
nificantly higher specificity, positive predictive value (PPV) and negative predictive value
(NPV)95. Modifications to the original test by including further biomarkers, including the
TMPRSS2-ERG gene fusion, has been shown to markedly increase predictive utility for
predicting outcome of subsequent biopsies96,97, showing the potential for multiple markers
to increase clinical performance.

Whilst analytically useful, the PCA3 test is currently recommended against by NICE, as
they concluded that it does not provide an overall net benefit in the clinic above currently
implemented standards of care5. Most patients with an initial negative biopsy are likely to
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have lower volume, lower risk disease that does not require immediate intervention and in
the absence of a PCA3 test, would not be detected. Subjecting these patients to further
biopsy does not significantly improve their outcome, and only does so at high costs to
healthcare providers, where it averages £178.70 per test5,98.

SelectMDx

SelectMDx is a urine test providing two likelihoods for interpretation by clinicians; the
probability of any cancer being present on biopsy, and the probability for high-grade versus
low-grade disease. The test quantifies the mRNA expression levels of three genes, DLX1,
HOXC6 and KLK3 and incorporates information from clinically available risk factors to
produce the risk score. It is designed to decrease the number of unnecessary biopsies; at
cut-offs with an NPV of 98% for Gleason ≥ 7 cancer the decrease in total biopsies performed
is estimated to be 42%.99

Since initial development in 2016, the SelectMDx test has now been calibrated and
validated in a large, multicentre study of 1,955 patients. This trial reported AUCs around
0.8, but the assay suffers from low specificity (53%)100. This has led it to have a restricted
use-case in biopsy naïve patients with a PSA <10 ng/mL. Drawbacks considered, a health
economics analysis found that SelectMDx improved health outcomes and lowered costs for
American patients at risk of prostate cancer101. As the US healthcare landscape is starkly
different to European and UK systems, this benefit remains to be quantified in a single-
payer or nationalised healthcare system such as the NHS and so is currently not endorsed
by NICE.

ExoDx Prostate (IntelliScore)

Granted FDA Breakthrough Designation in 2019, the ExoDX Prostate (IntelliScore) (EPI)
is another fully-realised urine-based test reportedly based on the exosomal expression sig-
nature of three gene transcripts; ERG, SPDEF and PCA3. The EPI test is intended for
patients 50 years of age or older with a PSA between 2 - 10 ng/mL and determines the
patient’s risk of clinically significant (Gleason 7) prostate cancer upon biopsy. Derived from
qPCR-derived values input to a simple regression formula to generate an EPI output that
is transformed to between 0 and 30.

EPI has been validated in two prospective trials, at first in a more general trial to de-
fine the intended use-case population and thresholds (n = 499)102, followed by a registered
prospective adaptive clinical trial to validate the performance in a large external cohort
(n = 503)103. The EPI test shows good clinical utility for pre-biopsy prediction, outper-
forming the standards of care within their respective studies, though only marginally, and
integration of EPI and standards of care did not yield significant uplifts in predictive ability.
Interestingly, despite a continuous EPI score, the test result is dichotomised at a threshold
of 15.6, a suboptimal approach that is likely to discard useful information104.

2.7 The applications of machine learning for biodiscovery &
prostate cancer

Much of oncology can be reduced to a problem of prediction and probability estimation.
Indeed, the initial decision to biopsy is based on a prediction of the likelihood of a tumour
being found, and in advanced disease treatment, where decisions about life extending versus
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palliative care inherently involve the use of survival analyses105. With regards to prostate
cancer, the decision to initiate a search for a tumour is dictated by the elevated likelihood of
significant cancer, often as interpreted by the primary care physician, using some heuristic
weighted combination of risk factors such as PSA levels, age, family history and DRE
findings. In ideal settings these predictors would allow for the design of robust models
that could objectively quantify this likelihood rather than the qualitative and conditional
assessment from clinicians and patients in their absence.

Treatment decisions are similarly affected, where the outcome of a biopsy is coupled with
numerous shared decisions from patients, urologists, oncologists, radiologists and other care
providers to designate the best course of action in light of a prostate cancer diagnosis.
Again, no quantitative and objective methods exist within the clinical pathway to better
guide these decisions, appropriately appraising patient risk.

The biology of prostate cancer is highly complex, and cancer researchers must generally
deal with high dimensional, noisy data with innumerable confounding factors from epidemi-
ological and societal levels, through to biases in data collection and processing. Machine
learning has recently come to the forefront in attempts to cut through the noise and find
the signal, extracting useful insights about diseases that can be used to improve patient
care, either directly through predictive clinical models, or indirectly by deconvoluting the
biology driving a disease.

Figure 2.7: Simplified examples of supervised and unsupervised learning
methods with two variables, X1 and X2

Machine learning is a sub-field of statistics and computer science, concerned with pat-
tern recognition at its base level106. A machine learning algorithm is anything that uses
previously generated data to “learn” the parameters and coefficients of a statistical model
that can describe the system without being explicitly programmed to do so. This statistical
model can then be applied to new, previously unseen data to generate predictions about
the likely class or value of a given sample based on the previous observations. Due to
the dramatic reduction in the costs of computation over recent decades, machine learning
has become the go-to technique in numerous fields including natural language processing,
computer vision, autonomous driving, computational biology and, where this thesis is most
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interested, medical diagnostics and prognostics.
Machine learning methods typically fall under one of two umbrella terms; supervised

and unsupervised (semi-supervised reinforcement approaches do exist, but I shall not men-
tion them further in this work107). Supervised methods use labelled training data such as
biopsy outcome, where the outcome is known a priori, to learn a function that can ade-
quately describe the system and be generalised to unlabelled data, correctly determining its
value108. Unsupervised methods rely on structure within the data to cluster objects with
similar attributes together108. Where unsupervised methods attempt to define the class
to which data should belong without input, supervised methods attempt to define what
is different between predetermined groups (Figure 2.7). Whilst simple to visualise and
model with only two variables, real-world problems can have many hundreds of dimensions,
making subsequent decision spaces humanly impossible to visualise or perceive. There are
many debates and strong opinions about what constitutes a statistical or machine learning
method, in this thesis I consider there to be no difference between a statistical model and
a machine learning one bar complexity, with the two terms used interchangeably.

2.7.1 The “Black Box” issue

Machine learning techniques have been at the core of many recent advances in cancer
research, including prognostic models for prostate cancer8,99,109–112. However, one issue
commonly overlooked is the role of humans and trust in interpretation of prediction model
outputs. If a model is to be used, it must be trusted in both its predictions and behaviour,
to do no harm. This is trivial for cases of simple regressions where model coefficients can be
related directly to covariates, outcomes and predictions for unseen ranges of data. However,
as the complexity of a model builds, not only does its explanatory power grow but also its
opacity113. When complex machine learning methods such as artificial neural networks and
gradient boosting are employed, this opacity can be pushed to make models impossible to be
interpreted by human brains, or so called “black boxes”. Even simple neural networks can
have thousands of intermediate parameters hidden in each layer, obscured from the input
layers, with changes of each affecting not only the model output, but other downstream
parameters too114. Attempts have been made to reduce the opacity of certain complex
machine learning algorithms, including specialised neural network structures that show
intermediate predictions or simple linear models that can locally model the decision space
of another, more complex model to explain what led to a certain predicted value115,116.

This thesis will aim to ameliorate these issues by carefully considering whether more
complex algorithms yield sufficient improvements in predictive ability to warrant their opac-
ity. The inputs to models will also be investigated in more detail, exploring distributions
and expression patterns across differing severities of prostate cancer and interactions with
other clinical features of the disease.

2.8 Discussion
In this chapter the primary biological and medical background of prostate cancer relevant
to this thesis has been discussed. The diagnostic and prognostic challenges that clinicians
face with current guidelines highlights the critical need for more precise testing methods
for patients suspected to harbour prostate cancer, ideally in a non-invasive triage setting.
Urine can provide a solution for this; due to the interconnected nature of the male urinary
tract the prostate is well placed for sampling via liquid biopsy. Indeed, there are existing
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biomarker panels that utilise urine for disease appraisal, including the now defunct PCA3
test and the newly validated SelectMDx test that shows great promise if approved by the
FDA, NICE and other regulatory bodies.

The path to clinical adoption of any prognostic test is long and full of pitfalls as demon-
strated by the PCA3 test that took 12 years to approval only to be recommended against
soon after92. With this considered, the careful design and development of prognostic models
in collaboration with practising clinicians is key to ensuring a smoother journey to the clinic
and improving patient care. The more targeted experimental approaches for biomarker dis-
covery implemented in here pose less unknowns when compared to whole ’omic approaches
and the a priori reduction of variables for consideration makes robust test development less
complex overall. As will be explored in later chapters, the application of machine learning
techniques to such datasets needs to be carefully considered so as not to produce overly
optimistic results that then cannot be replicated.
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Chapter 3

Methods

3.1 The Movember GAP1 Urine Biomarker Cohort

Figure 3.1: The workflow of samples within the Movember GAP1 urine
biomarker project. Samples were fractionated and distributed to collaborat-
ing laboratories for individual analyses. Not all samples received all analyses.

The Movember GAP1 Urine Biomarker Cohort comprised of first-catch post-digital rectal
examination (DRE) urine samples collected at diagnosis between 2009 and 2015 from urol-
ogy clinics at the Norfolk and Norwich University Hospital (NNUH, Norwich, UK), Royal
Marsden Hospital (RMH, London, UK), St. James’s Hospital (Dublin, Republic of Ireland),
urology clinics within the University Health Network (UHN, Toronto, Canada), and from
primary care and urology clinics of Emory Healthcare (Atlanta, USA). Samples were pro-
cessed as three fractions; whole-urine aliquots, cell-pellet and cell-free, isolated according
to the Movember GAP1 Protocol described by Connell et al.8 (Figure 3.1).

Sample collections and processing were ethically approved in their country of origin:
NNUH samples by the East of England REC, Dublin samples by St. James’s Hospital. iii)
RMH by the local ethics committee, iv) Emory Healthcare samples by the Institutional
Review board of Emory University, and v) UHN samples by the research ethics boards of
all centres and Sinai Health System, Toronto, Canada. Trans-rectal ultrasound (TRUS)
guided biopsy was used to provide biopsy information.



3.1. The Movember GAP1 Urine Biomarker Cohort

Within the Movember GAP1 cohort were 87 patients enrolled on an Active Surveillance
(AS) programme at the RMH117, subsequently known as the Movember GAP1 AS Cohort.
Eligibility criteria for this AS programme included histologically proven prostate cancer,
age 50–80, clinical stage T1/T2, PSA < 15 ng/mL, Gleason ≤ 3+3 (Gleason ≤ 3+4 if age
> 65), and < 50% percent positive biopsy cores. Progression was defined as the detec-
tion of disease by clinical criteria that typically triggers the requirement for therapeutic
intervention. Clinical criteria of progression were either: PSA velocity >1 ng/mL per year
or adverse histology on repeat biopsy, defined as primary Gleason ≥ 4 or ≥ 50% biopsy
cores positive for cancer. mpMRI criteria for progression were either: detection of >1 cm3
prostate tumour, an increase in volume >100% for lesions between 0.5 - 1 cm3, or T 3/4
disease117.
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Figure 3.2: Available sample numbers within each of the Movember GAP1
datasets analysed. Numbers shown are unprocessed sample sizes prior to
filtering or preprocessing of datasets.

The original intention of the GAP1 project was to assay all samples by all analytical
techniques. Practical constraints limited this, resulting in only a very small number of
samples receiving all analyses (n = 13, data not shown). The overlap of available samples
between assay methods was primarily limited to pairs, with the largest commonly with
NanoString data and one other source. Five datasets in total were considered for analyses,
with the individual datasets and overlaps fully described where used (Figure 3.2).
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3.1. The Movember GAP1 Urine Biomarker Cohort

3.1.1 NanoString

Figure 3.3: Representation of the NanoString nCounter hybridisation sys-
tem using reporter and capture probes, including a selection of fluorescently
labelled beads on the reporter probe, assigned to a specific detection target
for digital quanitification. Adapted from NanoString’s marketing materials
and protocols.

NanoString is a method of direct digital quantification of gene transcripts utilising mi-
croscopy and bar-coded hybridisation of specific probes. The NanoString nCounter system
uses two probes; a capture and reporter probe. The probes are designed to have a comple-
mentary sequence to specific transcripts corresponding to genes of interest. Each gene-probe
has a distinct string of fluorescently labelled beads that can be observed as a colourimetric
barcode under oil-immersion microscopy and automatically registered with NanoString’s
software, with the possibility to multiplex up to 800 possible gene-probes in a single assay.
Capture probes are electrophoretically pulled down and immobilised onto a capture sur-
face, with unbound sequences removed. The gene reporter probes are then hybridised to
complementary nucleic acid sequences of the capture probe to form a conjugate of capture,
reporter, and target sequences (Figure 3.3).

NanoString expression analysis of the Movember GAP1 cohort samples consisted of
167 probes representing 164 genes (Table 3.1). Quantification was performed at the Human
Dendritic Cell Laboratory, Newcastle University using 100 ng of cDNA that was produced by
amplification of extracted RNA from samples. 137 of the gene-probes were selected based on
previously proposed controls alongside diagnostic and prognostic prostate cancer biomarkers
within tissue and control probes. 30 additional probes were selected as overexpressed in
prostate cancer samples when next generation sequence data generated from 20 urine derived
cell-free RNA (cf-RNA) samples were analysed (data not shown). Target gene sequences
were provided to NanoString, who designed the probes according to their protocols118.

Table 3.1: Gene-probes included on the NanoString assay in the Movember
GAP1 cohort

Gene Full Name Gene Full Name
AATF apoptosis antagonizing

transcription factor
MEX3A mex-3 RNA binding family

member A
ABCB9 ATP binding cassette

subfamily B member 9
MFSD2A major facilitator

superfamily domain
containing 2A
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Table 3.1: Gene-probes included on the NanoString assay in the Movember
GAP1 cohort (continued)

Gene Full Name Gene Full Name
ACTR5 ARP5 actin-related protein

5 homolog
MGAT5B mannosyl

(alpha-1,6-)-glycoprotein
beta-1,6-N-acetyl-
glucosaminyltransferase,
isozyme B

AGR2 anterior gradient 2, protein
disulphide isomerase family
member

MIR146A microRNA 146a

ALAS1 5’-aminolevulinate
synthase 1

MIR4435-2HG MIR4435-2 host gene

AMACR alpha-methylacyl-CoA
racemase

MKI67 marker of proliferation
Ki-67

AMH anti-Mullerian hormone MME membrane
metalloendopeptidase

ANKRD34B ankyrin repeat domain 34B MMP11 matrix metallopeptidase 11
ANPEP alanyl aminopeptidase,

membrane
MMP25 matrix metallopeptidase 25

APOC1 apolipoprotein C1 MMP26 matrix metallopeptidase 26
AR ex 9 Androgen Receptor splice

variant
MNX1 motor neuron and pancreas

homeobox 1
AR ex 4-8 Androgen Receptor MSMB microseminoprotein beta
ARHGEF25 Rho guanine nucleotide

exchange factor 25
MXI1 MAX interactor 1,

dimerization protein
AURKA aurora kinase A MYOF myoferlin
B2M beta-2-microglobulin NAALADL2 N-acetylated alpha-linked

acidic dipeptidase like 2
B4GALNT4 beta-1,4-N-acetyl-

galactosaminyltransferase 4
NEAT1 nuclear paraspeckle

assembly transcript 1
(non-protein coding)

BRAF B-Raf proto-oncogene,
serine/threonine kinase

NKAIN1 Na+/K+ transporting
ATPase interacting 1

BTG2 BTG anti-proliferation
factor 2

NLRP3 NLR family pyrin domain
containing 3

CACNA1D calcium voltage-gated
channel subunit alpha1 D

OGT O-linked
N-acetylglucosamine
(GlcNAc) transferase

CADPS calcium dependent
secretion activator

OR51E2 olfactory receptor family
51 subfamily E member 2

CAMK2N2 calcium/calmodulin
dependent protein kinase
II inhibitor 2

PALM3 paralemmin 3
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Table 3.1: Gene-probes included on the NanoString assay in the Movember
GAP1 cohort (continued)

Gene Full Name Gene Full Name
CAMKK2 calcium/calmodulin

dependent protein kinase
kinase 2

PCA3 prostate cancer associated
3 (non-protein coding)

CASKIN1 CASK interacting protein 1 PCSK6 proprotein convertase
subtilisin/kexin type 6

CCDC88B coiled-coil domain
containing 88B

PDLIM5 PDZ and LIM domain 5

CDC20 cell division cycle 20 PLPP1 phospholipid phosphatase 1
CDC37L1 cell division cycle 37 like 1 PPFIA2 PTPRF interacting protein

alpha 2
CDKN3 cyclin dependent kinase

inhibitor 3
PPP1R12B protein phosphatase 1

regulatory subunit 12B
CERS1 ceramide synthase 1 PSTPIP1 proline-serine-threonine

phosphatase interacting
protein 1

CKAP2L cytoskeleton associated
protein 2 like

PTN pleiotrophin

CLIC2 chloride intracellular
channel 2

PTPRC protein tyrosine
phosphatase, receptor type
C

CLU clusterin PVT1 Pvt1 oncogene
(non-protein coding)

COL10A1 collagen type X alpha 1
chain

RAB17 RAB17, member RAS
oncogene family

COL9A2 collagen type IX alpha 2
chain

RIOK3 RIO kinase 3

CP ceruloplasmin RNF157 ring finger protein 157
MIATNB MIAT neighbour MRPL46 mitochondrial ribosomal

protein L46
DLX1 distal-less homeobox 1 RPL18A ribosomal protein L18a
DNAH5 dynein axonemal heavy

chain 5
RPL23AP53 ribosomal protein L23a

pseudogene 53
DPP4 dipeptidyl peptidase 4 RPLP2 ribosomal protein lateral

stalk subunit P2
ECI2 enoyl-CoA delta isomerase

2
RPS10 ribosomal protein S10

EIF2D eukaryotic translation
initiation factor 2D

RPS11 ribosomal protein S11

EN2 engrailed homeobox 2 SACM1L SAC1 suppressor of actin
mutations 1-like (yeast)
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Table 3.1: Gene-probes included on the NanoString assay in the Movember
GAP1 cohort (continued)

Gene Full Name Gene Full Name
TMPRSS2/ERG transmembrane protease,

serine 2/ERG fusion
SCHLAP1 SWI/SNF complex

antagonist associated with
prostate cancer 1
(non-protein coding)

ERG ERG, ETS transcription
factor

SEC61A1 Sec61 translocon alpha 1
subunit

ERG 3 ex 4-5 ERG, ETS transcription
factor

SERPINB5 serpin family B member 5

ERG3 ex 6-7 ERG, ETS transcription
factor

SFRP4 secreted frizzled related
protein 4

FDPS farnesyl diphosphate
synthase

SIM2 single-minded family bHLH
transcription factor 2

FOLH1 folate hydrolase 1 SIM2 single-minded family bHLH
transcription factor 2

GABARAPL2 GABA type A receptor
associated protein like 2

SIRT1 sirtuin 1

GAPDH glyceraldehyde-3-
phosphate dehydrogenase

SLC12A1 solute carrier family 12
member 1

GCNT1 glucosaminyl (N-acetyl)
transferase 1, core 2

SLC43A1 solute carrier family 43
member 1

GDF15 growth differentiation
factor 15

SLC4A1 solute carrier family 4
member 1

GJB1 gap junction protein beta 1 SMAP1 small ArfGAP 1
GOLM1 golgi membrane protein 1 SMIM1 small integral membrane

protein 1 (Vel blood group)
HIST1H1C histone cluster 1 H1 family

member c
SNCA synuclein alpha

HIST1H1E histone cluster 1 H1 family
member e

SNORA20 Small nucleolar RNA
SNORA20

HIST1H2BF histone cluster 1 H2B
family member f

SPINK1 serine peptidase inhibitor,
Kazal type 1

HIST1H2BG histone cluster 1 H2B
family member g

SPON2 spondin 2

HIST3H2A histone cluster 3 H2A SRSF3 serine and arginine rich
splicing factor 3

HMBS hydroxymethylbilane
synthase

SSPO SCO-spondin

HOXC4 homeobox C4 SSTR1 somatostatin receptor 1
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Table 3.1: Gene-probes included on the NanoString assay in the Movember
GAP1 cohort (continued)

Gene Full Name Gene Full Name

HOXC6 homeobox C6 ST6GALNAC1 ST6
N-acetylgalactosaminide
alpha-2,6-sialyltransferase
1

HPN hepsin STEAP2 STEAP2 metalloreductase
HPRT1 hypoxanthine

phosphoribosyltransferase
1

STEAP4 STEAP4 metalloreductase

IFT57 intraflagellar transport 57 STOM stomatin
IGFBP3 insulin like growth factor

binding protein 3
SULF2 sulfatase 2

IMPDH2 inosine monophosphate
dehydrogenase 2

SULT1A1 sulfotransferase family 1A
member 1

ISX intestine specific homeobox SYNM synemin
ITGBL1 integrin subunit beta like 1 TBP TATA-box binding protein
ITPR1 inositol 1,4,5-trisphosphate

receptor type 1
TDRD1 Tudor domain containing 1

KLK2 kallikrein related peptidase
2

TERF2IP TERF2 interacting protein

KLK3 ex 1-2 kallikrein related peptidase
3

TERT telomerase reverse
transcriptase

KLK3 ex 2-3 kallikrein related peptidase
3

TFDP1 transcription factor Dp-1

KLK4 kallikrein related peptidase
4

TIMP4 TIMP metallopeptidase
inhibitor 4

LBH limb bud and heart
development

TMCC2 transmembrane and
coiled-coil domain family 2

POTEH-AS1 POTEH antisense RNA 1
(POTEH-AS1), long
non-coding RNA.
prostate-specific P712P
mRNA

TMEM45B transmembrane protein
45B

MAK male germ cell associated
kinase

TMEM47 transmembrane protein 47

MAPK8IP2 mitogen-activated protein
kinase 8 interacting protein
2

TMEM86A transmembrane protein
86A

Mar-05 membrane associated
ring-CH-type finger 5

TRPM4 transient receptor potential
cation channel subfamily
M member 4
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Table 3.1: Gene-probes included on the NanoString assay in the Movember
GAP1 cohort (continued)

Gene Full Name Gene Full Name
MCM7 minichromosome

maintenance complex
component 7

TWIST1 twist family bHLH
transcription factor 1

MCTP1 multiple C2 and
transmembrane domain
containing 1

UPK2 uroplakin 2

MDK midkine (neurite
growth-promoting factor 2)

VAX2 ventral anterior homeobox
2

MED4 mediator complex subunit
4

VPS13A vacuolar protein sorting 13
homolog A

MEMO1 mediator of cell motility 1 ZNF577 zinc finger protein 577
MET MET proto-oncogene,

receptor tyrosine kinase

Counts quantified from NanoString platforms require normalisation to account for the
amount of sample, variations in assay efficiency and other factors that influence non-
biological variability. Positive control sequences of known concentrations are included by
NanoString for assessing quality control, along with negative probes that do not align with
any part of the human transcriptome to assess non-specific binding of sample material.

Unless otherwise specified normalisation of NanoString data was performed using the
NanoStringNorm R package for preprocessing and followed the recommended protocols
from NanoString118. This consisted of confirming binding density was in a suitable range
(0.1 - 2.2), with failing samples removed from further analysis (n = 14). Positive control
normalisation, considered the most fundamental normalisation step, used correction factors
calculated from NanoString-supplied positive control probes for each sample. The correction
factor CF was calculated for a given sample i by using the geometric mean G of the positive
controls across n samples to divide the arithmetic mean of G:

CFPosi =
∑i
n(GPosi)
n(GPosi)

This positive control normalisation attempts to correct for technical variance introduced
between NanoString cartridges and within nCounter runs or between differing nCounter
machines. Due to the inclusion of known quantities of controls, the ground-truth is very
well known and so, positive control normalisation represents the least error prone (both
technical and assumption-wise) of all the methods. Samples with 0.3 > CF > 3 were
removed (n = 13).

Following positive control normalisation estimation of non-specific binding was esti-
mated by use of the negative control probes. Counts quantified from gene-probes were
thresholded according to the calculated background, with any counts less than µBackground+
2SD from the background set to 0.
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3.1.2 Methylation

The Epigenetic Cancer of the Prostate Test in Urine (epiCaPture) is a multibiomarker panel
developed to quantitatively measure DNA hypermethylation at the 5′-regulatory regions of
six genes previously associated with prostate cancer (GSTP1, SFRP2, IGFBP3, IGFBP7,
APC, and PTGS2), in the urinary cell pellet fraction119–122. These data were generated by
collaborators in University College Dublin and Trinity College Dublin by assaying urinary
cell pellet samples within the Movember GAP1 cohort, and were previously described by
O’Reilly et al.. The Infinium HumanMethylation450 BeadChip (HM450k) assay kit was
used to assay samples and return methylation values for each gene.
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Figure 3.4: The extremely skewed distribution of the normalised index of
methylation values for each quantified gene within the methylation dataset

Methylation data (n = 406) are presented as the “normalised index of methylation”
(NIM), calculated relative to a 100% DNA methylation control and to a control qPCR
reaction that only amplifies bisulfite-modified DNA. NIM represents the methylation per-
centage of a gene relative to this standard, with 0 representing no methylation quantified.
The data are highly skewed for all genes, with no methylation quantified for most samples
(Figure 3.4). No further alterations were made to the data prior to use.

3.1.3 ELISA and EN2

Urinary levels of 10 proteins were quantified by enzyme linked immunosorbent assay
(ELISA) performed by three different collaborating laboratories. Proteins previously
associated with prostate cancer MSMB, GDF15 and CD10123,124 were quantified by
collaborators at University College London (UCL), along with urinary creatinine levels,
hypothesised to normalise urine concentration based on kidney function. Five proteins
from the kallikrein family were assayed by collaborators at the University of Toronto. Two
KLKs highly specific to prostate tissue (KLK2 and KLK4)125,126 were quantified, with the
remaining three (KLK6, KLK7 and KLK11) not regularly overexpressed in prostate tissue
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but previously identified as prognostic markers of disease status127. Engrailed-2 (EN2)
was assayed by collaborators at the University of Surrey, and has been established as a
biomarker of prostate and bladder cancers previously128.

The available ELISA dataset was large, encompassing 471 samples. All proteins were
reported as concentration (ng/mL), with no preprocessing or normalisation undertaken.

3.1.4 Mass Spectrometry

Capillary electrophoresis mass spectrometry (CE-MS) was undertaken by collaborators at
Mosaique Diagnostics, and followed previously established protocols for sample prepara-
tion and data acquisition129. Briefly, whole urine aliquots were digested with a 2M urea
solution, and fractionated by ultracentrifugation to retain proteins and polypeptides <20
kDa. The fractionated extracts were desalted and lyophilised, then re-suspended in high-
performance-liquid-chromatography grade water for CE-MS detection. The peak list of
detected peptides was deconvoulted using the proprietary MosaiquesVisu software130,131.
All detected peptides were deposited, matched, and annotated to a human urinary peptide
database maintained by Mosaique Diagnostics and data were presented as raw counts for
each peptide, normalised to 29 collagen fragments that are considered invariant and not
affected by disease status132.

The mass spectrometry dataset is sparse, comprising a total of 18,035 peptides quantified
across 340 samples. Most peptides were not quantified in more than one sample, and
for robust model development required extensive a priori filtering before analysis. As
recommended by collaborators, peptides quantified in <30% of cancer or non-cancer samples
were excluded a priori. Preprocessing of mass spectrometry data left 643 possible peptides
that were expressed in log2 units for further analysis.

3.2 Statistical and Machine Learning Methods
This section describes the methods employed within this thesis for producing machine learn-
ing models, and statistical analytical techniques used to quantify and test differences. All
statistical analysis was undertaken in R 3.5.3, and unless otherwise specified used default
parameters and two-tailed tests of significance, with P < 0.05 accepted as the threshold for
“significance”.

3.2.1 Regression modelling

Regression analysis encompasses some of the most widely used and easily grasped statistical
techniques for modelling relationships between input and output variables. Linear regression
modelling was largely developed in the pre-computer era and is likely the most widely used
statistical prediction methods used in both scientific research and commercial applications
today. Even with the advent of cutting edge machine learning techniques, linear regression
still has a multitude of uses, even being used to describe and interpret complex “black-box”
models116.

Linear regression models a continuous numeric variable Y as some linear product of the
input predictors (X1, X2, ..., Xn) and their coefficients (β1, β2, ..., βn) according to:

Y = β0 +
n∑
i=1

βiXi
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Interpretation of linear regression models is relatively trivial; the coefficient of an input
βi represents the expected change in Y for each unit change of βi, when all other inputs are
held static. With standard linear regression, unsurprisingly only linear relationships can be
modelled due to single coefficients for variables. Polynomial regression introduces higher
order powers for coefficients, allowing for curvilinear relationships to be better represented
but can quickly introduce overfit with the additional of higher orders. Further alterations
to linear regression can be made through link functions to model different relationships of
interest and outcomes. Binary events can be modelled using the logit link function, that
bounds the continous output of a linear regression model into [0,1]. Whilst ordinal event
modelling effectively applies thresholds to the output of a linear model, discretising it into
the number of categorical events to be modelled.

3.2.2 Overfitting

Overfit is the term ascribed to the event where a function fit to limited data models a
relationship too precisely and thus fits to some measured noise, resulting in poor predictive
ability with new data. The essence of overfitting is to have unwittingly extracted some of
this inherent variance or irreducible error as if it were truly representative of the underlying
data structure133.

Overfit can be introduced through multiple means, including insufficient observations
or irreproducible data, though a common method is through the inclusion of too many
parameters in a given predictive model. Each additional parameter in a model decreases
the error associated with each observation, a key goal for machine learning algorithms, but
also increases model complexity and the potential for overfit.

This error term that all statistical models attempt to minimise can essentially be de-
composed into three terms; bias, variance and an irreducible error, the noise term inherent
to the data that cannot be reduced, such as uncertainty surrounding a measurement:

Errorx = Bias2 + V ariance+ ErrorIrreducible

Given infinite data and a true model it is possible to reduce bias and variance to 0
simultaneously. In practice however, with both finite data and models that can only ap-
proximate relationships, there is a trade-off between bias and variance. Due to the square
relationship of error and bias, an overfit model is often completely free of bias, but exhibits
exceptionally large variances133. Overfit is one of, if not the most common issues in devel-
oping machine learning algorithms and models, and so many strategies have been developed
within algorithm and model development to ameliorate this. Arguably the most effective
method one can undertake to overcome overfit is the adoption of the Principle of Parsimony
and minimising the included parameters of a model to reduce its complexity, where large
coefficients and unregulated inclusion of parameters in a model can exert undue leverage
on its output, reducing accuracy106. Of course, producing a simple model for a complex
problem is not always feasible, such as in prediction of cancer presence or progression, where
many interacting variables meaningful impact on outcome. In this case it is often more ap-
propriate to use computational methods such as regularisation and penalisation, resampling
methods or bagging.

3.2.3 Regularisation and the LASSO

As overfit is a prevalent problem, much of machine learning can be framed as an optimi-
sation problem. Regularisation, or shrinkage, methods penalise overly complex models by
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restricting or eliminating coefficients to reduce their absolute magnitude and influence on
model output. The least absolute shrinkage and selection operator (LASSO) is a regression
technique originally described by Tibrashani134. LASSO imposes strong penalisation on co-
efficients, where all but the most informative variables are shrunk to 0. This is achieved by
the introduction of an additional error parameter to be minimised during fitting operations
and was originally described with the sum of squares error function as defined by

β̂LASSO = arg min
β
{
N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 + λ
p∑
j=1
|βj |}

Where the scalar λ is a complexity parameter ≥ 0 that controls shrinkage. When λ = 0
no coefficients are forced to zero, and as the value of λ is increased more coefficients are set to
zero. λ must be determined separately and pre-specified before fitting a model to the data,
commonly achieved by evaluating the k-fold cross-validated error. LASSO-based regression
models in this work are fit using the ordinalNet package, selecting the cross-validated λ
value returning the minimum error135.

LASSO penalisation does possess several limitations beyond being a linear error function.
One of note is the “large p, small n” case, with more predictors than observations, where
LASSO selects at most n variables before it saturates136. Additionally, the LASSO struggles
to deal with collinearity of variables, selecting a single variable at the cost of all other
correlated ones, as opposed to an “all-relevant” approach such as the Random Forest136,137.

3.2.4 Cross-validation

Figure 3.5: Example of the model building process with cross-validation.
The full dataset is split into five folds; four are used to train the model, with
the remaining fold used to validate the model and assess its fit.

Cross-validation is a method of data splitting for fitting and assessing how well a predic-
tive model can generalise to unseen data, whilst still using all available data to fit a final
model138. In cross-validated workflows the model fitting process is undertaken on different
subsets of the available training data, that are partitioned equally into k folds. A single
fold is retained as the validation data for the fitted model, and the remaining k − 1 folds
are used as training data. This process is then repeated k times, with each one of the k
folds used exactly once as a validation dataset (Figure 3.5).

Predictions are then produced for each validation fold and the process repeated for
another fold. This results in all available data being used to train the final model, whilst
still being able to assess the model’s accuracy using the results generated when each sample
is “out-of-fold”. Cross-validation gives a pessimistically biased estimate of performance
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because most statistical models will improve if the training set is made larger106. Typically,
results from models trained on a full dataset perform slightly better than the initial results
that tuning via cross-validation on the same data would have suggested. Cross-validation
gives a more accurate representation of model quality, and results in a more generalisable
model, but requires that k models be trained which can be computationally intensive, and
unstable dependent on the dataset106.

3.2.5 Resampling and the bootstrap

Resampling is a simple concept that consists of drawing repeated samples from an original
dataset, either with or without replacing samples. A common method of non-parametric
statistical inference, resampling does not involve a reliance on generic distribution tables
such as the normal distribution in order to compute approximate P values. Bootstrapping
is a specific type of resampling with replacement to the same size as the original dataset,
and repeated many times, where it can be used to estimate sampling distributions of an
estimate, most often with the purpose of deriving robust estimates of uncertainties around
a point estimate.

A key advantage of the bootstrap is in its simplicity, relying on the data itself rather
than typical statistical assumptions. Whilst it is impossible to know the true confidence
interval or error of a measurement for most problems, the bootstrap-derived estimates
have been shown to be more accurate than standard methods using sample variances and
distribution-based assumptions139.

3.2.6 Random Forests

Originally conceived by Tin Kam Ho, the Random Forest algorithm is an ensemble method
(one that aggregates the results from more than one model) for both classification and
regression problems140,141. Further refined and subsequently trademarked by Breiman in
2001, the concept of “bagging” was added and remains today a frequently used algorithm for
machine learning applications142. The following section is based on the works of Breiman142,
and Hastie, Tibshirani and Friedman106. Ensemble learning methods combine multiple
individually trained classifiers synergistically to obtain better prediction results than any
of the constituent methods alone could achieve106.
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Figure 3.6: Theoretical example of a decision tree for prostate cancer treat-
ment decision. Ellipses represent a tested attribute with squares the decision
made following an outcome.

Random Forests function through the generation of an ensemble, or forest, of decision
trees. Decision trees are a relatively simple concept and application of supervised learning
not dissimilar from a conventional flow chart (Figure 3.6). Decision tree learning is based
on a number of base algorithms outside the scope of this work but most often uses the
C4.5 algorithm143. Decision trees are easily assembled, show low bias and, if small enough,
produce directly interpretable models106. However, trees in isolation are inaccurate and
seldom provide the best prediction accuracy achievable with a given dataset106. Trees
grown deep, with many branches and decision nodes across multiple variables are able to
learn exceptionally non-linear patterns with no underlying assumptions on distributions or
linearity, but lead to strong overfitting.

In order to overcome the high variance of single trees, the Random Forest algorithm
employs bootstrap-aggregation of predictions, named bagging. Informally for a regression
task, bagging functions by taking the output decisions from each decision tree in the forest
and taking the average, and in the case of classification tasks, the modal “vote” of the trees.
The key goal in bagging is to average many noisy, but unbiased models, to reduce overall
variance.

More formally, given a training set of size Z = [(x1, y1), (x2, y2), ..., (xn, yn)], bagging B
times selects a random sample with replacement of size n from Z and fits a decision tree to
each sample fbag. Predictions can then be made on previously unseen samples x̂ by selecting
the majority vote for classification, or averaging outputs from all individual fit trees by

f̂(x̂) = 1
B

B∑
b=1

fbag(x̂)

In addition to bagging, Random Forests utilise random feature selection, known as the
random subspace method, to further minimise variance in trained models. For M features
in a given datasetm << M features are selected at random without replacement. Typically,
m =

√
M for classification or M/3 for regression forests, although these are often treated

as tunable parameters to optimise model fit.
A key feature of random forests in producing unbiased predictions is the use of strong

internal validation through out-of-bag (OOB) samples. Due to the random sampling with
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replacement described above, approximately 30% of samples are not selected when growing
any given tree, though this is also a tunable parameter. OOB samples are used to validate
the trained model so that, for any observation in the dataset Zi, its prediction is generated
using only those trees where Zi did not appear. This means predictions generated from
Random Forests are never actually produced using the same data that portion of the forest
was trained on. This produces error metrics similar to other methods such as k-fold cross
validation, but as it is intrinsic to the model fitting process, requires no data to be withheld
from training at any stage, and results in a single model that can be interrogated, stored and
used to produce predictions for unseen data. It is these features that make Random Forests
an optimal method for producing predictive models where sample numbers are relatively
limited, precluding the use of traditional train/test/validation data splitting techniques,
maximising information extraction without risks of overfitting.

Random Forests fit throughout this thesis used the randomForest package with de-
fault parameters (m =

√
M for classification and M/3 for regression), unless otherwise

described144.

3.2.7 Gradient Boosting Machines

Gradient Boosting Machines (GBMs) are a forward-learning ensemble method, similar in
practice to Random Forests, and most commonly implemented using the same decision tree
algorithms as the basis for a “weak learner”. The driving heuristic behind boosting is that
multiple weaker learners can be combined over iterative improvements to become a single,
strong learner145. Boosting is conceptually similar to bagging described above, however
there are key differences in both fitting of individual learners, and in the final aggregation
of results.
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Bagging Boosting
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Single

(Parallel) (Sequential)

Figure 3.7: Differences in learner construction between singular and ensem-
ble methods. In single learner methods all data (blue circles) are used to
produce a single estimate, in this illustration, a decision tree. Bagging ran-
domly samples data, with replacement (yellow circles) many times and esti-
mates many decision trees in parallel. Boosting randomly samples weighted
data (shown as size of circles) with replacement. The weight assigned to
samples is dictated by the magnitude of misclassification by the previous (or
initial) learner. After each boosting round, the weights are recalculated, and
a new resampling is used to grow an improved decision tree. The ensem-
ble classification steps follow once the desired number of learners have been
constructed.

Where bagging involves random sampling with replacement, with any singular datum
being equally likely to be selected, boosting weights data according to previous rates of
misclassification; with greater weight given to those data more commonly misclassified.
Once a learner is constructed, the weights for each sample are calculated according to a
chosen error metric for the next round of boosting. Over each boosting round the learner is
improved by essentially concentrating upon the incorrectly classified, hard to learn training
data (Figure 3.7). Most specific implementations of boosting include an extra condition
to stop sequentially improving a learner, to avoid overfit. This is commonly the point
at which the single learner has improved to the point of being able to predict the target
slightly greater than random chance. The resulting “weak learner” may not be useful in
isolation, but aggregated over an ensemble of many such learners, results in vastly greater
performance, similar to the bagging of Random Forests. The key differences and similarities
between boosting and bagging approaches are shown in Table 3.2.
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Table 3.2: Similarities and differenced between boosting and bagging meth-
ods for ensemble learners

Similarities Differences
Both are ensemble methods to derive N
learners from a single dataset

Whilst the learners are built
independently for bagging, boosting adds
new models that improve upon previous
failures.

Both generate training data by random
sampling with replacement

Boosting also determines weights to
prioritise selection of more difficult cases
to classify.

Both make final predictions by the
average, or majority decision of the N
learners

Boosting additionally weights the
average, with more weight to stronger
predictors.

Both reduce variance and increase model
stability

Boosting reduces bias, at the cost of
overfitting. Bagging reduces overfitting
but does not reduce bias.

As the construction of each learner in bagging methods is completely independent and
non-iterative, it is significantly faster than boosting methods, easily parallelised and dis-
tributed for computational efficiency. Several libraries exist that modify the specifics of
boosting, depending on the application for improved computational efficiency145–147, with
the XGBoost library by far the most popular implementation for high performance use in
large datasets. With this considered, GBMs implemented within this thesis use the xgboost
R package and its C++ backend implementation of the XGBoost libraries146.

3.2.8 Meta-ensembles or Stacking

Model stacking is a commonly employed approach for marginal gains in machine learning
competitions, aiming to improve predictive accuracy by combining the predictions made
from multiple models, often with disparate underlying algorithms. Model stacking usually,
but not always, leads to improved predictive ability, but at the cost of interpretability.
Most winning models on the popular data science citizen-science website Kaggle are stacked
models148.
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Figure 3.8: A generalised example of constructing a stacked model. M
different models are built with the original training data, XL1 where the
predictions from these models form a second level dataset XL2 formed of M
features and the original number of observations. A second level model(s)
can then be trained on this data to produce the final outcomes used for
prediction.

Model stacking can range from simple averaging of predicted outcomes, to fitting entirely
new models using the estimates from previous models as inputs along with new variables
(Figure 3.8). In this thesis, the simple unweighted average will be used to produce meta-
ensembles from multiple machine learning models. Preliminary work showed that there
was no significant benefit derived from tuning weights used to average outputs (data not
shown), with the requirement for more data for tuning outweighing small gains.

3.2.9 Boruta

Boruta is an all-relevant feature selection algorithm designed as a wrapper around the pre-
viously described Random Forest classification algorithm. Described by Kursa & Rudnicki
in 2010149, Boruta iteratively compares feature importance against a random predictor gen-
erated by permutating real data, deem “shadow features”. The importance measure of a
feature is determined as the loss of accuracy of classification caused by the random permu-
tation of the feature across all trees in the forest which use that feature for classification.
Variables that perform significantly worse compared to the maximally performing shadow
feature at each permutation, calculated by Z score difference in mean accuracy decrease are
consecutively dropped until only confirmed, stable features remain.

The Boruta algorithm calculates feature importances as follows:

1. Extend the dataset by copying of all variables and permute them to remove their
association with the response, creating the shadow features.

2. Fit a Random Forest classifier on the extended dataset, and compute all Z scores.
3. Search for the maximum Z score amongst the shadow features (MZSF), and assign a

“hit” to every feature with a higher Z score than MZSF.
4. For each feature with undetermined importance, perform a two-sided test of equality

with the MZSF.
5. For each feature with importance significantly lower than MZSF, mark them as “unim-

portant” and remove from the extended dataset.
6. For each feature with importance significantly higher than MZSF, deem them “im-

portant”.
7. Remove all shadow features.
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8. Repeat the process until importance is assigned to all variables, or the predetermined
number of Random Forests have been fitted.

A key aspect of Boruta important to the current work is that it is an all-relevant method,
as opposed to a minimal-optimal selection approach such as LASSO. As features are com-
pared to the random permuted shadow features, correlated and co-linear variables do not
impact the importance ranking of one another. The non-zero importance of a shadow fea-
ture can only be attributed to randomness, and so can be used to as a reference to for
confirming all truly important variables. All Boruta analysis in this thesis uses the Boruta
package149 to calculate feature importance, with external bootstrap resampling of 1,000
samples implemented to assess feature-set stability in resampled datasets.

3.2.10 Survival Analysis

Survival analysis is a set of statistical techniques concerned with the modelling of time-
to-event data. Within medical research this would commonly be the time between the
beginning of an observation period and an outcome, or “event” such as death, disease
recurrence or recovery. Survival analysis commonly uses censored data; data where a subject
does not have the event during the observation time and so nothing is known about their
status after the observation period. This is referred to as right-censoring. Left-censored
data are less common, where it is possible for the subject to have previously experienced an
event unknown to the observer. An important assumption of working with censored data is
that censoring is a random effect, not correlated with the outcome of interest. All survival
analyses performed in this thesis use the survival and rms packages150–152

Kaplan-Meier (KM) curves

A common method for representing survival data graphically is through the use of Kaplan-
Meier (KM) curves, that represent survival probability (St) as a function of time. St denotes
the probability that a participant does not experience an event in the time t, where t can
range from 0 - ∞. In practice, time is never infinite, and so the function may never equal
zero across the observation period. The probability of surviving past t = 0 is always 1.

The KM survival distribution is a discrete-stepped survivorship curve, gaining informa-
tion as each event occurs. Two variables define the KM curve at any given time tj , the
number of events d(tj) and those still at-risk r(tj). The probability of surviving longer than
t or the estimator of the survival function SKM is given by:

SKM =
∏
j:tj≤t

(1− d(tj)
r(tj)

)

The survival probability past time tj , Ŝtj can be calculate as the probability of surviving
past the previous time tj−1 multiplied by the probability of surviving past time tj , given
survival to at least time tj :

Ŝtj = Ŝtj−1 × P (T > tj |T ≥ tj)

KM curves are most useful when predictor values are categorical, and do not work
easily with many categories or continuous values such as a bounded risk score, age, or gene
expression.
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Cox proportional hazards (PH) model

Modelling of survival influenced by more than one variable can be achieved though regression
analysis and the Cox proportional hazards (PH) model. Cox PH modelling is one of the
most popular statistical techniques for performing multivariable survival analysis, designed
to simultaneously investigate the effects of several explanatory variables on survival time.
The Cox PH model has the key assumption that the hazard to any individual over time
is proportional to the hazard for any other individual; that the explanatory variables are
independent of time.

Cox PH models are primarily used for one of three goals: to test if a variable has an
effect on survival, to provide the hazard ratio (HR) for a variable, a point estimate of the
effects on survival if one variable is altered, and to provide a confidence interval around the
hazard ratio. The hazard function is central to the the Cox PH model and is defined as:

h(t,X) = h0(t) exp
{ p∑
i=1

βiXi

}
Where X = (X1, X2, ..., Xp) is a set of p variables, and [β1, β2, ..., βp] are a set of p

coefficients corresponding to the variables. The baseline hazard function h0(t) explains how
the hazard changes as a function of time only, prior to consideration of any input variables.
The second function is the exponential of a linear combination of the explanatory variables.
The HR describes the ratio of hazards rates between two levels of the explanatory variable.
For example, if the chances of prostate-cancer specific mortality double for each distant
node involved with metastases, then the HR = 2 per distant node.

3.2.11 Metrics for assessing model accuracy

ROC curves and the AUC
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Figure 3.9: Example of a typical ROC plot using sensitivity (y-axis) and
specificity (x-axis) to evaluate discriminatory ability over a range of thresh-
olds (not shown).
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One of the most commonly used tools when predicting the binary outcomes over a range
of probabilities is the Receiver Operating Characteristic (ROC) curve. The ROC curve is
a graphical plot of the false-positive rate plotted against the true-positive rate across all
candidate thresholds. The true-positive rate, also referred to as sensitivity, is calculated as
the number of true positives (TP ) divided by the sum of the number of true positives and
the number of false negatives (FN):

Sensitivity = TP

TP + FN

The false positive rate is calculated as the number of false positives divided by the sum
of the number of false positives (FP ) and the number of true negatives (TN), and is the
inverted specificity:

1− Specificity = FP

FP + TN

The Area Under the Curve (AUC) of the ROC curve is a summary metric for evaluating
model discrimination. The AUC quantifies the probability that the risk scores from a
randomly selected pair of samples with and without the binary test condition are correctly
ordered. Confidence intervals surrounding the AUC are calculated via bootstrap resampling
of results with 1,000 resamples, as specified in the pROC package.153 Similarly, differences
between ROC curves and AUC can be significance tested using the same bootstrapping
process.

AUC and ROC plots are arguably the most widely used metrics for reporting model
accuracy in a diagnostic or prognostic setting. ROC plots have several key disadvantages,
namely the obfuscation of risk thresholds and the equal weighting given to the costs of
false positives and false negatives, which are often radically different in a clinical setting154.
There is an argument that a simple binary threshold robustly estimated and validated
has more use in specific clinical settings, with similarly binary outcomes. However, where
risk stratification is concerned, risk prediction models require good calibration across all
thresholds to be considered clinically useful and robust to new patient populations21.

Decision Curve Analysis

In decision curve analysis (DCA)154, a clinical judgement of the relative benefits (treating
a true-positive) and harms (treating a false-positive) associated with prediction models is
made across a range of threshold probabilities. Net benefit is computed by subtraction of the
proportion of all patients who are false-positives from the proportion who are true positives
at a certain threshold, weighted by the relative harm of a false positive and a false negative
result. Net benefit depends on the cost and benefit of intervention, the prevalence P of the
outcome of interest in the population and the model’s ability to accurately assign risk to
the correct outcomes. A model’s classification accuracy is measured by the true-positive
rate (TPRR), the proportion of cases with risk above risk threshold R; the false-positive
rate (FPRR) is the proportion of controls with risk above risk threshold R. The net benefit
NB to the population of using the risk model at the specified risk threshold R is:

NBR = TPRR P −
R

1−R FPRR (1− P )

There are a few important observations about this expression, as it requires that the
risk threshold R has been chosen rationally, implicitly including the costs and benefits
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of intervention. In DCA plots, R is commonly plotted along a range, for the reader to
interpret at their own acceptable thresholds. A challenge in interpreting decision curves
stems from the challenge in interpreting NB itself. A specific difficulty is that the NB is
in units of “Benefit”. Mathematically, the maximum possible value of NB is achieved when
the TPR = 1 and FPR = 0; meaning we can never do better than intervening on all cases
and no controls and the maximum possible NB = P . Instead standardised NB sNB can
be used as a metric slightly easier to interpret as sNB = NB/P 155. One reason is that
sNB always has a maximum value of 1.0, providing a sense of large and small on a percent
scale.

Net benefit can also be readily used to calculate the reduction in unneccessary inter-
ventions, typically where the routine intervention is to treat all (such as in prostate cancer
where a suspicious clinical examination typically results in a biopsy). Reduction in this case
is calculated as:

Reduction = (NBModel −NBAll)× 100
R/(100−R)

Vickers, Calster & Steyerberg provide a very intuitive guide to interpreting DCA and
readers are directed there for further information156.

Estimation plots

Figure 3.10: A generalised example of estimation plots. Individual raw data
for each group of interest are shown as points, with confidence intervals
shown as gapped bars in the upper panel. The lower panels shows boot-
strap estimated effect sizes relative to the control group. Adapted from
github.com/ACCLAB/DABEST-python
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Estimation graphics are a means to avoid reliance on null-hypothesis significance testing
(NHST) and the assumptions connected to statistical distributions. Proposed by Ho et al.
in 2019, estimation statistics is a simple framework based upon the effect size of differences
through bootstrap resampling of the available data, and displaying the results as familiar
concepts of means, mean differences and error bars157. Estimation plots have two key
features that define them: all data points are shown in a swarm plot, which orders each point
to show the distribution, and the effect size of differences are presented as the bootstrapped
95% confidence intervals on separate, but aligned axes to the raw data (Figure 3.10).

Estimation plots and calculations were produced using the dabestr package157 and 1,000
bootstrap resamples were used to visualise a robust effect size estimate of model predictions
between risk groups where used.
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Chapter 4

Development of the Prostate Urine
Risk Scores

4.1 Summary
This chapter describes the development and internal validation of the Prostate Urine Risk
(PUR) model, produced by Dr. Daniel Brewer using NanoString data from the Movember
GAP1 cohort. Using a conventional training/test data split, PUR was trained on D’Amico
status of patients using a LASSO-penalised ordinal regression. PUR showed good clinical
utility for biopsy prediction, reporting good accuracy for Gs ≥ 3+4 (AUC = 0.76 (95% CI:
0.69 - 0.83)) and Gs ≥ 4+3 (AUCs = 0.72 (95% CI: 0.63 - 0.81)). This is a promising result
that if externally validated, could result in substantial improvements to patient care.

In an active surveillance sub-cohort, PUR appeared to predict disease progression up to
five years in advance, (HR = 8.23; 95% CI: 3.26 – 20.81). However, this AS performance was
hampered by cohort effects, where D’Amico status alone returned similar predictive ability
(HR = 6.51; 95% CI: 2.57 - 16.43). This is discussed in detail, with potential explanations
and solutions provided.

This work is adapted from the original publication “A four-group urine risk classifier
for predicting outcomes in patients with prostate cancer” by Connell et al. in BJU Inter-
national, published 20th May 2019. Where work was completed by someone other than
myself, this has been clearly stated.

4.2 Background
The progression of prostate cancer is highly heterogeneous158, and risk assessment at the
time of diagnosis is a critical step in the management of the disease. Based on the infor-
mation obtained prior to treatment, key decisions are made about the likelihood of disease
progression and the best course of treatment for localised disease. D’Amico stratification63,
which classifies patients as Low-, Intermediate-, or High-risk of PSA-failure post-radical
therapy, is based on Gleason score (Gs)159, PSA and clinical stage, and has been used
as a framework for guidelines issued in the UK, Europe and USA5,66,160. Low-, and
some favourable Intermediate-risk, patients are generally offered active surveillance117,160
(AS) while unfavourable Intermediate-, and High-risk patients are considered for radical
therapy117. Other classification systems, such as CAPRA score88, use additional clinical
information, assigning simple numeric values based on age, pre-treatment PSA, Gleason
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score, percentage of biopsy cores positive for cancer and clinical stage for an overall 0-10
CAPRA score. The CAPRA score has shown favourable prediction of PSA-free survival,
development of metastasis and prostate cancer-specific survival161.

Prostate cancer is often multifocal162, with disease state often underestimated by TRUS
biopsy alone163 and overestimated by multi-parametric-MRI (mpMRI), most often in the
case of Prostate Imaging Reporting and Data System (PI-RADS) 3 lesions58. Sampling
issues associated with needle biopsy of the prostate have prompted the development of
non-invasive urine tests for aggressive disease, which examine prostate-derived material,
harvested within urine102,110,164. Recent successes in this field are illustrated by three studies
carried out on whole urine for predicting the presence of Gs ≥ 7 on initial biopsy: Tomlins
et al. (2016), and McKiernan et al. (2016) used PCA3 and TMPRSS2-ERG transcript
expression levels, whilst Van Neste et al. (2016) used HOXC6 and DLX1 in combination
with traditional clinical markers99,102,164.

The objectives of this study were to develop a classification model that could predict
D’Amico & CAPRA risk group pre-biopsy from a single urine sample, and to additionally
test the classifier’s utility as a predictor of disease progression in a sub-cohort of AS patients
with five years of clinical follow-up.

4.3 Materials & Methods

4.3.1 Patient samples and clinical criteria

Samples collected within the Movember GAP1 cohort that had been processed to harvest
extracellular vesicles and interrogated by NanoString were used here, as described in Chap-
ter 3.

D’Amico classification used Gleason and PSA criteria as per D’Amico et al.63. CAPRA
classification used the criteria as described by Cooperberg et al.88. Where multiple biopsies
were taken the results from the closest biopsy to initial urine sample collection were used.
Men were defined to have no evidence of cancer (NEC) with a PSA normal for their age or
lower165 and as such, were not subjected to biopsy. Metastatic disease, defined by a PSA
>100 ng/mL, were excluded from analyses.

4.3.2 Expression analyses

NanoString data were adjusted relative to internal positive control probes as per Chapter 3,
with the following changes. The ComBat algorithm was used to adjust for inter-batch and
inter-cohort bias166. Data were further adjusted by means of a correction factor (CF ) for
input amount by normalisation to two invariant and highly expressed housekeeping gene-
probes, GAPDH and RPLP2. The CF for a given sample i, was calculated as the total
mean of GAPDH and RPLP2 expression, divided by the sample-specific mean of GAPDH
and RPLP2:

CFi =
∑
j x̄GAPDH,RPLP2

n(x̄GAPDHi,RPLP2i)
All data were expressed relative to KLK2 as follows: samples with low KLK2 (counts

<100) were removed, and data log2 transformed. Data were further normalised by adjusting
the median of each probe across all samples to 1, with the interquartile range adjusted to
that of KLK2. More formally, for each sample i and gene-probe j, the KLK2 normalised
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value, ŷi,j was calculated as:

ŷi,j =
yi,j−medianj

IQRj
× IQRKLK2

yi,j

No correlation was seen with respect to patient’s drugs, cohort site, urine pH, colour
or sample volume (all P > 0.05; Chi-square and Spearman’s Rank tests, data not shown).
The work in this section was completed by Helen Curley.

4.3.3 Model production and statistical analysis

All statistical analyses and model construction presented here were undertaken in R version
3.4.1167, and unless otherwise stated utilised base R and default parameters. The Prostate
Urine Risk (PUR) signatures were constructed from the training dataset as follows: for
each probe, a univariate cumulative link model was fitted using the R package clm with
risk group as the outcome and NanoString expression as inputs. Each probe that had a
significant association with risk group (P < 0.05) was used as input to the final multivariate
model. A constrained continuation ratio model with an L1 penalisation was fitted to the
training dataset using the glmnetcr library168, an adaptation of the least absolute shrink-
age and selection operator (LASSO) method169. Default parameters were applied using the
LASSO penalty and values from all probes selected by the univariate analysis used as input.
The final multivariable model was selected according to the minimum Akaike information
criterion and incorporated all probes not removed by the LASSO penalty. Model construc-
tion was performed by Daniel Brewer. Ordinal logistic regression was undertaken using the
ordinal library170.

Bootstrap resampling of ROC analyses used the pROC library153 for calculation, sta-
tistical tests and production of figures, with 2,000 resamples used. Random predictors were
generated by random sampling from a uniform distribution between 0 and 1.

Survival analyses were undertaken where follow-up of AS patients allowed and used pro-
gression as an endpoint, where progression criteria were either: PSA velocity >1 ng/ml per
year or Gs ≥ 4+3 or ≥ 50% cores positive for cancer on repeat biopsy. Cox proportional
hazards models utilised risk signatures as a continuous variable. Kaplan-Meier (KM) esti-
mators were calculated based on the median optimal threshold to minimise the Log-rank
test P-value from 10,000 resamples of the cohort with replacement to ensure robustness. As
the clinical costs of missing significant cancer are far higher than an unnecessary biopsy or
investigation, where multiple samples were analysed from the same AS patient the sample
with the highest PUR-4 signature was used in survival analyses and KM estimators. Where
multiple samples were available from a patient, only a single sample was used.

Decision curve analysis (DCA)154 examined the potential net benefit of adopting PUR
signatures in clinical settings and was reported as standardised net benefit as per Chapter
3 as it is more interpretable when compared to net benefit155.

In order to ensure DCA was representative of a more general population, the prevalence
of Gleason grades within the Movember cohort was adjusted via bootstrap resampling to
match that observed in a population of 219,439 men that were in the control arm of the
Cluster Randomised Trial of PSA Testing for Prostate Cancer (CAP) Trial6. Briefly, for
the biopsied men within this CAP cohort, 23.6% were Gs 6, 8.7% Gs 7 and 7.1% Gs 8
or greater, with 60.6% of biopsies being prostate cancer negative. These proportions were
used to perform stratified random sampling with replacement of the Movember cohort to
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produce a synthetic dataset of 300 samples. Standardised net benefit was calculated on
the resampled dataset, and the process repeated for a total of 1,000 resamples. The mean
standardised net benefit for PUR-4 and the “treat-all” options over all iterations was used
to produce the presented figures to account for variance in sampling.

Stability of temporally-spaced samples from the same patient were assessed by simu-
lation against a null model. This null model was generated by random sampling of two
non-related samples from the whole Movember GAP1 cohort and measuring the Euclidean
distance between samples using their PUR signatures. This was repeated to produce a
simulated population the same size as the real paired samples. The mean distance was
calculated and the resampling with replacement process was repeated 100,000 times and
the real distances from paired samples compared to this synthetic distribution.

4.4 Results

4.4.1 The Clinical Cohort

The Movember cohort comprised of 535 post-DRE urine samples collected from four centres
(NNUH, n = 312; RMH, n = 87; Atlanta, n = 85; Dublin, n = 17). Multiple, longitudinal
samples within the Movember cohort were provided by 20 of the 87 men enrolled on an
AS program at the RMH (Figure 4.11. The median time between collection of multiple
samples was 185 days (IQR: 122-252 days) and were treated independently from one another.
Samples originated from men categorised as having either No Evidence of Cancer (NEC, n
= 92) or localised prostate cancer at time of urine collection, as detected by TRUS biopsy
(n = 443). Patients with cancer were further subdivided into three risk categories using
D’Amico criteria: Low (L), n = 134; Intermediate (I), n = 208; and High-risk (H), n =
101. Patients with metastatic cancer at collection were excluded from analyses (n = 35).
Further characteristics of the Movember cohort are available in Table 4.1.
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Table 4.1: Characteristics of the Training and Test datasets

Characteristic Training Test
Total, n (%) 358 (67.0) 177 (33.0)
Collection Centre:

NNUH 203 109
RMH 83 38
Dublin 9 8
Atlanta 63 22

PSA, ng/ml, mean (median; IQR) 10.6 (6.9, 6.4) 10.9 (6.9, 7)
Age, yr, mean (median; IQR) 65.8 (67, 11) 67.2 (67, 11)
Family history, %; no, yes, NA 3.0, 6.1, 90.8 0.6, 6.2, 93.3
First biopsy, n (%) 298 (82.78) 145 (81.46)
Prostate volume, ml; mean (median; IQR) 59.2 (49.8, 30.4) 61.1 (49.2, 32.8)
PSAD, ng/ml; mean (median; IQR) 0.29 (0.19, 0.16) 0.29 (0.18, 0.17)
Suspicious DRE, n 107 52
Diagnosis:

NEC, n (%) 62 (17.3) 30 (17.0)
D’Amico Low n (%) 89 (24.9) 45 (25.4)
D’Amico Intermediate n (%) 139 (38.8) 69 (39.0)
D’Amico High n (%) 61 (17.0) 27 (15.3)
Metastatic (bone scan) n (%)* 7 (2.0) 6 (3.3)

CAPRA:
Low (0-2) n (%) 97 (33.7) 49 (33.7)
Intermediate (3-5) n (%) 108 (37.5) 53 (36.6)
High (< 7) n (%) 83 (28.8) 43 (29.7)

Gleason:
Gleason, n: 292 144
Gs = 6, n (%) 119 (40.8) 64 (44.4)
Gs = 7, n (%) 131 (44.9) 56 (38.9)
Gs > 7 n (%) 42 (14.4) 24 (16.7)

* Data from patients with metastatic disease confirmed by bone scan after sample
collection were used, and classified as D’Amico High-risk.

4.4.2 Selection of cell-free fractions

Based on earlier analyses and previously published results by Pellegrini et al.171, the cell-free
and extracellular vesicle fraction in urine samples were selected for this study.

4.4.3 Development of the Prostate Urine Risk Signatures

Samples in D’Amico categories Low, Intermediate and High-risk, together with NEC sam-
ples were divided into the Movember Training dataset (two-thirds of samples; n = 358)
and the Movember Test dataset (one-third of samples; n = 177) by random assignment,
stratified by risk category (Table 4.1).
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Figure 4.1: A) PUR profiles (PUR-1 – green, PUR-2 – blue, PUR-3 – yellow,
PUR-4 – red) for the Training dataset, grouped by D’Amico risk group and
ordered by ascending PUR-4 score. Horizontal lines indicate where the PUR
thresholds lie as shown in D). B) PUR profiles in the Test dataset. C)
Examples of samples with primary PUR signatures, where coloured circles
indicate the primary PUR signal for that sample; 1° PUR-1 (green), 1° PUR-
2 (blue), 1° PUR-3 (yellow), 2° PUR-4 (orange) and 1° PUR-4 (red). D) The
outline of the four PUR signatures for all samples ordered in ascending PUR-
4 (red) to illustrate where 1°, 2° and the 3° crossover point of PUR-1 and
PUR-4 lie.
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Table 4.2: Coefficients of the 36 gene probes included as variables in the
final PUR model and the intercepts.

PUR variable: Coefficient
Intercept -2.1781570
AMACR 0.6829973
AMH 0.3363184
ANKRD34B 0.1673693
APOC1 0.3712274
AR (exons 4-8) -0.4771042
DPP4 -1.3364905
ERG (exons 4-5) 0.0256132
GABARAPL2 0.5138853
GAPDH -0.9188083
GDF15 0.2792761
HOXC6 0.6543025
HPN -0.4625853
IGFBP3 -1.2101205
IMPDH2 0.4543117
ITGBL1 -0.1094984
KLK4 -1.5051707
MARCH5 -1.4391403
MED4 -1.0766399
MEMO1 -1.9473755
MEX3A 0.2318072
MME -0.9433935
MMP11 0.9918169
MMP26 0.3549589
NKAIN1 0.0352952
PALM3 0.1954966
PCA3 2.7549211
PPFIA2 -0.7369071
SIM2 (short) 0.9031434
SMIM1 -0.2209302
SSPO 0.9231364
SULT1A1 1.7614731
TDRD1 0.2666629
TMPRSS2/ERG fusion 0.4792269
TRPM4 0.0594701
TWIST1 -0.2593533
UPK2 0.6382611
Cp 1 2.4258354
Cp 2 1.4855935
Cp 3 -0.4792212
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NanoString data for 167 gene-probes were obtained for each sample. The data was pro-
cessed and normalised by Helen Curley (see Methods above). The optimal model, produced
by Daniel Brewer, for prediction of D’Amico status (NEC, Low-, Intermediate-, High-Risk)
as defined by the LASSO criteria in a constrained continuation ratio model, (see Methods
for full details) incorporated information from 36 probes (Table 4.2) and was applied to both
training and test datasets (Figure 4.1A, B). For each sample the 4-signature PUR-model
was interpreted as the probability of containing NEC (PUR-1), L (PUR-2), I (PUR-3) and
H (PUR-4) material within samples (Figure 4.1A, B). The sum of all four PUR-signatures
in any individual sample was 1 (PUR1 + PUR2 + PUR3 + PUR4 = 1). The strongest
PUR-signature for a sample was termed the primary (1°) signature while the second highest
was called the secondary (2°) signature (Figure 4.1C, D).
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4.4.4 Pre-biopsy Prediction of D’Amico risk, CAPRA score and Gleason:

Test

D’Amico ≥ Intermediate AUC:

Figure 4.2: A) Boxplots of PUR signatures in samples categorised as no
evidence of cancer (NEC, n = 30) and D’Amico risk categories; (L – Low,
n = 45, I – Intermediate,n = 69 and H – High risk, n = 27) in the Test
dataset. Horizontal lines indicate where the PUR thresholds lie for: 1°
PUR-1 (Green), 2° PUR-1 (Purple), 1° PUR-4 (Red), 2° PUR-4 (Orange).
B) ROC curve of PUR-4 predicting the presence of significant (D’Amico
Intermediate or High risk) prostate cancer prior to initial biopsy in the Test
dataset. Coloured circles indicate the specificity and sensitivity
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Primary PUR-signatures (PUR-1 to 4) were found to significantly associate with each clin-
ical category (NEC, L, I, H respectively) in both training and test sets (P < 0.001, Wald
test for ordinal logistic regression in both Training and Test datasets, Figure 4.2A, B, Table
4.3).

Table 4.3: Assignment matrix of samples based on their primary PUR sig-
nature and actual D’Amico Risk category in the Training and Test datasets

PUR
Assignment NEC Low Risk Intermediate

Risk High Risk

Training
1° PUR-1 63 24 13 0
1° PUR-2 26 47 26 2
1° PUR-3 7 23 47 22
1° PUR-4 0 4 38 58

Test:
1° PUR-1 48 28 10 4
1° PUR-2 24 38 31 7
1° PUR-3 9 22 45 23
1° PUR-4 0 12 53 35

Figure 4.3: Boxplots of PUR signatures relative to no evidence of cancer
(NEC) and CAPRA scores 1 – 10 in the Test dataset. Numbers of samples
within each group are as detailed in the table above.
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A similar association was observed with CAPRA score (P < 0.001, Wald test for ordinal
logistic regression; Figure 4.3.

PUR-4PUR-3

PUR-2PUR-1

AUC: 0.77 (0.70 - 0.84) AUC: 0.68 (0.61 - 0.77)

AUC: 0.70 (0.63 - 0.78) AUC: 0.77 (0.70 - 0.84)

Figure 4.4: ROC curves for each of the four PUR signatures (Green – PUR-
1, Blue – PUR-2, Yellow – PUR-3, Red – PUR-4) predicting presence of
D’Amico Intermediate- or High-risk cancers on initial biopsy in the test
dataset.

Based on recommended guidelines54,66,160, the distinction between D’Amico low and
intermediate-risk is considered critical because radical therapy is commonly recommended
for patients with high and intermediate-risk cancer. We therefore initially tested the ability
of the PUR-model to discriminate the presence of H or I disease from L or NEC upon
initial biopsy. Each of the four PUR-signatures alone were able to predict the presence of
significant disease (Risk category ≥ Intermediate, Area Under the Curve (AUC) ≥ 0.68 for
each PUR signature, Test dataset; Figure 4.4, and were significantly better than a random
predictor (P < 0.001, bootstrap test, 2,000 resamples). However, PUR-1 and PUR-4 were
equally best at discerning significant disease; AUCs for both PUR-4 and for PUR-1 in the
Test dataset were 0.77 (95% CI: 0.70 - 0.84), (Figure 4.2B).
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PUR-4 = 0.342 (0.98, 0.19)

PUR-4 = 0.297 (0.90, 0.44)

PUR-4 = 0.051(0.22, 0.96)

Gleason ≥ 7 AUC:
0.76 (95% CI: 0.69 - 0.83)

PUR-4 = 0.342 (0.93, 0.18)

PUR-4 = 0.297 (0.82, 0.50)

PUR-4 = 0.051 (0.17, 0.95)

Gleason ≥ 4+3 AUC:
0.72 (95% CI: 0.63- 0.81)
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1.0 0.8 0.6 0.4 0.2 0.0

PUR-4 = 0.079 (0.47, 0.88) 

PUR-4 = 0.079 (0.39, 0.93) 

Figure 4.5: ROC plots for PUR-4 predicting the presence/absence of: A)
Gleason ≥ 7 on initial biopsy in the Test dataset or B) Gleason ≥ 4+3
in the Test dataset. Coloured circles indicate the specificity and sensitiv-
ity, respectively, of thresholds along the ROC curve that correspond to the
indicated PUR-4 thresholds

When Gleason score alone was considered we found that PUR-4 predicted Gs ≥ 3+4
with AUCs of 0.78 (95% CI: 0.73 - 0.82) (Training) and 0.76 (95% CI: 0.69 - 0.83) (Test)
and Gs ≥ 4+3 with AUCs of 0.76 (95% CI: 0.70 - 0.81) (Training) and 0.72 (95% CI: 0.63 -
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0.81) (Test) (Figure 4.5). The ability to predict Gs ≥ 3+4 was particularly relevant because
this was previously chosen as an endpoint for aggressive disease in other urine biomarker
studies, where AUCs of 0.77, 0.78 and 0.74 were reported by McKiernan et al.102, Tomlins
et al.164 and Van Neste et al.99, respectively.

Treatment Options

Biopsy by PUR- D’Amico ≥ Intermediate

Biopsy All - Gleason ≥ 7
Biopsy by PUR - Gleason ≥ 7

Biopsy by PUR - Gleason ≥ 4+3
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Figure 4.6: DCA plot depicting the standardised net benefit of adopting
PUR-4 as a continuous predictor for detecting significant cancer on initial
biopsy, when significant is defined as: D’Amico risk group of Intermediate or
greater (teal), Gs ≥ 3+4 (orange) or Gs ≥ 4+3 (red). To assess benefit in the
context of cancer arising in a non-PSA screened population of men we used
data from the control arm of the CAP study(30). Bootstrap analysis with
100,000 resamples was used to adjust the distribution of Gleason grades in
the Movember cohort to match that of the CAP population. For full details
see Methods.

Decision curve analysis (DCA, section 3.2)154 examined the potential net benefit of using
PUR-signatures in a non-PSA screened population. Biopsy of men based upon their PUR-4
score provided a net benefit over biopsy of men based on current clinical practice across all
thresholds (Figure 4.6).
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4.4.5 Active surveillance cohort:

Active Surveillance cohort characteristics

Table 4.4: Active surveillance cohort characteristics.

Characteristic:
Patients, n 87
Age, year, mean (median; IQR) 64 (66, 7)
PSA, ng/ml, mean (median; IQR) 7.8 (7.5, 3.3)
D’Amico:
Low n (%) 55 (63)
Intermediate n (%) 32 (37)

CAPRA:
Low (0-2) n (%) 59 (68)
Intermediate (3-5) n (%) 27 (31)
High (>5) n (%) 1 (1)

Gleason Score:
Gs < 7, n 79
Gs = 3+4, n 7
Gs = 4+3, n 1

Number of biopsies:
1 14
2 28
>2 35
NA: 10

Number of negative biopsies following a positive:
1 26
2 3
NA: 58

Progressed to treatment due to:
PSA increase 17
Adverse histopathology 6
mpMRI criteria only 9

Non-progressed to treatment due to:
Any criteria 49
Self-elected for treatment: 3
Died of other causes: 3

Gs = Gleason score; IQR = interquartile range; PSA = prostate-specific antigen;
NA = not available; mpMRI = multiparametric magnetic resonance imaging

Within the Movember cohort were 87 men enrolled in AS at the Royal Marsden Hospital,
UK. The median follow-up time from initial urine sample collection was 5.7 years (range 5.1
– 7.0 years) (Table 2). The median time from initial urine sample collection to progression
or final follow up was 503 days (range 0.1 – 7.4 years). Full AS cohort characteristics are
available in Table 4.4.
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PUR model performance in AS cohort
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Figure 4.7: A) PUR profiles of patients on active surveillance that had met
the clinical criteria, not including mpMRI criteria, for progression (n = 23)
or not (n = 49) at five years post urine sample collection. Progression cri-
teria were either: PSA velocity > 1 ng/ml per year or Gs ≥ 4+3 or ≥ 50%
cores positive for cancer on repeat biopsy. PUR signatures for progressed
vs non-progressed samples were significantly different for all PUR signature
(P < 0.001, Wilcoxon rank sum test). Horizontal line colour indicates the
thresholds for PUR categories described in: B) Kaplan-Meier plot of progres-
sion in active surveillance patients with respect to PUR categories described
by the corresponding colours; Green - 1° and 2° PUR-1, Blue - 3° PUR-1,
Yellow - 3° PUR-4, Orange - 2° PUR-4, Red - 1° PUR-4 and the number
of patients within each PUR category at the given time intervals in months
from urine collection. C) Kaplan-Meier plot of progression with respect to
the dichotomised PUR thresholds described by the corresponding colours
Green – PUR-4 < 0.174, Red – PUR-4 ≥ 0.174 and the number of patients
within each group at the given time intervals in months from urine collection.
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Calculation of Kaplan-Meier estimators with samples divided on the basis of 1°, 2° and
3° PUR-1 and PUR-4 signatures showed significant differences in clinical outcome (P <
0.001, log-rank test, Figure 4.7B) and was robust (log-rank test P < 0.05 in 93.6% of
100,000 resamples with replacement, see section 3.2 for full details). Proportion of PUR-4,
a continuous variable, had a significant association with clinical outcome (P < 0.001; IQR
HR = 5.87, 95% CI: 1.68 – 20.46); Cox Proportional hazards model).

A robust optimal threshold of PUR-4 was generated through bootstrap resampling of
the AS cohort with replacement. At each resample, the PUR-4 threshold that minimised
the p-value reported from the Log-rank test was recorded, therefore maxmising the discrim-
inatory ability of a dichotomised PUR-4 for predicting survival. This was repeated over
10,000 resamples with replacement to ensure robustness and avoid overfitting to specific
samples. The median PUR-4 threshold over all resamples was selected (PUR-4 = 0.174) to
dichotomise patients into poor prognosis and good prognosis groups. The two groups were
found to have a large difference in time to progression: 60% progression within 5 years of
urine sample collection in the poor prognosis group compared to 10% in the good prognosis
group (P < 0.001, log-rank test, 4.7C, HR = 8.23; 95% CI: 3.26 – 20.81). This result is
robust (P < 0.05 in 99.8% of 100,000 resamples with replacement, see section 4.3.3 for full
details).
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Figure 4.8: A) Kaplan-Meier plot of AS progression, including mpMRI cri-
teria over time in days with respect to PUR thresholds described by the
corresponding colours Green - 1° and 2° PUR-1, Blue - 3° PUR-1, Yellow
- 3° PUR-4, Orange - 2° PUR-4, Red - 1° PUR-4. B) Kaplan-Meier plot
of progression, including mpMRI criteria, with respect to the dichotomised
PUR thresholds described by the corresponding colours Green – PUR-4 <
0.174, Red – PUR-4 = 0.174 and the number of patients within each group
at the given time intervals in months from urine collection.

When mpMRI criteria for progression were also included, both primary PUR-status and
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dichotomised PUR threshold remained a significant predictor of progression (P < 0.001 log–
rank test, Figure 4.8).

Potential confounding in survival outcomes affects the intepretation of model
performance:

Figure 4.9: Kaplan-Meier plot and risk tables of AS progression with either
D’Amico category alone (Dashed darker lines), or dichotomised PUR (Solid
brighter lines) defining the risk groups. The table underneath the main
figure details the number of patients still at risk of progression within each
group at a given time on the x-axis.

When D’Amico Risk category was considered as the sole predictor variable for progression
into a Cox proportional hazards regression model, it was found to be a significant predictor
of progression in AS, returning similar hazard ratios and numbers at risk when compared
to the dichotomised PUR thresholds (P < 0.001 log-rank test, HR = 6.51; 95% CI: 2.57 -
16.43, Figure 4.9).
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Figure 4.10: Kaplan-Meier plot and risk tables of AS progression considering
both DÁmico category and PUR-4 status to define the risk groups. The
table underneath the main figure details the number of patients still at risk
of progression within each group at a given time on the x-axis.

When both D’Amico Risk category was considered alongside the dichotomised PUR-4
threshold the lowest risk group (D’Amico Low-risk and PUR-4 < 0.174) were found to
have a very low rate of progression whilst the highest risk group (D’Amico Intermediate
and PUR-4 >0.174) had significantly worse rates of progression (p < 0.001, Log-rank test,
Figure 4.10). However, this introduced larger uncertainty for the two groups in between
where PUR-4 status and D’Amico disagreed, with no significant differences in progression
from either the highest or lowest risk groups.
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4.4.6 Longitudinal stability of the PUR model in urine samples
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Figure 4.11: PUR signatures from Active Surveillance longitudinal samples:
1° PUR-1 (Green), 2° PUR-1 (Purple), 1° PUR-2 (Blue), 1° PUR-3 (Yellow),
2° PUR-4 (Orange), 1° PUR-4 (Red). Samples within each numbered box
are from a single patient with coloured circles underneath indicating primary
PUR signature. A) patients that did not reach clinical progression criteria.
B) patients that reached clinical progression criteria. Arrows and numbers
under coloured circles detail the number of days between consecutive samples
from a patient.

Multiple urine samples, collected at varying intervals, were available for 20 of the patients in
the AS cohort, allowing for an assessment of stability of the PUR profiles over time (Figure
4.11.
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Figure 4.12: Distribution of the mean Euclidean distances recorded by com-
paring two randomly selected samples from the Movember GAP1 cohort
with replacement to generate 20 pairs of random samples. This was re-
peated 100,000 times to generate the distribution shown. The vertical line
details the mean Euclidean distance of the non-progressed samples in the
AS cohort. The P value is calculated as the proportion of simulated results
more stable than the real results.

Stability was assessed via simulation against a null model of purposefully non-stable
urine samples. This null model was generated by random selection with replacement of two
samples from the Movember cohort, and the Euclidean distance between them recorded.
This was repeated 20 times to form a synthetic null model dataset the same size as the
real set of paired samples, and the mean distance recorded over 100,000 iterations of this
process. The mean distance of the samples from patients who did not progress (n = 12)
was found to be significantly more stable than those generated from this simulated process
(P = 0.0038, Figure 4.12), whilst the samples from patients deemed to have progressed did
not pass this stability test (n = 8, P = 0.059).
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4.5 Discussion
The clinical outcome of patients with prostate cancer is well-established to be highly vari-
able, even within risk stratified groups such as D’Amico. Attempts to address this have been
made, including further categorisation into favourable- and unfavourable-Intermediate Risk
disease groups172 and the development of the CAPRA classification system88. Molecular
medicine-based approaches have also been used to develop tissue-based assays and genomic
tests for aggressive disease173–175.

A more holistic assessment of cancer status prior to invasive tissue biopsy would be clin-
ically useful. Urine biomarkers present such a propsect, and may be used to supplement the
current clinical standards for stratification of prostate cancer patients. Previous risk models
developed using urine biomarkers have been designed specifically for singular purposes, such
as the detection of prostate cancer following a negative biopsy (PCA3 test), or to detect
Gs ≥ 3+4 upon an initial biopsy12,99,102,164. Here the PUR risk model was developed to
provide a non-invasive and simultaneous assessment of the proportions of non-cancerous,
“normal” tissue and D’Amico Low-, Intermediate- and High-risk prostate cancer harboured
by a patient. The use of D’Amico risk types as an ordinal outcome, as opposed to a more
binary biopsy-based one, is unique and could aid the deconvolution of complex cancerous
states into more clinically translatable forms for monitoring the development of disease over
time. For example, in men diagnosed with lower grade Gleason 6 disease and displaying a
primary PUR-1, they may be enrolled onto a very low-frequency active surveillance program
and monitored non-invasively over time.

For prediction the presence of significant prostate cancer at an initial biopsy, PUR com-
pared favourably to other published biomarkers that use less complex transcript expression
systems, and involve fewer probes12,99,102,164. The PUR classifer, based on the cf-RNA
expression of 36 gene-probes relative to KLK2, RPLP2 and GAPDH, can be used as a
versatile predictor of clinical risk. Of note were the inclusion of well-described genes PCA3,
TMPRSS2-ERG and HOXC6 within the optimal PUR model defined by the LASSO cri-
teria, while DLX1 was not. The ability of PUR-4 status to predict TRUS detected Gs ≥
3+4 was similar (AUC = 0.76; 95% CI = 0.69 – 0.83, Test) to these published models using
PCA3/TMPRSS2-ERG (AUC = 0.74 - 0.78)102,164 and HOXC6/DLX1 (AUC = 0.77)99.

Current clinical practice assesses patient’s disease using PSA, needle biopsy of the
prostate and mpMRI. However, up to 75% of men with a raised PSA (≥3 ng/ml) are
negative for prostate cancer on biopsy7,54, whilst in absence of a raised PSA, 15% of men
are found to have prostate cancer, with a further 15% of these cancers being high-grade176.
This illustrates the considerable need for additional biomarkers that can make pre-biopsy
assessment of prostate cancer more accurate. In this respect we show that both PUR-4
and PUR-1 are each equally good at predicting the presence of Intermediate or High-risk
prostate cancer as defined by D’Amico criteria or by CAPRA status, while in DCA analysis
PUR provided a net benefit in a a representative population of UK patients. With the
increased adoption of mpMRI it would be useful in future studies to correlate PUR, and
other urine-based markers, with MRI findings and radical prostatectomy outcomes.

Variation in clinical outcomes are also well recognised for patients entered onto AS.177
We found that PUR worked well when applied to men on AS monitored by PSA and biopsy,
and also in patients monitored by mpMRI. A potential limitation of this study is that we
have not been able to test the PUR stratification in an independent and more conservatively
managed active surveillance cohort. However, based on our observations approximately 13%
of the RMH AS cohort could have been safely removed from AS monitoring for a minimum
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of five years. An interesting feature is that in some patients the PUR urine signature
predicted disease progression up to five years before it was detected by standard clinical
methods. This prognostic information could potentially also aid the reduction of patient-
elected radical intervention in active surveillance men which in some cohorts can be as
high as 75% within three years of enrolment177. Indeed, we would view the use of PUR
within the context of active surveillance as its major potential clinical application. Repeated
longitudinal measurements of PUR status could help correctly assess and track a patient’s
risk over time in a non-invasive manner. The stability investigations while promising, were
carried out in small numbers and in silico, it would be beneficial in future studies to collect
multiple temporally-spaced samples from more patients to more completely assess stability.

Unfortunately, the predictive performance of PUR in AS usage appears to be con-
founded, or at least diminished by the prognostic ability of D’Amico risk categories of
patients alone in the RMH AS cohort presented here. Risk stratification of AS patients
based solely on D’Amico risk showed that Intermediate-risk patients were approximately
6.5 times more likely to meet the clinical criteria for progression than those Low-risk pa-
tients, similar to the performance of PUR alone. A possible explanation for this is that
as the PUR classifier is trained on D’Amico risk, it is entirely possible that the AS per-
formance is simply a reflection of accurate classification to the D’Amico labels, and not a
deeper insight into a patient’s disease status. Alternatively, it is possible that Intermedi-
ate risk patients should not be placed on AS programmes and the observations here are a
reflection of that. Regardless, this is a question that cannot be answered with this cohort
and requires more data, ideally in a larger future study across multiple centres with differ-
ing AS enrolment criteria. The design of such a study is considered in Chapter 8. PUR
did show some additional utility when combined with D’Amico information, where those
deemed most, and least at-risk of progression would be given more certainty, though at
the cost of increased variance for low-PUR Intermediate and high PUR Low-risk patients
(Figure 4.10). However, more data are required to be able to draw sound conclusions about
predictive ability in active surveillance with the small numbers and high variance presented
here.

Regardless of the limitations and shortfalls described above, PUR represents a promising
new & versatile urine risk model capable of detecting aggressive prostate cancer, albeit with
a need for external validation. The differences in cf-RNA profiles across the spectrum of
patients in the Movember GAP1 Urine Biomarker cohort leaves no doubt that the presence
of prostate cancer substantially influences the transcripts found in urine samples.

There is certainly scope for improvement within this study; whilst using D’Amico as
the training label obviously shows good clinical utility for PUR, it may be suboptimal
for biopsy prediction as D’Amico was initially developed for predicting treatment failure
following radical therapy63. Similarly, the LASSO-penalised ordinal regression used here is
useful for relatively direct interpretation of model coefficients, but is univariate and reliant
on linear patterns in univariate gene expression across disease statuses. A good example of
where the regression implemented here may lose information in this regard is the fact that
only 40 to 50% of prostate tumours are TMPRSS2/ERG fusion positive178. This results
in higher-grade, TMPRSS2/ERG negative tumours being predicted a lower risk score than
might be achieved using a method that can account for this non-linearity. As discussed
in 3, different machine learning algorithms can learn different decision spaces, accounting
for interactions across multiple genes and lend themselves well to robust analysis methods
through integration of bootstrap resampling. In the next chapter, I will explore the potential
for increased performance by using different combinations of training labels and machine
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learning algorithms.

74



Chapter 5

An empirical exploration of
supervised machine learning
algorithms and validation
strategies

5.1 Summary
Exploring the potential gain from the application of disparate machine learning algorithms
is important to fully utilising datasets, even more so where data are limited and expensive to
gather. Optimising the combination of algorithm and training label for predictive modelling
can improve the utility of an clinically implementable test based upon machine learning,
with little cost. In this chapter I present the results generated from exploring a number of
machine learning algorithms to the NanoString data in the Movember GAP1 cohort and
explore the consequences.

The main aim was to experimentally assess whether different algorithms do in fact per-
form differently across a range of clinical outcomes, and if so, does one perform consistently
best? Secondly the data themselves are investigated to ascertain whether certain clinical
outcomes are more predictable than others with the available data. Finally, the impact
of incorporating clinically available variables and feature importances are explored to see
whether the predictive ability of models can be increased by using data readily collected by
clinicians as part of the normal clinical pathway.

Results showed that whilst the LASSO regression employed by PUR in the previous
chapter did indeed perform well, it was never the optimal algorithm for any outcome to be
predicted. Instead, Random Forests consistently produced the most discriminatory models
for predicting biopsy outcome, and are well suited to non-linear gene expression patterns.
The predictive performance of fitted models was highly dependent on the random split of
data chosen for training, leading to the conclusion that the NanoString dataset itself is highly
variable, and more robust methods employing internal validation should be considered for
training models in future.
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5.2 Background
The No Free Lunch Theorem suggests that for any given algorithm or predictive model,
superior performance in one class of problem comes at the cost of reduced performance in
another179. Put simply, there is no universally “best” machine learning algorithm with which
to predict all possible clinical outcomes for a patient with any given training label; even the
most accurate of models will perform sub-optimally in some test case. Extracting maximal
utility from a dataset is important in any application of statistical learning, however when
patient treatment and outcomes are of concern it is critical to ensure data is used optimally,
maximising the chances of successful results being robust, and able to be validated in further
patient data180,181.

The previous chapter showed that the PUR model possesses good clinical utility for
predicting a range of scenarios prior to an initial biopsy, and an apparent ability to pre-
dict long-term outcomes in active surveillance use (See Chapter 4 for full details). PUR
is a LASSO-based ordinal logistic regression model trained on D’Amico Risk categories,
and was able to predict both D’Amico risk and biopsy outcome with a clinically accept-
able degree of accuracy (AUC > 0.75 in a test dataset). Given its relative simplicity, a
LASSO ordinal regression will only discriminate linear relationships between variables and
outcomes. Prostate cancer is highly heterogeneous; clinically, spatially and molecularly182,
so it is unlikely that all important predictors of prostate cancer outcome are linearly and
monotonically related to disease severity.

Typical machine learning algorithms, such as the LASSO-penalised ordinal regression
of PUR, represent “narrow” or “weak” artificial intelligence; able to predict exactly what
trained on, but performing poorly in other scenarios183,184. As discussed in Chapter 4, this
was not found to be the case for PUR, displaying utility for a range of endpoints. This may
be caused by one, or both, the existence of latent information in the NanoString dataset
where genes provide information towards more than one outcome as they are fundamentally
linked to the pathobiology of the disease, or an overlap or confounding in clinical outcomes
exists; where an increase in D’Amico Risk is in part defined for a majority of patients by an
increase in Gleason pattern. This leads to the conclusion that it should be tested whether
PUR represents the optimal means for predicting multiple clinical outcomes by exploring
the implementation of different algorithms and training labels within the Movember GAP1
NanoString dataset. The most parsimonious approach for any attempt to access potential
latent information would be to apply different machine learning algorithms, capable of
modelling and representing disparate solutions from identical component search spaces.
Additionally, altering the training label used for model fitting may yield changes in clinical
utility.

A number of known-prognostic markers such as PSA levels and patient age are recorded
as part of the treatment pathway for all patients, and would be available at the time of
a urine sample being collected prior to biopsy. The most commonly employed approach
is usually to only consider the added benefit of including clinically available information
after initial model development96,97,99,102. This approach allows for simpler evaluation by
isolating components, and a greater insight into cancer biology, if the study design allows
for causal inference. However, it assumes that none of the underlying biomarkers interact
with, or are dependent on, the clinically available parameters. Consideration of clinically
available features such as age and PSA levels for predictive ability alongside NanoString or
other biochemical markers adds no additional cost or complexity but may lead to higher
predictive ability.
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In this chapter, the primary aim was to undertake a pilot study searching through a
number of algorithm - training label - outcome prediction permutations in an attempt to
answer three key questions:

1. Does model performance vary when the training label is altered?
2. Do different machine learning algorithms perform differently?
3. Are certain clinical questions easier to answer than others, within the confines of the

Movember GAP1 NanoString dataset?

Following this, the impact of integrating clinically available parameters is quantified and
their relative importance for predicting a range of outcomes measured against the NanoS-
tring gene-probes. The final aims of this chapter are to decide upon a final modelling
strategy that can be used to produce robust, interpretable models that are capable of pre-
dicting clinically relevant outcomes better than current standards of care.

5.3 Methods
Three main algorithms were applied within this chapter to fit statistical models; LASSO-
penalised ordinal regression, Random Forests, and Gradient Boosting Machines (GBMs).
Models were additionally produced as a meta-ensemble from the output of these three
algorithms. For full details see Section 3.2 of Chapter 3.

5.3.1 NanoString data

The NanoString dataset described in Chapter 4 was used here with the exception that
samples from raised PSA, negative biopsy patients (n = 129) were included. As these
patients were actively biopsied, their disease status is arguably more known than those
patients without any biopsy information. Of course, there is likely to be missed disease
within both groups, given the prevalence of prostate cancer in general, and the inaccuracies
of TRUS-biopsy (see Chapter 2 for further details).

5.3.2 Curation of Training and Test datasets

In order to provide an unbiased assessment of model effectiveness, it is necessary at the very
least to create a hold-out validation dataset that is not actively used for model fitting. As
in Chapter 4, this is often achieved through a stratified random sampling approach, though
usually with an additional, externally collected dataset for true validation21.

Training and Test datasets were created as follows: data were sampled 1,000 times, ran-
domly selecting 67% of data for training and 33% for validation at each resample without
replacement. The proportions of D’Amico clinical categories were held constant at each
resampling iteration. Median expression was calculated for each gene-probe across all sam-
ples in both training and test datasets and the Euclidean distance between the training
and test datasets measured at each iteration. The iteration with the minimum variable
distance between the two datasets was used to select the final training (n = 347) and test
(n = 225) datasets, whilst samples collected from high PSA-negative biopsy and metastatic
patients were additionally included in the final test dataset (n = 354) dataset. The impact
of randomly chosen training and test splits is explored in section 5.4.3.
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5.3.3 Model training labels and variables

Models were fitted to one of six different training labels based upon clinical endpoints. Two
labels were ordinal, multi-class variables, with the remainder simple binary classification
(Table 5.1).

Table 5.1: Training labels used as targets for model construction. > indicate
the direction of a continuing ordinal variable, where only forward direction
is considered possible.

Label Name Outcome Type Label Levels Clinical Outcome
D’Amico Ordinal NEC > L > I > H NEC and D’Amico Risk

categories
TriSig Ordinal NEC > LC > HC NEC, Predominantly Gleason

Pattern 3 (3+3 or 3+4),
Predominantly Gleason 4 or
greater (≥ 4+3)

Cancer
vs No Cancer Binary 1,0 NEC vs any D’Amico outcome

Cancer
vs High-Risk Cancer Binary 1,0 D’Amico High Risk vs all other

outcomes
Extremes Binary 1,0 Subsampling NEC and High-Risk

samples only for training
Gleason ≥ 4+3 Binary 1,0 Gleason ≥ 4+3
Gleason ≥ 3+4 Binary 1,0 Gleason ≥ 3+4

TriSig is a three-level ordinal outcome, categorised according to the dominant Gleason
pattern in a sample and is based on an assumption that the strongest molecular signal will
be derived from the most common cellular morphology in the absence of highly detailed
histopathology data.

5.3.4 Model construction and selection of user-tunable parameters

Each of the three algorithms used have user-tunable parameters to control for a variety of
conditions or outcomes during the model fitting process. For example, the elastic net penalty
α, controls for the severity of penalisation between LASSO (α = 1) and Ridge (α = 0)
regression penalisation. The number of tunable parameters varies considerably between
algorithms, where α is the only meaningful parameter within the elastic net framework,
XGBoost employs five complex, interacting parameters requiring careful tuning (Chapter
3.2). The parameters used here are seen in Table 5.2.
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Table 5.2: The tunable parameters of the machine learning algorithms im-
plemented, their possible ranges and the values used in practice.

Algorithm Tunable Parameters Possible Range Values Used
LASSO (glmnet) α 0 - 1 1

p subsample 0 - p 0 - pRandom Forest Trees grown 1 - ∞ 801
Tree depth 1 - ∞ 3 - 12
Child Weight 1 - n 1 - 20
p subsample ratio 0 - 1 0.5 - 1
p subsample 0 - 1 0.15 - 0.7

XGBoost

η 0 - 1 0.001 - 0.3
α = elastic net penalty; p = number of input variables
n number of samples η = learning rate

LASSO

Constrained continuation ratio LASSO (α = 1) ordinal logistic regression models were
created using the ordinalNet package, with default values, selecting the minimum lambda
value that returned the best performance metric over 20-fold cross-validation. For a full
description see Chapter 3.2. Chosen performance metrics were dependent on classification
type; binary classification training labels maximised the AUC, whilst the two ordinal models
were optimised to minimise the multiclass log-loss function:

−
M∑
C=1

yj,Label log(pj,Label)

Where M = number of classes, y = binary indicator (0 or 1) if class label Label is the
correct classification for observation j and p - predicted probability observation j is of class
C.

Random Forests

The number of features to be subsampled in Random Forest models p were tuned within 10-
fold cross-validation loops, repeated 5 times in the training dataset, with the final model fit
to the whole training dataset. Parameter tuning was carried out using the caret package,
sequentially searching through all possible values for the variable subsample number as
detailed in Table 5.2. The number of trees grown was fixed at 801, as it was empirically
shown to be adequate, and an odd number allows for the rare case of a tie in individual
tree votes to be solved. For a full description see Chapter 3.2.

Gradient Boosting Machines

Gradient boosting machines used the xgboost R package, implementing the XGBoost li-
braries and algorithm146, for a full description see Chapter 3.2. The range of parameters to
be tuned was established prior to optimisation and expanded to included every permutation,
resulting in >10,000 combinations to be searched through.
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For each term of the parameter grid a decision tree-based XGBoost GBM was fitted
within a 5-fold cross-validation, stratified on clinical category, with boosting stopped once
the out-of-fold error metric has not improved in 20 boosting rounds. The final model was
constructed over the entire training dataset with the parameters that maximised the cross-
validated performance, with one less boosting round to avoid overfitting.

Meta-ensemble

Meta-ensemble predictors were constructed by calculating the simple mean of the LASSO,
Random Forest, and GBM model outputs for a given sample, where all model outputs were
in the range 0 - 1.

5.3.5 Evaluation of model performance

Constructed models were evaluated for clinical utility over different available outcomes
ranging from clinically relevant biopsy outcomes and diagnoses following the result of a
biopsy (Gleason ≥ 3+4, Gleason ≥ 4+3 and D’Amico ≥ Intermediate Risk), through to
more clinically irrelevant outcomes that give more insight into the how difficult certain
outcomes are to model with the available data (D’Amico ≥ High Risk and any diagnosis of
prostate cancer following a biopsy). Area under the ROC curve (AUC, see Section 3.2) was
used to quantify predictivity of trained models over these outcomes. Kruskal-Wallis tests
were used to test for any difference in AUC between models, with pairwise comparisons made
using Wilcox rank-sum tests and Benjamin-Hochberg adjustment for multiple comparisons.

5.3.6 Assessment of dataset variability

The effects of specific training-test split were examined in the most performant set of models
by resampling the NanoString dataset. Data were randomly split 67/33 into Training
and Validation datasets, stratified by D’Amico category. The selected models were then
fit to these splits of data and AUCs from the models recorded in the validation dataset
across outcomes. This process was repeated 1,000 times, at each iteration creating a new
training/test split without replacement. All statistical tests are reported as the two-sided
probability.

5.3.7 Inclusion of clinically available parameters

A total of nine clinically available or technical variables were integrated into the NanoString
dataset and used for modelling to evaluate their clinical utility (Table 5.3. Where nominal
categorical variables were considered they were dummy coded (one-hot encoding) to avoid
misinterpretation of order by algorithms that re-encode categorical variables as numeric185.
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Table 5.3: Available non-NanoString parameters for use in predictive models
and feature selection

Variable Description Levels
Age Age in years Continuous
PSA Serum PSA (ng/mL) Continuous
RNA Amount Quantity of input RNA (ng) Continuous
pH pH of urine at collection 0 - 14

DRE Size of prostate
as estimated by DRE

Small, Medium,
Large, Unknown

Family History Previous family history
of prostate cancer Yes, No, Unknown

Smoking Smoking history Yes, No, Unknown
Urine Vol Volume of urine collected (mL) Continuous
Alcohol Consumption of alcohol Yes, No, Unknown

5.3.8 Feature Selection

The importance of features within each modelled outcome was investigated, allowing for
relative importances of clinically available parameters and NanoString gene-probes to be
compared. Feature selection was undertaken by application of the Boruta algorithm149,
fully described in Chapter 3, Section 3.2. Variables were positively retained so long as
they were not significantly worse than the maximally performing Shadow feature, that is
variables deemed “Tentative” were selected. Boruta was applied for each training label
using a maximum of 100 repeats, accepting or rejecting variables at a significance level of
P < 0.01.

5.4 Results

5.4.1 Choice of training labels, clinical outcomes and machine learning
algorithm

All permutations of training label and algorithm were used to fit machine learning models
to the NanoString data from 347 samples across the 167 gene-probes. This resulted in a
total of 28 multivariable risk models. Each model was assessed for its predictive accuracy
in the validation split of 225 samples, according to the AUC measured against the range of
available clinical outcomes.
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Prediction accuracy by clinical outcome
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Figure 5.1: Average AUC returned from models predicting each clinical out-
come (x-axis), algorithms and training labels are grouped, with coloured
points detailing the specific training label. The algorithm used to train each
model is not shown here.

Table 5.4: P values derived from pairwise comparisons of AUCs with respect
to clinical outcome using Wilcoxon rank sum test and Benjamin-Hochberg
adjustment.

Any cancer D’Amico ≥ I D’Amico ≥ H Gs ≥ 3+4
D’Amico ≥ I 0.026
D’Amico ≥ H 0.0093 0.0428
Gs ≥ 3+4 0.0131 0.2573 0.0575
Gs ≥ 4+3 0.0321 0.2933 0.0605 0.9805

Significant differences were observed in the accuracy with which clinical outcomes could be
predicted, when considered across all training labels (P < 0.001, Kruskal-Wallis rank sum
test, Figure 5.1). The average ability of fitted models to discriminate the presence of any
cancer regardless of training label was significantly lower than for all other outcomes (all P
< 0.05, pairwise Wilcoxon rank sum test, Figure 5.1 & Table 5.4). Prediction of D’Amico
≥ Intermediate risk also returned significantly lower AUCs than when predicting D’Amico
≥ H (P < 0.05, Wilcoxon rank sum test, Figure 5.1 & Table 5.4). No other significant
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differences were observed at this grouped level (Table 5.4).
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Figure 5.2: AUC performance of trained models (x-axis) in the valida-
tion dataset. Facets detail the clinical outcome being predicted, with each
coloured points detailing the specific algorithm used for to generate the
model.

When considering the ability to predict each clinical outcome in turn, pairwise compar-
isons were made between the models and statistically significant differences in AUC were
observed only for the prediction of D’Amico High Risk (P < 0.05, Table 5.5). These differ-
ences were predominantly between the models trained on the Cancer vs No Cancer training
label compared to all others (Table 5.5, P < 0.05, pairwise Wilcox rank sum test).
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Table 5.5: P values derived from pairwise comparisons of AUCs with respect
to training label used when predicting an outcome of D’Amico ≥ H. Calcu-
lated using Wilcoxon rank sum test and Benjamin-Hochberg adjustment.

Training Label D’Amico Extreme HC v C Gs ≥ 3+4 Gs ≥ 4+3 TriSig
C v NC P = 0.043 P = 0.043 P = 0.043 P = 0.043 P = 0.043 P = 0.043
D’Amico P = 0.043 P = 0.72 P = 0.043 P = 0.537 P = 0.15
Extreme P = 0.043 P = 0.043 P = 0.043 P = 0.043
HC v C P = 0.043 P = 0.886 P = 0.15
Gs ≥ 3+4 P = 0.043 P = 0.537
Gs ≥ 4+3 P = 0.247
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Figure 5.3: Average AUC returned from models according to the training
label used (x-axis) to fit the model, averaged over both the outcome being
predicted (not shown) and algorithm used to fit the model (colour)

Differing the training label used to fit models had a significant effect on the AUCs reported
across all algorithms and clinical outcomes assessed (P < 0.001, Kruskal-Wallis test, Figure
5.3). Training of models on the binary Cancer vs No Cancer label resulted in significantly
lower AUCs (median AUC = 0.61; IQR = 0.13, P < 0.001, Wilcox rank sum) than any other
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training label, whilst the binary Gleason ≥ 4+3 label returned models with significantly
higher accuracy (median AUC = 0.76; IQR = 0.05) than the Extreme and Gleason ≥ 3+4
labels (median AUC = 0.692; IQR = 0.076 and AUC = 0.714; IQR = 0.05, respectively. P
< 0.01, pairwise Wilcoxon rank-sum tests, 5.6)

Table 5.6: P values from pairwise comparisons of AUCs between different
training labels using Wilcox rank sum test and Benjamin-Hochberg adjust-
ment.

Cancer vs
High-Risk cancer

Cancer vs
No cancer D’Amico Extremes Gleason

≥ 3+4
Gleason
≥ 4+3

Cancer Vs No Cancer 0
D’Amico 0.318 0
Extremes 0.1159 0.0006 0.003
Gleason ≥ 3+4 0.5468 0.0001 0.0978 0.3271
Gleason ≥ 4+3 0.1366 0 0.3369 0.0004 0.0067
TriSig 0.2817 0 0.5468 0.002 0.0232 0.5468
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Figure 5.4: Detailed AUCs from models in the validation dataset according
to the training label used to specify the model (panels), across different clini-
cal outcomes (x-axis). Coloured points show the machine learning algorithm
used to fit the model in the training data

The performance of models predicting each clinical outcome within a training label
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varied greatly, with a mean AUC difference of 0.24 between the minimally and maximally
performing model(Figure 5.4). The Cancer Vs No Cancer training label resulted in the
worst performing models regardless of algorithm, with models predicting D’Amico ≥ H and
Gs ≥ 4+3 returning AUCs close to that of a random predictor (AUC = 0.52 and 0.54,
respectively, Figure 5.4). Pairwise comparisons of AUC showed that TriSig was the only
label to not display significant differences in AUCs (P > 0.05 Wilcox rank sum test, Figure
5.4 TriSig panel).

Prediction accuracy by machine learning algorithm
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Figure 5.5: Average AUC performance of models in the validation dataset
according to the machine learning algorithm used to define them. Point
colour details the specific training label used for model fit. The clinical
outcomes being predicted are not indicated here.

Choice of machine learning algorithm had no significant effect on model predictivity when
all training labels and outcomes were considered together (P > 0.05 Kruskal Wallis test,
Figure 5.5). All algorithms displayed a large variance in predictive accuracy depending on
the training label used (mean AUC range within algorithm = 0.302). Models fitted using
the Cancer Vs No Cancer label were particularly of note, returning AUCs low enough to
constitute outliers within the results from the Random Forest, LASSO and Meta-ensemble
algorithm-derived models (Figure 5.5).
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Figure 5.6: AUCs returned from models trained using different machine
learning algorithms (x-axis), with panels detailing the specific clinical out-
come being predicted. Coloured points detail the training label used to fit
models.

Algorithm-dependent differences in AUC accuracy of models across different clinical
questions showed no significant differences in AUC (all P > 0.05, pairwise Wilcox rank-sum
tests with Benjamin-Hochberg corrections for multiple comparisons, Figure 5.6). Random
Forest-based models or the meta-ensemble predictions always appeared as one of the top
two algorithms, as determined by ranking the AUCs for each outcome and training label
used.

Conclusions

Following the initial modelling approaches presented above the decision was made to reduce
the number of models and training labels used moving forwards to reduce complexity. Only
the most performant combinations were retained for resampling approaches and integration
of clinically available parameters. The XGBoost algorithm was not selected for further
study, as whilst it did not perform significantly worse than the others, the opaqueness and
requirement for extensive parameter tuning did not result in any detectable performance
increase. Similarly, the Cancer Vs No Cancer and Extreme training labels were discarded
as they consistently resulted in models less accurate than others.

Models positively retained for further investigations were; LASSO-based regression mod-
els trained on the TriSig and Gleason ≥ 4+3 labels, Random Forest-based models trained
on D’Amico and Gleason ≥ 4+3 labels, and meta-ensembles combining the results from
these two algorithms. No changes were made in the clinical outcomes used to assess clinical
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utility of trained models.

5.4.2 Integration of clinical and non-NanoString biochemical parameters

A total of nine additional variables were available for integration into the NanoString
dataset, two urine sample-derived variables (RNA amount and pH) with the remainder
clinically available parameters (Table 5.3). Categorical variables were dummy encoded (see
Methods above) and integrated into the dataset for both modelling and later feature selec-
tion using the Boruta algorithm.

5.4.3 The effects of clinical variables and resampling training/test splits

Following integration of the additional clinical variables, models were fit to each one of
1,000 random training/test splits of the datasets, and assessed for clinical utility. Due to
serum PSA levels partially defining the D’Amico Risk categories, predictions of D’Amico
Risk category were not included in these assessments. Both the choice of input variables
and training labels had significant effects on the predictive accuracy of trained models. The
training labels retained for this portion of the study were the ordinal D’Amico and TriSig
labels in addition to the binary Gleason ≥ 4+3 label.

Differences in AUC dependent solely on the specific training and test split of the dataset
were considerable (mean 95% CI of AUC = 0.168). Large differences in AUC were also
observed according to the outcome being predicted (Figures 5.7, 5.8 and 5.9). Differences
in AUC were assessed statistically by counting the number of times a greater AUC was
returned in each of the 1,000 resamples when comparing differing sets of input variables.
There were no significant differences in the AUCs returned between models using NanoString
genes only and models using clinical variables only, regardless of algorithm, training label,
or outcome being predicted (all P > 0.05 by simulation analysis of 1,000 paired resamples).
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Figure 5.7: AUCs returned when predicting any cancer outcome on biopsy,
from models fit the training labels: D’Amico category, binary Gleason =
4+3 outcome, or TriSig (facets). x-axis in each facet details the different
algorithms used. Models were fit to 1,000 random training and test splits of
the data, with different subsets of input variables used at each split, dictated
by colour Blue - NanoString gene-probes only; Orange - Clinically available
parameters only; Green - both NanoString and clinical variables.

The prediction of any cancer on biopsy showed highly variable results across the 1,000 re-
samples, in some cases resulting in models with predictive accuracy below that of a random
predictor (AUC = 0.5) depending on the training label used (Figure 5.7). The combination
of NanoString genes and clinically available parameters performed significantly better than
consideration of only NanoString genes for the LASSO-based models trained on D’Amico
category (P = 0, simulation in 1,000 resamples) and binary Gleason ≥ 4+3 (P = 0.028, sim-
ulation in 1,000 resamples). The same combination of genes and clinical variables returned
higher AUCs than models only using clinical variables when using D’Amico-fitted LASSO
models (P = 0.041, simulation in 1,000 resamples), and meta-ensemble TriSig-trained mod-
els (P = 0.041, simulation in 1,000 resamples).
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Figure 5.8: AUCs returned when predicting a biopsy outcome of Gleason =
7, from models fit to training labels: D’Amico category, binary Gleason out-
come, or TriSig (facets). Models were fit to 1,000 random training and test
splits of the data, with different subsets of input variables used at each split,
dictated by colour Blue - NanoString gene-probes only; Orange - Clinically
available parameters only; Green - both NanoString and clinical variables.

Prediction of Gleason ≥ 7 on biopsy was less variable and more accurate than when
predicting any cancer outcome (Figure 5.8). The mean AUC for predicting Gleason ≥ 7
was greater than 0.72 for all models across algorithm and training labels(Table 5.7).

Once again the inclusion of clinically available parameters resulted in significantly higher
accuracy from models than when using NanoString variables alone as input (all P < 0.05
by simulation, Figure 5.8). Clinical variables alone returned lower AUCs than when both
NanoString and clinical variables were considered for the TriSig-trained LASSO and Ran-
dom Forest models (P = 0.047 and 0.041, respectively, , simulation in 1,000 resamples) and
the D’Amico trained LASSO and meta-ensemble models (P = 0.004 and 0.035, respectively,
simulation in 1,000 resamples).
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Table 5.7: Summary statistics of the AUCs returned from models predicting
a biopsy result of Gleason ≥ 7.

Input Variables Algorithm Training Label Median AUC IQR AUC
D’Amico 0.743 0.044
Gleason ≥ 4+3 0.702 0.046LASSO
TriSig 0.736 0.044
D’Amico 0.721 0.053
Gleason ≥ 4+3 0.732 0.049Random Forest
TriSig 0.777 0.044
D’Amico 0.757 0.043
Gleason ≥ 4+3 0.737 0.043

Genes

Meta-ensemble
TriSig 0.769 0.039
D’Amico 0.745 0.031
Gleason ≥ 4+3 0.741 0.039LASSO
TriSig 0.720 0.037
D’Amico 0.766 0.037
Gleason ≥ 4+3 0.761 0.038Random Forest
TriSig 0.775 0.036
D’Amico 0.750 0.035
Gleason ≥ 4+3 0.770 0.037

Clinical

Meta-ensemble
TriSig 0.773 0.037
D’Amico 0.804 0.033
Gleason ≥ 4+3 0.757 0.052LASSO
TriSig 0.779 0.038
D’Amico 0.781 0.046
Gleason ≥ 4+3 0.793 0.042Random Forest
TriSig 0.832 0.039
D’Amico 0.802 0.034
Gleason ≥ 4+3 0.794 0.041

Clinical and Genes

Meta-ensemble
TriSig 0.821 0.035

91



5.4. Results

D'Amico Gleason ≥ 4+3 TriSig

LA
S

S
O

R
andom

 F
orest

M
eta-ensem

ble

LA
S

S
O

R
andom

 F
orest

M
eta-ensem

ble

LA
S

S
O

R
andom

 F
orest

M
eta-ensem

ble

0.5

0.6

0.7

0.8

0.9

Algorithm

A
U

C
 p

re
di

ct
in

g 
G

le
as

on
 ≥

 4
+

3
Input Variables: Genes Clinical Clinical and Genes

Prediction of Gleason  ≥ 4+3

Figure 5.9: AUCs returned when predicting a biopsy outcome of Gleason
= 4+3, from models fit to training labels: D’Amico category, binary Glea-
son outcome, or TriSig (facets). Models were fit to 1,000 random training
and test splits of the data, with different subsets of input variables used at
each split, dictated by colour Blue - NanoString gene-probes only; Orange -
Clinically available parameters only; Green - both NanoString and clinical
variables.

Where the detection of Gleason ≥ 4+3 disease prior to biopsy was considered, on average
clinical variables alone outperformed the NanoString variables across each of the three
training labels and algorithms apart from LASSO-based models trained on the Gleason ≥
4+3 label (Figure 5.9).

Paired analysis of the differences in AUC at each of the 1,000 iterations showed that using
both NanoString gene-probes and clinical variables results in models returning significantly
higher AUCs than consideration of NanoString genes alone (all P < 0.001, simulation
in 1,000 resamples), but not when compared to using clinical variables as the sole input
variables (all P > 0.05, simulation in 1,000 resamples).
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Figure 5.10: Predictive accuracy of models trained using both NanoString
and clinical variables as inputs. AUCs were calculated by training models
over 1,000 random training/test splits of the data and are presented on
the y-axis. Differing clinical outcomes are shown on the x-axis, whilst fill
colour denotes the algorithm used. Panels separate the results from the three
different training labels

When models were trained the D’Amico risk categories, predicting any cancer as an
outcome returned significantly different AUCs between algorithms (all P < 0.001 by sim-
ulation analysis of 1,000 resamples, Figure 5.10 D’Amico panel). When predicting any
Gleason pattern on biopsy, no significant differences were observed between algorithms (all
P > 0.1, simulation in 1,000 paired resamples).

Different algorithms did not result in significant changes to AUC when models were
trained using the binary Gleason ≥ 4+3 label (all P > 0.5, simulation in 1,000 paired
resamples, Figure 5.10 Gleason ≥ 4+3 panel). When models were trained using the TriSig
training label, again only prediction of any cancer resulted in significantly different AUCs
between algorithms, with LASSO ordinal regression models posessing higher predictive
accuracy than Random Forests or meta-ensemble models, which were also different from
one another (all P < 0.01, simulation in 1,000 paired resamples, Figure 5.10 TriSig panel).

93



5.4. Results

5.4.4 Feature selection
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Figure 5.11: Normalised permutation importance for each variable, averaged
across the six training labels (detailed in Table 5.1). All 167 gene-probes and
clinically available parameters were supplied as inputs. Colours indicate the
number of times each variable was confirmed over the training labels. For
example, serum PSA is confirmed in every single training label, and on
average, is the most important single feature. Dashed line indicates the
median Shadow Max importance. Only features selected for at least one of
the training labels are shown here.
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The Boruta feature selection algorithm was applied using six training labels (TriSig, Gleason
≥ 4+3, Gleason ≥ 3+4, D’Amico, Any Cancer, Cancer vs High Risk Cancer) using the full
NanoString and clinical data as inputs, assessing how well each feature predicts the training
label of choice. A total of 185 variables were selected as either “Confirmed” or “Tentative”
in at least one of the training labels examined (Figure 5.11). “Tentative” variables were
retained, as the aims of this study are not to be as robust as possible, but an attempt to
remove some of the unusable variance from the data.

Serum PSA was positively selected across all training labels, with a median permutation
importance almost double that of the next most important variable, PCA3 as quantified by
NanoString. PCA3 averaged as the most important NanoString derived variable, confirmed
in five of the six training labels, only rejected when the Cancer vs High-Risk Cancer training
label was considered (Appendix Table A.1). In comparison to the PUR model described
in Chapter 4, all but two of the 36 genes were retained across the different training labels,
with MIC1 and IGFBP3 rejected across all training labels (Appendix Table A.1).

The “Smoking Unknown” clinical parameter appeared to be an important variable,
where it was selected in the D’Amico and TriSig models. However this can only be an
artefact of data collection; it’s not feasible for an unknown smoking status to hold informa-
tion about the outcome of a patient. This was confirmed as, when examined the “Smoking
Unknown” level accounts for 41% of all patients, highlighting the importance of thorough
data collection and curation.

5.5 Discussion

5.5.1 The relative ease of predicting different prostate cancer outcomes

In this chapter we have shown that some clinical outcomes can be predicted with much
higher accuracy than others, such as the specific prediction of High-Risk disease following
a biopsy (Figure 5.1). However, prediction of such an outcome is not clinically useful,
for example the identification of High-Risk patients in isolation can be well-predicted by
markers already collected; it is the detection of patients with Intermediate-risk disease that
is seen as a key clinical threshold5 and the identification of High-Risk patients in isolation
is not considered overly difficult. As expected, the clinically important outcomes such as
D’Amico ≥ Intermediate Risk and Gleason ≥ 3+4 represent a more difficult problem, which
may be due to underlying tumour heterogeneity of prostate cancer182.

Currently used diagnostic frameworks such as D’Amico and the Gleason score roughly
capture the clinical behaviour of prostate cancer, but may not be a good representation of
the disease if molecular subtypes or heterogeneous groups within clinical categories exist.
An example of this is seen when models using the No Cancer vs Any Cancer label were
fit, resulting in poorly performing predictive models. When all clinical risk categories are
combined in such a manner, clearly a large amount of variance in the “cancer” category will
be present. This makes it difficult for any algorithm to appropriately model and represent
the variance, the results of which are seen in the poor performance of models trained using
the“No Cancer vs Any Cancer” label Figures 5.3 and 5.4).

5.5.2 Algorithmic choices

Smaller differences were observed in algorithmic performance than were initially hypothe-
sised, as each of the algorithms used typically learn very different decision spaces. However,
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whilst the differences observed were small and non-significant, it was decided that the com-
plexity and opaqueness of XGBoost did not justify the performance returned from models
fitted using it (Figure 5.5). Random Forests and the meta-ensemble based models did, how-
ever rank amongst the most performant algorithms. Given the relative ease of implementing
Random Forests, they would be well suited for use in future work.

It may be that molecular variance within levels of a given training label makes boosting
techniques suboptimal. If two or more molecular subtypes do exist within the same level of
a label, when weights are attributed in a given boosting round to poorly classified samples
from before, XGBoost cannot produce appropriate weak learners for all subtypes. This is a
problem that may be improved with advances in semi-supervised machine learning methods
applied to large prostate cancer datasets, such as variational autoencoders or using specific
molecular subtypes as predicted by other unsupervised frameworks such as the DESNT
classifier112.

5.5.3 The importance of data splitting strategy

The specific split of data chosen for training and validating a model showed a very large effect
on the apparent predictive utility of models. This resample-specific effect was so large that
some models even returned predictions with an accuracy below that of a random predictor
(Figure 5.7). This is a downfall of the more conventional machine learning methodology of a
data splitting strategy, and inherent variability in the data. As not all information is used to
learn from, it’s very possible for small subsets of samples containing important patterns to
not be represented in a training dataset. This results in models with poor generalisability;
appearing accurate in the training set but performing poorly in previously unseen data.

Of course, the training/test/validation strategy is good for guarding against overfit and
model tuning before true external validation, and works where the full population variance
can be captured in a training set of an appropriate size. The limitations of this are that it
requires at least three relatively large datasets, two of which cannot be used for training a
model. This is not ideal in studies such as this one, with limited observations or scope to
collect further samples. Instead it may be more appropriate to use a resampling or cross-
validation based approach to derive a model that is protected from extensive overfitting
and poor generalisation, whilst still utilising all available information for specifying the
final model, as is recommended by TRIPOD guidelines21. Of course, given a larger dataset
or multiple cohorts, implementation of internal validation methods within a traditional
training/validation split would also be advised.

5.5.4 Solutions and conclusions

A potential solution to the variance in the observed predictive accuracy is to employ some
form of resampling and internal validation methods during the model fitting stages, such
as the bootstrap or cross-validation. Arguably a resampling-based approach should also
be applied to any feature selection; the application of the Boruta algorithm to the whole
dataset here, without any means of guarding against overfit, was sub-optimal and so this
is something that should be improved upon in future works. If these experiments were to
be repeated it might be considered wise to include a feature reduction step in advance of
predictive modelling to remove as much variance from the data as possible. The use of
a modelling approach that incorporates bootstrap resampling, such as the application of
the Random Forest algorithm would be beneficial, as out-of-bag (OOB) predictions can be
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obtained with relative ease, whilst still training a single model that uses all available data.
An added benefit of OOB predictions is that they are as accurate as a validation dataset of
equal size to the training dataset186.

Scope-reduction, lowering one’s expectations of what should be achieved with the data,
represents a useful non-analytical method to improve power and produce stronger models.
Rather than attempting to produce a fully validated model from limited, highly variable
data, concentrating solely on the development of a robustmodel, leaving external validation
to a future study with a pre-specified model. This approach would arguably be of more
benefit, and where the data within the Movember GAP1 study are considered, it is not
feasible to produce a truly validated model that is TRIPOD compliant21 as all the data
were collected in one study and often assayed together from a single collection site with no
temporal separation, the most that could be achieved is an internally validated model180,181.

Within the dataset used here, the Random Forest algorithm and a meta-ensemble fre-
quently returned the highest predictive accuracies. However different algorithm and training
labels work well in different scenarios, depending on the outcome being predicted. The work
shown here represents a detailed empirical evaluation of how varying training labels and
algorithms can cause a large change in the accuracy of developed models, which also varies
considerably according to the clinical outcome being predicted in a single training and test
split of the NanoString dataset. To robustly produce a model in these data, the data split-
ting strategy needs to be replaced by resampling, as internal validation done well is far
better than an unrepresentative split of the data186,187. The addition of clinically available
variables dramatically improves performance, though reduces the potential for biological
interpretation if a study was designed with this in mind187,188.

Considering the large effect the inclusion of simple clinical variables had on model per-
formance, future studies would benefit from including these easily available parameters at
the model fitting stage, and investigating the added benefit of integrating data from mul-
tiple sources. As discussed, multiple urine fractions were examined within the Movember
GAP1 study, and where sample overlap allows, such an investigation of integrated analyses
would be of great interest. This is explored in the next chapter. Combining the previously
discussed strategy of scope reduction and employing strong internal validation methods us-
ing bootstrap resampling of datasets has the potential to develop prognostic models that, in
theory, would require fewer and more targeted validation clinical trials. This would reduce
research costs and expedite the journey of such a model to clinical adoption. In the next
chapter I will describe the development and deployment of a machine learning frame that
is designed to develop such models robustly and according to TRIPOD guidelines.
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Chapter 6

Development of a machine learning
biodiscovery framework based on
bootstrap resampling and Random
Forests

6.1 Summary
In this chapter I describe the development of the FrameWork, a machine learning pipeline
for the robust development of TRIPOD-compliant multivariable risk prediction models and
its application for integrated analyses of overlapping datasets within the Movember GAP1
study. The FrameWork employs a bootstrap resampling-based feature selection process cou-
pled with Random Forests to produce a single pre-specified model that can be interrogated
for clinical utility and aims to recognise the uncertainty inherent to prostate sampling.

The motivation and methodology for the FrameWork are discussed, followed by a flag-
ship example of applying the FrameWork in the Movember GAP1 datasets, ExoMeth; a
multivariable risk prediction model integrating data from urinary cell-free RNA expression,
hypermethylation within the urinary cell-pellet and clinically available parameters. On an
initial TRUS biopsy, ExoMeth accurately predicted the presence of Gleason score ≥ 3+4,
AUC = 0.89 (95% CI: 0.84 - 0.93) and was additionally capable of detecting any cancer on
biopsy, AUC = 0.91 (95% CI: 0.87 - 0.95). As ExoMeth Risk Score (range 0-1) increased,
the likelihood of high-grade disease being detected on biopsy was significantly greater (OR
= 2.04 per 0.1 ExoMeth increase, 95% CI: 1.78 - 2.35). Application of ExoMeth provided
a net benefit over current standards of care and has the potential to reduce unnecessary
biopsies by 66% when a risk threshold of 0.25 is accepted.

This work is adapted from the original publication “Development of a multivariable risk
model integrating urinary cell DNA methylation & cell-free RNA data for the detection of
significant prostate cancer” by Connell et al. published 9th March 2020 in The Prostate.
All analysis presented in this chapter was completed by myself.
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6.2 Background
The primary aim of the GAP1 initiative was to produce a multi-modal urine biomarker
panel for the discrimination of disease state. However, the development of a multivariable
risk model is a complex task with the validation of such a model even more so, requiring
careful planning and stringent data controls to ensure validity and avoid bias or overfit.
As explored in Chapters 4 & 5, achieving TRIPOD-compliant external validation of any
model developed in the Movember GAP1 trial is not feasible21. With this considered and
following the recommendations in Chapter 5, I have reduced the scope for analyses to more
soundly develop robust multivariable risk prediction models that have the best possibility
of later validation.

Results from two aspects of the GAP1 studies were published prior to this work, assaying
differing urinary fractions; epiCaPture assessed hypermethylation of urinary cell DNA11,
and PUR quantified transcript levels in cell-free extracellular vesicle mRNA (cf-RNA) us-
ing NanoString (See Chapter 4)8. Both of these tests were able to discriminate some level
of clinically significant disease and exhibited differing predictive characteristics; where ep-
iCaPture was well suited to detecting the highest grade disease (Gleason score ≥ 8, AUC
= 0.86), PUR was better matched to the deconvolution of lower risk and indolent disease,
as detailed by its apparent prognostic ability in active surveillance use and detection of
disease with a Gleason ≥ 3+4 (HR in active surveillance = 8.23, AUC = 0.76, see Chapter
4 for full details). PUR utilised LASSO-penalised cumulative link regression models, whilst
EpiCaPture used a simple addition of all methylation marker values to generate risk scores,
with both using conventional training/test splits of the available data as a validation strat-
egy. Explored in-depth in Chapter 5, this is a suboptimal strategy for maximal utilisation
of the data, both in terms of algorithm choice and data splitting. Instead, application of
methods with strong internal validation and a resampling approach would likely show im-
proved clinical utility for both sources of urinary biomarkers, increase robustness and avoid
the variability previously observed with specific splits of data.

Where many variables are considered, such as the NanoString dataset of 167 gene-
probes, or in ’omics-based assays, feature selection is a key step to isolate feature-sets that
are actually of use for the outcome of interest, rather than simply random noise. However,
feature selection performed poorly can have serious consequences for model performance
and generalisability, resulting in overly optimistic predictions and dataset-specific feature-
sets being selected189. Considering this, and building on the results presented in Chapter
5, in this chapter I explore the application of more robust methods through bootstrap re-
sampling and the Boruta algorithm for feature selection, followed by model fitting using the
Random Forest algorithm. Wrapped into a semi-automated pipeline for rapid prototyping
of multivariable prognostic models compliant with TRIPOD guidelines21, this process was
named the FrameWork. The FrameWork is designed to robustly produce models that can
be interrogated for clinical utility and recognises the uncertainty inherent to the results
reported from TRUS biopsy of the prostate. The benefits of using bootstrap resampling,
in both feature selection and modelling are two-fold. For feature selection, bootstrap re-
sampling avoids the selection of features based solely on a strong link in a small subset of
samples, specific to the dataset189. Similarly, the bagging employed by Random Forests
(see Section 3.2), and the use of out-of-bag predictions, taken from decision trees that do
not feature the sample in question, results in an effective validation dataset equal to the
size of the training dataset186.

With a suitable overlap in the numbers of patient samples analysed by both methods, it
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was hypothesised that the original methods applied in O’Reilly et al. (2019) and Connell et
al. (2019, Chapter 4) could be improved upon whilst simultaneously investigating whether
data from these two assay methods could be complementary. The integration of both
datasets could result in a more holistic model with predictive ability greater than the sum of
its parts, able to encapsulate the clinical heterogeneity of prostate cancer and reach the levels
of prognostic accuracy and clinical utility required for widespread adoption. The diagnostic
accuracy of the developed models are determined by the ability to predict the presence
of Gleason ≥ 7 and Gleason ≥ 4+3 disease on biopsy, both critical distinctions, where
patients with Gleason ≥ 7 are recommended radical therapy5, whilst patients with Gleason
4+3 have significantly worse outcomes than Gleason 3+4 patients53. Mindful that many
cancer biomarkers fail to translate to the clinic, the development of the presented model has
been carried out adhering to the transparent reporting of a multivariable prediction model
for individual prognosis or diagnosis (TRIPOD) guidelines21.

6.3 Methods

6.3.1 Patient population and characteristics

Samples within the Movember GAP1 cohort (see Sections 9.2 & 3) that were analysed for
both cell-pellet methylation and cf-RNA were eligible for selection for model development
in this chapter (n = 207).

Samples from patients with metastatic disease (confirmed by a positive bone-scan or
PSA >100 ng/mL, n = 10) were excluded, resulting in a dataset of 197 samples used for
model development and named the ExoMeth cohort. The samples analysed in the ExoMeth
cohort were collected from the Norfolk and Norwich University Hospital (NNUH, Norwich,
UK) and St. James’s Hospital (SJH, Dublin, Republic of Ireland).

6.3.2 Sample Processing and analysis

Hypermethylation at the 5’-regulatory regions of six genes (GSTP1, SFRP2, IGFBP3,
IGFBP7, APC and PTSG2 ) in urinary cell-pellet DNA was assessed using quantitative
methylation-specific PCR as described by O’Reilly et al. (2019).

Cell-free RNA (cf-RNA) was isolated and quantified from urinary extracellular vesicles
using NanoString technology as described in Section 3.1.1. NanoString data used here were
normalised according to NanoString guidelines using NanoString internal positive controls,
and log2 transformed as described in Section 3.1.1. Clinical variables considered were serum
PSA, age at sample collection, DRE impression and urine volume collected.

6.3.3 Statistical Analysis

All analyses, model construction and data preparation were undertaken in R version 3.5.3167,
and unless otherwise stated, utilised base R and default parameters. All data and code
required to reproduce these analyses can be found at https://github.com/UEA-Cancer-
Genetics-Lab/ExoMeth.

Feature Selection

In total 177 variables were available for consideration (cf-RNA (n = 167), methylation
(n = 6) and clinical variables (n = 4). For full list see Appendix Table B.1). To avoid
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dataset-specific features being positively selected189 (as may have occurred in Chapter 5),
a robust feature selection workflow was developed utilising the Boruta algorithm149 with a
bootstrap resampling loop. Fully described in Chapter 3, Boruta is a Random Forest-based
algorithm that iteratively compares feature importance against random predictors, named
“shadow features”. Features that perform significantly worse than these shadow features
are consecutively dropped until only a stable feature-set remains.

The available data were resampled 1,000 times with replacement, and Boruta was applied
to each resample, using the TriSig training label described in Section 5.3.3, briefly samples
are categorised according to Gleason pattern into either no cancer, predominantly Gleason
pattern 3 (Gleason 6 and 3+4) or predominantly Gleason pattern 4 or higher (Gleason ≥
4+3). Importance measures and final decisions from Boruta were recorded at each iteration
and aggregated over all 1,000 resamples. Features were only positively retained for model
fitting if they were confirmed as stable and important by Boruta in ≥ 90% of the resampled
datasets.

Comparator Models

As shown in the previous chapter, it is entirely possible for clinical features alone to per-
form well for predicting a biopsy outcome, even out-performing NanoString data in many
scenarios. Therefore, in order to objectively evaluate the potential clinical utility of a fully
integrated model featuring methylation, cf-RNA and clinical features, additional models
using subsets of the available features were trained as comparators:

• A clinical standard of care (SoC) model was trained by incorporating age, PSA, urine
volume and clinician DRE impression:

• A model using only the available DNA methylation probes (Methylation, n = 6);
• A model only using NanoString gene-probe information (NanoString, n = 167).

The fully integrated ExoMeth model was trained by considering information from all of the
above variables (n = 177). Each set of variables for comparator models were independently
selected via the bootstrapped Boruta feature selection process described above to select
the most optimal subset of variables possible for each predictive model. The bootstrap
resamples used for each feature-set were identical and used the same random seed.

Model Construction

After feature selection, all models were trained via the random forest algorithm142, using the
randomForest package144 with default parameters except for resampling without replace-
ment and 401 trees being grown per model. Risk scores from trained models are presented
as the out-of-bag predictions; the aggregated outputs from decision trees within the forest
where the sample in question has not been included within the resampled dataset142.

All models were trained using the TriSig label, modified to be treated as a continuous
variable by the Random Forest algorithm. Treating this label continuously attempts to
recognise that two patients with the same Gleason-scored TRUS biopsy-detected cancer
may not share the exact same proportions of tumour pattern, or overall disease burden
within their prostate. With larger, template-biopsied cohorts with exhaustive data collec-
tion in future, it may be possible to fit models directly to the proportion of Gleason pattern
recorded. This modified continuous version of the TriSig label is solely used for model fitting
and is not represented in the reporting of any clinically relevant endpoint measurements,
or for determining predictive ability and clinical utility.
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Statistical evaluation of model predictivity

Area Under the Receiver-Operator Characteristic curve (AUC) metrics were produced using
the pROC package153, with confidence intervals calculated via 1,000 stratified bootstrap
resamples (See Section 3.2 for full details). Estimation plots and calculations were produced
using the dabestr package157 and 1,000 bootstrap resamples were used to visualise a robust
effect size estimate of model predictions between risk groups.

Decision curve analysis (DCA, Section 3.2)154 examined the potential net benefit of using
ExoMeth in a clinical setting with a suitable population and is presented as standardised
net benefit (sNB) calculated with the rmda package190. As presented in Chapter 4, in order
to ensure the DCA results presented were representative of a more general population,
the prevalence of Gleason scores within the ExoMeth cohort were adjusted via bootstrap
resampling to match those observed in the control arm of the Cluster Randomised Trial
of PSA Testing for Prostate Cancer (CAP) Trial6 (as described in Connell et al. (2019),
Chapter 4 and Chapter 3).

6.4 Results

6.4.1 The ExoMeth development cohort

Cell-pellet methylation and cell-free NanoString data were available for a total of 197 pa-
tients within the Movember GAP1 cohort, with the majority originating from the NNUH
and forming the ExoMeth development cohort (Table 6.1). The proportion of significant
(Gleason ≥ 7) disease in the ExoMeth cohort was well-balanced for modelling (49%).
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Table 6.1: Characteristics of the ExoMeth development cohort

Cancer: Cancer
finding (N = 120)

Cancer: No cancer
finding (N = 77)

Collection Centre:
NNUH, n (%) 113 (94) 68 (88)
SJH, n (%) 7 (6) 9 (12)

Age:
minimum 53.00 42.00
median (IQR) 69.50 (65.00, 76.00) 66.00 (59.00, 71.00)
mean (sd) 69.97 ± 7.44 65.70 ± 8.53
maximum 86.00 82.00

PSA:
minimum 3.60 0.20
median (IQR) 10.05 (6.90, 18.20) 6.70 (4.20, 8.80)
mean (sd) 17.50 ± 18.82 7.44 ± 5.59
maximum 95.90 30.30

Prostate Size (DRE Estimate):
Small, n (%) 12 (10) 14 (18)
Medium, n (%) 56 (47) 29 (38)
Large, n (%) 37 (31) 22 (29)
Unknown, n (%) 15 (12) 12 (16)

Gleason Score:
0, n (%) 0 (0) 77 (100)
6, n (%) 24 (20) 0 (0)
3+4, n (%) 42 (35) 0 (0)
4+3, n (%) 23 (19) 0 (0)
≥ 8, n (%) 31 (26) 0 (0)

Biopsy Result:
Biopsy Positive, n (%) 120 (100) 0 (0)
Biopsy Negative, n (%) 0 (0) 53 (69)
No Biopsy, n (%) 0 (0) 24 (31)
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6.4.2 Feature selection and model development
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Figure 6.1: Boruta analysis of variables available for the training of the
ExoMeth model. Variable importance was determined over 1,000 bootstrap
resamples of the available data and the decision reached recorded at each
resample. Colour indicates the proportion of the 1,000 resamples a variable
was confirmed to be important in. Variables confirmed in at least 90% of
resamples were selected for predictive modelling (Green). Those variables
rejected in every single resample are not shown here.
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Application of the bootstrap resampled Boruta portion of the FrameWork selected four
feature-sets, one for each of the groups of input variables considered (Table 6.2). These
feature-sets were then used as inputs to four different Random Forest comparator models
trained on the continuous TriSig label based on Gleason score; a standard of care (SoC)
model using only clinical information (age and PSA), a model using only methylation data
(Methylation, 6 genes), a model using only cf-RNA information (ExoRNA, 12 gene-probes)
and the integrated model, named ExoMeth (16 variables) (Table 6.2). The ExoMeth model
is a multivariable risk prediction model incorporating clinical, methylation and cf-RNA
variables. Each of the variables retained for the ExoMeth model were confirmed in every
resample and notably included variables from clinical, methylation and cf-RNA sources
(Figure 6.1). Full resample-derived Boruta variable importances for the SoC, Methyla-
tion and ExoRNA comparator models can be seen in Appendix Figures B.1, B.2 and B.3,
respectively.

In the SoC comparator model only PSA and age were selected as important predictors,
with urine volume and DRE impression not selected. All methylation probes were selected
as important in both the independent Methylation model and integrated ExoMeth models
(Table 6.2). 12 cf-RNA gene-probes were selected for the ExoRNA model, notably contain-
ing both variants of the ERG gene-probe and TMPRSS2/ERG fusion gene-probe, alongside
PCA3. All variables of the ExoMeth model were also selected in each one of the comparator
models.
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Table 6.2: Boruta-derived features positively selected for each model. Fea-
tures are selected for each model by being confirmed as important for predict-
ing biopsy outcome, categorised as a modified ordinal variable (see Methods)
by Boruta in ≥ 90% of bootstrap resamples

SoC Methylation ExoRNA ExoMeth
Serum PSA - - Serum PSAClinical

Parameters Age - - -
- GSTP1 - GSTP1

- APC - APC

- SFRP2 - SFRP2

- IGFBP3 - IGFBP3

- IGFBP7 - IGFBP7

Methylation
Targets

- PTGS2 - PTGS2

- - AMACR -
- - ERG exons 4-5 ERG exons 4-5
- - ERG exons 6-7 ERG exons 6-7
- - GJB1 GJB1

- - HOXC6 HOXC6

- - HPN HPN

- - PCA3 PCA3

- - PPFIA2 -
- - RPS10 -
- - SNORA20 SNORA20

- - TIMP4 TIMP4

cf-RNA
Targets

- - TMPRSS2/ERG
fusion

TMPRSS2/ERG
fusion
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6.4.3 ExoMeth predictive ability
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Figure 6.2: Waterfall plot of the ExoMeth risk score for each patient. Each
coloured bar represents an individual patient’s calculated risk score and their
true biopsy outcome, coloured according to Gleason score (Gleason) . Green
- No evidence of cancer, Blue – Gleason 6, Orange - Gleason 3+4, Red -
Gleason ≥ 4+3

As ExoMeth Risk Score (range 0-1) increased, the likelihood of detecting disease with a
higher Gleason score on biopsy was significantly greater (Proportional odds ratio = 2.04
per 0.1 ExoMeth increase, 95% CI: 1.78 - 2.35; ordinal logistic regression, Figure 6.2).
Metastatic patients, not used in any stage of model fitting, were used as a means of assessing
ExoMeth’s calibration (n = 10). The median ExoMeth risk score for metastatic patients
was 0.83 (IQR = 0.279), placing it above the 90th percentile of ExoMeth risk scores. One
metastatic sample had a lower than expected ExoMeth score of 0.55 where no methylation
target was quantified at all for this sample, perhaps reflecting a technical failure of the
sample.

Table 6.3: AUC of random forest models for detecting differing outcomes on
initial biopsy. Brackets show 95% confidence intervals of the AUC, calculated
from 2,000 bootstrap resamples.

Initial biopsy
outcome: SoC Methylation ExoRNA ExoMeth

Gleason ≥ 4+3: 0.75 (0.68 - 0.82) 0.77 (0.69 - 0.85) 0.74 (0.67 - 0.82) 0.81 (0.74 - 0.87)
Gleason ≥ 3+4: 0.73 (0.66 - 0.80) 0.78 (0.71 - 0.84) 0.81 (0.75 - 0.87) 0.89 (0.84 - 0.92)
Any Cancer 0.70 (0.62 - 0.77) 0.73 (0.65 - 0.80) 0.86 (0.81 - 0.91) 0.91 (0.87 - 0.95)

ExoMeth was superior to all other models, returning an AUC for the prediction of
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Gleason ≥ 3+4 = 0.89 (95% CI: 0.84 - 0.93) and 0.81 (95% CI: 0.75 - 0.87) when prediction
of Gleason ≥ 4+3 was considered (Table 6.3).
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Figure 6.3: Density plots detailing risk score distributions generated from
four trained models. Models A to D were trained with different input vari-
ables; A - SoC clinical risk model, including Age and PSA, B - Methylation
model, C -ExoRNA model and D - ExoMeth model, combining the predic-
tors from all three previous models. The full list of variables in each model is
available in Table 6.1. Fill colour shows the risk score distribution of patients
with a significant biopsy outcome of Gleason ≥ 3+4 (Orange) or Gleason ≤
6 (Blue).

Density plots were used to explore the distribution of risk scores for models in more detail
than the AUC alone. These plots showed that ExoMeth achieved a better discrimination
of Gleason ≥ 3+4 disease from less clinically significant outcomes when compared to any
of the other models (ExoMeth AUC all P < 0.01 bootstrap test, 1,000 resamples, Figure
6.3). The SoC model, whilst returning respectable AUCs, would misclassify more patients
with indolent disease as warranting further investigation than all other models (Figure
6.4A), broadly representative of what is observed clinically. For example, to classify 90% of
patients with Gleason = 7 disease correctly would require an SoC risk score of 0.237, which
would misclassify 65% of patients with less significant disease.
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Figure 6.4: Density plots detailing risk score distributions generated from
four trained models. Models A to D were trained with different input vari-
ables; A - SoC clinical risk model, including Age and PSA, B - Methylation
model, C -ExoRNA model and D - ExoMeth model, combining the predic-
tors from all three previous models. The full list of variables in each model
is available in Table 6.1. Fill colour shows the risk score distribution of pa-
tients with with respect to biopsy outcome: No evidence of cancer (Blue),
Gleason = 6 or 3+4 (Orange), Gleason ≥ 4+3 (Green)

This discriminatory ability of the ExoMeth model over all comparators was highlighted
further when biopsy outcomes are considered as biopsy negative, Gleason 6 or 3+4, or
Gleason ≥ 4+3 (Figure 6.4). The Methylation comparator model improved upon SoC, by
drawing the risk distribution of Gleason ≤ 6 patients into a far more pronounced peak
but displaying poor discrimination of higher risk patients, with a bimodal distribution of
risk score where almost 50% of patients with Gleason ≥ 3+4 have risk scores equal to
benign patients (Figure 6.4B). The opposite occurred in the NanoString comparator model,
which exhibited a broad bimodal distribution for lower-risk patients that would see them
unnecessarily subjected to biopsy (Figure 6.4C).
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Figure 6.5: Estimation plot of the ExoMeth risk score The top row details
individual patients as points, separated according to Gleason score on the
x-axis and risk score on the y-axis. Points are coloured according to clinical
risk category; NEC - No evidence of cancer, Raised PSA - Raised PSA with
negative biopsy, L -D’Amico Low-Risk, I - D’Amico Intermediate Risk, H
- D’Amico High-Risk. Gapped vertical lines detail the mean and standard
deviation of risk scores for each group. The lower panel shows the mean dif-
ferences in risk score of each group, as compared to the NEC samples. Mean
differences and 95% confidence interval are displayed as a point estimate
and vertical bar respectively, using the sample density distributions calcu-
lated from a bias-corrected and accelerated bootstrap analysis from 1,000
resamples.

Resampling of ExoMeth predictions via estimation plots allowed for comparisons of
mean ExoMeth differences between clinical groups (1,000 bias-corrected and accelerated
bootstrap resamples, Figure 6.5). Mean ExoMeth differences relative to patients with no
evidence of cancer and different grades of cancer finding on biopsy were: Gleason 6 = 0.22
(95% CI: 0.14 – 0.30), Gleason 3+4 = 0.36 (95% CI: 0.28 – 0.42) and Gleason ≥ 4+3 =
0.44 (95% CI: 0.37 – 0.51) (Figure 6.5).
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Figure 6.6: Estimation plot of the ExoMeth risk score in No evidence of can-
cer (NEC) and raised PSA, negative biopsy samples. The left panel details
individual patients as points with ExoMeth risk score on the y-axis. Points
are coloured according to clinical risk category; NEC - No evidence of can-
cer, Raised PSA - Raised PSA with negative biopsy. The right panel shows
the distribution of the mean bootstrapped differences in risk score between
NEC and Raised PSA samples. The horizontal lines show the mean differ-
ence of ExoMeth risk score relative to the NEC category. Mean difference
and 95% confidence interval are displayed as a point estimate and vertical
bar respectively, using the sample density distributions calculated from a
bias-corrected and accelerated bootstrap analysis from 1,000 resamples.

Notably no significant differences were observed in ExoMeth risk score between patients
with a raised PSA but negative for cancer on biopsy and patients with no evidence of cancer
(mean difference = 0.03 (95% CI: 0.05 – -0.10), Figure 6.6).
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6.4.4 Net Benefit of ExoMeth
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Figure 6.7: Decision curve analysis (DCA) plots detailing the standardised
net benefit (sNB) of adopting different risk models for aiding the decision
to biopsy patients who present with a PSA ≥ 4 ng/mL. The x-axis details
the range of risk a clinician or patient may accept before deciding to biopsy.
Panels show the sNB based upon the detection of varying levels of disease
severity: A - detection of Gleason ≥ 4+3, B - detection of Gleason ≥ 3+4,
C - any cancer; Blue- biopsy all patients with a PSA >4 ng/mL, Orange -
biopsy patients according to the SoC model, Green - biopsy patients based
on the methylation model, Purple - biopsy patients based on the NanoString
model, Red - biopsy patients based on a the ExoMeth model. To assess the
benefit of adopting these risk models in a non-PSA screened population we
used data available from the control arm of the CAP study. DCA curves were
calculated from 1,000 bootstrap resamples of the available data to match the
distribution of disease reported in the CAP trial population. Mean sNB from
these resampled DCA results are plotted here. See Methods for full details.

Decision curve analysis was used to examine the net benefit of adopting ExoMeth within a
population of patients suspected to have prostate cancer, and with a PSA level suitable to
trigger a diagnostic biopsy by NICE guidelines (PSA ≥ 4 ng/mL). The biopsy of patients
based upon their ExoMeth risk score consistently provided a net benefit over current stan-
dards of care (represented by the SoC model) across all decision thresholds examined and
was the most consistent amongst all comparator models across a range of biopsy endpoints
considered clinically relevant (Figure 6.7). Of the patients with Gleason ≥ 7 disease, 95%
had an ExoMeth risk score ≥ 0.283.
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Figure 6.8: Net percentage reduction in biopsies, as calculated by DCA mea-
suring the benfit of adopting different risk models for aiding the decision to
biopsy patients who who would otherwise undergo biopsy by current clini-
cal guidelines. The x-axis details the range of accepted risk a clinician or
patient may accept before deciding to biopsy. Panels show the reduction
in biopsies per 100 patients based upon the detection of varying levels of
disease severity: A - detection of Gleason ≥ 4+3, B - detection of Gleason ≥
3+4 and C - any cancer. Coloured lines show differing comparator models;
Orange - biopsy patients according the to the SoC model, Green - biopsy
patients based on the methylation model, Purple - biopsy patients based on
the ExoRNA model, Red - biopsy patients based on a the ExoMeth model.
To assess the benefit of adopting these risk models in a non-PSA screened
population we used data available from the control arm of the CAP study.
DCA curves were calculated from 1,000 bootstrap resamples of the available
data to match the distribution of disease reported in the CAP trial popu-
lation. Mean sNB from these resampled DCA results are used to calculate
the potentially reductions in biopsy rates here. See Methods for full details.

At a decision threshold of 0.25 (accepting a 1 in 4 chance of an outcome before accepting
biopsy), ExoMeth could result in up to 66% fewer unnecessary biopsies of patients present-
ing with a suspicion of prostate cancer, without missing substantial numbers of patients
with aggressive disease, whilst if Gleason ≥ 4+3 were considered the threshold of clinical
significance, the same decision threshold of 0.25 could save 79% of patients from receiving
an unnecessary biopsy (Figure 6.8).
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6.5 Discussion
The accurate discrimination of disease state in men prior to a confirmatory diagnostic
biopsy would mark a significant development and impact large numbers of men suspected
of harbouring prostate cancer. Currently up to 75% of men with a raised PSA (≥ 4 ng/mL)
are negative for prostate cancer on biopsy5–7, which has led to a concentration of research
efforts to address this problem using non-invasive methods. Several such biomarkers capable
of detecting Gleason ≥ 3+4 disease using urine samples have been reported with accuracy
superior to current clinical methods, including PUR in Chapter 48,12,99,102. However, in each
of these examples, only a single assay method or aspect of prostate cancer pathobiology is
considered. With the molecular heterogeneity of prostate cancer considered191, a more
holistic approach to appraise disease status is necessary.

Published data has shown that urine can contain a wealth of useful cancer biomarkers
within RNA, DNA, cell-free DNA, DNA methylation and proteins8,11,192–194. However,
the analyses presented here were at the time of publication, the first attempt to integrate
information from multiple biomarkers collected within the same sample for the detection
of prostate cancer prior to biopsy. A combination of miRNA and methylation markers in
tissue samples has been recently reported to predict biochemical recurrence following radical
prostatectomy (HR = 1.35, 95% CI: 1.06–1.73)195. I have shown here that an improved
prognostic marker can be produced by harnessing the information derived from different
molecular entities in urine and clinically available parameters for patients suspected to have
prostate cancer. The ExoMeth model integrates NanoString quantified cf-RNA data with
hypermethylation data from six previously identified genes11 and serum PSA levels.

A practical consideration in the case of deploying a urine test based on ExoMeth is the
requirement of more than one assay, raising material costs and complexity. The added com-
plexity increases the likelihood of technical failures that cause false positives or negatives,
as observed with one of the assayed metastatic samples. Such a problem could potentially
be solved by a repeated assay, but would require stringent quality control procedures. Of
course, due to the non-invasive nature of liquid biopsy, repeated urine samples are not a
health concern like a repeated biopsy may be. Cost increases can be mitigated if the pre-
dictive utility of ExoMeth is upheld in validation and health economic studies, where the
potential reduction in biopsies and/or mpMRI scans would likely fair outweigh the cost of
a urine test.
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Figure 6.9: Expression GJB1 cf-RNA levels in the ExoMeth cohort, relative
to clinical risk category.

Features selected for ExoMeth included gene-probes well known to be associated with
prostate cancer and proven in other diagnostic tests, such as HOXC6 99, PCA3 12,164 and
the TMPRSS2/ERG gene fusion164. ExoMeth additionally incorporated the GJB1 cf-RNA
gene-probe as the most important variable for predicting biopsy outcome (Figure 6.1).
Whilst GJB1 has been reported to be a prognostic marker for favourable outcomes in re-
nal cancer, there is no evidence of its use as a prognostic biomarker in prostate cancer to
date196,197. Interestingly, GJB1 was not selected in the PUR modelling process, where it’s
expression appears to be binary as a cancer versus no cancer marker rather than monoton-
ically increasing with risk category (Figure 6.9).

ExoMeth was able to correctly predict the presence of significant prostate cancer on
biopsy with an AUC of 0.89, representing a significant uplift when compared to other
published tests (AUCs for Gleason ≥ 7 : PUR = 0.778, ProCUrE = 0.73192, ExoDX Prostate
IntelliScore = 0.77102, SelectMDX = 0.7899, epiCaPture Gleason ≥ 4+3 AUC = 0.7311).
Furthermore, ExoMeth resulted in accurate predictions even where serum PSA levels alone
were inaccurate: these are patients biopsied likely due to their raised PSA, but ultimately
no prostate cancer was found. These patients ExoMeth scores were largely no different to
NEC patients (Figure 6.6), meaning they could have avoided this invasive procedure, whilst
those diagnosed with cancer were still accurately stratified by ExoMeth (Figure 6.4). Of
the three patients with no evidence of cancer on biopsy with an ExoMeth risk score >0.55,
two were positive for the TMPRSS2/ERG fusion transcript in NanoString analyses (data
not shown), implying that a tumour may have been missed and a re-biopsy of these patients
may be necessary, as TMPRSS2/ERG is not seen in benign tissue198.

Adoption of ExoMeth as a triage-style tool into clinical pathways could see a large
amount of patients removed from the clinical pathway much earlier than current standards
allow for. Not only would this save healthcare systems money, it would save patients from
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undue stress and worry of investigations for prostate cancer. Putting 66% fewer patients
forward for biopsy, or mpMRI scans if ExoMeth is validated against mpMRI, would free huge
amounts of resources for clinicians and tertiary care systems alike. The ease of sampling
of patients has an additional benefit in that repeated sampling and collection outside of a
hospital environment is feasible, such as in a primary care setting. ExoMeth, if successfully
validated in larger external cohorts presents a very real opportunity for considerable changes
to be made in how patients suspected to have prostate cancer are initially risk assessed.

The results presented here show that through careful consideration of statistical method-
ology, a predictive risk model can be successfully and robustly developed to minimise the
potential for overfitting and bias, even within a relatively small dataset. Extensive applica-
tion of bootstrap resampling and out-of-bag predictions ensures that whilst the ExoMeth
development cohort comprises of only 197 samples, the effective dataset size is doubled186.
ExoMeth nonetheless requires validation in an independent external cohort, compliant to
TRIPOD guidelines21 before its use a clinical risk model can be considered. The design of
such a study is presented in Chapter 8, including considerations of updated clinical guide-
lines to evaluate the clinical utility of supplementing mpMRI with ExoMeth. For many
men harbouring indolent prostate cancer, ExoMeth could greatly impact their experience
of prostate cancer care when compared to current clinical pathways.

The FrameWork shows great promise in the ability to rapidly develop models that can
be pre-specified and used in further studies with minimal further work. In the next chapter
I shall discuss further applications of the FrameWork to additional overlapping datasets
within the Movember GAP1 study, showcasing the successful development of an additional
two multivariable risk models. It is important to highlight limitations as well as successes,
and with this considered, examples of unsuccessful attempts at model development are also
presented.
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Chapter 7

Successes and Failures of the
FrameWork

7.1 Summary
The work in this chapter describes analysis of additional datasets in the GAP1 cohort
and application of the FrameWork, described in the previous chapter. Two additions to the
“Exo-X” series of multivariable risk prediction models are developed, in the form of ExoGrail
and ExoSpec. Negative results from an ELISA panel completed on a large portion of the
GAP1 cohort is described, showing that not all previously identified biomarker results can
be replicated successfully. The main results of this chapter are split into self-contained
sections for each application of the FrameWork that encompass the methods, results, and
conclusions, with a final discussion considering overarching implications for validation and
further development.

ELISA data quantifying twelve different proteins from multiple collection sites were
available for a large number of samples in the GAP1 cohort (n = 471). Initial analyses of
these data revealed no gain in predictive ability over clinical standards of care. Integrated
analyses with NanoString data (n = 237) were additionally attempted and analysis of
variables by Boruta showed only the Engrailed-2 (EN2) protein to be of predictive use.
It was decided to disregard the other ELISA proteins, and concentrate on only EN2 and
NanoString data moving forwards.

ExoGrail represents another successful outputs from the application of the FrameWork,
developed by the integration of NanoString data with the singular EN2 protein biomarker.
ExoGrail was able to predict a biopsy outcome with accuracy exceeding standards of care,
with an AUC = 0.89 (95% CI: 0.85 – 0.94) when predicting the presence of any cancer
and discriminating more aggressive Gleason ≥ 3+4 disease returning an AUC = 0.84 (95%
CI: 0.78 – 0.89). Development of the ExoGrail model showed that improvements in how
patients are risk assessed can be found from the relatively simple integration of data from
a single protein marker during the model fitting process.

ExoSpec was developed using NanoString data and the high-dimensionality proteomic
dataset, featuring over 30,000 variables and requiring modifications to be made to the
FrameWork to function. The resampled Boruta feature selection portion is replaced with
a LASSO-penalisation to reduce computational intensity without too much of a reduction
in the robustness of the entire pipeline. The final ExoSpec model incorporated 4 cf-RNA
transcripts, 6 peptides and 2 clinically available parameters, and accurately predicted an
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outcome of Gleason ≥ 3+4 with an AUC = 0.83 (95% CI: 0.77 - 0.88). ExoSpec requires
an additional, more targeted study prior to consideration of a full validation study.

The ExoGrail and ExoSpec results are adapted from two original publications, under
review at the time of submission; “Development of a multivariable risk model integrating
urinary proteomic and cell-free RNA data to detect significant prostate cancer” by Connell
et al. under review at the British Journal of Cancer and “Integration of urinary EN2 protein
& cell-free RNA data in the development of a multivariable risk model for the detection
of prostate cancer prior to biopsy” by Connell et al., submitted to eBioMed. All analysis
presented in this chapter was completed by myself.

7.2 Background
Given the successful application of the FrameWork in Chapter 6 during the development
of the ExoMeth model111, it was hypothesised that similar prognostic potential may be
uncovered in other available overlaps of GAP1 data. There are additional intersectional
datasets of an appropriate size for developing prognostic models (n ≈ 200), with multiple
experiments performed on the same samples. The sources for these data were: cf-RNA
quantified by NanoString, urinary levels of 12 proteins from ELISA data, and proteomics
captured by capillary-electrophoresis mass spectrometry (CE-MS). Notably, the analyses of
overlapping data were always between NanoString and one other data source: NanoString
and CE-MS data, NanoString and EN2 ELISA data, and NanoString and ELISA-panel
datasets. These three intersectional datasets represent differing approaches to biodiscovery
and biomarker development studies, despite all being from the same, much larger GAP1
study.

Targeted analyses of previously identified biomarkers make an attractive prospect, they
are a known quantity with a history of successful results relating to pathobiology or prog-
nostication, such as the Engrailed-2 protein. EN2 is a transcription factor with an essential
function in early development and has been shown to be secreted from cells, and taken up
by others199,200. EN2 is a proven biomarker of its own, having shown to have diagnostic
utility for both predicting biopsy outcome and tumour volume in radical prostatectomy
patients128,201. Quantified by a simple ELISA, integration of EN2 and cf-RNA NanoString
data are trivial, with subsequent application of the FrameWork completed with relative
ease given the highly targeted nature of the data. In the wider ELISA dataset were a
further 11 proteins, including the Kalikrein (KLK) family that are highly expressed in
prostate tissues125,202, and proteins thought to be useful for normalising urine volume and
concentration, such as creatinine, typically used for assessing kidney function and muscle
damage203. These ELISA data represent a semi-focused approach, with pre-existing hy-
potheses of biological function but lacking in strong prior data for their use as prognostic
biomarkers.

At the other end of study complexity in biodiscovery are whole ’omics discovery studies,
such as the CE-MS peptidomics dataset presented here. Representing the entirety of a
singular biological aspect, they are hugely multidimensional, often in the tens of thousands
of eligible predictors. The untargeted nature of these data make integration much less
trivial, requiring careful handling to extract useful information. To reduce false discovery
rates and overfitting by normal feature selection methods, a priori filtering is one of the
strongest tools204; removing the less informative features with simple rules and conditions
rather than statistical tests. Nonetheless, even following a priori filtering, a large featureset
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can still remain and require large amounts of compute power for statistical analysis.
The main purpose of these analyses was to investigate whether the FrameWork truly

represents a “one-size fits all” solution, regardless of the approach to biodiscovery. Or, if
more tailored approaches are required for maximal utilisation of data, assessing whether the
FrameWork be adapted appropriately. Three self-contained sections are presented below,
each dealing with the featuresets described above to avoid confusion of methodological
alterations and consideration of multiple outputs at once.

7.3 Analysis of ELISA data reveals little clinical utility

7.3.1 Methods

Patient cohort and characteristics

Samples within the Movember GAP1 cohort (see Sections 9.2 & 3) that were analysed for
whole-urine protein levels by ELISA (n = 471) were eligible for the ELISA cohort (Table
7.1). Samples with both ELISA and cf-RNA transcript level data available were eligible for
the ExoLISA development cohort and used for model development (n = 237, Table 7.3).

Sample Processing

Cell-free RNA (cf-RNA) was isolated and quantified from urinary extracellular vesicles
using NanoString technology as described in Section 3.1.1. All NanoString data presented
here were normalised according to NanoString guidelines using NanoString internal positive
controls, and log2 transformed as described in Section 3.1.1.

Urinary protein levels were quantified by sandwich ELISA using monoclonal antibodies
to; MSMB, GDF15, CD10, Creatinine, KLK2, KLK4, KLK7, KLK11, and EN2. Clinical
variables considered were serum PSA and age at sample collection.

Feature Selection

Only 14 variables in total were considered in the ELISA cohort and feature selection was
not deemed necessary.

A total of 181 variables were available within the ExoLISA development cohort for
prediction (cf-RNA (n = 167), the clinical variables of patient age and serum PSA (n =
2), and ELISA quantified proteins (n = 12). Feature selection during the analysis of the
ExoLISA cohort followed the same FrameWork process as described in Chapter 6. Briefly,
the Boruta algorithm was applied to 1,000 resamples of the ExoLISA development cohort
with replacement. Features were only positively retained for model fitting if selected by
Boruta in ≥ 90% of resampled Boruta runs.

ELISA Model Construction and evaluation:

For the ELISA cohort analysis, three Random Forest-based models were trained using
subsets of the available variables across the patient population, similarly to those models
described in Chapter 6. A clinical standard of care (SoC) model was trained by incorpo-
rating only patient age and PSA; a model using only the ELISA values (ELISA, n = 12),
and an ELSoC model was trained by incorporating information from both ELISA-derived
variables and clinically available parameters (n = 14).
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All models were trained via the random forest algorithm142, using the randomForest
package144 with the same parameters and process described in Chapter 6. Risk scores from
trained models are presented as the out-of-bag predictions, as described in Section 3.2.

Random Forest models were fit using the TriSig label, modified to be treated contin-
uously as in Chapter 6. Area Under the Receiver-Operator Characteristic curve (AUC)
metrics were produced using the package153, with confidence intervals calculated via 1,000
stratified bootstrap resamples to initially assess potential predictive utility.

7.3.2 Results

ELISA cohort and preliminary analysis:

A total of 12 proteins were quantified by ELISA, with data available for a total of 471
samples, making it the second largest dataset within the Movember GAP1 study after the
NanoString dataset (Table 7.1).
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Table 7.1: Characteristics of the ELISA cohort

Cancer finding No cancer finding
Collection Centre:
Atlanta, n (%) 33 (12) 9 (4)
NNUH, n (%) 156 (58) 154 (75)
Toronto, n (%) 78 (29) 41 (20)

Age:
minimum 47.00 37.00
median (IQR) 67.00 (61.00, 72.00) 66.00 (60.00, 71.00)
mean (sd) 67.03 ± 8.06 65.34 ± 8.15
maximum 91.00 85.00

PSA:
minimum 0.80 0.01
median (IQR) 8.20 (5.69, 13.25) 5.93 (3.69, 8.28)
mean (sd) 12.90 ± 14.29 6.58 ± 4.64
maximum 95.90 30.30

Prostate Size\(DRE Estimate):
Small, n (%) 21 (8) 27 (13)
Medium, n (%) 87 (33) 65 (32)
Large, n (%) 65 (24) 54 (27)
Unknown, n (%) 93 (35) 57 (28)

Gleason Score:
0, n (%) 2 (1) 203 (100)
6, n (%) 90 (34) 0 (0)
3+4, n (%) 81 (30) 0 (0)
4+3, n (%) 46 (17) 1 (0)
≥ 8, n (%) 48 (18) 0 (0)

Biopsy Result:
Biopsy Positive, n (%) 267 (100) 0 (0)
Biopsy Negative, n (%) 0 (0) 136 (67)
No Biopsy, n (%) 0 (0) 68 (33)

Random Forest based models trained using the available ELISA data showed that ELISA
model had very little additional predictive utility above the clinical standard of care model
that uses only serum PSA levels and patient age information to predict outcome (all P
> 0.05 by bootstrap test with 1,000 resamples, Table 7.2). The ELSoC model performed
significantly better than both the SoC and ELISA models for predicting all biopsy outcomes
(all P < 0.001 by bootstrap test with 1,000 resamples), though returning AUCs below those
of the other established urine tests discussed in section 2.6.2. With this considered, further
development of an ELISA-based model was ceased, and the potential utility of integrating
cf-RNA data was investigated through the ExoLISA cohort.
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Table 7.2: AUC from Random Forest models trained using: only clinical
variables (SoC), peptide data (ELISA), or both ELISA and clinical data
(ELSoC) for detecting different biopsy outcomes. Brackets show 95% confi-
dence intervals of the AUC, calculated over 1,000 bootstrap resamples

Initial biopsy outcome: SoC ELISA ELSoC
Gleason ≥ 4+3: 0.70 (0.63 - 0.76) 0.71 (0.65 - 0.77) 0.78 (0.73 - 0.83)
Gleason ≥ 3+4: 0.67 (0.62 - 0.72) 0.69 (0.64 - 0.74) 0.74 (0.69 - 0.79)
Any Cancer 0.67 (0.62 - 0.72) 0.68 (0.63 - 0.73) 0.71 (0.66 - 0.76)

The ExoLISA cohort and important features

A total of 204 samples with ELISA and cf-RNA data were available, collected from the
NNUH (n = 173) and urology clinics in Atlanta, USA (n = 31). These samples formed the
ExoLISA development cohort, and used for integrated analyses, as described above (Table
7.3.

Table 7.3: Characteristics of the ExoLISA cohort

Cancer finding No cancer finding
Collection Centre:
Atlanta, n (%) 27 (20) 4 (6)
NNUH, n (%) 110 (80) 63 (94)

Age:
minimum 47.00 48.00
median (IQR) 68.00 (62.00, 75.00) 66.00 (59.00, 71.50)
mean (sd) 68.34 ± 8.14 65.33 ± 8.30
maximum 91.00 82.00

PSA:
minimum 0.80 0.30
median (IQR) 8.90 (6.20, 14.00) 5.50 (2.65, 8.15)
mean (sd) 14.18 ± 16.01 6.58 ± 5.77
maximum 95.90 30.30

Gleason Score:
0, n (%) 0 (0) 67 (100)
6, n (%) 36 (26) 0 (0)
3+4, n (%) 51 (37) 0 (0)
4+3, n (%) 24 (18) 0 (0)
≥ 8, n (%) 26 (19) 0 (0)

Biopsy Result:
Biopsy Positive, n (%) 137 (100) 0 (0)
Biopsy Negative, n (%) 0 (0) 40 (60)
No Biopsy, n (%) 0 (0) 27 (40)
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Figure 7.1: Boruta analysis of the ExoLISA cohort, using all available vari-
ables. 1,000 resamples with replacement of the available data were made,
with the normalised permutation importance of each variable recorded at
each iteration, along with the decision of Boruta within that resample. Fill
colour shows the proportion of resamples that a feature was positively re-
tained by Boruta. Those features selected in ≥ 90% of resamples were se-
lected for fitting predictive models. Variables rejected in all of the 1,000
resamples are not shown here

Boruta analysis of the available predictors showed that the Engrailed-2 (EN2) protein
was the only protein to be confirmed in more than 25% of resampled Boruta runs (Figure
7.1). KLK4 was the only other protein marker to not be rejected in every single resample,
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showing the low predictive usefulness of the ELISA-derived data. EN2 was additionally
selected as the singular most important variable for predicting biopsy outcome with almost
triple the normalised permutation importance of the PCA3 cf-RNA gene-probe (Figure
7.1). Considering this information, it was decided again to cease model development, and
instead concentrate on integrated analysis of only available EN2 and cf-RNA data, in an
effort to reduce the number of variables to consider, increase the sample size, and the power
of any subsequent models developed.

7.3.3 Conclusions

Initial analyses of the large ELISA cohort revealed little predictive utility was to be found
in the available protein biomarkers above clinical standards of care. When the kalikrein
(KLK) proteins are considered, this may have been somewhat expected. Whilst KLK2
and KLK4 are highly specific to prostate tissue125,126, KLK6 has been associated primarily
with neuroplasticity in the central nervous system205, and KLK7 is highly expressed in the
epidermis of the skin206. KLK6, KLK7 and KLK11 have previously identified as prognostic
markers of disease status, but this remains to be validated in larger cohorts with the explicit
goal of disease prediction127.

When the available data were reduced to include all samples with additional cf-RNA
data, only EN2, was identified as posessing predictive utility greater than the randomly
permuted shadow features of Boruta (Figure 7.1). The sizeable increase in predictive utility
of protein data may be due to an artefact of the dataset itself, when EN2 initially appears
to discriminate disease status more clearly in the smaller ExoLISA cohort than in the larger
ELISA cohort (Figure 7.2). However, questions about data quality of the ELISA cohort
data have been raised (personal communication), where not all samples appear to have been
collected to the agreed upon Movember standard procedures.

The decision to concentrate solely on the overlap of EN2 and cf-RNA samples therefore
has a number of benefits. In addition to reducing the variables to consider there is a
reduction in variance of the data, as the all of the samples quantified for both EN2 and
cf-RNA originate the NNUH and were quantified by a single laboratory. Whilst the reduced
variance is welcome, it likely comes at the cost of increased bias and reduced generalisability
for developed models, as the variance in sample quality is something likely to be encountered
in real world deployment of a urine test. This is something to be considered in the design
of a validation trial, where extra samples should be collected where a developed model may
require updating to account for this.

Collection of further samples is realistically the only way to find out whether observed
increases in predictive ability in smaller amounts of data are caused by random splits of
data, similar to that seen in Chapter 5, or whether the reduced variance is more indicative of
a more carefully curated patient cohort. Regardless, neither can be answered by application
of the FrameWork, and instead the rest of this chapter will concentrate on solvable analytical
problems, including integrated analysis of EN2 and cf-RNA data.
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Figure 7.2: Quantified levels of EN2 in the ELISA cohort (n = 471) and the
ExoLISA cohort (n = 237), shown according to TriSig level - No Evidence
of Cancer (NEC), Gleason 3+3 or 3+4 (LC) or Gleason ≥ 4+3 (HC).

7.4 ExoGrail: an ideal scenario of few predictors and previ-
ously identified biomarkers

7.4.1 Methods

Patient cohort and characteristics Samples within the Movember GAP1 cohort (see
Sections 9.2 & 3) that were analysed for both cf-RNA by NanoString and whole-urine EN2
protein levels by ELISA were eligible for the ExoGrail development cohort and used for
model development (n = 207). All samples analysed in the ExoGrail cohort were collected
from the Norfolk and Norwich University Hospital (NNUH, Norwich, UK).

Sample Processing

Cell-free RNA (cf-RNA) was isolated and quantified from urinary extracellular vesicles
using NanoString technology as described in Section 3.1.1. All NanoString data presented
here were normalised according to NanoString guidelines using NanoString internal positive
controls, and log2 transformed as described in Section 3.1.1.
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Urinary EN2 protein concentration was quantified by ELISA using a monoclonal anti-
mouse EN2 antibody, as described by Morgan et al. (2011)128. Clinical variables considered
were serum PSA, age at sample collection, DRE impression and urine volume collected.

Statistical analysis

All data and scripts required to reproduce the ExoSpec analyses can be found at https:
//github.com/UEA-Cancer-Genetics-Lab/ExoGrail.

Feature Selection

A total of 172 variables were available within the ExoGrail development cohort for prediction
(cf-RNA (n = 167), clinical variables (n = 4) and urinary EN2 (n = 1). Feature selection
during the development of the ExoGrail cohort followed the same FrameWork process as
described in Chapter 6. Briefly, the Boruta algorithm was applied to 1,000 resamples of the
ExoGrail development cohort with replacement. Features were only positively retained for
model fitting if selected by Boruta in ≥ 90% of resampled Boruta runs.

Comparator Models

To evaluate potential clinical utility, additional models were trained as comparators using
subsets of the available variables across the patient population, similarly to those models
described in Chapter 6. A clinical standard of care (SoC) model was trained by incorpo-
rating age, PSA, T-staging and clinician DRE impression; a model using only the EN2
ELISA values (EN2, n = 1); and a model only using NanoString gene-probe information
(NanoString, n = 167). The fully integrated ExoGrail model was trained by incorporating
information from all of the above variables (n = 177). Each set of variables for comparator
models were independently selected via the bootstrapped Boruta feature selection process
described above to select the most optimal subset of variables possible for each predictive
model.

Model Construction

All models were trained via the random forest algorithm142, using the randomForest
package144 with the same parameters and process described in Chapter 6. Risk scores from
trained models are presented as the out-of-bag predictions, as described in Section 3.2.

Models were trained on the TriSig label, again modified as a continuous label as in
Chapter 6.

Statistical evaluation of models

Area Under the Receiver-Operator Characteristic curve (AUC) metrics were produced using
the package153, with confidence intervals calculated via 1,000 stratified bootstrap resam-
ples. Density plots of model risk scores, and all other plots were created using the ggplot2
package207. Partial dependency plots were calculated using the pdp package208. Estima-
tion plots and calculations were produced using the dabestr package157 and 1,000 bootstrap
resamples were used to visualise robust effect size estimates of model predictions. Deci-
sion curve analysis (DCA)154 examined the potential net benefit of using ExoGrail in the
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clinic. Standardised net benefit (sNB) was calculated with the rmda package190 and pre-
sented throughout our decision curve analyses as it is a more directly interpretable metric
compared to net benefit155.

7.4.2 Results

The ExoGrail Development cohort

Both urinary protein and transcriptomic data were available for 207 patients within the
Movember GAP1 cohort, with all samples originating from the NNUH to form the ExoGrail
development cohort (Table 7.4). The proportion of Gleason ≥7 disease in the ExoGrail
cohort was 48%.

Table 7.4: Characteristics of the ExoGrail development cohort

Cancer finding No cancer finding
Collection Centre:
NNUH, n (%) 130 (100) 77 (100)

Age:
minimum 53.00 45.00
median (IQR) 68.50 (65.00, 76.00) 65.00 (59.00, 71.00)
mean (sd) 69.71 ± 7.67 65.22 ± 8.10
maximum 91.00 82.00

PSA:
minimum 4.10 0.30
median (IQR) 10.35 (6.82, 16.48) 6.10 (3.70, 8.80)
mean (sd) 17.08 ± 18.33 7.89 ± 8.72
maximum 95.90 63.80

Prostate Size\(DRE Estimate):
Small, n (%) 13 (10) 13 (17)
Medium, n (%) 64 (49) 34 (44)
Large, n (%) 38 (29) 21 (27)
Unknown, n (%) 15 (12) 9 (12)

Gleason Score:
0, n (%) 0 (0) 77 (100)
6, n (%) 30 (23) 0 (0)
3+4, n (%) 48 (37) 0 (0)
4+3, n (%) 24 (18) 0 (0)
≥ 8, n (%) 28 (22) 0 (0)

Biopsy Result:
Biopsy Positive, n (%) 130 (100) 0 (0)
Biopsy Negative, n (%) 0 (0) 52 (68)
No Biopsy, n (%) 0 (0) 25 (32)
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Feature selection and model development
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Figure 7.3: Analysis of variables available for the training of the ExoGrail
model through the application of the Boruta algorithm via bootstrap resam-
pling. 1,000 resamples with replacement of the available data were made,
with the normalised permutation importance of each variable recorded at
each iteration, along with the decision of Boruta within that resample. Fill
colour shows the proportion of resamples that a feature was positively re-
tained by Boruta. 128
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Using the robust feature selection framework described above four models were produced
in total; a standard of care (SoC) model incorporating only clinically available parameters
(age and PSA), a model using urinary EN2 protein levels as the sole predictor variable
(Engrailed), a model using only cf-RNA information (ExoRNA, 11 gene-probes) and the
integrated model, named ExoGrail that incorporated variables from all three sources (12
variables) (Table 7.5). The ExoGrail model is a multivariable risk prediction model incorpo-
rating clinical parameters, urinary EN2 protein levels and cf-RNA expression information.
When the resampling strategy was applied for feature reduction using Boruta, 12 variables
were selected for the ExoGrail model. Each of the retained variables were positively selected
in every resample and notably included information from clinical and cf-RNA variables, as
well as urinary EN2 (Figure 7.3).

Table 7.5: Boruta-derived features positively selected for each model. Fea-
tures are selected for each model by being confirmed as important for predict-
ing biopsy outcome, categorised as a modified ordinal variable (see Methods)
by Boruta in ≥ 90% of bootstrap resamples

SoC Engrailed ExoRNA ExoGrail
Serum PSA - - Serum PSAClinical

Parameters Age - - -
Methylation
Targets - EN2 (ELISA) - EN2 (ELISA)

- - AMACR -
- - ERG exons 4-5 ERG exons 4-5
- - ERG exons 6-7 ERG exons 6-7
- - GJB1 GJB1

- - HOXC6 HOXC6

- - HPN HPN

- - NKAIN1 NKAIN1

- - PCA3 PCA3

- - PPFIA2 PPFIA2

- - RPLP2 -
- - - SLC12A1

- - TMEM45B TMEM45B

cf-RNA
Targets

- - TMPRSS2/ERG
fusion

TMPRSS2/ERG
fusion

In the SoC comparator model only PSA and age were selected as important predictors.
Urinary EN2 levels were confirmed as important in the independent Engrailed model as
the sole variable, and also within the ExoGrail model (Table 2). For the cf-RNA model, 11
transcripts were selected, notably including both variants of the ERG gene-probe and TM-
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PRSS2/ERG fusion gene-probe. ExoGrail incorporated an additional cf-RNA transcript,
SLC12A1, which was not previously selected in the ExoRNA comparator model. When this
was examined by partial dependency plots, an additive non-linear interaction effect was ob-
served between quantified levels of urinary EN2 and counts of SLC12A1 on the predicted
ExoGrail risk signature output (Figure 7.4).
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Figure 7.4: Partial dependency plots detailing the marginal effects and in-
teractions of SLC12A1 and urinary EN2 on predicted ExoGrail Risk Score.
A - Partial dependency of ExoGrail on urinary EN2, B - Partial depen-
dency of ExoGrail on SLC12A1, C - Partial dependency of ExoGrail on
both SLC12A1 and urinary EN2
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Figure 7.5: Waterfall plot of the ExoGrail risk score for each patient. Each
coloured bar represents an individual patient’s calculated risk score and their
true biopsy outcome, coloured according to Gleason score . Green - No
evidence of cancer, Blue – Gleason = 6, Orange - Gleason = 3+4, Red - Gs
≥ 4+3

As ExoGrail Risk Score (range 0-1) increased, the likelihood of high-grade disease detection
on TRUS-biopsy was significantly greater (Proportional odds ratio = 2.21 per 0.1 ExoGrail
increase, 95% CI: 1.91 - 2.59; ordinal logistic regression, Figure 7.5). The median ExoGrail
risk score for metastatic patients was 0.76 (n = 11). These patients were not included in
the ExoGrail development cohort and can be considered as a positive control for model
calibration.

Table 7.6: AUC of random forest models for detecting differing outcomes on
initial biopsy. Brackets show 95% confidence intervals of the AUC, calculated
from 2,000 bootstrap resamples.

Biopsy outcome: SoC Engrailed ExoRNA ExoGrail
Gleason ≥ 4+3: 0.77 (0.69 - 0.84) 0.81 (0.73 - 0.87) 0.67 (0.59 - 0.75) 0.84 (0.78 - 0.90)
Gleason ≥ 3+4: 0.72 (0.65 - 0.79) 0.83 (0.77 - 0.88) 0.77 (0.70 - 0.83) 0.90 (0.85 - 0.94)
Any Cancer 0.75 (0.68 - 0.82) 0.81 (0.74 - 0.87) 0.81 (0.75 - 0.87) 0.89 (0.85 - 0.94)

ExoGrail was superior to all other models for the detection of Gleason ≥ 3+4 (AUC
= 0.90 (95% CI: 0.85 - 0.94), P <0.001, bootstrap test with 1,000 resamples) and for any
cancer (AUC = 0.89 (95% CI: 0.85 - 0.94), P <0.001, bootstrap test with 1,000 resamples)
(Table 7.6). When Gleason ≥ 4+3 was considered, ExoGrail returned an AUC = 0.84 (95%
CI: 0.78 - 0.90), outperforming the SoC and cf-RNA models (P <0.001, bootstrap test with
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1000 resamples), whilst the Engrailed model displayed similar performance by AUC metrics
(Table 7.6).
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Figure 7.6: Risk score distributions of the four trained models, calculated
as the out-of-bag predictions and represented as density plots. AUCs for
each model’s predictive ability for clinically relevant outcomes are detailed
underneath each panel. Each random forest model was fit using differing
input variables; A - SoC clinical risk model, including Age and PSA, B -
Engrailed model, C -ExoRNA model and D - ExoGrail model, combining
predictors from all three modes of analysis. The full list of variables in each
model is available in Table 1. Fill colour shows the risk score distribution
of patients with respect to biopsy outcome: No evidence of cancer (Green),
Gleason 6 (Blue), Gleason 3+4 (Orange), Gleason ≥ 4+3 (Red).

As revealed by the distributions of risk scores and AUC, ExoGrail achieved a clearer
discrimination of disease status Gleason ≥ 3+4 disease from other outcomes when compared
to any of the other models (ExoGrail all P < 0.01 bootstrap test, 1,000 resamples, Figure
7.6).

Investigation of risk score distributions found that whilst the SoC model returned re-
spectable AUCs and detection of the higher grade disease (Gleason ≥ 3+4), it displayed
a relative inability to clearly stratify intermediate disease states. This uncertainty would
cause large numbers of patients to be inappropriately selected for further investigation (Fig-
ure 7.6A). For example, to classify 90% of patients with Gleason 7 disease correctly, an SoC
risk score of 0.251 would misclassify 64.5% of men with less significant, or no disease. The
Engrailed model detailed clearer discrimination, though featured a bimodal distribution of
patients without prostate cancer (Figure 7.6B, green density plot), falsely identifying 51.4%
of patients with low grade disease as similar to those with more clinically significant disease
(Figure 7.6B). Whilst the AUCs returned for the ExoRNA model were lower, the distri-
bution of risk scores shows that ExoRNA could more accurately discriminate cancer from
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non-cancer than either the SoC or EN2 models, a key clinical step in the triage of patients
prior to biopsy (Figure 7.6C).
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Figure 7.7: Density plots detailing risk score distributions generated from
four trained models. Models A to D were trained with different input vari-
ables; A - SoC clinical risk model, including Age and PSA, B - Engrailed
model, C -ExoRNA model and D - ExoGrail model, combining the predic-
tors from all three previous models. The full list of variables in each model is
available in Table 1. Fill colour shows the risk score distribution of patients
with a significant biopsy outcome of Gs ≥ 3+4 (Orange) or Gs ≥ 6 (Blue)

Examination of ExoGrail scores displayed similar distributions for NEC patients as the
ExoRNA model whilst also being able to more accurately separate different cancer outcomes
from biopsy, resulting in fewer misclassifications no-cancer patients if binary detection of
95% of Gleason ≥ 3+4 were considered (28% of NEC patients misclassified). The greater
discriminatory ability of the ExoGrail model when biopsy outcomes are considered as a
binary Gleason ≥3+4 threshold can also be seen in Figure 7.7.
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Figure 7.8: Mean ExoGrail risk score differences between biopsy outcomes,
as represented by Estimation plots. Individual patient risk scores (y-axis) are
presented as points in the top panel, separated according to Gleason score
(x-axis) with gapped vertical lines detailing the mean and standard deviation
of each clinical group’s ExoGrail risk score. Mean ExoGrail risk score dif-
ferences relative to the no evidence of cancer (NEC) group are shown in the
bottom panel. Mean difference and 95% confidence intervals are shown as
a point estimate and vertical bar, respectively, with density plots generated
from 1,000 bias-corrected and accelerated bootstrap resamples.

Comparisons of ExoGrail mean ExoGrail signatures between groups was performed with
resampling and estimation plots (1,000 bias-corrected and accelerated bootstrap resamples,
Figure 7.8). The mean ExoGrail differences between patients with no evidence of cancer on
biopsy were: Gleason 6 = 0.3 (95% CI: 0.22 - 0.37), Gleason 3+4 = 0.48 (95% CI: 0.41 -
0.54) and Gleason ≥ 4+3 = 0.56 (95% CI: 0.5 - 0.61). Of note, patients with no evidence
of cancer had a lower ExoGrail risk score (mean difference = 0.17 (95% CI: 0.11 - 0.24))
than those with a raised PSA but no findings of cancer on biopsy (Figure 7.8).

134



7.4. ExoGrail: an ideal scenario of few predictors and previously identified biomarkers

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3
Decision threshold for detection of Gleason ≥4+3

S
ta

nd
ar

di
se

d 
N

et
 B

en
ef

it

A

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3
Decision threshold for detection of Gleason ≥3+4

S
ta

nd
ar

di
se

d 
N

et
 B

en
ef

it

B

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3
Decision threshold for detection of any prostate cancer

S
ta

nd
ar

di
se

d 
N

et
 B

en
ef

it

C

Comparators

Treat All

Treat None

SoC

EN2

ExoRNA

ExoGrail

Figure 7.9: Exploration of the standardised net benefit (sNB) by decision
curve analysis (DCA) for adopting risk models to aid the decision to under-
take an initial biopsy for patients presenting with a serum PSA ≥ 4 ng/mL,
where current clinical practice is to biopsy all patients. The accepted pa-
tient/clinician risk threshold for accepting biopsy is detailed on the x-axis.
Different biopsy outcomes are shown in each of the three panels; A - detec-
tion of Gleason ≥ 4+3, B - detection of Gleason ≥ 3+4, C - any cancer;
Blue- biopsy all patients with a PSA > 4 ng/mL, Orange - biopsy patients
according to the SoC model, Green - biopsy patients based on the Engrailed
model, Purple - biopsy patients based on the exoRNA model, Red - biopsy
patients based on the ExoGrail model. To assess the benefit of adopting
these risk models in a clinically relevant population we used data available
from the control arm of the CAP study for proportionally resampling the
ExoGrail cohort. DCA curves were calculated from 1,000 bootstrap resam-
ples of the available data to match the distribution of disease reported in
the CAP trial population. Mean sNB from these resampled DCA results are
plotted here.

Decision curve analyses examined the net benefit of ExoGrail adoption in a population
of patients with a clinical suspicion of prostate cancer and a PSA level suitable to trigger
biopsy (≥ 4 ng/mL). The biopsy of men based upon their ExoGrail risk score provided a
net benefit over current standards of care across all decision thresholds examined and was
the most consistent amongst all comparator models across a range of clinically relevant
endpoints for biopsy (Figure 7.9).
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Figure 7.10: . Estimation of biopsy reduction, as calculated by comparing
the DCA-calculated net benefit of each risk model to the net benefit of the
standard of care (SoC) model. The accepted patient/clinician risk threshold
for accepting biopsy is detailed on the x-axis. Different biopsy outcomes
are shown in each of the three panels; A - detection of Gleason ≥ 4+3, B -
detection of Gleason ≥ 3+4 and C - any cancer. Coloured lines show differ-
ing comparator models; Blue- biopsy all patients with a PSA > 3 ng/mL,
Orange - biopsy patients by according the to the SoC model, Green - biopsy
patients based on the Engrailed model, Purple - biopsy patients based on
the ExoRNA model, Red - biopsy patients based on a the ExoGrail model.
To assess the benefit of adopting these risk models in a clinically relevant
population we used data available from the control arm of the CAP study
for proportionally resampling the ExoGrail cohort. DCA curves were cal-
culated from 1,000 bootstrap resamples of the available data to match the
distribution of disease reported in the CAP trial population. Net benefit,
averaged over all resamples are used to calculate the potentially reductions
in biopsy rates here.

Using the SoC model as the baseline with which to compare the potential for biopsy
reduction of each model, we found that ExoGrail could reduce unnecessary biopsy rates by
upwards of 40%, depending on accepted patient-clinician risk. For example, if a decision
threshold of 0.1 were accepted, representing a perceived risk of 1 in 10 for Gleason ≥ 3+4
on biopsy, ExoGrail could result in up to a 35% reduction in unnecessary biopsies of men
presenting with a suspicion of prostate cancer, whilst also correctly identifying patients
with more aggressive disease. If Gleason ≥ 4+3 were considered the threshold of clinical
significance, a more conservative decision threshold of 0.05 could save 32% of men from
receiving an unnecessary biopsy (Figure 7.10).

136



7.5. ExoSpec: high-dimensionality data require alterations to the FrameWork

7.4.3 Discussion

The results here represent the potential that can be harnessed both from the FrameWork,
and the data within the Movember GAP1 project, showing that an improved multivariable
risk prediction model can be robustly developed from the information derived from multiple
urine fractions in conjunction with clinically based measurements. The final model named
ExoGrail incorporated markers from genes well known to be associated with prostate cancer,
and proven in other urinary tests such as PCA3, HOXC6, and the TMPRSS2/ERG gene
fusion. An interesting, non-linear interaction between the urinary protein levels of EN2
and quantified levels of the SLC12A1 transcript shows both the benefit of considering
information from multiple biological sources, and using statistical approaches capable of
handling non-linear terms readily (Figure 7.4).

As shown with ExoMeth in Chapter 6, application of the FrameWork for the integra-
tion of datasets from sources with previously proven prognostic utility is able to produce
favourable results. Where multiple assays could be performed at the same time on urine
samples in future there may be more of a benefit to considering their results simultaneously
within a single risk model or applying the FrameWork, as opposed to considering each in
isolation separately or at best, additively. However, the same artefacts of the smaller EN2
dataset discussed above in section 7.3.3 cannot be ruled out without a larger dataset to
examine.

7.5 ExoSpec: high-dimensionality data require alterations to
the FrameWork

7.5.1 Methods

Patient cohort and characteristics

Samples within the Movember GAP1 cohort (see Sections 9.2 & 3) with both cf-RNA
NanoString data and capillary electrophoresis mass spectrometry (CE-MS) analysis com-
pleted were used for the ExoSpec development cohort (n = 192). All samples analysed
in the ExoSpec cohort were collected from the Norfolk and Norwich University Hospital
(NNUH, Norwich, UK).

Sample Processing

Cell-free RNA (cf-RNA) was isolated and quantified from urinary extracellular vesicles
using NanoString technology as described in Section 3.1.1. All NanoString data presented
here were normalised according to NanoString guidelines using NanoString internal positive
controls, and log2 transformed as described in Section 3.1.1.

Clinical variables considered were serum PSA, age at sample collection, DRE impression
and urine volume collected. Peptidomic analysis by CE-MS was performed by Mosaique
Diagnostics in Germany using protocols previously established by Metzger et al. (2013)209,
and described in Section 3.1.1.

Statistical analysis

Peptide data were filtered a priori (see Section 3.1.4. All data and scripts required to repro-
duce the ExoSpec analyses can be found at https://github.com/UEA-Cancer-Genetics-
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Lab/ExoSpec.

Feature Selection

Following a priori filtering, the ExoSpec cohort comprised a total of 814 possible vari-
ables for predictive modelling including cf-RNA (n = 167), peptides (n = 643) and clinical
variables (n = 4) was derived. The large featureset, even post-filtering, made feature selec-
tion by resampled-Boruta infeasible. Alterations were made to the FrameWork described
in Chapter 6 at the feature selection stage, with cross-validation and penalisation used
to assess variable importance as follow: variables significantly associated to TriSig level
were robustly identified by the application of a 20-fold cross validated LASSO-penalised
generalised linear model, fit using the glmnet package210. Only those variables with coeffi-
cients were not decreased to zero by the LASSO penalisation were considered further, and
positively selected as input for model fitting.

Comparator Models

To evaluate potential clinical utility, additional models were trained as comparators using
subsets of the available variables across the patient population, similarly to those models
described in Chapter 6. A clinical standard of care (SoC) model was trained by incorporat-
ing age, PSA, T-staging and clinician DRE impression; a model using only the pre-filtered
peptides (MassSpec, n = 643); and a model only using NanoString gene-probe information
(NanoString, n = 167). The fully integrated ExoSpec model was trained by incorporating
information from all of the above variables (n = 814). Each set of variables for comparator
models were independently selected via the cross-validated LASSO feature selection process
described above to select the optimal subset of variables possible for each predictive model.

Model Construction

See section 7.4.1 above.

Statistical evaluation of models

See section 7.4.1 above.

7.5.2 Results

The ExoSpec Development cohort

Paired cf-RNA and proteomic data were available for 192 patients within the Movember
GAP1 cohort, all originating from the NNUH and forming the ExoSpec development cohort
(Table 7.7). The proportion of Gleason ≥ 7 disease in the ExoSpec cohort was 53%.
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Table 7.7: Characteristics of the ExoSpec development cohort

Cancer finding No cancer finding
Collection Centre:
NNUH, n (%) 133 (100) 59 (100)

Age:
minimum 53.00 45.00
median (IQR) 70.00 (65.00, 76.00) 67.00 (59.50, 71.00)
mean (sd) 70.23 ± 7.81 66.15 ± 8.30
maximum 91.00 82.00

PSA:
minimum 4.10 0.30
median (IQR) 10.40 (6.90, 16.60) 5.30 (2.30, 7.95)
mean (sd) 16.81 ± 17.36 6.44 ± 5.96
maximum 95.90 30.30

Prostate Size (DRE Estimate):
Small, n (%) 12 (9) 16 (27)
Medium, n (%) 67 (50) 25 (42)
Large, n (%) 38 (29) 14 (24)
Unknown, n (%) 16 (12) 4 (7)

Gleason Score:
0, n (%) 0 (0) 59 (100)
6, n (%) 31 (23) 0 (0)
3+4, n (%) 48 (36) 0 (0)
4+3, n (%) 25 (19) 0 (0)
≥ 8, n (%) 29 (22) 0 (0)

Biopsy Result:
Biopsy Positive, n (%) 133 (100) 0 (0)
Biopsy Negative, n (%) 0 (0) 36 (61)
No Biopsy, n (%) 0 (0) 23 (39)

Feature selection and development of models

LASSO-penalised general linear models were applied through 20-fold cross-validation to the
individual feature sets; the cf-RNA variables, the urinary mass spectrometry counts, and the
clinically available parameters, as described above. Following a priori filtering,643 peptides
were considered for feature selection through regression analysis, with a 13 peptides selected
as predictive for biopsy outcome. Among the 13 significant predictive peptides were frag-
ments of matrix metalloproteinase-2 (MMP2), three peptide fragments of fibrinogen alpha
chain (FGA), NAD kinase (NADK) and Histone H1.4 (HIST1H1E) were all identified with
increased urinary abundance in prostate cancer patients (Table 7.8). Substrates of MMP2,
such as fibrillar type I, collagen 1 alpha 1 (COL1A1) and basal collagen type IV (COL4A3,
COL4A5) were detected in decreased abundance, as well as glutamate dehydrogenase 1
(GLUD1) (Wilcox Rank Sum Test, Table 7.8).

Application of the same LASSO regression to the cf-RNA feature-set resulted in six
significant transcripts being positively selected. The ERG exons 4 - 5 gene-probe along with
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PCA3, TMEM45B and SLC12A1 transcripts was identified in increased urinary abundance,
whilst SERPINB5 and SNORA20 were expressed at decrease levels in prostate cancer
patients(Table 7.8). Patient age and PSA level were the only clinically available parameters
to be selected by the LASSO regression (Table 7.8).

Consideration of the fully integrated featureset identified 12 variables as important to-
wards predicting outcome across all available clinical, cf-RNA and peptide variables (Table
7.8). Of the 13 peptides selected for input to the MassSpec model and the 11 cf-RNA gene-
probes, only four peptides and three cf-RNA probes were retained for the final ExoSpec
model. Interestingly the ExoSpec model further incorporated an additional two peptide
fragments of FGA not deemed to be useful when only peptides were considered (Table 7.8).
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Table 7.8: Features selected by the cross-validated LASSO to be used as
input variables for each Random Forest comparator model.

SoC MassSpec ExoRNA ExoSpec
Fold Change
(No Cancer
vs Cancer)

Serum
PSA - - Serum PSA 10.37*

Clinical
Parameters Age - - Age 4.08*

- - - FGA 2.05†

- - - FGA 1.66†

- COL1A1 - - -0.45†

- COL1A1 - - -0.84†

- MMP2 - - 2.26†

- COL2A1 - COL2A1 2.80†

- COL4A4 - - 2.42†

- GLUD1 - GLUD1 -1.12†

- COL1A1 - - 2.67†

- COL4A3 - - -0.71†

- HIST1H1 - HIST1H1 2.82†

- COL4A5 - - -0.81†

- NADK - - 0.34†

Peptide
Targets

- FGA - FGA 2.49†

- - ERG exons 4-5 ERG exons 4-5 2,25†

- - PCA3 PCA3 2.08†

- - SERPINB5/Maspin - -0.27†

- - SLC12A1 SLC12A1 1.81†

- - SNORA20 - -0.26†

cf-RNA
targets

- - TMEM45B TMEM45B 0.94†

* Absolute fold change † log2 fold change

The features above, identified as possessing a significant association to biopsy outcome,
were subsequently used to train four Random Forest-based models, utilising differing subsets
of the available featuresets:

1) A clinical standard of care (SoC) model, using only clinically available information (n
= 2).

2) A model using only peptide data from CE-MS (MassSpec, n = 13).
3) A cf-RNA model, using only NanoString-derived cf-RNA counts (ExoRNA, n = 6).
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4) The fully integrated model, using information from clinical, peptide and cf-RNA data
(ExoSpec n = 12).

Predictive utility of ExoSpec and comparator models

Figure 7.11: ExoSpec risk score for each patient, presented as a waterfall
plot. Each individual biopsy is represented as a coloured bar, where the
height represents the predicted risk score, and filled according to the Gleason
score (Gs). In a perfectly calibrated model the colours would be ordered with
no overlap. Green - No evidence of cancer, Blue – Gs 6, Orange - Gs 3+4,
Red - Gs ≥ 4+3.

ExoSpec appeared to be well calibrated, ordering patients appropriately in ascending risk,
with an increased ExoSpec score (range 0 - 1) resulting in a significantly higher likelihood
of more aggressive disease being detected upon an initial biopsy (Proportional odds ratio =
2.26 per 0.1 ExoSpec increase, 95% CI: 1.91 - 2.71; ordinal logistic regression, Figure 7.11)

The AUC returned by ExoSpec for predicting the presence of Gleason ≥ 3+4 = 0.83
(95% CI: 0.77 - 0.88), superior to the SoC model, as well as both molecular based models
(MassSpec and ExoRNA, all P < 0.001, bootstrap test, 1,000 resamples, Table 7.9). When
the detection (or exclusion) of any cancer on initial biopsy was considered, ExoSpec showed
a remarkable predictive ability, with an AUC of 0.91 (95% CI: 0.86 - 0.96, Table 7.9).
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Table 7.9: AUC of random forest models for detecting differing outcomes on
initial biopsy. Brackets show 95% confidence intervals of the AUC, calculated
from 1,000 bootstrap resamples.

Biopsy outcome: SoC MassSpec ExoRNA ExoSpec
Gleason =4+3: 0.76 (0.69 - 0.83) 0.70 (0.62 - 0.77) 0.67 (0.58 - 0.74) 0.82 (0.75 - 0.88)
Gleason =3+4: 0.71 (0.64 - 0.78) 0.69 (0.60 - 0.76) 0.75 (0.67 - 0.81) 0.83 (0.76 - 0.88)
Any Cancer 0.78 (0.70 - 0.85) 0.76 (0.68 - 0.83) 0.84 (0.78 - 0.90) 0.91 (0.86 - 0.95)

Figure 7.12: Risk score distributions generated by the four comparator mod-
els fit to the data, where each comparator was fit with different input vari-
ables. A - SoC clinical risk model, including Age and PSA, B - MassSpec
model incorporating peptide data, C -ExoRNA model, utilising only cf-RNA
data D - ExoSpec model, integrating clinical parameters, peptide data and
cf-RNA data. Biopsy outcomes are indicated according to fill colour, where
a clinically significant biopsy outcome (Gs ≥ 3+4) is orange and Gs ≤ 6 on
biopsy is blue.

When risk score distributions were explored, it was confirmed that the SoC model
broadly reflected the problems currently exhibited in the clinic. The SoC model was able
to discriminate the lowest and highest risk patients with good accuracy, but not accurately
separate clinically significant Gleason 3+4 disease from Gleason 6, with the latter possessing
a higher mean SoC risk score than the more indolent disease group (Figure 7.12A). Both
the MassSpec and the ExoRNA comparator models performed similarly, with no significant
improvement of the one AUC estimate over the other for predicting biopsy outcome (Fig-
ure 7.12B & 2C). The integrated ExoSpec model displayed clear improvements and showed
substantial value in excluding a false cancer finding on initial biopsy (Figure 7.12D).
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Figure 7.13: Estimation plots for the ExoSpec risk signature, where the top
row details each patient biopsy as a point, stratified by Gleason score across
the x-axis and ExoSpec risk signature on the y-axis. Each patient sample
point is coloured according to their D’Amico clinical risk category; NEC
- No evidence of cancer, Raised PSA - Raised PSA with negative biopsy,
L -D’Amico Low-Risk, I - D’Amico Intermediate Risk, H - D’Amico High-
Risk. Mean and standard deviation ExoSpec risk signatures for each group
is shown by the gapped vertical lines. The bottom panel shows mean dif-
ferences in ExoSpec signatures relative to NEC patient samples. Calculated
from bias-corrected and accelerate bootstrap resampling (1,000 resamples
with replacement), sample density distributions are presented with a point
estimate and vertical bar to show mean difference and 95% confidence inter-
vals, respectively.

Resampling of ExoSpec predictions via estimation plots allowed for comparisons of mean
ExoSpec scores between groups by 1,000 bias-corrected and accelerated bootstrap resamples
(Figure 7.13). The mean ExoSpec score differences between patients with no evidence of
cancer on biopsy were: Gleason 6 = 0.38 (95% CI: 0.32 - 0.44), Gleason 3+4 = 0.4 (95%
CI: 0.34 - 0.45) and Gleason ≥4+3 = 0.51 (95% CI: 0.45 - 0.56). Notably, patients with
a raised PSA but negative for cancer on biopsy had a higher ExoSpec risk score than
those with no evidence of cancer (mean difference = 0.2 (95% CI: 0.13 - 0.26)). Patients
negative for cancer findings and with elevated PSA levels also exhibited a wider ExoSpec
score distribution than other clinical categories, suggesting these patients may not form a
homogeneous molecular or biological group (Figure 7.13).

144



7.5. ExoSpec: high-dimensionality data require alterations to the FrameWork

Net benefit of adopting ExoSpec

Figure 7.14: Standardised net benefit (sNB) of adopting each comparator
model into clinical practice, displayed as decision curves, relative to stan-
dards of care. Accepted risk thresholds for the interpreter before agreeing
to biopsy are shown on the x-axis. Each panel shows the relative sNB of
a different biopsy outcome result when compared to standards of care: A-
detection of any prostate cancer, regardless of Gleason, B - detection of Glea-
son = 3+4, C - detection of Gleason = 4+3. Coloured lines in each panel
detail the comparator: Orange – biopsy of patients according to current
standards of care, Green - biopsy patients based on the MassSpec model,
Purple - biopsy patients based on the ExoRNA model, Red - biopsy pa-
tients based on the ExoSpec model. Data presented here were calculated
from 1,000 stratified bootstrap resamples of the available data to match the
disease proportions reported from the control arm of the CAP study. The
mean sNB from these resamples were calculated and presented here.

Decision curve analysis examined the net benefit of adopting ExoSpec in a population of
patients suspected to harbour prostate cancer, with a PSA threshold of 4 ng/mL, suitable
to trigger biopsy by current clinical guidelines5. Using the SoC model as the baseline with
which to compare ExoSpec to, the biopsy of patients based upon their ExoSpec risk score
consistently provided a net benefit across all decision thresholds and endpoints examined
and was the only comparator model not apparently harmful at some threshold when com-
pared to the SoC model (Figure 7.14). The ExoSpec model again showed a synergistic
ability to rule out disease on an initial biopsy, greater than each of the comparator models
in isolation (Figure 7.14.
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Figure 7.15: Potential reductions in unnecessary biopsies when consider-
ing different biopsy outcomes, calculated by measuring net benefit that the
adoption of difference comparator risk models could bring compared to stan-
dards of care. Accepted risk thresholds for the interpreter before agreeing to
biopsy are shown on the x-axis. Each panel details the percentage reduction
in biopsies for a differing biopsy outcome. Each panel shows the relative
sNB of a different biopsy outcome result when compared to standards of
care: A- detection of any prostate cancer, regardless of Gleason, B - detec-
tion of Gleason = 3+4, C - detection of Gleason = 4+3. Coloured lines in
each panel detail the comparator: Orange – biopsy of patients according to
current standards of care, Green - biopsy patients based on the MassSpec
model, Purple - biopsy patients based on the ExoRNA model, Red - biopsy
patients based on the ExoSpec model. Data presented here were calculated
from 1,000 stratified bootstrap resamples of the available data to match the
disease proportions reported from the control arm of the CAP study. The
mean change in biopsies performed were calculated across all resamples and
presented here as a percentage, for full details see Methods.

Once more, when compared to the SoC model, ExoSpec could result in a reduction in
unnecessary biopsies by more than 30% for detecting clinically significant (Gleason ≥ 7)
disease across a range of reasonable decision thresholds (0.1 – 0.3, Figure 7.15).

7.5.3 Discussion

ExoSpec, whilst showing promising results, represents some of the limitations in the design
of the FrameWork through the use of such highly-dimensional data seen in the CE-MS
dataset. The Boruta algorithm as a feature selection tool is very good as an all-relevant
feature selection approach robust to collinear predictors and interactions149. However, this
comes at the cost of increasing computational requirements, where Boruta scales with O(P×
N), where P and N are the numbers of attributes and samples, respectively149. With
the resampling employed within the FrameWork this computational requirement is then
multiplied further by both the number of resamples taken and the number of comparator
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models, making it an untenable prospect. With the computational limitations considered,
a more appropriate initial approach was applied here, using cross-validation and LASSO
penalisation to identify variables important to predicting biopsy outcome.

Connell et al. have previously reported cf-RNA derived features as predictive biomarkers
for significant prostate cancer8,111 (See Chapters 4 and 6), including ERG exons 4 - 5, PCA3,
SERPINB5/Maspin, SLC12A1 and TMEM45B selected here. Similarly, several collagen
and fibrinogen fragments selected in ExoSpec have also been previously reported as CE-MS
biomarkers for discrimination of prostate cancer patients from those without malignancy129
and also for detecting significant prostate cancer211. Importantly, not all significant features
from the individual comparator models added value to the integrated ExoSpec model. These
observed differences could be attributed in part to redundant information shared between
the multiple methods of appraising disease status of the prostate.

Application of LASSO-penalised general linear model for feature selection is arguably
suboptimal for avoiding overfitting through feature selection, even within 20-fold cross-
validation as the variability seen in Chapter 5 between data splits is still likely to have an
influence. I would recommend a further, more targeted study examining a much smaller
selection of peptides quantified by CE-MS before embarking on a costly validation study of
ExoSpec.

7.6 Conclusions
Developed in this chapter, ExoGrail joins ExoMeth as a promising example of what is
achievable by the FrameWork using data from more targeted analyses. ExoGrail outper-
formed both clinical standards and the individual sources of biomarkers in isolation, with
predictive accuracy that could result in sizeable changes to the patient journey for those
suspected to have prostate cancer. The interactions observed between EN2 protein levels
and the cf-RNA SLC12A1 gene-probe show that by integrating information from multiple
sources can result in risk models with increased utility (Figure 7.4). Furthermore, the use
of a machine learning algorithm such as Random Forests that can natively account for both
the non-linearity of each biomarker and their interaction means no additional data or prior
knowledge is required to model those relationships.

However, the FrameWork as conceived does not represent a singular solution for all
types of biodiscovery datasets, where it was unable to handle very large featuresets without
unreasonable amounts of computation. With alterations to the feature selection process
by using cross-validated and penalised generalised linear models it was still possible to
perform robust feature selection in a dataset of over 800 parameters. With only 20-folds for
cross-validation, this process will not be as robust to overfitting as Random Forest based
methods that employ resampling, nor able to consider as many features. A key limitation of
the LASSO when dealing with more predictors than observations (p > n) is that the LASSO,
at most selects n features, and may not be stable212. This does not appear to be an issue
encountered here, where strong a priori filtering was employed to further reduce the number
of peptides considered from >30,000 down to 643, with the final ExoSpec model retaining
12 variables for final modelling. This result would benefit from further experimental work,
considering a more targeted set of peptides, perhaps by generating a list with less strong
regularisation.

Both ExoGrail and ExoSpec models require validation studies before clinical use can be
considered in any meaningful way, with ExoSpec arguably requiring more careful validation
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to further ascertain whether the features selected here are indeed generalisable to a larger
cohort whilst examining fewer peptides. Implementation of a test based on data integration
across multiple assays poses a technical challenge for implementation. Requiring additional,
potentially complex and disparate assay methods increasing the risk of technical failures
(false positive or negatives from a single assay), logistical complexity and increased material
costs. This is something that requires consideration when moving towards validation and
commercial implementation. A study of the health economics and feasibility of implemen-
tation would be wise, though this falls outside the scope of this thesis, that concentrates
on the analytical aspects of prognostic biomarker development. In the next chapter the
design of a large, multicentre prospective collected clinical trial will be considered, with the
explicit aim of easing the journey to clinical use for the developed risk models presented in
this thesis.

148



Chapter 8

Discussion

I have demonstrated in this thesis that clinically useful information is available from urine
where prostate cancer is concerned. Coupled with the ease of non-invasive sampling, urine
biomarkers could be responsible for a considerable change to both the risk stratification of
patients suspected to have prostate cancer, and the long-term monitoring of those with low
risk disease. Consideration of multiple biological aspects within urine, from whole urine
through to the cell-free and cell pellet fractions, can result in considerably more predictive
information being uncovered when analysed carefully. Investigations such as these are only
really possible with large, collaborative studies such as the Movember GAP1 project, where
the specific expertise of collaborators allows a wide biodiscovery net to be cast. Unfortu-
nately in this case due to practical constraints, not all samples were assayed by all methods,
making overlaps between datasets somewhat limited. Regardless, considerable value was
shown to be within the GAP1 datasets through the development of several promising prog-
nostic risk models, research publications, and the generation of two pieces of intellectual
property.

8.1 Results from this thesis
Chapter 4 described the initial development of one such risk model called PUR, integrating
information from NanoString data and using a training/test data splitting strategy to fit
a LASSO-penalised constrained continuation link ratio regression model. PUR compared
favourably to other published urine tests, with additional utility in the apparent prediction
of long-term outcomes in a small AS sub-cohort. More detailed investigation showed that
this ability may be driven by cohort-specific effects rather than predictive utility of the
model itself, requiring further study to definitely answer which is the case. Prognostication
of active surveillance patients via non-invasive sampling could meaningfully change how
patients with lower risk prostate cancer are monitored, and hopefully reduce the rates of
self-election for treatment that can be reported reach over 30%69. Of course, with better
triage tools that can save an unnecessary biopsy, less indolent disease overall would be
diagnosed and therefore, fewer patients being enrolled onto AS.

Biological data are commonly highly variable, derived from complex systems with
many diverse interactions and the data are characterised by multiple dependencies and
interactions213. This complexity is increased even more so in observational cohort-based
biodiscovery studies such as the GAP1 project, where experimental design and manipula-
tion of variables cannot be altered to compensate for variance. The reduction of variance
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in the data is absolutely key where predictive analytics and the development of clinical risk
models are concerned. Careful consideration of modelling strategies can, and does, have a
large effect on a model’s predictive ability. Explored in Chapter 5, the effects of altering the
machine learning algorithm and training labels were quantified, where ensemble algorithms
presented the best solution to capturing the most amount of variance. The Random
Forest algorithm consistently outperformed both LASSO-based linear regression analyses
and gradient boosting machines using decision trees. The benefits of the Random Forest
algorithm are many, including the inherent use of bootstrap resampling and aggregation of
results across many weak learners to provide a single strongly internally-validated model
without any additional user input142. This makes the algorithm ideal for biodiscovery
applications, where there are often no strong prior hypotheses or assumptions concerning
expression patterns or variable distribution.

Incorporating the findings from Chapter 5, further analyses were undertaken in Chapters
6 and 7, developing a robust feature selection and machine learning framework and applying
it to the NanoString dataset alongside methylation, ELISA, and proteomic datasets. The
developed mulitmodal risk prediction models revealed even greater clinical utility for biopsy
reduction and risk stratification than PUR. Where prediction of disease status is the priority,
rather than understanding the pathobiology of prostate cancer, consideration of multiple
modalities within urine samples alongside clinically available parameters results in better
models. Of course, this somewhat removes biological interpretability, but this is often more
of a concern for studies concentrating on more basic research rather than the translational
outcomes explored here. Regardless of this limitation, it was shown that the GJB1 cf-RNA
gene-probe was frequently the most important variable for predicting biopsy outcome, a
novel finding not reported before for prostate cancer. Multiple markers previously associated
with prostate cancer were additionally selected with widespread agreement across each of
the models, including the TMPRSS2/ERG gene fusion and PCA3 cf-RNA probes from
NanoString data. The clinical relevance of serum PSA for disease identification was also
confirmed and improved upon when considered with multiple other variables to account for
the non-specificity of PSA alone that is widely documented5,160,214.

Each of these models compared favourably the results reported by existing urine tests,
including the now validated SelectMDx and ExoDx Prostate Intelliscore tests. Where PUR
equalled their reported discriminatory ability determined by AUC for predicting Gleason ≥
7 (SelectMDx = 0.81, n = 715 with a PSA < 10 ng/mL100, ExoDx = 0.71, n = 519 with PSA
2 - 10 ng/mL103), it proved to have potentially novel predictive use in active surveillance
that as of yet, has not been matched. The ExoMeth and ExoGrail models exceeded both
aforementioned tests, as the integration of multiple modalities had a synergistic effect on
biopsy prediction. To the best of my knowledge there are currently no other urine-based
tests that assay multiple aspects of the prostate for identifying disease status, though a
combination of methylation and miRNA in tissue has been shown to add value for predicting
biochemical recurrence195. If implementation of these models as a clinical test is deemed
practical and validated, they could have a sizeable impact on patient care in the UK.

8.2 Potential clinical impacts
Almost 50,000 cases of prostate cancer are diagnosed each year in the UK, with up to 80%
of these PSA-detected cancers being clinically irrelevant1. Without treatment, they would
never have caused symptoms or endangered the life of the patient. Treatment with curative
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intent, such as surgery, chemotherapy or radiotherapy, should be focused on patients with
clinically significant disease, not those with indolent forms of prostate cancer in order to save
them from the potentially life-altering side-effects of treatment. Concentrating on removing
these patients from the clinical pathway earlier on, rather than identification of the most
at-risk would have an impact on larger numbers of men, and greater savings in healthcare
systems.

The main impacts of the results from this thesis will be for those patients with a clinical
suspicion of prostate cancer (raised PSA, lower urinary tract symptoms etc.). Implementa-
tion of a urine test for triaging these patients prior to any invasive biopsy would remove a
sizeable amount of stress and worry for the patient. In the medium term, and with further
causal research the personalised molecular-level information for patients has the potential
to more accurately inform clinician decisions about why the disease may require treatment.
With suitable validation and clinical adoption of tests, the long-term impacts of this work
would be evidenced in policy and guideline changes, particularly those of NICE and the
European Association of Urology. With updated guidelines and subsequent reduction in
the number of biopsies performed, economic impacts could be seen in reduced material and
clinician costs, especially within expensive tertiary care settings.

8.3 Requirements to realise this impact
In order to realise the potential impacts, all of the models reported in this thesis require ro-
bust external validation in order to generate suitable levels of evidence to allow prospective
treatment of patients based on their urinary molecular profiles. Strong internal validation
will always best weak-external validation, as evidenced by the TRIPOD guideline’s prefer-
ences for type 1b analyses over type 2a21. Whilst the combination of internal validation
methods such as cross-validation and resampling with external validation in one study de-
sign is the ideal setting, this isn’t often feasible and instead compromises have to be made.
In the case of the work presented in this thesis, the decision to use resampling and not use
weak validation methods was made to avoid caveats being placed on models and producing
potentially overly optimistic results.

There is no single solution to guarantee validation and subsequent adoption of any
clinical risk model, as Rittenhouse et al. described in their journey for the first breakthrough
urine test to receive FDA approval, it takes years and a constant awareness of the challenges
that must be faced92. Planning for future regulatory and practical challenges at each stage
of study design should be prioritised above many other immediate goals to avoid endless
iterations of studies. Moving carefully and with purpose when study design is considered
greatly increases the chances, not only of successful validation, but of the evidence generated
be acceptable to clinical bodies like NICE and the EAU. Even in the case of a failed
validation, careful study design allows for the collected data to have secondary and tertiary
uses in new model development and updating, or for more practical purposes such as assay
optimisation. In the next chapter I will describe the design of a validation study that also
formed part of a successful grant application to Prostate Cancer UK that has already begun
sample collection.
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Chapter 9

Future Work

9.1 Summary
The design of future studies with the express aim to validate the models developed during
this thesis, including options to update or calibrate models if needed are described in this
chapter. The evidence levels presented by the TRIPOD guidelines are considered again to
provide the rationale for a multi-centre cohort study including both prospective and retro-
spective curation of cohorts. A carefully curated retrospective cohort of patients from the
Norfolk and Norwich University Hospital will be used as an initial validation and explo-
ration cohort. The data from here can be used to assess the calibration of multivariable
risk prediction models against very well characterised patients and if required, recalibrate
models without the risk of losing validation potential.

Following the internal calibration and validation of models, multiple external cohorts will
be prospectively collected from urology clinics around the UK. Samples will be collected
from patients as they present at clinics in order to realistically capture a “snapshot” of
disease proportions in a real, local population. Each external cohort can then be used as a
validation cohort of their own, or if samples numbers do not allow this, pooled and assessed
as one larger cohort with blocking for collection site. The collection of samples from an
active surveillance (AS) cohort is also described, with the aim to more definitively answer
how predictive of outcome the PUR model truly is. The curation of this AS dataset will be
very finely controlled, with patients very well characterised and followed for at minimum
five years. Following this observation period the predictive utility of the PUR model or
D’Amico status can be assessed. If neither is deemed to be prognostic at five years, the
dataset can be used to train a time-dependent survival model incorporating NanoString
data, specifically for use in AS cohorts. This of course would then require further validation
in a new study over multiple years.

9.2 Introduction
Fewer than 1% of published cancer biomarkers see clinical adoption16. This is to be expected
somewhat, considering most initial publications are academic in nature, predominantly
describing a discovery. Additionally the research aims and scope at the start of early-
stage biodiscovery trials can be ambiguous as to the key decisions required to see any new
discovery through to clinical validation. Quality control rules, patient populations to collect,
inclusion/exclusion criteria, data processing, and early interruption for preliminary analyses
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all have to be considered with one eye on validation in the future16,21,215. As Rittenhouse et
al. describe with the PCA3 test, the time-scale over which these need to be considered can
be over a decade before clinical acceptance of a biomarker92. Obviously it is not realistic to
expect to simultaneously develop, validate, and gain regulatory approval for a clinical test
for prostate cancer in a single study, instead multiple studies are required to generate strong
evidence of utility and surety in individual predictions from a risk model before adoption
can be considered. However with careful thought and design, it is certainly possible to
reduce the number of repeated studies required to develop and validate a urine test for
prostate cancer92.

9.2.1 Compliance to TRIPOD guidelines

Figure 9.1: Types of prediction model studies covered by the TRIPOD state-
ment. D = development data; V = validation data. Models described within
this thesis are italicised. Adapted from the TRIPOD Statement

Considering the hierarchy of analysis types described by the TRIPOD guidance briefly cov-
ered in Chapter 1, we can examine where the models presented in this thesis fall (Figure
9.1). Where PUR meets the requirements of a Type 2a study using a randomly selected split
of data to create development and validation datasets, the models developed by application
of the FrameWork fall into Type 1b analyses (Figure 9.1). Type 2a analyses are generally
not recommended nor necessarily better than Type 1b as they generally lead to a lack of
power181,216,217 and, as observed in Chapter 5, can result in highly unstable model perfor-
mance dependent on the random split of the data. Instead, the authors of the TRIPOD
guidelines recommend Type 1b analyses using internal validation methods such as resam-
pling as a prerequisite for model development, especially where data are limited181,217,218.

For the models developed during this thesis the next step will be to perform Type
4 validation analysis; with the sole aim being to validate each of the models. In theory
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this simply requires enough samples need be collected to fairly evaluate the predictive
performance of the pre-specified models in new data. However, there are certain drawbacks
and inefficiencies to such a simple design. Updating of models cannot be achieved without an
additional study217, furthering the costs and time taken before potential clinical adoption.
Additionally, whilst the reduced data collection requirements of a validation only study
are welcome, they limit the usefulness of the data beyond validation, where more rigorous
collection of data could see new models developed regardless of validation outcome.

With the above considered, in the following sections I will describe the process and
rationale for a multi-centre study, with samples collected and analysed in such a way to
allow for recalibration or updating if necessary. Additionally, if recalibration of models is not
required, the results of the suggested study can be used to simply provide stronger evidence
of clinical utility in further external cohorts. One reason for models requiring updating may
be that as data from the GAP1 study were collected some time ago, analytical or clinical
methods and assays have changed since initial sample collection, such as the routine use of
mpMRI as a first-line triage tool. Our sample collection procedure has also been updated
and improved, resulting in an at-home collection protocol that results in more stable samples
from patients, improving the quality of extracted RNA and avoiding the requirement of a
DRE219. These changes will alter both the underlying distribution of molecular patterns
in the data, and the reported proportions of disease within cohorts, which will have an
unknown impact on model stability and needs to be assessed before embarking on external
validation.

9.2.2 Goals of future studies

“A validation study has a specific goal: quantifying the performance of a model
in other data.” — TRIPOD Statement21

Validation of developed models is the primary aim of the designed studies described here.
However, there are multiple secondary objectives that if achieved, substantially improve the
likelihood of realising a urine test for prostate cancer:

• Validate models across multiple external centres using existing models, as published.
• Ensure models are suitably calibrated, with predicted risk scores matching disease

proportions in a well-characterised population.
• Compare prognostic ability to current clinical standards including multiparametric

MRI.
• Collection of additional parameters to enable calculation of popular nomograms and

risk calculators.
• Prove predictive ability in active surveillance usage and/or enable development of a

specific time-dependent prediction model
Patient recruitment across multiple different cohorts and incorporating differing experimen-
tal/recruitment designs are required in order to achieve these goals. For example, suitable
calibration of models needs a very carefully curated and well-characterised patient cohort
that would be retrospectively collected. On the other hand, any external validation should
occur using prospectively collected samples that accurately represent the real patient popu-
lation seen within the healthcare system being used. The underlying theory in considering
such a rigorous multi-cohort design at this stage allows for an immediate transition from
successful model validation to large randomised control clinical trials (RCT). Whilst a su-
periority RCT is several years away at the earliest, it is envisaged that the intervention
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would put patients forward for biopsy, or remove them from the treatment pathway, based
upon their calculated risk score from a validated model, whilst the control would be the
currently implemented clinical standards.

9.3 A three cohort design

Figure 9.2: Broad overview of the three cohorts to be collected as part of
a future validation study. The Active Surveillance cohort is collected and
analysed entirely separately from the other two cohorts, with five years of
follow-up prior to commencing analysis.

Three main cohorts are to be considered in the proposed studies; a model calibration co-
hort, a multi-centre external validation cohort and an active surveillance-specific validation
and model development cohort (Figure 9.2). Each arm of this study is designed to achieve
differing goals, again with the primary aim to produce strongly validated multivariable risk
prediction models, robust to changes in study population and ready for large-scale supe-
riority RCTs. Samples across all cohorts will be assayed by the same methods: collecting
cf-RNA data using NanoString, with ideal data collection also including whole urine EN2
levels, and urinary cell-pellet methylation.

9.3.1 The Calibration Cohort

The calibration of risk model estimates is described as the agreement between estimated and
observed number of events in a patient population220. Similar to assessing predictive utility,
models can be calibrated on several levels, in the mean, weak, moderate, or strong sense
as described by Van Calster et al.220. Calibration is crucial as poorly calibrated models
can lead to misleading predictions such as a systematic overestimation of risk, which leads
to overtreatment221. Undertaken at the validation phase in new data, the reporting of
calibration performance is recommended the TRIPOD guidelines21, as multiple systematic
reviews have found that calibration is reported far less often than discrimination222–226.
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Van Calster et al. provide an excellent review on the available specific analytical techniques
for assessing, avoiding, and correcting poor calibration227.

Two main sources are thought to affect model calibration, either related to the
model/algorithm in question, or to an external force such as the patient population227.
Patient populations tend to change over time naturally as clinical practice, referral patterns
or healthcare policies change228,229. These changes can lead to alterations in the preva-
lence/incidence of clinically significant disease compared to what was originally modelled,
resulting in poor calibration. As mentioned, the Movember GAP1 cohort was collected
several years ago, prior to the widespread adoption of mpMRI as a triage tool5 which
alone makes calibration a key task moving forwards. The second set of potential causes
for mis-calibration relate to algorithmic and statistical methodology choices. Statistical
overfitting is common227, where overfitted predictions capture too much random variance
in the original data. Though great care has been taken through this thesis to avoid such
by widespread use of resampling, statistical overfit cannot be ruled out with the small
datasets used, again making calibration absolutely necessary.

With an idealised disease with a perfect ground-truth, diagnosis or outcome is known
definitively. For example, a recording of death in the UK is definitive, with no ambiguity230.
As discussed before, this is not the case where prostate cancer is considered. Large uncer-
tainties surround a negative biopsy outcome if using TRUS-guided needle biopsy, and even
in the case of a cancer-positive finding, due to the low sampling rate specific disease burden
can be under- or over-reported when compared to radical prostatectomy47. With this con-
sidered, the goal of the Calibration Cohort is to assess the calibration of developed models
in a very well-defined patient population, carefully curated to remove as much uncertainty
about patient status as is reasonably possible. Patients will be retrospectively recruited
to this cohort from the local Norfolk and Norwich University Hospital (NNUH), where
inclusion criteria will include:

• Extensive template-derived biopsy information, including detailed histopathological
analysis

• True multiparametric MRI (comprising information from T1 and T2 weighting,
diffusion-weighted imaging and dynamic contrast enhancement).

• PSA <50 ng/mL
• Eligible for treatment, no significant co-morbidities.
• Not an extreme outlier in clinical risk category:

– For example a patient presenting with a PSA of 45 ng/mL but Gleason 3+3 on
biopsy

Collection of this cohort allows for detailed investigations into where a model may perform
well, or report erroneous results, including evaluating associations of clinical measures to
molecular patterns. This may allow for a deeper insight into the biology of prostate cancer,
and the links between the pathobiology and clinical presentation to be investigated. Such a
detailed cohort has not been previously described and would be valuable for future study,
regardless of how well models are calibrated.

9.3.2 The External Validation Cohort and sub-cohorts

Assuming models have been accurately calibrated and updated if required in the Calibration
Cohort, true validation can then be considered in external cohorts. Of course, collection
of these samples can be concurrent with the Calibration Cohort, though once analysed or
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assessed for predictive utility, cannot be used again for validation without the introduction of
both concious and unconscious bias21. Therefore the Validation Cohort can be considered
a “single-use” dataset, making it wise to be sure of accurate models before approaching
validatory analyses.

Validation over multiple smaller sub-cohorts provides stronger evidence of clinical utility
than a single large cohort, as each provides evidence commensurate with that of a TRIPOD
level 4 analysis (Figure 9.1). These sub-cohorts can form “narrow” or “broad” validation,
dependent on how they are collected231. Narrow validation could be achieved through the
successful external validation of a model in a similar setting or population to the one it was
derived or updated in231. In this case, that would be in the form of further NNUH-based
cohorts, that would be temporally separated from the Calibration Cohort. This would not
be ideal for multiple reasons; it requires some unspecified length of time to pass between
cohort collections, collection naturally takes longer, and any bias that may be present
due to geographical or socio-economic factors, or status as a university hospital remains.
Broad validation is therefore the far more reasoned option, externally validating a model
in multiple varied settings and populations, where successful validation provides evidence
that predictions from a model can be confidently used in future patients, regardless of
setting21,231. Additionally, the collection of samples can be coordinated in parallel, scaled
according to funding and time constraints, or add additional centres if and when required
with relative ease.

The External Validation Cohort presented here comprises three or more sub-cohorts,
each operating entirely independently from one another. Each sub-cohort will be collected
from a designated centre as and when patients present at a clinic. This “snapshot” recruit-
ment is designed to ensure that the collected samples from each centre are representative
of disease proportions reported at that centre. A potential weakness of this is an underly-
ing assumption of roughly equal recruitment rates and losses to follow-up at each centre.
Models can still be validated if this assumption is broken, either by reporting results with
a caveat, or through over-recruiting patients from affected clinics. Laboratory analysis of
samples should be mixed rather than batched, to ensure any laboratory batch-effects are
equally spread across sub-cohort samples.

All patients recruited will have to be deemed “eligible for biopsy”; criteria set by each
centre in isolation and agreed upon prior to commencing any sample collection, fixed in
place for the duration of sample collection. Allowing for local variations such as slightly
different PSA thresholds or triage processes, only further strengthens the evidence generated
by successful validation, showing that non-random variation between centres can be handled
by the model being validated. Relatively minimal clinical criteria are required to be collected
at this stage in order to evaluate model performance against clinical endpoints: mpMRI
outcome, Gleason score, serum PSA and patient age are all that is needed. Again, once
these samples are assessed to validate predictive performance, they can only be used for
development of new models and further updating, where the variance between centres may
not be ideal for stable model development, and specifying collection centre as a variable
would only serve to limit options for validation.

9.3.3 The Active Surveillance Validation and Development Cohort

Entirely separate from the previous two cohorts designed primarily for the validation of
models predicting biopsy outcomes, the AS Validation and Development Cohort serves two
purposes. The main aim with this prospectively collected cohort is to answer the questions
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that arose in Chapter 4, namely whether the predictive ability of PUR to predict outcome
five years in advance of progression is driven by predicted risk from the PUR model itself,
or from cohort-specific effects driving the underlying outcome, where the patients that
progressed were predominantly D’Amico Intermediate Risk and therefore inherently had
higher PUR4 risk scores.

Patients recruited into the AS Validation and Development cohort will be done so ret-
rospectively, following enrolment onto an AS programme at the NNUH. Specific enrolment
criteria will be set by the consultant clinician overseeing the programme, though all pa-
tients will have received extensive mpMRI scans, and have serum PSA levels assessed at
regular intervals for inclusion. Progression criteria will be similarly set by the attending
physician, recorded, and ideally fixed in place for the duration of the study, with self-elected
treatment recorded as a loss to follow-up. The cohort will be monitored for a minimum of
36 months, preferably waiting five years before outcomes are assessed to ensure a suitable
number of progression events are recorded. If feasible, urine samples could be collected at
regular intervals along with PSA and mpMRI data, which would both allow for further,
more detailed measurement of model stability over time, and for deriving multi-state and
interval survival models232 for outcomes other than a binary progression/non-progression.

A secondary use of this cohort is in the construction of an AS-specific, time-dependent
survival risk prediction model. As discussed in Chapter 4, there are no personalised medicine
tools available for making time-series predictions of survival outcomes for AS patients.
Given the apparent predictive ability of PUR in AS despite not being designed to do as
such, it’s hypothesised that the development of a model with the explicit goal of time-
dependent prediction is possible with suitable data. Suitable methods for developing a
model capable of returning a predicted time interval for survival outcome are an ongoing
area of research in machine learning233. Overall survival predictions may be produced using
methods similar to those employed in this thesis, including coxnet models using the elastic
net framework234, analogous to the LASSO penalised ordinal regressions of Chapter 4 and
Chapter 5, or random survival forests, adapted from the Random Forest algorithm235.

9.4 Comparisons to clinical standards and calculators
The Calibration and Validation Cohorts share the same key endpoints for assessing model
performance in the discrimination of binary biopsy outcomes of Gleason ≥ 3+4 and ≥ 4+3,
as reported during their development. mpMRI marks a new addition to clinical practice
since data were originally collected, and can be used in two ways; as an outcome in itself to
be predicted by models, or as direct competition to predictive models for predicting biopsy
outcomes. Given the cost and time intensive nature of mpMRI58, if a simple non-invasive
urine test could provide similar ability to PIRADS scores for patient triage prior to a biopsy,
it could result in large savings to healthcare systems.

As was discussed in Chapters 6 & 7, predictive utility in isolation means very little
without a point of reference to current standards of care. So far in this thesis this has been
achieved by constructing new clinical models from available data. There is an argument
that these models themselves require validation before considered true reflections of clinical
practice. Instead, with the additional of a few clinical variables, comparisons to already
validated nomograms and calculators can be made. For example, with the inclusion of
free PSA and −2proPSA measurements (a biologically inactive precursor to PSA236), the
Prostate Health Index (PHI) can be compared against. The PHI is primarily used to
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predict the likelihood of high grade, Gleason >7 disease on biopsy237, but has proven utility
in predicting progression likelihood in Active Surveillance238. This would make the PHI an
ideal comparator within the Calibration and Active Surveillance Cohorts suggested here.
As the Validation Cohort and sub-cohorts are designed to be as minimally intrusive on local
practices, it is not feasible to request extra information that is not routinely collected.

Instead, where full external validation is concerned the measures likely to be validated
against would include PIRADS scores derived from mpMRI information, biopsy outcome
or clinical risk category from pre-biopsy PSA levels and simpler clinical tools such as the
Prostate Cancer Prevention Trial Risk Calculator (PCPTRC)239. Whilst not perfect, the
PCPTRC is simple, and uses regularly collected variables of race, age, PSA, family history,
DRE impression and prior biopsy history to calculate a likelihood of significant (Gleason ≥
7) cancer on biopsy, with proven clinical utility239. In the original Movember GAP1 cohort
collection of these parameters was attempted, but many reported high levels of missingness
(e.g. >75% for family history). Extra attention will need to be made in future studies, with
quality control procedures in place at the time of data-entry.

9.5 Sample sizes
Sample size calculation for developing risk prediction models is not trivial. Datasets must
be “big enough”, capturing the population variance well enough to be of use when applied
to new individuals. Traditional power calculations do not work as there are no estimates of
effect size or statistical power to consider so instead, various blanket “rules of thumb” have
been proposed, debated and debunked240–245. Riley et al. described a sound methodology
in 2020 based on sound statistical practice and considering the number of variables, the
study population, and the margin of acceptable error in a prediction246. Unfortunately, the
methods focus primarily on regression-based algorithms and models, making it mostly in-
appropriate for our use here and we have to predominantly focus on feasibility and practical
constraints.

9.5.1 The Calibration Cohort

Collection of this cohort will be the most resource intensive, but also the most crucial that
it is undertaken thoroughly. Curation of balanced clinical categories will require a longer
recruitment time as very low and high risk patients will present at urology clinics with lower
frequency than those with intermediate disease. ExoMeth, ExoGrail and ExoSpec were
all developed in approximately 200 patient samples, whilst PUR was developed with 335
patients. Consideration of how stable the feature-sets were for each of these models showed
that even with extensive resampling, the selected variables were very stable (Chapters 6 &
7). Therefore the proposed size of the Calibration Cohort is 400 patients. This not only
allows for assessment of calibration and updating, but if curated carefully enough, could be
used for future translational and basic research studies, maximising the value of the data.

9.5.2 External Validation sub-cohorts

Designed as a “snapshot” of each clinic, recruiting patients as they present, a minimum
of 100 patient samples per centre is recommended, though this would be guided by local
practices as to how many samples they can collect. A minimum of three external centres
would result in a total validation cohort of 300 patients at the very least, but further centres
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would be desirable. As each centre operates in isolation to one another, it is also possible
to add additional centres as the project continues, and if funds allow.

9.5.3 AS Validation and Development Cohort

The time-dependent nature of active surveillance makes collection of large, well-described
cohorts difficult without extensive collaboratory efforts such as those seen in the Movember
GAP3 AS study of over 15,000 patients on AS programs247. Access to this cohort would
be an ideal goal following successful validation of PUR, or the development of a specific
time-dependent AS model as described above.

In the earliest instance, local collection and follow-up of patients from the NNUH will
suffice, as enrolment, monitoring and intervention criteria can all be tightly controlled with
the help of local clinical collaboration. With this considered, and from personal communi-
cations with NNUH clinicians, it would not be unreasonable to recruit 200 patients. These
would be closely monitored for a minimum of 36 months, with rolling enrolment and analysis
once reaching 36 months of observation.

9.6 Discussion

Figure 9.3: Evidence generated by successful completion of the proposed
trials. Models in grey represent the current status of validation, with their
updated counterparts in black. D = development data; V = validation
data. Models described within this thesis are italicised. Adapted from the
TRIPOD Statement

Successful completion of the proposed studies could result in numerous outputs, including
research publications, generation of intellectual property and TRIPOD type 4 validated
models ready for large RCTs (Figure 9.3). This design formed part of a successful grant
application to Prostate Cancer UK, where sample collection has begun. Further to this, the
collection of urine samples from the very large Movember GAP3 active surveillance study
has also begun, with access to over 15,000 patients across the globe68.
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Adherence to the structure of the proposed trials would hopefully avoid the “over-
promise, under deliver” of many cancer biomarkers, where it is easier by far to design
analyses to TRIPOD guidelines rather than adapting the reporting of results to fit
afterwards21. An important consideration is that the data generation process cannot be
materially changed, for example through assay optimisation or changes to the sample
collection process. Alterations to the data generation process change the underlying
variance and distribution of the data being modelled, removing any certainty that future
predictions will be reliable. If clinical adoption of models and improvements to patient
care are truly the end-goal, then the allure of constant iteration and methodological
improvement must be resisted.
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Chapter 5:

Table A.1: Table of Boruta decisions for each variable with at least one train-
ing label decision rendered as "Tentative" (?) or "Confirmed" (X). The total
number of confirmed or tentative decisions are recorded, as well as whether
the variable in question appears in the PUR model previously described.
Variables rejected for individual training labels are shown with 7
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Age 6 No X X X X X X
CACNA1D 6 No X ? ? X ? X
ERG 3 ex 4 5 6 Yes X ? X X X X
GABARAPL2 6 Yes ? ? ? X ? X
GJB1 6 No X X X X X ?

HOXC6 6 Yes X X X X X ?
HPN 6 Yes X X X X X X
KLK4 6 Yes X X ? X X X
MME 6 Yes X ? X X X X
PPAP2A 6 No X ? ? ? ? X

PPFIA2 6 Yes X ? X X X ?
PSA 6 No X X X X X X
RAB17 6 No X X X X X X
RPL18A 6 No X ? X X X ?
SLC12A1 6 No X X X X X X

SPINK1 6 No X ? X X X X
TMPRSS2 ERG
fusion

6 Yes X ? X X X ?

AMACR 5 Yes ? X X ? 7 X
DPP4 5 Yes X X X ? 7 X
EIF2D 5 No ? X X ? 7 X

ERG3 ex 6 7 5 No X 7 X X X ?
GAPDH 5 Yes X ? X 7 X X
HIST1H1C 5 No ? X ? 7 ? X
HIST1H1E 5 No X ? X 7 X X
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IFT57 5 No X X X ? 7 X

KLK3 PSA
exons1 2

5 No X ? ? ? X 7

MED4 5 Yes ? ? ? X 7 X
MEMO1 5 Yes X X ? ? 7 X
MEX3A 5 Yes 7 ? X X X ?
PCA3 5 Yes X ? X X X 7

PECI 5 No X ? ? 7 X ?
RPS10 5 No X X 7 ? X X
SIM2 long 5 No X ? X 7 X X
SIM2 short 5 Yes ? 7 X ? ? X
SMAP1 ex 7 8 5 No X ? ? ? ? 7

SRSF3 5 No ? X ? X 7 X
TDRD1 5 Yes ? ? X ? X 7

TRPM4 5 Yes X X X X X 7

UPK2 5 Yes ? ? X ? X 7

HIST32HA 4 No X X X 7 X 7

HOXC4 4 No ? 7 X ? ? 7

KLK3 PSA
exons2 3

4 No X ? 7 ? X 7

MIR146A
DQ658414

4 No ? 7 X X ? 7

RP11 244H18 1
P712P

4 No ? X ? 7 7 X

SNORA20 4 No ? ? 7 7 ? ?

STEAP2 4 No ? ? 7 ? 7 ?
STOM 4 No ? X ? 7 7 X
SULT1A1 4 Yes ? ? 7 ? ? 7

TBP 4 No X ? X 7 7 X
TERF2IP 4 No ? 7 ? ? 7 X

TMEM45B 4 No ? ? 7 7 X X
ZNF577 4 No X ? X 7 7 X
Alcohol unknown 3 No X 7 ? 7 ? 7

AMH 3 Yes 7 ? ? 7 7 ?
Amount RNA in
ng

3 No X 7 X 7 X 7

ANKRD34B 3 Yes ? ? 7 7 X 7

APOC1 3 Yes X 7 X 7 7 X
B2M 3 No X ? 7 7 ? 7

CDC37L1 3 No ? 7 ? 7 7 X
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DLX1 3 No ? X 7 7 7 ?

Family History no 3 No X 7 ? 7 X 7

HMBS 3 No ? ? 7 7 7 ?
ITGBL1 3 Yes 7 7 7 ? ? ?
MARCH5 3 Yes ? 7 7 7 ? ?
MMP11 3 Yes 7 ? 7 7 ? ?

MSMB 3 No 7 X ? 7 7 X
NKAIN1 3 Yes X 7 7 7 X ?
PALM3 3 Yes 7 7 ? ? 7 ?
PDLIM5 3 No X 7 ? 7 X 7

PPP1R12B 3 No 7 ? ? 7 7 ?

RPLP2 3 No X 7 ? 7 X 7

SERPINB5
Maspin

3 No ? 7 7 ? X 7

SLC43A1 3 No ? 7 X 7 ? 7

SMIM1 3 Yes 7 ? 7 7 ? X
STEAP4 3 No ? ? 7 ? 7 7

ANPEP 2 No 7 ? 7 7 7 X
ARexons4 8 2 Yes ? 7 7 7 X 7

AURKA 2 No 7 ? 7 7 7 ?
BRAF 2 No ? 7 7 7 7 ?
CAMKK2 2 No ? ? 7 7 7 7

CTA 211A9 5
MIATNB

2 No ? 7 7 7 7 ?

ERG5 2 No X 7 7 7 X 7

Family History
unknown

2 No X 7 7 7 ? 7

FDPS 2 No ? 7 7 7 7 ?
FOLH1 PSMA
NAALAD1

2 No X 7 7 7 X 7

HIST1H2BF 2 No 7 ? 7 7 7 ?
IMPDH2 2 Yes X 7 7 7 X 7

KLK2 2 No ? 7 7 7 7 ?
MDK 2 No 7 ? 7 7 7 ?
MIR4435 1HG
lOC541471

2 No 7 7 ? 7 ? 7

MMP25 2 No ? X 7 7 7 7

MXI1 2 No ? 7 7 ? 7 7

NAALADL2 2 No X 7 ? 7 7 7

NEAT1 2 No 7 7 7 7 ? ?
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RNF157 2 No ? 7 7 7 ? 7

RPS11 2 No ? 7 7 7 ? 7

Smoking unknown 2 No X 7 7 7 X 7

SPON2 2 No ? 7 7 7 X 7

VPS13A 2 No 7 X 7 7 7 X
ACTR5 1 No 7 7 7 7 7 ?

Alcohol No 1 No ? 7 7 7 7 7

Alcohol Yes 1 No X 7 7 7 7 7

ARexon9 1 No 7 7 7 7 ? 7

BTG2 1 No 7 7 ? 7 7 7

CAMK2N2 1 No 7 7 7 7 7 X

CASKIN1 1 No 7 7 7 7 ? 7

EN2 1 No 7 7 7 7 ? 7

HPRT 1 No 7 7 7 7 7 ?
ITPR1 1 No 7 7 7 7 7 ?
LBH 1 No 7 ? 7 7 7 7

MAK 1 No 7 7 7 7 ? 7

MFSD2A 1 No 7 7 7 7 ? 7

MMP26 1 Yes 7 ? 7 7 7 7

OGT 1 No 7 7 7 7 7 ?
PSTPIP1 1 No 7 7 7 7 7 X

PTN 1 No 7 7 7 7 7 ?
RPL23AP53 1 No 7 7 7 7 ? 7

SIRT1 1 No ? 7 7 7 7 7

Smoking No 1 No X 7 7 7 7 7

Smoking Yes 1 No X 7 7 7 7 7

SNCA 1 No 7 7 7 7 7 ?
SSPO 1 Yes X 7 7 7 7 7

SSTR1 1 No 7 7 7 7 ? 7

TMCC2 1 No 7 7 7 7 7 X
TWIST1 1 Yes ? 7 7 7 7 7

VAX2 1 No 7 7 7 7 ? 7
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Proportion of resamples "Confirmed":

<5% >90% Shadow Feature

Figure B.1: Boruta analysis of variables available for the training of the SoC
model. Variable importance was determined over 1,000 bootstrap resamples
of the available data and the decision reached recorded at each resample.
Variable origins are denoted by font; clinical variables are italicised and em-
boldened. Colour indicates the proportion of the 1,000 resamples a variable
was confirmed to be important in. Variables confirmed in at least 90% of
resamples were selected for training predictive models.



Shadow Minimum

Shadow Mean

Shadow Maximum

PTGS2

SFRP2

IGFBP3

APC

IGFBP7

GSTP1

-10 0 10 20

Normalised permutation importance

Proportion of resamples "Confirmed":

>90% Shadow Feature

Figure B.2: Boruta analysis of variables available for the training of the
Methylation model. Variable importance was determined over 1,000 boot-
strap resamples of the available data and the decision reached recorded at
each resample. Variable origins are denoted by font; methylation variables
are italicised. Colour indicates the proportion of the 1,000 resamples a vari-
able was confirmed to be important in. Variables confirmed in at least 90%
of resamples were selected for training predictive models.
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Figure B.3: Boruta analysis of variables available for the training of the
ExoRNA model. Variable importance was determined over 1,000 bootstrap
resamples of the available data and the decision reached recorded at each
resample. Variable origins are denoted by font; clinical variables are em-
boldened. Colour indicates the proportion of the 1,000 resamples a variable
was confirmed to be important in. Variables confirmed in at least 90% of
resamples were selected for training predictive models.
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Table B.1: List of all features available for selection as input variables for
each model prior to bootstrapped Boruta feature selection.

SoC Methylation ExoRNA ExoMeth
PSA GSTP1 Mar-05 PSA
UrineVol APC AATF UrineVol
DRESize SFRP2 ABCB9 DRESize
Age IGFBP3 ACTR5 Age

IGFBP7 AGR2 GSTP1

PTGS2 ALAS1 APC
AMACR SFRP2
AMH IGFBP3
ANKRD34B IGFBP7
ANPEP PTGS2

APOC1 Mar-05
ARexon9 AATF
ARexons4-8 ABCB9
ARHGEF25 ACTR5
AURKA AGR2

B2M ALAS1
B4GALNT4 AMACR
BRAF AMH
BTG2 ANKRD34B
CACNA1D ANPEP

CADPS APOC1
CAMK2N2 ARexon9
CAMKK2 ARexons4-8
CASKIN1 ARHGEF25
CCDC88B AURKA

CD10 B2M
CDC20 B4GALNT4
CDC37L1 BRAF
CDKN3 BTG2
CKAP2L CACNA1D

CLIC2 CADPS
CLU CAMK2N2
COL10A1 CAMKK2
COL9A2 CASKIN1
CP CCDC88B

CTA-211A9.5/MIATNB CD10
DLX1 CDC20
DNAH5 CDC37L1
DPP4 CDKN3
EIF2D CKAP2L
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EN2 CLIC2
ERG exons 4-5 CLU
ERG exons 6-7 COL10A1
ERG5 COL9A2
FDPS CP

FOLH1/PSMA/NAALAD1 CTA-211A9.5/MIATNB
GABARAPL2 DLX1
GAPDH DNAH5
GCNT1 DPP4
GJB1 EIF2D

GOLM1 EN2
HIST1H1C ERG exons 4-5
HIST1H1E ERG exons 6-7
HIST1H2BF ERG5
HIST1H2BG FDPS

HIST32HA FOLH1/PSMA/NAALAD1
HMBS GABARAPL2
HOXC4 GAPDH
HOXC6 GCNT1
HPN GJB1

HPRT GOLM1
IFT57 HIST1H1C
IGFBP3 HIST1H1E
IMPDH2 HIST1H2BF
ISX HIST1H2BG

ITGBL1 HIST32HA
ITPR1 HMBS
KLK2 HOXC4
KLK3/PSA(exons1-2 HOXC6
KLK3/PSA(exons2-3 HPN

KLK4 HPRT
LASS1 IFT57
LBH IGFBP3
MAK IMPDH2
MAPK8IP2 ISX

MCM7 ITGBL1
MCTP1 ITPR1
MDK KLK2
MED4 KLK3/PSA(exons1-2
MEMO1 KLK3/PSA(exons2-3

Met KLK4
MEX3A LASS1
MFSD2A LBH
MGAT5B MAK
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MIC1 MAPK8IP2

MIR146A/DQ658414 MCM7
MIR4435-1HG/lOC541471 MCTP1
MKi67 MDK
MMP11 MED4
MMP25 MEMO1

MMP26 Met
MNX1 MEX3A
MSMB MFSD2A
MXI1 MGAT5B
MYOF MIC1

NAALADL2 MIR146A/DQ658414
NEAT1 MIR4435-1HG/lOC541471
NKAIN1 MKi67
NLRP3 MMP11
OGT MMP25

OR52A2/PSGR MMP26
PALM3 MNX1
PCA3 MSMB
PCSK6 MXI1
PDLIM5 MYOF

PECI NAALADL2
PPAP2A NEAT1
PPFIA2 NKAIN1
PPP1R12B NLRP3
PSTPIP1 OGT

PTN OR52A2/PSGR
PTPRC PALM3
PVT1 PCA3
RAB17 PCSK6
RIOK3 PDLIM5

RNF157 PECI
RP11-244H18.1/P712P PPAP2A
RP11-97O12.7 PPFIA2
RPL18A PPP1R12B
RPL23AP53 PSTPIP1

RPLP2 PTN
RPS10 PTPRC
RPS11 PVT1
SACM1L RAB17
SChLAP1 RIOK3

SEC61A1 RNF157
SERPINB5/Maspin RP11-244H18.1/P712P
SFRP4 RP11-97O12.7
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SIM2.long RPL18A
SIM2.short RPL23AP53

SIRT1 RPLP2
SLC12A1 RPS10
SLC43A1 RPS11
SLC4A1 S SACM1L
SMAP1 ex 7-8 SChLAP1

SMIM1 SEC61A1
SNCA SERPINB5/Maspin
SNORA20 SFRP4
SPINK1 SIM2.long
SPON2 SIM2.short

SRSF3 SIRT1
SSPO SLC12A1
SSTR1 SLC43A1
ST6GALNAC1 SLC4A1 S
STEAP2 SMAP1 ex 7-8

STEAP4 SMIM1
STOM SNCA
SULF2 SNORA20
SULT1A1 SPINK1
SYNM SPON2

TBP SRSF3
TDRD SSPO
TERF2IP SSTR1
TERT ST6GALNAC1
TFDP1 STEAP2

TIMP4 STEAP4
TMCC2 STOM
TMEM45B SULF2
TMEM47 SULT1A1
TMEM86A SYNM

TMPRSS2/ERG fusion TBP
TRPM4 TDRD
TWIST1 TERF2IP
UPK2 TERT
VAX2 TFDP1

VPS13A TIMP4
ZNF577 TMCC2

TMEM45B
TMEM47
TMEM86A

TMPRSS2/ERG fusion
TRPM4
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TWIST1
UPK2
VAX2

VPS13A
ZNF577

173



References

1. Cancer Research UK. Prostate cancer incidence statistics. 2019. http://www.
cancerresearchuk.org/health-professional/cancer-statistics/statistics-
by-cancer-type/prostate-cancer/incidence. Accessed June 29, 2019.

2. Soos G, Tsakiris I, Szanto J, Turzo C, Haas PG, Dezso B. The prevalence of prostate
carcinoma and its precursor in Hungary: An autopsy study. 2005;48(5):739-744.
doi:10.1016/j.eururo.2005.08.010

3. Sánchez-Chapado M, Olmedilla G, Cabeza M, Donat E, Ruiz A. Prevalence of prostate
cancer and prostatic intraepithelial neoplasia in Caucasian Mediterranean males: An
autopsy study. 2003;54(3):238-247. doi:10.1002/pros.10177

4. Schlomm T, Weischenfeldt J, Korbel J, Sauter G. The Aging Prostate Is Never "Nor-
mal": Implications from the Genomic Characterization of Multifocal Prostate Cancers.
2015;68(3):348-350. doi:10.1016/j.eururo.2015.04.012

5. National Institute for Health and Care Excellence. Prostate cancer: diagnosis and
management [2019]. NICE

6. Martin RM, Donovan JL, Turner EL, et al. Effect of a Low-Intensity PSA-
Based Screening Intervention on Prostate Cancer Mortality. 2018;319(9):883.
doi:10.1001/jama.2018.0154

7. Lane JA, Donovan JL, Davis M, et al. Active monitoring, radical prostatectomy, or radio-
therapy for localised prostate cancer: Study design and diagnostic and baseline results
of the ProtecT randomised phase 3 trial. 2014;15(10):1109-1118. doi:10.1016/S1470-
2045(14)70361-4

8. Connell SP and, Hanna M, McCarthy F, et al. A Four-Group Urine Risk Classifier for
Predicting Outcome in Prostate Cancer Patients. May 2019. doi:10.1111/bju.14811

9. Palmirotta R, Lovero D, Cafforio P, et al. Liquid biopsy of cancer: a multimodal
diagnostic tool in clinical oncology. 2018;10:1758835918794630-1758835918794630.
doi:10.1177/1758835918794630

10. Junker K, Heinzelmann J, Beckham C, Ochiya T, Jenster G. Extracellular Vesicles and
Their Role in Urologic Malignancies. 2016;70:323-331. doi:10.1016/j.eururo.2016.02.046

11. O’Reilly E, Tuzova AV, Walsh AL, et al. epiCaPture: A Urine DNA Methy-
lation Test for Early Detection of Aggressive Prostate Cancer. 2019;(3):1-18.
doi:10.1200/PO.18.00134

http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer/incidence
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer/incidence
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer/incidence
https://doi.org/10.1016/j.eururo.2005.08.010
https://doi.org/10.1002/pros.10177
https://doi.org/10.1016/j.eururo.2015.04.012
https://doi.org/10.1001/jama.2018.0154
https://doi.org/10.1016/S1470-2045(14)70361-4
https://doi.org/10.1016/S1470-2045(14)70361-4
https://doi.org/10.1111/bju.14811
https://doi.org/10.1177/1758835918794630
https://doi.org/10.1016/j.eururo.2016.02.046
https://doi.org/10.1200/PO.18.00134


References

12. Hessels D, Klein Gunnewiek JMT, Van Oort I, et al. DD3PCA3-based molecular
urine analysis for the diagnosis of prostate cancer. 2003;44(1):8-16. doi:10.1016/S0302-
2838(03)00201-X

13. Nilsson J, Skog J, Nordstrand A, et al. Prostate cancer-derived urine exosomes:
A novel approach to biomarkers for prostate cancer. 2009;100(10):1603-1607.
doi:10.1038/sj.bjc.6605058

14. Bologna M, Vicentini C, Festuccia C, et al. Early diagnosis of prostatic carcinoma based
on in vitro culture of viable tumor cells harvested by prostatic massage. 1988;14(6):474-
476. http://www.ncbi.nlm.nih.gov/pubmed/3181228.

15. Garret M, Jassie M. Cytologic examination of post prostatic massage specimens as an
aid in diagnosis of carcinoma of the prostate. 20(2):126-131. http://www.ncbi.nlm.
nih.gov/pubmed/1065172.

16. Kern SE. Why your new cancer biomarker may never work: Recurrent patterns and
remarkable diversity in biomarker failures. 2012;72(23):6097-6101. doi:10.1158/0008-
5472.CAN-12-3232

17. Diamandis EP. The failure of protein cancer biomarkers to reach the clinic: why, and
what can be done to address the problem? 2012;10(1):87. doi:10.1186/1741-7015-10-87

18. Glasziou P, Meats E, Heneghan C, Shepperd S. What is missing from descriptions of
treatment in trials and reviews? 2008;336:1472. doi:10.1136/bmj.39590.732037.47

19. Moher D. Reporting research results: A moral obligation for all researchers. 2007.

20. Moher D, Schulz KF, Simera I, Altman DG. Guidance for developers of health research
reporting guidelines. 2010;7:e1000217. doi:10.1371/journal.pmed.1000217

21. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a mul-
tivariable prediction model for individual prognosis or diagnosis (tripod): The tripod
statement. 2015;67(6):1142-1151. doi:https://doi.org/10.1016/j.eururo.2014.11.025

22. Hanahan D, Weinberg Ra. The hallmarks of cancer. 2000;100:57-70.

23. Hanahan D, Weinberg RA, Pan KH, et al. Hallmarks of Cancer: The Next Generation.
2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013

24. Gundem G, Van Loo P, Kremeyer B, et al. The evolutionary history of lethal metastatic
prostate cancer. Nature. 2015;520(7547):353-357. doi:10.1038/nature14347

25. Franks LM. Biology of the prostate and its tumors. In: The Treatment of Prostatic
Hypertrophy and Neoplasia. Springer Netherlands; 1974:1-26. doi:10.1007/978-94-015-
7190-6_1

26. Costello LC, Franklin RB. Prostatic fluid electrolyte composition for the screen-
ing of prostate cancer: A potential solution to a major problem. 2009;12:17-24.
doi:10.1038/pcan.2008.19

27. Balk SP, Ko Y-J, Bubley GJ. Biology of prostate-specific antigen. 2003;21(2):383-391.
doi:10.1200/JCO.2003.02.083

175

https://doi.org/10.1016/S0302-2838(03)00201-X
https://doi.org/10.1016/S0302-2838(03)00201-X
https://doi.org/10.1038/sj.bjc.6605058
http://www.ncbi.nlm.nih.gov/pubmed/3181228
http://www.ncbi.nlm.nih.gov/pubmed/1065172
http://www.ncbi.nlm.nih.gov/pubmed/1065172
https://doi.org/10.1158/0008-5472.CAN-12-3232
https://doi.org/10.1158/0008-5472.CAN-12-3232
https://doi.org/10.1186/1741-7015-10-87
https://doi.org/10.1136/bmj.39590.732037.47
https://doi.org/10.1371/journal.pmed.1000217
https://doi.org/https://doi.org/10.1016/j.eururo.2014.11.025
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1038/nature14347
https://doi.org/10.1007/978-94-015-7190-6_1
https://doi.org/10.1007/978-94-015-7190-6_1
https://doi.org/10.1038/pcan.2008.19
https://doi.org/10.1200/JCO.2003.02.083


References

28. McNeal JE. Origin and development of carcinoma in the prostate. 1969;23(1):24-34.
doi:10.1002/1097-0142(196901)23:1<24::AID-CNCR2820230103>3.0.CO;2-1

29. McNeal JE. The zonal anatomy of the prostate. 1981;2(1):35-49. doi:10.1002/pros.2990020105

30. McNeal JE. Normal histology of the prostate. 1988;12(8):619-633. http://www.ncbi.
nlm.nih.gov/pubmed/2456702.

31. Bostwick DG, Burke HB, Djakiew D, et al. Human prostate cancer risk factors.
2004;101:2371-2490. doi:10.1002/cncr.20408

32. Elbuluk O, Muradyan N, Shih J, et al. Differentiating Transition Zone Cancers from Be-
nign Prostatic Hyperplasia by Quantitative Multiparametric Magnetic Resonance Imag-
ing. 2016;40(2):218-224. doi:10.1097/RCT.0000000000000353

33. Abdelsayed GA, Danial T, Kaswick JA, Finley DS. Tumors of the ante-
rior prostate: Implications for diagnosis and treatment. 2015;85:1224-1228.
doi:10.1016/j.urology.2014.12.035

34. Ghai S, Haider MA. Multiparametric-MRI in diagnosis of prostate cancer.
2015;31(3):194-201. doi:10.4103/0970-1591.159606

35. Koppie TM, Bianco FJ, Kuroiwa K, et al. The clinical features of anterior prostate
cancers. 2006;98(6):1167-1171. doi:10.1111/j.1464-410X.2006.06578.x

36. Vargas HA, Akin O, Franiel T, et al. Normal central zone of the prostate and
central zone involvement by prostate cancer: Clinical and mr imaging implications.
2012;262(3):894-902. doi:10.1148/radiol.11110663

37. Cohen RJ, Shannon BA, Phillips M, Moorin RE, Wheeler TM, Garrett KL. Central
Zone Carcinoma of the Prostate Gland: A Distinct Tumor Type With Poor Prognostic
Features. 2008;179(5):1762-1767. doi:10.1016/j.juro.2008.01.017

38. Troncoso P, Babaian RJ, Ro JY, Grignon DJ, Eschenbach AC von, Ayala AG. Prostatic
intraepithelial neoplasia and invasive prostatic adenocarcinoma in cystoprostatectomy
specimens. 1989;34(6 Suppl):52-56. http://www.ncbi.nlm.nih.gov/pubmed/2603286.

39. Lee JJ, Thomas IC, Nolley R, Ferrari M, Brooks JD, Leppert JT. Biologic differ-
ences between peripheral and transition zone prostate cancer. 2015;75(2):183-190.
doi:10.1002/pros.22903

40. Loeb S, Bjurlin MA, Nicholson J, et al. Overdiagnosis and overtreatment of prostate
cancer. 2014;65:1046-1055. doi:10.1016/j.eururo.2013.12.062

41. Stemmermann GN, Nomura AMY, Chyou PH, Yatani R. A Prospective Comparison of
Prostate Cancer at Autopsy and as a Clinical Event: The Hawaii Japanese Experience.
1992;1(3):189-193. http://www.ncbi.nlm.nih.gov/pubmed/1306104.

42. Boniol M, Autier P, Perrin P, Boyle P. Variation of Prostate-specific Antigen
Value in Men and Risk of High-grade Prostate Cancer: Analysis of the Prostate,
Lung, Colorectal, and Ovarian Cancer Screening Trial Study. 2015;85(5):1117-1122.
doi:10.1016/j.urology.2015.02.013

43. Lujan M, Pascual C, Rodriguez N, et al. Impact of the weather on the serum levels

176

https://doi.org/10.1002/1097-0142(196901)23:1%3C24::AID-CNCR2820230103%3E3.0.CO;2-1
https://doi.org/10.1002/pros.2990020105
http://www.ncbi.nlm.nih.gov/pubmed/2456702
http://www.ncbi.nlm.nih.gov/pubmed/2456702
https://doi.org/10.1002/cncr.20408
https://doi.org/10.1097/RCT.0000000000000353
https://doi.org/10.1016/j.urology.2014.12.035
https://doi.org/10.4103/0970-1591.159606
https://doi.org/10.1111/j.1464-410X.2006.06578.x
https://doi.org/10.1148/radiol.11110663
https://doi.org/10.1016/j.juro.2008.01.017
http://www.ncbi.nlm.nih.gov/pubmed/2603286
https://doi.org/10.1002/pros.22903
https://doi.org/10.1016/j.eururo.2013.12.062
http://www.ncbi.nlm.nih.gov/pubmed/1306104
https://doi.org/10.1016/j.urology.2015.02.013


References

of prostatic specific antigen (PSA). 2006;59:247-252. http://www.ncbi.nlm.nih.gov/
pubmed/16724709.

44. Salama G, Noirot O, Bataille V, et al. Seasonality of Serum Prostate-Specific Antigen
Levels: A Population-Based Study. 2007;52(3):708-714. doi:10.1016/j.eururo.2006.11.042

45. Catalona WJ, Smith DS, Ratliff TL, Basler JW. Detection of Organ-Confined
Prostate Cancer Is Increased Through Prostate-Specific Antigen—Based Screening.
1993;270(8):948-954. doi:10.1001/jama.1993.03510080052031

46. Naji L, Randhawa H, Sohani Z, et al. Digital rectal examination for prostate cancer
screening in primary care: A systematic review and meta-analysis. Annals of Family
Medicine. 2018;16(2):149-154. doi:10.1370/afm.2205

47. Moreira Leite KR, Camara-Lopes LHA, Dall’Oglio MF, et al. Upgrading the
Gleason Score in Extended Prostate Biopsy: Implications for Treatment Choice.
International Journal of Radiation Oncology Biology Physics. 2009;73(2):353-356.
doi:10.1016/j.ijrobp.2008.04.039

48. Taira AV, Merrick GS, Galbreath RW, et al. Performance of transperineal template-
guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy
setting. 2010;13(1):71-77. doi:10.1038/pcan.2009.42

49. Mellinger GT, Gleason D, Bailar 3rd J. The histology and prognosis of prostatic cancer.
1967;97(2):331-337. doi:10.1016/S0022-5347(17)63039-8

50. Epstein JI, Allsbrook WC, Amin MB, et al. The 2005 International Society of
Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic
carcinoma. In: American Journal of Surgical Pathology. Vol 29.; 2005:1228-1242.
doi:10.1097/01.pas.0000173646.99337.b1

51. Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA. The 2014
international society of urological pathology (ISUP) consensus conference on gleason
grading of prostatic carcinoma definition of grading patterns and proposal for a new
grading system. 2016;40(2):244-252. doi:10.1097/PAS.0000000000000530

52. Epstein JI. An Update of the Gleason Grading System. 2010;183:433-440.
doi:10.1016/j.juro.2009.10.046

53. Stark JR, Perner S, Stampfer MJ, et al. Gleason score and lethal prostate cancer: Does
3 + 4 = 4 + 3? 2009;27(21):3459-3464. doi:10.1200/JCO.2008.20.4669

54. NICE. Costing Statement: prostate cancer: diagnosis and treatment. 2014;(June):1-23.

55. Turkbey B, Rosenkrantz AB, Haider MA, et al. Prostate imaging reporting and data
system version 2.1: 2019 update of prostate imaging reporting and data system version 2.
European Urology. 2019;76(3):340-351. doi:https://doi.org/10.1016/j.eururo.2019.02.033

56. Porpiglia F, Manfredi M, Mele F, et al. Diagnostic Pathway with Multiparametric
Magnetic Resonance Imaging Versus Standard Pathway: Results from a Randomized
Prospective Study in Biopsy-naïve Patients with Suspected Prostate Cancer. European
Urology. 2017;72(2):282-288. doi:10.1016/j.eururo.2016.08.041

177

http://www.ncbi.nlm.nih.gov/pubmed/16724709
http://www.ncbi.nlm.nih.gov/pubmed/16724709
https://doi.org/10.1016/j.eururo.2006.11.042
https://doi.org/10.1001/jama.1993.03510080052031
https://doi.org/10.1370/afm.2205
https://doi.org/10.1016/j.ijrobp.2008.04.039
https://doi.org/10.1038/pcan.2009.42
https://doi.org/10.1016/S0022-5347(17)63039-8
https://doi.org/10.1097/01.pas.0000173646.99337.b1
https://doi.org/10.1097/PAS.0000000000000530
https://doi.org/10.1016/j.juro.2009.10.046
https://doi.org/10.1200/JCO.2008.20.4669
https://doi.org/https://doi.org/10.1016/j.eururo.2019.02.033
https://doi.org/10.1016/j.eururo.2016.08.041


References

57. Kasivisvanathan V, Rannikko AS, Borghi M, et al. MRI-targeted or standard biopsy for
prostate-cancer diagnosis. New England Journal of Medicine. 2018;378(19):1767-1777.
doi:10.1056/NEJMoa1801993

58. Ahmed HU, El-Shater Bosaily A, Brown LC, et al. Diagnostic accuracy of multi-
parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating
confirmatory study. 2017;389(10071):815-822. doi:10.1016/S0140-6736(16)32401-1

59. Richie JP, Catalona WJ, Ahmann FR, et al. Effect of patient age on early detection
of prostate cancer with serum prostate-specific antigen and digital rectal examination.
1993;42(4):365-374. http://www.ncbi.nlm.nih.gov/pubmed/7692657.

60. Chun FKH, Karakiewicz PI, Briganti A, et al. Prostate Cancer Nomograms: An
Update. 2006;50:914-926. doi:10.1016/j.eururo.2006.07.042

61. Shariat SF, Kattan MW, Vickers AJ, Karakiewicz PI, Scardino PT. Critical review of
prostate cancer predictive tools. 2009;5(10):1555-1584. doi:10.2217/fon.09.121

62. Thurtle DCAL David R. AND Greenberg. Individual prognosis at diagno-
sis in nonmetastatic prostate cancer: Development and external validation of
the predict prostate multivariable model. PLOS Medicine. 2019;16(3):1-19.
doi:10.1371/journal.pmed.1002758

63. D’Amico AV, Whittington R, Bruce Malkowicz S, et al. Biochemical outcome after rad-
ical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for
clinically localized prostate cancer. 1998;280(11):969-974. doi:10.1001/jama.280.11.969

64. Tsikis ST, Nottingham CU, Faris SF. The Relationship Between Incontinence and Erec-
tile Dysfunction After Robotic Prostatectomy: Are They Mutually Exclusive? Journal
of Sexual Medicine. 2017;14(10):1241-1247. doi:10.1016/j.jsxm.2017.08.002

65. Lester JF, Mason MD. Cardiovascular effects of hormone therapy for prostate cancer.
2015;7:129-138. doi:10.2147/DHPS.S50549

66. Mottet N, Bellmunt J, Bolla M, et al. EAU-ESTRO-SIOG Guidelines on Prostate
Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent.
2017;71(4):618-629. doi:10.1016/j.eururo.2016.08.003

67. Cornford P, Bellmunt J, Bolla M, et al. EAU-ESTRO-SIOG Guidelines on Prostate
Cancer. Part II: Treatment of Relapsing, Metastatic, and Castration-Resistant Prostate
Cancer. 2017;71(4):630-642. doi:10.1016/j.eururo.2016.08.002

68. Bruinsma SM, Zhang L, Roobol MJ, et al. The movember foundation’s gap3 cohort:
A profile of the largest global prostate cancer active surveillance database to date. BJU
International. 2018;121(5):737-744. doi:10.1111/bju.14106

69. Hamdy FC, Donovan JL, Lane JA, et al. 10-Year Outcomes after Monitoring,
Surgery, or Radiotherapy for Localized Prostate Cancer. 2016;375(15):1415-1424.
doi:10.1056/NEJMoa1606220

70. Tosoian JJ, Carter HB, Lepor A, Loeb S. Active surveillance for prostate
cancer: Current evidence and contemporary state of practice. 2016;13:205-215.
doi:10.1038/nrurol.2016.45

178

https://doi.org/10.1056/NEJMoa1801993
https://doi.org/10.1016/S0140-6736(16)32401-1
http://www.ncbi.nlm.nih.gov/pubmed/7692657
https://doi.org/10.1016/j.eururo.2006.07.042
https://doi.org/10.2217/fon.09.121
https://doi.org/10.1371/journal.pmed.1002758
https://doi.org/10.1001/jama.280.11.969
https://doi.org/10.1016/j.jsxm.2017.08.002
https://doi.org/10.2147/DHPS.S50549
https://doi.org/10.1016/j.eururo.2016.08.003
https://doi.org/10.1016/j.eururo.2016.08.002
https://doi.org/10.1111/bju.14106
https://doi.org/10.1056/NEJMoa1606220
https://doi.org/10.1038/nrurol.2016.45


References

71. Bellardita L, Valdagni R, Van Den Bergh R, et al. How does active surveillance
for prostate cancer affect quality of life? A systematic review. 2015;67:637-645.
doi:10.1016/j.eururo.2014.10.028

72. Ruane-McAteer E, Porter S, O’Sullivan JM, Santin O, Prue G. Active surveillance
for favorable-risk prostate cancer: Is there a greater psychological impact than previ-
ously thought? A systematic, mixed studies literature review. 2017;26(10):1411-1421.
doi:10.1002/pon.4311

73. Cancer incidence and mortality projections in the UK until 2035. British Journal of
Cancer. 2016;115(9):1147-1155. doi:10.1038/bjc.2016.304

74. Murthy V, Rishi A, Gupta S, et al. Clinical impact of prostate specific antigen
(PSA) inter-assay variability on management of prostate cancer. Clinical Biochemistry.
2016;49(1):79-84. doi:10.1016/j.clinbiochem.2015.10.013

75. Forde JC, Marignol L, Blake O, et al. Standardization of assay methods reduces variabil-
ity of total PSA measurements: An Irish study. BJU International. 2012;110(5):644-650.
doi:10.1111/j.1464-410X.2011.10923.x

76. Schröder FH, Hugosson J, Roobol MJ, et al. Screening and Prostate-Cancer Mortality in
a Randomized European Study. 2009;360(13):1320-1328. doi:10.1056/NEJMoa0810084

77. Heijnsdijk EAM, Wever EM, Auvinen A, et al. Quality-of-Life Effects of Prostate-
Specific Antigen Screening. 2012;367(7):595-605. doi:10.1056/NEJMoa1201637

78. Nafie S, Mellon JK, Dormer JP, Khan MA. The role of transperineal template prostate
biopsies in prostate cancer diagnosis in biopsy naïve men with PSA less than 20 ng ml-1.
Prostate Cancer and Prostatic Diseases. 2014;17(2):170-173. doi:10.1038/pcan.2014.4

79. National Institute for Health and Care Excellence. Prostate cancer: diagno-
sis and management [D] Evidence review for diagnosing and identifying clini-
cally significant prostate cancer NICE guideline NG131 Evidence reviews. NICE;
2019. https://www.nice.org.uk/guidance/ng131/evidence/d-diagnosing-and-
identifying-clinically-significant-prostate-cancer-pdf-6779081777.

80. Pinkhasov GI, Lin YK, Palmerola R, et al. Complications following prostate needle
biopsy requiring hospital admission or emergency department visits - Experience from
1000 consecutive cases. 2012;110:369-374. doi:10.1111/j.1464-410X.2011.10926.x

81. Nam RK, Saskin R, Lee Y, et al. Increasing Hospital Admission Rates for Urolog-
ical Complications After Transrectal Ultrasound Guided Prostate Biopsy. Journal of
Urology. 2010;183(3):963-969. doi:10.1016/j.juro.2009.11.043

82. Walz J. The “PROMIS” of Magnetic Resonance Imaging Cost Effectiveness in Prostate
Cancer Diagnosis? European Urology. 2018;73(1):31-32. doi:10.1016/j.eururo.2017.09.015

83. Sonn GA, Fan RE, Ghanouni P, et al. Prostate Magnetic Resonance Imag-
ing Interpretation Varies Substantially Across Radiologists. December 2018.
doi:10.1016/j.euf.2017.11.010

84. Faria R, Soares MO, Spackman E, et al. Optimising the Diagnosis of Prostate Cancer
in the Era of Multiparametric Magnetic Resonance Imaging: A Cost-effectiveness

179

https://doi.org/10.1016/j.eururo.2014.10.028
https://doi.org/10.1002/pon.4311
https://doi.org/10.1038/bjc.2016.304
https://doi.org/10.1016/j.clinbiochem.2015.10.013
https://doi.org/10.1111/j.1464-410X.2011.10923.x
https://doi.org/10.1056/NEJMoa0810084
https://doi.org/10.1056/NEJMoa1201637
https://doi.org/10.1038/pcan.2014.4
https://www.nice.org.uk/guidance/ng131/evidence/d-diagnosing-and-identifying-clinically-significant-prostate-cancer-pdf-6779081777
https://www.nice.org.uk/guidance/ng131/evidence/d-diagnosing-and-identifying-clinically-significant-prostate-cancer-pdf-6779081777
https://doi.org/10.1111/j.1464-410X.2011.10926.x
https://doi.org/10.1016/j.juro.2009.11.043
https://doi.org/10.1016/j.eururo.2017.09.015
https://doi.org/10.1016/j.euf.2017.11.010


References

Analysis Based on the Prostate MR Imaging Study (PROMIS). 2018;73(1):23-30.
doi:10.1016/j.eururo.2017.08.018

85. Carey LA, Perou CM, Livasy CA, et al. Race, breast cancer subtypes, and survival in the
Carolina Breast Cancer Study. 2006;295(21):2492-2502. doi:10.1001/jama.295.21.2492

86. Hernandez DJ, Nielsen ME, Han M, Partin AW. Contemporary Evaluation
of the D’Amico Risk Classification of Prostate Cancer. 2007;70(5):931-935.
doi:10.1016/j.urology.2007.08.055

87. Boorjian SA, Karnes RJ, Rangel LJ, Bergstralh EJ, Blute ML. Mayo Clinic Valida-
tion of the D’Amico Risk Group Classification for Predicting Survival Following Radical
Prostatectomy. 2008;179(4):1354-1361. doi:10.1016/j.juro.2007.11.061

88. Cooperberg MR, Freedland SJ, Pasta DJ, et al. Multiinstitutional validation of the
UCSF cancer of the prostate risk assessment for prediction of recurrence after radical
prostatectomy. 2006;107(10):2384-2391. doi:10.1002/cncr.22262

89. Scattoni V, Lazzeri M, Lughezzani G, et al. Head-to-head comparison of prostate
health index and urinary PCA3 for predicting cancer at initial or repeat biopsy.
2013;190(2):496-501. doi:10.1016/j.juro.2013.02.3184

90. Lughezzani G, Budäus L, Isbarn H, et al. Head-to-Head Comparison of the Three Most
Commonly Used Preoperative Models for Prediction of Biochemical Recurrence After
Radical Prostatectomy. 2010;57(4):562-568. doi:10.1016/j.eururo.2009.12.003

91. Pasic MD, Samaan S, Yousef GM. Genomic medicine: New frontiers and new challenges.
2013;59(1):158-167. doi:10.1373/clinchem.2012.184622

92. Rittenhouse H, Blase A, Shamel B, Schalken J, Groskopf J. The long and winding
road to FDA approval of a novel prostate cancer test: Our story. 2013;59(1):32-34.
doi:10.1373/clinchem.2012.198739

93. Minciacchi VR, Zijlstra A, Rubin MA, Di Vizio D. Extracellular vesicles for liquid
biopsy in prostate cancer: Where are we and where are we headed? 2017;20(3):251-258.
doi:10.1038/pcan.2017.7

94. Bussemakers MJG, Van Bokhoven A, Verhaegh GW, et al. DD3: A new prostate-
specific gene, highly overexpressed in prostate cancer. 1999;59(23):5975-5979.
doi:10.1038/ncb2161

95. Vlaeminck-Guillem V, Ruffion A, Andre J. Place du test urinaire PCA3 pour le diag-
nostic du cancer de la prostate. 2008;18:259-265. doi:10.1016/j.purol.2008.03.029

96. Salagierski M, Sosnowski M, Schalken JA. How accurate is our prediction of biopsy
outcome? PCA3-based nomograms in personalized diagnosis of prostate cancer.
2012;65:110-112. doi:10.5173/ceju.2012.03.art1

97. Leyten GHJM, Hessels D, Jannink SA, et al. Prospective multicentre evaluation of
PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers
for prostate cancer. 2014;65(3):534-542. doi:10.1016/j.eururo.2012.11.014

98. National Institute for Health and Care Excellence. Prostate cancer update Health

180

https://doi.org/10.1016/j.eururo.2017.08.018
https://doi.org/10.1001/jama.295.21.2492
https://doi.org/10.1016/j.urology.2007.08.055
https://doi.org/10.1016/j.juro.2007.11.061
https://doi.org/10.1002/cncr.22262
https://doi.org/10.1016/j.juro.2013.02.3184
https://doi.org/10.1016/j.eururo.2009.12.003
https://doi.org/10.1373/clinchem.2012.184622
https://doi.org/10.1373/clinchem.2012.198739
https://doi.org/10.1038/pcan.2017.7
https://doi.org/10.1038/ncb2161
https://doi.org/10.1016/j.purol.2008.03.029
https://doi.org/10.5173/ceju.2012.03.art1
https://doi.org/10.1016/j.eururo.2012.11.014


References

economic model report Health economic model report HE.1 General HE.2 RQ8: Managing
people at increased risk of prostate cancer HE.2.1 Decision problem.; 2019.

99. Van Neste L, Hendriks RJ, Dijkstra S, et al. Detection of High-grade Prostate
Cancer Using a Urinary Molecular Biomarker–Based Risk Score. 2016;70(5):740-748.
doi:10.1016/j.eururo.2016.04.012

100. Multicenter Optimization and Validation of a 2-Gene mRNA Urine Test for Detec-
tion of Clinically Significant Prostate Cancer before Initial Prostate Biopsy. Journal of
Urology. 2019;202(2):256-262. doi:10.1097/JU.0000000000000293

101. Govers TM, Caba L, Resnick MJ. Cost-Effectiveness of Urinary Biomarker Panel
in Prostate Cancer Risk Assessment. Journal of Urology. 2018;200(6):1221-1226.
doi:10.1016/j.juro.2018.07.034

102. McKiernan J, Donovan MJ, O’Neill V, et al. A novel urine exosome gene expres-
sion assay to predict high-grade prostate cancer at initial biopsy. 2016;2(7):882-889.
doi:10.1001/jamaoncol.2016.0097

103. A Prospective Adaptive Utility Trial to Validate Performance of a Novel Urine Exosome
Gene Expression Assay to Predict High-grade Prostate Cancer in Patients with Prostate-
specific Antigen 2–10 ng/ml at Initial Biopsy. European Urology. 2018;74(6):731-738.
doi:10.1016/j.eururo.2018.08.019

104. Senn SJ. Dichotomania: an obsessive compulsive disorder that is badly affecting the
quality of analysis of pharmaceutical trials. Proceedings of the International Statistical
Institute, 55th Session. 2005:1-13.

105. Vickers AJ. Prediction Models in Cancer Care Introduction: Cancer as a Prediction
Problem. 2011;61:315-326. doi:10.3322/caac.20118

106. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer
New York; 2009. doi:10.1007/978-0-387-84858-7

107. Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: A survey. Journal of
Artificial Intelligence Research. 1996;4:237-285. doi:10.1613/jair.301

108. Mohri M. Foundations of Machine Learning - Book. MIT Press; 2012:414. doi:ISBN
978-0-262-01825-8

109. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Ma-
chine learning applications in cancer prognosis and prediction. 2015;13:8-17.
doi:10.1016/j.csbj.2014.11.005

110. Donovan MJ, Noerholm M, Bentink S, et al. A molecular signature of PCA3 and
ERG exosomal RNA from non-DRE urine is predictive of initial prostate biopsy result.
2015;18(4):370-375. doi:10.1038/pcan.2015.40

111. Connell SP, O’Reilly E, Tuzova A, et al. Development of a multivariable risk model
integrating urinary cell DNA methylation and cell-free RNA data for the detection of
significant prostate cancer. Prostate. 2020;80(7):547-558. doi:10.1002/pros.23968

112. Luca BA, Brewer DS, Edwards DR, et al. DESNT: A Poor Prognosis Category of

181

https://doi.org/10.1016/j.eururo.2016.04.012
https://doi.org/10.1097/JU.0000000000000293
https://doi.org/10.1016/j.juro.2018.07.034
https://doi.org/10.1001/jamaoncol.2016.0097
https://doi.org/10.1016/j.eururo.2018.08.019
https://doi.org/10.3322/caac.20118
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1613/jair.301
https://doi.org/ISBN%20978-0-262-01825-8
https://doi.org/ISBN%20978-0-262-01825-8
https://doi.org/10.1016/j.csbj.2014.11.005
https://doi.org/10.1038/pcan.2015.40
https://doi.org/10.1002/pros.23968


References

Human Prostate Cancer. March 2017. doi:10.1016/j.euf.2017.01.016

113. Lipton ZC. The Mythos of Model Interpretability. In: ICML Workshop on Human In-
terpretability in Machine Learning.; 2016. https://arxiv.org/pdf/1606.03490.pdf%
20http://arxiv.org/abs/1606.03490.

114. Haykin S. Neural Networks: A Comprehensive Foundation. 1st ed. USA: Prentice
Hall PTR; 1994.

115. Graves A, Wayne G, Danihelka I. Neural Turing Machines. 2014. doi:10.3389/neuro.12.006.2007

116. Lei T, Barzilay R, Jaakkola T. Why Should I Trust You? Explaining the Predictions
of Any Classifier. 2016. doi:10.1145/2939672.2939778

117. Selvadurai ED, Singhera M, Thomas K, et al. Medium-term outcomes of active surveil-
lance for localised prostate cancer. 2013;64(6):981-987. doi:10.1016/j.eururo.2013.02.020

118. Geiss GK, Bumgarner RE, Birditt B, et al. Direct multiplexed measurement of gene
expression with color-coded probe pairs. 2008;26(3):317-325. doi:10.1038/nbt1385

119. Perry AS, O’Hurley G, Raheem OA, et al. Gene expression and epigenetic discovery
screen reveal methylation of SFRP2 in prostate cancer. International Journal of Cancer.
2013;132(8):1771-1780. doi:10.1002/ijc.27798

120. Sullivan L, Murphy TM, Barrett C, et al. IGFBP7 promoter methylation and gene
expression analysis in prostate cancer. Journal of Urology. 2012;188(4):1354-1360.
doi:10.1016/j.juro.2012.06.002

121. Perry AS, Loftus B, Moroose R, et al. In silico mining identifies IGFBP3 as a novel
target of methylation in prostate cancer. British Journal of Cancer. 2007;96(10):1587-
1594. doi:10.1038/sj.bjc.6603767

122. Bastian PJ, Ellinger J, Heukamp LC, Kahl P, Müller SC, Rücker A von. Prognostic
Value of CpG Island Hypermethylation at PTGS2, RAR-beta, EDNRB, and Other Gene
Loci in Patients Undergoing Radical Prostatectomy. European Urology. 2007;51(3):665-
674. doi:10.1016/j.eururo.2006.08.008

123. Whitaker HC, Kote-Jarai Z, Ross-Adams H, et al. The rs10993994 risk allele for
prostate cancer results in clinically relevant changes in microseminoprotein-beta expres-
sion in tissue and urine. PLoS ONE. 2010;5(10). doi:10.1371/journal.pone.0013363

124. Ross-Adams H, Lamb A, Dunning M, et al. Integration of copy number and transcrip-
tomics provides risk stratification in prostate cancer: A discovery and validation cohort
study. EBioMedicine. 2015;2(9):1133-1144. doi:10.1016/j.ebiom.2015.07.017

125. Stephenson SA, Verity K, Ashworth LK, Clements JA. Localization of a new prostate-
specific antigen-related serine protease gene, KLK4, is evidence for an expanded human
kallikrein gene family cluster on chromosome 19q13.3-13.4. Journal of Biological Chem-
istry. 1999;274(33):23210-23214. doi:10.1074/jbc.274.33.23210

126. Emami N, Diamandis EP. Utility of kallikrein-related peptidases (KLKs) as cancer
biomarkers. 2008;54:1600-1607. doi:10.1373/clinchem.2008.105189

127. Paliouras M, Borgono C, Diamandis EP. Human tissue kallikreins: The cancer

182

https://doi.org/10.1016/j.euf.2017.01.016
https://arxiv.org/pdf/1606.03490.pdf%20http://arxiv.org/abs/1606.03490
https://arxiv.org/pdf/1606.03490.pdf%20http://arxiv.org/abs/1606.03490
https://doi.org/10.3389/neuro.12.006.2007
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1016/j.eururo.2013.02.020
https://doi.org/10.1038/nbt1385
https://doi.org/10.1002/ijc.27798
https://doi.org/10.1016/j.juro.2012.06.002
https://doi.org/10.1038/sj.bjc.6603767
https://doi.org/10.1016/j.eururo.2006.08.008
https://doi.org/10.1371/journal.pone.0013363
https://doi.org/10.1016/j.ebiom.2015.07.017
https://doi.org/10.1074/jbc.274.33.23210
https://doi.org/10.1373/clinchem.2008.105189


References

biomarker family. 2007;249:61-79. doi:10.1016/j.canlet.2006.12.018

128. Morgan R, Boxall A, Bhatt A, et al. Engrailed-2 (en2): A tumor specific uri-
nary biomarker for the early diagnosis of prostate cancer. Clinical Cancer Research.
2011;17(5):1090-1098. doi:10.1158/1078-0432.CCR-10-2410

129. Zürbig P, Renfrow MB, Schiffer E, et al. Biomarker discovery by ce-ms enables se-
quence analysis via ms/ms with platform-independent separation. ELECTROPHORE-
SIS. 2006;27(11):2111-2125. doi:10.1002/elps.200500827

130. Kaiser T, Hermann A, Kielstein JT, et al. Capillary electrophoresis coupled to mass
spectrometry to establish polypeptide patterns in dialysis fluids. In: Journal of Chro-
matography a. Vol 1013. Elsevier; 2003:157-171. doi:10.1016/S0021-9673(03)00712-X

131. Wittke S, Fliser D, Haubitz M, et al. Determination of peptides and proteins in
human urine with capillary electrophoresis-mass spectrometry, a suitable tool for the
establishment of new diagnostic markers. In: Journal of Chromatography a. Vol 1013.
Elsevier; 2003:173-181. doi:10.1016/S0021-9673(03)00713-1

132. Siwy J, Mullen W, Golovko I, Franke J, Zürbig P. Human urinary peptide database
for multiple disease biomarker discovery. 2011;5:367-374. doi:10.1002/prca.201000155

133. Burnham KP, Anderson DR, eds. Information and likelihood theory: A basis for
model selection and inference. In: Model Selection and Multimodel Inference: A Prac-
tical Information-Theoretic Approach. New York, NY: Springer New York; 2002:49-97.
doi:10.1007/978-0-387-22456-5_2

134. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society Series B (Methodological). 1996;58(1):267-288. http://www.jstor.
org/stable/2346178.

135. Wurm MJ, Rathouz PJ, Hanlon BM. Regularized Ordinal Regression and the ordinal-
Net R Package. 2017. https://arxiv.org/pdf/1706.05003.pdf%20http://arxiv.
org/abs/1706.05003.

136. Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society, Series B. 2005;67:301-320.

137. Kursa MB, Rudnicki WR. The all relevant feature selection using random forest.
CoRR. 2011;abs/1106.5112. http://arxiv.org/abs/1106.5112.

138. Stone M. Cross-Validatory Choice and Assessment of Statistical Predictions. Jour-
nal of the Royal Statistical Society: Series B (Methodological). 1974;36(2):111-133.
doi:10.1111/j.2517-6161.1974.tb00994.x

139. DiCiccio TJ, Efron B. Bootstrap confidence intervals. Statist Sci. 1996;11(3):189-228.
doi:10.1214/ss/1032280214

140. Ho TK. Random decision forests. In: Proceedings of 3rd International Conference
on Document Analysis and Recognition. Vol 1. ICDAR ’95. IEEE Computer Society;
1995:278-282. doi:10.1109/ICDAR.1995.598994

141. Ho TK. The random subspace method for constructing decision forests.

183

https://doi.org/10.1016/j.canlet.2006.12.018
https://doi.org/10.1158/1078-0432.CCR-10-2410
https://doi.org/10.1002/elps.200500827
https://doi.org/10.1016/S0021-9673(03)00712-X
https://doi.org/10.1016/S0021-9673(03)00713-1
https://doi.org/10.1002/prca.201000155
https://doi.org/10.1007/978-0-387-22456-5_2
http://www.jstor.org/stable/2346178
http://www.jstor.org/stable/2346178
https://arxiv.org/pdf/1706.05003.pdf%20http://arxiv.org/abs/1706.05003
https://arxiv.org/pdf/1706.05003.pdf%20http://arxiv.org/abs/1706.05003
http://arxiv.org/abs/1106.5112
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1214/ss/1032280214
https://doi.org/10.1109/ICDAR.1995.598994


References

1998;20(8):832-844. doi:10.1109/34.709601

142. Breiman L. Random forests. 2001;45(1):5-32. doi:10.1023/A:1010933404324

143. Quinlan JR. C4.5: Programs for Machine Learning. Vol 1. Morgan Kaufmann Pub-
lishers; 1992:302. doi:10.1016/S0019-9958(62)90649-6

144. Liaw A, Wiener M. Classification and regression by randomForest. 2002;2(3):18-22.
https://CRAN.R-project.org/doc/Rnews/.

145. Freund Y, Schapire RE. A Decision-Theoretic Generalization of On-Line Learning and
an Application to Boosting. 1997;55(1):119-139. doi:10.1006/jcss.1997.1504

146. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. 2016.
doi:10.1145/2939672.2939785

147. Hastie T, Tibshirani R, Friedman J. Boosting and Additive Trees. 2003:337-388.
doi:10.1007/b94608

148. Goldbloom A, Hamner B, Moser J, Cukierski M. kaggle: Your Home for Data Science.
2017. https://www.kaggle.com/.

149. Kursa MB, Rudnicki WR. Feature Selection with the Boruta Package. 2010;36(11).
doi:Vol. 36, Issue 11, Sep 2010

150. Therneau TM. A Package for Survival Analysis in R.; 2020. https://CRAN.R-
project.org/package=survival.

151. Terry M. Therneau, Patricia M. Grambsch. Modeling Survival Data: Extending the
Cox Model. New York: Springer; 2000.

152. Harrell Jr FE. Rms: Regression Modeling Strategies.; 2020. https://CRAN.R-
project.org/package=rms.

153. Robin X, Turck N, Hainard A, et al. PROC: An open-source package for r and s+ to
analyze and compare roc curves. 2011;12:77.

154. Vickers AJ, Elkin EB. Decision Curve Analysis: A Novel Method for Evaluating
Prediction Models. 2006;26(6):565-574. doi:10.1177/0272989X06295361

155. Kerr KF, Brown MD, Zhu K, Janes H. Assessing the clinical impact of risk prediction
models with decision curves: Guidance for correct interpretation and appropriate use.
2016;34(21):2534-2540. doi:10.1200/JCO.2015.65.5654

156. Vickers AJ, Calster B van, Steyerberg EW. A simple, step-by-step guide to in-
terpreting decision curve analysis. Diagnostic and Prognostic Research. 2019;3(1):18.
doi:10.1186/s41512-019-0064-7

157. Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A. Moving beyond P values: data
analysis with estimation graphics. June 2019:1. doi:10.1038/s41592-019-0470-3

158. D’Amico AV, Moul J, Carroll PR, Sun L, Lubeck D, Chen MH. Cancer-specific
mortality after surgery or radiation for patients with clinically localized prostate
cancer managed during the prostate-specific antigen era. 2003;21(11):2163-2172.
doi:10.1200/JCO.2003.01.075

184

https://doi.org/10.1109/34.709601
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/S0019-9958(62)90649-6
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/b94608
https://www.kaggle.com/
https://doi.org/Vol.%2036,%20Issue%2011,%20Sep%202010
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=rms
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1200/JCO.2015.65.5654
https://doi.org/10.1186/s41512-019-0064-7
https://doi.org/10.1038/s41592-019-0470-3
https://doi.org/10.1200/JCO.2003.01.075


References

159. Gleason DF MG. Prediction of prognosis for prostatic Staging, adenocarcinoma by
combined histological grading and slinical. 1974;111(1):111:58-64. doi:10.1016/S0022-
5347(17)59889-4

160. Sanda MG, Cadeddu JA, Kirkby E, et al. Clinically Localized Prostate Cancer:
AUA/ASTRO/SUO Guideline. Part I: Risk Stratification, Shared Decision Making, and
Care Options. 2018;199(3):683-690. doi:10.1016/j.juro.2017.11.095

161. Brajtbord JS, Leapman MS, Cooperberg MR. The CAPRA Score at 10 Years:
Contemporary Perspectives and Analysis of Supporting Studies. 2017;71(5):705-709.
doi:10.1016/j.eururo.2016.08.065

162. Andreoiu M, Cheng L. Multifocal prostate cancer: biologic, prognostic, and therapeu-
tic implications. 2010;41:781-793. doi:10.1016/j.humpath.2010.02.011

163. Corcoran NM, Hovens CM, Hong MKH, et al. Underestimation of Gleason score at
prostate biopsy reflects sampling error in lower volume tumours. 2012;109(5):660-664.
doi:10.1111/j.1464-410X.2011.10543.x

164. Tomlins SA, Day JR, Lonigro RJ, et al. Urine TMPRSS2:ERG Plus PCA3 for Individ-
ualized Prostate Cancer Risk Assessment. 2016;70(1):45-53. doi:10.1016/j.eururo.2015.04.039

165. Deantoni EP, Crawford ED, Oesterling JE, et al. Age- and race-specific reference
ranges for prostate-specific antigen from a large community-based study. 1996;48(2):234-
239. doi:10.1016/S0090-4295(96)00091-X

166. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data
using empirical Bayes methods. 2007;8(1):118-127. doi:10.1093/biostatistics/kxj037

167. R Core Team. R: A Language and Environment for Statistical Computing. 2019.
https://www.r-project.org/.

168. Archer KJ, Williams AAA. L1 penalized continuation ratio models for ordi-
nal response prediction using high-dimensional datasets. 2012;31(14):1464-1474.
doi:10.1002/sim.4484

169. Tibshirani R. Regression Shrinkage and Selection via the Lasso. 1996;58:267-288.
doi:10.2307/2346178

170. Christensen RHB. ordinal Regression Models for Ordinal Data. 2018.

171. Pellegrini KL, Patil D, Douglas KJS, et al. Detection of prostate cancer-specific
transcripts in extracellular vesicles isolated from post-DRE urine. 2017;77(9):990-999.
doi:10.1002/pros.23355

172. Aghazadeh MA, Frankel J, Belanger M, et al. National Comprehensive Cancer Net-
work® Favorable Intermediate Risk Prostate Cancer—Is Active Surveillance Appropri-
ate? 2018;199(5):1196-1201. doi:10.1016/j.juro.2017.12.049

173. Cuzick J, Berney DM, Fisher G, et al. Prognostic value of a cell cycle progression
signature for prostate cancer death in a conservatively managed needle biopsy cohort.
2012;106(6):1095-1099. doi:10.1038/bjc.2012.39

174. Knezevic D, Goddard AD, Natraj N, et al. Analytical validation of the Oncotype DX

185

https://doi.org/10.1016/S0022-5347(17)59889-4
https://doi.org/10.1016/S0022-5347(17)59889-4
https://doi.org/10.1016/j.juro.2017.11.095
https://doi.org/10.1016/j.eururo.2016.08.065
https://doi.org/10.1016/j.humpath.2010.02.011
https://doi.org/10.1111/j.1464-410X.2011.10543.x
https://doi.org/10.1016/j.eururo.2015.04.039
https://doi.org/10.1016/S0090-4295(96)00091-X
https://doi.org/10.1093/biostatistics/kxj037
https://www.r-project.org/
https://doi.org/10.1002/sim.4484
https://doi.org/10.2307/2346178
https://doi.org/10.1002/pros.23355
https://doi.org/10.1016/j.juro.2017.12.049
https://doi.org/10.1038/bjc.2012.39


References

prostate cancer assay - a clinical RT-PCR assay optimized for prostate needle biopsies.
2013;14(1):690. doi:10.1186/1471-2164-14-690

175. Robert G, Jannink S, Smit F, et al. Rational basis for the combination of PCA3
and TMPRSS2:ERG gene fusion for prostate cancer diagnosis. 2013;73(2):113-120.
doi:10.1002/pros.22546

176. Thompson IM, Pauler DK, Goodman PJ, et al. Prevalence of prostate cancer among
men with a prostate-specific antigen level ≤4.0 ng per Milliliter. 2004;350(22):2239-2246.
doi:10.1056/NEJMoa031918

177. Simpkin AJ, Tilling K, Martin RM, et al. Systematic review and meta-analysis
of factors determining change to radical treatment in active surveillance for localized
prostate cancer. 2015;67:993-1005. doi:10.1016/j.eururo.2015.01.004

178. Tomlins SA, Bjartell A, Chinnaiyan AM, et al. ETS Gene Fusions in Prostate Can-
cer: From Discovery to Daily Clinical Practice. European Urology. 2009;56(2):275-286.
doi:10.1016/j.eururo.2009.04.036

179. Wolpert DH, Macready WG. No free lunch theorems for optimization. 1997;1(1):67-82.
doi:10.1109/4235.585893

180. Royston P, Moons KG, Altman DG, Vergouwe Y. Prognosis and prognostic research:
Developing a prognostic model. Bmj. 2009;338.

181. Altman DG, Vergouwe Y, Royston P, Moons KG. Prognosis and prognostic research:
Validating a prognostic model. Bmj. 2009;338:b605.

182. Tolkach Y, Kristiansen G. The Heterogeneity of Prostate Cancer: A Practical Ap-
proach. Pathobiology. 2018;85(1-2):108-116. doi:10.1159/000477852

183. Kersting K. Machine learning and artificial intelligence: Two fellow travelers on
the quest for intelligent behavior in machines. Frontiers in Big Data. 2018;1:6.
doi:10.3389/fdata.2018.00006

184. Danks D. Learning. In: Frankish K, Ramsey WM, eds. The Cambridge Hand-
book of Artificial Intelligence. Cambridge: Cambridge University Press; 2014:151-167.
doi:10.1017/CBO9781139046855.011

185. Draper NR, Smith H. “Dummy” variables. In: Applied Regression Analysis. John
Wiley & Sons, Ltd; 2014:299-325. doi:10.1002/9781118625590.ch14

186. Breiman L. Bagging predictors. Machine Learning. 1996;24(2):123-140.
doi:10.1023/A:1018054314350

187. Harrell Jr FE, Lee KL, Mark DB. Multivariable prognostic models: Issues in develop-
ing models, evaluating assumptions and adequacy, and measuring and reducing errors.
Statistics in medicine. 1996;15(4):361-387.

188. Steyerberg EW, others. Clinical Prediction Models. Springer; 2019.

189. Guyon I, Elisseeff A. An introduction to variable and feature selection.
2003;3(Mar):1157-1182.

186

https://doi.org/10.1186/1471-2164-14-690
https://doi.org/10.1002/pros.22546
https://doi.org/10.1056/NEJMoa031918
https://doi.org/10.1016/j.eururo.2015.01.004
https://doi.org/10.1016/j.eururo.2009.04.036
https://doi.org/10.1109/4235.585893
https://doi.org/10.1159/000477852
https://doi.org/10.3389/fdata.2018.00006
https://doi.org/10.1017/CBO9781139046855.011
https://doi.org/10.1002/9781118625590.ch14
https://doi.org/10.1023/A:1018054314350


References

190. Brown M. rmda: Risk Model Decision Analysis. 2017. https://cran.r-project.
org/package=rmda.

191. Ciccarese C, Massari F, Iacovelli R, et al. Prostate cancer heterogeneity: Discovering
novel molecular targets for therapy. 2017;54:68-73. doi:https://doi.org/10.1016/j.ctrv.2017.02.001

192. Zhao F, Olkhov-Mitsel E, Kamdar S, et al. A urine-based DNA methylation
assay, ProCUrE, to identify clinically significant prostate cancer. 2018;10(1):147.
doi:10.1186/s13148-018-0575-z

193. Xia Y, Huang C-C, Dittmar R, et al. Copy number variations in urine cell
free DNA as biomarkers in advanced prostate cancer. 2016;7(24):35818-35831.
doi:10.18632/oncotarget.9027

194. Killick E, Morgan R, Launchbury F, et al. Role of Engrailed-2 (EN2) as a prostate can-
cer detection biomarker in genetically high risk men. 2013;3:2059. doi:10.1038/srep02059

195. Strand SH, Bavafaye-Haghighi E, Kristensen H, et al. A novel combined miRNA
and methylation marker panel (miMe) for prediction of prostate cancer outcome af-
ter radical prostatectomy. International Journal of Cancer. 2019;145(12):3445-3452.
doi:10.1002/ijc.32427

196. Ricketts CJ, De Cubas AA, Fan H, et al. The Cancer Genome Atlas Comprehensive
Molecular Characterization of Renal Cell Carcinoma. Cell Reports. 2018;23(1):313-
326.e5. doi:10.1016/j.celrep.2018.03.075

197. The Human Protein Atlas. Expression of GJB1 in cancer. https://www.
proteinatlas.org/ENSG00000169562-GJB1/pathology. Accessed May 24, 2019.

198. Tomlins SA, Laxman B, Varambally S, et al. Role of the TMPRSS2-ERG gene fusion
in prostate cancer. 2008;10(2):177-188. doi:10.1593/neo.07822

199. Morgan R. Engrailed: Complexity and economy of a multi-functional transcription
factor. 2006;580:2531-2533. doi:10.1016/j.febslet.2006.04.053

200. Membrane insertion and secretion of the Engrailed-2 (EN2) transcription factor by
prostate cancer cells may induce antiviral activity in the stroma. Scientific Reports.
2019;9(1):1-9. doi:10.1038/s41598-019-41678-0

201. Pandha H, Sorensen KD, Orntoft TF, et al. Urinary engrailed-2 (EN2) levels pre-
dict tumour volume in men undergoing radical prostatectomy for prostate cancer. BJU
International. 2012;110(6B). doi:10.1111/j.1464-410X.2012.11208.x

202. Riegman PHJ, Vlietstra RJ, Klaassen P, et al. The prostate-specific antigen gene and
the human glandular kallikrein-1 gene are tandemly located on chromosome 19. FEBS
Letters. 1989;247(1):123-126. doi:10.1016/0014-5793(89)81253-0

203. Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary
creatinine concentrations in the U.S. population: Implications for urinary biologic
monitoring measurements. Environmental Health Perspectives. 2005;113(2):192-200.
doi:10.1289/ehp.7337

204. Heinze G, Dunkler D. Five myths about variable selection. 2017;30:6-10.

187

https://cran.r-project.org/package=rmda
https://cran.r-project.org/package=rmda
https://doi.org/https://doi.org/10.1016/j.ctrv.2017.02.001
https://doi.org/10.1186/s13148-018-0575-z
https://doi.org/10.18632/oncotarget.9027
https://doi.org/10.1038/srep02059
https://doi.org/10.1002/ijc.32427
https://doi.org/10.1016/j.celrep.2018.03.075
https://www.proteinatlas.org/ENSG00000169562-GJB1/pathology
https://www.proteinatlas.org/ENSG00000169562-GJB1/pathology
https://doi.org/10.1593/neo.07822
https://doi.org/10.1016/j.febslet.2006.04.053
https://doi.org/10.1038/s41598-019-41678-0
https://doi.org/10.1111/j.1464-410X.2012.11208.x
https://doi.org/10.1016/0014-5793(89)81253-0
https://doi.org/10.1289/ehp.7337


References

doi:10.1111/tri.12895

205. Tamura H, Ishikawa Y, Hino N, et al. Neuropsin is essential for early pro-
cesses of memory acquisition and Schaffer collateral long-term potentiation in
adult mouse hippocampus in vivo. Journal of Physiology. 2006;570(3):541-551.
doi:10.1113/jphysiol.2005.098715

206. Ovaere P, Lippens S, Vandenabeele P, Declercq W. The emerging roles of serine
protease cascades in the epidermis. 2009;34:453-463. doi:10.1016/j.tibs.2009.08.001

207. Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York;
2016. https://ggplot2.tidyverse.org.

208. Greenwell BM. pdp: An R package for constructing partial dependence plots. R
Journal. 2017;9(1):421-436. doi:10.32614/rj-2017-016

209. Metzger J, Negm AA, Plentz RR, et al. Urine proteomic analysis differentiates cholan-
giocarcinoma from primary sclerosing cholangitis and other benign biliary disorders. Gut.
2013;62(1):122-130. doi:10.1136/gutjnl-2012-302047

210. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software. 2010;33(1):1-22. http://www.
jstatsoft.org/v33/i01/.

211. CE–MS-based urinary biomarkers to distinguish non-significant from signif-
icant prostate cancer. British Journal of Cancer. 2019;120(12):1120-1128.
doi:10.1038/s41416-019-0472-z

212. Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society: Series B (Statistical Methodology). 2005;67(2):301-320.
doi:10.1111/j.1467-9868.2005.00503.x

213. Sakhanenko NA, Galas DJ. Biological Data Analysis as an Information Theory Prob-
lem: Multivariable Dependence Measures and the Shadows Algorithm. Journal of Com-
putational Biology. 2015;22(11):1005-1024. doi:10.1089/cmb.2015.0051

214. Patel HD, Chalfin HJ, Carter HB. Improving Prostate Cancer Screening and Diagnosis.
2016;2(7):867-868. doi:10.1001/jamaoncol.2016.0170

215. Diamandis EP. Cancer Biomarkers: Can We Turn Recent Failures into Suc-
cess? JNCI: Journal of the National Cancer Institute. 2010;102(19):1462-1467.
doi:10.1093/jnci/djq306

216. Steyerberg EW, Harrell FE, Borsboom GJJM, Eijkemans MJC, Vergouwe Y,
Habbema JDF. Internal validation of predictive models: Efficiency of some procedures
for logistic regression analysis. Journal of Clinical Epidemiology. 2001;54(8):774-781.
doi:10.1016/S0895-4356(01)00341-9

217. Risk prediction models: I. Development, internal validation, and assessing the incre-
mental value of a new (bio)marker. 2012;98:683-690. doi:10.1136/heartjnl-2011-301246

218. Steyerberg KGMA van der W Ewout W. AND Moons. Prognosis research
strategy (progress) 3: Prognostic model research. PLOS Medicine. 2013;10(2):1-9.

188

https://doi.org/10.1111/tri.12895
https://doi.org/10.1113/jphysiol.2005.098715
https://doi.org/10.1016/j.tibs.2009.08.001
https://ggplot2.tidyverse.org
https://doi.org/10.32614/rj-2017-016
https://doi.org/10.1136/gutjnl-2012-302047
http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
https://doi.org/10.1038/s41416-019-0472-z
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1089/cmb.2015.0051
https://doi.org/10.1001/jamaoncol.2016.0170
https://doi.org/10.1093/jnci/djq306
https://doi.org/10.1016/S0895-4356(01)00341-9
https://doi.org/10.1136/heartjnl-2011-301246


References

doi:10.1371/journal.pmed.1001381

219. Webb M, Manley K, Olivan M, et al. Methodology for the at-home collection
of urine samples for prostate cancer detection. BioTechniques. 2020;68(2):65-73.
doi:10.2144/btn-2019-0092

220. Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, Steyerberg EW. A
calibration hierarchy for risk models was defined: From utopia to empirical data. Journal
of Clinical Epidemiology. 2016;74:167-176. doi:10.1016/j.jclinepi.2015.12.005

221. Van Calster B, Vickers AJ. Calibration of risk prediction models: Impact
on decision-analytic performance. Medical Decision Making. 2015;35(2):162-169.
doi:10.1177/0272989X14547233

222. Bouwmeester W, Zuithoff NPA, Mallett S, et al. Reporting and methods in
clinical prediction research: A systematic review. PLoS Medicine. 2012;9(5):1-12.
doi:10.1371/journal.pmed.1001221

223. Wessler BS, Paulus J, Lundquist CM, et al. Tufts PACE Clinical Predictive Model
Registry: update 1990 through 2015. Diagnostic and Prognostic Research. 2017;1(1):10.
doi:10.1186/s41512-017-0021-2

224. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A
systematic review shows no performance benefit of machine learning over logistic regres-
sion for clinical prediction models. 2019;110:12-22. doi:10.1016/j.jclinepi.2019.02.004

225. Kleinrouweler CE, Cheong-See FM, Collins GS, et al. Prognostic models in obstetrics:
Available, but far from applicable. American Journal of Obstetrics and Gynecology.
2016;214(1):79-90.e36. doi:10.1016/j.ajog.2015.06.013

226. Collins GS, De Groot JA, Dutton S, et al. External validation of multivariable predic-
tion models: A systematic review of methodological conduct and reporting. 2014;14:40.
doi:10.1186/1471-2288-14-40

227. Van Calster B, McLernon DJ, Van Smeden M, et al. Calibration: The Achilles heel of
predictive analytics. BMC Medicine. 2019;17(1):230. doi:10.1186/s12916-019-1466-7

228. Davis SE, Lasko TA, Chen G, Siew ED, Matheny ME. Calibration drift in regression
and machine learning models for acute kidney injury. Journal of the American Medical
Informatics Association. 2017;24(6):1052-1061. doi:10.1093/jamia/ocx030

229. Thai TN, Ebell MH. Prospective validation of the Good Outcome Following Attempted
Resuscitation (GO-FAR)score for in-hospital cardiac arrest prognosis. Resuscitation.
2019;140:2-8. doi:10.1016/j.resuscitation.2019.05.002

230. Office for National Statistics. User guide to mortality statistics - Office for National
Statistics. 2019:1-45. https://www.ons.gov.uk/peoplepopulationandcommunity/
birthsdeathsandmarriages/deaths/methodologies/userguidetomortalitystatisticsjuly2017%
20https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/
deaths/methodologies/userguidetomortalitystatisticsjuly2017#certification-
of-cause-of-death.

231. Reilly BM, Evans AT. Translating clinical research into clinical practice: Impact of

189

https://doi.org/10.1371/journal.pmed.1001381
https://doi.org/10.2144/btn-2019-0092
https://doi.org/10.1016/j.jclinepi.2015.12.005
https://doi.org/10.1177/0272989X14547233
https://doi.org/10.1371/journal.pmed.1001221
https://doi.org/10.1186/s41512-017-0021-2
https://doi.org/10.1016/j.jclinepi.2019.02.004
https://doi.org/10.1016/j.ajog.2015.06.013
https://doi.org/10.1186/1471-2288-14-40
https://doi.org/10.1186/s12916-019-1466-7
https://doi.org/10.1093/jamia/ocx030
https://doi.org/10.1016/j.resuscitation.2019.05.002
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/methodologies/userguidetomortalitystatisticsjuly2017%20https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/methodologies/userguidetomortalitystatisticsjuly2017#certification-of-cause-of-death
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/methodologies/userguidetomortalitystatisticsjuly2017%20https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/methodologies/userguidetomortalitystatisticsjuly2017#certification-of-cause-of-death
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/methodologies/userguidetomortalitystatisticsjuly2017%20https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/methodologies/userguidetomortalitystatisticsjuly2017#certification-of-cause-of-death
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/methodologies/userguidetomortalitystatisticsjuly2017%20https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/methodologies/userguidetomortalitystatisticsjuly2017#certification-of-cause-of-death
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/methodologies/userguidetomortalitystatisticsjuly2017%20https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/methodologies/userguidetomortalitystatisticsjuly2017#certification-of-cause-of-death


References

using prediction rules to make decisions. 2006;144:201-209. doi:10.7326/0003-4819-144-
3-200602070-00009

232. Andersen PK. Multistate models in survival analysis: A study of nephropathy and mor-
tality in diabetes. Statistics in Medicine. 1988;7(6):661-670. doi:10.1002/sim.4780070605

233. Kvamme H, Borgan O, Scheel I. Time-to-event prediction with neural networks and
cox regression. Journal of Machine Learning Research. 2019;20:1-30. http://jmlr.
org/papers/v20/18-424.html.

234. Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox’s
proportional hazards model via coordinate descent. Journal of Statistical Software.
2011;39(5):1-13. doi:10.18637/jss.v039.i05

235. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Annals
of Applied Statistics. 2008;2(3):841-860. doi:10.1214/08-AOAS169

236. Heidegger I, Klocker H, Steiner E, et al. ProPSA is an early marker for prostate
cancer aggressiveness. Prostate Cancer and Prostatic Diseases. 2014;17(1):70-74.
doi:10.1038/pcan.2013.50

237. Catalona WJ, Partin AW, Sanda MG, et al. A multicenter study of [-2]pro-prostate
specific antigen combined with prostate specific antigen and free prostate specific antigen
for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range.
Journal of Urology. 2011;185(5):1650-1655. doi:10.1016/j.juro.2010.12.032

238. Loeb S, Catalona WJ. The Prostate Health Index: A new test for the detection of
prostate cancer. 2014;6:74-77. doi:10.1177/1756287213513488

239. Vickers AJ, Sjoberg DD, Ankerst DP, Tangen CM, Goodman PJ, Thompson IM. The
Prostate Cancer Prevention Trial risk calculator and the relationship between prostate-
specific antigen and biopsy outcome. 2013;119(16):3007-3011. doi:10.1002/cncr.28114

240. Riley RD, Snell KIE, Ensor J, et al. Minimum sample size for developing a mul-
tivariable prediction model: Part I – Continuous outcomes. Statistics in Medicine.
2019;38(7):1262-1275. doi:10.1002/sim.7993

241. Riley RD, Snell KIE, Ensor J, et al. Minimum sample size for developing a multi-
variable prediction model: PART II - binary and time-to-event outcomes. Statistics in
Medicine. 2019;38(7):1276-1296. doi:10.1002/sim.7992

242. Jong VMT de, Eijkemans MJC, Calster B van, et al. Sample size considerations and
predictive performance of multinomial logistic prediction models. Statistics in Medicine.
2019;38(9):1601-1619. doi:10.1002/sim.8063

243. Courvoisier DS, Combescure C, Agoritsas T, Gayet-Ageron A, Perneger TV. Per-
formance of logistic regression modeling: Beyond the number of events per variable,
the role of data structure. Journal of Clinical Epidemiology. 2011;64(9):993-1000.
doi:10.1016/j.jclinepi.2010.11.012

244. Van Smeden M, De Groot JAH, Moons KGM, et al. No rationale for 1 variable
per 10 events criterion for binary logistic regression analysis. BMC Medical Research
Methodology. 2016;16(1):1-12. doi:10.1186/s12874-016-0267-3

190

https://doi.org/10.7326/0003-4819-144-3-200602070-00009
https://doi.org/10.7326/0003-4819-144-3-200602070-00009
https://doi.org/10.1002/sim.4780070605
http://jmlr.org/papers/v20/18-424.html.
http://jmlr.org/papers/v20/18-424.html.
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1038/pcan.2013.50
https://doi.org/10.1016/j.juro.2010.12.032
https://doi.org/10.1177/1756287213513488
https://doi.org/10.1002/cncr.28114
https://doi.org/10.1002/sim.7993
https://doi.org/10.1002/sim.7992
https://doi.org/10.1002/sim.8063
https://doi.org/10.1016/j.jclinepi.2010.11.012
https://doi.org/10.1186/s12874-016-0267-3


References

245. Sample size for binary logistic prediction models: Beyond events per vari-
able criteria. Statistical Methods in Medical Research. 2019;28(8):2455-2474.
doi:10.1177/0962280218784726

246. Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing
a clinical prediction model. The BMJ. 2020;368. doi:10.1136/bmj.m441

247. Bruinsma SM, Zhang L, Roobol MJ, et al. The Movember Foundation’s GAP3 cohort:
a profile of the largest global prostate cancer active surveillance database to date. BJU
International. 2018;121(5):737-744. doi:10.1111/bju.14106

248. Canadian Cancer Society. The prostate. http://www.cancer.ca/en/cancer-
information/cancer-type/prostate/prostate-cancer/the-prostate/?region=on.
Accessed January 22, 2018.

249. Egevad L, Granfors T, Karlberg L, Bergh A, Stattin P. Prognostic value of the Gleason
score in prostate cancer. BJU International. 2002;89(6):538-542. doi:10.1046/j.1464-
410X.2002.02669.x

250. National Intutute for Health. Morphology & Grade | SEER Training. https:
//training.seer.cancer.gov/prostate/abstract-code-stage/morphology.html.
Accessed June 22, 2020.

251. Abdominal Key. Nonneoplastic diseases of the prostate | Abdominal Key. 2016.
https://abdominalkey.com/nonneoplastic-diseases-of-the-prostate/. Ac-
cessed July 20, 2020.

191

https://doi.org/10.1177/0962280218784726
https://doi.org/10.1136/bmj.m441
https://doi.org/10.1111/bju.14106
http://www.cancer.ca/en/cancer-information/cancer-type/prostate/prostate-cancer/the-prostate/?region=on
http://www.cancer.ca/en/cancer-information/cancer-type/prostate/prostate-cancer/the-prostate/?region=on
https://doi.org/10.1046/j.1464-410X.2002.02669.x
https://doi.org/10.1046/j.1464-410X.2002.02669.x
https://training.seer.cancer.gov/prostate/abstract-code-stage/morphology.html
https://training.seer.cancer.gov/prostate/abstract-code-stage/morphology.html
https://abdominalkey.com/nonneoplastic-diseases-of-the-prostate/

	Chapter 1: Introduction
	My guiding philosophy - robust, reproducible and relevant analyses
	TRIPOD guidelines

	Aims and objectives of this thesis
	Aims
	Objectives

	Chapter overview
	Thesis output
	Peer reviewed papers
	Papers under review
	Invited talks & accepted posters


	Chapter 2: Background
	Summary
	Cancer and the prostate
	The Prostate
	Prostate Cancer

	The diagnostic and prognostic toolsets for prostate cancer
	PSA
	Digital Rectal Examination
	Needle Biopsy
	MRI
	TNM Staging

	The current clinical pathway for patients
	Diagnosis
	Risk Stratification and Prognosis
	Treatment or Active Surveillance?

	The clinical problem
	PSA reliability, or lack thereof
	Sampling error of biopsy
	Variability and costs of MRI
	Risk stratification is not fit for purpose

	Biomarker discovery and development
	Why urine?
	Existing urine biomarker tests

	The applications of machine learning for biodiscovery & prostate cancer
	The ``Black Box'' issue

	Discussion

	Chapter 3: Methods
	The Movember GAP1 Urine Biomarker Cohort
	NanoString
	Methylation
	ELISA and EN2
	Mass Spectrometry

	Statistical and Machine Learning Methods
	Regression modelling
	Overfitting
	Regularisation and the LASSO
	Cross-validation
	Resampling and the bootstrap
	Random Forests
	Gradient Boosting Machines
	Meta-ensembles or Stacking
	Boruta
	Survival Analysis
	Metrics for assessing model accuracy


	Chapter 4: Development of the Prostate Urine Risk Scores
	Summary
	Background
	Materials & Methods
	Patient samples and clinical criteria
	Expression analyses
	Model production and statistical analysis

	Results
	The Clinical Cohort
	Selection of cell-free fractions
	Development of the Prostate Urine Risk Signatures
	Pre-biopsy Prediction of D'Amico risk, CAPRA score and Gleason:
	Active surveillance cohort:
	Longitudinal stability of the PUR model in urine samples

	Discussion

	Chapter 5: An empirical exploration of supervised machine learning algorithms and validation strategies
	Summary
	Background
	Methods
	NanoString data
	Curation of Training and Test datasets
	Model training labels and variables
	Model construction and selection of user-tunable parameters
	Evaluation of model performance
	Assessment of dataset variability
	Inclusion of clinically available parameters
	Feature Selection

	Results
	Choice of training labels, clinical outcomes and machine learning algorithm
	Integration of clinical and non-NanoString biochemical parameters
	The effects of clinical variables and resampling training/test splits
	Feature selection

	Discussion
	The relative ease of predicting different prostate cancer outcomes
	Algorithmic choices
	The importance of data splitting strategy
	Solutions and conclusions


	Chapter 6: Development of a machine learning biodiscovery framework based on bootstrap resampling and Random Forests
	Summary
	Background
	Methods
	Patient population and characteristics
	Sample Processing and analysis
	Statistical Analysis

	Results
	The ExoMeth development cohort
	Feature selection and model development
	ExoMeth predictive ability
	Net Benefit of ExoMeth

	Discussion

	Chapter 7: Successes and Failures of the FrameWork
	Summary
	Background
	Analysis of ELISA data reveals little clinical utility
	Methods
	Results
	Conclusions

	ExoGrail: an ideal scenario of few predictors and previously identified biomarkers
	Methods
	Results
	Discussion

	ExoSpec: high-dimensionality data require alterations to the FrameWork
	Methods
	Results
	Discussion

	Conclusions

	Chapter 8: Discussion
	Results from this thesis
	Potential clinical impacts
	Requirements to realise this impact

	Chapter 9: Future Work
	Summary
	Introduction
	Compliance to TRIPOD guidelines
	Goals of future studies

	A three cohort design
	The Calibration Cohort
	The External Validation Cohort and sub-cohorts
	The Active Surveillance Validation and Development Cohort

	Comparisons to clinical standards and calculators
	Sample sizes
	The Calibration Cohort
	External Validation sub-cohorts
	AS Validation and Development Cohort

	Discussion

	Appendix A: Chapter 5:
	Appendix B: Chapter 6:
	References



