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Abstract At the transition from intrauterine to postnatal life, drastic alterations are mirrored by

changes in cellular immunity. These changes are in part immune cell intrinsic, originate in the

replacement of fetal cells, or result from global regulatory mechanisms and adaptation to changes

in the tissue microenvironment. Overall, longer developmental trajectories are intersected by

events related to mother-infant separation, birth cues, acquisition of microbiota and metabolic

factors. Perinatal alterations particularly affect immune niches, where structures with discrete

functions meet, the intestinal mucosa, epidermis and lung. Accordingly, the following questions will

be addressed in this review:

How does the preprogrammed development supported by endogenous cues, steer innate immune

cell differentiation, adaptation to tissue structures, and immunity to infection?

How does the transition at birth impact on tissue immune make-up including its topology?

How do postnatal cues guide innate immune cell differentiation and function at immunological

niches?

Introduction
Birth simultaneously constitutes the end of the intrauterine or fetal development, a highly complex

transition, and the beginning of extrauterine life with ample environmental challenges and potential

detrimental implications for long-term health. Moreover, birth converts the maternal-fetal superor-

ganism into two, in a strictly physical sense, independent beings. The exit from the sterile womb and

the establishment of metabolic independence needs to be accommodated by swift changes in virtu-

ally all organ systems of the newborn infant. Among these, the immune system inhabits a central

role and undergoes broad adaptations. A precisely tuned immune system is key to a healthy life of
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the newborn infant since microorganisms inevitably starting to colonize during birth and thereafter

need to be immediately dealt with. The postnatal phase is similarly remarkable in view of the immu-

nological conditions, in that two individuals share their environment in a uniquely intimate fashion:

immunologically active molecules are transferred via breast milk, and bacterial members of the

microbiota are provided by mother to offspring. Moreover, most systemic immune effectors

acquired in utero, for example, maternal antibodies, slowly wane in the infant after birth, yet mater-

nal immune cells may circulate in the infant for a long time (called microchimerism). Thus, the imme-

diate postnatal relationship between mother and infant maybe best termed ‘separate, but

intertwined’.

Traditionally, ontogeny of the immune system has been considered to follow an upward trajectory

or ‘maturation’ starting in fetal life, with the most substantial, or steep development in the first

months after birth. This model has been based on the concept that, first, the fetus in utero is largely

spared from microorganisms and other exogenous stressors and thus would not require classical

immunity. Second, the semi-allogenic state between fetus and mother requires ‘stealth’ characteris-

tics of the unborn child and tight immune control in the mother. In line with this, immune activation

or inflammation in utero has been considered unwanted or even harmful for the unborn fetus. This

has been promoted by diseases and experimental models involving pathological immune

activation in utero, for example, in cases with elevated type I interferon (IFNa/b) signaling caused by

congenital viral infections or in Aicardi–Goutières syndrome, which induce intrauterine growth retar-

dation and fetal demise (Yockey and Iwasaki, 2018; Yockey et al., 2018). However, it has been a

long-standing conundrum that the fetus needs to be both, tolerogenic in utero and prepared to

instantly switch to a protective immune program with heightened local activation, when microbially

colonized at birth. High complexity to the immune development before, during, and after birth man-

ifests in distinct profiles of both activating and dampening inflammatory components at birth,

for example, high counts of neutrophils, plasmacytoid dendritic cells, and tissue-resident regulatory

T and myeloid-derived suppressor cells, as well as high-induced concentrations of Interleukin (IL)-10

and IL-1b (Kollmann et al., 2017; Lee et al., 2019). Global regulators – such as S100A8/A9 (calpro-

tectin), type I IFN, or prostaglandin (PGE)-2 – have been discovered that tune immunity at the begin-

ning of life (Ulas et al., 2017). However, these regulatory factors alone cannot explain the

complexity of systemic and site-specific immune adaptation. Rather, robust systemic preparation

and precise site adaptation need to go hand-in-hand to coordinate perinatal development of cellular

innate immunity.

Moreover, expected perinatal disturbances, that is, infections early in life, may have long-term

effects either by altering the immune cell composition or state in the different host tissues

(Machiels et al., 2017) or in the bone marrow (Kaufmann et al., 2018) – with lasting effects on stem

cell progeny. Alternatively, transient changes in the immune cell state may indirectly alter resident

cells such as infection-driven neonatal entry of CD8+ T cells into the brain. This induces lasting epi-

genetic changes in microglia impacting on hippocampal function and behavior during adolescence

(Schwabenland, Henneke unpublished).

Together, neonatal immunity is not immature, but highly regulated and specialized to best meet

the unique challenges of birth and transition into the animated environment. Disentangling maternal

and fetal immune development, as well as endogenous and exogenous cues around birth, requires

to decipher immune cell origin at any time point of development, cellular programming, and identity

imprinting by the – physiological – tissue environment, as well as adaptation to and modulation by

secondary challenges, like the microbiota.

In the following, we will summarize the current knowledge and highlight the gaps in understand-

ing the complex transitions and adaptations in the perinatal immune system and different tissues. At

first, we will describe the role of immune cell-generating and -altering sites in a longitudinal track in

the fetus and perinatally from yolk sac (YS), fetal liver to bone marrow. Next, we will connect in a

horizontal track paradigmatic cell types and organs, that is, the skin, the intestinal tract, the lung,

and the central nervous system, with respect to their perinatal makeup of local immunity. This will be

complemented by describing how the blood circulation contributes to build up an effective develop-

mentally adapted system of immune surveillance and immune cell distribution. Finally, the neonatal
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and the interlinked breast milk microbiota will be explored as unique cues for perinatal immune

development.

In all these exemplary areas, we follow the concept that perinatal immune development com-

prises definable switch points to prepare for and adapt to perinatal changes of unpredictable

dynamics. Perinatal cellular immune development has lasting consequences for systemic and site-

specific immune regulation, including the interaction with commensal and pathogenic microorgan-

isms. In other words, exploration of neonatal immune development sets the stage for steering immu-

nity for a better start.

The role of yolk sac, fetal liver, and bone marrow origin in perinatal
immune cell development
The perinatal immune system comprises cells originating from distinct waves of hematopoiesis dur-

ing embryonic and fetal development. In mice, these waves are characterized by a short primitive

wave arising in the YS around embryonic day (E)7.5 (Palis et al., 1999), followed by a transient defin-

itive hematopoietic wave of cells derived from erythromyeloid progenitors (EMPs) in the YS around

E8.5 (McGrath et al., 2015), and the definitive hematopoietic progeny arising from emerging

hematopoietic stem cells (HSCs) around E10.5 in the aorta-gonado-mesonephros region

(Boisset et al., 2010).

In the last decade, a number of studies have focused on precisely defining the hematopoietic ori-

gin of various immune cells during development and on linking the emergence of immune cell popu-

lations to the different hematopoietic waves (Figure 1). As a prominent example, resident

macrophages (MF) are seeded in host tissues during different stages of embryonic and fetal devel-

opment (Goldmann et al., 2016; Guilliams et al., 2013; Hashimoto et al., 2013; Schulz et al.,

2012; Yona et al., 2013). In mice, early YS EMPs and their progenitors colonize the embryo proper

between E8.5 and E10.5 and seed MF in various target tissues (Stremmel et al., 2018). In addition,

a late wave of EMPs colonizes the fetal liver and generates the first circulating fetal monocytes and

granulocytes of the embryo until the first HSC-derived monocytes and granulocytes emerge

(Gomez Perdiguero et al., 2015). A substantial contribution of early YS EMP-derived MF was

described in nearly all tissues until birth. However, it seems that these cells are outcompeted in most

Figure 1. Interlinked pre- and postnatal development, adaptation, and maintenance of tissue macrophages. At birth, tissue MF originate from three

sources that prenatally seed developing body sites in sequential waves. Postnatally, self-maintenance and renewal by bone marrow-derived monocytes

are subject to microanatomical, soluble endogenous and exogenous cues. Establishment of a dynamic, tissue-specific MF homeostasis relies on tightly

regulated late prenatal and early postnatal events.
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tissues by late EMP-derived fetal monocytes, which develop in the fetal liver (Gomez Perdiguero

et al., 2015; Hoeffel et al., 2015). These cells colonize the organs pre- and perinatally and then

reside within most organs throughout the whole lifespan and maintain themselves via endogenous

proliferation rather than continuous exchange by circulating myeloid progenitors (Hashimoto et al.,

2013; Schulz et al., 2012). Thus, the fetal liver in the mouse serves as the main hematopoietic hub

during development, for example, as the source of fetal monocytes but also as a side for HSC-

derived progenitors until HSCs move to the bone marrow as the primary site of hematopoiesis from

the perinatal period onward (Figure 1). Interestingly, also other immune cells such as mast cells or

gd T-cells in the epidermis are derived from an HSC-independent embryonic source (Gentek et al.,

2018a; Gentek et al., 2018b). As noted above, EMP-derived MF (either from the early or late

wave) persist in selected and functionally distinct tissues into adulthood, including the brain (micro-

glia), the liver (Kupffer cells), or the epidermis (Langerhans cells). However, in several specialized tis-

sue niches, MF populations are found that are indeed replaced by circulating HSC-derived

progenitors from birth onwards, including the majority of dermal MF, lamina propria MF in the

intestine, or stromal choroid plexus MF in the brain (Goldmann et al., 2016; Kolter et al., 2019;

Bain et al., 2014; Van Hove et al., 2019).

Each tissue-resident MF population carries a transcriptional signature imprinted by hematopoietic

origin (Hagemeyer et al., 2016; Lavin et al., 2014; Mass et al., 2016). Prenatally, YS EMP-derived

MF and EMP-derived fetal monocytes compete for the same tissue niche (e.g., the alveolar space),

yet fetal monocytes are transcriptionally substantially closer to adult bone marrow monocytes than

to YS MF (van de Laar et al., 2016). As an example, EMP-derived fetal monocytes outcompete YS

MF in the development to alveolar MF in late fetal stages, which is associated with the repression

of the transcription factors c-Maf and MafB and a prerequisite for proper lung function and immune

defense (Li et al., 2020).

Upon entry into the anatomical niche, tissue MF are slowly adapting to the tissue environment

and a tissue-specific transcriptional program is imprinted, which is defined by many factors such as

neighboring cells (Bonnardel et al., 2019; Sakai et al., 2019) metabolites, and growth factors in the

niche (Okabe and Medzhitov, 2014), but also the presence or absence of microbial stimuli

(Capucha et al., 2018). During the perinatal establishment of definitive hematopoiesis, immune cell

progenitor cells (HSPCs) require a specific supportive environment inside the bone marrow, which

regulates cell growth and retention, such as the establishment of the stem cell niche for the reten-

tion of quiescent HSCs by osteoblasts (Coşkun et al., 2014). Furthermore, endothelial cells and mes-

enchymal stem cells, as key sources of cytokines and stem cell factors that maintain HSPCs, appear

to be essential in this context (Sugiyama et al., 2006; Hooper et al., 2009). Upon bone marrow

egress, immune cells carry a developmental program, which is determined by genetic, epigenetic,

and environmental cues from the stem cell niche to the target tissue. Differentiation of circulating

innate immune cells, such as monocytes or granulocytes, is a hierarchical and tightly regulated pro-

cess via several progenitor subsets that are instructed by defined transcriptional programs

(Mildner et al., 2017; Liu et al., 2019). Furthermore, their egress from the bone marrow is tightly

regulated by signals sensed, for example, via CCR2, CXCR2, CXCR4, or G-CSFR to allow a dynamic

adjustment of circulating immune cell numbers during homeostasis and disease (Semerad et al.,

2002; Serbina and Pamer, 2006; Eash et al., 2009). Monocytes are highly plastic cells with different

subsets circulating in the blood, but are even more plastic upon entry into inflamed tissues

(Guilliams et al., 2018; Giladi et al., 2020). In a recent study, even short-lived neutrophils have

been shown to be highly adaptable and plastic to different tissue environment and develop distinct

functional programs depending on the host tissue environment (Ballesteros et al., 2020). Proper

differentiation of tissue-resident immune cells along predefined pathways is a prerequisite for tissue

development and regeneration. Yet at the same time, cellular transformation processes are subject

to hijacking by ‘latent’ microorganisms like mycobacteria and herpes viruses for the creation of a

chronic niche (Lösslein et al., 2021).

The perinatal phase is crucial for immune cell maturation and acquisition of an immunocompetent

phenotype, including tissue MF differentiation and adaptation to the anatomical host niche. Within

their niche, MF undergo rapid adaptation to the changing environment and acquire often wide

changes in their transcriptional landscape, as, for example, seen for the stepwise differentiation of

microglia (Matcovitch-Natan et al., 2016; Thion et al., 2018). These differentiation processes are
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implicated both in keeping numeric MF homeostasis as well as a balanced response to infections

(Figure 1; Kolter et al., 2019; Feuerstein et al., 2020).

It has become clear, based on multiple independent observations, that early immune cell dissemi-

nation to hematopoietic and non-hematopoietic organs is associated with important functions

throughout life. However, it remains largely enigmatic, whether the effects later in life are secondary

to early tissue seeding, which imprints defined programs on the tissue environment (Cossı́o et al.,

2019). Especially around birth, immense adaptations and restructuring in the immune cell compart-

ment are required since a variety of environmental factors get in contact with the developing organ-

ism. The origin of cells that perinatally seed tissues needs to be rigorously deciphered to resolve

perinatal development of tissue immunity since early life immune seeding may have lasting conse-

quences, that is, represents a window of vulnerability as well as opportunity.

Perinatal adaptation of skin resident immune cells
Perinatal immune development may follow common principles, including genetic determination, in

utero modulation, and postnatal adaptation, yet it may further depend on spatial and temporal sig-

nals at distinct body sites. Moreover, cellular immune development runs in parallel with the perinatal

development of other cell types, for example, fibroblasts, endothelial and epithelial cells, or neurons.

These cells, on the one hand, harbor restricted immunological properties, like cytokine secretion,

and, on the other hand, build physical niches for immune cell interaction including residency. Thus,

they reciprocally interact with transient and tissue residing immune cells and form cellular niches as –

conceptionally – discrete working units for tissue immunity (Guilliams et al., 2020). In addition, MF

renewal patterns are related to the tissue substructure, for example, highly specialized sensory

nerve-associated MF are largely self-maintained (Kolter et al., 2019). In contrast, multicellular net-

works involving non-immune cells, physical cues, cytokines, stem cell factors, incoming cells, etc.,

tightly regulate renewal and density of the majority of tissue MF via only partially understood mech-

anisms, including quorum sensing [(Lohrmann et al., 2021) and Figure 1].

The skin is particularly interesting with respect to its highly structured microanatomy, its perinatal

development, and the dynamic integration of highly diverse cues into maintaining intercellular

immune cell control. In the skin, immune cell subsets of MF, dendritic cells, and gd T cell lineages

can be discriminated not only in view of their hematopoietic origin, but also with respect to the influ-

ence of environmental cues on cellular renewal patterns. Specifically, whereas nerve-associated MF

in the dermis, the immune-cell-rich layer bridging subcutaneous tissue and the epidermis, and Lan-

gerhans cells (LCs) in the latter, seem to maintain their populations size in a microbiota-independent

fashion (Capucha et al., 2018), the expansion and activation of other MF and Tgd17 cells in the skin

(Ridaura et al., 2018) is heavily influenced by the regular bacterial and fungal skin flora. Moreover,

the network of professional resident immune cells in the dermis depends on the interaction with

non-professional immune cells. Mechanistically, keratinocytes fortify skin barrier integrity by regulat-

ing Tgd17 cell activation, which itself is promoted by IL-23 signals and skin microbiota (Zhang et al.,

2019a). In addition, fibroblasts have the potential to produce tissue growth factors (like FGF2,

FGF7, tumor growth factor b1 [TGF-b1]) in response to type I IFN, which consecutively leads to plas-

macytoid dendritic cells being activated by neutrophils responding to translocating skin microbiota

(Di Domizio et al., 2020).

Immune cells that are taking up residency in the target tissue have to adapt to heterogeneous tis-

sue substructures. This process is steered by a predefined cellular program, for example, the surface

expression pattern of integrins and chemokine receptors. At the same time, a large variety of cues

need to be processed, such as those delivered by the extracellular matrix and non-professional

immune cells in the tissue. This localization to heterogeneous tissue structures providing functional

cues can result in modulation of immune responses, for example, antibacterial and anti-inflammatory

functions attributed to perivascular tissue MF (Abtin et al., 2014; Barreiro et al., 2016). Very

recently, paradigmatic evidence has linked the long-term dedication of MF subsets to microanatom-

ical tissue niches and distinct transcriptomic programs. This has been exemplified for the already

mentioned sensory nerve-associated MF of the skin (Goldmann et al., 2016; Kolter et al., 2019;

Bain et al., 2014; Van Hove et al., 2019) and to MF localizing to the myenteric plexus in the intesti-

nal tract (De Schepper et al., 2018). These MF, which function in nerve surveillance during steady

state and provide cues for axon outgrowth during activation, largely keep their population size by

self-renewal once they have adapted to the nerve niche. In contrast, MF in immediate vicinity and in
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the same tissue are replaced by HSC-derived progenitors, which exhibit a distinct transcriptional

program (definitive hematopoiesis). Yet, upon injury and nerve outgrowth and thus niche expansion,

MF of other origin can take up the nerve-niche specific program, independent of their origin

(Kolter et al., 2019).

Epidermal LC are – due to their high antigen-presenting capacities – functionally positioned

between MF and dendritic cells. Notably, LCs develop similar to the second immune cell lineage

residing in the mouse epidermis, gd T cells (dendritic epidermal T cells), from both early YS (YS) pro-

genitors and fetal liver monocytes before locally self-renewing in the adult (Gentek et al., 2018a;

Merad et al., 2002). The skin is colonized by EMP-derived MF during embryogenesis

(Hoeffel et al., 2012) similar to other tissues. Starting from E14.5 onwards, EMP-derived fetal mono-

cytes are entering the developing skin most likely via blood vessels and start to differentiate to LC

progenitors (Hoeffel et al., 2012). Shortly before birth, the first LC progenitors begin to colonize

the separating epidermis by transmigration from the underlying dermis into the epidermis where

they peri- and postnatally differentiate to mature LCs and expand by endogenous proliferation dur-

ing postnatal stages (Hoeffel et al., 2012; Chorro et al., 2009). Upon entry in the epidermis, LCs

subsequently loose monocyte markers and acquire LC maturation markers including Langerin,

CD11c, or major histocompatibility complex (MHC) class II. Maturation and maintenance of the adult

LC population are instructed by signals of the surrounding adjacent keratinocytes, including IL-34/

Csf1r signaling (Greter et al., 2012); however, the signals instructing differentiation and recruitment

during perinatal development have not been identified yet. Similar to nerve associated MF in the

dermis, the LC population is maintained by endogenous proliferation during steady state within the

niche, but upon injury such as UV-B irradiation the resident LCs are eliminated and efficiently

replaced by HSC-derived progenitors from the circulation (Merad et al., 2002; Seré et al., 2012).

This replacement is also mirrored in part in gd T cells in the dermis, where an IL-17-secreting subset

(Tgd17) develops before birth and is self-renewing, in contrast to IFN-g–producing CD27+gd T cells,

which are constantly replenished by newly generated gd-T cells from the thymus (Sandrock et al.,

2018).

Building up local immune defense in the developing lung
In the adult lung, local immune defense is mainly provided by tissue-resident MF. Two main sets of

tissue-resident MF can be distinguished, interstitial MF (IM) and alveolar MF (AM) (Evren et al.,

2020; Kopf et al., 2015). In the fetal and newborn mouse, the lung immune defense system is

established by tissue-resident MF via several waves of cell recruitment (Evren et al., 2020;

Kopf et al., 2015). The first wave consists of YS-derived MF, which can be detected in the lung

from around E10. These MF have a heterogeneous shape with multiple pseudopods and are charac-

terized by high expression of F4/80 and low expression of CD11b. The second wave of MF recruit-

ment to the lung consists of fetal liver-derived monocytes, which appear in the lung at E12. These

MF exhibit a round cell shape, low expression of F4/80, and high expression of CD11b

(Guilliams et al., 2013; Hashimoto et al., 2013; Tan and Krasnow, 2016). Both populations are dis-

tributed diffusely in the fetal lung interstitium between E14 and 17 (Tan and Krasnow, 2016). The

first wave of YS-derived resident MF does not substantially proliferate and remains as IM in the

interstitial space. Postnatally, these cells are continuously renewed by circulating bone marrow-

derived monocytes. The second wave of MF shows strong proliferative activity starting at E16 in the

lung interstitium, leading to the establishment of the uniquely localized alveolar MF, which – in the

mouse – start to develop around birth. In other words, fetal monocytes outcompete YS MF in the

development to alveolar MF late in fetal development, which has lasting consequences for proper

lung function and immune defense (Guilliams et al., 2013; Li et al., 2020; Tan and Krasnow, 2016).

The third wave of lung MF is recruited to the lung from bone marrow-derived circulating mono-

cytes starting immediately after birth to fill up any niche of interstitial MF throughout postnatal life.

Similar mechanisms concerning ontogeny of tissue-resident MF may also apply for the development

of interstitial and alveolar MF during human ontogeny, as addressed in a recently published study

(Evren et al., 2020).

Alveolar MF play a central role in the immediate postnatal protection of the lung from infections.

Importantly, alveolar MF exhibit a unique territorial behavior with on average three alveoli being sur-

veilled by one AM (Neupane et al., 2020). The cues for guiding alveolar MF function and distribu-

tion in an organ that undergoes a fourfold increase in weight in the first three weeks of life (in mice)
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are only partially understood. Yet, the positioning of prealveolar MF to the alveoli and the cell-intrin-

sic transition to AM appear to require the actin-bundling protein L-plastin (Todd et al., 2016). This

depends on GM-CSF produced by alveolar epithelial cells (Kopf et al., 2015). GM-CSF – through

binding to the GM-CSF receptor – in turn activates the transcription factor PPAR-g, which controls

the program for alveolar MF maturation and maintenance (Schneider et al., 2014). The unique

dependence of alveolar MF on GM-CSF signaling among tissue MF in the body is illustrated by the

disease alveolar proteinosis, where genetic or antibody-mediated subversion of this signaling

machinery results in abnormal accumulation of surfactant-derived lipoproteins (Trapnell et al.,

2019).

Alveolar MF keep their capacity for self-renewal throughout postnatal life (Epelman et al., 2014).

Yet, they can be replaced by circulating monocytes in cases of severe damage to the alveolar MF

population, for example, after infection or lung irradiation therapy (Machiels et al., 2017). The prop-

erties of the lung environment for alveolar MF function are highlighted by the ability of intratra-

cheally transferred ectopic MF to adopt an alveolar MF phenotype (Lavin et al., 2014; van de Laar

et al., 2016).

Both pulmonary development and establishment of an immune defense system in the lung are

still ongoing immediately after birth. Thus, any disturbance of lung homeostasis, not only during fetal

life but also in the early postnatal period, may inevitably affect lung development and local host

defense. This becomes evident in premature infants, where various noxious agents or procedures (e.

g., high oxygen levels, artificial ventilation, microbial products) can lead to bronchopulmonary dys-

plasia, a severe lung disease with long-term consequences (Blackwell et al., 2011). It is therefore

instrumental to elucidate the mechanisms regulating interstitial and alveolar MF function in the

developing lung including pathological conditions during this vulnerable postnatal time.

Hidden immune development: the brain
The embryonic colonization by microglial progenitors in the central nervous system (CNS) and their

subsequent maturation process during pre- and postnatal life is a particularly well-studied example

for the development of tissue-resident immune cells. Microglia arise from the early wave of YS

EMPs, and the progenitors colonize the developing brain rudiment early on during embryonic devel-

opment around E9.5 (Ginhoux et al., 2010; Kierdorf et al., 2013). Once emigrated into the CNS in

this early wave, the cells expand via endogenous proliferation without input of fetal monocytes or

HSC-derived progenitors during later developmental stages and adulthood (Schulz et al., 2012;

Hoeffel et al., 2015; Goldmann et al., 2013). With the establishment of the blood-brain barrier

around E15.5, the CNS parenchyma separates from the periphery (Haddad-Tóvolli et al., 2017). In

line with this separation, the microglial population is dependent on endogenous self-renewal via pro-

liferation. Therefore, microglia show a high proliferation rate during prenatal and postnatal stages to

expand and distribute in the developing CNS, but also exhibit a dramatic decline in proliferation in

adult stages, once the microglial network is set up (Matcovitch-Natan et al., 2016; Thion et al.,

2018). In the healthy adult CNS, the microglial entity is maintained via random proliferation with a

very low turnover rate in most brain regions (Tay et al., 2017; Füger et al., 2017). Several intrinsic

regulators of transcriptional programs but also exogenous cues were defined, which are involved in

the stepwise maturation process of these resident immune cells in the CNS parenchyma (Matco-

vitch-Natan et al., 2016; Thion et al., 2018; Hammond et al., 2019; Li et al., 2019). Microglial pro-

genitor differentiation from early EMPs in the YS relies on cell-intrinsic programs, in particular driven

by transcription factors, for example, Sfpi/Pu.1 and Irf8 (Matcovitch-Natan et al., 2016;

Thion et al., 2018; Kierdorf et al., 2013). Sfpi/Pu.1-deficient mice do not have any microglia in the

CNS parenchyma, whereas Irf8-deficient mice show a reduced number of progenitors and embryonic

microglia (Kierdorf et al., 2013). Adult Irf8-deficient mice have an altered number of microglia in

the parenchyma and show severe maturation defects (Hagemeyer et al., 2016). Next to Irf8, the

transcription factor Sall1 was identified as a core transcriptional regulator of microglial differentia-

tion. Loss of Sall1 abrogates microglial development and the developing cells are highly activated

and cause alterations in neurogenesis (Buttgereit et al., 2016). Moreover, microglial development is

highly dependent on different cues from cells in the physiological vicinity. One outstanding example

is the dependence of microglial development on colony stimulating factor 1 (CSF1) receptor signal-

ing. Deletion or inhibition of the CSF1 receptor during development results in loss of microglia (Mat-

covitch-Natan et al., 2016; Thion et al., 2018; Ginhoux et al., 2010; Erblich et al., 2011). The
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CSF1 receptor has two ligands, IL-34 and CSF1. Both are expressed in the CNS, but – interestingly –

with a spatially distinct expression pattern, which establishes postnatally (Easley-Neal et al., 2019;

Kana et al., 2019). As an example, gray matter microglia depend predominantly on IL-34 produced

by neurons, while white matter microglia depend on CSF1 secreted by astrocytes during postnatal

phases and adulthood (Kana et al., 2019). Of note, this distinct expression pattern of the two

ligands starts to emerge around birth and establishes during postnatal phases. Besides CSF1 and IL-

34, microglial expansion and homeostasis is highly dependent on TGF-b. Loss of TGF-b signaling in

adult microglia results in a hyperactivated phenotype and disturbance of homeostasis

(Butovsky et al., 2014; Zöller et al., 2018). Loss of TGF-b signaling during microglial development

results in impairment of microglial expansion throughout the developing CNS (Utz et al., 2020).

Even though microglia reside behind the closed blood-brain barrier (BBB) within the CNS paren-

chyma and are shielded early on during development, microglial homeostasis and development are

also highly influenced by external environmental cues with one interesting example being the depen-

dence of microglial maturation on the gut microbiota. Germ-free mice show a maturation defect of

adult microglia, resulting in an altered reaction to inflammatory cues such as lipopolysaccharides

(LPS) (Matcovitch-Natan et al., 2016; Thion et al., 2018; Erny et al., 2015). Therefore, microglial

sensing of the microbiota seems to provide essential signals during development. Microbiota-

derived signals highly affect microglia in postnatal development, whereas embryonic microglia until

birth is less affected by the absence of the microbiota (Thion et al., 2018).

Microglial development is shaped by different cues derived from the CNS but also the peripheral

environment. Especially during and shortly after birth manifold changes are seen in the transcrip-

tional differentiation program of microglia. Therefore, the perinatal phase is an important time for

CNS immune development and maturation. Furthermore, postnatal microglia are serving a plethora

of different functions and are very dynamic in terms of mobility and proliferation, making insults in

their developmental program detrimental for the CNS during this vulnerable phase.

Perinatal adaptation of the intestinal mucosa: a timed succession of
multidimensional phases to establish host-microbial homeostasis
The intestinal mucosa transits from sterility – and thus largely deprived from microbial innate

immune stimuli – before birth to being densely colonized by commensal bacteria, and threatened by

enteropathogens after birth. With the introduction of solid food, the intestinal mucosa is additionally

subjected to a large variety of dietary antigens. The parallel exposure to food and microbiota is ben-

eficial since microorganisms in neonatal gastrointestinal tract improve energy harvesting for growth

(Ganal-Vonarburg et al., 2020). On the other hand, the challenges for the neonatal intestinal

mucosa are tremendous since it has to (i) endure bacterial colonization and prevent inappropriate

inflammation, (ii) direct bacterial composition of a beneficial microbiota, (iii) generate and maintain

adaptive immune tolerance to dietary and microbial antigens, and (iv) establish innate and adaptive

antimicrobial host reactivity to overcome challenges by enteropathogens. A timed succession of

non-redundant phases facilitates postnatal immune development and the step-by-step establishment

of mucosal homeostasis (Hornef and Torow, 2020). Moreover, microbiota-immune interactions

starting immediately after birth have been implicated in a variety of both ‘non-communicable’ gas-

trointestinal diseases, like inflammatory bowel disease, as well as extraintestinal disorders ranging

from psoriasis to rheumatic arthritis, metabolic syndrome, neurodegeneration, and cancer. Notably,

a causal link has not been firmly established in all cases (Zheng et al., 2020).

The healthy fetal intestine is sterile, albeit low levels of microbial constituents derived from the

maternal microbiota reach the neonate and contribute to early immune priming (de Goffau et al.,

2019; Gomez de Agüero et al., 2016). With rupture of the amniotic membranes, the neonatal

organism gets into contact with the bacteria colonizing the maternal vaginal and gastrointestinal

tract (Ganal-Vonarburg et al., 2020). Whereas maternal fecal bacteria represent the dominant

source in vaginally delivered neonates, C-section is associated with a more environment- or skin-like

neonatal microbiota (Dominguez-Bello et al., 2010). Upon initial exposure, bacterial density quickly

reaches threshold levels (van Best et al., 2020a). In contrast, bacterial diversity and compositional

stability evolve slowly. During this time, dietary (breast milk versus formula feeding), genetic and

environmental factors (pets, siblings, geography), as well as medical interventions (antibiotics, probi-

otics) influence microbial composition (van Best et al., 2020b; Bokulich et al., 2016; van Best

et al., 2015). In general, the microbiota built-up follows programmed succession of highly abundant
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bacterial species (van Best et al., 2020a; Planer et al., 2016; Feng et al., 2020). In humans, it

requires 2–3 years after birth for bacterial diversity and composition to reach adult levels and stabil-

ity (Bäckhed et al., 2015; Yatsunenko et al., 2012). Whereas microbial antigens are already present

in the intestinal lumen at high concentrations early after birth, direct exposure to dietary non-self

antigens starts later, in particular with the introduction of solid food. Neonatal sepsis and meningitis

caused by bacterial pathogens, such as Streptococcus agalactiae, occur early and represent an

important cause of neonatal mortality worldwide (Kolter and Henneke, 2017). In contrast, only spe-

cific viruses, for example, cytomegalovirus contaminating breast milk and respiratory syncytial virus,

infect infants already shortly after birth, whereas the bulk of viral infections occur later with increas-

ing human contact and the cessation of maternal protection by transferred IgG and SIgA

(Ershad et al., 2019; Baasch et al., 2020).

An essential issue in this context relates to the specific mechanisms that allow the neonatal intesti-

nal mucosa to accommodate microorganisms and their potentially highly activating effector mole-

cules. Both the intestinal epithelium and resident immune cells express innate immune receptors

such as Toll-like receptors (TLRs), Nod-like receptors (NLRs), RIG-I-like helicases, and thus sense

microbial stimuli and secrete chemotactic and proinflammatory mediators. Age-dependent differen-

ces in the expression levels of innate immune receptors may regulate immune cell activation at this

critical time point (Pott et al., 2012; Gribar et al., 2009). In addition, adaptive mechanisms adjust

cellular reactivity in order to maintain tissue integrity. For example, shortly after birth the epithelium

undergoes reprogramming and thus acquires innate immune tolerance via miR-146a-mediated trans-

lational repression of the TLR signaling molecule IL-1 receptor-associated kinase 1 (Lotz et al.,

2006; Chassin et al., 2010). At the same time, immune cells undergo reprogramming via the endog-

enous alarmin S100A8/A9 interacting with TLR4 (Ulas et al., 2017). Other regulatory molecules,

for example, A20, single immunoglobulin IL-1 receptor-related molecule (SIGIRR), IL-1 receptor-asso-

ciated kinase-M, and Toll-interacting protein (TOLLIP), contribute to controlling the activation state

of the intestinal cells (Vereecke et al., 2010; Nanthakumar et al., 2011). Furthermore, molecules

such as IL-10 or arginase 2, secreted, for example, by neonatal B cells and CD71-positive erythroid

cells, as well as the immunosuppressive properties of amniotic fluid and breast milk constituents,

may provide synergistic cues in this context (Zhang et al., 2007; Elahi et al., 2013; Good et al.,

2012). Notably, the ability to control inappropriate innate immune stimulation depends on the

organism’s gestational age. Necrotizing enterocolitis (NEC), which is mainly observed in preterm

infants and is associated with severe colonic inflammation, is thought to result from a failure to con-

trol microbiota-induced immune stimulation (Neu, 2020; Gopalakrishna et al., 2019). Currently,

specific causal microorganisms have not been identified. However, frequent alterations in the micro-

biota of the preterm infants, and here in particular an elevated abundance of members of the phy-

lum proteobacteria, are likely to be significant. Accordingly, oral administration of probiotic

Bifidobacterium and Lactobacillus spp. modifies the microbial composition in these children and low-

ers the incidence of NEC and sepsis (van Best et al., 2020b; Neu, 2020; Panigrahi et al., 2017).

The fact that maternal fecal bacteria represent an important source for the infant’s microbiota

ensures the transmission of a usually ‘successful’ microbiota to the next generation. Delivery mode

impacts newborn gut colonization efficiency (preprint BioRxiv. doi: https://doi.org/10.1101/2020.01.

29.91999). In addition, the newborn infants actively shape a beneficial microbiota composition. For

example, and as outlined in detail below, human milk oligosaccharides (HMOs) are highly abundant

complex carbohydrates that are indigestible for humans. They foster the growth of Bifidobacterium,

the hallmark bacterium of the healthy infant microbiota (Zivkovic et al., 2011). In mice, hepatic

secretion of bile acids into the proximal small intestine promotes the expansion of lactobacilli and

accelerates microbiota maturation (van Best et al., 2020a). Finally, specific expression of the flagel-

lin receptor TLR5 by the neonatal gut epithelium favors colonization by non-flagellated bacteria in

comparative colonization and microbiota transfer experiments (Fulde et al., 2018). These and other

mechanisms might foster regular development of the neonatal microbiota-intestine interface to

counteract predictable disturbances, such as infections (Pop et al., 2014).

Despite early homing of lymphocytes and antigen-presenting cells to the mucosal lymphoid tis-

sue, the murine adaptive immune system appears to underlie active suppression during the first two

weeks of life (Torow et al., 2015). This may allow establishment of adaptive immunity, while – at the

same time – avoid autoimmunity. The cessation of breastfeeding causes significant alterations of the

microbiota composition and induces goblet cell-associated antigen passage (Kulkarni et al., 2020).
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It causes the so-called ‘weaning reaction’, which leads to a transient innate immune stimulation,

including accelerated replacement of fetal MF in the lamina propria by monocyte-derived MF, and

the initiation of adaptive mucosal immunity (Al Nabhani et al., 2019). This reaction propagates the

maturation of regulatory T cells and thus the maintenance of immune tolerance (Kulkarni et al.,

2020; Al Nabhani et al., 2019; Yang et al., 2015; Vatanen et al., 2016). Only then effector T lym-

phocytes are generated that provide antimicrobial protection. However, these early T lymphocytes

derive from separate progenitors and exhibit significant differences to their adult counterparts

(Mold et al., 2010). Their unique properties such as rapid effector responses, but reduced ability to

form memory, match the requirements of neonatal life, such as limited metabolic resources

(Rudd, 2020).

Infants provide efficient antimicrobial responses to control pathogen challenge despite the

described mucosal immune restrictions, First, exogenous antimicrobial factors such as lactoferrin,

antimicrobial peptides, and SIgA in breast milk support pathogen resistance. Also, the neonatal epi-

thelium appears to discriminate between microbial colonization and invasive infection via the forma-

tion of chemotactic and antimicrobial mediators (Zhang et al., 2014; Dupont et al., 2016). Finally,

newborn infants in the event of viral infection are able to mount a fast and effective cellular immune

response although the emerging T lymphocytes are more prone to rapid effector function than last-

ing memory function (Pott et al., 2012; Sarzotti et al., 1996). Much needs to be learnt to improve

understanding of the functional and structural particularities of the neonatal intestinal mucosa, which

may form the basis for improved preventive and therapeutic strategies at the beginning of life.

Breast milk and gut microbiota are intertwined regarding their impact
on perinatal immune development
Breast milk is a complex cocktail of biologically active components and nutritional substrates with

substantial compositional differences between individual mothers and changing over time of lacta-

tion (i.e., between colostrum and mature milk). Key components such as immunoglobulins, chemo-

kines/cytokines, bioactive micro- and macronutrients, oligosaccharides, microRNAs, hormones,

immune cells, and microorganisms have been associated with direct and indirect perinatal immune

programming.

HMOs comprise ~200 different bioactive glycans. They contain direct immune-mediated effects,

such as antiadhesive, antimicrobial, and immune programming activity (Walsh et al., 2020). HMOs

promote immune cell homeostasis and reinforce intestinal epithelial barrier integrity (Xiao et al.,

2019; Šuligoj et al., 2020; Zhang et al., 2019b). Consistently, the concentration of the HMO disia-

lyllacto-N-tetraose is inversely correlated with the infant’s risk for NEC (Masi et al., 2020). In addi-

tion, there is limited data suggesting that HMOs circulate in the maternal blood throughout

gestation and may cross the placenta (Hirschmugl et al., 2019; Wise et al., 2018). However, the

functional relevance of these findings for mother and fetus remains to be explored. In addition,

HMOs act as prebiotics promoting the growth of beneficial bacteria that in turn impact on the muco-

sal and systemic immune system. HMOs are poorly metabolized by the host, but are favored growth

substrates for certain beneficial Bifidobacterium species (Fulde et al., 2018). Immune-modulatory

effects may occur through recognition of cell surface-associated microbial components including bifi-

dobacterial exopolysaccharides and tad pili, and the production of immune-modulatory metabolites,

for example, short chain fatty acids (SCFAs) (Alessandri et al., 2019). Strikingly, an increased Bifido-

bacterium abundance in the human and mouse gut was described already during pregnancy. Thus

these effects may start prior to birth via placental crossing of microbial metabolites and in utero pro-

gramming (Nuriel-Ohayon et al., 2019). It remains unclear, however, how specific strains of Bifido-

bacterium and other early life microbiota constituents and their metabolites trigger

immunomodulatory responses that maintain immunological homeostasis during the perinatal period.

Breast milk and, in particular, colostrum provide other micro- and macronutrients with high

immune-modulatory activity, such as amino acids, lipids, vitamins, and trace elements (Dror and

Allen, 2018). Specific amino acids like glutamate and glutamine (the most abundant free amino

acids) are essential for immune and tissue development (Dror and Allen, 2018). The second largest

nutrient fraction comprises lipids, including the long-chain poly-unsaturated fatty acids arachidonic

acid and docosahexaenoic acid. These have been shown to influence lymphocyte proliferation and

cytokine production. In addition, iron (bound to lactoferrin) and zinc are central in perinatal immune

development and may act indirectly via growth modulation of specific gut bacteria. Importantly,
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obese or malnourished mothers may potentially lack an appropriate balance of immune-modulatory

components impacting perinatal immune programming in their infants (Samuel et al., 2020). Also,

the direct transfer of immune cells, such as T cells, NK cells, and MF, via breast milk may influence

perinatal immune development (Laouar, 2020). Whereas it remains unclear whether intact immune

cells can translocate through the infant’s mucosal barrier and populate neonatal tissues

(Torow et al., 2015), recent work on CD8+ memory T cells indicates that even cellular lysate may

still represent a mechanism for passive transfer of cellular immunity (Myles and Datta, 2021). More-

over, stem-cell-like cells in breast milk have high multilineage potential and can traffic to different

body sites including the brain. Yet, whereas their differentiation potential into neuronal and glial cell

types has been demonstrated, it remains unclear whether they can also differentiate into immune

cells (Ninkina et al., 2019). Breast milk also contains exosomes enriched in immune-modulating pro-

teins, peptides, and miRNAs (e.g., miR-30d-5p, let-7b-5p, and let-7a-5p), which seem to withstand

digestion and may promote intestinal epithelial cell growth and mucosal barrier development

(Hock et al., 2017). Other directly immunomodulatory components include immunoglobulins (Ig),

with secretory (S)IgA being dominant (>90%), followed by SIgM. IgG in humans is mainly found in

mature milk. SIgA carries major antimicrobial properties, but recent data suggest an additional role

of SIgA in enhancing bacterial colonization and homeostatic immunity (Cacho and Lawrence, 2017;

Pabst and Slack, 2020). T cell help is required to generate appropriate affinity maturation to bacte-

rial antigens including antigens from segmented filamentous bacteria (Kawamoto et al., 2012).

Growth factors and cytokines such as EGF, TGF-b, or the S100 calcium binding proteins are passed

from mother to infant via breast milk and modulate mucosal epithelial and immune responses (Kocis-

zewska-Najman et al., 2020). This transfer is influenced by birth mode and/or gestational age. For

example, preterm infants exhibit lower levels of fecal S100 proteins (i.e., fecal calprotectin), leading

to changes in the gut microbiota, including alterations in the abundance of members of the Bifido-

bacteriaceae family (Willers et al., 2020). Breast milk also contains microorganisms such as Staphylo-

coccus, Streptococcus, as well as low numbers of Bifidobacterium and Lactobacillus species

(Demmelmair et al., 2020; Cortes-Macias et al., 2020). An associated influence of immune devel-

opment may occur through bacterial metabolites, such as SCFAs. These modulate immune cell activ-

ity, for example, via the inhibition of histone deacetylases and the activation of G protein-coupled

receptors. Butyrate at concentrations found in breast milk modulated immune responses in an in

vivo food allergy model (Paparo et al., 2020).

The enteric microbiota impacts on the development and function of resident immune cells at

mucosal sites but also well beyond mucocutaneous surfaces, for example, in the CNS

(Oschwald et al., 2020; Elinav et al., 2011). Tissue-resident MF seeded in embryonic life are post-

natally replaced by bone marrow, monocyte-derived MF in a highly tissue-specific fashion

(Lohrmann et al., 2021). This process is influenced by the acquisition of the microbiota (Bain et al.,

2014) or can result from low-grade infections, for example, by herpes viruses in case of alveolar MF

(Machiels et al., 2017). Notably, the comparison of SPF mice with germ-free or antibiotic-treated

mice may underestimate the contribution of the endogenous microbiota since SPF mice are rela-

tively close to GF mice and distant to mice with a more diverse, ‘natural’ flora (Rosshart et al.,

2019). In contrast, the role of the microenvironment including the microbiota on perinatal develop-

ment of non-professional immune cells that contribute to immune niches, like fibroblasts and epithe-

lial cells in the skin, has not been sufficiently taken into consideration. In addition, the impact of the

maternal microbiota on the placenta as an important fetal immune organ has remained largely

elusive.

Blood circulation and immediate immune responses
During fetal ontogeny, various immune cells populate peripheral organs and install a broad defense

network to gradually prepare for the challenges after birth. The distribution of immune cells and

their precursors throughout the organism relies on effective transportation by the blood circulation.

In the mouse fetus, the onset of blood circulation is observed at around E8.5 and is fully established

at around E10.5 (Cacho and Lawrence, 2017). During this time, the first monocytes and neutrophils

derived from EMPs of the YS are released into the blood circulation (Stremmel et al., 2018;

McGrath et al., 2003). At later time points, they are replaced by neutrophils/monocytes derived

from HSCs originating from sites of intraembryonic definitive hematopoiesis, which takes place first

in the fetal liver and then gradually moves to the bone marrow. While early fetal circulating
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monocytes have been identified to seed peripheral organs and differentiate into tissue-resident MF,

as described above, the fate and function of early circulating neutrophils are less clear. Yet, several

lines of evidence support the hypothesis that circulating neutrophils already provide the first line of

immediate immune response, just as in postnatal life.

During fetal life, neutrophils exhibit an ontogenetically regulated gain of recruitment efficiency

into inflamed mouse YS vessels, as revealed by intravital imaging. The scrupulous analysis of neutro-

phils from preterm and term infants after birth showed that fetal as well as postnatal neutrophil

development follows a cell-intrinsic functional program, which intriguingly does not seem to be sig-

nificantly altered by cues from early postnatal life (Sperandio et al., 2013; Nussbaum et al., 2013).

This indicates that the ontogenetic neutrophil-specific program is tuned to perfectly adapt to the

specific needs and challenges of the growing organism within the uterus leaving room for develop-

ment and at the same time provides enough protection against exogenous threats. However, adap-

tion of neutrophils to premature postnatal life is rather limited. Paucity and altered activation of

neutrophils have been traditionally linked to infection susceptibility and high-related mortality in

newborns, especially preterm infants (Gessler et al., 1995; Henneke et al., 2003).

As compared to granulocytes, induced activation of circulating mononuclear phagocytes , in par-

ticular monocytes and dendritic cells, from newborn infants has been subject to rather detailed anal-

ysis. The results point to complex and dynamic alterations as compared to similar cells from older

children and adults. Overall, mononuclear phagocytes from cord blood, that is, late fetal cells at the

transition to independent postnatal life, show robust responses to whole bacteria and purified bacte-

rial effectors with respect to some cytokines (e.g., TNFa, IL-6, and IL-10), yet respond weakly with

type I interferons to cytomegalovirus infection (Kollmann et al., 2017). Unique properties of cord

blood mononuclear cells as compared to those from young infants in terms of cytokine formation

have been confirmed by high-dimensional analysis (Olin et al., 2018). Yet, the functional implications

of high activation at baseline and after stimulation around birth remain largely enigmatic.

Summary and outlook
Distinct immune cell niches exist in complex tissues and undergo major adaptations and changes

during the perinatal period. They can be discriminated by distinct cellular programs. Both systemic

regulators and microenvironment-specific signals steer homing and homeostatic maintenance of resi-

dent immune cells by transcriptionally redirecting progenitors from different sources.

The impact of exogenous signals,such as the establishing microbiota and microbial metabolites

as well as tissue-intrinsic factors, such as the perinatal change in oxygen tension on local cell compo-

sition, cell differentiation, and immune maturation and the interplay between local and systemic reg-

ulatory mechanisms are largely elusive. Understanding of these issues is pivotal, since perinatal

changes set the stage for tissue adaptation, immune homeostasis, and long-term health and may

therefore facilitate the development of interventional strategies to prevent disease disposition dur-

ing this critical period.

Acknowledgements
We are grateful for artwork by Michal Rössler (Freiburg).
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Chassin C, Kocur M, Pott J, Duerr CU, Gütle D, Lotz M, Hornef MW. 2010. miR-146a mediates protective innate
immune tolerance in the neonate intestine. Cell Host & Microbe 8:358–368. DOI: https://doi.org/10.1016/j.
chom.2010.09.005, PMID: 20951969

Chorro L, Sarde A, Li M, Woollard KJ, Chambon P, Malissen B, Kissenpfennig A, Barbaroux JB, Groves R,
Geissmann F. 2009. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and
inflammation-associated expansion of the epidermal LC network. Journal of Experimental Medicine 206:3089–
3100. DOI: https://doi.org/10.1084/jem.20091586, PMID: 19995948

Cortes-Macias E, Selma-Royo M, Garcia-Mantrana I, Calatayud M, Gonzalez S, Martinez-Costa C, Collado MC.
2020. Maternal diet shapes the breast milk Microbiota composition and diversity: impact of mode of delivery
and antibiotic exposure. The Journal of Nutrition 151:nxaa310. DOI: https://doi.org/10.1093/jn/nxaa310
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Boeckx B, Dierckx de Casterlé I, Baekelandt V, Gonzalez Dominguez E, Mack M, Depoortere I, De Strooper B,
Sprangers B, Himmelreich U, Soenen S, Guilliams M, Vanden Berghe P, et al. 2018. Self-Maintaining gut
macrophages are essential for intestinal homeostasis. Cell 175:400–415. DOI: https://doi.org/10.1016/j.cell.
2018.07.048, PMID: 30173915
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Kobayashi Y, Gomez-Perdiguero E, Schultze JL, Beyer M, Bock C, Geissmann F. 2016. Specification of tissue-

Henneke et al. eLife 2021;10:e67793. DOI: https://doi.org/10.7554/eLife.67793 17 of 21

Review Article Immunology and Inflammation

https://doi.org/10.1126/science.1217718
https://doi.org/10.1126/science.1217718
http://www.ncbi.nlm.nih.gov/pubmed/22539724
https://doi.org/10.1038/nn.3318
http://www.ncbi.nlm.nih.gov/pubmed/23334579
http://www.ncbi.nlm.nih.gov/pubmed/23334579
https://doi.org/10.3390/nu12041095
https://doi.org/10.3390/nu12041095
https://doi.org/10.1016/j.immuni.2017.03.009
https://doi.org/10.1016/j.immuni.2017.03.009
http://www.ncbi.nlm.nih.gov/pubmed/28329702
https://doi.org/10.1016/j.immuni.2019.05.009
http://www.ncbi.nlm.nih.gov/pubmed/31201094
https://doi.org/10.3389/fimmu.2017.01497
http://www.ncbi.nlm.nih.gov/pubmed/29209311
https://doi.org/10.1038/ni.3052
http://www.ncbi.nlm.nih.gov/pubmed/25521683
https://doi.org/10.1038/s41385-019-0240-7
http://www.ncbi.nlm.nih.gov/pubmed/31819172
http://www.ncbi.nlm.nih.gov/pubmed/31819172
https://doi.org/10.1016/j.it.2020.01.005
http://www.ncbi.nlm.nih.gov/pubmed/32057705
https://doi.org/10.1016/j.cell.2014.11.018
http://www.ncbi.nlm.nih.gov/pubmed/25480296
https://doi.org/10.1038/s41467-019-08794-x
http://www.ncbi.nlm.nih.gov/pubmed/30862783
http://www.ncbi.nlm.nih.gov/pubmed/30862783
https://doi.org/10.1016/j.neuron.2018.12.006
https://doi.org/10.1016/j.neuron.2018.12.006
http://www.ncbi.nlm.nih.gov/pubmed/30606613
https://doi.org/10.15252/embj.2019103205
http://www.ncbi.nlm.nih.gov/pubmed/31894879
https://doi.org/10.1016/j.cell.2019.08.009
http://www.ncbi.nlm.nih.gov/pubmed/31491389
https://doi.org/10.1111/febs.15436
http://www.ncbi.nlm.nih.gov/pubmed/32502309
https://doi.org/10.1038/s41467-021-22103-5
http://www.ncbi.nlm.nih.gov/pubmed/33795674
https://doi.org/10.1084/jem.20050625
https://doi.org/10.1084/jem.20050625
http://www.ncbi.nlm.nih.gov/pubmed/16606665
https://doi.org/10.1038/ni.3857
http://www.ncbi.nlm.nih.gov/pubmed/29035391
http://www.ncbi.nlm.nih.gov/pubmed/29035391
https://doi.org/10.1136/gutjnl-2020-322771
https://doi.org/10.7554/eLife.67793


resident macrophages during organogenesis. Science 353:aaf4238. DOI: https://doi.org/10.1126/science.
aaf4238, PMID: 27492475

Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S, Ben-Yehuda H, David E,
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Šuligoj T, Vigsnæs LK, Abbeele PV, Apostolou A, Karalis K, Savva GM, McConnell B, Juge N. 2020. Effects of
human milk oligosaccharides on the adult gut Microbiota and barrier function. Nutrients 12:2808. DOI: https://
doi.org/10.3390/nu12092808

Tan SY, Krasnow MA. 2016. Developmental origin of lung macrophage diversity. Development 143:1318–1327.
DOI: https://doi.org/10.1242/dev.129122, PMID: 26952982

Henneke et al. eLife 2021;10:e67793. DOI: https://doi.org/10.7554/eLife.67793 19 of 21

Review Article Immunology and Inflammation

https://doi.org/10.1038/nature17940
https://doi.org/10.1038/nature17940
http://www.ncbi.nlm.nih.gov/pubmed/27279225
https://doi.org/10.1186/gb-2014-15-6-r76
http://www.ncbi.nlm.nih.gov/pubmed/24995464
https://doi.org/10.1371/journal.ppat.1002670
http://www.ncbi.nlm.nih.gov/pubmed/22570612
https://doi.org/10.1084/jem.20171079
http://www.ncbi.nlm.nih.gov/pubmed/29382696
https://doi.org/10.1126/science.aaw4361
http://www.ncbi.nlm.nih.gov/pubmed/31371577
https://doi.org/10.1146/annurev-immunol-091319-083608
https://doi.org/10.1146/annurev-immunol-091319-083608
http://www.ncbi.nlm.nih.gov/pubmed/31928469
https://doi.org/10.1016/j.immuni.2019.09.002
http://www.ncbi.nlm.nih.gov/pubmed/31587991
https://doi.org/10.3389/fnut.2020.576133
http://www.ncbi.nlm.nih.gov/pubmed/33117843
https://doi.org/10.1084/jem.20181439
http://www.ncbi.nlm.nih.gov/pubmed/30455268
https://doi.org/10.1126/science.271.5256.1726
http://www.ncbi.nlm.nih.gov/pubmed/8596933
https://doi.org/10.1038/ni.3005
http://www.ncbi.nlm.nih.gov/pubmed/25263125
https://doi.org/10.1126/science.1219179
http://www.ncbi.nlm.nih.gov/pubmed/22442384
https://doi.org/10.1016/S1074-7613(02)00424-7
https://doi.org/10.1016/S1074-7613(02)00424-7
http://www.ncbi.nlm.nih.gov/pubmed/12387736
https://doi.org/10.1038/ni1309
http://www.ncbi.nlm.nih.gov/pubmed/16462739
https://doi.org/10.1016/j.immuni.2012.07.019
http://www.ncbi.nlm.nih.gov/pubmed/23159228
https://doi.org/10.1182/blood-2012-07-447144
http://www.ncbi.nlm.nih.gov/pubmed/23525796
https://doi.org/10.1038/s41467-017-02492-2
http://www.ncbi.nlm.nih.gov/pubmed/29311541
https://doi.org/10.1016/j.immuni.2006.10.016
https://doi.org/10.1016/j.immuni.2006.10.016
http://www.ncbi.nlm.nih.gov/pubmed/17174120
https://doi.org/10.3390/nu12092808
https://doi.org/10.3390/nu12092808
https://doi.org/10.1242/dev.129122
http://www.ncbi.nlm.nih.gov/pubmed/26952982
https://doi.org/10.7554/eLife.67793


Tay TL, Mai D, Dautzenberg J, Fernández-Klett F, Lin G, Sagar , Datta M, Drougard A, Stempfl T, Ardura-
Fabregat A, Staszewski O, Margineanu A, Sporbert A, Steinmetz LM, Pospisilik JA, Jung S, Priller J, Grün D,
Ronneberger O, Prinz M. 2017. A new fate mapping system reveals context-dependent random or clonal
expansion of microglia. Nature Neuroscience 20:793–803. DOI: https://doi.org/10.1038/nn.4547, PMID: 2
8414331

Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J, Blecher R, Ulas T, Squarzoni P, Hoeffel G,
Coulpier F, Siopi E, David FS, Scholz C, Shihui F, Lum J, Amoyo AA, Larbi A, Poidinger M, Buttgereit A, et al.
2018. Microbiome influences prenatal and adult microglia in a Sex-Specific manner. Cell 172:500–516.
DOI: https://doi.org/10.1016/j.cell.2017.11.042, PMID: 29275859

Todd EM, Zhou JY, Szasz TP, Deady LE, D’Angelo JA, Cheung MD, Kim AH, Morley SC. 2016. Alveolar
macrophage development in mice requires L-plastin for cellular localization in alveoli. Blood 128:2785–2796.
DOI: https://doi.org/10.1182/blood-2016-03-705962, PMID: 27758872

Torow N, Yu K, Hassani K, Freitag J, Schulz O, Basic M, Brennecke A, Sparwasser T, Wagner N, Bleich A,
Lochner M, Weiss S, Förster R, Pabst O, Hornef MW. 2015. Active suppression of intestinal CD4(+)TCRab(+)
T-lymphocyte maturation during the postnatal period. Nature Communications 6:7725. DOI: https://doi.org/10.
1038/ncomms8725, PMID: 26195040

Trapnell BC, Nakata K, Bonella F, Campo I, Griese M, Hamilton J, Wang T, Morgan C, Cottin V, McCarthy C.
2019. Pulmonary alveolar proteinosis. Nature Reviews Disease Primers 5:16. DOI: https://doi.org/10.1038/
s41572-019-0066-3, PMID: 30846703

Ulas T, Pirr S, Fehlhaber B, Bickes MS, Loof TG, Vogl T, Mellinger L, Heinemann AS, Burgmann J, Schöning J,
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