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Abstract. In unpublished notes Pila proposed a Modular Zilber–Pink with Deriva-
tives (MZPD) conjecture, which is a Zilber–Pink type statement for the modular
j-function and its derivatives. In this article we define D-special varieties, then state
and prove two functional (differential) analogues of the MZPD conjecture for those
varieties. In particular, we prove a weak version of MZPD. As a special case of our
results, we obtain a functional Modular André–Oort with Derivatives statement. The
main tools used in the paper come from (model theoretic) differential algebra and
complex analytic geometry, and the Ax–Schanuel theorem for the j-function and its
derivatives (established by Pila and Tsimerman) plays a crucial role in our proofs. In
the proof of the second Zilber–Pink type theorem we also use an Existential Closed-
ness statement for the differential equation of the j-function.
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1. Introduction

1.1. The Conjecture on Intersections with Tori. Schanuel conjectured (see [Lan66,
p. 30]) that for any Q-linearly independent complex numbers z1, . . . , zn

tdQQ(z1, . . . , zn, e
z1 , . . . , ezn) ≥ n

where td stands for transcendence degree. This is considered out of reach now. In
particular, it implies algebraic independence of e and π which is a long-standing
open problem. Nevertheless, Zilber gave an interesting model theoretic approach to
Schanuel’s conjecture. He constructed algebraically closed fields equipped with a unary
function, called pseudo-exponentiation, sharing some basic properties of the complex
exponential function and, most importantly, satisfying (the analogue of) Schanuel’s
conjecture (see [Zil05]). He then showed that there is a unique (up to isomorphism)
pseudo-exponential field of cardinality 2ℵ0 and conjectured that it is isomorphic to
Cexp := (C; +, ·, exp, 0, 1).

In his work Zilber also considered a uniform version of Schanuel’s conjecture, and
observed that to deduce it from Schanuel’s conjecture one needs a finiteness statement.
He formulated a diophantine conjecture which serves that purpose – the Conjecture
on Intersections with Tori, or CIT for short (see [Zil02, KZ14]). We will formulate it
shortly but we need to give some definitions first.

Below (C; +, ·, 0, 1) is an algebraically closed field of characteristic zero. The reader
may assume C is the field of complex numbers C. All varieties are defined over C
unless explicitly stated otherwise and will be identified with the sets of their C-points.
In particular, the affine space An will be denoted by Cn.

Given two varieties V,W inside a third variety U , the expected dimension of V ∩W
is dimV + dimW − dimU . The intersection of two varieties in “general position”
has the expected dimension. The following classical theorem from algebraic geometry
states that in smooth varieties the dimension of an intersection is never less than the
expected dimension.1

Theorem 1.1 (Dimension of intersection). Let U be a smooth irreducible algebraic
variety and V,W ⊆ U be irreducible subvarieties. Then any non-empty irreducible
component X of the intersection V ∩W satisfies

dimX ≥ dimV + dimW − dimU.

The generalisation of this theorem to complex analytic sets is also true and will be
used in the proof of one of our main results. See [Łoj91, Chapter III, 4.6] for a proof.

Definition 1.2. Let V,W be subvarieties of a (not necessarily smooth) variety U . A
non-empty irreducible component X of V ∩W is said to be typical in U if dimX =
dimV + dimW − dimU and atypical if dimX > dimV + dimW − dimU .

Thus, atypical components have atypically large (larger than expected) dimension.

Definition 1.3. An algebraic torus is an irreducible algebraic subgroup of (C×)n for
some positive integer n, where C× is the multiplicative group of C.

A variety defined by equations of the form

ym1
1 · · · ymn

n = 1,

1This is not true without the assumption of smoothness. See [Łoj91, p. 201, Footnote 20].
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where mi ∈ Z, is a subgroup of (C×)n and can be decomposed into a disjoint union of
an algebraic torus (the connected component of the identity element) and its torsion
cosets. Note that an algebraic torus in (C×)n is the image of a Q-linear subspace of
Cn under the exponential map.

Definition 1.4. Let V ⊆ (C×)n be an algebraic variety. A subvariety X ⊆ V is
atypical if it is an atypical (in (C×)n) component of an intersection V ∩ T where
T ⊆ (C×)n is a torsion coset of a torus.

Conjecture 1.5 (CIT, [Zil02]). Let V ⊆ (C×)n be an algebraic variety.2 Then there
is a finite collection Σ of torsion cosets of proper subtori of (C×)n such that every
atypical subvariety of V is contained in some T ∈ Σ.

Here torsion cosets of algebraic tori are the special varieties. The form of the CIT
conjecture is quite general in the sense that once there is a well-defined notion of
special varieties having certain properties, one can formulate an analogous conjecture
(see [Zil16, Conjecture 2.19]).

Bombieri, Masser, and Zannier [BMZ07] independently gave an equivalent formula-
tion of CIT. Pink proposed a similar and more general conjecture for mixed Shimura
varieties, again independently [Pin05b, Pin05a]. The general conjecture is now known
as the Zilber–Pink conjecture. It generalises the Mordell–Lang and André–Oort con-
jectures, and also CIT.

The Zilber–Pink conjecture (as well as CIT) is an active field of research in number
theory and model theory. Many special cases are known, e.g. Mordell–Lang (Faltings,
Raynaud, Vojta, Hindry, McQuillan), André–Oort for arbitrary products of modular
curves (Pila, [Pil11]) and for Ag – the moduli space of principally polarized abelian
varieties (Tsimerman, [Tsi18]). See also [Zan12, HP16, DR18] for various other results
around this conjecture.

Zilber showed in [Zil02] that a functional analogue of Schanuel’s conjecture estab-
lished by Ax in [Ax71], often called the Ax–Schanuel theorem, can be used to prove a
weak version of the CIT conjecture [Zil02].

Theorem 1.6 (Weak CIT, [Zil02, Kir09, BMZ07]). For every subvariety V ⊆ (C×)n

there is a finite collection Σ of proper subtori of (C×)n such that every atypical com-
ponent of an intersection of V with a coset of a torus is contained in a coset of some
torus T ∈ Σ.

We will not work with tori in this paper, nor will we need the above results; we
presented them here to motivate the results of the paper and to give a brief account
of the Zilber–Pink conjecture.

1.2. Modular Zilber–Pink. In the modular setting special varieties are defined in
terms of modular polynomials (see Section 3).

Definition 1.7. A j-special subvariety of Cn (or, more generally, Cn, with coordinates
ȳ) is an irreducible component of a variety defined by modular equations, i.e. equations
of the form ΦN(yi, yk) = 0 for some 1 ≤ i, k ≤ n where ΦN(X, Y ) is a modular

2This conjecture and the Modular Zilber–Pink conjecture stated below are usually formulated for
the complex field but they make sense for an arbitrary algebraically closed field. In particular, the
weak versions that we consider later are in that generality.
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polynomial.3 If no coordinate is constant on a j-special variety then it is said to be
strongly j-special.

We call these varieties j-special since they are the images of special subvarieties
of Cartesian powers of the complex upper half-plane (these are defined by geodesic
equations given by linear fractional transformations with rational coefficients) under
the j-function (see Subsection 1.3), and modular polynomials determine the “functional
equations” of the j-function (similar to the equation ex+y = ex · ey for the exponential
function). See Section 3 for details.

Given this notion of special varieties, atypical subvarieties are defined as above,
that is, for a variety V ⊆ Cn and a j-special variety S ⊆ Cn, a component X of the
intersection V ∩S is a j-atypical subvariety of V if dimX > dimV + dimS−n. Then
the following is a modular analogue of CIT.

Conjecture 1.8 (Modular Zilber–Pink Conjecture). Let V ⊆ Cn be an algebraic
variety. Then there is a finite collection Σ of proper j-special subvarieties of Cn such
that every j-atypical subvariety of V is contained in some T ∈ Σ.

This conjecture can be formulated in an equivalent form as follows (see [PT16,
Conjecture 7.1]).

Conjecture 1.9 (MZP). Every algebraic variety in Cn contains only finitely many
maximal j-atypical subvarieties.

The following is yet another equivalent form of the Modular Zilber–Pink conjecture.

Conjecture 1.10 (MZP). Let V ⊆ Cn be an algebraic variety, and let Atypj(V ) be
the union of all j-atypical subvarieties of V . Then Atypj(V ) is contained in a finite
union of proper j-special subvarieties of Cn.

Note that the analogues of Conjectures 1.9 and 1.10 for torsion cosets of algebraic
tori are equivalent to CIT.

Zilber’s argument for deducing weak CIT from Ax’s theorem is quite general and
goes through in various settings provided there is an appropriate analogue of Ax’s
theorem. In particular, the Ax–Schanuel theorem for the j-function established by
Pila and Tsimerman in [PT16] (see Section 4) can be used to prove a weak version
of the Modular Zilber–Pink conjecture. Below a strongly j-atypical subvariety is a
j-atypical subvariety with no constant coordinates.

Theorem 1.11 (Weak Modular Zilber–Pink, [PT16, Theorem 7.1]). Every algebraic
variety in Cn contains only finitely many maximal strongly j-atypical subvarieties.

This theorem was proven by Pila and Tsimerman in [PT16] using o-minimality. We
give a differential algebraic proof in Section 5 which is a direct analogue of the proof
of weak CIT (we will follow Kirby’s adaptation of Zilber’s proof; see [Kir09, Theorem
4.6]).

1.3. Modular Zilber–Pink with Derivatives. The j-function satisfies a third or-
der differential equation and the aforementioned Ax–Schanuel theorem of Pila and
Tsimerman incorporates j and its first two derivatives. There is also a Schanuel-
type conjecture for j, j′, j′′, and the Ax–Schanuel theorem can be seen as a functional

3More precisely, these are the special subvarieties of Y (1)n where Y (1) is the modular curve
SL2(Z) \H, which is identified with the affine line C.
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analogue of that conjecture. In unpublished notes Pila formulated a Modular Zilber–
Pink with Derivatives conjecture – henceforth referred to as MZPD – and, assuming
it, showed that the Modular Schanuel conjecture with Derivatives (MSCD) implies
a uniform version of itself. This is an analogue of Zilber’s result on the uniform
Schanuel conjecture and CIT.4 We now define special varieties for j and its derivatives
and present the MZPD conjecture following Pila’s notes. The appropriate definitions
can also be found in [Spe19], where Spence discusses the Modular André–Oort with
Derivatives conjecture, also due to Pila.

While the definition of j-special varieties can be given without mentioning j at all
(and working with modular polynomials instead), it is more convenient to work with
the j-function and its derivatives to define the special varieties in this setting. Let H
be the complex upper half-plane and let j : H → C be the modular j-function; it is
an analytic function on H (see Section 3). Define a function J : H→ C3 by

J : z 7→ (j(z), j′(z), j′′(z)).

We extend J to Hn by defining

J : z̄ 7→ (j(z̄), j′(z̄), j′′(z̄))

where j(k)(z̄) = (j(k)(z1), . . . , j(k)(zn)) for k = 0, 1, 2. Note that we consider only the
first two derivatives of j, for the higher derivatives are algebraic over those.

Let GL+
2 (Q) be the group of 2×2 rational matrices with positive determinant. This

group acts on H by linear fractional transformations.

Definition 1.12.
• A subvariety U ⊆ Hn (i.e. an intersection of Hn with some algebraic variety) is
called H-special if it is defined by some equations of the form zi = gi,kzk, i 6= k,
with gi,k ∈ GL+

2 (Q), and some equations of the form zi = τi where τi ∈ H is a
quadratic number.
• For an H-special variety U we denote by 〈〈U〉〉 the Zariski closure of J(U) over Qalg.
• A J-special subvariety of C3n is a set of the form 〈〈U〉〉 where U is a special subva-
riety of Hn.5

Remark 1.13. Note that for an H-special U ⊆ Hn the set j(U) ⊆ Cn is defined by
modular equations and is irreducible (since U is irreducible), therefore it is j-special.
Similarly, J(U) is an irreducible locally analytic set and hence so is its Zariski closure.
Thus, J-special varieties are irreducible.6

Definition 1.14. For a variety V ⊆ C3n we let the J-atypical set of V , denoted
AtypJ(V ), be the union of all atypical components of intersections V ∩T in C3n where
T ⊆ C3n is a J-special variety.

4The MSCD conjecture was formulated by Pila in the same notes.
5The notation 〈〈U〉〉 is due to Pila, and the terms H-special, j-special and J-special are due to

Spence [Spe19].
6Strictly speaking, J(U) may not be complex analytic as it is the image of an analytic set under

an analytic function, but it is locally analytic. It is irreducible in the sense that if J(U) is contained
in a union of analytic sets then it must be contained in one of them.
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Conjecture 1.15 (Pila, “MZPD”). For every algebraic variety V ⊆ C3n there is a
finite collection Σ of proper H-special subvarieties of Hn such that

AtypJ(V ) ∩ J(Hn) ⊆
⋃
U∈Σ

γ̄∈SL2(Z)n

〈〈γ̄U〉〉.

Remark 1.16. Note that here we may need infinitely many J-special subvarieties
to cover the atypical set of V (see [Spe19], discussion after Definition 1.5, and also
Example 10.4 of this paper). Thus, according to this conjecture, the atypical set of
V is controlled by finitely many H-special (equivalently, j-special) varieties but not
necessarily finitely many J-special varieties.

1.4. Main results. In this paper we explore functional analogues of Conjecture 1.15.
Note that in modular Zilber–Pink without derivatives, and indeed in many other set-
tings, a functional analogue of the main conjecture is also a weak version; in particular,
special varieties are the same in both settings. However, the variants of the MZPD
conjecture that we consider are not special cases, but rather some differential (func-
tional) statements, and the special varieties that we work with are more general than
J-special varieties. Nevertheless, our results do imply a weak version of the MZPD
conjecture, which is formulated below. See Section 7 for details.

Definition 1.17. For a J-special variety T ⊆ C3n and an algebraic variety V ⊆ C3n

an atypical component X of an intersection V ∩ T in C3n is a strongly J-atypical
subvariety of V if for every irreducible analytic component Y of X ∩ J(Hn), no co-
ordinate is constant on the projection of Y on the first n coordinates (corresponding
to j-coordinates in J-special varieties). The strongly J-atypical set of V , denoted
SAtypJ(V ), is the union of all strongly J-atypical subvarieties of V .

Theorem 1.18 (Weak MZPD). For every algebraic variety V ⊆ C3n there is a finite
collection Σ of proper H-special subvarieties of Hn such that

SAtypJ(V ) ∩ J(Hn) ⊆
⋃
U∈Σ

γ̄∈SL2(Z)n

〈〈γ̄U〉〉.

As pointed out above, the main results of this paper are some functional/differential
analogues of the MZPD conjecture, where we deal with more general special varieties
than J-special varieties. We call them D-special varieties. We now define these va-
rieties informally; a rigorous definition and an analysis of their structure is given in
Section 6.

Given a strongly j-special variety T ⊆ Cn (with coordinates ȳ), i.e. a j-special
variety with no constant coordinates, we consider a C-geodesic subvariety U of Cn

(with coordinates x̄) defined as follows. For any two coordinates yi and yk which are
related by a modular equation on T , i.e. ΦN(yi, yk) = 0, we choose an arbitrary matrix
gi,k ∈ GL2(C) and consider the equation xi = gi,kxk where gi,k is identified with the
corresponding linear fractional transformation. These equations define U , which is
called a C-geodesic variety associated with T . Note that there are infinitely many
such varieties associated with the same T since the gi,k are chosen arbitrarily.

Now let (K; +, ·, D) be a differentially closed field with constant field C. Consider
the set W of all non-constant points (z̄, j̄, j̄′, j̄′′) ∈ U(K)× T (K)×K2n which satisfy
the differential equation of j, that is, Dji = j′iDzi, Dj

′
i = j′′iDzi, Dj

′′
i = j′′′i Dzi where
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j′′′i is determined from the equation Ψ(ji, j
′
i, j
′′
i , j
′′′
i ) = 0 where Ψ is a rational function

corresponding to the differential equation of j as defined in Section 3.7 Here we think
of each zi as some complex function and of ji, j′i, j′′i , j′′′i as j(zi), dj(zi)

dzi
, d2j(zi)

dz2
i
, d3j(zi)

dz3
i

respectively, although complex solutions of the differential equation of the j-function
are slightly more general (see Lemma 3.1). Now consider the projection of W onto
the last 3n coordinates8, i.e. onto T (K) × K2n, and take its Zariski closure over C.
It is called a D-special variety associated with T and U (it does not depend on the
ambient differential field K). A D-special variety associated with T is a D-special
variety associated with T and some U (which must be associated with T ). Note that
D-special varieties are irreducible and, by definition, do not have constant coordinates.

This notion is the functional analogue of J-special varieties, and it is independent
of the choice of the differentially closed field K. The equations defining D-special
varieties are analysed in Section 6. One can use those equations to define D-special
varieties without referring to a differential field. In Section 7 we generalise the notion
of a J-special variety and define Jḡ-special varieties where ḡ ∈ GL2(C)n. They are
defined like J-special varieties but with a function Jḡ instead of J , which is in some
sense the composition of J with ḡ (where ḡ is thought of as a vector function given
by linear fractional transformations) and corresponds to a solution of the differential
equation of the j-function. Then we show that Jḡ-special varieties (for all ḡ) without
constant coordinates are exactly D-special varieties over complex numbers (in partic-
ular, strongly J-special varieties are D-special). So, in the complex setting we have an
analytic definition of D-special varieties.

We formulate a differential analogue of the MZPD conjecture below, but we fix some
notation first. A D-atypical subvariety of some variety V ⊆ C3n is an atypical (in C3n)
component of an intersection of V with a D-special variety, and AtypD(V ) is the union
of all D-atypical subvarieties of V . Further, in a differential field (K;D) with constant
field C, E×J (K) is the set of all non-constant tuples (j̄, j̄′, j̄′′) such that each ji satisfies
the differential equation of the j-function for some zi and j′i, j′′i are the derivatives of
ji “with respect to zi”. More precisely, (j̄, j̄′, j̄′′) ∈ E×J (K) if and only if for every i we
have
K |= ∃zi, j′′′i (Ψ (ji, j

′
i, j
′′
i , j
′′′
i ) = 0 ∧ (Dji = j′iDzi ∧Dj′i = j′′iDzi ∧Dj′′i = j′′′i Dzi)) .

Theorem 1.19 (Differential MZPD). Let (K; +, ·, D) be a differential field with an
algebraically closed field of constants C. Given an algebraic variety V ⊆ C3n, there is
a finite collection Σ of proper j-special subvarieties of Cn such that AtypD(V )(K) ∩
E×J (K) is contained in the union of all D-special varieties associated with j-special
vareities from Σ.

The proof of this theorem is based on a uniform version of the Ax–Schanuel theorem
for the j-function, Seidenberg’s embedding theorem and some basic facts from complex
analytic geometry such as Theorem 1.1 for complex analytic sets. It is inspired by the
proof of [PT16, Theorem 7.1], although our methods significantly differ from theirs
and, in particular, we do not use o-minimality. In fact, we also give a second proof
which is purely differential algebraic (modulo Ax–Schanuel).

7Thus, the function Ψ(j(z), j′(z), j′′(z), j′′′(z)) is identically zero where j′, j′′, j′′′ are the complex
derivatives of j(z).

8The set W can be thought of as a differential version of the set {(z̄, J(z̄)) : z̄ ∈ U} from Definition
1.12. Then this projection corresponds to J(U).
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Note that Pila and Scanlon have proven some differential algebraic Zilber–Pink
theorems, without considering derivatives though. Their results are similar to the
above theorem in nature but the methods are quite different. They also work in
a differential field and make implicit use of uniformity of differential Ax–Schanuel,
although in a significantly different way. Of course, the most important difference is
that we work with j and its derivatives while they do not. We refer the reader to
Scanlon’s slides [Sca18] for details.

Further, we also establish a “more algebraic” analogue of the MZPD conjecture.

Theorem 1.20 (Functional MZPD). Let C be an algebraically closed field of char-
acteristic zero. Given an algebraic variety V ⊆ C3n, there is a finite collection Σ of
proper j-special subvarieties of Cn such that every strongly D-atypical subvariety of V
is contained in a D-special variety associated with some T ∈ Σ.

Note that here the definition of a strongly D-atypical subvariety is more delicate
than that of a strongly j-atypical subvariety. Roughly speaking, a strongly atypical
subvariety is an atypical subvariety which is large enough to contain points of E×J (K)
for a suitable differential field K. This corresponds to the intersection of AtypJ(V )
(or AtypD(V )) with the image of J (respectively E×J ) in Conjecture 1.15 (Theorem
1.19). For this reason, apart from the Ax–Schanuel theorem we also need an Exis-
tential Closedness statement for the differential equation of the j-function (which was
proposed as a conjecture in [Asl18] and was proven recently in [AEK21]) to prove
this theorem. Existential Closedness guarantees the existence of E×J -points in strongly
D-atypical subvarieties.

As already mentioned above, we give a complex geometric proof for Theorem 1.19,
and a differential algebraic proof for Theorem 1.20. However, we also show that the
former can be deduced from the latter. Thus, we in fact give two proofs for Theorem
1.19, one complex geometric and one differential algebraic.

Our results imply a functional version of the Modular André–Oort with Derivatives
(MAOD) conjecture (also proposed by Pila), which is an analogue of André–Oort for
the function J and is a special case of MZPD (see Section 10).

Theorem 1.21 (Functional MAOD). Let C be an algebraically closed field of char-
acteristic zero. Given an algebraic variety V ( C3n, there is a finite collection Σ of
proper j-special subvarieties of Cn such that every D-special subvariety of V is con-
tained in a D-special variety associated with some T ∈ Σ.

Note that Spence also proved a weak version of the MAOD conjecture using o-
minimality techniques in [Spe19]. It seems that his and our results are two different
statements related to the MAOD conjecture and none of them follows from the other.
Spence’s version is actually a weakening of MAOD where he deals with J-special
subvarieties which may not be strongly special, and is a number theoretic result, while
our version is indeed a functional analogue of MAOD (and we do not deal with varieties
with constant coordinates). Spence proved the full MAOD conjecture assuming a
transcendence conjecture for the values of j′.

Note also that we consider uniform versions of all the aforementioned results and
prove them for parametric families of varieties.

Although all results of the paper are related to each other, the reader may skip some
sections if they are interested only in specific theorems. For instance, for a proof of
Theorem 1.18 one may read Sections 3, 4 and 7 only.



WEAK MODULAR ZILBER–PINK WITH DERIVATIVES 9

Notation and conventions. We fix some notation and conventions here that will
be used throughout the paper.
• For a set A and a tuple ā ∈ Am we will write ā ⊆ A when the length of ā is not
essential.
• All fields considered in this paper are of characteristic 0.
• Irreducible varieties are assumed to be absolutely irreducible.
• When we work over some algebraically closed field C, we will identify algebraic
varieties defined over C with the sets of their C-rational points and write V ⊆ Cn.
For a larger field F ⊇ C the set of F -points of V is denoted by V (F ).
• By “generic” we always mean generic in the sense of fields, i.e. Zariski generic,
unless explicitly stated otherwise.
• If W ⊆ Cn × Cm is an algebraic variety then for a tuple c̄ ∈ Cm we denote by
Wc̄ the projection on Cn of the fibre of the projection map pr : W → Cm above
c̄, that is, Wc̄(C) = {w̄ ∈ Cn : (w̄, c̄) ∈ W (C)}. Then the collection (Wc̄)c̄⊆C is a
parametric family of varieties in Cn. This notation is not actually precise since we
should let c̄ vary over the C-points of the projection of W , but we will write c̄ ⊆ C
for simplicity.
• If K ⊆ F are fields, the transcendence degree of F over K will be denoted by tdK F
or td(F/K). The algebraic closure of a field F is denoted by F alg.
• For fields K ⊆ F and a set X ⊆ F n the Zariski closure of X over K will be denoted

Zcl(X/K).
• When we work in the affine space F 2n (for some field F ), we will denote its coor-
dinates by (x1, . . . , xn, y1, . . . , yn), or concisely (x̄, ȳ). The coordinates of F 4n (or
F 3n) will be denoted by (x̄, ȳ, ȳ′, ȳ′′) (respectively (ȳ, ȳ′, ȳ′′)). We will use x̄ or ȳ
(depending on the context) for the coordinates of F n.

Note that ′ is just a symbol here and not a derivation, although when we work in
a differential field, y′i and y′′i will correspond to derivations of yi with respect to xi
in some precise sense which will be made clear later. We never denote a derivation
of an abstract differential field by ′. However, when we work with actual complex
functions, we will use ′ to denote their derivatives with respect to their arguments.
We often state this explicitly to avoid any possible confusion.
• In a differential field (K; +, ·, D) for a non-constant element x ∈ K we define a
derivation ∂x : K → K by ∂x : y 7→ Dy

Dx
and often call it differentiation with respect

to x.
• Ψ(Y0, Y1, Y2, Y3) is a rational function (over Q) corresponding to the differential
equation of the j-function, i.e. Ψ(j, j′, j′′, j′′′) = 0 where j(k) = j(k)(z) is the k-th
derivative of the j-function (see Section 3).

2. Differential algebraic preliminaries

We assume familiarity with the basics of differential algebra and model theory of
differential fields. The reader is referred to [Mar05] for an introduction to the topic.
Nevertheless, in this section we introduce some preliminary concepts and results that
will be used in the proofs of the main theorems of the paper.

2.1. Differential forms. Let C ⊆ K be fields of characteristic zero. The vector space
of abstract differential forms (or Kähler differentials) on K over C, denoted Ω(K/C),
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is the quotient of the vector space generated by the set of symbols {dx : x ∈ K} by
the relations

d(x+ y) = dx+ dy, d(xy) = xdy + ydx, dc = 0, c ∈ C.

When no confusion can arise, we may drop K/C from the notation of Ω.
The map d : K → Ω(K/C) is the universal derivation onK. It satisfies the following

universal property: for every K-vector space V and every derivation δ : K → V with
δ|C = 0 there is a unique linear map ξ : Ω→ V such that ξ ◦ d = δ.

It is easy to verify that arbitrary elements x1, . . . , xn ∈ K are algebraically de-
pendent over C if and only if dx1, . . . , dxn are linearly dependent over K. Indeed,
differentiating a relation p(x1, . . . , xn) = 0 we get a linear relation for dx1, . . . , dxn.
The converse follows from the universal property of d.

In particular, td(K/C) = dim Ω(K/C) and ker(d) is equal to the relative algebraic
closure of C in K. From now on we assume C is relatively algebraically closed in K,
therefore ker(d) = C.

The vector space of derivations on K that vanish on C is denoted by Der(K/C). A
differential form ω ∈ Ω can be thought of as a linear functional ω : Der(K/C) → K.
For x ∈ K we define dx(D) = Dx for every D ∈ Der(K/C) and extend it to Ω by
linearity. Thus, differential forms on K over C can be defined as linear forms on
Der(K/C). This establishes an embedding of Ω into (Der(K/C))∗, the dual space of
Der(K/C). When td(K/C) is finite, we see that dim(Der(K/C))∗ = dim Der(K/C) =
td(K/C) = dim Ω(K/C) hence the above embedding is an isomorphism. So, Ω(K/C)
can be identified with the space (Der(K/C))∗. Furthermore, this shows that Der(K/C)
can be identified with the dual (Ω(K/C))∗. This identification can be described ex-
plicitly: a derivation D ∈ Der(K/C) is identified with its dual

D∗ : Ω(K/C)→ K, D∗ : dx 7→ Dx.

Assume for some elements x1, . . . , xn ∈ K we have C(x̄) ⊆ K ⊆ C(x̄)alg. If
td(K/C) = m then dim Der(K/C) = m. Let D1, . . . , Dl ∈ Der(K/C) be K-linearly
independent derivations (where l ≤ m). Consider the Jacobian matrix Jac(x̄) :=
(Dixk)k,i.

Claim 1. rk Jac(x̄) = l.

Proof. Assume rk Jac(x̄) < l. Then there are a1, . . . , al ∈ K, not simultaneously zero,
such that

l∑
i=1

ai ·Dixk = 0, for all k = 1, . . . , n.

Consider the derivation D :=
∑

i aiDi. Then for every k we have

D∗(dxk) = 0.

Since C(x̄) ⊆ K ⊆ C(x̄)alg and D∗ is linear, we conclude that D∗(ω) = 0 for any
ω ∈ Ω(K/C). Thus, D∗ = 0, hence D = 0 which means D1, . . . , Dl are linearly
dependent, a contradiction. �

2.2. Non-commuting derivations. The Ax–Schanuel theorem for the j-function
that we consider in Section 4 holds for differential fields with commuting derivations.
However, we need a slightly general version of the theorem where the derivations satisfy
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a weaker condition than commutativity. In this section we introduce the necessary
tools for generalising some statements from commuting to non-commuting derivations.

Let C ⊆ K be fields. We define the Lie bracket on Der(K/C) by
[D1, D2] = D1 ◦D2 −D2 ◦D1, i.e. [D1, D2]x = D1(D2x)−D2(D1x).

It is easy to verify that [D1, D2] ∈ Der(K/C) and Der(K/C) is a Lie algebra over C.
Two derivations commute if and only if their Lie bracket is zero.

The following is an analogue of the Frobenius theorem of differential geometry. See
[Kol85, Chapter 0, §5, Proposition 6] or [Sin07, Lemma 2.2] for a proof.
Lemma 2.1. Let D1, . . . , Dm ∈ Der(K) be linearly independent (over K) derivations.
Assume that for each i, j

(2.1) [Di, Dj] ∈ spanK{D1, . . . , Dm}.
Then there exist K-linearly independent commuting derivations

δ1, . . . , δm ∈ spanK{D1, . . . , Dm}.
In other words, any finite dimensional space of derivations which is closed under the

Lie bracket has a commuting basis.
Definition 2.2. Let (K; +, ·, D1, . . . , Dm) be a differential field with m derivations.
We say K is a Lie differential field iff the condition (2.1) is satisfied.

Note that in this definition we do not assume that the derivations are linearly
independent. However, if (2.1) holds for a K-linear basis of spanK{D1, . . . , Dm} then
the latter is closed under the Lie bracket.

3. Background on the j-function

We do not need to know much about the j-function itself, nor need we know its
precise definition. Being familiar with some basic properties of j will be enough for
this paper. We summarise those properties below referring the reader to [Lan73, Ser73,
Mas03, Sil09] for details.

Let GL2(C) be the group of 2×2 complex matrices with non-zero determinant. This
group acts on on the Riemann sphere by linear fractional transformations. Namely,

for a matrix g =

(
a b
c d

)
∈ GL2(C) we define

gz =
az + b

cz + d
.

This action is obviously the same as the action of the subgroup SL2(C) consisting of
matrices with determinant 1 (to be more precise, the action of GL2(C) factors through
SL2(C)).

The function j is a modular function of weight 0 for the modular group SL2(Z),
which is defined and analytic on the upper half-plane H := {z ∈ C : Im(z) > 0}.
It is SL2(Z)-invariant. Moreover, by means of j the quotient Y (1) := SL2(Z) \ H is
identified with C (thus, j is a bijection from the fundamental domain of SL2(Z) to C).

3.1. Modular polynomials. Let GL+
2 (R) be the subgroup of GL2(R) consisting of

matrices with positive determinant.9 Let GL+
2 (Q) be its subgroup of matrices with

9This group acts on the upper half-plane and in fact it is the largest subgroup of GL2(C) with
that property.
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rational entries. For g ∈ GL+
2 (Q) we let N(g) be the determinant of g scaled so that it

has relatively prime integral entries. For each positive integer N there is an irreducible
polynomial ΦN(X, Y ) ∈ Z[X, Y ] such that whenever g ∈ GL+

2 (Q) with N = N(g), the
function ΦN(j(z), j(gz)) is identically zero. Conversely, if ΦN(j(x), j(y)) = 0 for some
x, y ∈ H then y = gx for some g ∈ GL+

2 (Q) with N = N(g). The polynomials ΦN are
called modular polynomials. It is well known that Φ1(X, Y ) = X−Y and all the other
modular polynomials are symmetric. The properties of modular polynomials imply, in
particular, that if τ ∈ H is a quadratic number then j(τ) is algebraic. These numbers
are known as special values of j or as singular moduli. For w = j(z) the image of the
GL+

2 (Q)-orbit of z under j is called the Hecke orbit of w. It obviously consists of the
union of solutions of the equations ΦN(X,w) = 0, N ≥ 1. Two elements w1, w2 ∈ C
are called modularly independent if they have different Hecke orbits, i.e. do not satisfy
any modular relation ΦN(w1, w2) = 0. This definition makes sense for arbitrary fields
(of characteristic zero) as the modular polynomials have integer coefficients.

3.2. Differential equation. The j-function satisfies an order 3 algebraic differential
equation over Q, and none of lower order (i.e. its differential order over C is 3).
Namely, Ψ(j, j′, j′′, j′′′) = 0 where

Ψ(Y0, Y1, Y2, Y3) =
Y3

Y1

− 3

2

(
Y2

Y1

)2

+
Y 2

0 − 1968Y0 + 2654208

2Y 2
0 (Y0 − 1728)2

· Y 2
1 .

Notice that
Ψ(Y, Y ′, Y ′′, Y ′′′) = S(Y ) +R(Y )(Y ′)2,

where S denotes the Schwarzian derivative defined by

S(Y ) =
Y ′′′

Y ′
− 3

2

(
Y ′′

Y ′

)2

,

and

R(Y ) =
Y 2 − 1968Y + 2654208

2Y 2(Y − 1728)2
.

Throughout the paper Ψ will always denote the above rational function. Observe also
that Ψ is linear with respect to Y ′′′ so the differential equation of the j-function can
be written as Y ′′′ = η(Y, Y ′, Y ′′) for some rational function η(Y0, Y1, Y2).10

The following result is well known (see, for example, [FS18, Lemma 4.2] or [Asl18,
Lemma 4.1] for a proof).

Lemma 3.1. All functions j(gz) with g ∈ SL2(R) satisfy the differential equation
Ψ(y, y′, y′′, y′′′) = 0 and all solutions of that equation defined on H are of that form. If
we allow functions not necessarily defined on H, then all solutions will be of the form
j(gz) where g ∈ SL2(C).

10Here we think of Y as a variable ranging over the set of complex functions defined on some one-
dimensional domain, and so Y ′ denotes the derivative of such a function with respect to its argument.
Later, when we work in an abstract differential field, we will interpret this differential equation by
replacing ′ with an appropriate derivation (which may not be the derivation of the field). Recall that
we do not use ′ to denote a derivation of an abstract differential field, and when j is an element in such
a field, j′, j′′, j′′′ will be just some elements that will normally correspond to the abstract derivatives
of the element j with respect to some element z (which may be thought of as the argument of j).
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3.3. Functional equations of the differential equation of the j-function. Let
us introduce some notation first. Below y′, y′′, y′′′ are variables and do not denote the
derivatives of y.

Notation. Let (K; +, ·, D1, . . . , Dm) be a differential field with m derivations and let
C :=

⋂
i kerDi be the field of constants.

• Let E(z,J)(x, y, y
′, y′′) denote the formula

∃y′′′
(

Ψ (y, y′, y′′, y′′′) = 0 ∧
m∧
k=1

(Dky = y′Dkx ∧Dky
′ = y′′Dkx ∧Dky

′′ = y′′′Dkx)

)
.

By abuse of notation for any n we will also let E(z,J)(K) denote the set of all
tuples (z̄, j̄, j̄′, j̄′′) ∈ K4n with (zi, ji, j

′
i, j
′′
i ) ∈ E(z,J)(K). The set E×(z,J)(K) consists

of all E(z,J)(K)-points that do not have any constant coordinates.
• E(z,j)(x, y) is the projection ∃y′, y′′E(z,J)(x, y, y

′, y′′). As above E(z,j)(K) also de-
notes the set of all tuples (z̄, j̄) ∈ K2n for which (zi, ji) ∈ E(z,j)(K), and E×(z,j)(K)

consists of all E(z,j)(K)-points that do not have any constant coordinates.
• EJ(y, y′, y′′) is the projection of E(z,J) onto the last three coordinates, i.e. EJ
denotes the formula ∃xE(z,J)(x, y, y

′, y′′). Equivalently, EJ is given by

∃y′′′
(

Ψ(y, y′, y′′, y′′′) = 0 ∧
m∧
k=1

Dky

y′
=
Dky

′

y′′
=
Dky

′′

y′′′

)
.

As above, EJ(K) also denotes the set {J̄ = (j̄, j̄′, j̄′′) : (ji, j
′
i, j
′′
i ) ∈ EJ(K) for all i},

and E×J (K) is the set of all points in EJ(K) with no constant coordinates.

The next proposition describes the “functional equations” of the relations E(z,j) and
E(z,J).

Proposition 3.2 ([Asl18, Lemmas 4.10, 4.11 and 4.41]). Let (F ; +, ·, D) be a differ-
ential field with field of constants C.

(i) If (zi, ji) ∈ E×(z,j)(F ), i = 1, 2, and ΦN(j1, j2) = 0 for some modular polynomial
ΦN then z2 = gz1 for some g ∈ SL2(C).

(ii) If (z1, j1) ∈ E×(z,j)(F ) and (z2, j2) ∈ F 2 such that ΦN(j1, j2) = 0 for some ΦN

and z2 = gz1 for some g ∈ SL2(C) then (z2, j2) ∈ E×(z,j)(F ).

(iii) If (z, j, j′, j′′) ∈ E×(z,J)(F ) then for any g =

(
a b
c d

)
∈ SL2(C)

(
gz, j, j′ · (cz + d)2, j′′ · (cz + d)2 − 2c · j′ · (cz + d)3

)
∈ E×(z,J)(F ).

Conversely, if for some j we have (z1, j, j
′, j′′) , (z2, j, w

′, w′′) ∈ E×(z,J)(F ) then
z2 = gz1 for some g ∈ SL2(C).

(iv) If (z, j1, j
′
1, j
′′
1 ) ∈ E×(z,J)(F ) and Φ(j1, j2) = 0 for some modular polynomial

Φ(X, Y ) then (z, j2, j
′
2, j
′′
2 ) ∈ E×(z,J)(F ) where j′2, j′′2 are determined from the
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following system of equations:

∂Φ

∂X
(j1, j2) · j′1 +

∂Φ

∂Y
(j1, j2) · j′2 = 0,

∂2Φ

∂X2
(j1, j2) · (j′1)

2
+
∂2Φ

∂Y 2
(j1, j2) · (j′2)

2
+ 2 · ∂2Φ

∂X∂Y
(j1, j2) · j′1 · j′2+

+
∂Φ

∂X
(j1, j2) · j′′1 +

∂Φ

∂Y
(j1, j2) · j′′2 = 0.

Note that (iv) above can be generalised to different z1 and z2 linked by an SL2(C)-
relation. However, the general case follows from the above properties.

Remark 3.3. The converse of (i) is not true: if z2 = gz1 for some g ∈ SL2(C) then
this does not impose a relation on j1, j2, they may be algebraically independent (see
also Remark 4.4).

4. Ax–Schanuel for the j-function

The following theorem was proved by Pila and Tsimerman in [PT16].

Theorem 4.1 (Ax–Schanuel with Derivatives for j). Let (K; +, ·, D1, . . . , Dm) be a
differential field with commuting derivations and with field of constants C. Assume
(zi, ji, j

′
i, j
′′
i ) ∈ E×(z,J)(K), i = 1, . . . , n. If the ji’s are pairwise modularly independent

then

(4.1) tdC C (z̄, j̄, j̄′, j̄′′) ≥ 3n+ rk Jac(z̄).

Lemma 4.2. The Ax–Schanuel theorem for the j-function holds in all Lie differential
fields.

Proof. Let (K; +, ·, D1, . . . , Dm) be a Lie differential field and let zi, ji, j′i, j′′i , j′′′i be as
in Theorem 4.1. If we replace D1, . . . , Dm by a basis of spanK{D1, . . . , Dm} then it
will not affect the Jacobian of any tuple. Hence we may assume that D1, . . . , Dm are
linearly independent over K. By Lemma 2.1 there are K-linearly independent and
commuting derivations

δ1, . . . , δm ∈ spanK{D1, . . . , Dm}.

But then it is clear that ⋂
i

kerDi =
⋂
i

ker δi

and
Ψ (ji, j

′
i, j
′′
i , j
′′′
i ) = 0 ∧ δkji = j′iδkzi ∧ δkj′i = j′′i δkzi ∧ δkj′′i = j′′′i δkzi

for all k = 1, . . . ,m. Hence the inequality (4.1) holds and rk(Dixk)i,k = rk(δixk)i,k. �

Note however that in applications we find it more convenient to use Lemma 2.1 to
choose commuting derivations of the field under consideration and apply Theorem 4.1
instead of applying Lemma 4.2 directly.

The following statement is a direct consequence of Theorem 4.1 (see also [PT16,
§2.6]).
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Theorem 4.3 (Ax–Schanuel without derivatives). Let (K;D1, . . . , Dm) be a differen-
tial field with commuting derivations and with field of constants C. Assume (zi, ji) ∈
E×(z,j)(K), i = 1, . . . , n. If the ji’s are pairwise modularly independent then

tdC C (z̄, j̄) ≥ n+ rk Jac(z̄).

This theorem implies in particular that the only algebraic relations between the
functions j(z) and j(gz) for g ∈ GL+

2 (R) are the modular relations (corresponding to
g ∈ GL+

2 (Q)).

Remark 4.4. As pointed out above, if E×(z,j)(zi, ji), i = 1, 2, and j1, j2 are modularly
dependent then z1 and z2 are SL2(C)-related, but if z1 and z2 are SL2(C)-related then
j1 and j2 may still be algebraically independent over C. Nevertheless, in that case we
know by Ax–Schanuel that j1 and j2 must be either algebraically independent (over
C(z1)) or related by a modular relation (see also [Asl21]).

Let us establish uniform versions of the above theorems.

Theorem 4.5 (Uniform Modular Ax–Schanuel with Derivatives). Let S⊆(Qalg)n be
a j-special variety and let W ⊆(Qalg)n × S(Qalg) × (Qalg)2n × (Qalg)l be an algebraic
variety defined over Qalg. Then there is a finite set Σ = Σ(W ) (depending on W ) of
proper j-special subvarieties of S with the following property.

For every differential field (K;D1, . . . , Dm) with m commuting derivations and with
field of constants C, for every c̄ ∈ C l and for every11 (z̄, j̄, j̄′, j̄′′) ∈ E×(z,J)(K)∩Wc̄(K),
if

dimWc̄ < 3 dimS + rk Jac(z̄),

then j̄ ∈ T for some T ∈ Σ.

Proof. We may assume S = (Qalg)n. First we show that there is a finite set Σ(W,m)
of special varieties, depending on W and the number of derivations m, satisfying the
conclusion of the theorem. Assume for some variety W ⊆ (Qalg)4n+l there is no such
set Σ(W,m). Consider the language {+, ·, D1, . . . , Dm, z̄, j̄, j̄

′, j̄′′, c̄} where z̄, j̄, j̄′, j̄′′, c̄
are constant symbols. Let DFm0 be the theory of differential fields of characteristic 0
with m commuting derivations. Consider the following set of sentence:

DFm0 ∪{Dick = 0 : i, k} ∪ {(z̄, j̄, j̄′, j̄′′) ∈ E×(z,J) ∩Wc̄}∪
∪{dimWc̄ < 3n+ rk Jac(z̄)} ∪ {ΦN(ji, jk) 6= 0 : i, k,N}.

By our assumption every finite subset of the above set of sentences is satisfiable.
Hence, by the compactness theorem of first-order logic, the whole set is satisfiable.
This means that in some differential field the Ax–Schanuel theorem does not hold,
which is a contradiction.

Now we show the existence of a set Σ(W ) with the desired properties which is
independent of m. Let (K; +, ·, D1, . . . , Dm) be a differential field with m derivations
and (z̄, j̄, j̄′, j̄′′) ∈ E×(z,J)(K)∩Wc̄(K). If rk Jac(z̄) = l then we can choose l derivations,
say D1, . . . , Dl, such that the matrix (Dizk)1≤i≤l,1≤k≤n has rank l. So we can work in
the differential field (K; +, ·, D1, . . . , Dl) which is a reduct of the original field. Since
the number l is bounded by n, we can take Σ(W ) :=

⋃
1≤l≤n Σ(W, l). �

11Recall that for c̄ ∈ Kl we set Wc̄(K) := {w̄ ∈ K4n : (w̄, c̄) ∈ W (K)}. When c̄ is not in the
projection of W (K) on Kl, Wc̄(K) = ∅ and the conclusion of the theorem holds vacuously.



16 VAHAGN ASLANYAN

As an immediate consequence we get the following result.

Theorem 4.6 (Uniform Modular Ax–Schanuel without derivatives, cf. [Kir09, Theo-
rem 4.3]). Let S⊆(Qalg)n be a j-special variety and letW ⊆(Qalg)n×S(Qalg)×(Qalg)l be
an algebraic variety defined over Qalg. Then there is a finite set Σ = Σ(W ) (depending
on W ) of proper j-special subvarieties of S with the following property.

For every differential field (K;D1, . . . , Dm) with m commuting derivations and with
field of constants C, for every c̄ ∈ C l and for every (z̄, j̄) ∈ E×(z,j)(K) ∩ Wc̄(K), if
dimWc̄ < dimS + rk Jac(z̄), then j̄ ∈ T for some T ∈ Σ.

5. Weak Modular Zilber–Pink without derivatives

We begin by recalling the definition of (strongly) j-atypical subvarieties.

Definition 5.1. Let V ⊆ S ⊆ Cn be an algebraic variety where S is j-special. A
j-atypical subvariety of V in S is an irreducible component W of some V ∩ T , where
T is a j-special variety, such that

dimW > dimV + dimT − dimS.

A j-atypical subvariety W of V is said to be strongly j-atypical if no coordinate is
constant on W .

The following weak version of the Modular Zilber–Pink conjecture was proved by
Pila and Tsimerman [PT16, Theorem 7.1]. They use tools of o-minimality, while the
proof that we give below is purely algebraic and is based on Kirby’s adaptation of
Zilber’s proof of weak CIT (see [Kir09, Theorem 4.6]).

Theorem 5.2 (Weak Modular Zilber–Pink). Given a parametric family of algebraic
subvarieties (Vc̄)c̄⊆C of a j-special variety S in Cn, there is a finite collection Σ of
proper j-special subvarieties of S such that for every c̄ ⊆ C, every strongly j-atypical
subvariety of Vc̄ in S is contained in some T ∈ Σ.

We will need the following concepts in the proof.

Definition 5.3. The j-special closure of an irreducible variety X ⊆ Cn is the smallest
j-special variety containing X.

It is easy to see that irreducible components of an intersection of j-special varieties
is j-special, hence there is a smallest j-special variety containing X.

Definition 5.4. A C-geodesic variety U ⊆ Cn (with coordinates x̄) is an irreducible
component of a variety defined by equations of the form xi = gi,kxk for some gi,k ∈
SL2(C). If S ⊆ Cn (with coordinates ȳ) is a j-special variety, then U is said to be a
C-geodesic variety associated with S if for any 1 ≤ i, k ≤ n we have ΦN(yi, yk) = 0 on
S for some N if and only if xi = gi,kxk on U for some gi,k ∈ SL2(C).

Note that for a j-special variety S there are infinitely many geodesic varieties as-
sociated with S since the matrices gi,k are chosen arbitrarily. Actually, the family of
all geodesic varieties associated with S forms a parametric family of varieties (Uc̄)c̄⊆C .
In order to regard all geodesic varieties associated with all possible j-special varieties
T ⊆ Cn as members of a single parametric family of varieties we allow relations of
the form xi = gi,kxk for gi,k = 0 (the zero matrix) which should be understood as
the formula 0 = 0 (i.e. we multiply through by a common denominator), that is, it
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does not impose any relations between xi and xk. Thus, in a parametric family of
geodesic varieties any two coordinates are related by an equation xi = gi,kxk where
either gi,k ∈ SL2(C) or gi,k = 0.

Also, observe that if U is a geodesic variety associated with a j-special S then
dimU = dimS.

Proof of Theorem 5.2. Let W ⊆ Vc̄∩T be a strongly j-atypical subvariety of Vc̄ where
T is a special subvariety of S. We know that

l := dimW > dimVc̄ + dimT − dimS.

Let j̄ ∈ W be a generic point over C. We may assume that T is the j-special closure
of j̄, i.e. the smallest j-special variety containing j̄ (otherwise we would replace T by
the j-special closure of j̄ and the above inequality would still hold). Consider the
vector space Der(K/C) of derivations of the field K := C(j̄) over C. Its dimension
is equal to td(K/C) which is equal to dimW . Obviously, Der(K/C) is closed under
the Lie bracket hence by Lemma 2.1 we can choose a commuting basis D1, . . . , Dl

of Der(K/C). Now let U ⊆ Kn be a geodesic variety associated with T which is
defined by equations of the form xi = xk, i.e. all matrices g ∈ SL(C) occurring in the
definition of U are chosen to be the identity matrix (or the zero matrix if xi and xk are
not linked). Pick a generic (over K) point z̄ ∈ U . Further, take a tuple (j̄′, j̄′′) generic
over K(z̄) subject to the conditions that if Φ(ji, jk) = 0 for some modular polynomial
Φ(Yi, Yk) then

∂Φ

∂Yi
(ji, jk) · j′i +

∂Φ

∂Yk
(ji, jk) · j′k = 0,

∂2Φ

∂Y 2
i

(ji, jk) · (j′i)
2

+
∂2Φ

∂Y 2
k

(ji, jk) · (j′k)
2

+ 2 · ∂2Φ

∂Yi∂Yk
(ji, jk) · j′i · j′k+

+
∂Φ

∂Yi
(ji, jk) · j′′i +

∂Φ

∂Yk
(ji, jk) · j′′k = 0.

These relations are obtained by differentiating the equation Φ(ji, jk) = 0 (see Propo-
sition 3.2). Consider the field F := K(z̄, j̄′, j̄′′) and extend Di defining

Dizk =
Dijk
j′k

=
Dij

′
k

j′′k
=
Dij

′′
k

j′′′k
,

where j′′′k is uniquely determined from the equation Ψ(jk, j
′
k, j
′′
k , j
′′′
k ) = 0. By Proposi-

tion 3.2 each Di is a derivation on F and (zk, jk) ∈ E(z,j)(F ) for all k. Straightforward
calculations show that Di’s commute on F (cf. Claim 2 in the proof of Theorem 9.8).
Moreover, since no coordinate is constant on W , the elements ji are non-constant in
the differential field (F ; +, ·, D1, . . . , Dl). It is also clear that rk Jac(z̄) = rk Jac(j̄) = l.
Denote the field of constants of F by Ĉ.12

Observe that for different j-special varieties T we get different geodesic varieties
U . Nevertheless, all of those can be regarded as members of a parametric family of
geodesic varieties (Ud̄)d̄⊆Ĉ . Now if Ud̄ is associated with T then dimUd̄ = dimT , and
we have

dimUd̄×Vc̄ = dimUd̄ + dimVc̄ < dimT + dimW + dimS−dimT = rk Jac(z̄) + dimS.

12Actually C = Ĉ but we do not need that in the proof.
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Now we apply the uniform Ax–Schanuel without derivatives to the parametric family
(Ud̄ × Vc̄)c̄,d̄⊆Ĉ . There is a finite collection Σ = Σ(V ) of proper j-special subvarieties
of S, depending on this parametric family only (which in turn depends only on the
family (Vc̄)c̄⊆Ĉ), such that j̄ ∈ T for some T ∈ Σ. Since j̄ is generic in W over C and
W is defined over C, and T is defined over Qalg ⊆ C, we must have W ⊆ T . �

Remark 5.5. When the parametric family consists of a single variety V , we can
choose the finite collection Σ so that each T ∈ Σ intersects V strongly atypically in S.
This can be achieved by repeatedly applying Theorem 5.2. It shows that V contains
only finitely many maximal strongly j-atypical subvarieties.

The ideas of Section 7 can be used to give a complex analytic proof of Theorem 5.
It will be a mixture of the above proof and the proof of Pila and Tsimerman [PT16,
Theorem 7.1], the main difference being that we do not use o-minimality and instead
exploit the uniformity of differential Ax–Schanuel as in the above proof. We do not
give more details as we prove a more general result using that method and it should
be clear how this special case can be treated.

6. D-special varieties

6.1. Definition and basic properties. Now we define D-special varieties in C3n by
analogy with J-special varieties (D stands for differential). The difference between
D-special and J-special varieties is that we allow the geodesic relations to come from
GL2(C) rather than GL+

2 (Q).

Definition 6.1. Let C be an algebraically closed field. Define D as the zero derivation
on C and extend (C; +, ·, D) to a differentially closed field (K; +, ·, D).
• Let T ⊆ Cn be a j-special variety and U ⊆ Cn be a C-geodesic variety associated
with T . Denote by 〈〈U, T 〉〉 the Zariski closure over C of the projection of the set

E×(z,J)(K) ∩ (U(K)× T (K)×K2)

onto the last 3n coordinates.
• A D-special variety is a variety S := 〈〈U, T 〉〉 for some T and U as above. In this
case S is said to be a D-special variety associated with T and U . We will also
say that T (or U) is a j-special (respectively, geodesic) variety associated with S.
A D-special variety associated with T is one associated with T and U for some
C-geodesic variety U which is associated with T .
• S ∼ T means that S is a D-special variety associated with T . For a set Σ of j-special
varieties S ∼ Σ means that S ∼ T for some T ∈ Σ.
• SD is the collection of all D-special varieties.

Remarks 6.2.
• Since the geodesic varieties associated with a fixed T form a parametric family, we
have a parametric family of D-special varieties associated with T .
• One can prove that E×(z,J)(K) ∩ (U(K) × T (K) × K2) is an irreducible Kolchin
constructible set, which implies that 〈〈U, T 〉〉 is Zariski irreducible. Thus, D-special
varieties are irreducible. We will actually prove this below by a different method.
In Lemma 7.4 we establish irreducibility of similar sets in an analytic context.
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• It is clear that the definition does not depend on the ambient differentially closed
field K. As we will see shortly, 〈〈U, T 〉〉 can be defined purely algebraically without
referring to a differential field.
• D-special varieties are automatically “strongly” special, i.e. they do not have any
constant coordinates. In particular, a j-special variety associated with a D-special
variety must be strongly j-special. In Section 7 we define more general special
varieties over the complex numbers and show that they coincide with D-special
varieties provided that they do not have constant coordinates. However, those
special varieties are a generalisation of J-special varieties and may actually have
constant coordinates. Nevertheless, in this paper we will only deal with strongly
special varieties, hence any issues related to constant coordinates may be ignored.

As pointed out above, we can (and do) give an equivalent definition of D-special
varieties using only algebraic language and completely avoiding mentioning derivations.
Indeed, after choosing a geodesic variety U associated with T , we can differentiate the
modular relations defining T and get some algebraic relations between j̄, j̄′, j̄′′, possibly
over z̄. Then eliminating z̄ from those equations, that is, existentially quantifying over
z̄, we get algebraic equations defining 〈〈U, T 〉〉.

Now let us discuss this strategy in more detail. We consider a simple case first.
Let T ⊆ C2 be a j-special variety defined by an equation Φ(y1, y2) = 0 where Φ is
a modular polynomial. Let U ⊆ C2 be a geodesic variety given by a single equation

x2 = gx1 where g =

(
a b
c d

)
∈ SL2(C). Now pick a non-constant point

(z1, z2, j1, j2, j
′
1, j
′
2, j
′′
1 , j
′′
2 ) ∈ K8

such that (zi, ji, j
′
i, j
′′
i ) ∈ E×(z,J)(K) for i = 1, 2, and Φ(j1, j2) = 0 and z2 = az1+b

cz1+d
.

Applying13 ∂z1 to the equation Φ(j1, j2) = 0 we get

∂Φ

∂Y1

(j1, j2) · ∂z1j1 +
∂Φ

∂Y2

(j1, j2) · ∂z1j2 = 0.

On the other hand

∂z1 =
1

(cz1 + d)2
· ∂z2 .

Hence we have

(6.1)
∂Φ

∂Y1

(j1, j2) · j′1 +
1

(cz1 + d)2
· ∂Φ

∂Y2

(j1, j2) · j′2 = 0.

Now if c = 0, i.e. g is upper triangular, then (6.1) gives an algebraic relation between
j1, j2, j

′
1, j
′
2. Differentiating (6.1) once more with respect to z1 (i.e. applying ∂z1) we

will get an algebraic relation between j1, j2, j
′
1, j
′
2, j
′′
1 , j
′′
2 which, along with (6.1) and

the modular relation between j1 and j2, will define 〈〈U, T 〉〉. Indeed, the set defined
by those equations is clearly irreducible, contains 〈〈U, T 〉〉 and has dimension 3. By
Ax–Schanuel, dim〈〈U, T 〉〉 ≥ 3, hence the above set is in fact equal to 〈〈U, T 〉〉.

If c 6= 0 then we do not get an algebraic relation between j1, j2, j
′
1, j
′
2. Nevertheless

we see that z1 is algebraic over j1, j2, j
′
1, j
′
2 and j′2 is transcendental over C(j1, j

′
1, j
′′
1 )

13Recall that in a differential field (K; +, ·, D) for a non-constant element x ∈ K the derivation
∂x : K → K is defined by ∂x : y 7→ Dy

Dx .
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since otherwise we would have
tdC C(z1, j1, j

′
1, j
′′
1 ) < 4

which contradicts Ax–Schanuel. However, differentiating (6.1) one more time we get
an algebraic relation between z1, j1, j2, j

′
1, j
′
2, j
′′
1 , j
′′
2 which is linear with respect to j′′1

and j′′2 . That equation, with (6.1) and the equations defining U and T , gives an
irreducible subvariety of C8. Therefore, its projection onto the last 6 coordinates, as
well as the Zariski closure of that, is an irreducible set of dimension 4 which is equal
to 〈〈U, T 〉〉 as above.

Now assume that in addition to the above modular relation we also have a modular
relation between j2 and j3 (we now work in K12 and U, T ⊆ K3). Note that this
implies that j1 and j3 are also modularly dependent, and a modular equation between
this coordinates is specified by T as it is irreducible. Also, z1, z2, z3 are pairwise linked
by SL2(C)-relations. The above procedure can be used to write down the defining
equations of 〈〈U, T 〉〉 in this setting. If all matrices from SL2(C) linking z1, z2, z3 are
upper triangular then dim〈〈U, T 〉〉 = 3, otherwise dim〈〈U, T 〉〉 = 4. Also, the equations
are linear with respect to j′i or j′′i for an appropriate i, which shows that 〈〈U, T 〉〉 is
irreducible.

The same is also true for each subtuple of j̄ the coordinates of which are pairwise
modularly dependent; we can apply the above procedure to each such subtuple and
get the equations defining 〈〈U, T 〉〉. For each such subtuple of maximal length k we
will get a distinct set of equations defining a subvariety of K3k. We will refer to those
as j-blocks.
Definition 6.3. Let V ⊆ C3n be an irreducible variety. A j-block of V is a projection
of V onto the coordinates (yi1 , . . . , yik , y

′
i1
, . . . , y′ik , y

′′
i1
, . . . , y′′ik) for some 1 ≤ i1 < . . . <

ik ≤ n such that the coordinates (yi1 , . . . , yik) are pairwise modularly related on V
and none of them is modularly related to a coordinate yl for any l /∈ {i1, . . . , ik}. The
number k is the size (or length) of the j-block. A j-block of length 1 is called trivial.

This definition is more natural for D-special varieties but it is useful to have the
concept of a j-block for arbitrary varieties. The above analysis shows that if 〈〈U, T 〉〉
consists of a single j-block then dim〈〈U, T 〉〉 = 3 or dim〈〈U, T 〉〉 = 4. Thus, we obtain
the following characterisation of D-special varieties.
Proposition 6.4. A D-special variety is irreducible and is equal to the product of its
j-blocks, each of which has dimension 3 (this corresponds to upper triangular matrices)
or 4. Furthermore, the number of the j-blocks of a D-special variety associated with a
j-special variety T is equal to dimT .

Note also that a similar analysis for J-special varieties was carried out by Pila in his
unpublished notes (see also [Spe19]). We will see in Section 7 that strongly J-special
varieties are D-special.
Definition 6.5 (cf. [Spe19, Definition 1.3]). Let T ⊆ Cn be a j-special variety.
A geodesic variety U associated with T is called upper triangular if all matrices g
occurring in the definition of U are upper triangular. If U is upper triangular then a
D-special variety associated with T and U is also called upper triangular.

Observe that a D-special variety S associated with a j-special variety T is upper
triangular if and only if dimS = 3 dimT . For example, C3n is an upper triangular
D-special variety.
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The following result often comes in useful.

Lemma 6.6. Assume (K; +, ·, D) is an ℵ0-saturated differentially closed field with
field of constants C. Let S be a D-special variety associated with a geodesic variety U ,
both defined over a finitely generated subfield C0⊆C. Then there is a point (z̄, J̄) ∈
E×(z,J)(K)∩ (U(K)× S(K)) such that J̄ is generic in S over C0 and z̄ is generic in U
over C0. In particular, S contains a generic E×J (K)-point over C0.

Proof. The set W := E×(z,J) ∩ (U × S) is Kolchin constructible, hence it can be de-
composed into a union of irreducible relatively Kolchin closed subsets Wi.14 We may
assume each Wi is defined over C0. The above observations on the structure of D-
special varieties show that Zcl(W/C0) is irreducible. On the other hand Zcl(W/C0) =⋃
i Zcl(Wi/C0), and each Zcl(Wi/C0) is Zariski irreducible. Hence Zcl(W/C0) must

be equal to Zcl(Wi/C0) for some i. Since K is saturated and Wi is Kolchin ir-
reducible, Wi(K) contains a Kolchin generic point (z̄, J̄) ∈ E×(z,J)(K) over C0 and
Zcl((z̄, J̄)/C0) = Zcl(Wi/C0) = Zcl(W/C0). Therefore Zcl(J̄/C0) = S, Zcl(z̄/C0) =
U. �

Remark 6.7. It can be proven that in the above lemma we can find a point generic not
only over C0, but also over C. This can be achieved, for example, using the methods
of [Asl18] and [AEK21]. Nevertheless, we do not prove it as we will not use it in this
paper.

Proposition 6.8. Let S1 ⊆ S2 be D-special varieties associated with the same j-special
variety T . Then S1 = S2.

Proof. We need to prove that each j-block of S1 coincides with the corresponding j-
block of S2. Hence, we may assume both S1 and S2 have one j-block. If dimS2 = 3
then obviously dimS1 = 3 and S1 = S2, so assume dimS2 = 4. By taking a non-
upper triangular projection we may assume that S1 ⊆ S2 ⊆ C6. In that case T ⊆ C2

is defined by a single modular equation Φ(y1, y2) = 0. Also, assume S1 and S2 are
defined over C0 ⊆ C.

Extend C to an ℵ0-saturated differentially closed field (K; +, ·, D). Let J̄ :=
(j̄, j̄′, j̄′′) ∈ S1(K) ∩ E×J (K) be generic over C0.

Differentiating the equality Φ(j1, j2) = 0 we get

(6.2)
∂Φ

∂Y1

(j1, j2) ·Dj1 +
∂Φ

∂Y2

(j1, j2) ·Dj2 = 0.

Further, we have

(6.3) Dj′1 = j′′1 ·
Dj1

j′1
and Dj′2 = j′′2 ·

Dj2

j′2
.

Let U2 ⊆ C2 be a C-geodesic variety associated with S2, defined by an equation

x2 =
ax1 + b

cx1 + d
, where a, b, c, d ∈ C, ad− bc = 1, c 6= 0.

Pick z1 ∈ K such that

14As pointed out above, that set is actually Kolchin irreducible, so there is only one component.
But it is not essential in the proof.
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(6.4)
∂Φ

∂Y1

(j1, j2) · j′1 +
1

(cz1 + d)2
· ∂Φ

∂Y2

(j1, j2) · j′2 = 0.

Differentiating this equality and using (6.2) and (6.3), we obtain

Dz1 = ξ(z1, j1, j2, j
′
1, j
′
2, j
′′
1 , j
′′
2 ) ·Dj1

where ξ is a rational function. We claim that

ξ(z1, j1, j2, j
′
1, j
′
2, j
′′
1 , j
′′
2 ) =

1

j′1
.

Let
(ū, v̄, v̄′, v̄′′) ∈ E(z,J)(K) ∩ (U2(K)× S2(K))

be generic over C0 as in Lemma 6.6. Differentiating Φ(v1, v2) = 0 with respect to D
and ∂u1 we get

∂Φ

∂Y1

(v1, v2) ·Dv1 +
∂Φ

∂Y2

(v1, v2) ·Dv2 = 0

and
∂Φ

∂Y1

(v1, v2) · v′1 +
1

(cu1 + d)2
· ∂Φ

∂Y2

(v1, v2) · v′2 = 0.

Differentiating the second equality and taking into account the fact that

Dv1

v′1
=
Dv′1
v′′1

and
Dv2

v′2
=
Dv′2
v′′2

we see that
δu1 = ξ(u1, v1, v2, v

′
1, v
′
2, v
′′
1 , v
′′
2) · δv1

where ξ is the same rational function as above. However, we know that δu1 = δv1

v′1
and

hence ξ(u1, v1, v2, v
′
1, v
′
2, v
′′
1 , v
′′
2) = 1

v′1
. Since (v1, v

′
1, v
′′
1 , v2, v

′
2, v
′′
2) is generic in S2 over

C0 (and u1 and z1 satisfy the same algebraic equation over v1, v2, v
′
1, v
′
2 and j1, j2, j

′
1, j
′
2

respectively), we conclude that ξ(z1, j1, j2, j
′
1, j
′
2, j
′′
1 , j
′′
2 ) = 1

j′1
, that is,

Dz1 =
Dj1

j′1
.

Now if z2 := az1+b
cz1+d

then it is clear that ji = ∂ziji, j
′′
i = ∂zij

′
i, j

′′′
i = ∂zij

′′
i and

(zi, ji, j
′
i, j
′′
i ) ∈ E(z,J)(K) for i = 1, 2. Therefore

dimS1 ≥ tdC C(J̄) = tdC C(z̄, J̄) ≥ 4.

Thus dimS1 = dimS2 and S1 ⊆ S2, hence S1 = S2. �

Corollary 6.9. Let K be a differential field, S be a D-special variety defined over the
field of constants and J̄ ∈ S(K) ∩ E×J (K). Then the appropriate projections of J̄ are
generic in j-blocks of S.
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6.2. D-special closure.

Definition 6.10. Let V ⊆ C3n be an algebraic variety (or, more generally, an arbitrary
set). A D-special closure of V is a D-special variety S ⊆ C3n which contains V and is
minimal among the D-special varieties containing V .

Remark 6.11. By Noetherianity of the Zariski topology every variety has at least
one D-special closure which, in general, is not unique. When all j-blocks of a variety
V are D-special, V has a unique D-special closure which is the product of its j-blocks
and is the smallest D-special variety containing V .

Example 6.12. Let T1, T2 ⊆ C6 be D-special varieties of dimension 4 (with a single
j-block). Further, let S1 := C3 × T1 ⊆ C9 be a D-special variety whose projection on
(y1, y

′
1, y
′′
1) is C3 and the projection on (y2, y3, y

′
2, y
′
3, y
′′
2 , y
′′
3) is equal to T1. Similarly

defined S2 := T2×C3 ⊆ C9 whose projection on (y3, y
′
3, y
′′
3) is C3 and the projection on

(y1, y2, y
′
1, y
′
2, y
′′
1 , y
′′
2) is equal to T2. If V ⊆ S1 ∩ S2 is a component of the intersection,

then dimW = 5, so it cannot be D-special. Both S1 and S2 (each of dimension 7) are
D-special closures of W .

Lemma 6.13. Let (K; +, ·, D) be a differential field with an algebraically closed field
of constants C, and let J̄ = (j̄, j̄′, j̄′′) ∈ E×J (K). If T ⊆ Kn is the j-special closure of
j̄ then J̄ belongs to a D-special variety S ∼ T defined over C.

Proof. Let F be a differential closure of K. Since C is algebraically closed, it is the
field of constants of F . Pick z̄ ∈ F n such that (z̄, J̄) ∈ E×(z,J)(F ). Then z̄ belongs to a
C-geodesic variety associated with T , hence J̄ belongs to a D-special variety defined
over C and associated with T . �

Corollary 6.14. Let (K; +, ·, D) be a differential field with an algebraically closed field
of constants C and J̄ = (j̄, j̄′, j̄′′) ∈ E×J (K). Then J̄ has a unique D-special closure
and it does not depend on K, i.e. if F is a differential superfield of K with field of
constants Ĉ then the D-special closure of J̄ over Ĉ is equal to that over C.

6.3. Weak Ax–Schanuel for D-special varieties. The following is a weak form of
Ax–Schanuel in terms of D-special varieties.

Theorem 6.15 (Weak Ax–Schanuel). Assume (K; +, ·, D1, . . . , Dm) is a differential
field (with commuting derivations) with constant field C. Let S ⊆ C3n be a D-special
variety associated with a j-special variety T ⊆ Kn. If J̄ := (j̄, j̄′, j̄′′) ∈ E×J (K)∩S(K)
and

tdC C(J̄) < dimS − dimT + rk Jac(j̄)

then j̄ belongs to a proper j-special subvariety of T and hence J̄ belongs to a proper
D-special subvariety of S.

Proof. Assume j̄ does not belong to a proper j-special subvariety of T , that is, T is
the j-special closure of j̄. By Proposition 6.8, S is the D-special closure of J̄ .

Pick a tuple z̄ (possibly in a differential field extension F of K) such that (z̄, J̄) ∈
E×(z,J)(F ). It is clear that if t is the number of j-blocks of S of dimension 3 then

td(C(z̄, J̄)/C(J̄)) ≤ t

and
tdC C(z̄, J̄) < t+ dimS − dimT + rk Jac(j̄) = 3 dimT + rk Jac(j̄).

This contradicts the Ax–Schanuel theorem. �
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A uniform version of this theorem can also be proved as before.

7. An analytic approach

7.1. Jḡ-special varieties. For g ∈ GL2(C) let Hg := g−1H and let jg : Hg → C be the
function jg(z) = j(gz). For a tuple ḡ = (g1, . . . , gn) ∈ GL2(C)n setHḡ := Hg1×· · ·×Hgn

and define functions
jḡ : Hḡ → Cn : (z1, . . . , zn) 7→ (jg1(z1), . . . , jgn(zn))

and
Jḡ = (jḡ, j

′
ḡ, j
′′
ḡ ) : Hḡ → C3n : z̄ 7→ (jḡ(z̄), j′ḡ(z̄), j′′ḡ (z̄))

where the derivation is coordinatewise and

j′gi(zi) =
d

dzi
j(gizi) = j′(gizi) · g′izi, j′′gi(zi) =

d2

dz2
i

j(gizi).

Here j′(z) = d
dz
j(z) and g′z = d

dz
(gz) for g ∈ GL2(C). We let Γḡ ⊆ Hḡ × C3n be the

graph of Jḡ. When gi is the indetity matrix for each i, we drop the subscript ḡ from
Jḡ and Γḡ.

Definition 7.1. Let ḡ = (g1, . . . , gn) ∈ GL2(C)n. An Hḡ-special variety is an irre-
ducible component of a subvariety of Hḡ defined by equations of the form
(7.1) zi = g−1

i γi,kgkzk

where γi,k ∈ GL+
2 (Q).

Definition 7.2. Let ḡ ∈ GL2(C)n.
• For an Hḡ-special variety U ⊆ Hḡ denote the set Zcl(Jḡ(U)/C) by 〈〈U〉〉ḡ.
• A Jḡ-special variety is a variety of the form 〈〈U〉〉ḡ for some Hḡ-special U .
• A Jḡ-special variety S is strongly Jḡ-special if no coordinate is constant on S.
• For a Jḡ-special variety S, we say it is associated with a j-special variety T , and
write S ∼ T , if S = 〈〈U〉〉ḡ for some U ⊆ Hḡ with jḡ(U) = T (equivalently, the
projection of S onto the first n coordinates is equal to T ).
• For a set Σ of j-special varieties S ∼ Σ means that S ∼ T for some T ∈ Σ.
• The collection of all strongly Jḡ-special varieties is denoted by Sḡ.

Remarks 7.3.
• A variety can simultaneously be Jḡ-special and Jh̄-special for some h̄ 6= ḡ, for only
the coordinates occurring in (7.1) are relevant. If a Jḡ-special variety S contains a
Jh̄-special variety, then S is also Jh̄-special.
• It is clear that when gi is the identity matrix for each i then strongly Jḡ-special
varieties coincide with strongly J-special varieties. However, J̄-special varieties are
defined over Qalg, while Jḡ-special varieties are defined over C, so in general these
two notions are not the same. This distinction does not cause any issues because
we work only with strongly special varieties.

Lemma 7.4. Jḡ-special varieties are irreducible.

Proof. Let S = 〈〈U〉〉ḡ be Jḡ-special. By definition, U is an irreducible complex ana-
lytic set, hence its image Jḡ(U) is also irreducible (see the footnote to Remark 1.13). If
〈〈U〉〉ḡ is reducible, then one of its algebraically irreducible components must contain
Jḡ(U), therefore that component is equal to the Zariski closure of the latter. Thus,
〈〈U〉〉ḡ is equal to an irreducible component of itself, hence it is in fact irreducible. �
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Proposition 7.5. A subvariety of C3n is D-special if and only if it is strongly Jḡ-special
for some ḡ ∈ GL2(C)n. In other words, SD =

⋃
ḡ∈GL2(C)n Sḡ.

Proof. Let U be Hḡ-special defined by equations (7.1). It is clear that T := jḡ(U)
is a j-special variety defined by equations ΦN(yi, yk) = 0 with N = N(γi,k) (see
Section 3). Let W ⊆ Cn be the C-geodesic variety (associated with T ) defined by the
same equations as U , that is, U = W ∩ Hḡ. Then it is straightforward to show that
〈〈U〉〉ḡ = 〈〈W,T 〉〉.

For the converse, assume S ⊆ C3n is a D-special variety associated with T and W
defined over a finitely generated subfield C0 ⊆ C. Let K ⊇ C be an ℵ0-saturated
differentially closed field with constant field C. By Lemma 6.6 there is a point (z̄, J̄) ∈
E×(z,J)(K)∩ (W (K)× S(K)) such that J̄ is generic in S over C0 and z̄ is generic in W
over C0. Let K0 ⊆ K be a finitely generated differential field, with constant field C0,
containing J̄ and z̄. By Seidenberg’s embedding theorem K0 can be embedded into a
differential field of meromorphic functions on a complex domain. Then by Lemma 3.1
ji = j(gizi) where j is the j-function and gi ∈ GL2(C). In other words, ji = jgi(zi)
and J̄ = Jḡ(z̄) where ḡ = (g1, . . . , gn). Let U := Hḡ ∩W . Then it is easy to verify that
U is Hḡ-special and S = 〈〈U〉〉ḡ. �

This shows, in particular, that the structure of Jḡ-special varieties is similar to that
of D-special varieties, that is, a Jḡ-special variety is equal to the product of its j-blocks.
However, since Jḡ-special varieties may have constant coordinates, their j-blocks may
be of dimension zero. Of course, the j-blocks of a strongly Jḡ-special variety are of
dimension 3 or 4 depending on the matrices involved in the defining equations of the
corresponding Hḡ-special variety.

Notation. Let prj : C3n → Cn be the projection onto the j-coordinates, i.e. the first
n coordinates. Similarly, let Prj : C4n → Cn be the projection onto the second n
coordinates.

The following is an equivalent form of the Complex Ax–Schanuel for the function J
[PT16, Theorem 1.2].

Theorem 7.6. Let V ⊆ C4n be an algebraic variety and let A be an analytic component
of the intersection V ∩ Γ. If dimA > dimV − 3n and no coordinate is constant on
Prj A then it is contained in a proper j-special subvariety of Cn.

We will need the following uniform version of this theorem.

Theorem 7.7. Let S ⊆ C3n be an upper triangular D-special variety, associated with
a j-special T , and Vc̄ ⊆ Cn×S(C) be a parametric family of algebraic varieties. Then
there is a finite collection Σ of proper j-special subvarieties of T such that for every
c̄ ⊆ C and every ḡ ∈ GL2(C)n, if A is an analytic component of the intersection Vc̄∩Γḡ
with dimA > dimVc̄ − dimS, and no coordinate is constant on Prj A, then Prj A is
contained in some T ′ ∈ Σ.

Proof. We replicate the argument of [PT16, §2.5]. Let (z̄, jḡ(z̄), j′ḡ(z̄), j′′ḡ (z̄)) be local
coordinates on A where each zi = zi(w1, . . . , wl) is a holomorphic function of w̄ de-
fined on some open subset W of Cl. Consider the field K of meromorphic functions
on W , equipped with derivations Di = d

dwi
, i = 1, . . . , l. Then (z̄, jḡ(z̄), j′ḡ(z̄), j′′ḡ (z̄)) ∈

E×(z,J)(K), dimA = rk(Dizk)i,k and dimVc̄ < dimS+rk(Dizk)i,k = 3 dimT+rk(Dizk)i,k.
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By Theorem 4.5 there is a finite set Σ of proper j-special subvarieties of T , depending
on V but not on c̄ (neither on ḡ), such that jḡ(z̄) ∈ T ′ for some T ′ ∈ Σ. But then
Prj A ⊆ T ′. �

7.2. Weak Zilber–Pink for Jḡ.

Definition 7.8. For Jḡ-special varieties T ⊆ S ⊆ C3n and a subvariety V ⊆ S an
atypical (in S) component X of the intersection V ∩ T is strongly Jḡ-atypical if for
every irreducible analytic component Y of X ∩ Jḡ(Hḡ) no coordinate is constant on
the projection prj Y . The strongly Jḡ-atypical set of V in S, denoted SAtypḡ(V ;S), is
the union of all strongly Jḡ-atypical subvarieties of V .

Theorem 7.9. Let S ⊆ C3n be an upper triangular D-special variety associated with a
j-special variety T ⊆ Cn. For a parametric family of algebraic varieties Vc̄ ⊆ S there
is a finite collection Σ of proper j-special subvarieties of T such that for every c̄ and
every ḡ ∈ GL2(C)

SAtypḡ(Vc̄;S) ∩ Jḡ(Hḡ) ⊆
⋃
P∼Σ
P∈Sḡ

P.

This implies Theorem 1.18, and itself follows from the next proposition.

Proposition 7.10. Let S ⊆ C3n be an upper triangular D-special variety associated
with a j-special variety T ⊆ Cn. For a parametric family of algebraic varieties Vc̄ ⊆ S
there is a finite collection Σ of proper j-special subvarieties of T such that for every c̄,
every ḡ ∈ GL2(C) and every Jḡ-atypical subvariety X of Vc̄, if A ⊆ X ∩ Jḡ(Hḡ) is an
analytic component with prj A having no constant coordinates, then prj A is contained
in some T ′ ∈ Σ.

We will need some auxiliary results in the proof of this proposition. First, we will
need the following theorem on the dimension of intersection in analytic sets.

Theorem 7.11. Let A,B ⊆ M be irreducible analytic varieties, and X be an irre-
ducible component of A ∩B. If X contains a non-singular point of M then

dimX ≥ dimA+ dimB − dimM.

Proof. This is a well-known theorem for smooth M (see [Łoj91, Chapter III, 4.6]). If
M is not smooth, then we can intersect all varieties with the set of non-singular points
of M , which will not change their dimensions (in particular, those intersections will
be non-empty due to the hypothesis of the theorem). �

In order to apply this theorem, we need the following result.

Lemma 7.12. Assume T ⊆ C3n is Jḡ-special and Y is a complex analytically irre-
ducible subset of T ∩Jḡ(Hḡ) such that no coordinate is constant on the projection prj Y .
Then Y contains a non-singular point of T .

Proof. Let Ts ⊆ T be the subset of singular points of T . Then Ts is a proper Zariski
closed subset of T . We need to show that Y * Ts.

Let us assume first that T consists of a single j-block. We claim that all but
countably many points of Y are non-singular points of T . Consider the set Z :=
J−1
ḡ (Y ∩Ts). If Z is at most countable, then we are done. Otherwise for some coordinate
zi the projection of Z on zi, denoted Zi, must be uncountable. Therefore, Zi contains
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a limit point of itself. On the other hand, the functions zi, jgi(zi), j′gi(zi), j
′′
gi

(zi) must
satisfy a non-trivial algebraic equation for zi ∈ Zi as Ts ( T . Since Zi has a limit
point, that identity will hold for all zi ∈ Hgi which contradicts Mahler’s theorem
(Ax–Schanuel for n = 1).

Now let T = T1 × . . . × Tk be the decomposition of T into a product of j-blocks.
By the above argument, the projection of Y on Ti contains at most countably many
singular points of Ti. Denote that set by Si. If a point is smooth on each Ti then
it will be smooth on T as well. So assume, for contradiction, that every point of Y
is singular on at least one Ti. It means that for every point of Y , its projection on
some Ti is contained in Si. But then Y will be contained in a countable union of
varieties each of which has a constant coordinate. Hence Y must be contained in one
of them, which implies that the projection prj Y has a constant coordinate, and this
is a contradiction. �

Lemma 7.13. Let S be a Jḡ-special variety and Y be an analytic component of S ∩
Jḡ(Hḡ). Then there is an Hḡ-special variety U such that Y = Jḡ(U) and S = 〈〈U〉〉ḡ.

Proof. Let (jḡ(z̄), j′ḡ(z̄), j′′ḡ (z̄)) be local coordinates on Y where each zi = zi(w̄) is a
function of w̄. Clearly, there is an Hḡ-special variety U such that jḡ(U) = prj S and
z̄(w̄) ∈ U for all w̄. Since Y is irreducible and Y ⊆ S, we have Y ⊆ Jḡ(U) ⊆ S.
Therefore Y = Jḡ(U), for Y is a component of S ∩ Jḡ(Hḡ). It is also clear that
S = 〈〈U〉〉ḡ. �

Proof of Proposition 7.10. We consider the case of a single variety V first. Let T ⊆ S
be a Jḡ-special variety and X ⊆ V ∩ T be an atypical component in S. Assume
A ⊆ X ∩ Jḡ(Hḡ) is an analytic component such that no coordinate is constant on
prj A. Since A ⊆ T ∩ Jḡ(Hḡ), by Lemma 7.13 there is an Hḡ-special variety U such
that A ⊆ Jḡ(U) ⊆ T . Thus, A is an analytic component of X ∩ Jḡ(U). By Lemma
7.12 A contains a non-singular point of T . So by Theorem 7.11 we have15

dimA ≥ dimX + dim Jḡ(U)− dimT >

dimV + dimT − dimS + dim Jḡ(U)− dimT = dimV + dimU − dimS.

This implies

dim((U × A) ∩ Γḡ) = dimA > dim(U × V )− dimS.

Now the desired result follows from Theorem 7.7 applied to the parametric family of
algebraic varietiesWc̄×V whereWc̄ varies over the parametric family of all C-geodesic
varieties.

It is clear that the proof goes through for a parametric family Vc̄. �

Since strongly J-special subvarieties of an algebraic variety V are obviously strongly
J-atypical, Theorem 7.9 implies the following weak version of the MAOD conjecture,

15As pointed out earlier, the set Jḡ(U) may not be an analytic set. However, it is locally analytic,
that is, every point of Jḡ(U) has a Euclidean neighbourhood where the set is analytic. This allows
one to use the theorem on dimension of intersection of analytic sets. Moreover, if we restrict j to
the interior of a fundamental domain, then j becomes a bijective holomorphic map, hence has a
holomorphic inverse. Then the intersection of Jḡ(U) with a product of such fundamental domains
will be a globally analytic subset of the latter, whose dimension is equal to dim Jḡ(U). This also
shows that we can use Theorem 7.11.
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which also follows from Spence’s results [Spe19]. In Section 10.2 we state and prove a
more general Functional MAOD result.

Theorem 7.14. For every algebraic variety V ( C3n there is a finite collection Σ of
proper H-special subvarieties of Hn such that every strongly J-special subvariety of V
is contained in a J-special variety of the form 〈〈γ̄U〉〉 for some γ̄ ∈ SL2(Z)n and some
U ∈ Σ.

8. Differential Modular Zilber–Pink with Derivatives

Definition 8.1. For a D-special variety S ⊆ C3n and a subvariety V ⊆ S we let
the D-atypical set of V in S, denoted AtypD(V ;S), be the union of all D-atypical
subvarieties of V in S, that is, atypical components of intersections V ∩ T in S where
T ⊆ S is D-special.

Now we formulate and prove a differential analogue of the MZPD conjecture, which
is a general version of Theorem 1.19.

Theorem 8.2 (DMZPD). Let (F ; +, ·, D) be a differential field with an algebraically
closed field of constants C. Let also S ⊆ C3n be an upper triangular D-special variety
defined over C associated with a j-special variety T ⊆ Cn. Given a parametric family
of algebraic subvarieties (Vc̄)c̄⊆C of S, there is a finite collection Σ of proper j-special
subvarieties of T such that for every c̄ ⊆ C we have

AtypD(Vc̄;S)(F ) ∩ E×J (F ) ⊆
⋃
P∼Σ
P∈SD

P.

Remark 8.3. Note that while S is assumed to be upper triangular, the D-special vari-
eties that we intersect with Vc̄ to get atypical components are arbitrary. In particular,
we can choose S = C3n since it is upper triangular D-special.

Proof of Theorem 8.2. Fix c̄ and consider the variety Vc̄. LetX ⊆ Vc̄∩R be an atypical
component in S where R ⊆ S is D-special. Let also C0 ⊆ C be a finitely generated
subfield of C over which Vc̄, R and X are defined. Pick a tuple J̄ ∈ X(F ) ∩ E×J (F )
and consider the differential subfield K := C0〈J̄〉 of F generated by C0 and J̄ . By
the Seidenberg embedding theorem, K can be embedded into the field of meromorphic
functions (of one variable) over some complex domain W . Then J̄ = Jḡ(z̄) for some
ḡ ∈ GL2(C) where zi = zi(w) is an analytic function of w defined on W . This implies,
in particular, that R is Jḡ-special. Let Y ⊆ C3n be the complex locus of Jḡ(z̄(w)).
Then it is contained in an analytic component A of the intersection X ∩ Jḡ(Hḡ).
In particular, A has no constant coordinates. By Proposition 7.10, there is a finite
collection Σ of proper j-special subvarieties of T , depending only on V , such that prj A

is contained in some T ′ ∈ Σ. Therefore j̄ ∈ T ′ and by Lemma 6.13 J̄ is contained in a
D-special variety defined over C and associated with T ′. This finishes the proof. �

9. Functional Modular Zilber–Pink with Derivatives

9.1. D-broad varieties. In [AEK21] Aslanyan, Eterović and Kirby proved some Ex-
istential Closedness (henceforth referred to as EC) statements which show roughly
that if for a system of equations involving the relation E(z,J) having a solution does
not contradict Ax–Schanuel then there is a solution in a differentially closed field. One
of those results (in fact, its proof) will be used in the proof of a functional version of
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the MZPD conjecture, so we discuss it and some related results here. The reader is
referred to [Asl18, AEK21] for details.

In this subsection all differential fields are ordinary, i.e. have only one derivation.
Notation. Let F be a field, n be a positive integer, k ≤ n and 1 ≤ i1 < . . . < ik ≤ n.
For ī = (i1, . . . , ik) define the following projection maps.
• prī : F n → F k is the map

prī : (x1, . . . , xn) 7→ (xi1 , . . . , xik).

• πī : F 4n → F 4k is defined by
πī : (x̄, ȳ, ȳ′, ȳ′′) 7→ (prī x̄, prī ȳ, prī ȳ

′, prī ȳ
′′).

• Prī : F 3n → F 3k denotes the map
Prī : (ȳ, ȳ′, ȳ′′) 7→ (prī ȳ, prī ȳ

′, prī ȳ
′′).

• prȳ : F 3n→F n and Prȳ : F 4n→F n are the maps

prȳ : (ȳ, ȳ′, ȳ′′) 7→ ȳ and Prȳ : (z̄, ȳ, ȳ′, ȳ′′) 7→ ȳ,

i.e. they are the projections prj and Prj considered in the previous sections.
Definition 9.1. Let F be an algebraically closed field. An irreducible algebraic variety
V ⊆ F 4n is J-broad if for any 1 ≤ i1 < . . . < ik ≤ n we have dim πī(V ) ≥ 3k. We say
V is strongly J-broad if the strict inequality dim πī(V ) > 3k holds for any ī.
Definition 9.2. An algebraic variety V ⊆ F 4n (or V ⊆ F 3n) is said to be J-free if
Prȳ V (respectively prȳ V ) is not contained in a proper j-special subvariety of F n.
Theorem 9.3 (EC, [AEK21, Theorem 3.6]). Let (F ; +, ·, D) be a differentially closed
field and let V ⊆ F 4n be a strongly J-broad and J-free variety defined over the field of
constants C. Then V (F ) ∩ E×(z,J)(F ) 6= ∅.

We will need this theorem in the next subsection, but it is in fact more convenient
to use the method of its proof rather than its statement. So we will not refer to this
theorem, but we could actually use its statement instead (which was done in earlier
versions of the paper), and the two approaches are equivalent.
Definition 9.4. Let V ⊆ F 3n be an irreducible variety with a D-special closure S and
let T be the j-special closure of prȳ V . Then V is said to be strongly D-broad if for all
1 ≤ i1 < . . . < ik ≤ n

dim Prī V > dim Prī S − dim prī T.

Remarks 9.5.
• It is easy to see that if V is strongly D-broad with respect to a particular choice of
S then its j-blocks are D-special. So S is the unique D-special closure of V which is
simply the product of its j-blocks, and T = prȳ S. In particular, strong D-broadness
does not depend on the choice of S.
• Theorem 9.3 can be used to show that in a differentially closed field D-broad varieties
defined over the field of constants contain E×J -points. In ℵ0-saturated differentially
closed fields they also contain generic E×J -points.

Weak Ax–Schanuel (Theorem 6.15) implies that if V is defined over a field C and
there is a point in V ∩ E×J generic in V over C then V must be strongly D-broad.
• A J-free variety V ⊆F 3n is strongly D-broad if and only if F n × V is strongly
J-broad.
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9.2. A Zilber–Pink type statement.

Definition 9.6. Let S ⊆ C3n be D-special and V ⊆ S be a subvariety. Recall that a
D-atypical subvariety of V in S is an atypical (in S) component W of an intersection
V ∩T where T ⊆ S is D-special. If, in addition,W is strongly D-broad then we say that
it is strongly D-atypical. The strongly D-atypical set of V in S, denoted SAtypD(V ;S),
is the union of all strongly D-atypical subvarieties of V in S.

Remark 9.7. One might expect strongly D-atypical subvarieties to be defined as
before, that is, if W is D-atypical and no coordinate is constant on W then it is
strongly D-atypical. However, the condition of not having any constant coordinates is
equivalent to all projections ofW having positive dimension. This is actually what the
analogue of strong D-broadness would be in the case of j (without derivatives). So,
from this point of view, the above notion of strong D-atypicality for D-special varieties
is analogous to strong atypicality for j-special varieties. Furthermore, broadness and
existential closedness have been implicitly used in the proof of weak MZP without
derivatives as well, and we did not see those explicitly since the appropriate notion of
strong broadness is simpler (equivalent to not having constant coordinates) and the
analogue of EC holds trivially there.

In the following theorem strong D-broadness of atypical subvarieties corresponds to
intersection with E×J in Theorem 8.2.

Theorem 9.8 (FMZPD). Let S ⊆ C3n be an upper triangular D-special variety as-
sociated with a j-special variety P ⊆ Cn. Given a parametric family of algebraic
subvarieties (Vc̄)c̄⊆C of S, there is a finite collection Σ of proper j-special subvarieties
of P such that for every c̄ ⊆ C, every strongly atypical subvariety of Vc̄ is contained
in a D-special variety associated with some P ′ ∈ Σ. Equivalently,

SAtypD(Vc̄;S) ⊆
⋃
T∼Σ
T∈SD

T.

As pointed out above, Theorem 9.3 can be used to show that in an ℵ0-saturated
differentially closed field D-broad varieties defined over the field of constants contain
generic E×J -points (cf. [AEK21, Theorem 3.8]). Then the above theorem can be
deduced from Theorem 8.2 by extending C to an ℵ0-saturated differentially closed field
F and working with generic E×J -points in strongly D-atypical varieties. Nevertheless,
we give a direct differential algebraic proof for Theorem 9.8. It has some advantages,
for example, it is based on formal properties of the differential equation of the j-
function and can possibly be adapted to other settings. Note also that Theorem 9.8
immediately implies Theorem 1.20.

Proof of Theorem 9.8. Let W ⊆ Vc̄ ∩ T be a strongly atypical subvariety of Vc̄ where
T is a D-special subvariety of S. We know that

dimW > dimVc̄ + dimT − dimS.

We may assume without loss of generality that T is the D-special closure of W
(which is unique since W is strongly D-broad). Indeed, otherwise we could replace T
by the D-special closure of W and the above inequality would still hold.

Step 1. Let J̄ := (j̄, j̄′, j̄′′) ∈ W be a Zariski generic point over C, and let K :=
(C(J̄))alg. Let also d : K → Ω be the universal derivation on K over C where
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Ω = Ω(K/C) is the vector space of the abstract differential forms on K over C (see
Section 2.1). Then dimW = td(J̄/C) = dim Der(K/C) = dim Ω(K/C). Consider the
differential forms ωi := dji

j′i
− dj′i

j′′i
, ω′i :=

dj′i
j′′i
− dj′′i

j′′′i
, where j′′′i = η(ji, j

′
i, j
′′
i ) is uniquely

determined from the equation Ψ(ji, j
′
i, j
′′
i , j
′′′
i ) = 0.

Let Θ := spanK{ωi, ω′i : i = 1, . . . , n} ⊆ Ω, and let Λ := Λ(K/C) be the annihilator
of Θ, that is,

Λ =

{
D ∈ Der(K/C) :

Dji
j′i

=
Dj′i
j′′i

=
Dj′′i
j′′′i

, i = 1, . . . , n

}
=
⋂
i

(kerωi ∩ kerω′i) .

Here the annihilator Ann(Θ) is a subspace of (Ω(K/C))∗, while
⋂
i ker(ωi) is a subspace

of Der(K/C). So the above equality makes sense after identifying (Ω(K/C))∗ with its
double dual Der(K/C). It is clear that dim Λ = dim Ω− dim Θ = dimW − dim Θ.

Denote the j-special variety associated with T by T̃ .

Claim 1. dim Θ ≤ dimT − dim T̃ and dim Λ ≥ dimW − (dimT − dim T̃ ).

Proof. Assume that j1 and j2 are related by a modular equation. Then the coordinates
y1, y2 satisfy the same modular equation on T (since we assumed T is the D-special
closure of W ). Hence dim Pr(1,2) T is 3 or 4 depending on whether that projection
is upper triangular or not. We claim that if it is upper triangular then ω2, ω

′
2 ∈

spanK{ω1, ω
′
1}, otherwise ω′2 ∈ spanK{ω1, ω

′
1, ω2}.

Let us verify the first assertion first. Suppose D ∈ Der(K/C) satisfies ω1(D) =
ω′1(D) = 0, that is,

Dj1

j′1
=
Dj′1
j′′1

=
Dj′′1
j′′′1

.

We need to prove that16 ω2(D) = ω′2(D) = 0, i.e.
Dj2

j′2
=
Dj′2
j′′2

=
Dj′′2
j′′′2

.

First observe that if Dj1 = 0 then Dj′1 = Dj′′1 = Dj′2 = Dj′′2 = 0 so there is nothing
to prove. Hence we assume Dj1 6= 0. Choose z1 in a differential field extension of
(K; +, ·, D) such that Dz1 = Dj1

j′1
. Let z2 = gz1 and choose g ∈ SL2(C) so that (z1, z2)

lies in a geodesic variety associated with Pr(1,2) T . Then

(z2, j2, ∂z2j2, ∂
2
z2
j2) ∈ E×(z,J)

and ∂z2j2 and j′2 satisfy the same algebraic equation over j1, j
′
1, j
′′
1 , j2. This implies

j′2 = ∂z2j2 for that equation is linear. Similarly, j′′2 = ∂2
z2
j2 = ∂z2j

′
2 and j′′′2 = ∂3

z2
j2 =

∂z2j
′′
2 . Hence

Dj2
j′2

=
Dj′2
j′′2

=
Dj′′2
j′′′2
.

Now assume dim Pr(1,2) T = 4, that is, Pr(1,2) T is not upper triangular. Let U ⊆ C2

be a geodesic variety associated with Pr(1,2) T and defined by an equation x2 = ax1+b
cx1+d

with ad− bc = 1. Assume
Dj1

j′1
=
Dj′1
j′′1

=
Dj′′1
j′′′1

and
Dj2

j′2
=
Dj′2
j′′2

.

We may assume Dj1 6= 0 as before. We know that Φ(j1, j2) = 0 for some modular
polynomial Φ(Y1, Y2). Pick z1 ∈ K such that

16If we identify Der(K/C) with (Ω(K/C))∗ then this means that any linear functional on Ω(K/C)
which vanishes at ω1, ω

′
1 must also vanish at ω2, ω

′
2. Hence ω2, ω

′
2 ∈ spanK{ω1, ω

′
1}.
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∂Φ

∂Y1

(j1, j2) · j′1 +
1

(cz1 + d)2
· ∂Φ

∂Y2

(j1, j2) · j′2 = 0.

The proof of Proposition 6.8 shows that

Dz1 =
Dj1

j′1
.

Thus, j′1 = ∂z1j1, j
′′
1 = ∂z1j

′
1, j

′′′
1 = ∂z1j

′′
1 and (z1, j1, j

′
1, j
′′
1 ) ∈ E(z,J)(K). Therefore we

can prove as in the upper triangular case that

j′2 = ∂z2j2, j
′′
2 = ∂z2j

′
2, j

′′′
2 = ∂z2j

′′
2

where z2 = az1+b
cz1+d

, which immediately implies the desired equality.
Now if a third coordinate j3 is modularly related to j2 then j′3 is algebraic over

j1, j
′
1, j2, j

′
2, j3 and j′′3 is algebraic over j1, j

′
1, j
′′
1 , j2, j

′
2, j
′′
2 , j3, j

′
3 and we can prove as

above that ω3, ω
′
3 ∈ spanK{ω1, ω

′
1, ω2}. In the upper triangular case we obviously

would have ω3, ω
′
3 ∈ spanK{ω1, ω

′
1}.

Thus, each j-block of T of dimension 3 contributes at most 2 to dim Θ while each
j-block of dimension 4 contributes at most 3. Hence dim Θ ≤ dimT − dim T̃ . �

Claim 2. Λ is closed under the Lie bracket.

Proof. Pick two derivations D1, D2 ∈ Λ and let D := [D1, D2]. Using the equalities

Dij

j′
=
Dij

′

j′′
=
Dij

′′

j′′′
, i = 1, 2,

we get
Dj

j′
=
Dj′

j′′
+

1

j′

(
D2j

′ ·D1
j′

j′′
−D1j

′ ·D2
j′

j′′

)
.

We claim that the expression in brackets is equal to zero. Indeed, after simplifying it
we see that it suffices to prove that

D2j
′ ·D1j

′′ = D1j
′ ·D2j

′′.

This is equivalent to
D1j

′

D1j′′
=
D2j

′

D2j′′
.

But we know that for i = 1, 2
Dij

′

Dij′′
=
j′′

j′′′

which does not depend on i. This shows that Dj
j′

= Dj′

j′′
.

Similarly, the equality Dj′

j′′
= Dj′′

j′′′
follows from D1j′′

D1j′′′
= D2j′′

D2j′′′
. We know that j′′′ =

η(j, j′, j′′) where η(Y1, Y2, Y3) is a rational function over Q. Hence for i = 1, 2

Dij
′′′

Dij′′
=

∂η

∂Y1

(j, j′, j′′) · Dij

Dij′′
+

∂η

∂Y2

(j, j′, j′′) · Dij
′

Dij′′
+

∂η

∂Y3

(j, j′, j′′) · Dij
′′

Dij′′

=
∂η

∂Y1

(j, j′, j′′) · j
′

j′′′
+

∂η

∂Y2

(j, j′, j′′) · j
′′

j′′′
+

∂η

∂Y3

(j, j′, j′′)

which does not depend on i. This finishes the proof. �
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Step 2. Let l := dim Λ. By Lemma 2.1 we can take a commuting basis D1, . . . , Dl of
Λ and consider the differential field (K; +, ·, D1, . . . , Dl). Let Ĉ :=

⋂
i ker(Di) be its

field of constants.

Claim 3. jk /∈ Ĉ for each k (and hence j′k, j′′k /∈ Ĉ).

Proof. This is an adaptation of the proof of [AEK21, Theorem 3.6].
Assume dimW = dimT−dim T̃+r where r ≥ 1 (recall thatW is strongly D-broad).

Then by Claim 1 we have l ≥ r.
Let Ji := (ji, j

′
i, j
′′
i ). It is evident that if one of the coordinates of Ji is in Ĉ then so

are the others (see [AEK21, Lemma 3.4]). Hence we may assume that for some t ≥ 1

none of the coordinates of J1, . . . , Jt is in Ĉ and all coordinates of Jt+1, . . . , Jn are in
Ĉ. Here t 6= 0 for otherwise all derivations Di would vanish on K which contradicts
l > 0. Assume t < n. Let

ē := (1, . . . , t), s̄ := (t+ 1, . . . , n)

and
v̄ := (J1, . . . , Jt), w̄ := (Jt+1, . . . , Jn).

Since Ĉ is algebraically closed, there cannot be a modular relation between a coor-
dinate of v̄ and a coordinate of w̄. Therefore T = Prē T ×Prs̄ T and T̃ = prē T̃ ×prs̄ T̃ .
In particular, Prē T is the D-special closure of v̄.

Since v̄ ∈ E×J (K), by Theorem 6.15 (weak Ax–Schanuel) we conclude that

td(Ĉ(v̄)/Ĉ) ≥ dim Prē T −dim prē T̃ + rk(Dijk)1≤i≤l,1≤k≤t = dim Prē T −dim prē T̃ + l.

Further,

td(Ĉ/C) ≥ td(C(w̄)/C) = dim Prs̄(W ) > dim Prs̄ T − dim prs̄ T̃

for W is strongly D-broad.
Combining the above inequalities and equalities we get

dimW = td(K/C) = td(K/Ĉ) + td(Ĉ/C) > dimT − dim T̃ + l ≥ dimT − dim T̃ + r,

which is a contradiction. Thus, t = n and no coordinate of J̄ is in Ĉ. �

Step 3. Now let Ud̄ ⊆ Kn be a C-geodesic variety associated with T chosen from
the parametric family of all Ĉ-geodesic subvarieties of Kn. Then dimUd̄ = dim T̃ .
Extend (if necessary) the differential field (K; +, ·, D1, . . . , Dl) by adjoining elements
(z1, . . . , zn) ∈ Ud̄ with

Dszi =
Dsji
j′i

, i = 1, . . . , n, s = 1, . . . , l.

Denote the fieldK(z̄)alg by F . Note that if zi corresponds to a j-block of T of dimension
4 then zi is algebraic over (and hence belongs to) K. In this case we just take zi to be
an element of K satisfying (6.4), and then we will automatically have Dszi = Dsji

j′i
for

all s. On the other hand, if zi corresponds to a j-block of T of dimension 3 then it is
transcendental over K. In this case we choose zi’s to be algebraically independent over
K if they correspond to different j-blocks of dimension 3 (and they must be linked
by SL2(C)-relations if they correspond to the same j-block). Then we extend Ds by
defining Dszi = Dsji

j′i
. This makes F a differential field extension of K with derivations
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D1, . . . , Dl, and clearly (z̄, j̄, j̄′, j̄′′) ∈ E×(z,J)(F ). Simple calculations as in Claim 2 show
that the derivations commute on zi’s and hence on F .

The field of constants of F may be larger than Ĉ but by abuse of notation we still
denote it by Ĉ. Let us also stress that here we choose z̄ from Ud̄, which means that
the geodesic relations linking zi’s come from SL2(C) rather than SL2(Ĉ). Further, as
we saw in Section 2.1, rk Jac(z̄) = rk Jac(J̄) = dim Λ. Thus

dimUd̄ × Vc̄ = dimUd̄ + dimVc̄ < dim T̃ + dimW + dimS − dimT =

= 3 dimP + dimW − (dimT − dim T̃ ) ≤ 3 dimP + rk Jac(z̄).

Now we apply the uniform Ax–Schanuel with derivatives to the parametric family
(Ud̄×Vc̄)c̄,d̄⊆Ĉ and get a finite collection Σ of proper j-special varieties of P , depending
on this parametric family only (which, in turn, depends only on V and is independent
of T and W ), such that j̄ ∈ P ′ for some P ′ ∈ Σ. Then J̄ belongs to a D-special variety
associated with P ′ which is not necessarily defined over C (since it is possible that
C ( Ĉ). However, since W and T are defined over C and W is strongly D-broad, it
follows that there is a D-special variety S ′ associated with P ′ and defined over C such
that J̄ ∈ S ′. So we conclude that W ⊆ S ′ as J̄ is generic in W over C. �

9.3. A differential algebraic proof of DMZPD. Now we prove that FMZPD im-
plies DMZPD, which gives a differential algebraic proof for DMZPD (modulo the proof
of Ax-Schanuel, which is not differential algebraic).

Lemma 9.9. Assume X, Y ⊆ Z are algebraic varieties, with X irreducible, and x̄ is a
smooth point of X which belongs to an atypical component of the intersection X∩Y in
Z. Then for any irreducible subvariety X ′ ⊆ X containing x̄ the intersection X ′ ∩ Y
is atypical in Z and x̄ belongs to an atypical component of that intersection.

Proof. Let A ⊆ X ∩Y be an atypical component with x̄ ∈ A. Choose a component A′
of A ∩X ′ containing x̄. Then by Theorem 7.11 (for algebraic varieties) we get

dimA′ ≥ dimA+ dimX ′ − dimX >

(dimX + dimY − dimZ) + dimX ′ − dimX = dimX ′ + dimY − dimZ. �

Proposition 9.10. FMZPD implies DMZPD.

Proof. Let T ′ be a D-special variety which intersects Vc̄ atypically. Assume J̄ =
(j̄, j̄′, j̄′′) ∈ Vc̄(F ) ∩ T ′(F ) ∩ E×J (F ) belongs to an atypical component of Vc̄ ∩ T ′. The
point J̄ has a unique D-special closure which we denote by T . We claim that J̄ belongs
to an atypical component of Vc̄ ∩ T in S.

Although D-special varieties are not smooth in general (and even modular curves
have singularities), E×J -points on D-special varieties are non-singular since such points
are generic in j-blocks (Corollary 6.9) and a D-special variety is just the product of
its j-blocks. Thus, J̄ is a smooth point of T ′, hence by Lemma 9.9 J̄ belongs to an
atypical component W of the intersection Vc̄∩T in S. Then T is the unique D-special
closure of W , and T̃ := prȳ T is the j-special closure of prȳW .

Now Theorem 6.15 implies

dimW ≥ tdC C(J̄) > dimT − dim T̃ .

Moreover, this inequality holds for all projections of W and hence it is strongly D-
broad. Therefore the hypotheses of Theorem 9.8 are satisfied, and we are done. �
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10. Functional Modular André–Oort with Derivatives

The following Modular André–Oort with Derivatives conjecture is a special case of
MZPD and was proposed by Pila in his aforementioned unpublished notes (see also
[Spe19]).

Conjecture 10.1 (MAOD). For every algebraic variety V ( C3n there is a finite
collection Σ of proper H-special subvarieties of Hn such that every J-special subvariety
of V is contained in a J-special variety of the form 〈〈γ̄U〉〉 for some γ̄ ∈ SL2(Z)n and
some U ∈ Σ.

Note that here one does not intersect J-special subvarieties with the image of J
since these varieties always contain J-points. We prove a functional analogue of this
conjecture.

Theorem 10.2 (FMAOD). Let S ⊆ C3n be an upper triangular D-special variety
associated with a j-special variety T ⊆ Cn. Given a parametric family of algebraic
subvarieties (Vc̄)c̄⊆C of S, there is a finite collection Σ of proper j-special subvarieties
of T such that for every c̄ ⊆ C, if Vc̄ ( S then every D-special subvariety of Vc̄ is
contained in a D-special variety associated with some T ′ ∈ Σ.

Lemma 10.3. D-special varieties are strongly D-broad. In particular, if V ( S ⊆ C3n

is a proper subvariety of a D-special variety S and T ⊆ V is D-special then T is a
strongly D-atypical subvariety of V .

Proof. Straightforward. �

Proof of Theorem 10.2. This follows from Theorem 9.8 along with the above lemma.
�

Example 10.4 (cf. [Spe19], example after Definition 1.5). Let V ⊆ C6 and T ⊆ C2 be
defined by an equation Φ(y1, y2) = 0 where Φ is a modular polynomial, i.e. T = prȳ V .
Then all D-special varieties associated with T are contained in V and they are maximal
in V . Thus, in Theorem 10.2 even a single variety V may contain a whole parametric
family of D-special varieties (associated with finitely many j-special varieties).

Here V is not J-free. To get a similar example with a J-free variety let W ⊆C9

be defined by a single equation ΦN(y1, y2) + ΦM(y2, y3) = 0 for some N,M . Now if
T ⊆C3 is a component of the variety defined by ΦN(y1, y2) = ΦM(y2, y3) = 0 then all
D-special varieties associated with T are contained in V , and they are maximal in V .
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