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Abstract

When selecting a classification algorithm to be applied to a particular problem,
one has to simultaneously select the best algorithm for that dataset and the best
set of hyperparameters for the chosen model. The usual approach is to apply
a nested cross-validation procedure: hyperparameter selection is performed in
the inner cross-validation, while the outer cross-validation computes an unbi-
ased estimate of the expected accuracy of the algorithm with cross-validation
based hyperparameter tuning. The alternative approach, which we shall call “flat
cross-validation”, uses a single cross-validation step both to select the optimal
hyperparameter values and to provide an estimate of the expected accuracy of
the algorithm that, while biased, may nevertheless still be used to select the best
learning algorithm. We tested both procedures using 12 different algorithms on
115 real-life binary datasets and conclude that using the less computationally
costly flat cross-validation procedure will generally result in the selection of an
algorithm that is, for all practical purposes, of similar quality to that selected
via nested cross-validation, provided the learning algorithms have relatively few
hyperparameters to be optimised.

Key words: Hyperparameters; classification; cross-validation; nested
cross-validation; model selection

1. Introduction

A practitioner who builds a classification model has to select the best al-
gorithm for that particular problem. There are hundreds of classification al-
gorithms described in the literature, such as k-nearest neighbour (Dasarathy,
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1991), SVM (Cortes and Vapnik, 1995), neural networks (Bishop, 1995), näıve
Bayes (Hand and Yu, 2001), gradient boosting machines (Friedman, 2001), and
so on. Although there are sometimes theoretical and/or empirical reasons to
prefer a particular algorithm over another when tackling a specific problem, our
current understanding of machine learning does not allow us to predict a-priori
whether one algorithm will perform better than another. Furthermore, the so-
called “no-free-lunch” theorems even suggest that no algorithm can outperform
all others for all problems (Wolpert, 1996). Therefore, for most difficult tasks,
one should benefit from trying many competing algorithms to discover which
gives the best performance. However, most algorithms have one or more hyper-
parameters that must be set externally, for example, the k-nearest neighbour
method has (usually) one hyperparameter, k, whereas random forest has at least
two, the number of trees to be constructed and the number of features considered
at each split. Unfortunately selecting an algorithm and tuning its hyperparam-
eters are dependent steps: an algorithm may perform very well for a problem
when using a particular set of hyperparameters, but may perform worse than
other algorithms with a different, sub-optimal, set of hyperparameters. One
will, therefore, want to choose both the algorithm and its hyperparameters in
such a way as to maximize its expected performance on future data.

Choosing an appropriate model and optimising the hyperparameters are
most often performed by minimising a cross-validation (Stone, 1974) estimate
of generalisation performance. The most basic form of cross-validation (CV),
known as k-fold cross-validation partitions the available data into k disjoint
chunks of approximately equal size. In each iteration a training set is formed
from a different combination of k − 1 chunks, with the remaining chunk used
as the test set; a model is then fitted to the training set and its performance
evaluated using the test set. The average of the performance metric on the test
set in each iteration is then used as an estimate of the generalisation perfor-
mance of a model fitted to all of the available data. There are two common
procedures for selecting the best algorithm and tuning the hyperparameters via
cross-validation, the first is called nested cross-validation, also known as double
cross-validation (Stone, 1974), the second appears to have no standard name,
so we will call it flat cross-validation:

Flat Cross-Validation: The hyperparameters of each model are tuned to min-
imise a cross-validation based estimate of generalisation performance. The
cross-validation performance estimate, evaluated for those optimal hyper-
parameter values, is then used to select the best model to use in operation.
This approach is computationally inexpensive; however, an optimistic bias
is introduced into the performance estimate as it has been directly opti-
mised in tuning the hyperparameters (Cawley and Talbot, 2010). Unless
this bias is commensurate for all of the candidate models, the re-use of the
hyperparameter optimisation criterion as a model selection criterion may
result in a sub-optimal choice of model, potentially selecting a model that
is particularly susceptible to this bias, rather than a model with genuinely
higher performance.
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Nested Cross-Validation: An outer cross-validation procedure is performed
to provide a performance estimate used to select the optimal model. In
each fold of the outer cross-validation, the hyperparameters of the model
are tuned independently to minimise an inner cross-validation estimate of
generalisation performance. The outer cross-validation is then essentially
estimating the performance of a method for fitting a model, emphincluding
cross-validation based hyperparameter tuning. This eliminates the bias
introduced by the flat cross-validation procedure as the test data in each
iteration of the outer cross-validation has not been used to optimise the
performance of the model in any way, and may, therefore, provide a more
reliable criterion for choosing the best model. The computational expense
of nested cross-validation, however, is substantially higher.

This study aims to perform an empirical evaluation to determine whether the
additional computational expense of the nested cross-validation procedure is
generally justified by providing a more reliable means of choosing the best model
and statistically superior performance.

In practice, using flat cross-validation to select both the algorithm and the
hyperparameters has already been in widespread use, due to the computational
expense of nested cross-validation. The research area usually known as AutoML
deals with automatically searching for the best combination of hyperparameters
and algorithms for a particular classification (or regression) problem (Feurer
et al., 2015; Wistuba et al., 2015; Olson et al., 2016a; Hutter et al., 2019).
Among the tools of AutoML, the use of flat CV to both select the algorithms
and hyperparameters is explicitly stated in Kotthoff et al. (2017) which describes
Auto-WEKA, and we believe that other tools such as Auto-Sklearn (Feurer
et al., 2015), TPOT (Olson et al., 2016b), and others also use flat CV. But, as
far as the authors are aware, there has been no experimental or theoretical work
to provide justification for that decision. The aim of this paper is to provide
that experimental justification.

1.1. Estimating the Generalisation Performance of a Model

Let us denote by ac(Y |a,X, θa), the accuracy of algorithm a when trained
on data X with hyperparameters θa and tested on data Y . Let us assume
that a dataset G is an i.i.d. sample from some underlying distribution D. The
best algorithm for the dataset G is the algorithm that when trained on the
whole dataset G, with the optimal values for the hyperparameters, will have
the highest expected accuracy for future data.

The expected accuracy for future data (for algorithm a trained on G with
hyperparameters θa) is:

Eg∼D[ac(g|a,G, θa)].

Given a set of candidate classification algorithms, A, the best algorithm â is
then:

â = argmax
a∈A

Eg∼D[ac(g|a,G, θ̂a)], (1)
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where θ̂a denote the best set of hyperparameters for algorithm a, that is:

θ̂a = argmax
θa

Eg∼D[ac(g|a,G, θa)]. (2)

Both nested and flat cross-validation procedures estimate the expected per-
formance of the classifier, with optimal hyperparameter settings,

Eg∼D[ac(g|a,G, θ̂a)], (3)

and then select the algorithm, a ∈ A, having the highest estimate. Let us denote
as ãcf (a,G) the flat cross-validation estimate of the term in Equation 3, and

ãcn(a,G), the nested cross-validation estimate. Both estimates, ãcf (a,G) and
ãcn(a,G), will likely result in different numeric values (Section 1.2).

The nested cross-validation (CV) procedure is considered more appropri-
ate because ãcn(a,G) is an unbiased estimate of the expectation in Equation 3,

whereas ãcf (a,G) has a positive bias (Cawley and Talbot, 2010), that is, on aver-

age, ãcf (a,G) will have higher, overly optimistic values than Eg∼D[ac(g|a,G, θ̂a)].
This arises as the data used in performance evaluation are also used indirectly
in tuning the hyperparameters. Thus, the algorithm selected by the nested pro-
cedure is considered the more “correct” because the estimates of that procedure
are unbiased relative to the true expected accuracy. However, the nested proce-
dure has a much higher computational cost than the flat procedure. Therefore,
one may want to use the flat procedure even at some risk of not selecting the
best algorithm, if the computational expense is prohibitive. Notice that for the
purpose of algorithm selection the positive bias of the flat procedure is not itself
a problem provided the highest ranked algorithm by the nested procedure is the
same as the highest ranked by the flat procedure, which implies the degree of
bias is approximately the same for all classifiers.

Let us assume that ân is the algorithm selected by the nested CV procedure,
and âf the algorithm selected using flat CV for dataset G (left implicit). Clearly,
if ân = âf in a very high percentage of cases, then one may choose the less
expensive procedure, at some slight risk. In the cases where the two procedures
do not agree on the best algorithm, we will compute the accuracy gain of the
nested procedure selection relative to the flat selection procedure, or in other
words, the difference in the expected accuracy on future data of the nested
selection and the flat selection.

Let θ̂ân be the optimal hyperparameters for the ân algorithm, and θ̂âf those
of the âf algorithm, as computed by the expression 2. Let us define the accuracy
gain of using the nested CV procedure on dataset G as:

accgain(G) = Eg∼D[ac(g|ân, G, θ̂n)]− Eg∼D[ac(g|âf , G, θ̂f )], (4)

where we left implicit the subscript G for the n and f symbols, for the sake of
clarity. Of course, one cannot determine the true value of the accuracy gain,
but as we will discuss in Section 2.1, we will be able to estimate it.
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1.2. Flat and nested CV estimates

Both nested and flat CV procedures rely on using cross-validation to estimate
an expectation of the form Eg∼D[ac(g|a,G, θa)] when D is not known. Given
a dataset G, cross-validation defines a set of pairs of sets TRk and TEk where
TRk is called a training set, and TEk is called test set or sometimes validation
set, and where:

TRk ∩ TEk = ∅ and TRk ∪ TEk ⊆ G.

Common cross-validation procedures include k-fold, bootstrap, leave-one-out,
hold-out, and so on.

Given a particular cross-validation procedure (which given G defines the
sets TRk and TEk and the number of such pairs), the cross-validation estimate
for the expected accuracy of the classifier (for a particular algorithm a and
hyperparameters θ) is calculated as:

meank ac(TEk|a,TRk, θ).

The flat CV estimate of Eg[ac(g|a,G, θ̂a)] will select θ̂fa as the value of θ that
maximizes meankac(TEk|a,TRk, θ):

θ̂fa = argmax
θ

meank ac(TEk|a,TRk, θ), (5)

and then use θ̂fa to estimate Eg[ac(g|a,G, θ̂a)], that is:

ãcf (a,G) = meank ac(TEk|a,TRk, θ̂
f
a). (6)

In nested CV, each training set (of the outer cross-validation) TRk is further
subdivided into pairs of sets of data TRkm and TEkm where again:

TRkm ∩ TEkm = ∅ and TRkm ∪ TEkm ⊆ TRk.

The nested cross-validation procedure will select the best hyperparameter θ̂ka
for each training set TRk as:

θ̂ka = argmax
θ

meanj ac(TEkj |a,TRkj , θ).

The nested CV estimate of the expected accuracy for future data is:

ãcn(a,G) = meank ac(TEk|a,TRk, θ̂
k
a).

Figure 1 gives an implementation of the flat CV as a Python program and
Figure 2 provides the corresponding implementation for the nested CV proce-
dure where the following functions are assumed:

• createCV(data,...) creates a list of pairs (train,test) from the data.
Other parameters may include, for example, k if a k-fold CV procedure is
used, or the proportion of cases in the training set, if a hold-out procedure
is used.
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def f l a t ( data , . . . ) :
cv = createCV ( data , . . . )
acc max = 0 .0
for theta in c reateGr id ( . . . ) :

acc = 0 .0
for t ra in , t e s t in cv :

model = c l a s s t r a i n ( t ra in , theta )
acc = acc + accuracy (model , t e s t )

i f acc > acc max :
acc max = acc
theta max = theta

return acc max / len ( cv )

Figure 1: Implementation of the flat cross-validation procedure as a Python program.

• createGrid() creates the list of hyperparameter tuples to be tested. It
could be a regular grid (in a grid search), or a random set of tuples (in a
random search), or any other search algorithm.

• classtrain(train,theta) returns the classifier trained on data train

with hyperparameters set to theta.

• accuracy(model,test) returns the accuracy (or any other quality mea-
sure) for the classifier model when run on data test.

The flat CV procedure computes and returns the final accuracy, as does
the nested CV procedure. But the flat CV procedure also computes the best
set of hyperparameters, and it could return it too. But, note that the nested
CV procedure does not calculate a single best set of hyperparameter values;
each training set of the outer cross-validation (k) may select different “optimal”
hyperparameters.

When using a nested CV, the usual solution to determine a single best set
of hyperparameter values is to use the flat cross-validation procedure to select
them (Equation 5). Thus, when using a nested CV procedure to select among
different algorithms, one would compute ãcn(a,G) for each algorithm a and
select â with the highest estimate of the expected accuracy; for that algorithm,
one would then perform the maximisation described in Equation 5 to select
the best hyperparameters for â. Essentially nested cross-validation estimates
the performance of the full method used to generate the final model, including
hyperparameter tuning.

The research presented here evaluated the mean accuracy gain of the nested
CV procedure over flat-CV, by estimating its value over 115 real-life datasets, for
12 different classification algorithms. We show that the expected accuracy gain
is very small, and we argue that the gain is of negligible practical consequence
for most applications. That is, in the majority of cases, either the selection of
the flat and nested procedures coincide, or the different best algorithms are so
close in the expected accuracies that this difference can be considered irrelevant,
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def nested ( data , . . . ) :
a c c f i n a l = 0 .0
cv oute r = createCV ( data , . . . )
for t r ou t e r , t e ou t e r in cv oute r :

acc max = 0 .0
for theta in c reateGr id ( . . . ) :

acc = 0 .0
cv inne r = createCV ( t r ou t e r , . . . )
for t r i nn e r , t e i n n e r in cv inne r :

model = c l a s s t r a i n ( t r i nn e r , theta )
acc = acc + accuracy (model , t e i n n e r )

i f acc > acc max :
acc max = acc
theta max = theta

model2 = c l a s s t r a i n ( t r ou t e r , theta max )
a c c f i n a l = a c c f i n a l + accuracy (model2 , t e ou t e r )

return a c c f i n a l / len ( cv oute r )

Figure 2: Implementation of the nested cross-validation procedure as a Python program.

provided the algorithms have relatively few tuneable hyperparameters (as this
strongly influences the bias of the flat-CV procedure).

2. Data and Methods

2.1. Experimental procedure

In this section, we set out in general terms the experimental procedure fol-
lowed by this research. We performed 6 repetitions of a 50% split of each
dataset into train and test subsets, each with the same proportion of patterns
belonging to each class. For each dataset Di, TRi

r is the training subset for
repetition r and TE i

r is the corresponding test subset. For each train set, TRi
r,

we computed the expected accuracy using a 5-fold-within-5-fold nested-CV pro-
cedure (ãcn(a, i, r)) and using a 5-fold flat-CV procedure (ãcf (a, i, r)) for 12
different classification algorithms a (the classification algorithms are discussed
in section 2.4). The flat-CV procedure also determines the best selection of

hyperparameters (θ̂air) for each algorithm a, for each TRi
r.

1

Let us define âf (i, r) as the algorithm selected by the flat procedure on TRi
r,

and ân(i, r) as the algorithm selected by the nested procedure. We define the
future accuracy of an algorithm a on repetition r for dataset i as the accuracy
of the algorithm when trained on TRi

r with the best hyperparameters selected

1Following the nested cross-validation procedure, the selected model is re-trained on all
of the available data, with 5-fold cross-validation based tuning of the hyperparameter values,
which will, of course, give the same hyperparameter values as those already determined from
the flat cross-validation trials.
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by the flat procedure θ̂air and tested on TE i
r. Formally the future accuracy

on repetition r for dataset i is ac(TE i
r|a,TRi

r, θ̂air), and intuitively, it is the
accuracy for future data (TE i

r) once the hyperparameters have been selected

(θ̂air), and the algorithm has been trained in the known data TRi
r.

In particular we are interested in the future accuracy of the algorithms se-
lected by the nested procedure ân(i, r) and by the flat procedure âf (i, r), and

will define f̃ac
n
(i, r) as the future accuracy of the nested selection (for dataset

i and round r) – similarly f̃ac
f
(i, r) is the future accuracy of the flat selection.

Formally:

f̃ac
n
(i, r) = ac(TE i

r|ân(i, r),TRi
r, θ̂air),

f̃ac
f
(i, r) = ac(TE i

r|âf (i, r),TRi
r, θ̂air).

(7)

The accuracy gain of using the nested procedure instead of the flat procedure is
the difference between the future accuracy of the nested selection and the future
accuracy of the flat selection,

accgain(i, r) = f̃ac
n
(i, r)− f̃acf (i, r). (8)

Finally, the accuracy gain of a dataset i is the average of the accuracy gains for
the six rounds for that dataset:

accgain(i) =
1

6

6∑

r=1

accgain(i, r). (9)

Since the nested procedure is considered the “more correct” one, it should
select the “more correct” algorithm, and thus it is more likely that the future
accuracy of the nested selection would be higher than that of the flat selection.
Thus, in general, one would expect a positive accuracy gain.

2.2. Threshold of irrelevance

To show that the least costly flat procedure achieves similar results (in future
accuracy) as the nested procedure, we must show that the accuracy gains over
all datasets are small. Unfortunately, there is no standard way of showing
that an “aggregated” accuracy gain is small. A null hypothesis test will only
determine if the aggregated accuracy gain is significantly different to 0; even if
it is significantly different to 0 that difference may not be sufficiently large to be
of practical significance. Also if the accuracy gain is not significantly different
to 0, that does not establish that it actually is small, unless the statistical power
of the test is high.

The more common approach to show that the difference between two sets
of measurements is not of “practical significance” is to define a single threshold
of irrelevance δ and then to show that it is likely that the differences are be-
low this threshold. Within the frequentist approach, one must use equivalence
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tests (Wellek, 2010) to show that it is unlikely that the differences are above
the threshold. Within the Bayesian approach, the usual name for testing that
differences are below the threshold is ROPE (region of practical equivalence).
But both methods, Bayesian and frequentist, require a single threshold of irrel-
evance. For example, the threshold has been proposed at 1% (Benavoli et al.,
2017) and 1.12% (Wainer, 2016), when comparing classifiers, and 0.3% when
comparing resampling methods (Wainer and Cawley, 2017).

In this paper, we will follow a different approach, where the irrelevant thresh-
old depends on the dataset. Each dataset i will have a irrelevance threshold δ(i),
and we want to show that in general, or with high likelihood:

|accgain(i)| < δ(i). (10)

We use the Wilcoxon signed-rank test (a paired non-parametric test) to
show that the median of the set { |accgain(i)| } for each dataset i is smaller
and significantly different than the median of the set { δ(i) }. We also report
the median and the 95% confidence interval of {|accgain(i)| − δ(i)| for all i} so
the reader may gain a sense of the magnitude of the differences. The confidence
interval was calculated using bootstrap with 5000 rounds.

Our idea for a threshold of irrelevance is based on unavoidable errors in
the accuracy estimate; unavoidable because they depend on random factors,
such as the sampling of the data to form training and test sets. The threshold
depends both on the dataset and the algorithm. If the dataset is small one
expects larger changes in accuracy when different splits of train and test or when
comparing estimated accuracy with the real accuracy on future, unseen data. If
the algorithm overfits the data, or if the algorithm underfits the data, one would
also expect larger differences in the accuracy in those different conditions.

Our proposal for the irrelevance threshold δ is based on the idea that the
nested procedure estimate of the future accuracy is only an estimate of the actual
generalisation performance. Differences between the estimate and the measured
accuracy for some unseen data may indicate how sensitive is the combination
of dataset and algorithm to these unavoidable variations. We define ∆(a, i, r)
as the difference between the nested estimate of future accuracy and the mea-
sured future accuracy for a particular algorithm a, dataset i, and repetition r.
Formally:

∆(a, i, r) = |ãcn(a, i, r)− f̃ac(a, i, r)|. (11)

The threshold of irrelevance for a dataset i and round r, δ(i, r), is the mini-
mum between ∆(ân(i, r), i, r) and ∆(âf (i, r), i, r)

δ(i, r) = min ∆(ân(i, r), i, r),∆(âf (i, r), i, r), (12)

The idea is that the threshold of irrelevance for a dataset and a round is the
smallest of the errors between estimated and measured future accuracy for the
two “important/best” algorithms for that dataset and for that round, ân(i, r)
and âf (i, r). The reason to take the minimum is to achieve a more restrictive
definition of irrelevance.
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The final threshold for the dataset δ(i) is the average of δ(i, r) for all repe-
titions:

δ(i) =
1

6

∑

r

δ(i, r) (13)

Appendix A discusses another definition for the irrelevance threshold and
the analysis of the results using that definition.

Finally, it is interesting to understand the role of the repetition in this exper-
imental procedure. Repetitions r are seen as different experiments to compute
the accuracy gain of the nested procedure versus the flat procedure. Each repeti-
tion may select different algorithms in the nested and in the flat procedures. The
goal of the experiment/repetition is to compute the accuracy gain (Equation 8)
and the irrelevance threshold (Equation 12). Only then are the accuracy gain
and irrelevance thresholds aggregated across repetitions on the same dataset
(Equations 9 and 13).

This form of analysis is inspired by the nested cross-validation procedure,
which only aggregates the data on the different folds/hold-out subsets to com-
pute the final measure of interest, the expected accuracy. The two measures of
interest in this research are the accuracy gain and the threshold of irrelevance,
and only at that level, the results are averaged across repetitions. Appendix B
discusses different ways of using the repetitions and presents the corresponding
results.

2.3. Scenarios

In this paper, we are interested in answering two questions regarding the
nested and flat selection procedures. The first question is whether one need use
a nested procedure to select the best among three very good algorithms for clas-
sification: random forest (rf), SVM with RBF kernel (svmRadial), and gradient
boosting machine (gbm). There is some independent evidence to suggest that
these three algorithms are likely the best classification algorithms in general.
Fernández-Delgado et al. (2014) do not test gradient boosting machines, and
find that random forest and SVM with RBF kernel are the two best families of
algorithms. Wainer (2016) does test gradient boosting machines, and finds that
those three form the best three families of classification algorithms.

We do not make the claim that rf, svmRadial, and gbm are, in general, the
best algorithms to binary classification problems. There are some literature
that claims that other algorithms may perform as well or better than those
three, for example (Bagnall et al., 2018; Cañete-Sifuentes et al., 2019). We
use rf, svmRadial, and gbm as example of well performing algorithms that has
been compared and tested by multiple authors, and that have multiple, well
established implementations.

As we will discuss in section 3, this research does find that random forest
is the algorithm with lowest mean rank, followed by SVM with RBF, followed
by gradient boosting machines. Thus, practitioners that have a restriction on
the amount of time needed to select the best classification algorithm should
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Figure 3: The joint distribution of datasets sizes and number of features

restrict themselves to these three algorithms. The first question we will address
is whether, when selecting among rf, svmRadial, and gbm, one can avoid the
nested procedure and use a flat procedure instead. In this scenario, called top3,
we restrict the analysis to only those three algorithms.

The second question is whether the nested procedure is necessary when any
set of classifiers are being compared. In this case, we tested 12 different families
of classifiers (the algorithms are discussed in Section 2.4). We call this the full
scenario.

2.4. Datasets and classification algorithms

We used the suite of datasets collected from the UCI public repository and
processed by Fernández-Delgado et al. (2014) and further processed by Wainer
(2016), such that all datasets are binary classification tasks. Figure 3 plots the
joint distribution of dataset’s sizes and number of features/dimensions. For the
9 datasets with more than 10000 data points, we applied the procedures (nested
and flat CV) on only a random subset of 5000 data points (from each subset).

For each subset, we applied 12 different classification algorithms. The algo-
rithms and their abbreviations are as follows:

bst A boosting of linear classifiers. The hyperparameters searched for this
classifiers were: shrinkage and the number of boosts.
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gbm Gradient boosting machines — a boosting of short decision trees (Fried-
man, 2001). Hyperparameters: interaction depth, shrinkage, and the num-
ber of boosts.

knn The k-nearest neighbours classifier (Dasarathy, 1991). Hyperparameter:
k.

lvq Learning vector quantisation (Kohonen, 1995). Hyperparameter: the size
of the codebook.

nb Näıve Bayes classifier (Hand and Yu, 2001). Hyperparameters: Laplace
smoothing constant.

nnet A 1-hidden layer neural network with sigmoid transfer function (Bishop,
1995).Hyperparameters: number of hidden units and decay.

rf Random forest — bagging of decision trees (Ho, 1998). Hyperparameters:
number of trees and number of features to search in each split.

rknn A bagging of k-nn classifiers on a random subset of the original features
(Dasarathy, 1991). Hyperparameters: k, number of k-nn classifiers, and
number of dimensions in each k-nn.

sda A L1 regularised linear discriminant classifier (Ahdesmäki et al., 2010).
Hyperparameter: the regularisation constant λ

svmLinear A SVM with linear kernel (Cortes and Vapnik, 1995). Hyperpa-
rameter: C

svmPoly A SVM with polynomial kernel (Cortes and Vapnik, 1995). Hyper-
parameters: C and the degree.

svmRadial A SVM with RBF kernel (Cortes and Vapnik, 1995). Hyperpa-
rameters: C andγ.

Details of the particular implementations of these algorithms and hyperpa-
rameters ranges and search grids are described in Wainer (2016). But notice that
all algorithms have a low number of hyperparameters to be searched, varying
from 1 (knn, nb, lvq, sda, and svmLinear) to 3 (gbm and rknn).

2.5. Reproducibility

The datasets, the program to run the different procedures and the different
classifiers, the results of the multiple runs, and the R program to perform the
statistical analysis described in this paper are available at https://doi.org/

10.6084/m9.figshare.3457238 .

3. Results

Table 1 lists the mean rankings of the algorithms, according to the nested
CV estimate of their accuracies, over all repetitions and over all datasets.
The results of the top-3 agree with the order in Wainer (2016).
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algorithm mean rank
rf 3.4
svmRadial 3.6
gbm 4.0
nnet 4.8
rknn 5.3
svmPoly 5.3
knn 5.4
svmLinear 6.1
sda 6.6
lvq 6.7
nb 7.9
bst 8.7

Table 1: Ranking of the algorithms based on the mean rank for each repetition.

3.1. Results for the top-3 and full scenarios

Figure 4 displays the accuracy gain and the thresholds of irrelevance for the
top-3 scenario (random forest, SVM with RBF kernel, and gradient boosting
machines). The figure relates each measure of the log10 of the accuracy gain
(in the vertical) with the corresponding log10 of the threshold of irrelevance
(horizontal). The triangle points are data points with 0 accuracy gain, which
were artificially placed in the log10 accuracy gain = −5 line. Notice that most
points are in the lower part of the y = x line, which shows that in most cases, the
threshold of irrelevance is higher than the corresponding accuracy gain. Figure 5
displays the corresponding comparison of the accuracy gain and threshold of
irrelevance for the full scenario.

Table 2 displays the results for statistical analysis for the top-3 and full
scenarios. “Same choice” is the proportion of times the algorithm selected using
flat CV agreed with that selected using nested CV. The column “p.value” is
the p-value of the one-sided Wilcoxon signed-rank test between the accuracy
gain and the irrelevance threshold. The “median” column is the median of the
difference of the accuracy gain and the irrelevance threshold, and it is negative
as expected, the “low CI” and “high CI” columns are the lower and higher limits
of the 95% confidence interval for the median.

For the top-3 scenario, the flat procedure selects the same algorithm that the
nested procedure selects in 71% of the cases (a random choice would give a figure
of 33%). The p-value is below 0.05, which shows that the accuracy gains for
the nested procedure are significantly smaller than the corresponding thresholds
of irrelevance. Therefore, one can claim that the accuracy gain is statistically
significantly less than the corresponding irrelevance threshold (at the 95% level
of significance). Thus our claim that there is no practical difference on average,
between using either the nested or the flat procedure to select among random
forest, SVM with RBF kernel, and gradient boosting machines. For the full
scenario, the agreement rate between flat and nested is 62% (against 8% if the
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Figure 4: Comparison of log10 accuracy gain and log10 irrelevance threshold for the top-3
scenario. The triangular data points represent the data where the accuracy gain is zero.

decision was random), and again a p-value below 0.05. Therefore, again, one
can be confident that on average the accuracy gain is below the corresponding
threshold of irrelevance.

scenario same choice p.value median low CI high CI
top-3 71% 0.001 -0.001 -0.002 0.0
full 62% 3.6e-06 -0.001 -0.002 -0.001

Table 2: The results for the selection of the top-3 and full scenarios. The column “Same choice”
is the proportion of times the selection using flat CV agreed with the selection using nested CV.
“p.value” is the p-value of the one-sided Wilcoxon signed rank test of the accuracy gain and
the corresponding threshold. “median” is the median value of the difference |accgain(i)|−δ(i),
and “low CI” and “high CI” are the limits of the 95% confidence interval of that median.

3.2. Results for other metrics

The paper so far has discussed that there is no need for nested cross valida-
tion when selecting classifier algorithms, for both the top-3 and full scenarios,
when using accuracy as metric of quality. But accuracy it is not the only metric
used to evaluate the quality of a classifier, specially for 2-class problems. Area
under the ROC curve (AUC) and f1 measure are very frequently used quality
metrics for binary problems, specially if the two classes are not balanced. In this
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Figure 5: Comparison of log10 accuracy gain and log10 irrelevance threshold for the full
scenario. The triangular data points represent the data where the accuracy gain is zero.

section we report the results of performing the experiments above, in the top-3
scenario, but using AUC and f1-measure to select the best hyperparameters and
algorithms. The results are displayed in Table 3.

metric same choice p.value median low CI high CI
AUC 76% 0.0001 -0.001 -0.001 0.0
F1 78% 0.0001 -0.002 -0.006 -0.001

Table 3: The results for the selection of the top-3 scenario, using AUC and F1 as the quality
metrics.

The result are very similar to the top-3 line in Table 2. Using these two met-
rics to select among rf, svm, and gbm, one should expect over 75% of agreement
between the selection using flat and nested cross validation. Furthermore, with
95% confidence, the gains of the nested procedure when the selections do not
agree is below the threshold of irrelevance, which suggests that our conclusions
regarding the practical need for nested cross validation is independent of the
metric used.

4. Discussion

This paper makes two claims:
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• Nested CV procedures are probably not needed when selecting from among
random forest, SVM with Gaussian kernel, and gradient boosting ma-
chines (which are on average the three best classification algorithms for
the suite of datasets used in this research), when using accuracy, AUC, or
F1-measure as quality metrics.

• Nested CV procedures are probably not needed when selecting from among
any set of classifier algorithms (provided they have only a limited number
of hyper-parameters that must be tuned as we will discuss below), when
using accuracy, AUC, or F1-measure as quality metrics.

The first claim was explicitly tested on 115 datasets and thus, to generalize it
the reader must believe that the 115 datasets are an unbiased sample of datasets
a practitioner will face in the future. We discuss the limits of such generalisation
below. This second claim carries others risk for generalisation, namely whether
the full set of 12 classifiers is a good sample of the sets of classifiers that will
be selected in future applications, and whether our tests on the top-3 scenario
with other three metrics can be further generalised to the full scenario.

Some of the limits to the generalisation of conclusions obtained from the set
of 115 datasets to any future dataset are discussed in Wainer (2016). Briefly,
the datasets tested in this research were only of medium size (up to 100,000 data
points), only binary datasets were used, and none of them is derived from text
classification problems (with high dimensionality and high sparsity). It is not
immediately obvious how the number of dimensions, sparsity, or the fact that
there are more than two classes could have a substantial impact on the claims
made in this research. Dataset size could be an issue as the bias introduced by
the flat cross-validation procedure generally decreases as the size of the dataset
increases. Thus, if nested cross-validation is not generally necessary for small or
medium-sized datasets, it is even less likely to be necessary for large datasets.
The limit of irrelevance is the difference between the nested estimate of accuracy
for future data and a measured accuracy on future data, and this difference
should also decrease as the dataset sizes increase. In other words, the variance
of the nested estimate should decrease as the dataset size increases, and so
should the variance of the hold-out subset that we used to measure the “true”
accuracy for future data, and thus the difference should decrease. We measured
whether our claim of practical equivalence between the two procedures had a
dependency on the dataset size. Table 4 reports the statistical tests for the
two scenarios, only for the 32 datasets with 2000 data or more. For the larger
datasets only, the strength of the evidence in favour of the practical equivalence
of the nested and flat procedure diminishes, as expected, given that there are
fewer datasets/measures used in the significance test, but one can still make the
claim of the practical equivalence of the nested and flat procedures.

The second claim, that for all classification algorithms (with small number
of hyperparameters) nested cross validation is probably do not needed to select
the hyperparameters require a double generalisation. As before, one must ac-
cept that the 115 datasets we tested this claim is a “representative” sample of
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scenario same choice p.value median low CI high CI
top-3 80% 0.00158 -0.001 -0.002 0.0
full 71% 0.0108 0.0 -0.002 0.0

Table 4: The results for 32 datasets with at least 2000 data points.

datasets the practitioner will face in the future, and the limits of this generalisa-
tion has been discussed above. The second generalisation is that out teste on 12
classification algorithms is a “representative” sample of classification algorithms
the practitioner will use in the future.

Our choice of classification algorithms was in support of two goals:

• test algorithms that would be likely used by a practitioner in a future
classification task. Therefore we included algorithms like SVM with RBF
kernels, random forests, and gradient boosting machines, which have been
shown by different groups using different tests and methodology to be
among the algorithms that result in higher accuracy for most of the prob-
lems. We are aware that there are other algorithms that may be com-
petitive with these three, for example, rotation forests (Bagnall et al.,
2018), Gaussian process based classifiers (for example (Gibbs and MacKay,
2000)), and others (Cañete-Sifuentes et al., 2019). We do not claim that
the algorithm in the top 3 scenario are the likely best algorithms, but that
they are widely believe to be among the best algorithms for classification,
they are well established and have stable and maintained implementations,
and are likely the first choices a practitioner will use on their data.

• most of the remaning algorithms are algorithms that are less likely to
be the best solutions for a particular problem. Nonetheless there are also
computational reasons to choose some of the algorithms among this second
group. But the main rational of the second group was to select from a
wide variety of “families” of algorithms - algorithms that are based on very
different principles, as an attempt to select a “representative” sample of
future classification algorithms. The inclusion of less known “families” of
algorithms such as random subspace knn (rknn), regularised discriminant
analysis (sda), and learning vector quantisation (lvq) was exactly to have
different families of algorithms, instead of variations within a single family
(for example different variations of boosting (Schapire and Freund, 2013)).
We are aware that there are other families of algorithms that were not
tested, for example regularised logistic regression (Zou and Hastie, 2005)
Gaussian process classifiers (Gibbs and MacKay, 2000), rule induction
algorithms (Cohen, 1995), evolutionary fuzzy rule induction (Del Jesus
et al., 2004), extreme learning machines (Huang et al., 2011). The decision
to leave these and many other “families” of classifiers out of the test was
necessarily ad hoc.

The strength of the paper’s second claim that one does not need nested-cv
for any classification algorithm rest on the reader’s acceptance that our choice
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of algorithms tested is a “representative” sample of classification algorithms.
All algorithms tested in this research had a small number of hyperparam-

eters, from 1 to at most 3. Algorithms with many more hyperparameters will
likely pose a challenge to the conclusion that flat CV is sufficient to select the
algorithms. An interesting example is discussed in Cawley and Talbot (2010).
An ARD kernel has a different γ for each original data dimension. In princi-
ple, an LS-SVM with ARD subsumes the standard RBF LS-SVM, and thus it
should not have an expected accuracy lower than the classical RBF LS-SVM.
But Cawley and Talbot (2010) shows that although the LS-SVM with ARD
kernel achieves a higher expected accuracy when using the flat CV estimate of
the accuracy, when using the nested procedure, the classical RBF LS-SVM has
a statistically significant higher accuracy in 7 out of 13 datasets tested, while
the ARC LS-SVM is statistically better in only one of those 13 datasets (Caw-
ley and Talbot, 2010, Table 2). In this case, because the ARD LS-SVM has
so many more hyperparameters than the RBF LS-SVM, the flat procedure will
likely overfit the data. Thus, in the case of algorithms with very different num-
ber of hyperparameters (such as ARD based algorithms, multiple hidden layer
neural networks, and deep networks), we feel less confidence in our practical
equivalence results between the nested and flat procedures.

Finally, we only tested the use of other quality metrics for the top-3 scenario,
but given that the results for that scenario are very close among accuracy, AUC,
and F1 we are very confident that the results for accuracy that were measure
would repeat for the other two metrics in the full scenario.

Appendix B shows that the conclusions reached by this paper do not strongly
depend on the method of analysis – two other methods of analysis result in the
same conclusions. Appendix B also shows that the results remain even when a
different definition of the threshold of irrelevance is used. Appendix C shows
that one should not go a step further and skip the selection of the algorithm
altogether – in this case mean accuracy gain is significantly larger than the
threshold of irrelevance.

The results of this paper only partially support the current practice in Au-
toML research of using flat cross-validation to select both classifier and its hyper-
parameters. Using AutoML procedures to select among algorithms with similar
number of hyperparameters is justified by this research. But a particular pop-
ular algorithm XGBoost (Chen and Guestrin, 2016), which by changing hyper-
parameters can implement from gradient boosting machines to random forests,
has many more hyperparameters than more traditional classification algorithms.
As we discussed above, in cases of very different number of hyperparameters,
we are less confident of the equivalence of flat and nested procedures.

The results in this paper are only applicable to practitioners, that is, for users
that have the goal of selecting the likely best classification algorithm to solve
a particular problem. Our results cannot be applied by a scientist whose goal
is to provide evidence that one classification algorithm is better than another.
Our claim of practical equivalence applies only to the best-ranked algorithm
for both procedures, and not that the two procedures have some significant
agreement regarding the full ranking. For example, Table 5 list the rank of
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the 12 algorithms when using the flat procedure estimate to order them. The
table should be compared to Table 1. The order of the algorithms is very
different; in particular, using the flat estimate, the gbm would be classified as
the best algorithm while using the nested CV estimate, it is ranked third. In
particular, given that the gbm has 1 hyperparameter more than svmRadial or
rf, we believe that this improvement in the ranking could be due to the model
overfitting described above (Cawley and Talbot, 2010).

algorithm mean flat-CV rank
gbm 3.0
svmRadial 3.2
rf 4.0
nnet 4.1
rknn 4.2
svmPoly 5.2
knn 5.3
lvq 6.4
svmLinear 6.4
sda 7.0
nb 8.4
bst 8.6

Table 5: Ranking of the algorithms based on the mean rank for each subset ordered by the
flat CV estimate of the expected error.

The distribution of the values of δ(i) is important for the machine learning
community that may be interested in determining when differences are of no
practical significance, using either method. The summary of the distribution
is shown in Table 6 and the histogram in Figure 6. The median threshold of
irrelevance is 0.4% and the mean 0.9%, not too different, but lower than the
values proposed in the previous literature (Benavoli et al., 2017; Wainer, 2016).

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00% 0.11% 0.41% 0.89% 1.17% 8.06%

Table 6: Summary of the distribution of irrelevance thresholds.

5. Conclusion

There is very strong evidence that when selecting among a random forest,
an SVM with Gaussian kernel, and a gradient boosting machine (the three best
algorithms on average for the 115 real-life datasets tested) one can generally
use the flat cross-validation procedure to search for the best hyperparameters
and to select the best algorithm itself. Our analysis shows that the algorithm
selected by the flat procedure will, on average, perform as well as the one that
would be selected by the nested cross-validation procedure, for most practical
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Figure 6: Histogram of the values of the irrelevance thresholds δ(i)

purposes. Also, there is some indication that the conclusions remain even for
datasets larger than the ones tested.

There is also a strong evidence that in any selection process, regardless of
the algorithms that are being selected, provided they all have a low number of
hyperparameters, one can use the flat cross-validation procedure to select the
algorithm and the hyperparameters simultaneously, and again for all practical
purposes, that algorithm would perform as well as the algorithm selected using
nested cross-validation.

Acknowledgements

We would like to thank Nicola Talbot for important contributions to the
paper. We would also like to thank an anonymous reviewer for suggesting the
AUC and F1 experiments.

References

References
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Appendix A. Another definition of irrelevance

This appendix discusses another measure that can play the role of irrele-
vance threshold and the analysis of the data when using this new definition.
When we discussed the irrelevance threshold, we mentioned unavoidable error
or unavoidable variance, and we chose the mean difference between the nested
estimate of accuracy and the true measure of accuracy on the test set. But stan-
dard deviation is a common way of measuring error that we could use instead
of the mean difference of two accuracies as we did. There are three measures of
accuracy for each repetition: ãcn(a, i, r), ãcf (a, i, r), and ac(TE i

r|a,TRi
r, θ̂ai).

We define the threshold for each dataset as

δ(a, i) = min(σr(ãc
n(a, i, r)), σr(ãc

f (a, i, r)), σr(ac(TE i
r|a,TRi

r, θ̂ai))

that is, the smallest of the three standard deviations of measured accuracies
across the six repetitions.

Using this definition of the threshold of irrelevance (and using the paper’s
original method of analysis) results in:

scenario same choice p.value median low CI high CI
top-3 80% 5.94e-06 -0.002 -0.003 -0.001
full 71% 1e-06 -0.001 -0.002 -0.001

These results are equivalent to the ones discussed in the paper.

Appendix B. Other analysis methods

As discussed, the analysis method in this paper assumes that each repetition
is an independent experiment, and the repetitions are only aggregated at the
last step, to compute the accuracy gain and the threshold of irrelevance for a
dataset. But there are some alternatives to that analysis method. The first
alternative is to consider the repetition as a way of obtaining multiple estimates
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for each of the accuracies measures. Thus, all measured accuracies are first
averaged across the six repetitions and only then used in the procedure, that is:

ãcn(a, i) =
1

6

∑

r

ãcn(a, i, r)

ãcf (a, i) =
1

6

∑

r

ãcf (a, i, r)

The flat and nested selections for each dataset (âf (i) and ân(i)) would be se-

lected using ãcn(a, i) and ãcf (a, i) (in contrast to the method used which selects
âf (i, r) and ân(i, r) for each repetition). Then equations 7 and 8 would be

f̃ac(n, i) =
1

6

∑

r

ac(TE i
r|ân(i),TRi

r, θ̂ni).

f̃ac(f, i) =
1

6

∑

r

ac(TE i
r|âf (i),TRi

r, θ̂fi).

and

accgain(i) = f̃ac(n, i)− f̃ac(f, i)

Similarly, the thresholds of irrelevance are not defined for each repetition but
only for each dataset:

δ(a, i) = |ãcn(a, i)− f̃ac(a, i)|

The second alternative is to consider each repetition as an independent ex-
periment at par with the dataset themselves. The results for each dataset it
only aggregated at the last level, when considering the p-value of the Wilcoxon
test that compares |accgain(i)| − δ(i) with 0. In this second alternative, we
would perform the Wilcoxon test to compare |accgain(i, r)| − δ(i, r) to 0.
The first alternative method above yields the following results:

scenario same choice p.value median low CI high CI
top-3 78% 6.32e-06 -0.002 -0.003 -0.001
full 72% 0.0005 -0.001 -0.003 0.0

The second method yields the following results:
scenario same choice p.value median low CI high CI
top-3 78% 3.05e-13 -0.001 -0.001 -0.001
full 72% 2.67e-08 -0.001 -0.001 0.0

These different methods of analysis are consistent with the claims of this paper.

Appendix C. Should one select the algorithm at all?

Given that our research shows an unexpected result that flat CV is accept-
able as a method to select classification algorithms, contrary to the common
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practice in Machine Learning, we decided to explore another unexpected result,
whether the selection of algorithms is really necessary, or if one should just use
random forests, which was the best-ranked algorithm in the experiments. We
compared the decision of using only rf against the nested procedure. The results
are below:

scenario same choice p.value mean low CI high CI
full 28% 1.0 0.002 0 0.004

The results show that the accuracy gain is certainly above the threshold of
irrelevance, and thus selecting the algorithm results in an expected accuracy
gain of practical consequence.

25Jo
ur

na
l P

re
-p

ro
of



Highlights (for review)
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flat cross validation computes both the best hyperparameter and the 

expected accuracy 

 

nested cross validation separated both computations and it is more costly 

 

nested cross validation does not incur on biased estimation of the 

accuracy 

 

algorithm selection using flat cross validation does not incur in worse 

selections 
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