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ABSTRACT

We explore the thermal and magnetic-field structure of a late-stage proto-neutron star. We find
the dominant contribution to the entropy in different regions of the star, from which we build a
simplified equation of state for the hot neutron star. With this, we numerically solve the stellar
equilibrium equations to find a range of models, including magnetic fields and rotation up
to Keplerian velocity. We approximate the equation of state as a barotrope, and discuss the
validity of this assumption. For fixed magnetic-field strength, the induced ellipticity increases
with temperature; we give quantitative formulae for this. The Keplerian velocity is considerably
lower for hotter stars, which may set a de-facto maximum rotation rate for non-recycled NSs
well below 1 kHz. Magnetic fields stronger than around 1014 G have qualitatively similar
equilibrium states in both hot and cold neutron stars, with large-scale simple structure and
the poloidal field component dominating over the toroidal one; we argue this result may be
universal. We show that truncating magnetic-field solutions at low multipoles leads to serious
inaccuracies, especially for models with rapid rotation or a strong toroidal-field component.
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rotation

1 INTRODUCTION

In the first phase of its life, a highly-magnetised neutron star (NS)

has the potential to radiate a huge amount of energy, through both

electromagnetic and gravitational waves. These signals are of great

interest, containing information that could allow us to constrain

processes involving elementary constituents of matter under ex-

treme astrophysical conditions, the nuclear physics of hot dense

matter, the fluid dynamics of the newborn star, and the dynamo

processes driving magnetic-field amplification in extremely highly-

conducting media.

With their astrophysical importance and complexity, su-

pernovae and proto-neutron stars have long been studied

through numerical evolutions (see e.g. Colgate & White (1966);

Burrows & Lattimer (1986); Janka et al. (2007)), and their hydro-

dynamics and microphysics – among other aspects – remain topics

of active study. By contrast, the magnetic field of the newborn

NS has received relatively little attention, especially given that this

phase is likely to be the most dramatic of the field’s life. It is likely

that some remnant field of the progenitor star is amplified and rear-

ranged during this phase (Thompson & Duncan 1993), but we lack

any quantitative understanding of this process.

For a cooling, mature NS we have a better – though still incom-

plete – understanding of its magnetic field. In particular, a reason-

ably complete picture of magnetic-field evolution within the star’s
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solid crust has emerged after sustained attention; see Pons & Viganò

(2019) for a recent review. Core evolution is far less certain, though

may be too slow to be of relevance to many problems. Comple-

mentary to these evolutions are a number of studies of possible

equilibrium states of a magnetised NS, solving for the global field

but without accounting for the evolutionary history frozen into the

crust; for a brief but representative selection of these models see,

e.g., Bocquet et al. (1995); Kiuchi et al. (2009); Ciolfi et al. (2010);

Lander (2014); Glampedakis et al. (2014); Pili et al. (2015).

In comparison with the attention shown to the star’s birth and

maturity, the late proto-NS phase (covering a period from some

ten seconds to roughly a few minutes after birth) is terra incognita,

especially for the star’s magnetic field. It may, however, be a very

important stage in the star’s evolution: one where the physics driving

the star’s birth phase will have ceased, but thermal effects will still

be important. Magnetic-field rearrangement during this early era,

rather than any dynamo mechanism, may be what sets the basic

long-term structure of the mature star’s field. The resultant field

configurations would also be the logical initial condition for field-

evolution studies. In this paper we aim to explore the late proto-NS

phase in more detail, looking at the main contributions to the star’s

thermal structure and finding equilibrium states for a magnetised

NS at high temperature.
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1.1 Supernova and aftermath

The life of a massive star culminates in the gravitational collapse

of its core. If the star’s mass is more than a few tens of times that

of the Sun, the collapse continues unabated until a black hole is

formed. Otherwise, the compression of matter is brought to a halt

by the high stiffness (incompressibility) of uniform nuclear matter,

causing a bounce. This occurs on a surface enclosing the denser

half of the mass of the future proto NS and sends a shock wave

through the envelope, heating it strongly and lifting infalling stellar

matter, and thus separating a hot and dense central object from the

pre-supernova star doomed to explosion (Woosley et al. 2002). A

proto NS is born. Its initial internal temperature, ) , and entropy

per baryon, B1 , are very non-uniform, with maxima reached in the

shocked half of the mass.

Initially, a proto NS is opaque to neutrinos, and the total elec-

tron lepton number per baryon .!e
(a sum of electron .e and elec-

tron neutrino .ae contributions) is ≈ 0.35, only slightly smaller

than in the presupernova iron-nickel core. During the next seconds

the proto-NS deleptonizes via ae diffusion driven by the .ae gra-

dient. The ae thermalize, losing their degeneracy, and leave the

star through the neutrinosphere (the surface at which matter be-

comes neutrino-transparent). The transport of lepton number and

energy by diffusion is accelerated by convective flows. Diffusion

of ae outwards is associated with heating of the matter by the ae

downscattering. After ∼ 10 s deleptonization has been completed,

gradients of ) and B1 smoothed, and convective stability reached.

Neutrino-antineutrino pairs of all three flavours still transport heat

via diffusion towards the neutrinosphere, and are radiated there

(Prakash et al. 1997). The proto NS enters its late stage, the subject

of the present study.

During the next minute or so, with a composition not very

different from that of a mature NS, the proto NS is still hot, ∼

5 × 1010 K in the core, with an envelope composed of a plasma

of nuclei, neutrons, and electrons, and density above 1011 g cm−3.

The envelope is neutrino-opaque, and layers above it contain the

flavour-dependent, rather thick, neutrinospheres. The envelope is

liquid, even in its deepest layers close to the core. Its temperature

is decreasing outwards. As we assume slow neutrino cooling (no

direct Urca in the core), at this late proto NS stage both ) and B1
are slowly varying within the core, decreasing more rapidly towards

the neutrinospheres. In the present paper we assume that there is no

plasma fallback after a successful shock take-off.

The pressure in a mature NS core is due to nuclear forces and to

a lesser extent, to the degeneracy of the neutrons (Cameron 1959).

In the inner envelope, where nuclei are immersed in a neutron gas,

the pressure is supplied by the degeneracy of the neutron gas, with

the contribution from nuclear forces in dripped neutron gas rapidly

increasing close to the core. This is in contrast to normal, non-

degenerate stars, where pressure is thermal in nature; these stars are

hot, powered by fusion processes. The proto-NS phase has the distin-

guishing feature that both neutron-degeneracy and thermal pressure

play a role in determining the stellar structure; with neutrinos flood-

ing out of the newborn star once it becomes neutrino-transparent,

this phase is over within a few minutes (Burrows & Lattimer 1986;

Pons et al. 1999). However, this brief period of time – which has not

been previously explored in the context of magnetic-field modelling

– is a crucial one to understand. It constitutes a missing link between

work on the dynamic evolution and generation of magnetic fields in

proto-NSs, as described next, and the far slower, secular evolution

in mature neutron stars.

The minute following a NS’s birth is crucial for the star’s

magnetic field. The magnetic field of the progenitor star’s degenerate

core will be amplified by compression to nuclear densities during

stellar core collapse, but this alone is unlikely to explain the field

strengths of NSs, especially magnetars, where the external field is

around 1015 G and the internal field perhaps an order of magnitude

stronger. Instead, dynamo processes act to amplify and rearrange the

field; these could involve some combination of differential rotation,

convection and the magneto-rotational instability (for a review of

this topic, see Spruit (2009)). These processes are likely to cease

at a very early phase, with the dynamo saturating and becoming

inhibited, magnetic coupling flattening the rotation profile so the

star’s rotation becomes uniform, and turbulent convection ceasing

as the stellar matter becomes neutrino-transparent.

1.2 The early quasi-equilibrium

Whatever magnetic field has been created in the birth phase will

afterwards start to rearrange, in an attempt to attain an approximate

equilibrium with the fluid star. It is perhaps possible that it fails

to settle in this way and instead reaches some kind of ‘average’

steady state, where the star still exhibits short-term dynamics but

average values of energy quantities are roughly constant (Sur et al.

2020), though it is likely that over longer timescales this would

dissipate considerable amounts of energy. Here we will assume that

the magnetised star does indeed reach a true equilibrium – one

that is also dynamically stable, and so a natural endpoint for the

rearrangement.

To establish when the star can be treated as in approximate

equilibrium, we first need to know how quickly the magnetic field

can adapt to its host fluid. Assuming, for the time being, a non-

rotating star, the field is able to rearrange locally over the time g�
taken for an Alfvén wave to cross the region concerned. Defining

;� as the distance crossed and E� as the Alfvén speed, we have

g� ∼
;�

E�
∼
;�

√
4cd

�

≈1.1

(
�

1014 G

)−1 (
d

1015 g cm−3

)1/2 (
;�

10 km

)
s (1)

where � is the magnetic field strength, d the rest-mass density,

and where we have normalised ;� to 10 km to get a timescale for

global magnetic-field rearrangement. Implicit in the above estimate

is that the star is entirely fluid; we confirm this in section 2.2.2, with

quantitative calculations of the state of matter of the proto-NS.

Note that this estimate may not be reliable for the very rapidly

rotating models we consider later in this paper; it is known, for

example, that in the presence of rotation Alfvén oscillation modes

are replaced by magneto-inertial modes (see, e.g., Lin & Ogilvie

(2018) and references therein). These modes tend to be of higher

frequency than their non-rotating counterparts (Lander et al. 2010;

Lander & Jones 2011), leading to a shorter g� and thus suggest-

ing that the magnetic field may be able to re-equilibrate to the

fluid more quickly at increasing rotation rate. The opposite conclu-

sion was, however, reached by Braithwaite & Cantiello (2013) from

timescale arguments, although these authors made the simplication

of not explicitly considering the centrifugal distortion to the star.

Fortunately this uncertainty does not have any serious impact on

our main results.

Now, if the Alfvén timescale g� is short compared with the

cooling timescale of the star, the magnetic field should always have

time to readjust to the new thermal state of the star, and therefore may

be thought of as proceeding through a sequence of quasi-equilibria.
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In this case, an individual equilibrium model may be thought of as

a snapshot of this process. We defer the more technical discussion

of the role of chemical equilibrium to section 3.2.

We can make a rough estimate of the cooling timescale for a

proto-NS from visual inspection of the plots of Burrows & Lattimer

(1986) or similar work; it is of order 10 s. Therefore, for large-scale

magnetic fields stronger than roughly 1014 G, the equilibrium ap-

proximation is reasonable even during this early phase. For weaker

magnetic fields, it is possible that the field will spend this phase

out-of-equilibrium with the fluid, retaining vestiges of the (pre-

sumably) complex magnetic-field structure produced by the birth.

However, it is quite plausible that 1014 G does represent a typical

birth magnetic-field strength, with the typical surface field strength

decaying to pulsar-type values by the time we observe them. In

any case, we consider here that class of late proto-NSs for whom a

quasi-equilibrium approximation is reasonable.

1.3 Plan of the paper

This paper is arranged as follows. In section 2 we begin with a

description of the equation of state and thermal physics of a hot

neutron star, and describe more precisely the meaning of the ‘late’

proto-neutron star phase. We devise a simplified model of the ther-

mal physics of the star, retaining the leading-order contributions in

each region. In section 3 we discuss the general equilibrium equa-

tions and the equation of state, in particular the possible presence

of buoyancy forces, and in section 4 we describe our prescription

for the thermal pressure. Section 5 formulates the problem in a

way we can solve numerically, and we give details of this solution

method. Our results are presented in section 6, and we discuss their

implications in section 7.

2 THERMAL STRUCTURE OF A LATE

PROTO-NEUTRON STAR

2.1 Equation of state of a late proto-neutron star

2.1.1 Equation of state of the core

The core consists of a uniform plasma of mainly neutrons, with a

small admixture of protons, electrons and muons. Thermodynami-

cal quantities, such as internal energy per unit volume *, pressure

%,.... are split into a ) = 0 (cold) part, *0, %0,. . . and a thermal

contribution depending on ) and vanishing in the ) = 0 limit, e.g.,

*th, %th, . . .. For the ) = 0 equation of state (EOS) we choose an

approximation of the SLy EOS (Douchin & Haensel 2001) by a

piecewise polytrope. Then we get the ) = 0 values of the baryon

chemical potential from `0 = <u2
2 + (*0 + %0)/= and the mat-

ter density, including rest energy of nucleons, d0 = <u= +*0/2
2,

where = is the baryon number density, and <u is the atomic mass

unit. The thermal components of the core EOS are approximated

by those of an ideal, nonrelativistic, strongly degenerate Fermi gas

of neutrons, with number density =. The Fermi momentum and

Fermi energy of a degenerate gas of free neutrons, ?Fn, are related

to = by ?Fn = ℏ(3c2=)1/3 , YFn = ℏ2 (3c2=)2/3/(2<u). Because of

the supranuclear densities prevailing in the core, it is convenient to

express = in the units of normal nuclear density =0 = 0.16 fm−3.

We therefore define = = =/=0 . The core edge is at about = = 0.5.

The Fermi energy and Fermi temperature of neutrons are in our

approximation

YFn = 58.44 =2/3 MeV , )F = YFn/:B ,

)/)Fn = 1.47 × 10−2 )10/=
2/3 , (2)

where )10 = )/1010 K. To find the thermal contributions to *,%,

entropy density (, and neutron chemical potential `, we take those

derived for a degenerate free nonrelativistic electron gas (§58 of

Landau & Lifshitz (1993)) and replace the electron mass by the

neutron one. Then, neglecting powers of )/)Fn higher than two, we

get:

*th =
1

4
c2=YFn ()/)Fn)

2 , %th =
1

6
c2=YFn ()/)Fn)

2 ,

(th = ( =
1

2
c2=:B)/)Fn , `th = −

1

12
c2YFn ()/)Fn)

2 . (3)

Note that (0 = 0 and `0 = YFn.

2.1.2 Equation of state and composition of the envelope

At) = 0 the envelope is a solid crust of nuclei localized in the crystal

lattice sites. Under the conditions prevailing in the late stage of a

proto-NS, this ‘crust’ will in fact be a liquid envelope. In contrast

to the core, the envelope is a nonuniform form of dense matter. It

consists of nuclei, which for densities larger than the neutron drip

density, =nd , (i.e., in the inner envelope) are immersed in a gas

of unbound neutrons. At a given baryon density = the envelope is

treated as a plasma of one type of ions (nuclei), possibly immersed

in an neutron gas, all permeated by a quasi-uniform electron gas.

Within the envelope, we will use an approximate relation between

= and the matter density d ≃ =<u. We will use the SLy model of

the ) = 0 crust (Douchin & Haensel 2001), for consistency with

our core prescription. As in the case of the uniform liquid core, the

EOS of the envelope is split into a ) = 0 (cold) part, *0 (d), %0 (d)

and a thermal one, *th (d,)), %th (d,)) vanishing in the limit of

) = 0. We introduce a set of parameters characterizing locally this

layer of a late-stage proto-NS. These parameters are functions of the

density d. The number density of ions (nuclei) is =i. The number of

nucleons and number of protons in an ion are � and / , respectively.

We define an ion sphere of radius 0i such that its volume 4
3
c03

i
is equal to the volume per ion 1/=i. The ion sphere contains a

single ion at its centre and / electrons that neutralize the ion charge

/4. In the inner envelope a fraction of neutrons is unbound, and

therefore the number of nucleons in an ion sphere is �′ > �. One

must therefore specify the fraction of unbound neutrons in the total

number of nucleons, -n. In the outer envelope -n = 0. The fraction

of volume occupied by nuclei will be denoted by D.

In what follows we derive the thermal part of the EOS of the

envelope, to be added to the dominant ) = 0 part. Our notation

follows Ch.2,3 of Haensel et al. (2007). We consider ions, unbound

neutrons, electrons and their contributions to the thermodynamic

quantities in the ) − d plane. We do not include thermal effects

on the composition, which for our range of ) is reasonable for

log(d/g cm−3) > 10.

We start with the simplest component of the envelope: the

electrons. Already for log(d/g cm−3) > 8 electrons form a (nearly)

uniform ultrarelativistic quasifree Fermi gas with Fermi energy

YFe = ?Fe2 = 33.14 (=e/10−3=0)
1/3 MeV . (4)

At neutron drip = = =nd ≈ 10−3 and =e ≈ 0.3=nd so that Ynd
Fe

≈

22 MeV.

In our case, with log(d/g cm−3) > 10, the electrons are

strongly degenerate, ) ≪ )Fe = YFe/:B. Keeping only the leading

terms of an expansion in)/)Fe , we get the following formulae for the
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thermal contribution of the electrons (see §61 of Landau & Lifshitz

(1993)):

*th =
1

2
c2=eYF ()/)Fe)

2 , %th =
1

6
c2=eYFe ()/)Fe)

2 ,

(e = c2=e:B )/)Fe , `th = −
1

3
c2YFe ()/)Fe)

2 ,

)Fe = 38.46 × 1010 (=e/10−3=0)
1/3 K . (5)

Next we turn to the ion component of the envelope, for which

we need to define and calculate various parameters. Firstly, the

number density of ions is expressed as =i = d/(�′<u), and average

charge neutrality implies =e = =i/ . From these, we can now express

the ion sphere radius 0i to plasma parameters in two ways:

4

3
c03

i = = =i�
′/= = =i//=e . (6)

We can understand the state of matter in the envelope through

the dimensionless Coulomb coupling parameter for ions, which

measures the relative strength of the Coulomb interaction of ions

compared to the energy of their thermal motion:

Γi =
/242

0i:B)
. (7)

The strength of correlations between ions in the envelope and their

contribution to the ion thermodynamical quantities can be expressed

in terms of Γi. The numerical value of Γi for a plasma can be readily

obtained by passing to dimensionless variables:

Γi =
7.42

)9

(
d10

�′/100

)1/3 (
/

40

)2

, (8)

where d10 = d/1010 g cm−3 and )9 = )/109 K.

Using Γi, we distinguish three main physical regimes of the

plasma in the density-temperature plane. If Γi ≪ 1 then Coulomb

correlations between ions are unimportant, and the thermal state

of ions is well approximated by a Boltzmann gas model. Coulomb

correlations become important when Γi ≃ 1, and grow stronger and

stronger with increasing Γi. For a given d, Γi = 1 is reached at a

characteristic temperature ); that may be found by rearranging Eq.

(8):

); = 9.504 × 1010

(
/

30

)2 (
d10

�′/100

)1/3

K . (9)

So at a given d, the ions behave as a nearly-ideal Boltzmann gas of

nuclei if ) ≫ ); . Then for smaller values of ) within )< < ) <
∼ );

(where )< is the melting temperature of an ion crystal) correlations

are important and we are dealing with a strongly-coupled Coulomb

liquid of ions. Finally, at an even lower ) = )< the Coulomb liquid

of ions crystallizes (solidifies) via a first order phase transition, with

very small latent heat. Numerical simulations predict that to a very

good approximation the free energy of the ion liquid (with quantum

contributions negligible) is a function of Γi only. Crystallization

occurs at Γi = 175 (Potekhin & Chabrier 2000), which leads to

(again using Eq. (8)):

)< = 5.43 × 108

(
/

30

)2 (
d10

�′/100

)1/3

K . (10)

There is an additional plasma parameter that allows one to determine

the relative importance of quantum effects in the thermal properties

of the ion liquid. This is the plasma frequency for the ions lpi,

corresponding to the frequency of vibrations generated by shifting

an ion from the equilibrium position, lpi = (4c42=i/
2/"i)

1/2 ,

where "i = �<u is the ion (nucleus) mass. After dividing ℏlpi by

:B we get a characteristic temperature )pi,

)pi =
ℏlpi

:B
= 4.95 × 107

(
(//40)2

�/100

)1/2 (
d10

�′/100

)1/2

K . (11)

For ) ≫ )pi a classical treatment of the ion motion is valid – and

this is the case for the envelopes under consideration here.

Another important ionic parameter is the thermal de Broglie

wavelength, appearing in the formula for the chemical potential

and the entropy of the Boltzmann gas of massive particles (§45 of

Landau & Lifshitz (1993)). It is given by:

_i =

(
2cℏ2

"i:B)

)1/2

. (12)

This formula is strictly valid in the outer envelope. More generally,

in the presence of unbound neutrons, the number density of ions is

related to the mass density of the plasma by

=i = d/(�′<u) = 0.597 d11/(�
′/100) × 1033 cm−3 . (13)

What matters for the chemical potential of ions, `i, and the

entropy density, (i, is a dimensionless parameter =i_
3
i
. It plays a

double role. First, it enters the formulae for `i and (i. For the

Boltzmann gas of ions we have

`i = :B) ln(=i_
3
i ) , (i =

5

2
:B=i − :B=i ln(=i_

3
i ) . (14)

Second, when =i_
3
i
≪ 1 , then `i is large and negative, and this

tells us that Boltzmann statistics is valid. The ideal Boltzmann gas

formulae for the ion contributions to �+ and %th are then valid:

�+ i =
3

2
:B=i , %

i
th = =i:B) . (15)

At first glance, it may seem that the contribution of the Coulomb

interaction (correlations) between ions, and between ions and elec-

tron gas, has to be added to the ideal Boltzmann gas quantities

for the ions. As we already mentioned, these Coulomb interaction

contributions can be expressed in terms of the Coulomb coupling

parameter Γi. In our case Γi ≫ 1 (i.e. a strongly coupled Coulomb

liquid of ions) and the leading Coulomb contribution, denoted as

*ii, is (Potekhin & Chabrier 2000)

*ii = :B)=iΓ
3/2
i

= =i�1/
242/0i , �1 = −0.9070 . (16)

So, at this approximation there is no ) dependence of the Coulomb

contribution and therefore there is no need to modify our formulae

for*th. Actually,*ii has already been included in our*0, %0 as the

so called lattice term.

Our last component of the thermal part of the EOS of the

envelope comes from unbound neutrons. We neglect contributions

from evaporated protons and alpha particles; their populations are

small compared to that of the unbound neutrons at the densities and

) relevant for the late-stage proto-NS envelope. In the inner envelope

we add contributions from the neutron gas of density =ng (this is the

density measured in the space outside nuclei). This gas is degenerate

except for a layer close to the neutron drip point, = ≈ =nd. The

contribution from this thin non-degenerate layer will be neglected.

Apart from this neglected layer, unbound neutrons outside nuclei

form a degenerate non-relativistic Fermi gas, filling the available

volume outside nuclei, with microscopic number density

=ng = -n=/(1 − D) , (17)

where -n is the unbound neutron fraction relative to all nucleons,
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and D is the volume fraction occupied by nuclei. We approximate

the Fermi energy and Fermi temperature of the neutron gas by the

free Fermi gas values (Eq. (3))

Y
ng

F
= 58.44 (=ng)

2/3 MeV, )
ng

F
= Y

ng

F
/:B ,

)/)
ng

F
= 1.47 × 10−2 )10/(=ng)

2/3 . (18)

Keeping only leading terms with respect to a small degeneracy

parameter)/)
ng

F
, we obtain, using Eq. (3), approximate expressions

for *
ng

th
, %

ng

th
, (ng , and �

ng

+
, per unit volume of the dripped neutron

gas (i.e., with the volume of nuclei being excluded):

*
ng

th
=

1

4
c2=ng Y

ng

F

(
)/)

ng

F

)2
,

%
ng

th
=

1

6
c2=ng Y

ng

F

(
)/)

ng

F

)2
,

(ng = �
ng

+
=

1

2
c2=ng :�)/)

ng

F
,

`
ng

th
= −

1

12
c2 Y

ng

F

(
)/)

ng

F

)2
. (19)

The contribution to the total (macroscopic) *th, %th, (, �+ can be

obtained by multiplying the quantities given in Eq.(19) by a factor

(1 − D). Note that even at the bottom of the inner crust D < 0.3,

so later we will neglect D corrections to simplify our calculations

(nucleon effective mass corrections, which are also neglected, are

of a similar size to the D-ones).

2.2 Relative importance of different entropy contributions

To approximate the thermal structure of a hot, late-stage proto-NS,

we need to ascertain the relative importance of different components

in the various regions of the star. We divide the star into three

regions:

(i) the core, d ≥ dcc;

(ii) the inner envelope, dnd < d < dcc;

(iii) the outer envelope, 0 < d ≤ dnd;

where

dnd = 3.5 × 1011g cm−3,

dcc = 1.4 × 1014g cm−3.

We give these quantities the subscripts nd and cc, since they corre-

spond to the neutron-drip point and crust-core density for a mature

neutron star, although the terms should not be taken too literally

here; the stellar structure shortly after birth is complex, the transi-

tion densities less clearly-defined, and the crust has not yet begun

forming.

As discussed in section 2.1.1, it is clear that in the core the

degenerate baryons provide the dominant contribution to the thermal

structure (Burrows & Lattimer 1986; Pons et al. 1999), and since

the majority of these are neutrons, it is a safe first approximation to

model the core entropy as being due to degenerate neutrons alone.

At the temperatures under consideration they are in a non-superfluid

(normal) state.

Our model will be far simpler if the entropy contribution from

one particular species is dominant in each of the different envelope

regions too. This is not guaranteed, however, so we now proceed to

evaluate these contributions to check.

2.2.1 Interpolated envelope equation of state

To calculate the thermal contributions to the envelope, we need

various equation-of-state quantities: �, /, �′, -n and D as a func-

tion of d. To construct smooth functions for these dependences,

we use inbuilt fitting routines from the software package Mathe-

matica to make interpolations of tabulated equation-of-state data

from Douchin & Haensel (2001) for the inner envelope, and

Haensel & Pichon (1994) for the outer envelope. The fitting func-

tions to the different envelope quantities are plotted in figure 1. Note

that for our model of the core the quantity -n/(1 − D) is effectively

equal to unity, whereas at the inner edge of the envelope it is roughly

0.8.

2.2.2 Envelope: state of matter

We know that the core-region entropy is always dominated by the

degenerate-neutron contribution, but the envelope structure will

change depending on the temperature and density. In particular,

for a given density the envelope’s ions are liable to form a Coulomb

liquid at lower temperatures, and an ideal Boltzmann gas at higher

temperatures, with the transition occurring at some temperature ); .

At the high temperatures we consider, shortly after birth, one would

not expect any part of the envelope to have cooled below the temper-

ature )< at which the ions freeze into a crystalline Coulomb lattice,

but we will also check this. Using the formulae from Sect.2.1.2 we

calculate the two transition temperatures ); and )<, plotting the

results in Fig. 2.

We conclude that in the density and temperature range of inter-

est to us, the ions throughout the entire envelope are in a Coulomb-

liquid state. However, despite this, the Boltzmann-gas results for the

thermal contributions are valid, as explained in Sect.2.1.2. We use

these in the calculations which follow.

2.2.3 Entropy contributions

Evaluating the relevant expressions from section 2.1, we plot in Fig.

3 the entropy profiles for the neutron-gas, ion and electron com-

ponents of the envelope. These are shown at two different constant

temperatures, ) = 5× 109 and 5× 1010 K. In the inner envelope we

see that the neutron-gas entropy is generally an order of magnitude

larger than the other two components, although at lower tempera-

tures and higher densities the ion entropy becomes comparable. In

order to be able to approximate the inner-envelope entropy by its

neutron-gas component alone, we require ) (d = dcc) >
∼ 1010 K.

This is not a strong restriction, though: cooler proto-NS models are

not likely to be of interest to us, since thermal effects will become

negligible; zero-temperature models will provide a satisfactory de-

scription of the stellar structure.

Below neutron-drip density there is no free neutron gas, and its

entropy therefore drops to zero at d = dnd, leaving just the ion and

electron components. The latter clearly dominates at ) = 5 × 1010

K, but we do not expect the outer envelope to be this hot; see

section 2.3.1. We replot the ion and electron entropy profiles in the

outer envelope alone, and at constant temperatures of 1 and 5× 109

K, in Fig. 4. For the latter temperature the two components are

comparable, whereas for the former the ion entropy is a factor of

4 − 7 bigger. Within our model we will be able to choose the outer-

envelope temperature, and should therefore ensure it is relatively

cool, so that the electron entropy can be neglected.

We conclude with a three-dimensional plot showing the be-

haviour of the three entropy components as a function of ) and

MNRAS 000, 1–22 (0000)



6 S. K. Lander et al.

10
11

10
1�

10
13

10
14

ρ [g c�-3]

50

100

500

1000

A

A'

Z

10
��

10
13

10
14

ρ [� cm-3]

0.2

0.4

0.6

0.8

Xn

Xn

(1-u)

Figure 1. Interpolations to various envelope quantities as a function of density. Note that -n → 0 at dnd, but -n →/ 1 at dcc.
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Figure 2. For ) < )< the ions crystallise, and for ) > ); the ion

plasma is well-approximated by a Boltzmann gas. In the intermediate

temperature range, )< < ) < ); , the ions form a Coulomb liquid.

For the density range of interest to us, d >∼ 1010g cm−3, we see that

the proto-neutron star envelope is likely to be in a Coulomb-liquid

state.
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Figure 3. The entropy per baryon (in units of :�) as a function of density,

for the ion, electron and neutron-gas species, at (constant) temperatures of

5 × 109, 5 × 1010 K, as labelled.

d, giving a better qualitative picture of when different components

dominate. We expect a realistic envelope temperature profile to de-

crease from >
∼ 1010 K at dcc to <

∼ 109 K at d = 1010g cm−3 (i.e.

lines running from the far right to the near left of the plot). For

such profiles, the electron entropy can be neglected throughout the

envelope.

We have established that the star’s entropy may reasonably be

modelled as due to a single dominant contribution in each region,

as we had hoped: the degenerate neutrons in the core, the neutron

gas in the inner envelope, and the ions in the outer envelope. This

holds for the whole temperature and density range of importance to

us here.
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Figure 4. Comparing the ion and electron entropy contributions (per baryon,

in units of :�) in the outer envelope. These are plotted as a function of

density, at (constant) temperatures of 1 and 5 × 109 K, as labelled.

Figure 5. A three-dimensional version of figures 3 and 4, giving fuller infor-

mation about the dependence of the ion, electron and neutron-gas entropy

components as functions of density and temperature.

2.3 Our simplified thermal model

2.3.1 Isothermal vs isentropic

In general the basic thermodynamic quantities have dependences

( = ((), d) and ) = ) ((, d). Assuming that either ( or ) is

constant in some region is very attractive, because it means that the

other one of the two quantities must become an explicit function

of d alone, which makes it far easier to formulate the problem in a

manner suitable for an equilibrium solution.

From proto-NS simulations we see that the entropy per baryon

B1 in the core becomes approximately constant over very few sec-
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onds, whereas the temperature varies by a large factor through this

region (Burrows & Lattimer 1986; Pons et al. 1999). For this rea-

son, we will model the core as isentropic with some constant entropy

per baryon B10 (in units of :�). Since the core makes up most of the

star, and will provide the dominant contribution to the star’s thermal

pressure, we will treat this region first, and choose a prescription

for the envelope regions which matches to the core. Therefore, the

fundamental constant for defining the thermal structure of a given

stellar model will be B10.

The initial thermal evolution of the outer envelope, above the

neutrinospheres, is far faster than that of the neutrino-opaque in-

terior. Being transparent to neutrinos, this region cools rapidly via

4−− 4+ pair annihilation and plasmon decay and reaches an isother-

mal state. In this work we will assume the outer-envelope temper-

ature to take some fixed value )oe for all our models. Clearly we

can typically expect there to be a substantial jump between this

value and the temperature as calculated on the inner side of the

envelope-core boundary

)core (d = dcc) ≫ )oe (20)

where matter continues to be heated by the trapped neutrinos.

We will therefore need to construct a transition region that leads

us smoothly from the thermal structure of the outer core to that of the

outer envelope, similar to the approach employed in Goussard et al.

(1997). The simplest resolution to the problem – given that we will

need equations in closed form for our iterative method (see section

5) – is to construct some simple closed-form function for either the

entropy or the temperature in the inner envelope, to match both to

the core and outer-envelope thermal structure. Experimenting with

both possibilities, we have found that prescribing B1 in the inner

envelope in terms of some given function Bie (d) and using this to

calculate ) leads to smaller errors than the other way around, and

so we adopt this approach.

In summary, then, our model for the thermal part of the

equation of state is the following:

(a) isentropic core, d ≥ dcc, entropy due solely to degenerate

neutrons;

(b) inner envelope, dnd < d < dcc, with entropy per baryon given

by some fixed function Bie (d), and ) calculated from this. Entropy

is assumed to be due to the neutron-gas contribution alone;

(c) isothermal outer envelope, d ≤ dnd, with some fixed )oe, and

entropy due to the ion contribution alone.

The exact functional forms of the temperature, entropy and

thermal pressure will be discussed in section 4. The model will not

make sense once the typical internal temperature drops to ) ∼ )oe,

but by that point the thermal contribution to the pressure, and hence

to the magnetic-field distribution, will have become negligible.

2.4 Choosing outer-envelope temperature

There appears to be very little discussion in the literature on the

temperature of the outer envelope. Goussard et al. (1997) took)oe =

0.2 MeV = 2.3×109 K, without providing any physical justification

for this particular value. Studies on proto-NS structure tend to use

enclosed mass as the radial coordinate, thus squashing the entire

low-mass envelope into a very thin shell; no detailed information

can be gleaned from such plots. It is clear, however, that the outer

envelope cools earlier and faster than the initially neutrino-opaque

core – and should therefore be assigned a far lower temperature.

For simplicity, and for consistency with our neglect of the

electron entropy, we take )oe = 109 K in all our models. Note

that our results are almost completely independent of any choice

less than roughly 1010 K; the outer envelope has little influence on

the structure of the star or its magnetic field. The main rationale

is to impose the expected substantial drop in temperature between

the core and the outermost regions, and to avoid numerical issues

related to finding a suitable inner-envelope function to lead fairly

smoothly between the core and outer-envelope thermal structure

(we take a quadratic in d, built assuming the former is considerably

bigger than the latter).

3 EQUILIBRIUM EQUATIONS

3.1 Governing equations

Our model of the late stages of a proto-neutron star simply ap-

plies the equations of magnetohydrodynamics to a rotating, self-

gravitating fluid body in equilibrium. The major novelty of our work

is the inclusion of a thermal-pressure term, which is conceptually

simple but complex in its details. To avoid additional difficulty we

will work in Newtonian gravity, even though a quantitative treatment

of a NS should clearly employ general relativity.

Firstly, the force balance in the star is described by the Euler

equation:

−
1

d
∇% − ∇Φ + ∇ΦA +

1

4cd
(∇ × H) × H = 0, (21)

where % is the (total) fluid pressure, Φ the gravitational potential,

H the magnetic field and

ΦA =
1

2
A2 sin2 \Ω2 (22)

the rotational potential, with rigid rotation at frequency Ω assumed

here. The Euler equation is coupled to Poisson’s equation:

∇2
Φ = 4c�d. (23)

We also need to satisfy the solenoidal constraint

∇ · H = 0. (24)

The Euler equation has the same form as for previous studies of

zero-temperature neutron-star models. Here, however, the pressure

has two contributions: one from the degeneracy pressure (which

is entirely dominant in cold neutron stars), and a second thermal-

pressure term. We assume these two are separable, so that the total

fluid pressure is the sum of these, % = %0 + %th.

3.2 Equilibrium equation of state

The above system of equations is closed by an equation of state for

the stellar matter. Models of matter in mature neutron stars generally

posit an explicit relation of the form

% = %(d) (25)

– a barotropic equation of state, for which pressure is no longer an

independent variable. With the additional assumption of axisym-

metry, this leads to the magnetic field being described by a single

PDE of one variable: the Grad-Shafranov equation (Grad & Rubin

1958; Shafranov 1958).

On the other hand, Reisenegger (2009) argues that the strati-

fication of matter – due to the presence of either thermal or com-

position gradients – means that the barotropic relation must be
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abandoned; the pressure is no longer slave to the density, but can

have a more general dependence:

% = %(d, Gp, ) , . . . ). (26)

This removes a key step in deriving the Grad-Shafranov equation,

leading to additional terms that complicate the calculation of equi-

libria. However, the result is typically wielded in a far stronger

way: to state that there is no restriction at all on the magnetic

field (Glampedakis & Lasky 2016), except the usual solenoidal con-

straint. Were this to be true, the Grad-Shafranov equation could

be abandoned, and the magnetic field structure be chosen at will,

with the assumption that buoyancy would provide whatever force

necessary to satisfy the equilibrium condition – as done by, e.g.,

Mastrano et al. (2011) and Akgün et al. (2013). Whilst Reisenegger

(2009) does argue for an upper limit, � ∼ 1017 G, to the ability of

buoyancy forces to act in this way, none of the models constructed in

this manner make a quantitative treatment of the effect of buoyancy

forces or check, ex post facto, what kind of force is being implicitly

assumed to keep the star in equilibrium, and whether it is consistent

with physically-motivated equations of state.

There is, however, another implicit assumption in equation

(26), namely that reactions are slow enough that the composition

can be ‘frozen’ in and act as an additional variable when determining

the pressure. If, however, reactions are fast enough, they will push

the system towards beta equilibrium, and the proton fraction (or

however else the composition is quantified) will be a function of d

alone, making the equation of state barotropic for this purpose.

In the first stages of the proto-neutron star evolution, whilst the

matter is still opaque to neutrinos, the beta equilibration timescale

gV ≪ g� except in a very thin shell close to the surface, where

the two timescales are comparable (Camelio et al. 2017), and the

star can always be considered to be in beta equilibrium for our

analysis. Once the core has cooled below) ≈ 5×1010 K (Pons et al.

1999) and has become transparent to neutrinos, we can assume that

standard modified Urca reactions act to restore beta equilibrium,

leading to a timescale (Villain et al. 2005)

gV ≈ 0.5

(
)

1010 K

)−6 (
d

d0

)1/3 ( Gp

0.01

)1/3
s , (27)

where d0 is the nuclear saturation density. If nucleonic or hyperonic

direct Urca reactions are possible the equilibration timescale will

be even shorter, so in general for temperatures ) > 1010 K, such

as those we consider in our model, reactions will occur on a faster

timescale than the magnetic field can adjust. It is therefore safe to

assume that an unmagnetised proto neutron star is in chemical equi-

librium (although not, at this early stage, in thermal equilibrium).

The presence of the magnetic field introduces a considerable

complication to this discussion. To see this, it is enough to consider

a cold NS model composed of neutron, proton and electron fluids

and satisfying local charge neutrality =p = =e, for which one can

show (e.g. Lander et al. (2012)) that:

∇
(
`p + `e − `n

)
=

1

=p
(∇ × H) × H. (28)

When the right-hand side is zero, this reduces to a statement that

the fluids are in chemical equilibrium. This equation, therefore,

seems to imply that a magnetic field will generally drive a star

out of chemical equilibrium by a (small) amount scaling with �2.

Furthermore, using a toy model of a thin fluxtube rising through

hot unmagnetised neutron-star matter, Reisenegger (2009) argued

that beta re-equilibration also becomes considerably slower in the

presence of a magnetic field. Gusakov et al. (2017) later reached

the same conclusion through analysis of the evolution equations

for a magnetised multifluid star. They argue that approximations

valid for an unmagnetised star are no longer appropriate, and find

equilibration timescales of the order of 106 yr for the kinds of

temperature and field strength we consider here – clearly vastly

longer than the duration of the late proto neutron star phase.

If this view is correct, a magnetic field initially out of chemical

equilibrium will remain so throughout this early phase, experienc-

ing an additional buoyancy force that is absent from our modelling.

The further the magnetised star is from equilibrium, the less reli-

able our models will be; in the extreme, the (presumably) complex

smallscale field generated at birth could be preserved into the mature

phase of the star, although we find it more likely that the magnetic

field would never take the star far out of chemical equilibrium.

Whatever the result of the birth physics, however, in no case would

it be appropriate to model this phase simply by ‘choosing’ an arbi-

trary magnetic-field configuration and invoking buoyancy forces to

balance it.

In principle the interplay between a magnetic field and chem-

ical reactions could be studied by some future nonlinear numerical

evolutions of the hot, magnetised multifluid neutron star, hopefully

providing a definitive resolution of the issue. In the absence of such

a study, we regard our approach as a sensible start. If nothing else,

our results represent whatever subclass of proto-neutron-star mag-

netic fields that do not drive the star out of beta equilibrium. If

a magnetised neutron star leaves the birth phase already close to

chemical equilibrium, such models may be accurate enough.

Returning to the pressure-density relation and with our as-

sumption that the pressure is separable, we may very generally

write:

%(d, Gp, B, )) = %0 (d, Gp) + %th (d, B, ), Gp). (29)

However, in chemical equilibrium Gp = Gp (d), and since any con-

vective circulation of matter will already have ceased, we can expect

thermodynamic quantities to be constant along isopycnic contours,

i.e. ) (d), B1 (d). In this work we will adopt a model where either

B1 or ) is a prescribed function of d in each region, so that the

other quantity may then be calculated from this, and will also be a

function of d. As a result, finally, we find that the equation of state

will return to being barotropic:

% = %(d,) (B(d)), B() (d))) = %(d). (30)

As the star cools below ) ≈ 1010 K, the reaction and Alfven

crossing timescales become comparable, and deviations from chem-

ical equilibrium and magnetic effects can balance each other, as

predicted by equation (26). However the strong dependence on tem-

perature of the timescale in (27) means that the star rapidly enters

the frozen regime, in which the field simply adapts to the fluid

configuration as it relaxes. We thus expect any modest deviation

from a barotropic equilibrium to be washed out on an equilibration

timescale of a few minutes as the star cools, unless some other phys-

ical mechanism is at work to maintain this out-of-equilibrium state

(see, e.g., Ofengeim & Gusakov (2018) and Castillo et al. (2020) for

some recent modelling of magnetic-field evolution during this later

phase). Note that our conclusions only apply to quasi-stationary

situations: thermal or composition gradients are clearly important

actors in proto-NS dynamics, such as the study of oscillation modes.

For the cold part of the EOS, the majority of studies of NS

magnetic equilibria have assumed a single polytrope to govern the

pressure-density relation, which is a poor reflection of the real star

(see however Kiuchi & Kotake (2008) for an exception to this). As

a minimal, but physically well-motivated, extension to this, we will
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take a two-piece polytropic equation of state, with the core and

envelope regions having different polytropic indices:

% =

{
:1d

1+1/#1 in envelope, i.e. d < dcc

:2d
1+1/#2 in core, i.e. d ≥ dcc.

(31)

Continuity and thermodynamic consistency mean that :1 and :2

are not independent of one another (Read et al. 2009).

4 THE THERMAL PRESSURE

4.1 Non-dimensionalising

For zero-temperature stellar models in Newtonian gravity, it is nat-

ural to use combinations of �, the central density d2 and the equa-

torial radius '∗ to make all quantities dimensionless. This both

simplifies the solution method and ensures that quantities are all

(very broadly) of order unity, which decreases the error in numer-

ical calculations. Because quantities like the polytropic constant :

drop out from the dimensionless solution, results can be rescaled to

any desired stellar model by using the requisite values of d2 and '∗
to restore the dimensions M, L, T.

Now that we have thermal quantities, however, we need an

extra quantity including the temperature dimension O−, in order to

make everything dimensionless. We will find that results for hot

models will no longer be rescalable.

Note that for supernovae and proto-neutron stars it is con-

venient to work with the entropy per baryon B1 , in units of the

Boltzmann constant :� . B1 is dimensionless and is related to the

entropy density ( through:

B1 =
S

:�N
=

S/+

:�N/+
=

(

:�=
, (32)

where S is the entropy and N the number of particles within some

region. Let us use :�/<u as our fourth quantity for nondimension-

alising; we see it includes the desired dimension of temperature,

since

[:�/<u] = [S]M−1
= L

2
T
−2

O−−1. (33)

The dimensionless entropy density is then given by:

(̂ =
(

(:�/<u)d2
. (34)

Conveniently, (/d in dimensionless units is then given by:

(̂

d̂
=

(<u

:�d2

d2

d
=

(<u

:�d
= B1 , (35)

the entropy per baryon in units of :� . Next we need to find the

temperature in dimensionless units. Using the dimensions of :� /<u

above, and the fact that

[�d2] = T
−2, (36)

we see that the following combination of quantities has dimensions

of temperature:

(:�/<u)
−1�d2'

2
∗ (37)

and so

)̂ =
:�)

<u�d2'
2
∗

. (38)

We are using <u (the atomic mass unit) instead of the neutron mass,

although our core model only considers the thermal contribution of

the neutrons.

Not everything in dimensionless form can be rescaled at will,

however. The Fermi temperature )F depends on the Fermi energy

YF, which in turn depends on the physical value of density within

the star (not just at the centre). This means that we will not be able

to remove all physical quantities from our unit system (even though

we have got rid of � and :�/<u). We will see that this is not

a problem for obtaining solutions, but it does mean we will have

to specify some stellar quantities in advance, in physical units. In

fact, even cold models with our new EOS will be specific to one

stellar model, since at least two densities enter the calculation: at

the centre and at the transition between different adiabatic indices.

We are still able to choose dimensionless units such that d̂ = d/d2 ,

but having any kind of internal transition at some given physical

density clearly means the physical central density must be specified

in our dimensionless scheme.

4.1.1 Core

In order to find the thermal-force scalar Θ we first need an expres-

sion for the thermal pressure in convenient, dimensionless form.

Comparing the expressions for %th and ( from section 2.1.1, we see

that

%th =
1

3
(). (39)

In dimensionless units,

%̂th =
1

3

(̂

d̂
d̂)̂ =

1

3
B1 d̂)̂ . (40)

To use this expression, we need to know the relation between B1
and )̂ . From 2.1.1 we see that

B1 =
(̂

d̂
=

c2

2

:�)

YF
, (41)

using = = d/<u and YF = :�)F. Now, the Fermi energy is given by

YF = 58.44

(
=

=0

)2/3

MeV

= 9.363 × 10−5

(
d

d2

)2/3 (
d2

dnuc

)2/3

erg

= 9.363 × 10−5 d̂
−2/3
nuc d̂2/3 erg, (42)

where dnuc = 2.8 × 1014g cm−3 is nuclear mass density. Using the

above expression for YF in equation (41) and rearranging, we see

that the dimensionless temperature is given by

)̂ =
:�

<u�d2'
2
∗

2

c2

YF

:�
B1

= 0.1712

(
d2

1015 g cm−3

)−1 (
'∗

106 cm

)−2

d̂
−2/3
nuc B1 d̂

2/3 . (43)

It was not necessary to specify d2 in advance for ear-

lier, zero-temperature equilibria (Tomimura & Eriguchi 2005;

Lander & Jones 2009), but since we need the ratio dnuc/d2 here, it

is clear that we must now work with the central density in physical

units for each model.

We now turn to the thermal-pressure force. This takes the

dimensionless form:

∇Θ̂ =
∇%̂th

d̂
=

1

3d̂
∇( d̂)̂ B1). (44)

Since we know that Θ̂ = Θ̂( d̂), the thermal force above may be
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written, using the chain rule, as

∇Θ̂(d) = Θ̂
′∇d̂ =

1

3d̂

(
d̂)̂ B′

1
+ d̂)̂ ′B1 + )̂ B1

)
∇d̂ (45)

where all primes denote differentiation with respect to d̂. Next, note

that ∇d ≠ 0 throughout the star except for its exact centre, and that

at the centre itself we must have ∇Θ = 0 for regularity. Therefore

we may cancel the ∇d̂ terms from the LHS and RHS of the above

expression and integrate, to yield

Θ̂ =
1

3

∫ (
)̂ B′
1
+ )̂ ′B1 +

)̂ B1

d̂

)
dd̂, (46)

which will include some integration constant. There should be free-

dom in choosing this constant, since the physical equilibrium of

the star depends only on Θ′(d) and not Θ itself; it is like a gauge

freedom. This will be useful to us later.

To evaluate Θ in general, we would need both ( and ) inputs

from numerical simulations of the late proto-neutron-star phase.

However, as discussed in 2.3.1 , we will adopt a simplified model

that avoids this requirement. In our model the core is assumed to be

isentropic:

B1 = B10 =
(̂

d̂
(47)

)̂ = 0.1697

(
d2

1015 g cm−3

)−1 (
'∗

106 cm

)−2

d̂
−2/3
nuc B10 d̂

2/3 . (48)

We now have ) as a function of d, and so

Θ̂ =
1

3

∫ (
)̂ ′B1 +

)̂ B1

d̂

)
dd̂, (49)

using the isentropic assumption B′
1
= 0. Integrating the above, we

have

Θ̂ =
5

6
B10)̂ . (50)

We now move on to calculating the thermal-pressure force in the

envelope regions for our model.

4.1.2 Outer envelope

As discussed in section 2.3.1, we take the outer envelope to be

isothermal with some fixed physical temperature )oe in kelvin for

all stellar models (except the zero-temperature models we compare

with in the results section). We first convert this to a non-dimensional

value using equation (38); unlike the physical value, this will vary

between models.

We have established that the thermal structure is dominantly

due to the ions. The dimensionless thermal pressure for a Boltzmann

gas of ions is

%̂th =
=i:�)

�d2
2'

2
∗

=
d̂)̂

�
, (51)

using the fact that �′ = � in the outer envelope. From the above we

calculate the form of the thermal-pressure scalar:

Θ̂ =

∫
1

d̂

d%̂th

dd̂
dd̂

=
1

�

∫ (
)̂

d̂
+

d)̂

dd̂

)
dd̂, (52)

where we have assumed for simplicity that � is constant in the

region of interest to us (i.e. the inner part of the outer envelope); we

take � = 100 as a representative value for this region.

For an isothermal envelope we then have

Θ̂ =
)̂oe ln d̂

�
. (53)

This is only evaluated within the star and not at the surface, so no

issues arise from the divergent nature of this expression for d → 0.

For the purposes of the equilibrium calculation, the ion entropy

is not used explicitly to derive the thermal-pressure scalar. We will

however need it in order to construct an entropy function for the

inner envelope; see next. Equation 14 gives the entropy density per

ion. To convert to an entropy per baryon (in units of :�), we divide

the dimensionless form of this entropy by d̂, to give:

B1 =
(̂i

d̂
=

1

�

[
5

2
− ln(=i_

3
i )

]

=
1

100

[
5

2
− ln

(
4.47 × 10−5d

−1/2

2,15
'−3

6

)
− ln

(
d̂)̂−3/2

)]
,

(54)

where we evaluate the expression for � = 100 on the second line.

4.1.3 Inner envelope

With the above expression, we evaluate the entropy per baryon at

the inner edge of the outer envelope Boe. The value in the core is

also known, and fixed at B10 from the outset of the calculation. We

now construct a quadratic function Bie for the entropy per baryon in

the inner envelope to lead between these two values:

Bie ( d̂) = B10 −
(B10 − Boe)

( d̂cc − d̂nd)
2
( d̂cc − d̂)2 . (55)

Using this prescription gives us models where B1 throughout the

star is continuous and quite smooth.

In the inner envelope we assume that only the neutron gas

contributes to the thermal structure. This is physically the same as

in the core, except that number density factors = are weighted with

a prefactor

b ≡
-n

(1 − D)
(56)

that determines the microscopic density of the degenerate neutron

gas outside nuclei within the region. The thermal pressure takes

the same form as in the core, equation (39), except that the relation

between the entropy and the temperature is now given by

B1 = Bie ( d̂) =
B̂ng

d̂
=

c2

2
b
:�)

YF
. (57)

Through its density term, the Fermi energy (42) in the inner enve-

lope picks up a prefactor b2/3. Rearranging for the dimensionless

temperature as in the core case, then, we arrive at the same expres-

sion as equation (43), but with a prefactor of b−1/3:

)̂ = 0.1712

(
d2

1015 g cm−3

)−1 (
'∗

106 cm

)−2

d̂
−2/3
nuc b−1/3B1 d̂

2/3 .

(58)

The presence of b is a considerable complicating factor in our

calculation. In problems where a quantitative treatment of inner-

envelope physics is required (e.g. for pulsar glitches), it is clearly

important. Note, however, that for almost the whole density range

of the inner envelope b ≈ 0.6 − 0.8, corresponding to a prefactor

b−1/3 ≈ 1.1 − 1.2 in the above equation. Only in the region 3.5 ×
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1011 < d[g cm−2] <
∼ 2 × 1012 does b have larger variation – but

this corresponds to, at most, a very few grid points for us.

We have experimented with different prescriptions for b, find-

ing that the mismatch at the envelope-core boundary for b ≠ 1

introduces considerable error (in the sense of not satisfying the

virial test of section 6 to high precision), but with imperceptible

changes in the actual stellar models. For this reason we will make

the simplification, from now on, that b = 1 throughout the inner

envelope. Since the entropy is a prescribed function Bie ( d̂), the

inner-envelope temperature can then be calculated from

)̂ = 0.1712

(
d2

1015 g cm−3

)−1 (
'∗

106 cm

)−2

d̂
−2/3
nuc Bie ( d̂) d̂

2/3

≡ cBie ( d̂) d̂
2/3 , (59)

where we have defined the constant c to absorb the various numerical

prefactors above. We may now calculate the thermal-force scalar in

the inner envelope:

Θ̂ =
1

3

∫ (
)̂ B′ie + )̂

′Bie +
)̂ Bie

d̂

)
dd̂

=
c

3

[
B2ie d̂

2/3 +

∫
B2ie d̂

−1/3 dd̂

]

=
cd̂2/3Bie

3

[
Bie +

5 ( d̂)

Bie

]

=
)̂

3

[
Bie +

5 ( d̂)

Bie

]
, (60)

where 5 ( d̂) is a rather messy quartic in d̂ emerging from the above

integration.

4.1.4 Matching Θ contributions

The freedom to choose the integration constant for Θ in each region

means we are able to adjust these to produce a continuous, quite

smooth, Θ profile from the centre to the surface of the star. In

particular, let Θcore,Θie,Θoe denote the functions from equations

(50), (60), (53) without integration constants added on. For the core

we choose Θ = Θcore, i.e. without integration constant. We then

move to the inner envelope, creating a function Θ̃ie that matches to

Θcore at the envelope-core boundary, and then create an adjusted

outer-envelope function Θ̃oe to match to this Θ̃ie at the inner-outer

envelope boundary. For all points with d = 0, Θ is taken to have

the value Θ̃surf
oe obtained from evaluating Θ̃oe at the last gridpoint

within the star. To summarise, then,

Θ(d) =




Θcore (d) d ≥ dcc

Θie(d) − Θcc
ie
+ Θcc

core ≡ Θ̃ie (d) dnd < d < dcc

Θoe (d) − Θnd
oe + Θ̃nd

ie
≡ Θ̃oe (d) 0 < d ≤ dnd

Θ̃surf
oe d = 0

(61)

where the superscripts cc and nd denote quantities evaluated at

d = dcc and dnd respectively.

5 NUMERICAL SOLUTION METHOD

A large number of previous studies have solved for magnetic-field

equilibrium models in NSs using numerical iterative schemes; of

particular note are the first solutions for a linked poloidal-toroidal

field in Newtonian gravity (Tomimura & Eriguchi 2005) and full

general relativity (Uryū et al. 2019). As in Tomimura & Eriguchi

(2005), we will employ the Hachisu self-consistent field (HSCF)

method (Hachisu 1986), a robust iterative procedure that has several

advantages over perturbative methods: one can solve for models up

to Keplerian rotation rates, with extremely strong magnetic fields,

and include the contributions from high multipoles in the solution

without significant extra difficulty. The resulting models are true

self-consistent equilibria; whilst perturbative studies account for

the effect of the fluid distribution on the magnetic field, a numeri-

cal iterative method is also able to account for the back-reaction of

the field on the fluid. Complementary to these magnetised models,

there has been a limited amount of research on the construction and

use of self-consistent methods to build hot, rotating and unmag-

netised stellar models (Jackson et al. 2005; Goussard et al. 1997;

Camelio et al. 2019). We will build on this body of work to produce

models of hot NSs with magnetic fields.

The HSCF method is semi-analytic, in that it exploits certain

closed-form expressions for the fluid and magnetic field in order

to iterate towards an equilibrium solution. These are valid for cold

polytropic stellar models; in the following we check whether they

can be adapted for models with a more realistic description of the

pressure in a hot proto neutron star: including both a model of

the thermal pressure, and a piecewise-polytropic description of the

degeneracy-pressure profile.

5.1 Iterative solution: the fluid distribution

5.1.1 First-integral form of the Euler equation

Firstly, we need to be able to write the Euler equation in integral

form. We have argued that the zero-) part of the EOS is barotropic,

%0 = %0 (d), meaning that one can write:

∇%0

d
= ∇�, (62)

where� is the enthalpy per unit mass, and is found from the integral:

� =

%0∫

0

d%̃

d(%̃)
, (63)

where the tildes denote dummy integration variables. Here we have

used the enthalpy, whereas some other papers use the chemical

potential per unit mass,

˜̀ ≡
`

<
. (64)

Provided that we are able to separate out thermodynamic quantities

into zero- and finite-temperature pieces, the two are equivalent. We

can see this from the Euler relation:

˜̀ =
`

<
=
* + % − B)

<=
=

1

d
(*0 + %0 +*th + %th − B))

= �0 +
1

d
(*th + %th − B)), (65)

using the definition of �. Thus, at zero temperature there is no

distinction between � and ˜̀.

Using �, the Euler equation for a cold star becomes:

∇(� +Φ − ΦA ) =
1

4cd
(∇ × H) × H. (66)

Finally, if we take the curl of this we see that

∇ ×

[
1

4cd
(∇ × H) × H

]
= 0 =⇒

1

4cd
(∇ × H) × H = ∇" (67)
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for some scalar function " . We then arrive at an important re-

sult for the HSCF scheme: that the Euler equation becomes a

Bernoulli equation, and therefore may immediately be expressed

in first-integral form:

� +Φ −ΦA − " = �, (68)

where � is an integration constant, which is fixed through boundary

conditions at the surface.

The thermal quantities ) and ( are also functions of d in our

model, and as a result the thermal pressure force may be written

∇%th

d
= ∇Θ. (69)

As a result, the Euler equation (68) may trivially be generalised to:

� +Θ +Φ −ΦA − " = �. (70)

Now, using the explicit form of ΦA , we have:

� +Θ +Φ −
Ω2

2
A2 sin2 \ − " = �, (71)

and we define the surface as being where

� = 0. (72)

It would be most natural to define it as being where the density

drops to zero instead, but this is not convenient for numerical im-

plementation. So, evaluating the above Euler equation at the polar

and equatorial surfaces – in code units where the equatorial surface

is at Âeq = '̂∗ = 1 – we have

Θ̂(Âpole) + Φ̂(Âpole) − "̂ (Âpole) = �̂, (73)

Θ̂(1) + Φ̂(1) −
Ω̂2

2
− "̂ (1) = �̂, (74)

Subtracting the second equation from the first gives us an expression

for the rotation rate:

Ω̂
2
= 2[Φ̂(1) − Φ̂(Âpole)] − 2["̂ (1) − "̂ (Âpole)], (75)

where the Θ̂ terms cancel, since the function is constant along any

density contour (in this case, the d̂ = 0 contour). Now that we

have Ω̂ we may also use either of the above boundary equations to

calculate �.

5.1.2 Iterative method: second key step

The second important requirement of the HSCF method is the ability

to find a closed-form inversion for d = d(�). This is only true for

particular special choices of the EOS, like a polytrope:

% = :dW = :d1+1/# . (76)

For this polytropic EOS a straightforward integration, using equa-

tion (63), shows that

� = : (1 + #)d1/# , (77)

which can be rearranged to give

d =

(
�

: (1 + #)

)#
. (78)

This is effectively the iterative step for the method, used to find a

new density distribution – one closer to an equilibrium state than

the previous one.

Now, if we work in dimensionless units by dividing all phys-

ical quantities by combinations of the central density d2 , stellar

radius '∗ and the gravitational constant �, we can make the ex-

pressions even simpler. Evaluating (77) at the centre of the star in

dimensionless units, we have:

�̂2 = :̂ (1 + #) d̂
1/#
2 = :̂ (1 + #), (79)

where hats denote dimensionless variables, and where we have used

d̂2 = 1. Now substituting this relation into equation (78), we get the

very simple result:

d̂ =

(
�̂

�̂2

)#
. (80)

We have eliminated the polytropic constant : by working in di-

mensionless units. This means that the final dimensionless model

may be redimensionalised to a whole set of models with different

: , meaning different mass and radius.

5.1.3 Piecewise polytrope

We now generalise the above result to the two-piece polytrope of

equation (31). The relevant basic formulae for a relativistic multi-

piece polytrope are given in Read et al. (2009). Because we work

in Newtonian gravity, however, we have amended the expressions

of Read et al. (2009) to remove the relativistic term d22 from the

energy density.

Firstly, the requirement that the pressure should be continuous

across the boundary between the two polytropes means that the two

polytropic constants may not be chosen independently. In particular,

the internal energy * (d) and enthalpy � (d) are given by:

* (d) =

[
* (d8−1)

d8−1
−

:8

(W8 − 1)
d
W8−1

8−1

]
d +

:8

(W8 − 1)
dW8 , (81)

� (d) =
* (d8−1)

d8−1
−

:8

(W8 − 1)
d
W8−1

8−1
+

:8W8

(W8 − 1)
dW8−1. (82)

Since we consider a two-piece polytrope, the transition densi-

ties are d01 = 0 (the stellar surface) and d12 = dcc (the envelope-

core transition). Continuity of pressure at the envelope-core bound-

ary:

% = :1d
1+1/#1
cc = :2d

1+1/#2
cc (83)

immediately gives

:1 = :2d
1/#2−1/#1
cc . (84)

Since */d → 0 at the surface, we find for the envelope:

*env (d) =
:1

(W1 − 1)
dW1 = :2d

1/#2−1/#1
cc #1d

1+1/#1 , (85)

�env (d) =
:1W1

(W1 − 1)
dW1−1

= (#1 + 1):1d
1/#1

= (#1 + 1):2d
1/#2−1/#1
cc d1/#1 . (86)

The*env will not be directly used in our solution, but is needed

in deriving the enthalpy for the core region:

�core (d) = :2

[
(#1 − #2)d

1/#2
cc + (#2 + 1)d1/#2

]
. (87)

The central enthalpy, in code units, is therefore

�̂2 (d) = :̂2

[
(#1 − #2) d̂

1/#2
cc + #2 + 1

]
. (88)
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Now dividing the enthalpy by its central value allows us to elim-

inate explicit mention of the polytropic constant, as in the single-

polytrope case. This leads to an inversion of d̂ in terms of �̂ with

different forms in each region, as follows:

d̂env = d̂cc





[
#1 − #2 + (#2 + 1) d̂

−1/#2
cc

]

(#1 + 1)

�̂env

�̂2





#1

, (89)

d̂core = d̂cc




[
#1 − #2 + (#2 + 1) d̂

−1/#2
cc

]

(#2 + 1)

�̂core

�̂2
−

(#1 − #2)

(#2 + 1)




#2

.

(90)

Note that upon setting #1 = #2, both of the above relations

reduce to the single-polytrope case of equation (80), as required.

5.2 Iterative solution: the magnetic field

As mentioned above, for magnetised stellar models the extended

HSCF method also requires us to be able to find an integral equa-

tion incorporating information about the star’s magnetic field. The

description here is breviloquent, since detailed derivations may be

found elsewhere (e.g. Lander & Jones (2009)).

If we assume the star to be axisymmetric and work in cylin-

drical polar coordinates (s, q, I) aligned so that the I coordinate

is the star’s symmetry axis, then one can show from the constraint

∇ · H = 0 that the magnetic field can be expressed in the form

H = Hpol + Htor =
1

s

(
∇D × eq + 5 (D)eq

)
, (91)

where D is the poloidal magnetic streamfunction, defined through

this expression, and 5 (D) is a function of D – which from a math-

ematical perspective is virtually arbitrary, but physically relates to

the toroidal-field component. In order to avoid toroidal field – and

therefore an electric current – outside the star, the function 5 needs

to be fitted to a contour of D which closes within the star. If we

define Dmax as the largest such contour (i.e. the last field line which

closes inside the star), then

5 (D) = 0(D − Dmax)
ZH(D − Dmax), Z > 1, (92)

where H is the Heaviside function and 0 and Z are constants. It is

clear from the form of the Lorentz force that ∇" · H = 0, and from

the expression for H in terms of D we also have ∇D · H = 0. The two

gradients ∇" and ∇D are therefore parallel, and so we deduce that

" = " (D). (93)

One can then derive a single differential equation in the variable D,

which – together with the chosen prescriptions for " (D) and 5 (D) –

encodes all the information about the magnetic field. This is known

as the Grad-Shafranov equation, and has the form:

Δ∗D = −4cds2 d"

dD
− 5

d 5

dD
, (94)

where the differential operator Δ∗ is the axisymmetric Laplacian

operator, but with the opposite sign on the first-derivative piece:

Δ∗ ≡
m2

ms2
−

1

s

m

ms
+

m2

mI2
. (95)

Exploiting a standard Green’s function, equation (94) may be writ-

ten in a Poisson-like integral form (Tomimura & Eriguchi 2005;

Lander & Jones 2009), completing the system of integral equations.

It needs to be solved to find D at each iterative step, using the D and

d distributions from the previous step. With the updated solution for

D, one then evaluates " (D) with it, and uses this in the first integral

of the Euler equation. In this way, the magnetic field and the density

distribution are self-consistently updated at each iterative step:

(i) we account for the effect of the density distribution and from the

different forces in the star on the magnetic field;

(ii) we account for the distortion to the density distribution induced

by the magnetic field.

5.2.1 Function choices in this paper

Other than the restrictions described above, the functional forms

of 5 (D) and " (D) may be chosen freely, although varying these

has limited effect on the resulting equilibria, if they are found

using a self-consistent method; see Lander & Jones (2012) or

Bucciantini et al. (2015) for a survey of these parameters. The con-

stant ^ sets the overall field strength, and 0 the maximum strength

of the toroidal component; the value of Z is less important. For all

poloidal/linked poloidal-toroidal field results in this paper we take

Z = 0.01 and " (D) = ^(D/Dgmax)
5 (where Dgmax = max(D)); we

have found that these allow for the maximum strength of toroidal

field in our linked poloidal-toroidal magnetic-field solutions (which

are always dominated, energetically, by the poloidal component).

For purely toroidal fields – a different class of solution where there

is no additional equation like equation (94) to solve – we take

" = −_2ds2/4c, where _ is a constant governing the field strength

(Lander & Jones 2009).

5.3 Physical sequences of models

In cold polytropic models of NSs, one calculates a single dimen-

sionless model (the most natural choice being an unmagnetised

non-rotating one), chooses the desired physical mass M, and finds

the value of the (single) polytropic constant : that gives the desired

physical radius '∗. Any two models with the same physical M, :

can be regarded as the same physical star; we therefore restore the

dimensions of other models (rotating and/or magnetised), by mul-

tiplying by the requisite combination of d2 and '∗ (found from the

fixed physical M, : and the dimensionless M̂, :̂ calculated for an

individual model).

Here, with a two-piece polytrope and hot models, the procedure

is less general but similar. We again fix a non-rotating, unmagne-

tised, and now also zero-) model; in all results reported here this

spherical reference model has M = 1.4M⊙ , where M⊙ is the mass

of the Sun, and '∗ = 12 km. We run the code for such a model and

obtain the dimensionless polytropic constant :̂2 for the core from

equation (88) and the dimensionless mass M̂ by volume integration

of d̂. Now, since these two dimensionless quantities are related to

their physical counterparts by:

M̂ =
M

d2'
3
∗

, :̂2 =
:2

�d
1−1/#2
2 '2

∗

, (96)

we may combine these relations to calculate the physical value of

:2 for the reference model:

:2 = :̂2�

(
M

M̂

)1−1/#2

'
3/#2−1
∗ . (97)

Recall that the envelope polytropic constant :1 is not independent of

:2, and hence the corresponding relation for :1 gives no additional

information. We choose to work with :2, as the core comprises most
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of the mass and volume of the star. A physical sequence of models,

therefore, has fixed :2 and M in physical units. Their dimensionless

counterparts will, however, vary from model to model depending

on the star’s rotation rate, magnetic field and temperature. Using

these physical and dimensionless quantities, we are now able to

calculate the physical equatorial radius for any given model, through

a rearrangement of equation (97):

'∗ =

[

:̂2�

(
M

M̂

)1−1/#2
]#2/(#2−3)

. (98)

Having done so, we are then able to calculate the central density in

physical units:

d2 =
M

M̂'3
∗

. (99)

Since d2 enters the iterative procedure for both hot and piecewise-

polytropic models, we must recalculate '∗ and d2 using the above

relations at each iterative step.

5.4 Iterative scheme

The HSCF-based numerical scheme we use iterates towards a

solution by using the equilibrium equations in integral form. The

scheme takes the form:

0. As initial conditions to start an iteration, make simple trial

guesses for d and D;

1. Calculate the gravitational potential Φ from the d distribution

and Poisson’s equation (23) in integral form;

2. Calculate the new magnetic streamfunction D from its previous

form Dold, using the magnetic Poisson equation (94) (in integral

form) with Dold and d in the integrand;

3. Calculate, in physical units, '∗ and d2 , and use these to calculate

the thermal-force scalar Θ̂;

4. Evaluating the Euler equation at the equatorial and polar

surfaces, equations (75) and (74), find Ω̂2 and �̂;

5. We are now able to use the Euler equation (70) to find �

throughout the star;

6. Calculate the new density distribution in the envelope and core

with equations (89), (90);

7. For stability reasons we do not always use the fully-updated

D, d distributions for the following iterative step, but instead

employ an underrelaxation step. We then return to step 1 using

the partially-updated d and D distributions, repeating the cycle

until satisfactory convergence is achieved, i.e. until the fractional

changes in �̂, �̂, Ω̂2, D̂ between consecutive iterative steps drop

below some small tolerance value (usually 10−4 − 10−5).

The input parameters for any equilibrium configuration are the

surface distortion Apole/Aeq, the polytropic indices in the core and

envelope regions #1, #2 and prefactors 0, ^ related to the strengths

of the poloidal and toroidal field components. In the purely-toroidal

case there is a single constant _ to specify. The grid is evenly-spaced

in A and cos \; the latter ensures that the equatorial region is well

resolved even with a limited number of angular grid points. This is

important since this region can have complex field geometry, with

coexisting poloidal and toroidal components, and strong variations

in the density for models rotating close to Keplerian velocity –

whereas the polar region is relatively featureless. Since the density

and physics of the envelope region changes over a radius ∼ 0.1'∗,

good coverage of this region is also needed. For these reasons we

10-6

10-5

10-4

10-3

 100  1000
#DIV

+
)

Figure 6. Convergence of code accuracy with increased resolution, for a

hot, rapidly-rotating and highly magnetised model (B10 = 1.0, Ω = 690 Hz,

ˆ̂ = 0.3, 0̂ = 12). Points show virial-test results +) for different numbers

of radial grid points #DIV, and the dashed line shows the expected behaviour

for a second-order code, of inverse-square scaling with grid resolution.

have found a good grid resolution, which we adopt as our standard

here, consists of 512 radial gridpoints and 128 angular gridpoints.

The code exploits a decomposition of the governing equations

into multipoles. Since the models are axisymmetric the azimuthal

index < is zero, and the equations become an infinite expansion in

terms of Legendre polynomials with angular index ;. For numer-

ical purposes this clearly must be terminated at some maximum

; = ;max, at which the contribution of additional multipoles should

be negligible. For more extreme models – a very strong toroidal

component or very rapid rotation – we have found that very high

multipoles can make a visible difference to the final magnetic-field

configuration (see section 6.6), and so we choose ;max = 32 as

standard in this work.

The iterative process described here typically takes of the order

10 − 500 steps, and even for high resolutions finishes within a few

minutes when run on a typical laptop. The code is stable up to

B10 = 2 in many cases, and up to B10 = 1.5 for extremal models (i.e.

Keplerian rotation and/or strong magnetic fields); this is certainly

adequate, since higher values of entropy are not consistent with our

hot EOS model anyway.

6 RESULTS

6.1 Virial test

Before moving to our results, we first confirm that our numerical

code is behaving as expected. The natural measure of the accuracy

of such a code comes from the virial theorem, in which the vector

Euler equation is converted into a scalar energy balance:

Egrav + 3Π0 + 3Πth + 2Ekin + Emag = 0, (100)

where Egrav , Ekin , Emag are the gravitational binding, kinetic and

magnetic energies; and Π0,Πth the volume integrals of the zero-

temperature and thermal pressures. In the above form of the virial

theorem the right-hand side is zero, reflecting the fact that the so-

lution should be a stationary equilibrium. The left-hand side is

evaluated for the solutions produced by the numerical scheme, and

then normalised by dividing by |Egrav |, to give a dimensionless

measure of the code’s accuracy: the virial test +) . In figure 6 we
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present values of +) for a numerically challenging model to calcu-

late (hot, highly-magnetised and rapidly-rotating) as a function of

grid resolution. We confirm that the error is very small compared

with unity, and furthermore that it drops with increasing resolu-

tion in the manner expected for a second-order convergent scheme

(the order at which the code is written). For all results presented

in this paper the virial test has also been checked; it is never more

than order 10−4, and in many cases is as low as 10−6, comparing

favourably with other studies.

6.2 Keplerian velocity

With progressively more rapid rotation, a star becomes more oblate,

until – at some critical rotation rate – it begins to lose mass from the

equatorial surface. At this Keplerian rotation rate Ω the centrifu-

gal force at the equatorial surface matches the gravitational force,

∇ΦA = ∇Φ. To check when this is reached, we evaluate the auxiliary

quantity

Ω
2
2 =

1

'∗

mΦ

mA
. (101)

This quantity is generally less than Ω2, but when Keplerian velocity

is reached the two become equal: Ω2 = Ω = Ω . Models with

Ω > Ω2 are unphysical for our purposes, as the star would be in

a dynamical mass-shedding state. Clearly we cannot calculate a

model that precisely satisfies the Keplerian condition; instead, we

repeatedly run the code to find the equilibrium model where Ω is

the closest to (but still less than) Ω2 . The rotation rate of this model

is then recorded as Ω . Therefore, all results for Ω are very slight

underestimates.

6.3 Hot unmagnetised models

We begin by exploring the stellar structure of our proto-NS models

and comparing with their zero-temperature counterparts. To study

the effect of rotation on hot and cold NSs, we look at the two

extremes of non- and maximally-rotating NSs (i.e. those rotating at

Keplerian velocity). We have also checked the corresponding results

for magnetised stars, finding that none of the results reported here

are modified unless the magnetic field is substantially stronger than

1016 G – and since there is no good physical reason to expect such

strong fields in newborn NSs, we do not consider this case further. In

addition, although we show results only for the piecewise polytrope

with #1 = 4, #2 = 0.6, we have also run many models for the case

#1 = 3, #2 = 0.6 and some other variations, finding no significant

differences in the results.

In our models, the fundamental parameter determining the

importance of thermal effects is the central entropy B10 , but it is

often more useful to know the star’s temperature. For this reason we

begin our survey of models by comparing central temperature and

entropy; see Fig. 7. The relationship is little affected by rotation,

with the lines for Ω = 0 and Ω = Ω very close to one another; the

non-rotating results are well fitted by the following relation:

)2 [1011 K] = −0.58B2
10 + 3.53B10 . (102)

Fig. 7 is complemented by Fig. 8, which shows the radial

profiles of the fundamental thermal quantities: the entropy den-

sity, temperature and thermal-pressure scalar. The smoothness of

these quantities across the envelope-core and inner-outer envelope

boundaries – where the physics of the star changes – vindicates our

prescription for the thermal physics.
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Figure 7. Central temperature as a function of B10 for non-rotating

models (solid line) and their counterparts at Keplerian velocity

(dashed line).

Next we compare our temperature and entropy profiles with de-

tailed quasi-equilibrium calculations for non-rotating proto-NSs by

Burrows & Lattimer (1986) and Pons et al. (1999), hereafter BL86

and P99. Although we cannot expect exact agreement given our

simplified model, our results should at least be sensible. In Fig. 9

we replot the B1 and ) profiles for the B10 = 1 model from Fig. 8,

but as a function of enclosed mass m rather than radius, and with

) in MeV. We compare with figures 1 and 2 of BL86, whose fidu-

cial model is 1.4M⊙ like ours, and figure 9 of P99, for a 1.6M⊙

model – in all cases, looking at results after several seconds, when

the shocked mantle has cooled and the temperature is highest at (or

very close to) the centre of the star.

We confirm that our isentropic assumption was not heinous:

in the realistic profiles B1 never varies by more than a factor of

∼ 2 for the latter phase of the proto-NS evolutions. The entropy

reaches an average value of roughly unity at a time of 15 s for

the BL86 simulation, and 30 s for that of P99, so let us compare

the corresponding ) profiles with ours for B10 = 1. The central

temperature for our model is 25 MeV, close to both P99 (also ∼

25 MeV) and BL86 (∼ 20 MeV). The ) profiles of BL86 and

P99 both decrease by a factor of ∼ 5 before a rapid drop in the

outermost region (presumably the envelope). Our ) profile shows

the same kind of behaviour, but with a gentler drop over the core

region: at the boundary with the envelope the temperature is a factor

of 3.4 smaller than in the centre. These differences are relatively

minor, considering that we do not treat any of the important neutrino

physics and neglect the factor-2 variation of B1 within the star, and

so we conclude that our model is a sensible approximation to the

full problem.

Next we study the physics of proto-NSs rotating at Keplerian

velocity through a series of figures. First, in Fig. 10, we compare

the equatorial density profiles of three model stars. The actual radii

differ for each star, but they are plotted together using the normalised

radius Â = A/'∗ for direct comparison. The profile for the cold, non-

rotating model shows the expected shape for a mature neutron star: a

core region extending to a radius A ∼ 0.9'∗, with density decreasing

by only a factor of a few, followed by a plunge of the density towards

zero over the last ∼ 0.1'∗ of the star’s radius. In comparison with

this, the same cold model rotating at Keplerian velocity has a more

extended envelope, covering the equatorial radius A >
∼ 0.75'∗, with

d again descending smoothly to zero at the stellar surface. Finally,

we compare this maximally-rotating cold model with an extremely

hot counterpart. The hot model also has an extended envelope, but
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typical nuclear-physics units, as a function of enclosed mass m in

units of M⊙ , to allow for direct comparison with plots from the proto-

NS literature. The model shown is non-rotating and unmagnetised,

with B10 = 1.

with a smoother transition at the envelope-core boundary. In the hot

envelope d descends more gradually than in the cold model, being

held up by the thermal pressure.

We have seen the effect of Keplerian velocity and high temper-

ature along an equatorial radial spoke; we now look at the rest of the

star’s density distribution, through the contour plots of Fig. 11. With

twenty equally-spaced contours in each case, we see a bunching of

contours in the outer core followed by a single extended region,

wider at the equator, corresponding to the envelope. The contours

are slightly smoothed out at higher temperatures. What the plot

cannot convey is the changes in central density and radius, so we

plot the variation of these with B10 in Fig. 12. We see the equa-

torial radius of our canonical model – 12 km at zero temperature

and without rotation – can almost double for the hottest model at

Keplerian rotation. At the same time, the central density roughly

halves.

Finally, we plot the effect of increasing temperature on the Ke-

plerian rotation rate of the star in Fig. 13. For the hottest model this

maximum rotation rate decreases rather dramatically, by roughly

one third, compared with the cold model. Recall that we have

checked this behaviour is not peculiar to our particular choice of

envelope polytropic index #1 = 4, but is seen with lower values

of #1 too. The results for Keplerian configurations plotted in Figs.

11-13 are in very good agreement with the work of Haensel et al.

(2009), who present approximate relations for stars at Keplerian
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Figure 10. Density profiles along the equator (G-axis) as a function of

dimensionless radius. Solid, dashed and dotted lines correspond to: B10 =

0,Ω = 0 ; B10 = 0,Ω = Ω ; B10 = 2,Ω = Ω .

rotation as a function of their non-rotating counterparts. In partic-

ular, with their formula '∗ (M, a = a ) = 1.44'∗ (M, a = 0)

one can accurately predict the radii in the right-hand panel of

Fig. 12 given the values of the left-hand panel. Another formula,

aK = 1.08 kHz(M/M⊙)
1/2 ('/10 km)−3/2, successfully repro-

duces Fig. 13, again given the a = 0 values for equatorial radii

(recall that all our models presented here have mass M = 1.4M⊙).

6.4 Magnetic-field structures

We now present some representative results for the magnetic field

of a late proto-NS. Firstly, we look at a linked poloidal-toroidal

magnetic field configuration; see Fig. 14. A very hot model, with

B10 = 1.5, is compared with its zero-temperature counterpart. Al-

though non-rotating, the two stars are slightly oblate by virtue of

dominantly-poloidal magnetic fields (strong toroidal fields, by con-

trast, induce prolate distortions). In fact, all such self-consistent

zero-temperature equilibria found to date feature a poloidal compo-

nent that is energetically dominant, with the magnetic energy in the

toroidal component Etor
mag being only a small fraction of the total;

one motivation for the work reported here was to see whether the

same remained true for hot proto-NSs.

Fig. 14 demonstrates that the temperature of a NS plays essen-

tially no role in determining the star’s magnetic-field structure, with
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Figure 11. Density contours of three NS models rotating near Keplerian velocity; the outer contour shows the stellar surface. Units are dimensionless radii,

normalised to the equatorial stellar surface. From left to right, B10 = 0, 1, 2.
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Figure 13. Keplerian rotational frequency a = Ω /2c as a function of

B10. Very hot models are seen to break up at notably lower rotation rates.

the two models being indistinguishable. This strongly suggests that

our simplified model for the thermal physics is perfectly adequate

for this problem. Although we have chosen free functions in order

to maximise the importance of the toroidal component (see section

5.2.1), only 8.5% of the magnetic energy is stored in the toroidal

component in both the hot and the cold models. The key difference

is in the magnitude of the magnetic field, showing that a hot NS is

more readily distorted by a magnetic field than its cold counterpart.

We will explore this more in section 6.5.

Finally, in Fig. 15 we compare the distribution of toroidal

field within two linked poloidal-toroidal models, and one purely-

toroidal model, all rotating at Keplerian velocity. We consider three

hot proto-NSs models, with B10 = 1.5; again, their cold coun-

terparts are very similar in structure, but with different magni-

tudes. In the linked poloidal-toroidal models, we see that a slightly

stronger toroidal component is possible compared with the almost-

spherical non-rotating models of the previous figure: one model

has Etor
mag/Emag = 10.7%. We see an effect already known from

cold models (Bucciantini et al. 2015; Armaza et al. 2015): as the

maximum strength of the toroidal component is increased, the re-

gion it occupies decreases, leading to locally-intense toroidal fields

whose contribution to the total magnetic energy is no larger than

for locally-weaker counterparts.
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Figure 14. Two non-rotating models, slightly oblately distorted by the magnetic field. With the colourscales we

plot the magnitude of the poloidal (left) and toroidal (right) field components, in units of gauss, together with the

poloidal field lines. The dashed lines show the stellar surface. Top: B10 = 0, bottom: B10 = 1.5. These models

feature around the strongest toroidal component, in terms of its contribution to the total magnetic energy, that

our numerical method is able to find: Etor
mag/Emag = 8.5% for both. The magnetic-field structure of the hot

model is virtually identical to the cold one, although the magnitudes of the field components are lower.

Figure 15. Toroidal field strength (colourscale) for three models with B10 = 1.5 and Ω = Ω , and all with an average internal field strength of 2 × 1016 G.

The dashed line denotes the stellar surface. Left and middle: the toroidal component of a linked poloidal-toroidal field model with Etor
mag/Emag = 5% (left) and

10.7% (middle). Right: a purely-toroidal field model.

6.5 Ellipticity

The magnetically-induced ellipticity, measuring the distortion

from sphericity of a star’s mass distribution, is of interest, as

a star with misaligned rotation and magnetic axes will emit

continuous GWs at a magnitude proportional to this distortion

(Bonazzola & Gourgoulhon 1996). We find that it is somewhat eas-

ier to distort a hot star than a cold one. We constructed a number of

magnetised and non-rotating models for a given B10, always find-

ing that the results were in excellent agreement with the expected

quadratic scaling n = :�2. We then repeated the procedure for

different values of B10 ≤ 1.5, finding that increases in n were pro-

portional to B2
10

. Combining these results, we find a reasonable fit

(deviating by less than 3% from all results) to the magnetically-

induced ellipticity of a hot NS to be:

n = 10−5 (3.0B2
10+8.3)

(
�pole

1015 G

)2

= 10−6 (2.3B2
10+6.5)

(
�av

1015 G

)2

MNRAS 000, 1–22 (0000)



Magnetic fields of PNSs 19

(103)

for poloidal fields, and

n = −10−6 (2.1B2
10 + 6.9)

(
�av

1015 G

)2

(104)

for toroidal fields. In this latter case the ellipticity is negative, since

the induced distortion is prolate. The results are only reported as

a function of �av, since the toroidal magnetic-field strength drops

to zero at the surface. The above formulae can readily be con-

verted to a function of central temperature instead of entropy, using

equation (102). Finally, results for mixed poloidal-toroidal models

are not reported; the toroidal component only marginally reduces

the oblateness (and therefore the ellipticity), since it occupies an

insignificant low-density fraction of the stellar volume.

In the quadrupole formula for gravitational radiation, the ellip-

ticity multiplies the moment of inertia of the star. The increase in n

we find could conceivably have been cancelled by a corresponding

decrease in the moment of inertia, thus leading to no enhancement

in the GW signal; however, upon checking this we found the moment

of inertia varies very little with temperature (and, in fact, increases

slightly).

6.6 Multipolar structure

Solution of the magnetic-equilibrium equations requires a multi-

polar decomposition of the exact vector equations into an infinite

series of scalar equations in terms of different multipoles. Clearly

one cannot in practice solve this infinite system, and must truncate

the multipolar expansion at some value of the angular index. For

semi-analytic models (e.g. Ciolfi et al. (2010)) it is only practicable

to retain a few multipoles at best; in our numerical study we have

the luxury of producing equilibria including the contributions of

higher multipoles with little extra computational time.

In solving for a large-scale, global magnetic-field equilibrium,

it is natural to expect the solution to be dominated by low-multipole

contributions – but it is not clear how many multipoles should be

retained for a faithful approximation to the exact infinite-multipole

result. We check this in Fig. 16, for a linked poloidal-toroidal field

whose toroidal component is very intense and localised in the outer

equatorial region. We show only the poloidal component – strength

and magnitude – since the toroidal component looks similar in each

case. We find a major difference in the magnetic-field structures

coming from truncating at low and high multipoles, and even be-

tween the ; = 16 and 32 models; truncation for ; > 32, on the

other hand, makes little difference. This is also seen in the ra-

tio Etor
mag/Emag , which is 2.4%, 3.4%, 8.2%, 8.5% respectively for

; = 1, 4, 16, 32.

We have undertaken similar comparisons for other cases. They

are not plotted for reasons of brevity, but we find that high multipoles

are similarly important in any magnetic-field model with significant

stellar distortion (either from the magnetic field or rotation), but

less so for almost-spherical poloidal-toroidal models without strong

toroidal components. Only in this latter case (dominantly poloidal

fields) is it safer to terminate at low multipoles.

In almost-spherical stars without extremely strong toroidal

field components, the solution is seen to be dominated by the dipole

component. However, for very intense toroidal components and/or

significant stellar distortion, we see that a large number of multi-

poles must be summed before artefacts of the truncation cease to be

visible.

7 DISCUSSION

The primary motivation for undertaking this work was to study

differences between the magnetic fields of young and mature NSs.

They have turned out to be very similar, a result that raises more

questions than it answers. In closing, it is therefore natural to discuss

the implications of this result, and how realistic and general our

results are.

7.1 Comparing cold and hot models

There were reasons to anticipate differences between cold and hot

models. The strong thermal pressure – accounting for a substantial

fraction of the star’s total pressure for our hottest models – rep-

resents a new piece of physics compared with a cold star. At the

same time, we have not accounted for any kind of buoyancy force,

even though they may play a role in a real proto-NS’s equilibrium;

see section 3.2. The field is again governed by the Grad-Shafranov

equation for barotropic fluids, whose solutions are only weakly af-

fected by differences in the star’s pressure/density distribution. The

core’s thermal pressure %th ∝ d5/3, which is not significantly dif-

ferent from the adiabatic index of 2−3 for the zero-) core pressure.

We believe these two effects – the similar pressure distribution and

the lack of buoyancy force – are the key reasons why the magnetic

fields of hot equilibria are so similar to their cold counterparts. It

also suggests that a relativistic version of our Newtonian equilib-

rium model – essentially amounting to changing the gravitational

potential – would give similar results.

7.2 Relative strengths of poloidal and toroidal components

All of our new magnetic-field configurations for hot NSs are – like

their cold predecessors – energetically dominated by the poloidal

field component (the only exception being purely toroidal fields –

but these are unstable and, having no exterior component, would not

be directly observable). This is in conflict with a number of other

pieces of work that rely on a NS’s magnetic field being dominated

by its toroidal component. Typical supporting evidence invoked for

dominantly-toroidal fields is the work of Braithwaite (2009) and

Akgün et al. (2013), but we argue that the strong buoyancy forces

required to support these equilibria may not exist in the proto-NS

phase (and perhaps not at later stages either). To our knowledge

the only barotropic NS model with a dominantly toroidal field is

that presented in Ciolfi & Rezzolla (2013). With a careful choice

of the magnetic functions 5 (D) and " (D) (see section 5.2.1), they

were able to control the magnetic-field structure and produce a

much wider range of poloidal- and toroidal-component strengths;

see also Fujisawa & Eriguchi (2015) for a physical interpretation of

this choice.

We have also experimented with a range of different choices

for 5 (D), " (D), including those of Ciolfi & Rezzolla (2013), but all

of our resulting equilibria resemble those of Fig. 14 instead of ever

having dominant toroidal components. There are two significant dif-

ferences in our approach: firstly, our study involves numerical solu-

tion for self-consistent equilibria rather than an essentially analytic

approach; secondly, that we retain a far higher number of multipoles

in our solution (Ciolfi & Rezzolla (2013) only allowed for a dipole,

; = 1, field component). During our iterations we observe that even

if we start with a larger region of toroidal field, as engineered by a

careful choice of 5 (D), " (D), this shrinks rapidly before the itera-

tive method converges. How can we explain this disagreement? One

possible scenario is that there is more than one branch of solutions
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Figure 16. The effect of truncating equilibrium solutions at different multipoles. The magnitude (colourscale) and direction (lines) of the poloidal component

of a linked poloidal-toroidal field are plotted for truncation at ; = 1, 4, 16 (left to right). All demonstrate unphysical artefacts from the truncation; convergence

to a smooth solution is only achieved at ; = 32, shown in the bottom-left panel of Fig. 14.

to the Grad-Shafranov equation, and that our code ‘picks’ only a

particular poloidal-dominated one. Another – and we believe more

likely – possibility is that the results of Ciolfi & Rezzolla (2013) are

only approximate equilibria, resulting from truncating at the dipole

component and not considering the backreaction of the field – and

that true self-consistent equilibrium models all resemble those we

present in this work. We have already seen the dangers of truncat-

ing at low multipoles: in section 6.6, it was shown to cause serious

errors in the resulting field configurations, including in the ratio

Etor
mag/Emag .

Further evidence for the universality of our poloidal-dominated

equilibria is that at least two other independent numerical studies

have also used the prescription of Ciolfi & Rezzolla (2013) without

managing to obtain toroidal-dominated equilibria (Bucciantini et al.

(2015); Armaza, private communication). The common feature of

all three numerical codes seems to be the retention of high multi-

poles in the solutions; Fujisawa & Eriguchi (2015) also pointed out

the likely importance of higher multipoles in their analysis of this

problem. Finally, we note that non-linear evolutions of of an initially

unstable magnetic field tend to show saturation to a state (albeit a

dynamic one, not a strict equilibrium) with Etor
mag/Emag <

∼ 25%

(Lasky et al. 2011; Ciolfi et al. 2011; Sur et al. 2020).

7.3 Stability and rearrangement of the field

We have argued that the magnetic field in a late proto-NS can be

reasonably described as an equilibrium, and that such an equilib-

rium configuration appears to be poloidal-dominated in all cases.

This has several implications. Firstly and most seriously, it has

been argued that a stable magnetic equilibrium needs both poloidal

and toroidal components, with at least comparable energies (Tayler

1980) – which would imply there are no astrophysically rele-

vant equilibria for proto-NSs at all. Qualitatively similar magnetic

fields in zero-temperature models have been shown to be unstable

(Lander & Jones 2012), with the instability for poloidal-dominated

fields developing in the region of closed field lines (where the

toroidal component is also present). A glimmer of hope for the

models presented here is that the temperature gradient may have

a stablising effect; in addition, although the toroidal component is

not energetically dominant, it can be locally comparable in strength

with the poloidal one in the most unstable region of the star.

A second implication of our results is that a number of scenar-

ios relying on a newborn NS having a strong toroidal field may be

irrelevant, if no such field configuration exists. It is quite conceiv-

able that differential rotation drives a strong amplification of the

toroidal field component shortly after birth, but once this driving

force ceases the field must rearrange into a state like our models.

This suggests that at this early stage the magnetic field may shed

a considerable amount of energy in its attempt to become an equi-

librium state – an event likely to be powerful enough for detection.

Furthermore, we have found that very rapidly-rotating stars can

support stronger toroidal fields than non-rotating ones; this hints

at another possible source of energy release from magnetic-field

rearrangement on the star’s spindown timescale.

All our conclusions apply to relatively strong magnetic fields;

see section 1.2. If instead the birth field is weak, so that the charac-

teristic time for rearrangement is longer than the cooling timescale,

we anticipate that it may avoid substantial rearrangement. Weaker

NS magnetic fields could then have qualitatively different structures

from stronger ones.

7.4 Lower break-up velocity

We find that a very hot proto-NS reaches break-up (Keplerian) ve-

locity at a far lower rotational frequency than a cold model: by a

factor of about a third. Our piecewise-polytropic treatment of the

cold equation of state leads to a value of a = 960 Hz for a 1.4M⊙

cold star, in excellent agreement with the value a = 970 Hz result-

ing from the approximate formula in Haensel et al. (2009) (within

the range of accuracy of this approximation), but this drops below

a = 700 Hz for the hottest models, which can be explained by the

significantly larger radii of these stars. Since the star is born hot,

it is this latter, smaller value of a that sets the effective limiting

rotation rate in the star’s early life. Note that for all plausible field

strengths (� <
∼ 1017 G), the magnetic field has no effect on the value

of a (Lander & Jones 2009). This low value of a may make it

more difficult to realise various interesting scenarios: gravitational

waves from unstable A- or 5 -modes in rapidly-rotating newborn

NSs, or millisecond magnetars and their associated electromag-

netic/gravitational radiation. Our limiting rotation rate is however

not relevant for explaining the puzzle of rotation rates of old, re-

cycled NSs having an upper limit well below a , since for this

scenario the cold value is relevant.
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7.5 The future of the proto-NS’s magnetic field

The majority of observed NSs have strong magnetic fields with

large-scale structure. They have no obvious mechanism for regener-

ation of magnetic flux, indicating that the field remaining at the end

of the proto-NS phase is not substantially dissipated over thousands

of years. We have argued, however, that instabilities may plague our

models – and such instabilities involve widespread disruption to the

magnetic field and turbulent fluid motions, which are likely to cause

a major loss of magnetic energy.

The resolution to this contradiction could be an additional piece

of proto-NS physics – for example, if differential rotation persists

into this late stage and allows for a stronger toroidal field than in our

models – or the advent of a new stabilising mechanism as the star

cools. A day into its life, with a temperature not much above 109

K (Gnedin et al. 2001), a NS will have started developing two such

candidate mechanisms: a modest but growing region of supercon-

ducting protons in its core, and solidification of its envelope into a

crust, starting from the boundary with the core and slowly moving

outwards. Both may inhibit magnetic instabilities: the former by

changing the local structure and dynamics of the field, and the latter

by providing an elastic force to resist unstable motion.

Two factors may assist the crust in stabilising the stellar mag-

netic field. Firstly, although the toroidal-field component might not

itself stabilise the poloidal-dominated field, it can help indirectly

by pushing the unstable closed-field-line region outwards into the

crust (see section 6.4). Secondly, a strong magnetic field induces

the formation of an extended inner crust region (Fang et al. 2017),

which could be as much as ∼ 1 km in a magnetar, thus increasing

the likelihood of the closed-field-line region coinciding with the

crust (Sengo et al. 2020).

7.6 Outlook

The study of NS magnetic fields has reached a juncture, where

quantitative models tend to include only very simple physics, and

where consideration of more realistic physics is often speculative

and qualitative. Quantitative studies of the birth phase of NS mag-

netic fields are likely to be crucial to improving this situation: the

dynamo processes generating magnetic flux straight after birth, the

immediate post-dynamo phase in which the field should presumably

relax into an equilibrium, and the later formation of a solid crust and

superconducting regions in the core. We have tried, in this work, to

take a first step in that direction.
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