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Abstract 
 

Epigenetic abnormalities have been implicated in a wide variety of disorders and 

as such are of increasing interest as potential drug targets. Histone deacetylases 

(HDACs) and Lysine Specific Demethylase 1 (LSD1) are two such targets that 

have received significant attention in recent times. Although both enzymes have 

been found to be crucial in several regulatory roles, their overexpression has 

been observed in a number of cancers. Several HDAC inhibitors are already 

approved for use in various cancers and a number of LSD1 inhibitors are currently 

in clinical trials.  

The lack of approved inhibitors for LSD1 and the lack of isoform specific inhibitors 

of the HDACs suggests a need for further research and development in both of 

these key areas of epigenetic drug discovery. In addition, the ability of cancer as 

a disease to become resistant to treatment is a major hurdle. 

Evidence is now emerging that combining both HDAC and LSD1 inhibitors can 

have a synergistic effect in cancer. To that end, we have developed a dual 

LSD1/HDAC inhibitor based upon the structure of GSK2879552, the clinical 

candidate of GlaxoSmithKline. This dual inhibitor aims to take advantage of any 

synergistic effect between LSD1 and HDAC, as well as addressing the problem 

of drug resistance through the mode of dual target engagement.  

Further, we have developed a novel, potent, LSD1 inhibitor with good in cell 

activity. This was followed up with the synthesis of several analogues with the 

aim of working towards further structure optimisation.  

Work on our dual inhibitor, led to the development of two novel HDAC6 inhibitors 

with promising activity both in and out of cell. Again, the series was extended in 

order to determine if this activity could be further improved. 

Finally, a novel HDAC inhibitor comprising a carboxylic acid zinc binding motif, 

and low µM levels of activity is presented. 
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Chapter One 

 
1. Introduction 
1.1. Epigenetics, a quick look at the past. 
 
Although epigenetics is seen as a relatively modern branch of science, the 

concept of epigenetics has been around for some time. As far back as 
Hippocrates and Aristotle the idea of inheritance of acquired characteristics is 

put forward.1 Sometimes referred to as ‘soft inheritance,’ this is the theory that 
offspring may inherit traits acquired by their parents. In the early 19th century this 

school of thought became widely associated with a French naturalist by the 
name of Jean Baptiste Lamarck, and the idea of inheritance of acquired 

characteristics became known as Lamarckism.2 
The term ‘epigenetic’ itself, was not coined until 1939. In his book: An 

Introduction to Modern Genetics, developmental biologist Conrad Waddington, 
used the term to link the classical embryological theories of preformation and 

epigenesis.3 Preformation is the belief that the organism is somehow preformed 
in its embryonic state and that development is simply the miniature form 

unfolding into its adult form. Epigenesis is a competing theory in which the 
organism is not fully formed as an embryo but develops gradually over time by 
the addition of parts. Waddington suggested that although development 

proceeds on the ‘preformed’ qualities of the fertilised egg, its constituents 
interact to give rise to new types of tissue and organ not originally present, 

saying that this development must be considered ‘epigenetic’. He later 
introduced the idea of canalisation, as a way of explaining why it may be that 

some acquired traits persist into offspring while others do not.4 This led to his, 
now famous, epigenetic landscape illustration (Figure 1.1).5 This illustration is of 

an undulating landscape that represents the developmental pathway from 
genotype to phenotype. Marbles are shown to be rolling down this landscape 

from the highest point, representing the genotype, through a series of forks and 
slopes, before finally coming to rest at various phenotypic outcomes. The idea 

is to show that by manipulating the landscape, i.e. changing the environmental 
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conditions of the organism, one could change the phenotypic outcome without 

the need to change the genotype. He experimentally showed that by selectively 
breeding organisms with a desired characteristic, within a few generations’ 

offspring would display that characteristic without the need for environmental 
stimulation. 

 

 

Figure 1.1. Waddington’s Epigenetic landscape. 
(Used with permission)5 

The single groove at the top of the hill represents the genotype of the organism while 
the marble, when at the top, represents an undifferentiated cell (zygote). As the marble 
rolls down the landscape it makes ‘choices’ at various forks thus denoting the cell 

becoming more specialised as it does so. The troughs at the bottom denote specific 
phenotypes at which the differentiated cell comes to rest. The nature of the illustration 
implies the marble cannot go back up the hill or over to a different trough without outside 

interference, thus showing that once a cell has become specialised it cannot revert back 
to a less specialised state, or, become a cell of a different type. 

 

In 1958 Nanney published a paper giving a slightly different view on the use of 
the term ‘epigenetic’.6 The differences between the use of the term by 

Waddington and that by Nanney are summed up nicely by Haig who says; 
“Waddington introduced ‘epigenetics’ to refer to the study of the causal 

mechanisms by which genes of the genotype bring about phenotypic effects.” 
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Nanney chose ‘epigenetic’ to refer to mechanisms of cellular heredity that were 

not based on the semi-conservative replication of DNA.7 
Although both descriptions could perhaps be interpreted as being correct in 

terms of the modern understanding of epigenetics, it is Nanney’s interpretation 
which is more in keeping with the modern view. 

Modern day definitions of epigenetics are numerous, albeit many of them 
alluding to the same meaning. But perhaps the best way of looking at the subject 

should be based on one’s need of the description. In everyday life epigenetics 
could mean simply the differences observed in ‘identical’ (or more correctly, 

monozygotic) twins, or the difference between a caterpillar and a butterfly. If a 
deeper explanation is required then a molecular description defining epigenetics 

as the biological mechanism by which genes are either activated or silenced 
through reversible changes to genetic material, without any change to the DNA 

sequence itself, may be used. As will become apparent, it is this second 
description which is most appropriate to this work. 

 
1.2. A more modern view. 
Deoxyribonucleic acid (DNA) is the blueprint of all life. In human somatic cells, 

DNA is composed of approximately 3 billion base pairs making up 23 pairs of 
chromosomes. Of those only around 1.5% make up genes, sections of DNA 

which code for proteins, and it is these genes which are responsible for all life. 
Any changes to the genomic sequence of these genes can therefore have 

devastating effects. One example of this is sickle cell anaemia, a disease which 
affects the shape of red blood cells thus inhibiting their proper function. Red 

blood cells consist of four proteins bound together in a quaternary structure, two 
alpha-chains and two beta-chains. The beta-chains are coded for by the HBB 

gene, found on chromosome 11 and made up of 1605 base pairs. A single point 
mutation of this gene, in which adenine is substituted for thymine, leads to a 

glutamic acid residue being replaced by valine at position 6 in the protein.8 The 
result of this is a decrease in the hydrophilicity in that region of the beta-chain 

which thus enables adjacent chains to associate via hydrophobic interactions.  
This has the effect of aggregation between the beta-chains of affected cells thus 
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deforming the cells and inhibiting their function. A second example is Tay-Sachs 

syndrome, a condition in which a deficiency of beta-hexosaminidase A leads to 
the toxic build-up of GM2 gangliosides in the cells of the spinal cord and brain. 

Beta-hexosaminidase A is an enzyme of which one sub-unit is coded for by the 
HEXA gene. According to the Human Gene Mutation Database (HGMD) there 

have been 169 different mutations to the HEXA gene reported to date, with 148 
of those resulting in Tay-Sachs9, many of which are due to single point 

mutations.  
These examples are two among many and illustrate the importance of keeping 

the genome safe from damage. In order to accomplish this, nature has come up 
with a number of ways to both protect and repair DNA. The double helix structure 

of DNA itself is one such method. By having two strands bound to one another, 
exposure of the base pairs is limited and hence less prone to damage. It also 

ensures that following cell division, each cell has one original copy of DNA 
therefore ensuring faithful replication and reducing the chance of mutation due 

to error. A further protective measure is seen in the way DNA is packaged within 
the nucleus. DNA is wound around proteins called histones. This histone-DNA 
complex, called a nucleosome, consists of an octamer of eight histone proteins 

along with a section of 146 base pairs of DNA. The nucleosomes are in turn 
linked by a section of DNA called linker DNA, made up of various lengths of non-

coding base pairs.10 The sugar phosphate backbone of DNA is anionic at 
physiological pH and can therefore bind electrostatically to the cationic lysine 

and arginine residues found on the tail like structures of the histone proteins. 
When DNA is bound like this, the genetic material is inaccessible and hence less 

prone to damage. However, this inaccessibility also means the coding parts of 
the DNA, the genes, are unavailable for transcription. The system which has 

evolved to remedy this is an epigenetic one.  
In order for genes to become accessible, the section of DNA containing the 

required gene must dissociate from the histone. This mean that either the DNA 
must become less anionic or the histone must become less cationic so as to 

decrease their affinity for one another. The latter is one solution chosen by nature 
and is accomplished by post-translational modification of the histone tails. 
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Functionalisation of certain residues, such as acetylation of lysine, has the effect 

of neutralising the charge on that residue and hence the histone. This allows the 
DNA at that point to unwind and become transcriptionally active. This process 

is reversible and with the functionalised residue restored, the affinity of the 
histone for the DNA returns and the gene is once again made inaccessible and 

inactive (Figure 1.2).  

 
 

 
 

Figure 1.2. The effect of histone modification on gene activation. 
 
(a) DNA tightly bound to histones and hence the genes are inaccessible and silenced. 

(b) Acetylation of the lysine residues on the histone tails results in a loss of affinity 
between the DNA and the histone. The DNA unwinds from the histone and the gene 

becomes activated and open to transcription. 
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This dynamic regulation is carried out by three groups of proteins commonly 

known as ‘writers’, ‘erasers’ and ‘readers’. The writers functionalise 
macromolecules susceptible to epigenetic change. These changes include 

methylation (Arg and Lys), acetylation (Lys), phosphorylation (Ser and Thr), 
ubiquitination (Lys) and sumoylation (Lys). The erasers remove these groups and 

the readers recognise the marks that make up this ‘epigenetic code’ and help 
facilitate various processes such as transcription. 

Probably the most studied epigenetic modification, and one focus of this work, 
is methylation, which cannot only occur at the arginine and lysine residues of 

histones, but can also occur on DNA itself, as well as at many other proteins. 
Methylation of DNA occurs at the C5 position of cytosine to give 5-

methylcytosine (5mC). The change is considered epigenetic as no 
accompanying change to the base sequence is observed. The ‘writers’ in terms 

of DNA methylation are DNA methyltransferases (DNMTs). They are a family of 
five enzymes, Dnmt1, Dnmt2, Dnmt3a, Dnmt3b and Dnmt3l.  All methylate 

cytosine, (Dnmt2 methylates cytosine at position 38 in aspartic acid tRNA),11 
through the recruitment of co-factor, S-adenosyl methionine (SAM), which 
donates a methyl group to cytosine, becoming S-adenosyl homocytesine (SAH) 

(Scheme 1.1).12  



 8 

 
Scheme 1.1. A mechanism for the methylation of cytosine in which SAM acts 

as co-factor.12 

 
Methylation of cytosine occurs at CpG sites, regions of the genome in which 

cytosine and guanine are linked by a phosphate group. The CpG notation 
distinguishes this from cytosine-guanine base paring (CG) between which there 

is no phosphate. When CpG sites in promotor regions are methylated, proteins 
containing methyl binding domains (MBDs) are able to bind to them, thus 

preventing the necessary transcription factors from making contact and so 
silencing the gene.13 Gene silencing by methylation is a normal and required part 
of mammalian development14 but it can also be a source of disease, specifically, 

cancer. Hypermethylation of the CpG promotor regions of tumour suppressor 
genes, for example, can cause unwanted gene suppression and ultimately lead 

to the development of cancer.15  
 
1.3. Methylation of lysine 
There are currently six known sites of lysine methylation on histones: H3K4, 

H3K9, H3K27, H3K36, H3K79 and H4K20. Although all can lead to both 
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activation and deactivation of genes depending on their methylation state, each 

is generally associated with one or the other. For example, H3K4 is strongly 
linked to gene activation in both methylated and acetylated states. It does this 

via the promotion of postitive transcription factors in place of negative ones, and 
so H3K4me3 will promote the binding of  chromodomain-helicase-DNA binding 

protein 1 (CHD1)16 for example, while blocking the binding of nucleosome 
remodelling and deacetylase (NuRD) complex.17 Each can exist as an unmodified 

lysine or can be mono, di or tri-methylated and although long believed to be 
irreversible, the reversibility of lysine methylation was established in 2004 with 

the first reported lysine demethylase, Lysine Specific Demethylase 1 (LSD1).18 
This reversibility established lysine methylation as being able to take part in the 

dynamic process of gene activation and silencing. If the process were an 
irreversible one, then methylation would simply result in the permanent 

activation or repression of genes which is often seen in faulty systems resulting 
in disease. 

Methylation of lysine is facilitated by a range of enzymes collectively known as 
lysine methyltransferases (KMTs). There are currently more than thirty KMTs and 
all but one (DOT1L) contain the SET domain. All these SET-domain KMTs have 

a structurally conserved SAM binding pocket which facilitates the catalytic 
transfer of a methyl group to the lysine residue. One example is that of Ezh2, the 

catalytic subunit of Polycomb Repressive Complex 2 (PCR2). Ezh2 is non-
catalytic as a single entity, but in complex with two other non-catalytic subunits, 

it gains KMT function via its SET domain.19 Ezh2 is capable of mono, bi and 
trimethylation of H3K27 with trimethylation considered its primary function in 

vivo.20 It acts as a transcriptional repressor,20,21 although variants have also been 

implicated in transcriptional activation in a wide variety of cancers.22 As with all 

SET domain containing KMTs, methylation occurs via transfer of a methyl group 
from SAM, to give the corresponding H3K27me/me2/me3 residue, (Scheme 
1.2).23 
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Scheme 1.2. Methylation of H3K27 via mechanism proposed by Fortin et al. 

Evidence supporting the proposal that H3K27 is deprotonated by bulk solvent, which 
has access via a channel to the active site, is given. This shows that lysine deprotonation 

is enzyme-dependent and rate limiting and is unlikely to occur prior to binding.23  

 
1.4. Demethylation of Lysine 
There are two families of lysine demethylases (KDMs) comprising of more than 
25 enzymes. The bulk of those are the Jumonji C domain containing histone 

demethylases (JHDMs) which can demethylate all three lysine methylation 
states. This is achieved through the use of both α-ketoglutarate (αKG) and Fe(ll) 
co-factors. Fe(ll) coordinates both αKG and molecular oxygen thus allowing 

nucleophilic attack of O2 on αKG and releasing CO2 to give succinate and a 
highly reactive Fe(lV)=O species. Fe(IV)=O then hydroxylates the methylated 

lysine which then spontaneously decomposes into formaldehyde and 
demethylated lysine (scheme 1.3).24 
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Scheme 1.3. Fe(ll) mediated mechanism employed by JHDMs.24 

 

In contrast, the second family of KDMs which contains only two members, 
LSD1/KDM1A and LSD2/KDM1B, are incapable of removing methyl groups from 

trimethylated substrates. The reason is that the mechanism used requires the 
presence of a lone pair of electrons in order to facilitate the demethylation 
process.  LSD1/2 do not use iron cofactors but instead rely on flavin adenine 

dinucleotide (FAD) for their catalytic activity. Hydride transfer between this FAD 
cofactor and the lysine nitrogen lone pair is the most likely pathway taken and 

hence with the nitrogen lone pair tied up in trimethyl-lysine, this pathway would 
be unavailable. Reduced FADH2 is then oxidised with molecular oxygen to give 

hydrogen peroxide, while the imine is hydrolysed with water to give the same 
carbinolamine intermediate seen in the Fe mediated reaction above. This then 

collapses as before to give the demethylated lysine and formaldehyde by-
product (scheme 1.4).24 
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In LSD1 the FAD cofactor is embedded in the amine oxidase domain, the largest 

part of the 852 amino acid chain, made up of 457 residues. In addition, LSD1 
also consists of a 99 residue SWIRM domain and a 105 residue long Tower 

domain which splits the amine oxidase domain (Figure 1.3).25 It is this Tower 
domain, along with a lack of two zinc finger domains, which distinguish LSD1 

from LSD2. The Tower domain is an important feature, as it facilitates binding to 
several interacting proteins such as CoREST, CtBP1, HDAC1/2, snail and 

metastasis-associated protein (MTA).26, 27 These binding partners have been 
shown to be important in the demethylase activity of LSD1 by mutational 

deletion of the Tower domain.26 

 
Scheme 1.4. FAD dependent demethylation mechanism of LSD1.24 

 

The main histone substrates of LSD1 are mono and di-methylated lysine 4 and 
9 on histone 3 (H3K4me/me2 and H3K9me/me2). Demethylation of H3K4 has 

been linked to transcriptional repression while demethylation of H3K9 has been 
shown to aid transcriptional activation.28 In addition, LSD1 has also been 

reported to act upon a number of non-histone substrates. The tumor-suppressor 
p53 is one such target, specifically K370me2 of p53. By demethylating K370me2 

to k370me, p53 has a decreased affinity for the coactivator binding protein, 
53BP1. This lack of interaction with its coactivator means that mono-methylated 

p53 becomes transcriptionally repressed in terms of its pro-apoptotic function.29 
Furthermore, this LSD1-p53 complex results in an increased specificity of LSD1 
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for histone substrate H3K4me2.30 This suggests that p53 may well recruit LSD1 

in order to aid chromatin moderated gene regulation.  
A second example of a non-histone substrate of LSD1 is DNMT1. As discussed 

above, DNMT1 is a writer responsible for the methylation of DNA at the C5 
positon of cytosine. Its function is the maintenance of methylation patterns on 

DNA following DNA replication. Methylation at K1096 of DNMT1 can lead to 
degradation of this protein, but LSD1 mediated demethylation stabilises the 

protein and hence allows it to carry out its function.31 An interesting point of note 
is the lack of similarity shown between these non-histone substrates and their 

histone counterparts given the high level of specificity LSD1 seems to show for 
histone position. A greater understanding of this substrate recognition could 

therefore be useful when attempting to therapeutically target LSD1. It should be 
noted at this point that although there are numerous literature examples of non-

histone proteins as LSD1 substrates,29,32–39 there is yet to be given sufficient 
evidence given which confirms these as true LSD substrates.40 

 
Figure 1.3. Ribbon diagram of LSD1. 

 
Showing the SWIRM domain in red, the Tower domain in yellow and the amine oxidase 
domain (AOD) in blue with the FAD binding site in the AOD shown in green. Adapted 
from PDB entry 2HKO using PyMOL software. 
 
LSD1 appears to be required for the regulation of many biological processes. 
One such process which exemplifies this is the key role played in the formation 
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of blood cells. In conjunction with the methyltransferase, mixed-lineage leukemia 

1 (MLL), LSD1 has been shown to be essential in the maintenance of several 
blood cell types through the stages of differentiation from hematopoietic stem 

cells right through to granulocytes and possibly B cells, T cells and NK cells 
(Figure 1.4). Studies in which bone marrow contained LSD1 deficient cells, 

showed an inability to produce both myeloid and lymphoid progenitor cells, thus 
highlighting the critical role of LSD1 in this process.41 

 
Figure 1.4.  The differentiation pathway for the formation of blood cells. 

 
The process begins with pluripotent hematopoietic stem cells, which are themselves 
maintained by MLL and LSD1. They then differentiate into common myeloid and 
lymphoid progenitor cells via a pathway in which LSD1 is required. These progenitor 
cells then give rise to all other blood cells. LSD1 is believed to be required in the 
formation of erythrocytes, granulocytes and perhaps the B,T and NK cells of the immune 
system.41  
 
1.5. Irreversible inhibition of LSD1, the beginning. 
Monoamine oxidase (MAO) are a family of enzymes which, as their name 
suggests, catalyse the oxidation of monoamine substrates. They are found in 
the outer membrane of mitochondria and, amongst other things, metabolise 

certain neurotransmitters such as dopamine, serotonin and noradrenaline. Like 
LSD1, MAOs have a covalently bound FAD cofactor which features in its 

catalytic mechanism, converting amine substrates to the corresponding imine 
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prior to hydrolysis to the appropriate carbonyl compound. Of course, the 

difference is the substrate and so while MAO converts its amine substrate into a 
carbonyl, LSD1 removes methyl groups from methylamines with the 

corresponding loss of carbonyl by product, formaldehyde. 
The amine oxidase domain of LSD1 gives it an homology with MAO and hence, 

known MAO inhibitors (MAOIs) were the first to be tried in an inhibitory role 

against LSD1. Phenelzine (1.1), tranylcypromine (1.2) and pargyline (1.3) were 

some of the first small molecules studied in this way (figure 1.5), but due to their 

high affinity for MAO and in the case of pargyline their relatively weak inhibition 

of LSD1,42 they were unlikely to ever be marketed as LSD1 inhibitors. Inevitably, 

second generation analogues followed. Bizine (1.4, figure 1.5), was reported in 

2014 with an increased selectivity for LSD1 over MAO-A, MAO-B and LSD2 of 

23-fold, 63-fold and >100-fold respectively (table 1.1). Bizine also showed good 

cancer cell antiproliferation effects, slowing the rate of cellular proliferation in 

LNCaP and H460 with an IC50 of 16 and 14µM respectively. This was an 

improvement on phenelzine which showed less than a 50% reduction of 3H-

thymidine incorporation in H560 cells with 80 µM.43  

 

Enzyme Tested Inhibitor Ki (µM) 
Selectivity for 

LSD1 vs 
Enzyme Tested 

MAOA Phenelzine 0.8±0.4 0.2 
 Bizine 2.6±2.3 22.7 

MAOB Phenelzine 3.9±1.7 1.2 
 Bizine 6.5±4.6 62.5 

LSD2 Phenelzine N/A N/A 
 Bizine N/A >100 

 

Table 1.1. Phenelzine and bizine selectivity profile for LSD1 vs MAOA, MAOB 
and LSD2. 

Adapted from cole et al. supplementary table 1.43 

 

However, bizine is still the only real example of an irreversible LSD1 inhibitor 

based on the phenelzine structure. In contrast, compounds developed around the 

cyclopropane containing tranylcypromine (TCP) structure are abundant 

throughout the literature. 
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Figure 1.5. Some of the first MAO inhibitors trialled against LSD1 and the 

second-generation analogue of phenelzine. 
 

trans-2-Phenylcyclopropylamine (t-PCPA), also known by its trade name Parnate 

and perhaps most commonly as tranylcypromine (TCP), is a clinically approved 

drug for the treatment of various neurological disorders such as depression.44 

TCP inhibits MAO, resulting in an increase in the level of certain mood elevating 

neurotransmitters, thus alleviating the condition. In 2006 TCP was reported as an 

inhibitor of LSD1 with an IC50 of less than 2µM in addition to showing a global 

increase in H3K4me2 levels and reduced transcriptional activity within cells.45 

Unlike both phenelzine and pargyline, TCP contains two stereocenters. This begs 

the question, which stereoconfiguration is the most active and or specific? A study 

carried out in 2010 by Binda et al. compared the activity of racemic trans TCP 

with both the (1S, 2R) and (1R, 2S) enantiomers.46 The group also looked at the 

activity of the cis (1R, 2R) and (1S, 2S) configurations (Table1.2). They found 

both trans enantiomers and the racemic trans diastereoisomer to be the more 

active than either of the cis enantiomers. In addition, the (1R, 2S) configuration 

was found to be the superior enantiomer with a Ki of 168 µM. All compounds 

were, as expected, clearly more specific to MAO-B, including the cis enantiomers, 

and also much more potent. MAO-B activity was not determined in this study but 

other studies such as that by Hong et al. show both MAO-A and MAO-B to have 

similar activity in both cis and trans configurations, with trans having an IC50  of 

23 and 4 µM and cis of 29 and 8 µM against MAO-A and MAO-B respectively.47 

Interestingly, it seems that TCP also inhibits LSD2 with a comparative level of 

potency as for LSD1. Karytinos et al. reported a Ki of 242 and 180 µM for LSD1 

and LSD2 respectively.48 This was backed up by Binda et al. in 2010 who 

reported a Ki of 271 and 186 µM (Table 1.2). Binda et al. also showed that the cis 

diastereoisomer was superior to the trans with both (1R, 2R) and (1S, 2S) 
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showing a Ki of 131 and 68 µM respectively in LSD2. This is far superior to that 

of the same compounds in LSD1 which show a Ki of 364 and 506 µM (table 1.2).46 

 

   Ki (µM)  

Compound Stereoconfiguration LSD1 LSD2 MAO-A MAO-B 
t-PCPA Racemic trans 271 186 19 16 

t-PCPA (1R, 2S) 168 127 nd 89 

t-PCPA (1S, 2R) 284 137 nd 4.4 

c-PCPA (1R, 2R) 364 131 nd 39 

c-PCPA (1S, 2S) 506 68 nd 50 

 

Table 1.2. The Inhibition of tranylcypromine derivatives against LSD1, LSD2 
and MAO. 

All compounds were in the form of a HCl salt. nd = not determined. Table adapted 
from Binda et al. Table 1.46 
 

As discussed in section 1.4, the LSD1 mechanism of action involves the FAD 

cofactor within it’s active site. TCPs inhibitory action occurs via the formation of 

a covalent adduct between itself and the FAD cofactor.49,50 With the FAD cofactor 

tied up in this adduct, its catalytic function becomes inert and the enzyme thus 

ceases to function. The mechanism by which this occurs is thought to be via a 

single electron transfer (SET) mechanism in which a single electron is transferred 

from the TCP amine to one of the FAD nitrogens. This drives the homolytic bond 

cleavage, which opens up the cyclopropyl ring before the reactive intermediate 

covalently bonds to FAD (Scheme 1.5).  

A second competing theory is that of a hydride transfer mechanism. This would 

seem plausible as it would seem this is the most likely pathway by which the 

demethylation mechanism of LSD1 is thought to proceed (scheme1.4). However, 

X-ray crystal structures showing covalent adducts between the radical 

intermediates and FAD, consistent with a SET mechanism, would seem to make 

SET more likely.46,51,50 In addition, it stands to reason that a hydride transfer 

mechanism of action would lead to reversible inhibition of LSD1 and this has not 

as yet been observed. 
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Scheme 1.5. Inhibition of LSD1 by TCP via adduct formation with its FAD 

cofactor.49,50 

1.6. Irreversible inhibition of LSD1, beyond the first generation. 
 

The relatively weak inhibition and poor selectivity of TCP created an opportunity 

for the development of more potent, selective inhibitors. TCP was indeed a good 

starting point for the development of such inhibitors having been in use for a 

number of years as a treatment for depression and had been found to be 

relatively safe.52 It was also, importantly, known to inhibit LSD1.  

Three possibilities for the modification of TCP exist. Substitution of the aryl ring, 

alkylation of the amine and further substitution of the cyclopropyl ring (Scheme 

1.6). Some of the first modified compounds were introduced by Binda et al. in 

2010. By modifying the para position of the aryl ring, a decrease in Ki from 271 
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µM in TCP to 1-2 µM (1.5-1.7) was observed. In addition, several compounds 

also showed reduced MAO-B affinity from ki = 16µM in TCP to no observed 

inhibition. However, LSD2 and MAO-A were still inhibited with low µM Ki making 

these first inhibitors lack complete specificity for LSD1 (Figure 1.6). 

 

 
Scheme 1.6. Possible positions for the modification of tranylcypromine. 

A. Substitution of the aryl ring. B. Substitution of the cyclopropane ring. C. Alkylation of 

the amine. 
 

 
Figure 1.6. Examples of para substituted tranylcypromine analogues. 

 
Compounds show increased affinity for both LSD1 and LSD2 and reduced affinity for 

MAO-B.46 
 

Functionalisation of the benzene ring was also the target of many other groups, 

predominantly at the para position, with a variety functional groups. Benelkebir et 
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al. showed that simple para-bromination of TCP decreased Ki to 3.7 µM from 25.0 

µM in TCP, while in LNCaP prostate cancer cell lines IC50 decreased from 

>100,000 µM in TCP down to 111 µM.53 

The large size of the LSD1 cavity allows for the development of relatively large 

inhibitors. Ueda et al. designed inhibitors based on the superimposition of the x-

ray crystal structures of an FAD-TCP adduct and an FAD-N-propargyl lysine 

peptide adduct, both in the active site of LSD1. These compounds consisted of 

the amino acid side chain linked to the benzene ring of TCP through an ether 

bond. It was hoped that this group would bind sufficiently to LSD1 while also being 

unable to bind MAO due to the large groups inability to fit into the MAO active 

site. The result was 2 compounds (Figure 1.7, 1.8, 1.9) which showed both 

increased inhibition of LSD1 and decreased inhibition of both MAO-A and B.49 

The meta isomer was later modified by the same group (Figure 1.7, 1.10) by N-

alkylation to afford an inhibitor 6 times more potent than its unalkylated 

counterpart. However it was also reported to show 8 times less activity as an 

antiproliferative agent in HeLa cell lines. The reasoning put forward for the poor 

performance in cell was that binding proteins may have changed the 

conformation of the protein and therefore the shape of the active site.54 This 

compound was not reported as being tested against LNCaP cell lines. 
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Figure 1.7. Examples of more specific LSD1 inhibitors developed around the 
TCP scaffold.49,54 

 

Substitution of the benzene ring of TCP is perhaps the most common substitution 

in the academic literature and there are several reviews covering many of 

these.26,55,56 Less common are examples of substitutions on the cyclopropyl 

group. Vianello et al. reported a series of novel compounds in which TCP was 

substituted with a number of functional groups around the cyclopropyl ring.57 Most 

of the compounds reported increased potency as a LSD1 inhibitor relative to TCP 

but none showed any significant increase in specificity for LSD1 over MAO and 

many in fact showed an increased potency for both MAO-A and MAO-B. As an 

example of this compound 1.11 is modified by the addition of a phenyl group at 

the C1 position of the cyclopropane ring (Figure 1.8). LSD1 inhibition is increased 

from an IC50 of 11.6 µM in TCP to 0.2 µM but MAO-A inhibition also increased 

from 1.19 µM to 83 nm. Later the same compound was modified further to 1.12 

by Borrello et al. with the addition of a fluorine at the C2 position of the cyclopropyl 

group (Figure 1.8).58 This also increased affinity for LSD1 with a decrease in IC50 

to 2.1 µM from 25 µM in the TCP reference. Both MAO-A and MAO-B also saw 

modest increases to 18 and 37 µM respectively. However, when the phenyl 

substituent at C1 is removed (1.13) a loss of LSD1 affinity is observed with an 

IC50 > 25 µM. This affinity can however be regained, and in some cases improved 

upon, by small additional substitutions to the aryl ring. Substituting in the para 

position (1.14-1.16) with -CF3, -SF5 and Cl resulted in improved IC50 of 2.1, 0.8 

and 6.7 µM respectively, while replacing the meta -H (1.17-1.20) with -CF3, SF5, 

-OMe or -F resulted in an IC50 of 8.2, 8.4, 1.2 and 6.7 µM respectively. 1.19 and 

1.20 also showed good activity in THP-1and MV4-11 cells with respective IC50  

values of 8.5 and 1.6 µM in THP-1 and 1.9 and 4.9 µM in MV4-11. 
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Figure 1.8. Example of TCP analogues substituted at position C1 and C2 of the 

cyclopropyl ring.57,58 
 

A second approach to substitution of the cyclopropyl ring in TCP, is the formation 

of a spirocyclic group at the C2 position. Shi et al. recently published a series of 

such spirocyclic TCP derivatives.59 Synthesis starts with 1-indanone (1.21) which 

undergoes conversion of the carbonyl to terminal alkene 1.22 in a Wittig reaction, 

before cyclopropanation with ethyl diazoacetate and a rhodium(ll)acetate catalyst 

to give a mixture of trans and cis ethyl esters 1.23-R and 1.23-S. The esters were 

then hydrolysed to the respective carboxylic acids 1.24-R and 1.24-S which could 

then be converted to the corresponding carbamates 1.25-R and 1.25-S via 

Curtius rearrangement (Figure 1.9A). The respective R and S enantiomers were 

then separated via flash chromatography before deprotection to give 1.25-R and 

1.25-S as the HCl salts. Both 1.25-R and 1.25-S showed improved LSD1 

inhibition, IC50 0.17 and 0.78 µM respectively, and reduced MAO-A inhibition of 

>100 µM. This suggests that the conformational lock acts to enhance the 

inhibition of LSD1 and further increases selectivity over MAO-A. Further 

modification via N-alkylation resulted in LSD1 inhibitors with very low nm potency 

and good selectivity (Figure 1.9B).  
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Figure 1.9. (A) The synthetic route for the synthesis of spirocyclic TCP 

derivatives and (B) examples of N-alkylated analogues.59 
 

1.7. Irreversible LSD1 inhibitors in clinical trials. 
 

Unlike the histone deacetylases (HDACs), LSD1 does not have a clinically 

approved drug available. There are however several clinical candidates presently 

undergoing clinical trials, mainly for the treatment of cancer. Clinicaltrials.gov 

(accessed January 2020) currently lists nine different LSD1 inhibitors in eighteen 

different studies. Five of these inhibitors are TCP derived inhibitors (including 

TCP itself), one is phenelzine, and two are reversible LSD1 inhibitors. In addition, 
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the EU Clinical Trials Register (accessed January 2020) currently lists two TCP 

derived irreversible LSD1 inhibitors in seven separate studies.  

TCP itself is, at present, the subject of three clinical studies. All three studies are 

in combination with all-trans retinoic acid (ATRA) and one also incorporates the 

chemotherapy drug cytarabine. The vitamin A derivative, ATRA, has been used 

in cancer therapy for some time, mainly in the treatment of acute promyelocytic 

leukaemia (APL).60  For the treatment of non-APL AML, ATRA alone has not seen 

much success, but in combination with other chemotherapy agents however, it 

showed some promise.60,61 It was found that by inhibiting LSD1, H3K4me2 is 

upregulated which may reactivate the ATRA differentiation pathway in AML.60,62 

As a result, ATRA is commonly found being trialled in combination with many 

LSD1 inhibitors. 

Phenelzine is listed in one recently completed study for the treatment of 

metastatic breast cancer in combination with chemotherapy drug paclitaxel.  

Interestingly, all six TCP derived irreversible LSD1 inhibitors are N-alkylated 

(Figure 1.10, 1.31-1.35). Of these six, two are also substituted at the benzene 

ring (Figure 1.10, 1.32 and 1.34) but none are substituted at the cyclopropyl 

group. One of these five is quite unique in that the benzene ring itself has been 

substituted with a thiophene group (1.36).  

The first LSD1 inhibitor to enter clinical trials was Oryzons so called ORY-1001 

(1.31) in 2014 for the treatment of AML. In 2018 Oryzon published details of the 

structure and pharmacology of ORY-1001.63 The compound is comprised of four 

stereocentres, the TCP moiety has trans (1R, 2S) stereochemistry with the amine 

N-alkylated to trans-4-cyclohexylamine. ORY-1001 inhibits LSD1 with an IC50 of 

18 nM, SMOX at 7.4 µM and IL4I1, LSD2, MAO-A and MAO-B IC50 >100 µM. In 

cell, a THP-1 differentiation assay returned an EC50 <1 nM and also engaged 

enzymatically active LSD1 in THP-1 cells with an EC50 of 0.63 and 0.55 nM after 

24 and 96 hours respectively. It is also claimed that ORY-1001 performs well in 

vivo, reducing tumor growth in MV(4;11) xenographs and increasing survival in 

rodent xenograft models of acute leukemia. In addition to ORY-1001, Oryzon also 

have a dual LSD1/MAO-B inhibitor in clinical trials, ORY-2001 (1.32) which they 

also identify as Vafidemstat. Unlike ORY-1001, Oryzon have not published the 

structure or pharmacological data for this compound but the structure is thought 

to be 1.32 (Figure 1.10), however the chirality is unclear.64 Oryzen have put some 
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limited data on their website, oryzon.com (accessed January 2020), in which they 

disclose ORY-2001 to inhibit LSD1 and MAO-B with an IC50 of 100 and 75 nM 

respectively. They claim they have had positive results in 7 different animal 

models and in-vitro models and that ORY-2001 corrects the lack of sociability of 

aged SAMP8 mice. Studies outside Oryzon have also suggested the prevention 

of the development of cognitive impairment in SAMP8 mice65 as well as complete 

rescue of memory in SAMP8 mice achieved at low doses.66 

Imago BioSciences currently have INCB059872 listed in 3 trials. A terminated 

study for sickle cell disease, a second study recruiting for Relapsed Ewing 

Sarcoma and a third study in combination with ATRA, Azacitidine and Nivolumab 

for solid tumours and hematologic malignancy. Again, the structure is not clear 

but believed to be similar to 1.33. No LSD1 inhibition data has yet been reported 

but at the 2016 AACR Annual Meeting, Lee et al. reported INCB059872 to be a 

potent, selective and orally bioavailable inhibitor of LSD1 through the formation 

covalent FAD-adducts. They also reported that a panel of SCLC cell lines was 

inhibited by INCB059782 with EC50 values between 47-377 nM but non-

tumorigenic cells, such as IL-2 stimulated T cells from normal donors were much 

less sensitive with IC50 values >10 µM.67 Imago BioSciences have a second 

compound also taking part in three clinical studies. IMG-7289 also identified as 

Bomedemstat, is listed as not yet recruiting in a study against thrombocythemia, 

recruiting for a second study against myelofibrosis, PPV-MF, PET-MF and PMF 

and a third complete study in combination with ATRA against AML and 

myelodysplastic syndrome. The exact structure has not as yet been divulged but 

is listed by the National Institute of Health website (nih.gov) as 1.34. As expected 

of a TCP derived compound, IMG-7289 is an irreversible inhibitor of LSD1 which 

increases both H3K4 and H3K9 methylation. In addition IMG-7289 treated mice 

showed decreased platelet count, reticulocytes, monocytes and neutrophils as 

well as increased global H3K9me2 levels in bone marrow compared to control 

mice.64  

TAK-418 is a compound developed by Takeda Pharmaceutical and currently is 

listed as recruiting for a study on healthy volunteers. The structure is undisclosed 

but possibly takes the form of 1.36 based on information from the National 

Institute of Health website (nih.gov). If this structure is accurate, then this 

compound is unique as a TCP derived LSD1 inhibitor as the benzene ring has 
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been replaced by a thiophene group. A patent taken out by Takeda lists 1.36 as 

inhibiting LSD1 with an IC50 value of <0.1 µM and an MAO-A and MAO-B IC50 

>100 µM.68  

In 2015, GlaxoSmithKline (GSK) published the structure and pharmacological 

data for three TCP derived compounds.51 GSK2879552 (1.35), GSK-LSD1 (1.37) 

and GSK2699537 (1.38). Although they have not explicitly disclosed the chirality 

of the compounds it is assumed from the figures published that all three have 

(1R, 2S) chirality. GSK-LSD1 and GSK2699537 have not undergone clinical trials 

but GSK2879552 is currently listed in three studies. All three classed as 

terminated with results. The conditions studied included SCLC, AML in 

combination with ATRA and Myelodysplastic syndrome in combination with 

Azacitidine. GSK2879552 inhibits LSD1 with a Kiapp value of 1.7 µM and is also 

reported to be 280-fold selective over D-amino acid oxidase. In addition, inhibition 

of MAO-A and MAO-B was too weak to calculate either Kiapp or Kinact values. In 

vitro, GSK2879552 was tested against a panel of 165 human cancer cell lines. 

Although several different cancers showed sensitivity to growth inhibition, 

antiproliferation was mainly seen in SCLC and AML cell lines with 9/28 SCLC and 

20/29 AML cell lines during the 6-day proliferation assay. In the sensitive cell 

lines, growth inhibition had EC50 values in the range 2-240 nM. Tumor growth 

inhibition (TGI) was measured in xenograph bearing mice to determine in vivo 

effects. H526, NCI-H1417, NCI-H510 and NCI-H69 tumor bearing mice showed 

TGI of 57, 83, 38 and 49 % repectively. In addition, one non-sensitive SCLC cell 

line, NCI-H2171, also showed partial TGI in vivo, suggesting broader activity 

profiles in SCLC in vivo than in vitro.51 
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Figure 1.10. (1.31-1.36) Structures of TCP derived LSD1 inhibitors that have 
taken part in clinical trials. (1.37-1.38) Additional TCP derived LSD1 inhibitors 

developed by GSK alongside their clinical candidate. 
 

1.8. The zinc dependent histone deacetylases (HDACs). 
 

As discussed, the reversible nature of lysine methylation was not established until 

2004.18 In contrast, the reversible enzymatic acetylation of histones was apparent 

over three decades earlier.69,70,71 Acetylation of histones is carried out by the so 

called histone acetylases (HATs) which act by transferring an acetyl group to the 

histone from acetyl Coenzyme A (Figure 1.11). In addition, acetyl CoA can 

acetylate histones directly with no involvement from HATs. The reverse of this 
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process is carried out by a family of enzymes collectively known as histone 

deacetylases (HDACs). The level of acetylation within the cell is therefore due to 

the balance between these two opposing processes. 

 

 
Figure 1.11. Acetyl Coenzyme A. 

 
The acetyl group, highlighted in red, is transferred to the histone proteins by HDAC 
enzymes. 
 

HDACs are part of an ancient protein superfamily comprised of the histone 

deacetylases, acetylpolyamine amidohydrolases and the acetoin utilisation 

proteins.72 The eighteen known HDACs are then divided further into the sirtuins, 

which contain the cofactor NAD+ in their active site, and the zinc-dependent 

HDACs. The latter is identified by the presence of a zinc(II) cation within the active 

site. The zinc-dependent HDACs are then classified further, into four classes 

based on their cellular function and DNA sequence similarity (Table 1.3).73,74  

Various proposals for the catalytic mechanism of the zinc dependent HDACs has 

been in the literature for some time.  In 1999, Finnin et al. proposed their model 

based on crystal structures of histone deacetylase-like protein (HDLP), HDLP-

Zn2+ trichostatin A and HDLP-ZN2+-SAHA complexes (Scheme 1.7).75 This was 

followed with proposals by Vanommeslaeghe et al. and Corminboeuf et al. in 

2005 and 2006 respectively.76,77 In 2010, Bertrand reviewed these proposals and 

concluded that the available evidence supported the Vanommeslaeghe model.78 

However, Bertrand revisited this in 201679 and reviewed several other 

mechanistic studies that had since being carried out80,81 thus showing that the 

details of the true mechanism have not yet being fully agreed on. That said, these 

mechanistic studies are more than sufficient models to allow the design of some 

highly potent inhibitors. 
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Class Protein Amino 
acids 

Cellular function Known Inhibitors 

I HDAC1 482 Cell survival and proliferation 
Vorinostat, 
Panobinostat, 
belinostat, ITF2357, 
PCI-24781, FK288, 
entinostat, 
MGCD0103, 
trichostatin A, 
LAQ824, mocetinostat, 
pracinostat 

I HDAC2 488 Cell proliferation and insulin 
resistance 

I HDAC3 428 Cell survival and proliferation 

I HDAC8 377 Cell proliferation 

IIA HDAC4 1084 Regulation of skeletogenesis 
and gluconeogenesis 

Vorinostat, 
Panobinostat, 
belinostat, ITF2357, 
PCI-24781,  
trichostatin A, 
LAQ824, pracinostat 

IIA HDAC5 1122 
Cellular development and 
differentiation, cardiovascular 
growth and function, 
gluconeogenesis. 

IIA HDAC7 952 
Thymocyte differentiation, 
endothelial function and 
glucogenesis. 

IIA HDAC9 1011 
HR, thymocyte differentiation, 
cardiovascular growth and 
function. 

IIB HDAC6 1215 Cell motility and control of 
cytoskeletal dynamics. 

Vorinostat, 
Panobinostat, 
belinostat, ITF2357, 
PCI-24781, trichostatin 
A, LAQ824, 
pracinostat 

IIB HDAC10 673 HR, autophagy mediated cell 
survival. 

IV HDAC11 347 Immunomodulators-DNA 
replication. 

Vorinostat, trichostatin, 
LAQ824, belinostat, 
IFT2357, mocetinostat, 
pracinostat 

 

Table 1.3. Classification of the zinc dependent HDACs, their cellular function 
and their known inhibitors. 

Table adapted from Suraweera et al. Table 1.74 
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Scheme 1.7. Deacteylation mechanism as put forward by Finnin et al.75 

 

1.9. Inhibitors of the zinc dependent HDACs. 
 

X-ray structures of the HDAC active site have identified the structure as 

consisting of a deep, narrow tube-like pocket, ~11Å long. The walls of the pocket 

are covered with mainly hydrophobic and aromatic residues and the Zn cation 

cofactor is positioned at the bottom of the pocket. In addition, there is a cavity 

adjacent to this pocket which may provide a space for the diffusion of the removed 

acetate molecule away from the active site.75 As such, the structure of HDAC 

inhibitors tend to consist of three main parts. A cap, which sits in a solvent 

exposed region, outside the narrow channel like pocket. A linker, that occupies 

the channel itself and a zinc binding group (ZBG), which chelates to the zinc 

cofactor at the heart of the active site (Figure 1.12). This model was studied 

further via HDAC-inhibitor crystal structures. Both suberoylanilide hydroxamic 

acid (SAHA) and the more potent trichostatin A (TSA), were studied in complex 

with HDLP. They found that both compounds form bidentate coordination to the 

zinc cofactor, make multiple van der Waals contacts along the tube-like 

hydrophobic portion of the pocket and the phenyl caps make contacts at the 
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entrance. The higher affinity of TSA over SAHA was attributed to the increased 

number of contacts in the hydrophobic channel and the better fitting cap. In 

addition, the reduced affinity of the SAHA cap may be due to the longer carbon 

chain of the linker making the separation between ZBG and cap larger. Also, 

reduced interaction between the linker and the pocket may be down to a lack of 

methyl group branches and the increased flexibility of the saturated chain.75  

 
Figure 1.12. The analogous nature of a typical HDAC inhibitor (SAHA) and its 

natural acetyllysine substrate. 
 

The early identification of HDACs as a drug target, relative to the demethylases, 

has led to the advanced development of their inhibitors. As such, there are 

currently five FDA approved inhibitors on the market as well as an additional 

inhibitor approved for use in china (Figure 1.13). An interesting feature of these 

approved inhibitors is the variety of both the zinc binding group and linker. Three 

of the six have a hydroxamate ZBG in addition to one thiol, one benzamide and 

one carboxylic acid. The hydroxamate is the most popular ZBG found in HDAC 

inhibitors throughout the literature due to its strong binding affinity with the HDAC 

zinc cation cofactor. However this strong binding interaction can also result in 

poor selectivity and off target side-effects due to the presence of other zinc 

dependent enzymes.82  
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Figure 1.13. Clinically approved HDAC inhibitors. 
 
Vorinostat, belinostat, panobinostat and romidepsin are FDA approved HDAC inhibitors. 
In addition, valproic acid is FDA approved for seizures but, although not approved for 
use as such, has been shown to weakly inhibit HDACs. Tucidinostat (formerly 
chidamide) is not FDA approved but is approved for use in China. 
 

One way to address this selectivity issue is through modification of the linker/cap. 

This approach has seen success through the development of a number of isoform 

selective HDAC inhibitors. Tubacin is one such example. Reported by Haggarty 

et al. in 2003,83 the structure is an analogue of SAHA with the addition of a large 

substituent to the para position of the benzene cap. This large cap is a mimic of 

the HDAC6 natural substrate, α-tubulin, and as such gives good selectivity over 

other HDAC isoforms (Figure 1.14).84  
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Figure 1.14. An example of how modification of a HDAC inhibitor cap can 

increase selectivity.83,84 
 

One further HDAC inhibitor of note is the clinical candidate ricolinostat (Figure 

1.15), also known as ACY-1215 (1.46). Ricolinostat has been the subject many 

of clinical trials for a number of different cancers including multiple myeloma, 

breast carcinoma, lymphoma and ovarian cancer. It is described as a potent 

HDAC6 inhibitor with an IC50 value of 4.7 nM in cell free enzymatic assays and 

shows more than 10-fold selectivity over the other class 1 HDACs, HDAC1, 2 and 

3 with IC50 values of 58, 48 and 51 nM respectively. In addition, HDAC8 has an 

IC50 value of 100 nM and the remaining zinc dependent HDACs, 4, 5, 7, 9 and 11 

> 1µM.85 

 
Figure 1.15 Structure of ricolinostat. 
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An additional example of improving isoform selectivity was reported by 

Balasubramaniam et al. in 2008 with their compound, PCI-34051 (1.47). The 

linker was modified from the long, chain like structure of SAHA and TSA to a 

short, planar aromatic linker. The result was > 200-fold selectivity for HDAC8 over 

HDAC1 and 6, and >1000 fold selectivity over HDAC2, 3 and 10 (Figure 1.16).86 

 

 
Figure 1.16. An example of how linker modification can increase HDAC isoform 

selectivity.86 
 

While these modifications to the cap and linker address selectivity between 

HDAC isoforms, they do not solve the problem of off-target effects due to the 

strong affinity of hydroxamic acids for metal ions. The obvious solution to this is 

to change the ZBG, although this comes with the penalty of weaker binding to the 

zinc ion and therefore a potentially less potent inhibitor. Common substitutions 

include benzamides and thiols. In addition, several examples of carboxylic acids 

can be found but due to the relatively weak binding of the carboxylic acid to the 

HDAC zinc cofactor, these are less prevalent.  

The benzamide group are the most common choice after the hydroxamic acids. 

They have the advantage of being largely selective for class 1 HDACs and the 

increase in selectivity would also suggest a decrease in off-target effects. 

Tucidinostat (1.43) is currently approved for use against relapsed and refractory 

PTCL by the Chinese Food and Drug Administration (CFDA) but not yet by the 

FDA (Figure 1.13, Table 1.4). However, at the time of writing, tucidinostat is listed 

in 59 clinical studies (ClinicalTrials.gov). In addition, there are several analogues 

of tucidinostat also taking part in clinical trials (Figure 1.17). Entinostat (1.48), 

mocetinostat (1.49) and tacedinaline (1.50) are currently listed in 67, 22 and 3 

clinical studies respectively.  
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Figure 1.17. Examples of HDAC inhibitors with a benzamide ZBG.84 
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Isoform 
IC50 (µM) Valproic 

acid 
(mM) Vorinostat Belinostat Panobinostat Romidepsin Chidamide 

1 76 18 3 0.8 95 0.7 

2 360 34 13 1.0 160 0.8 

3 58 21 2 1.3 67 1 

8 >1000 160 280 26 733 - 

4 >1000 >1000 200 470 >30000 1.5 

5 160 76 8 >1000 >30000 1 

7 >1000 600 530 >1000 >30000 1.3 

9 78 44 6 >1000 >30000 - 

6 27 15 11 330 >30000 >20 

10 88 31 2 0.9 78 >20 

11 110 44 3 0.3 432 - 

 

Table 1.4. IC50 values of FDA/CFDA approved HDAC inhibitors.87–90 

 

The thiol zinc binding motif is somewhat less explored and many of the examples 

found in the literature are centred around replacement of the hydroxamic acid of 

SAHA with a thiol group and then modifying the cap to increase selectivity.91–93 A 

more original use of thiols as ZBGs are found in the depsipeptides. Romidepsin, 

also known as FK228 and FR901228, is one such example of this class of 

inhibitor. A natural product isolated from the Chromobacterium violaceum 

bacterium, romidepsin was first reported in 1994 as a novel anti-tumor agent.94 

In 1998 it was reported as the first example of a class 1 natural product HDAC 

inhibitor.95 Later, it was shown by Cole et al. using the x-ray structure of a HDAC8-

largazole thiol complex, that the disulfide romidepsin is in fact the pro-drug and 

the inhibitory species is the free thiol which is reached following reduction of the 

disulphide bridge (Figure 1.18).96 In 2009, romidepsin was given FDA approval 

for use in CTCL and then PTCL in 2011. It remains the only approved 

depsipeptide HDAC inhibitor and is currently listed in 99 clinical studies 

(ClinicalTrials.gov). 
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Figure 1.18. The structure of the depsipeptide, romidepsin and the thioester, 

largazole along with their reduced/hydrolysed structures.96 
 
Largazole is a cyclic depsipetide isolated from Symploca sp. It shares a portion of its 
core structure with romidepsin and hydrolysis in vivo releases the free thiol which acts 
as a ZBG in HDACs. Largazole is a potent HDAC inhibitor in its own right and a number 
of analogues with impressive potency and antiproliferative effects have been 
developed.97,98  
 

The relatively weak binding affinity of carboxylic acids as a ZBG has resulted in 

little investigation of carboxylic acids as potential HDAC inhibitors. The most 

studied are the short chain fatty acids, Valproic acid (1.44), butyric acid (1.53) 

and phenylbutyrate (1.54) (Figure 1.19). All have been identified as weak HDAC 

inhibitors (mM levels of activity) but due to their anti-proliferative/anti-cancer 

effects they have been well studied for a number of years.99 Other carboxylic 

acids identified include the natural products chlorogenic acid (1.55) and caffeic 

acid (1.56) (Figure 1.19). HDAC inhibition activity In HeLa nuclear extracts 

revealed IC50  values of 375 µM and 2.54 mM for 1.55 and 1.56 respectively.100  
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Figure 1.19. Examples of HDAC inhibitors containing a carboxylic acid ZBG. 
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1.10. Introduction summary and thesis aims. 
 

This introduction has given an overview of the topic of epigenetics as well as the 

enzymes responsible for lysine demethylation and histone deacetylation. It has 

also given a brief summary of the main inhibitors of these enzymes developed to 

date and details of any current clinical activity. 

The following chapters will describe the design, synthesis and biological activity 

of some novel epigenetic inhibitors of both LSD1 and the zinc dependent HDACs. 

Each chapter will comprise a brief introduction covering any required detail not 

covered above.  

The synthesis of all compounds was carried out in large part by myself, the 

author, and those that were not, were carried out by undergraduate project 

students under my supervision. The biological data was gathered in collaboration 

with several other researchers. All HDAC assays and virtual docking studies were 

carried out by Dusan Ruzic of the Nikolic group, University of Belgrade. The LSD1 

assays were run by Roman Belle of the Kawamura group at the university of 

Oxford. The THP-1 cell viability assays presented in Chapter two (compounds 

2.8a-g) and all compounds in Chapter four were carried out by Gabriela 

Burianova of the O’Connell group, UEA. All other biological testing was carried 

out by Ipek Bulut of the Acilan Ayhan group, Koc University, Istanbul. 

The aim of this work is to contribute to and broaden the understanding of the field 

of epigenetic drug development in the area of LSD1 and HDAC inhibition. 
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Chapter Two 
 
2. A series of novel LSD1 inhibitors based on GSK2879552. 
2.1. Introduction 
 
In 2015, GlaxoSmithKline (GSK) reported a series of three LSD1 inhibitors (1.35, 

1.37, 1.38, Figure 1.10), disclosing both structure and biological activity data. 

Amongst them was GSK2879552 (1.35), described by GSK as a potent, 

selective, orally available, bioactive, mechanism based inactivator of LSD1. 

Following an extensive cell proliferation assay on 165 different cancer cell lines 

it was determined that both AML and SCLC cell lines displayed the highest 

sensitivity.51 Subsequently, GSK2879552 has been the subject of several clinical 

trials for both AML and SCLC along with high risk myelodysplastic syndromes. 

The structure of GSK2879552 includes a carboxylic acid functional group. This 

carboxylic acid allows for simple, one step conversion to other functional groups 

and, along with its strong biological profile, makes GSK2879552 a good starting 

point for the development of a novel LSD1 inhibitor.  

The LSD1 active site is a large cavity, ~23 Å from its entrance to the core of the 

catalytic site, and 1245 Å3 in volume. The left-hand side of the cavity consists of 

mostly hydrophobic residues while the right-side is much more acidic and lined 

with backbone carbonyl oxygen atoms. The FAD cofactor is found in the catalytic 

core, the N5 nitrogen atom of which is hydrogen bound to lysine residue K661 by 

a conserved water molecule. A point mutation of K661 eliminates all 

demethylation activity of LSD1, thus demonstrating its vital role.101      

The large size of the LSD1 active site gives plenty of scope for the design of its 

inhibitors. Given both the potency and selectivity of GSK2879552 it stands to 

reason that any changes should be minor in order to conserve/improve upon 

these features. To this end, we have designed and synthesised a series of seven 

potential LSD1 inhibitors based on GSK2879552 by modifying the carboxylic acid 

functional group to an alkylated amide. The following chapter presents the 

synthesis and biological activity data gathered thus far. 
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2.2. The synthesis of GSK2879552. 
 
Before any modification could be made to GSK2879552, it first needed to be 

synthesised in sufficient quantity. GSK2879552 can be purchased commercially 

but the high cost made this option inaccessible. In order to determine a synthetic 

route, the original patent containing GSK2879552102 was consulted and in 

conjunction with a retrosynthetic analysis (Figure 2.1), two routes were selected 

to try. Route A (Scheme 2.1) is the longest of the two, containing six steps in 

total. The first is a reductive amination with commercially purchased 

tranylcypromine (1.2) and Boc-protected carboxaldehyde 2.1 to give 2.2. 

Protection of the secondary amine to form a trifluoroacetamide affords 2.3 before 

removal of the Boc group to allow the resulting 2.4 to undergo SN2 displacement 

with 2.5 to give ester 2.6. Removal of the trifluoroacetamide group restores the 

secondary amine, 2.7a.  Finally, ester hydrolysis affords the target product, 

racemic trans-GSK2879552, 1.35.  

 
Figure 2.1. Retrosynthetic analysis of GSK2879552. 

 
GSK2879552 can be disconnected into three smaller subunits which, in turn, can be 
further amended to give the desired commercially available synthons. 
 
Route B (Scheme 2.1) is a shorter, four step synthesis starting with an SN2 

reaction between bromomethyl ester 2.5 and piperidinemethanol 2.9 to give 2.10. 
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Oxidation of the primary alcohol to an aldehyde then affords 2.11, before 

reductive amination with TCP gives the methyl ester 2.7 which is then hydrolysed 

to the target product, 1.35.  

 

Route A 

 
Route B 

 
Scheme 2.1. Possible synthetic routes to the target product, trans-

GSK2879552 (1.35). 
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Although route A is two steps longer than route B, two of those steps are 

deprotections which are expected to give high yields. In addition, the potentially 

low yielding reductive amination step is at the beginning of the synthesis and as 

such, allows for a larger scale reaction to negate that loss. There is also no need 

to carry out the oxidation of the primary alcohol to an aldehyde which was 

identified as another potentially low yielding step.  

The positives to route B are the reduced number of reactions required and 

although the reductive amination is late in the synthesis, this would mean less 

TCP which is by far the most expensive reagent. 

The first steps of both these routes were carried out in parallel. Initially, reductive 

amination was attempted using the HCl salt of TCP however, solubility issues 

ultimately led to the reaction being unsuccessful. Subsequently, TCP.HCl was 

neutralised with 4M NaOH and the solution extracted with dichloromethane to 

give the free base TCP in almost quantitative yield. Reductive amination was 

again attempted with the free base TCP and 2.1. Three fractions were isolated 

following workup and purification by flash chromatography, but none of them 

were consistent with the expected product 2.2. The literature was consulted for 

an alternative method which resulted in the trial of reductive amination in the 

presence of Titanium(IV) isopropoxide.103 Ti(OiPr)4 acts as a Lewis acid, 

coordinating to the aldehyde, activating it and promoting imine formation. The 

imine is then reduced with an appropriate hydride (Scheme 2.2). The reaction 

was carried out on a 600 mg scale, with respect to TCP and afforded a 36% yield.  

 
Scheme 2.2. Mechanism for Ti(IV) isopropoxide promoted reductive amination. 
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In contrast to the first step of route B, the SN2 reaction between 2.5 and 2.9 

worked very well. The reaction is carried out in acetonitrile in the presence of 

potassium carbonate at reflux over 2 hours. Following a simple acid-base work-

up, 2.10 was isolated in 83% yield and can be used in subsequent steps without 

further purification. Given the large disparity in yield of this first step, the reduced 

number of overall steps and the relative expense of using TCP in the large 

quantities required, it was decided to follow route B only from this point on.  

The second step of Route B is the oxidation of primary alcohol 2.10 to aldehyde 

2.11. The method used in the GSK patent was Swern oxidation and has an 

associated yield of 55%. Given the moderate yield we decided to try some other 

methods of oxidation in an attempt to improve it (Table 2.1). Three other methods 

were trialled; pyridinium dichromate (PDC), tetrapropylammonium perruthenate 

(TPAP) and Dess-Martin periodinane (DMP). These reactions resulted in 5, 30 

and 55 % yields respectively. As the best yield, using DMP, was equal to the 

reported yield using Swern oxidation and the relatively high expense of DMP as 

a reagent, we decided that Swern oxidation should be tried. The result was the 

expected 55% yield which was improved in subsequent reactions to consistently 

> 80%. The improvement was found by ensuring each reagent was dissolved in 

dichloromethane and cooled to -78 °C prior to addition to the reaction mixture. 

 

Reagent Yield (%) 

PDC 5 

TPAP/NMO 30 

DMP 55 

Swern oxidation >80 

 

Table 2.1. Relative yields achieved in each oxidation reaction on primary 
alcohol 2.10. 

The next step was reductive amination of TCP to aldehyde 2.11, but on small 

scales (<1 g) we struggled to get this step to work following the patent method. 

This method requires that, following imine formation and reduction, the diluted 

reaction mixture is extracted with dichloromethane and the combined extracts 

washed with a 10 % solution of aqueous acetic acid. Brine is then poured slowly 
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into the resulting organic phase and ester 2.7 should precipitate out of the 

solution. On the scales described this was never observed and 2.7 had to be 

painstakingly isolated by other methods. However, on larger scales the method 

worked well and 2.7 was isolated in low to moderate yields of ~35 %. This was 

lower than the 62 % yield stated in the patent, but it was noted that the patent 

method uses the tert-butyl ester. Our choice to use the methyl ester was based 

on cost and it was not anticipated that a change in ester would affect the yield so 

considerably. Given the high cost of TCP it seemed counterproductive to save a 

small amount of money on the ester only to lose more on the loss of TCP and so 

we switched to the tert-butyl analogue in subsequent reactions. The change had 

the desired effect and the reductive amination step realised an improved yield of 

66 %. In addition, the subsequent base catalysed hydrolysis of the methyl ester, 

to afford carboxylic acid 1.35, resulted in a 41 % yield and required purification 

via flash chromatography. However, removal of the tert-butyl group by heating in 

1M aqueous HCl gives the dihydrochloride salt of 1.35 in 69 % yield, high purity 

and no requirement for additional purification steps. 
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2.3. The synthesis of a novel LSD1 inhibitor (compound 2.8a). 
 
Once the synthesis of GSK2879552 is complete, the modification to the novel 

LSD1 inhibitor, 2.8a, can be achieved in a single step (Scheme 2.3). Amide 

coupling is a common method for the conversion of a carboxylic acid to an amide 

and there are a range of coupling agents available to facilitate this reaction.104 

The reagent of choice in this case was 1-Ethyl-3-(3dimethyl 

aminopropyl)carbodiimide (EDC) catalysed by hydroxybenzotriazole (HOBt), 

based on previous successes with this reagent in coupling reactions. 2.8a was 

isolated in 32% yield following purification on both silica and C18 reverse phase 

columns. It should also be noted that prep-HPLC was used subsequent to this in 

order to achieve the desired level of purity, and yield following this was not 

calculated.  

 
Scheme 2.3. The synthesis of novel LSD1 inhibitor 2.8 from GSK2879552. 

 

  

N
H N

OH

O

2HCl
N
H N

N
H

O

N N

N NH2N

DIPEA

HOBt
EDC.HCl
CH2Cl21.35 2.8a



 47 

2.4. The biological evaluation of compound 2.8a. 
2.4.1. LSD1 Inhibition. 
 

The enzymatic activity of compound 2.8a was evaluated in a cell free assay in 

order to determine the level of LSD1 inhibitory activity. The activity was 

determined alongside GSK2879552, as a positive control, and 3.13 (described in 

chapter 3) as a negative control (Figure 2.2, Table 2.2).  

Compound 2.8a was found to have an IC50 value of 0.063 µM (pIC50: 7.20). This 

compares favourably to the positive control, GSK2879552, which had an IC50 

value of 1.80 µM (pIC50: 5.74±0.23). Negative control 3.13 performed as 

expected and was not active at these concentrations (< 5 µM). It should be noted 

that 2.8a was only evaluated over one replicate and hence these results should 

be treated with caution until such time that a repeat assay can be performed. 

 

 
 
Figure 2.2. Graphical representation of the LSD1 cell free assay results for 2.8a 

along with control compounds. 
 

GSK2879552: Data shown as % activity ± Std. Error, n=3. 
Compound 2.8a: Data shown as % activity, n=1. 

Data for GSK2879552 and 3.13 generated by Belle et al., Oxford University 
(unpublished). 

Data for 2.8a generated by Bulut et al., Koc University (unpublished). 
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Compound LSD1 pIC50 
2.8a 7.20 

GSK2879552 5.74±0.23 

3.13 < 5.30 

 

Table 2.2. pIC50 data recorded for 2.8a and control compounds. 

 
2.4.2. Cellular Thermal Shift Assay (CETSA) 
 

Protein stability is the thermodynamic equilibrium in which a protein reversibly 

and rapidly unfolds and folds. This stability is the difference in the Gibbs free 

energy (ΔG) of the proteins folded (Gf) and unfolded (Gu) states. 

∆𝐺# = 	𝐺# −	𝐺' 

The larger the difference between the folded and unfolded states, i.e. the larger 

and more positive ΔGu, the more stable the protein. 

As Gibbs free energy can be defined as: 

∆𝐺 = 	∆𝐻 − 𝑇∆𝑆 

where H is the enthalpy of the system, S is the entropy and T the temperature, 

an increase in temperature will lead to a decrease in ΔG and hence the protein 

will become unstable and denature. 

CETSA105 takes advantage of this property of proteins and uses it to directly 

measure the target engagement of drugs within the cellular environment. Cells 

are treated with the appropriate drug and then heated. If the drug binds effectively 

to the target protein, the stability of the protein is increased and hence the higher 

the temperature required to destabilise and denature that protein (Figure 2.3). 
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Figure 2.3. Graphical representation of the effect of ligand binding on the 
thermal degradation of proteins. 

 

THP-1 cells were treated with 500 nM of compound 2.8a and the response 

measured using western blot (Figure 2.4). Increased stability was noted in both 

GSK2879552 and compound 2.8a relative to no inhibitor, with 2.8a showing 

slightly better target engagement than GSK2879552.  

 

 
 

Figure 2.4. Western blot of CETSA on 2.8a controls. 
Data generated by Bulut et al., Koc University (unpublished). 

 

These data are consistent with good target engagement between LSD1 and our 

inhibitor 2.8a. 
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2.4.3. Leukaemia cell viability. 
 

Given the promising response of compound 2.8a in a cell free assay and 

evidence of target engagement, the next step was to test the pharmacological 

effect in cell. As discussed in section 1.7, GSK2879552 was assessed by GSK 

in 29 AML cell lines and found to be sensitive in 20. Given this high ratio of 

sensitivity it was logical to test compound 2.8a activity in leukaemia cell lines. 

Two MLL fusion cell lines, THP-1 and MOLM-13, along with two non-fusion cell 

lines, K-562 and JURKAT, were tested in a cell viability assay. GSK2879552 was 

used as a control. 

The results of this assay (Table 2.2, Figure 2.5) showed that although all cell lines 

displayed sensitivity to compound 2.8a, it showed superior activity in the fused 

cell lines over the non-fused and in particular, MOLM-13. MLL is known to be a 

member of a much larger protein supercomplex of which LSD1 is also a 

component.106 It is also a member of an elongation factor RNA polymerase II 

(ELL) complex which contains positive transcription elongation factor (p-TEFb) 

components that are known to interact with both AF9 and AF4 fusion partners.107 

In addition, LSD1 has been shown to act on genomic loci bound by MLL-AF9 to 

sustain expression of the onco gene and preventing differentiation and 

apoptosis.108 This gives a good clue as to why these fused cell lines seem to 

show sensitivity to LSD1 inhibition. 

Another point of note is the activity of compound 2.8a relative to GSK2879552. 

Compound 2.8a outperformed GSK2879552 in all cells showing >10 fold better 

activity in THP-1 and almost 90 fold increase in MOLM-13.  

 

 
MLL-AF9 Fused Non-MLL Fused 

THP-1 
IC50 (µM) 

MOLM-13 
IC50 (µM) 

K-562 
IC50 (µM) 

JURKAT 
IC50 (µM) 

GSK2879552 >20 15.0 ± 3.5 >20 >20 

2.8a 1.8 ± 0.4 0.17 ± 0.01 7.6 ± 0.3 10.2 ± 1.7 

 

Table 2.3. Cell viability data of 2.8a in examples of fused and non-fused cell 
lines. 

Data shown as % cell viability ± stdp, n=3 
Data generated by Bulut et al., Koc University (unpublished). 
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Figure 2.5. Graphs of cell viability in fused and non-fused cell lines, comparing 
GSK2879552 and 2.8a. 

 
Data shown as % cell viability ± stdp, n=3 

Data generated by Bulut et al., Koc University (unpublished). 
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2.4.4. Methylation fold change in response to inhibition. 
 

As the overexpression of LSD1 would be predicted to decrease histone 

methylation levels, its inhibition would therefore be expected to cause an 

increase. To this end, H3K4me2 levels were measured using western analysis in 

both THP-1 and MOLM-13 cells over 24 hours using a 2 µM dose of the 

appropriate inhibitor and total histone H3 as a control (Figure 2.6).  

In THP-1 cells both GSK2879552 and 2.8a seeded cells showed highest 

H3K4me2 levels at 18 hours before decreasing back to baseline levels after 24 

hours. In contrast, H3K4me2 levels peaked after 24 hours in MOLM-13 cells 

seeded with 2.8a and showed a 2.8-fold increase, slightly better than 

GSK2879552 which showed a 2.2-fold increase (Figure 2.7, Table 2.3).  

 
 

Figure 2.6. Western blot of H3K4me2 levels measured at 18 and 24 hours in 
response to inhibition with GSK2879552 and 2.8a in THP-1 and MOLM-13 

cells. 
Data generated by Bulut et al., Koc University (unpublished). 
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Figure 2.7. H3K4me2 levels measured over 18 and 24 hours in response to 

inhibition with GSK2879552 and 2.8a in THP-1 and MOLM-13 cells. 
 

Data shown as H3K4me2 fold change ± stdp, n=2 
Data generated by Bulut et al., Koc University (unpublished). 

 

 

Time (hrs) 
THP-1 MOLM-13 

GSK2879552 2.8a GSK2879552 2.8a 
18  1.81±0.34 1.35±0.19 3.87±2.81 1.31±0.11 

24  1.06±0.06 0.92±0.11 2.17±0.54 2.78±0.16 

 

Table 2.4. Tabulated data of H3K4me2 levels in response to LSD1 inhibition 
with GSK2879552 and 2.8a in THP-1 and MOLM-13 cells. 

Data shown as H3K4me2 fold change ± SD, n=2 
Data generated by Bulut et al., Koc University (unpublished). 

 

  

18
hrs

24
hrs

0.0

0.5

1.0

1.5

2.0

2.5

Fo
ld

 C
ha

ng
e

Legend
Legend
18hrs
24hrs

18
hrs

24
hrs

0.0

0.5

1.0

1.5

2.0

Fo
ld

 C
ha

ng
e

Legend
Legend
18hrs
24hrs

THP-1

0      GSK 0      2.8a

18
hrs

24
hrs

0

2

4

6

8

Fo
ld

 C
ha

ng
e

Legend
Legend
18hrs
24hrs

18
hrs

24
hrs

0

1

2

3

4
Fo

ld
 C

ha
ng

e

Legend
Legend
18hrs
24hrs

MOLM-13

0      GSK 0      2.8a



 54 

2.4.5. Gene expression changes. 
 

To further investigate the effect of out inhibitor, compound 2.8a, on the inhibition 

of LSD1, the expression of biomarkers CD86 and CD11b was measured in THP-

1 cells. Both CD86 and CD11b gene expression are repressed in the presence 

of LSD1 and it has been shown that when LSD1 expression is inhibited, both 

CD86 and CD11b are upregulated. As such, they can be used as biomarkers to 

demonstrate LSD1 inhibition in cell.109,110  

The expression of CD86 and CD11b were measured in THP-1 cells in the 

presence of 0.5 and 1.0 µM concentrations of GSK2879552 and 2.8a relative to 

unexposed cells (Table 2.4, Table 2.5, Figure 2.8). 

As expected, the exposure of both GSK2879552 and 2.8a to THP-1 cells resulted 

in elevated levels of both CD86 and CD11b in all concentrations. CD86 

expression increased around 25-fold in the presence of both GSK2879552 and 

2.8a at a concentration of 0.5 µM and a 43 and 57-fold increase was seen from 

GSK2879552 and 2.8a respectively at 1.0 µM. CD11b expression increased 6-

fold and 9-fold at concentrations of 0.5 and 1.0 µM respectively in the presence 

of GSK2879552 and increased a further 10-fold at both concentrations on 

exposure to 2.8a.  

 

Compound 
 CD86 Fold Change 

0 µM 0.5 µM 1.0 µM 
Neg Ctrl (3.13) 1.0±0.0 1.1±0.4 1.0±0.6 

GSK2879552 1.0±0.0 27.2±3.5 43.4±16.8 

2.8a 1.0±0.0 25.3±31.6 57.1±22.3 

 

Table 2.5. CD86 expression levels in THP-1 cells on inhibition of LSD1. 

Data shown as CD86 level fold change ± stdp, n=2 
Data generated by Bulut et al., Koc University (unpublished). 
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Compound 
 CD11b Fold Change 

0 µM 0.5 µM 1.0 µM 
Neg Ctrl (3.13) 1.0±0.0 2.1±1.6 2.7±1.3 

GSK2879552 1.0±0.0 6.8±3.9 9.3±5.0 

2.8a 1.0±0.0 16.9±6.6 19.1±5.8 

 

Table 2.6. CD11b expression levels in THP-1 cells on inhibition of LSD1. 

Data shown as CD11b level fold change ± stdp, n=2 
Data generated by Bulut et al., Koc University (unpublished). 

 
 

 
Figure 2.8. Graphical representation of CD86 and CD11b expression levels in 
THP-1 cells in response to inhibition with GSK2879552, 2.8a and a negative 

control. 
 

Data shown as CD86 and CD86 level fold change ± stdp, n=2 
Data generated by Bulut et al., Koc University (unpublished). 
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2.4.6. Synergy of 2.8a with other known anti-cancer drugs. 
 

The treatment of cancer via combination therapy is an important and well-

established tool in modern cancer therapy.111 Cancer drugs are often highly toxic 

and the development of resistance to treatment is a common problem. Combining 

drugs therefore has a number of advantages. They can improve efficacy and 

delay the onset of drug resistance.112 In addition, there are examples of drug 

combinations reducing toxicity such as those that act by being antagonistic for 

normal cells and protecting them, while still exhibiting a toxic affect in cancerous 

cells.113 One further advantage is that the cost of treatments can be reduced 

through combining new drugs with cheaper, already approved ones. 

However, the effect is not always a positive one and it is important to note that 

while the additive effects of combining drugs can have a positive result, for 

example through the antagonistic effect mentioned, this additive effect can also 

act to increase toxicity.114 For example both trastuzumab and doxorubicin are 

cardiotoxic and their synergistic effects translate into increased cardiotoxicity 

relative to each individual drug. The aim then is to find a combination with a high 

therapeutic index in which the toxicity to cancer cells is much greater than to 

normal cells.  

Compound 2.8a was tested in combination with four known anti-cancer drugs; 

cytarabine, cisplatin, paclitaxel and doxorubicin (Figure 2.9) all of which have 

been used in the treatment of leukaemia. Synergy was tested by investigating the 

effect of each drug both individually and in combination with 2.8a in a cell viability 

assay.  

THP-1 cells were treated with 2.8a (1.25 µM) over 72 hours followed by co-

treatment with the additional anti-cancer agents over 48 hours. Co-treatment with 

cytarabine (0.6 µM) and cisplatin (1.25 µM) showed no synergistic effects with 

2.8a. However, both paclitaxel (3 µM) and doxorubicin (0.06 µM) showed good 

synergistic effects, reducing cell numbers by 50 and 70 % respectively at this 

dose.  

For comparison, the effect of GSK2879552 was also tested in combination with 

doxorubicin and also showed good synergistic effect, reducing the number of live 

cells by 87 %. This suggests that in terms of synergistic effects with doxorubicin, 

our modification of GSK2879552 is of no additional benefit. Testing with 
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GSK2879552 in combination with the other anti-cancer agents should now be 

carried out to determine if the modification made is stopping synergy. 

 

 
 

Figure 2.9. Cell viability of THP-1 cells inhibited with combinations of 2.8a and 
other known anti-cancer agents. 

 
Data shown as % cell viability ± stdp, n=2 

Data generated by Bulut et al., Koc University (unpublished). 
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2.4.7. Inducing apoptosis. 
 

The term apoptosis was coined in 1972 in a paper by Kerr et al. to describe the 

mechanism of programmed cell death.115 It is the cells natural response to 

damage and prevents the proliferation of faulty cell’s and the legacy of mutated 

DNA. The process of apoptosis is complex, involving multiple signalling 

pathways, proteins and protein regulators, including the caspases. The caspases 

are a family of proteases which take part in the process of apoptosis. The classic 

apoptosis pathway consists of a cascade of these caspase enzymes ending with 

the downstream ‘effector’ or ‘executioner’ caspases, caspase-3, -6 and -7.116 As 

such, the activation of both caspase-3 and caspase-7 can be used a tool for the 

detection of apoptosis. 

A further method of apoptosis recognition is the Annexin V binding assay. Cell 

membranes contain the phospholipid, phosphatidylserine (PS), which faces into 

the cytosol of the cell. During early apoptosis, the asymmetry of the cell 

membrane is lost, and PS is exposed to the outer surface of the cell in order to 

facilitate recognition and removal of the dying cell via phagocytosis. In the 

presence of Ca2+, hapten labelled annexin V has a high affinity for PS and hence 

allows for the detection of apoptotic cells.117 This cell labelling is again a good 

tool for identifying cells which are undergoing apoptosis. 

The deregulation of the apoptosis pathway is considered to be one of the 

hallmarks of cancer.118 It is the goal therefore of many cancer treatments to 

reinstate this pathway and trigger apoptosis in tumour cells. 

To test whether our compound, 2.8a, induces apoptosis in cancer cells, THP-1 

cells were exposed to 2.8a both on its own and in combination with doxorubicin 

and the apoptosis profiles determined using both caspase-3/7 (Table 2.6, 

Figure2.10, Figure 2.11) and annexin V assays (Table 2.7, Figure 2.12, Figure 

2.13). 
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Caspase-3/7 assay 
At a concentration of 1.25 µM, 2.8a did not show any significant change in the 

apoptosis profile relative to uninhibited cells while doxorubicin, at a concentration 

of 60 nM, induced apoptosis in around 17% of cells. The largest difference was 

seen when a combination of 2.8a and doxorubicin was used, showing the 

proportion of apoptotic cells to be around 60 %. 

 

Inhibitor 
% Population 

Live Apoptotic Apoptotic/Dead Dead 
No Inhibitor 95.65±0.9 0.30±0.05 3.48±1.03 0.58±0.18 

doxorubicin 66.63±8.58 7.06±4.46 22.85±5.55 3.14±1.43 

GSK2879552 95.20±0.00 1.00±0.05 3.62±0.07 0.17±0.12 

GSK + dox 54.05±0.85 14.62±0.77 31.00±0.05 0.32±0.02 

2.8a 96.08±0.88 0.40±0.20 2.40±0.40 1.13±0.68 

2.8a + dox 26.90±8.15 7.04±5.94 62.30±3.25 3.76±1.04 

 

Table 2.7. The apoptosis profile data of doxorubicin and 2.8a both individually 
and in combination in THP-1 cells measured using caspase activation. 

Data shown as %population ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 
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Figure 2.10. Apoptosis profiles for 2.8a and doxorubicin in THP-1 cells. 

 

 
Figure 2.11. Graphical representation of apoptosis data for doxorubicin and 

2.8a in THP-1 cells. 
 

Data shown as %population ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 
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Annexin V 
Again, there was no change in the levels of apoptosis seen between cells 

inhibited with 2.8a, at a concentration of 1.25 µM, and uninhibited cells. Cells 

inhibited with 60 nM doxorubicin however showed around 40 and 20% of cells in 

early and late apoptosis respectively. Once again, combining 2.8a and 

doxorubicin showed the largest increase in apoptotic cells with 45% of cells in 

early apoptosis and around 45% in late apoptosis.  

 

Inhibitor 
% Population 

Live 
Early 

apoptosis 
Late 

apoptosis/Dead 
Dead 

No Inhibitor 78.40±5.05 16.44±3.22 4.93±1.67 0.24±0.16 

doxorubicin 39.77±2.07 41.32±1.84 18.7±0.10 0.22±0.14 

GSK2879552 93.16±0.92 3.43±0.71 3.07±0.17 0.34±0.04 

GSK + dox 70.38±0.62 10.25±1.11 18.11±0.39 1.26±0.10 

2.8a 80.94±4.74 15.20±4.30 3.58±0.18 0.29±0.27 

2.8a + dox 12.93±1.17 47.33±2.63 39.24±4.19 0.51±0.39 

 

Table 2.8. The apoptosis profile data of doxorubicin and 2.8a both individually 
and in combination in THP-1 cells measured using Annexin V. 

Data shown as %population ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 
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Figure 2.12. Apoptosis profiles for 2.8a and doxorubicin in THP-1 cells. 
Data generated by Bulut et al., Koc University (unpublished). 

 
Figure 2.13. Graphical representation of apoptosis data for doxorubicin and 

2.8a in THP-1 cells using Annexin V binding assay. 
 

Data shown as %population ± stdp, n=2. 
 Data generated by Bulut et al., Koc University (unpublished). 
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These results are consistent with the findings presented in section 2.4.6. which 

show 2.8a to have good synergy with doxorubicin. Measurement using caspase-

3 and 7 are predominantly late apoptotic cells whilst measurement via Annexin V 

assay shows a larger proportion of early apoptosis. These data are consistent 

with both methods and when total apoptosis (early + late) is examined it shows 

consistently high proportions of apoptotic cells. 

Further work should include the apoptosis profiles of GSK2879552 to determine 

if the modifications made have any bearing on the results. 
 

2.4.8. Repair of doxorubicin induced damage 
 

Anthracyclines are a family of antitumor antibiotics. The first anthracycline, 

daunorubicin (Figure 2.14), was isolated independently from strains of 

Streptomyces caeroleorubidus, in 1962 in France and then from Streptomyces 

peucetius in 1963 and 1964 in Italy and the Soviet Union respectively.119 In 1969, 

its 14-hydroxy analogue, doxorubicin (Figure 2.14), was reported120 and in 1974 

marketed as Adriamycin® for the treatment of carcinomas and soft tissue 

sarcomas and is now listed as being associated with over 24 different cancers 

(DrugBank.ca). 

 

 
Figure 2.14. The molecular structure of the anthracyclines, daunorubicin and 

doxorubicin. 
 

Doxorubicins mechanism of action involves intercalculation with DNA base pairs, 

causing breakage of the DNA strands. It also inhibits type II topoisomerase, a 

DNA repair enzyme, thus preventing DNA repair and inducing apoptosis as well 

as acting to cause free radical-mediated oxidative damage to DNA.  
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It was hypothesised that our inhibitors would sensitize cells to DNA damage and 

so upon treatment with doxorubicin, cells would no longer be able to compensate 

and die. To this end, the effect of our inhibitor 2.8a, on the damage induced by 

doxorubicin was investigated in several ways: the non-repair of DNA double 

strand breaks (DSBs) due to topoisomerase type II (Top2) inhibition, the oxidative 

damage caused by the generation of reactive oxygen species (ROS) and the 

potential regulation of gene repair pathways. 

 

The repair of DSBs 
The topoisomerases are enzymes which play an important role in DNA 

replication. Top2 essentially plays a role in changing the topology of DNA, which 

may have become knotted or catenated, by the cleavage and subsequent re-

ligation of double stranded DNA.121 The anthracyclines act by stabilising the 

Top2-DNA intermediate in which a DNA strand is cut and then covalently bind to 

the enzyme forming a DNA-Top2 cleavage complex.122 Because the DNA cuts 

go unrepaired this becomes lethal for the cell. As the breakage of double stranded 

DNA is such a dangerous event for a cell, they have mechanisms in place to 

repair the DNA in the event of DSBs which are initiated by an epigenetic reaction. 

In response to a break, rapid phosphorylation of histone variant H2AX at serine-

139 generates γ-H2AX. γ-H2AX then facilitates a number of functions in 

response to DSBs.123,124 It is this early cellular response, generating γ-H2AX, 

which can be used to detect damage to DNA in the form of DSBs. 

THP-1 cells were treated with 1.25 µM 2.8a and/or 62.5 nM doxorubicin. Cells in 

which γ-H2AX had been activated were then counted to determine the level of 

cell damage (Table 2.8, Figure 2.15, Figure 2.16). Cells treated with 2.8a showed 

no change in γ-H2AX levels relative to untreated cells and as expected, cells 

treated with doxorubicin only showed higher levels of γ-H2AX activation at 37%. 

Cells treated with both doxorubicin and 2.8a showed slightly higher activation at 

44%, although this change is not significant when statistical error is accounted 

for. These data suggest that the THP-1 cell line is not sensitised to DNA damage 

by 2.8a.  
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Inhibitor % population 
No inhibitor 8.15±0.55 

Doxorubicin 36.83±4.42 

2.8a 4.60±0.50 

2.8a + doxorubicin 44.32±6.67 

 

Table 2.9. % population of H2AX levels in THP-1 cells in response to treatment 
with doxorubicin and 2.8a. 

Data shown as %population ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 

 

 

 
Figure 2.15. Population profiles of phosphorylation vs H2AX expression in 

THP-1 cells treated with doxorubicin and 2.8a. 
Data generated by Bulut et al., Koc University (unpublished). 
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Figure 2.16. Graphical representation of γ-H2AX activation in THP-cells 

treated with doxorubicin and 2.8a. 
 

Data shown as %population ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 

 

 

The formation of ROS 
Cancer treatment with doxorubicin is now well known to come with the risk of 
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doses.125 One of the reasons for this is down to how doxorubicin is metabolised. 

Doxorubicin can follow one of three metabolic pathways, one-electron reduction, 

two-electron reduction and deglycosidation. Deglycosidation is the minor 

pathway, accounting for only around 1-2% of doxorubicin metabolism. Two-
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Scheme 2.4. One and two-electron metabolic pathways of doxorubicin. 

 

Again, the hypothesis is that cells sensitised to damage by our inhibitors will be 

unable to compensate upon treatment with doxorubicin and so cells treated with 

doxorubicin and 2.8a should show a high population of ROS containing cells. 

THP-1 cells were treated with 1.25 µM 2.8a and/or 62.5 nM doxorubicin. Cells 

treated with 2.8a only, showed no increase in the presence of ROS relative to 

untreated cells. Cells treated with doxorubicin only, showed the highest 

population at 43 % of ROS containing cells whilst those treated with both 

doxorubicin and 2.8a showed a lower population of ROS containing cells at 20 % 

(Table 2.9, Figure 2.17, Figure 2.18). This data suggests that 2.8a decreases the 

sensitivity of cells to the production of ROS due to the presence of doxorubicin 

metabolites. This could be a positive result as by reducing the production of ROS 

in cells, the risk of developing cardiomyopathy may also be reduced.  
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Inhibitor 
% Population 

ROS (-) ROS (+) 
No inhibitor 95.15±0.65 4.49±0.41 

Doxorubicin 56.35±3.65 43.50±3.50 

2.8a 94.75±0.55 5.09±0.49 

2.8a + doxorubicin 79.35±3.65 19.90±3.90 

 

Table 2.10. ROS data for THP-1 cells treated with doxorubicin and 2.8a. 

Data shown as %population ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 

 

 

 
 

Figure 2.17. ROS profiles for THP-1 cells treated with doxorubicin and 2.8a. 
Data generated by Bulut et al., Koc University (unpublished). 
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Figure 2.18. Graphical representation of THP-1 cells containing ROS upon 

treatment with doxorubicin and 2.8a. 
 

Data shown as %population ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 
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Expression change in damage repair genes. 
Because it is known that doxorubicin is a cause of DNA damage, the type of 

genes and pathways activated can be estimated. By screening the expression of 

these genes in the presence of 2.8a, we can see if our inhibitor has any effect on 

these pathways. It was hypothesised that if LSD1 regulates any of these repair 

genes, upon inhibition of LSD1, the repair mechanism would collapse and result 

in cell death.  

Twelve genes from four mechanistic groups were screened for changes in 

expression levels on inhibition with 2.8a (Table 2.10, Figure 2.19). Of these four 

groups, only the homology directed repair (HDR) pathway genes showed any 

increase in expression levels and in particular ATM which showed an almost 2-

fold increase. This suggests that there may be a degree of LSD1 regulation within 

this pathway although further investigation is required. Further work into this area 

will use RNA-sequencing to find any further hit genes with higher levels of 

expression and give us a better idea of how this mechanism works. 

 

Mechanism Gene Fold Change 
DMSO 2.8a 

Base Excision Repair 
(BER) 

OGG1 1 0.74±0.31 
MUTYH 1 0.90±0.18 

GADD45A 1 0.62±0.17 

Nucleotide Excision 
Repair (NER) 

XPA 1 0.97±0.16 
ERCC1 1 0.75±0.13 
ERCC3 1 0.97±0.07 

Homology Directed 
Repair (HDR) 

RAD51 1 1.39±0.03 
RAD52 1 1.40±0.29 

ATM 1 1.88±0.29 
ATR 1 1.45±0.11 

Non-Homologous 
End Joining (NHEJ) 

XRCC5 1 0.72±0.12 
LIG4 1 0.92±0.03 

 

Table 2.11. Fold change in the expression of 12 damage repair genes in 
response to inhibition of LSD1 with 2.8a. 

Data shown as gene fold change ± stdp, n=2. Data normalised to DMSO = 1. 
Data generated by Bulut et al., Koc University (unpublished). 
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Figure 2.19. The expression of 12 different damage repair genes in response to 

LSD1 inhibition with 2.8a. 
 

Data shown as gene fold change ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 
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2.5. The synthesis of further GSK2879552 analogues. 
 

Having shown that our compound 2.8a is a potent inhibitor of LSD1, with good in 

cell activity, the next logical step was to expand the series. To this end, we 

modified the amide R group (Figure 2.19) to try and identify which features are 

important and to see if any improvement could be made. There are three main 

changes which can be made to the amide R group. Carbon chain length, carbon 

chain rigidity and the functional group at the end of the chain. To this end, six 

further compounds were synthesised (Figure 2.20). 

 
Figure 2.20. General structure of our series of potential LSD1 inhibitors based 

on the structure of GSK2879552. 
 

The first change was to reduce the carbon chain length in order to determine if 

chain length is important. 2.8b has the same imidazole group at the end of the 

saturated chain, but two carbons in place of three. Following this, because the 

region that the amide R group is thought to be occupying in the LSD1 functional 

site is understood to be acidic,127 and imidazole is expected to be positively 

charged at physiological pH, the presence of the nitrogen’s should be important 

for affinity. To test this, imidazole was replaced with an aromatic ring which 

retains aromaticity but loses polarity. Compounds 2.8c, 2.8d and 2.8e incorporate 

this change while also consisting of a varied carbon chain length of 3, 2 and 1 

carbon respectively. 

Compound 2.8f was modified by replacing the imidazole ring with a N-alkylated 

piperidine ring. This change retains a certain amount of polarity but loses 

aromaticity.  

The final compound, 2.8g, contains tranylcypromine as the amide R group. This 

retains the 3-carbon chain length but provides rigidity as well as conserving 

aromaticity. 
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Figure 2.21. All analogues of GSK2879552. 
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2.5.1. Biological activity. 
 
The first test available to us was a cell viability test in THP-1 cells. THP-1 cells 

show high expression of LSD1 and compound 2.8a performed well in a previous 

assay with an IC50 of 1.8 µM in THP-1 (section 2.4.3.). 

The anti-proliferative effect of all compounds 2.8a-g was first tried at a 

concentration of 100 µM (Figure 2.22) to gauge activity, using doxorubicin as a 

control. All compounds showed strong anti-proliferative activity at this 

concentration and so the assay was repeated, for all compounds, at a 

concentration of 10 µM (Figure 2.21). The results of the 10 µM assay indicated 

that all compounds in which the amide R-group carbon chain contained three 

carbons, 2.8a, 2.8c and 2.8g, had strong anti-proliferative activity at this 

concentration, while all compounds with less than three carbons had poor activity. 

The anti-proliferative effect held regardless of functional group on the end of the 

chain and also irrespective of whether the chain was in a free or restricted 

conformation.  

 

 
 

Figure 2.22. Cell viability assay results of all compounds 2.8a-g with 
doxorubicin as a control in THP-1 cells at 100 and 10 µM concentrations of 

inhibitors. 
 

Data shown as cell viability % ± std, n=3. 
Data generated by Burianova et al., UEA (unpublished). 
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chain length, highlighted in the 10 µM assay, was reiterated. Compounds 2.8a, 

2.8c and 2.8g displayed the lowest IC50’s of 0.7, 9.5 and 5.9 µM respectively. 

Further significance to chain length is demonstrated by compounds 2.8c-e. 

These compounds all have the same functional group at the end of the chain and 

only chain length is varied. This emphasised the trend, as chain length is reduced 

the IC50 increases. Future work should add a compound with a fourth carbon in 

the chain in order to ascertain if three carbons is indeed the optimum, or if the 

optimum is yet to be found. 

The difference in functional groups at the end of the carbon chain can be 

compared by looking at compounds 2.8b, 2.8d and 2.8f which all have two 

carbons in the chain and so keeps this variable constant. 2.8d and 2.8f returned 

IC50 values of 28.4 and 29.9 µM respectively suggesting that aromaticity is not 

important. In addition, 2.8b had the highest IC50 of all compounds at 70.1 µM 

again suggesting that neither aromaticity nor basicity is important to affinity. 

Again, future work should incorporate compounds with no R-group at the end of 

the chain to establish the necessity of this feature.  

Finally, comparing compounds 2.8c and 2.8g allows us to determine if 

incorporating rigidity into the carbon chain has any significant effect on affinity. 

These have IC50 values of 9.5 and 5.9 µM respectively suggesting that restricting 

the conformation of the chain is not of substantial benefit. One further feature 

which could be explored in terms of chain rigidity is to replace the saturated chain 

with double bonds. In the case of 2.8b and 2.8d this would add conjugation 

throughout the entire R-group. 
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Figure 2.23. Cell viability assay to determine the IC50 of all compounds 2.8a-g 

in THP-1 cells. 
 

Data shown as cell viability % ± std, n=3. 
Data generated by Burianova et al., UEA (unpublished). 
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Table 2.12. IC50 values of compounds 2.8a-g in a cell viability assay in THP-1 
cells. 

Data shown as cell viability % ± std, n=3. 
Data generated by Burianova et al., UEA (unpublished). 

 

2.6. Conclusion and future work. 
 

In this chapter we have presented the synthesis and biological activity of a novel 

LSD1 inhibitor, 2.8a. This inhibitor is synthesised in one step from GSKs clinical 

candidate, GSK2879552. 

Using CETSA, 2.8a was shown to have good target engagement in THP-1 cells 

demonstrating a significant increase in thermal degradation temperature relative 

to untreated cells and a small increase relative to GSK2879552.  

2.8a demonstrated good in cell activity, particularly in MLL fused cell lines and 

more specifically MOLM-13. In addition, non-fused cell lines also proved 

susceptible at low µM concentrations and performed significantly better than 

control compound, GSK2879552. 

The activity of 2.8a as a LSD1 inhibitor was further supported through the analysis 

of molecular markers, CD86 and CD11b. Both markers showed a considerable 

increase in expression levels in the presence of 2.8a as well as higher expression 

levels than those seen for GSK2879552.  

Compound R-group IC50 ± std (µM)

2.8a 0.79±0.03

2.8b 69.14±2.86

2.8c 4.77±0.32

2.8d 30.84±0.70

2.8e 41.90±0.57

2.8f 32.86±2.71

2.8g 5.29±0.62

N N

N

N

N
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One further area of exploration was to investigate the synergistic effects between 

2.8a and other known anti-cancer agents. Of these, doxorubicin showed excellent 

synergistic activity in combination with 2.8a and a significant increase in the level 

of apoptotic cells were seen on exposure to a combination of 2.8a and 

doxorubicin relative to doxorubicin alone.  

A deeper investigation into this synergy revealed that while γ-H2AX levels 

showed no significant change, the levels of ROS did drop relative to treatment 

with doxorubicin alone suggesting possible benefits through the reduction of 

cardiomyopathy.  

A screen of DNA damage repair genes suggested a possible link to the HDR 

gene repair pathway but not at any significant level. Further work will investigate 

these pathways further with the aim of identifying any link between LSD1 

regulation of these gene repair pathways.  

A further six analogues were synthesised in an effort to optimise the structure. 

Initial cell viability testing in THP-1 cells suggests that carbon chain length is the 

most important feature with three carbons showing better performance than one 

or two. Chain rigidity and the functional group at the end of the chain had less of 

an impact on in-cell activity. Future work should now look to investigate if further 

lengthening the carbon chain would serve to increase activity and also the effect 

of removing the terminal functional group altogether. 
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2.7. Chapter two experimental. 
 
2.7.1. Experimental procedures. 
 

All commercially available chemicals and reagents were purchased from 

Fluorochem, Fisher Scientific, Sigma Aldrich, Acros Organics, Alfa Aesar or VWR 

and used as provided, including all anhydrous solvents. 

 

All glassware used was flame dried under vacuum or oven dried prior to use. All 

reactions were carried out under a nitrogen atmosphere unless otherwise stated. 

Any reference made to solvent being removed in vacuo refers to its removal by 

evaporation, under reduced pressure, on a rotary evaporator at 40°C and if 

required, dried further under high vacuum at room temperature.  

 

All thin layer chromatography (TLC) was carried out on Merck TLC Silica Gel 60 

F254 aluminium backed TLC plates from Merck. Plates were visualised under UV 

(254 nm) light or, when appropriate, stained with ninhydrin and heated. All 

chromatography was carried out on a Teledyne ISCO CombiFlash Rf 150 using 

pre-packed, disposable silica columns purchased from Kinesis or pre-packed, 

reusable C18 reverse phase columns purchased direct from Teledyne ISCO.  

 

Melting points were determined using a Stuart SMP10 melting point apparatus. 

 

Infrared spectra were recorded using a Spectrum Two FT-IR Spectrometer from 

PerkinElmer. Data is given wavenumbers (cm-1). 

 

All NMR were carried out on Brucker Ultrashield 400 Plus spectrometer. All 

samples were dissolved in an appropriate deuterated solvent. 1H NMR was 

recorded at 400 MHz, 13C at 101 MHz and 19F at 376 MHz unless otherwise 

stated. All NMR spectral data was processed using Mnova software from 

Mestrelab Research and calibrated using the appropriate deuterated solvent 

peak. Multiplicity splitting patterns are reported as s (singlet), d (doublet), t 

(triplet), q (quartet), m (multiplet), brd (broad) and combinations thereof. Coupling 
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constants (J) are reported in Hz and the number of protons determined via 

integration, calibrated from a peak of known origin. 

 

High Resolution Mass Spectometry (HRMS) was carried out at the John Innis 

Centre, Norwich Research Park. Samples were run by direct flow injection, 

without chromatography, on a Shimadzu IT-ToF mass spectrometer with an 

Acquity/Prominence UHPLC as front end. Samples were run in 50% MeCN at a 

flow rate of 0.6 ml min-1 for 2 minutes. The Photo Diode Array (PDA) collected 

UV/visible spectra from 200-600 nm and the Mass spectrometer collected both 

positive and negative full MS from m/z 200-2000.  

LC-ToF spectra was carried out on an Agilent 6220 ToF-MS fitted with a hybrid 

Agilent 1100/1200 LC system. LC conditions consisted of a 10-100 % gradient of 

acetonitrile in water, 0.1 % formic acid additive and a flow rate of 0.5 ml min-1. 

The column was a Thermo Accucore 100 x 2.1 mm C-18 column with 2.4 µM 

pore size fitted with a C-18 column guard. Data was typically collected over a 

range of m/z 200-2000. All data was processed using ACD Spectrus Processor 

software from ACD Labs.  

 

Purity was determined using HPLC analysis on an Agilent Technologies 1200 

series HPLC fitted with a ZORBAX Eclipse C18 reverse phase column. A gradient 

of 95:5 water:MeOH with 0.05% TFA to 5:95 water:MeOH with 0.05% TFA was 

used over a run time of 25 minutes and a typical flow rate of 1 ml min-1. UV/visible 

spectra were recorded at 254 and 214 nm and purity determined by % peak area. 

 

Some minor characterisation data has been omitted as university services, and 

therefore data collection, was interrupted by the COVID-19 outbreak. 
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2.7.2. trans-GSK2879552 synthesis 

 

 
Methyl 4-{[4-(hydroxymethyl)piperidin-1-yl]methyl}benzoate, (2.10a).  

This compound was prepared by a modified version of the procedure for 

2.10b.102 

A flame dried flask was charged with 2.5a (3.00 g, 13.11 mmol) and 4-

piperidinemethanol (1.51 g, 13.09 mmol). Anhydrous acetonitrile (60 ml) was 
then added, making a white suspension. Potassium carbonate (5.43 g, 39.29 
mmol) was added and the mixture refluxed under a nitrogen atmosphere for 2 

hrs. The mixture was allowed to cool to room temperature before being filtered 
and concentrated under reduced pressure. The concentrate was dissolved in 

EtOAc (50 ml) and to it added 1M HCl (50 ml). The aqueous layer was separated 
and washed with EtOAc (50 ml) and then basified with 4M NaOH to pH 10. The 

aqueous mixture was then twice extracted with EtOAc (50 ml) and the combined 
organic layers washed with brine (50ml) and dried over MgSO4. Removing the 

solvent in vacuo gave 2.10a (2.86 g, 83 %) as a white solid. Mp 57-58ºC, 1H 

NMR (400 MHz, Chloroform-d) δ 7.98 (d, J = 8.3 Hz, 2H), 7.39 (d, J = 8.4 Hz, 

2H), 3.90 (s, 3H), 3.55 (s, 2H), 3.48 (d, J = 6.4 Hz, 2H), 2.88 (d, J = 11.5 Hz, 2H), 

1.99 (td, J = 11.7, 2.4 Hz, 2H), 1.74 – 1.68 (m, 2H), 1.55 – 1.45 (m, 2H), 1.31 (qd, 

J = 12.3, 12.0, 12.0, 3.9 Hz, 2H); 13C NMR (101 MHz, Chloroform-d) δ 167.1, 

143.8, 129.6, 129.1, 129.0, 67.8, 63.0, 53.6, 52.1, 38.5, 28.7; HMRS (ESI) m/z 

calcd for C15H21NO3 [M+H]+ 264.1594, found 264.1596. 
This compound has been reported in the literature but no data given.128 
  



 82 

 
tert-Butyl 4-{[4-(hydroxymethyl)piperidin-1-yl]methyl}benzoate, (2.10b).  

Made using the procedure for 2.10a. 

Isolated as a yellow solid. (5.65 g, 84 %) 

Mp 70-71 ºC, 1H NMR (400 MHz, Chloroform-d) δ 7.91 (d, J = 8.3 Hz, 2H), 7.36 
(d, J = 8.3 Hz, 2H), 3.52 (s, 2H), 3.46 (t, J = 5.4 Hz, 2H), 2.86 (dt, J = 11.1, 3.2 

Hz, 2H), 2.10 (t, J = 5.3 Hz, 1H), 1.96 (td, J = 11.7, 2.5 Hz, 2H), 1.75 – 1.64 (m, 

2H), 1.57 (s, 9H), 1.53 – 1.40 (m, 1H), 1.34 – 1.21 (m, 2H); 13C NMR (101 MHz, 

Chloroform-d) δ 165.8, 143.3, 130.8, 129.4, 128.9, 80.9, 67.7, 63.0, 53.5, 53.5, 
38.5, 28.8, 28.2; HRMS (ESI) m/z calcd for C18H27NO3 [M+H]+ 306.2064, found 

306.2064. 
These data are consistent with that reported in the literature.102 

 

 
Methyl 4-[(4-formylpiperidin-1-yl)methyl]benzoate, (2.11a).  

This compound was prepared by a modified version of the procedure for 

2.11b.102 DMSO (4.4 ml, 61.9 mmol) was dissolved in dry dichloromethane (100 

ml) and cooled to -78ºC. Oxalyl chloride (3.4 ml, 39.6 mmol) was then also 

dissolved in dry dichloromethane (38 ml) and cooled to -78 ºC before being 
slowly added to the DMSO solution. The mixture was then stirred for 30 minutes 

at -78 ºC under a nitrogen atmosphere before 2.10a (7.01 g, 26.6 mmol) was 

dissolved in dry dichloromethane (40 ml), cooled to -78 ºC and added slowly to 

the DMSO/oxalyl chloride solution. The resulting mixture was stirred at -78 ºC 
under nitrogen for 3 hours. After this time, trimethylamine (19 ml, 136.3 mmol) 
was dissolved in dry dichloromethane (20 ml) and cooled to -78 ºC before being 

added to the benzoate mixture. This mixture was stirred at -78 ºC for a further 
20 minutes, before water (50 ml) was added and the mixture allowed to warm to 

room temperature. The aqueous layer was separated, and the pH adjusted to ~7 
with 2M HCl. The aqueous layer was then extracted with dichloromethane (20 

OH

N
O

O O

N
O
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ml) and all organic layers combined and washed with water and brine (50 ml), 

dried over MgSO4 and concentrated. The concentrate was then purified on a 
silica column eluting with a gradient of 0-100 % EtOAc in petroleum ether to give 

2.11a (4.9 g, 71 %) as a yellow oil which solidified to a crystalline solid under 

high vacuum. Mp 49-50ºC, 1H NMR (400 MHz, Chloroform-d) δ 9.64 (d, J = 1.2 

Hz, 1H), 7.97 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.5 Hz, 2H), 3.89 (s, 3H), 3.53 (s, 

2H), 2.80-2.75 (m, 2H), 2.28-2.20 (m, 1H), 2.11 (td, J = 11.1, 2.7 Hz, 2H), 1.90-

1.85 (m, 2H), 1.73-1.63 (m, 2H); 13C NMR (101 MHz, Chloroform-d) δ 203.9, 

167.1, 144.0, 129.6, 129.0, 128.8, 62.9, 52.68, 52.1, 47.9, 25.5; HMRS (ESI) m/z 

calcd for C15H19NO3 [M+H]+ 262.1438, found 262.1441. 
This compound has been reported in the literature but no data given.128 

 

 
Methyl 4-[(4-formylpiperidin-1-yl)methyl]benzoate, (2.11a).  
Alternative oxidation procedure. 
Anhydrous dichloromethane was added to a flask was charged with 2.10a (323 

mg, 1.22 mmol) and stirred until all solid had dissolved. To it was added silica 

and ground up 4Å molecular sieves (567 mg). Pyridinium dichromate (PDC) (668 

mg, 1.76 mmol) was added and the mixture stirred at room temperature under a 

nitrogen atmosphere for 16hrs. The reaction mixture was then diluted with Et2O 

and filtered through a pad of silica. The filtrate was then concentrated and purified 

via silica column chromatography (0 – 100 % EtOAc:PE) to give 2.11a (16mg, 

5%) as a yellow oil.  
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Methyl 4-[(4-formylpiperidin-1-yl)methyl]benzoate, (2.11a).  
Alternative oxidation procedure. 
2.10a (142 mg, 0.54 mmol) was dissolved in anhydrous dichloromethane (4ml). 

Tetrapropylammonium perruthenate (TPAP) (18.7 mg, 0.05 mmol) and N-

Methylmorpholine-N-Oxide (NMO) (124 mg, 1.06 mmol) were then added and 

the mixture stirred at room temperature for 3 hrs. The mixture was then filtered 

through celite and the filtrate concentrated in vacuo. The concentrate was purified 

via flash chromatography (0 – 100 % EtOAc:PE) to give 2.11a (42 mg, 30 %) as 

a yellow oil.  

 

 
Methyl 4-[(4-formylpiperidin-1-yl)methyl]benzoate, (2.11a).  

Alternative oxidation procedure. 
2.10a (143 mg, 0.54 mmol) was dissolved in anhydrous dichloromethane (4 ml) 

and cooled to 0 ºC. Dess-Martin periodinane (DMP) (453 mg, 1.07 mmol) was 

added and the mixture stirred at 0 ºC under a nitrogen atmosphere for 20 minutes. 

The mixture was then allowed to warm to room temperature and stirring continued 

for a further 30 minutes. 2M Na2SO4 (10 ml) was added followed by saturated 

NaCO3 (10 ml) and dichloromethane (10 ml) the organic layer was removed and 

the aqueous layer further extracted with dichloromethane (15 ml). The combined 

organic layers were then washed with brine and dried over MgSO4 before being 

concentrated and purified via flash chromatography (0 – 100 % EtOAc:PE) to 

give 2.11a (76 mg, 55 %) as a yellow oil. 
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tert-Butyl 4-[(4-formylpiperidin-1-yl)methyl]benzoate, (2.11b).  

Made using the Swern oxidation procedure for 2.11a. 

Isolated as a yellow solid. (72%) 

Mp = 72-73 ºC, 1H NMR (400 MHz, Chloroform-d) δ 9.64 (d, J = 1.2 Hz, 1H), 7.93 
(d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 3.57 (s, 2H), 2.85 – 2.75 (m, 2H), 2.31 

– 2.09 (m, 3H), 1.91 (d, J = 13.3 Hz, 2H), 1.74 (t, J = 11.6 Hz, 2H), 1.58 (s, 9H); 
13C NMR (101 MHz, Chloroform-d) δ 203.8, 165.7, 131.2, 129.6, 129.0, 81.0, 

62.8, 52.5, 47.7, 28.3, 25.3; HRMS (ESI) m/z calcd for C18H25NO3 [M+H]+ 

304.1907, found 304.1918. 
These data are consistent with that reported in the literature.102 

 
trans-2-Phenylcyclopropylamine, (1.2).  
trans-2-Phenylcyclopropylamine hydrochloride (2.00 g, 11.79 mmol) was 

dissolved in water (30 ml). 4M NaOH (10 ml) was added slowly then the mixture 

stirred for 30 minutes. The mixture was extracted three times with 

dichloromethane (30 ml) and the combined organic layers dried over MgSO4 and 

filtered. The filtrate was evaporated in vacuo to give 1.2 (1.50 g, 96 %) as an off 

white solid. 1H NMR (400MHz, Chloroform-d) δ 7.26-7.23 (m, 2H), 7.16-7.12 (m, 

1H), 7.03-7.01 (m, 2H), 2.55 (ddd, J = 7.3, 4.3, 3.1Hz, 1H), 1.86 (ddd, J = 9.1, 

5.8, 3.1Hz, 1H), 1.66 (s, 2H), 1.04 (ddd, J = 9.4, 5.2, 4.3Hz, 1H), 0.98 (dt, J = 7.1, 

5.5Hz, 1H). 

These data are consistent with that reported in the literature.129 
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tert-Butyl-4-{[(2-phenylcyclopropyl)amino]methyl}piperidine-1-
carboxylate, (2.2).  
This compound was prepared by a modified version of a general procedure 

reported by Bhattacharyya.103 

A flame dried, round bottom flask was charged with 1.2 (667 mg, 5.01 mmol) 

Titanium (iv) isopropoxide (3.4 ml, 11.48 mmol) was added followed by 1-Boc-

piperidine-4-carboxylate (838 mg, 3.93 mmol) and the mixture stirred at room 

temperature under a nitrogen atmosphere for 3 hrs. Methanol (4 ml) was then 

added and the flask was cooled to 0 ºC. Sodium borohydride (311 mg, 8.22 mmol) 

was added slowly before warming the flask back up to room temperature and 

stirring continued for 1 hr. 1M NaOH (10 ml) was added followed by water (10 ml) 

and dichloromethane (20 ml). The organic layer was recovered and dried over 

MgSO4 before being concentrated under reduced pressure and purified via flash 

chromatography (0–100% EtOAc:PE) to give 2.2 (468 mg, 36 %) as a yellow oil. 
1H NMR (400 MHz, Methanol-d4) δ 7.21 (t, J = 7.5Hz, 2H), 7.11 (t, J = 7.4Hz, 1H), 

7.04 (d, J = 7.2Hz, 2H), 4.10-4.04 (m, 2H), 2.77-2.70 (m, 2H), 2.59-2.57 (m, 2H), 

2.29 (ddd, J = 7.4, 4.4, 3.4Hz, 1H), 1.90 (ddd, J = 9.2, 5.8, 3.3Hz, 1H), 1.74-1.64 

(m, 3H), 1.45 (s,9H), 1.10-0.97 (m, 4H); 13C NMR (101 MHz, Methanol-d4) δ 

156.4, 143.4, 129.2, 126.7, 126.5, 80.8, 61.5, 56.1, 42.6, 36.9, 31.4, 28.7, 25.2, 

20.8, 16.7, 14.4, 11.0. 

 

 
Methyl4-{[4-({[(trans)-2-phenylcyclopropyl]amino}methyl)piperidin-1-

yl]methyl} benzoate, (2.7a). 

To a solution of 2.11a (4.10 g, 15.70 mmol) in dry methanol (33 ml) was added 

trans-2-phenylcyclopropanamine (2.50 g, 18.78 mmol). The mixture was heated 

to reflux for 10 minutes before cooling back to room temperature. Sodium 
borohydride (0.89 g, 23.53 mmol) was then slowly added and the mixture stirred 

N
H N O

O

N
O

O

N
H
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at room temperature for 1 hour. Water was added (50 ml) followed by 

dichloromethane (50 ml) and the organic layer separated and washed with a 
solution of 10 % acetic acid (50 %). Brine (50 ml) was then slowly added allowing 

the precipitation of a white solid. The solid was filtered and then suspended in 

propan-2-ol and sonicated before being filtered again to give 2.7a (2.06 g, 35 %) 

as a white solid. 1H NMR (400 MHz, Methanol-d4) δ 8.11 (d, J = 8.3 Hz, 2H), 7.71 

(d, J = 8.4 Hz, 2H), 7.33 – 7.27 (m, 2H), 7.25 – 7.16 (m, 3H), 4.37 (s, 2H), 3.93 (s, 

3H), 3.46 (d, J = 12.8 Hz, 2H), 3.17 (d, J = 6.9 Hz, 2H), 3.07 (t, J = 12.5 Hz, 2H), 
2.98 (ddd, J = 7.9, 4.4, 3.6 Hz, 1H), 2.58 (ddd, J = 10.3, 6.6, 3.6 Hz, 1H), 2.23 – 

2.02 (m, 3H), 1.70 (q, J = 12.9 Hz, 2H), 1.59 (ddd, J = 10.4, 6.7, 4.4 Hz, 1H), 1.36 

(dt, J = 7.8, 6.6 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 165.8, 138.9, 134.9, 

131.9, 130.4, 129.3, 128.4, 126.4, 126.4, 58.1, 52.3, 51.6, 50.6, 37.9, 30.5, 26.5, 
20.3, 12.4; HRMS (ESI) m/z calcd for C24H30N2O2 [M+H]+ 379.2380, found 

379.2380. 

 

 
tert-Butyl 4-[(4-{[(2-phenylcyclopropyl)amino]methyl}piperidin-1-yl)methyl] 

benzoate, (2.7b).  

Made using the procedure for 2.7a. 

Isolated as a white solid. (5.58 g, 66 %) 
1H NMR (400 MHz, Methanol-d4) δ 8.02 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 8.3 Hz, 

2H), 7.31 – 7.26 (m, 2H), 7.23 – 7.14 (m, 3H), 4.25 (s, 2H), 3.38 (d, J = 12.8 Hz, 

2H), 3.09 (d, J = 6.7 Hz, 2H), 2.97 – 2.86 (m, 3H), 2.49 (ddd, J = 10.2, 6.5, 3.5 Hz, 

1H), 2.13 – 2.00 (m, 3H), 1.70 – 1.63 (m, 2H), 1.60 (s, 9H), 1.52 (ddd, J = 10.6, 
6.5, 4.4 Hz, 1H), 1.31 (dt, J = 7.8, 6.5 Hz, 1H); 13C NMR (101 MHz, Methanol-d4) 

δ 175.9, 166.6, 139.9, 136.6, 134.1, 132.2, 130.8, 129.6, 127.7, 127.3, 82.8, 61.2, 

53.7, 52.9, 40.1, 32.8, 28.3, 22.8, 21.2, 13.9; HRMS m/z calcd for C27H36N2O2 

[M+H]+ 421.2850, found 421.2868. 
These data are consistent with that reported in the literature.102 
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4-[(4-{[(2-phenylcyclopropyl)amino]methyl}piperidin-1-yl)methyl]benzoic 
acid dihydrochloride, (1.35).  
A suspension of 2.7b (3.00 g, 7.13 mmol) in 1M HCl (40 ml) was heated to 89 ºC 

for 3 hrs. The reaction mixture was allowed to cool to room temperature and then 

placed in an ice bath overnight. The resulting white precipitate was filtered and 

dried in vacuo to give 1.35 (0.85 g, 27 %) as a white solid. 1H NMR (400 MHz, 

Methanol-d4) δ 8.12 (d, J = 8.3 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.33 – 7.28 (m, 

2H), 7.26 – 7.16 (m, 3H), 4.43 (s, 2H), 3.54 (d, J = 12.3 Hz, 2H), 3.26 – 3.07 (m, 

4H), 3.02 (dt, J = 7.9, 4.1 Hz, 1H), 2.61 (ddd, J = 10.3, 6.6, 3.6 Hz, 1H), 2.27 – 

2.06 (m, 3H), 1.81 – 1.57 (m, 3H), 1.38 (dt, J = 7.9, 6.7 Hz, 1H); 13C NMR (101 

MHz, Methanol-d4) δ 167.3, 137.9, 133.5, 132.3, 131.2, 130.0, 128.3, 126.6, 

126.0, 59.6, 52.0, 51.5, 38.3, 30.8, 26.7, 21.0, 12.0; HRMS (ESI) m/z calcd for 

C23H28N2O2 [M+H]+ 365.2224, found 365.2228. 

These data are consistent with that reported in the literature.51,102 
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2.7.3. Amide analogues. 
 

Amide coupling general procedure. 
To a suspension of 1.35 (1 eq) in dichloromethane was added DIPEA (4 eq) and 

the resulting mixture stirred until clear. HOBt.H2O (0.2 eq) and EDC.HCl (1.5eq) 

was added and the mixture stirred at room temperature for 30 mins. The 

appropriate amine (1.2 eq) was then added in one portion and stirred at room 

temperature under a nitrogen atmosphere overnight. After confirming completion 

with TLC, the reaction mixture was diluted with dichloromethane before 

concentrating. The resulting concentrate was then purified via chromatography, 

first on silica eluting with 9:1 CH2Cl2:MeOH followed by a C18 functionalised 

reverse phase column eluting with a gradient of 5-100 % MeOH in H2O.  

 

 
N-[3-(1H-imidazol-1-yl)propyl]-4-[(4-{[(2-
phenylcyclopropyl)amino]methyl}piperidin-1-yl)methyl]benzamide, (2.8a). 
Isolated as a colourless oil, (174 mg, 32 %). 
1H NMR (400 MHz, Methanol-d4) δ 7.78 (d, J = 8.4 Hz, 2H), 7.70 (s, 1H), 7.43 (d, 

J = 8.4 Hz, 2H), 7.25 – 7.18 (m, 2H), 7.18 (t, J = 1.3 Hz, 1H), 7.13 – 7.07 (m, 1H), 

7.03 (dd, J = 8.2, 1.1 Hz, 2H), 6.97 (t, J = 1.1 Hz, 1H), 4.11 (t, J = 7.0 Hz, 2H), 

3.56 (s, 2H), 3.39 (t, J = 6.8 Hz, 2H), 2.89 (brd-d, J = 11.4 Hz, 2H), 2.58 (d, J = 

6.8 Hz, 2H), 2.30 – 2.26 (m, 1H), 2.10 (p, J = 6.9 Hz, 2H), 2.06 – 1.97 (m, 2H), 

1.89 (ddd, J = 9.3, 5.9, 3.3 Hz, 1H), 1.79 – 1.69 (m, 2H), 1.59 – 1.45 (m, 1H), 

1.32 – 1.18 (m, 2H), 1.10 – 1.02 (m, 1H), 1.01 – 0.95 (m, 1H); 13C NMR (101 

MHz, Methanol-d4) δ 170.1, 143.4, 142.7, 138.5, 134.5, 130.7, 129.2, 129.1, 

128.2, 126.7, 126.5, 120.6, 63.7, 56.2, 54.5, 45.7, 42.6, 38.1, 36.5, 32.0, 31.2, 

25.2, 16.6; HRMS (ESI) m/z calcd for C29H37N5O [M+H]+ 472.3071, found 

472.3088, calcd for C29H37N5O [M+Na]+ 494.2890, found 494.2897; Purity 95.6%. 
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N-[2-(1H-imidazol-1-yl)ethyl]-4-[(4-{[(2-phenylcyclopropyl)amino]methyl} 
piperidin-1-yl)methyl]benzamide (2.8b). 
Isolated as a colourless oil, (155 mg, 30 %). 

IR (cm-1) 3277, 3026, 2919, 2807, 1639; 1H NMR (400 MHz, Methanol-d4) δ 7.74 

(d, J = 8.4 Hz, 2H), 7.61 (t, J = 1.0 Hz, 1H), 7.39 (d, J = 8.3 Hz, 2H), 7.20 (t, J = 

7.5 Hz, 2H), 7.13 – 7.07 (m, 2H), 7.05 – 7.00 (m, 2H), 6.96 (t, J = 1.1 Hz, 1H), 

4.23 (t, J = 6.0 Hz, 2H), 3.69 (t, J = 6.0 Hz, 2H), 3.51 (s, 2H), 2.85 (brd-d, J = 11.4 

Hz, 2H), 2.56 (dd, J = 6.8, 1.5 Hz, 2H), 2.26 (ddd, J = 7.5, 4.4, 3.3 Hz, 1H), 1.98 

(t, J = 11.7 Hz, 2H), 1.89 (ddd, J = 9.2, 5.8, 3.2 Hz, 1H), 1.76 – 1.66 (m, 2H), 1.56 

– 1.43 (m, 1H), 1.23 (qd, J = 12.2, 3.7 Hz, 2H), 1.11 – 1.01 (m, 1H), 1.00 – 0.93 

(m, 1H); 13C NMR (101 MHz, Methanol-d4) δ 170.0, 143.3, 142.9, 138.6, 134.1, 

130.6, 129.2, 129.1, 128.2, 126.7, 126.5, 120.8, 63.7, 56.2, 54.5, 46.9, 42.6, 41.8, 

36.5, 31.2, 25.2, 16.7; HRMS (ESI) m/z calcd for C28H35N5O [M+H]+ 458.2915 

found, ; Purity 99.2%. 

 

 
4-[(4-{[(2-phenylcyclopropyl)amino]methyl}piperidin-1-yl)methyl]-N-(3-
phenylpropyl)benzamide (2.8c). 
Isolated as a white solid, (147 mg, 26 %). 

Mp 213-215ºC (DC); IR (cm-1) 3348, 2542, 1650; 1H NMR (400 MHz, Methanol-

d4) δ 7.91 (d, J = 8.3 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 7.35 – 7.12 (m, 10H), 4.40 

(s, 2H), 3.54 (d, J = 12.6 Hz, 2H), 3.42 (t, J = 7.2 Hz, 2H), 3.18 (d, J = 6.8 Hz, 

2H), 3.16 – 3.06 (m, 2H), 3.01 (dt, J = 7.9, 4.1 Hz, 1H), 2.73 – 2.67 (m, 2H), 2.59 

(ddd, J = 10.3, 6.6, 3.6 Hz, 1H), 2.22 – 2.01 (m, 3H), 1.95 (p, J = 7.6 Hz, 2H), 

1.76 – 1.55 (m, 3H), 1.38 (q, J = 6.8 Hz, 1H); 13C NMR (101 MHz, Methanol-d4) 

δ 169.1, 143.0, 139.2, 137.5, 133.3, 132.7, 129.7, 129.4, 129.1, 128.0, 127.4, 

126.9, 61.0, 53.4, 52.8, 40.8, 39.7, 34.3, 32.3, 32.2, 28.1, 22.4, 13.4; HRMS (ESI) 

m/z calcd for C32H39N3O [M+H]+ 482.3166, found 482.3182; Purity 100%. 
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4-[(4-{[(2-phenylcyclopropyl)amino]methyl}piperidin-1-yl)methyl]-N-(2-
phenylethyl) benzamide (2.8d). 
Isolated as a yellow oil, (76 mg, 14 %). 

IR (cm-1) 3301, 3026, 2919, 2808, 1633; 1H NMR (400 MHz, Chloroform-d) δ 7.66 

(d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 6.9 Hz, 2H), 7.31 – 7.23 

(m, 5H), 7.21 – 7.12 (m, 1H), 7.05 (d, J = 7.1 Hz, 2H), 6.23 (brd-s, 1H), 3.73 (q, 

J = 6.7 Hz, 2H), 3.53 (s, 2H), 2.95 (t, J = 6.9 Hz, 2H), 2.88 (brd-d, J = 11.3 Hz, 

2H), 2.64 (d, J = 6.7 Hz, 2H), 2.34 (ddd, J = 7.2, 4.3, 3.2 Hz, 1H), 1.98 (t, J = 11.0 

Hz, 2H), 1.90 (ddd, J = 9.1, 5.8, 3.1 Hz, 1H), 1.76 – 1.65 (m, 2H), 1.57 – 1.41 (m, 

1H), 1.28 (qd, J = 12.2, 3.6 Hz, 2H), 1.07 (dt, J = 9.4, 4.8 Hz, 1H), 0.99 (dt, J = 

6.8, 5.5 Hz, 1H); 13C NMR (101 MHz, Chloroform-d) δ 167.4, 142.4, 139.0, 133.4, 

129.3, 128.9, 128.8, 128.8, 128.3, 126.8, 126.6, 125.8, 125.5, 63.0, 55.5, 53.7, 

41.8, 41.2, 35.9, 35.8, 30.5, 25.3, 17.1; HRMS (ESI) m/z calcd for C31H37N3O 

[M+H]+ 468.3010, found 468.3011; Purity 99.2%. 

 

 
N-benzyl-4-[(4-{[(2-phenylcyclopropyl)amino]methyl}piperidin-1-
yl)methyl]benzamide (2.8e). 
Isolated as a yellow oil, (159 mg, 31 %). 

IR (cm-1) 3298, 3027, 2917, 2808, 1634; 1H NMR (400 MHz, Chloroform-d) δ 7.76 

(d, J = 8.0 Hz, 2H), 7.44 – 7.23 (m, 9H), 7.16 (t, J = 7.3 Hz, 1H), 7.05 (d, J = 8.0 

Hz, 2H), 6.57 (brd-s, 1H), 4.66 (s, 1H), 3.54 (s, 1H), 2.88 (brd-d, J = 11.0 Hz, 2H), 

2.64 (d, J = 6.7 Hz, 2H), 2.34 (dt, J = 7.1, 3.6 Hz, 1H), 1.98 (t, J = 11.3 Hz, 2H), 

1.90 (ddd, J = 8.9, 5.6, 3.0 Hz, 1H), 1.71 (brd-s, 2H), 1.56 – 1.42 (m, 1H), 1.28 

(q, J = 11.5 Hz, 2H), 1.07 (dt, J = 9.3, 4.7 Hz, 1H), 0.99 (q, J = 5.9 Hz, 1H); 13C 

NMR (101 MHz, Chloroform-d) δ 167.3, 142.6, 142.5, 138.4, 133.1, 129.2, 128.8, 

128.3, 128.0, 127.6, 127.0, 125.8, 125.5, 63.0, 55.5, 53.7, 44.1, 41.8, 35.9, 30.6, 

30.6, 25.3; HRMS (ESI) m/z calcd for C30H35N3O [M+H]+ 454.2853, found 

454.2871; Purity 99.2%. 
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4-[(4-{[(2-phenylcyclopropyl)amino]methyl}piperidin-1-yl)methyl]-N-[2-
(piperidin-1-yl)ethyl]benzamide (2.8f). 
Isolated as a yellow oil, (52 mg, 10 %). 

IR (cm-1) 3312, 3026, 2930, 2851, 2803, 1635; 1H NMR (400 MHz, Methanol-d4) 

δ 7.79 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.3 Hz, 2H), 7.25 – 7.17 (m, 2H), 7.13 – 

7.07 (m, 1H), 7.06 – 7.00 (m, 2H), 3.59 – 3.50 (m, 4H), 2.95 – 2.84 (m, 2H), 2.62 

– 2.55 (m, 4H), 2.52 (brd-s, 4H), 2.27 (ddd, J = 7.5, 4.4, 3.4 Hz, 1H), 2.08 – 1.96 

(m, 2H), 1.89 (ddd, J = 9.3, 5.9, 3.3 Hz, 1H), 1.78 – 1.69 (m, 2H), 1.63 (p, J = 5.5 

Hz, 4H), 1.56 – 1.43 (m, 3H), 1.25 (qd, J = 12.4, 3.7 Hz, 2H), 1.11 – 0.94 (m, 2H); 
13C NMR (101 MHz, Methanol-d4) δ 169.8, 143.4, 142.6, 134.5, 130.7, 129.2, 

128.2, 126.7, 126.5, 63.8, 58.9, 56.2, 55.5, 54.5, 42.6, 37.8, 31.2, 30.5, 26.5, 

25.2, 25.1, 16.6; HRMS (ESI) m/z calcd for C30H42N4O [M+H]+ 475.3432, found 

475.3435; Purity 96.1%. 

 

 
N-(2-phenylcyclopropyl)-4-[(4-{[(2-
phenylcyclopropyl)amino]methyl}piperidin-1-yl)methyl]benzamide (2.8g). 
Isolated as a colourless oil, (105 mg, 19 %). 

IR (cm-1) 3287, 3026, 2917, 2795, 1633; 1H NMR (400 MHz, Chloroform-d) δ 7.75 

(d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.34 – 7.14 (m, 8H), 7.05 (d, J = 7.1 

Hz, 2H), 6.63 (d, J = 2.1 Hz, 1H), 3.55 (s, 2H), 3.09 (dq, J = 7.5, 3.4 Hz, 1H), 2.88 

(d, J = 11.3 Hz, 2H), 2.64 (d, J = 6.8 Hz, 2H), 2.34 (ddd, J = 7.2, 4.3, 3.2 Hz, 1H), 

2.19 (ddd, J = 9.6, 6.3, 3.4 Hz, 1H), 2.05 – 1.94 (m, 2H), 1.90 (ddd, J = 9.1, 5.8, 

3.1 Hz, 1H), 1.78 – 1.66 (m, 2H), 1.56 – 1.44 (m, 1H), 1.38 – 1.22 (m, 4H), 1.08 

(dt, J = 9.4, 5.0 Hz, 1H), 0.99 (dt, J = 6.9, 5.5 Hz, 1H); 13C NMR (101 MHz, 

Methanol-d4) δ 168.6, 142.5, 142.4, 140.5, 133.0, 129.3, 128.4, 128.3, 126.9, 

126.6, 126.2, 125.8, 125.5, 62.9, 55.5, 53.7, 41.8, 35.9, 32.6, 30.5, 30.5, 25.2, 

24.9, 17.1, 16.3; HRMS (ESI) m/z calcd for C32H37N3O [M+H]+ 480.3010, found 

480.3024; Purity 97.1%. 
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Chapter Three 
 
3. The design, synthesis and biological activity of a dual 
LSD1/HDAC inhibitor and control compounds. 
 
3.1. Introduction. 
 

‘One drug, one target, one disease’ is a common phrase found in the academic 

literature regarding the philosophy of many drug producers. This is in principle a 

logical approach, as designing a drug for a single target allows the researcher to 

develop a potent, highly selective drug with minimal off-target effects. However, 

single target drugs have their limitations. Diseases such as cancer are often 

complex conditions for which there is no single treatment. In addition, the 

development of resistance to treatment is a common occurrence frequently 

making a single treatment ineffective. Often, the solution is combination therapy 

in which a number of drugs are used in an effort to overcome these hurdles, but 

multiple drugs increase the risk of adverse side effects, drug-drug interactions 

and other complications.  

While drugs that unintentionally hit multiple targets can be problematic, drugs that 

are designed to do so can have great advantages. In the same way that a single 

target drug can be designed to be both specific and potent, a dual mechanism 

drug can be just as specific for its intended targets while also having high potency. 

It can reduce the need for combination therapy, reducing the risk of drug-drug 

interaction as well as making drug resistance less likely.  

There are a number of so-called multi-target drugs already FDA approved, 

primarily for the treatment of cancers. In addition, there are a number of further 

drugs which are approved for use in combination. However the term ‘multi-target’ 

is used throughout the literature to refer to drugs which simply lack specificity 

rather than drugs which target truly different proteins. For example, Li et al. claims 

that the first approved multi-target drug was imatinib in 2001 for chronic myeloid 

leukaemia and was followed by sorafenib in 2005 for renal cell carcinoma.130 In 

reality, both of these drugs simply inhibit more than one kinase making them 

unselective rather than multi-target. 
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There are currently no single-target LSD1 inhibitors approved for use, neither are 

there any approved multi-target inhibitors of LSD1. To this end, the focus of this 

work is the synthesis and biological evaluation of a dual LSD1/HDAC inhibitor.  

LSD1 has a close association with HDACs and along with HDAC1 and 2 is a 

subunit of the corepressor complexes, RE1 silencing transcription factor 

(CoREST)131 and nucleosome remodelling and deacetylating complex 

(NURD).132  Dhanusha et al. identified LSD1 itself as a substrate of HDAC1, 

which deacetylates LSD1 at K374 resulting in altered histone 3 binding and gene 

expression activity of LSD1.133 The inhibition of HDAC1 therefore has the effect 

of increasing LSD1 acetylation and hence reducing LSD1 activity. This in turn 

increases H3K4 methylation leading to gene repression.133–135 What’s more, 

inhibiting LSD1 and HDAC in combination has been shown to synergistically lead 

to apoptosis in glioblastoma cells but not in normal human astrocytes.136   This 

serves to validate dual LSD1-HDAC inhibition and hence the need for dual 

inhibitors of the same.  

There are now many literature examples of dual LSD1/HDAC inhibitors available. 

Duan et al. reported several examples of tranylcypromine derivatives with an 

additional HDAC inhibiting pharmacophore (Figure 4.1). Their most potent 

inhibitor is one such compound (3.1) in which a SAHA analogue is modified by 

adding TCP to the para position of the benzene ring. 3.1 is specific for LSD1 over 

MAOA and B, inhibiting LSD1 with an IC50 value of 1.20 µM. It also has very 

potent class I HDAC activity, inhibiting HDAC1, 2 and 5 at 0.015, 0.023 and 16.84 

µM respectively. 3.1 also showed good in cell activity in a number of cancer cell 

lines through antiproliferation assays and apoptosis profiles.137 Other examples 

included TCP analogues modified to include a HDAC inhibiting constituent 

incorporating both hydroxamic acid and benzamide zinc binding groups (Figure 

3.1, 3.2 – 3.5). 
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Figure 3.1. Examples of dual LSD1/HDAC inhibitors.137 
 

A further example of a dual LSD1/HDAC inhibitor was described recently by Kalin. 

A series of hybrid compounds based on the known HDAC inhibitors vorinostat 

(1.39), panbinostat (1.41) and entinostat (1.47) together with the tranylcypromine 

analogue (Figure 3.2, 3.6) of the LSD1 inhibitor bizine (1.4). These compounds 

were designed to target the CoREST complex and hence, inhibit LSD1, HDAC1 

and 2. Their best example was a hybrid of 3.6 and 1.47 which they called corin 

(Figure 3.2, 3.7). Corin was a potent inhibitor of LSD1 with a Ki value of 0.10 µM 

and inhibited HDAC1 with an IC50 of 0.147 µM. In addition, LSD1 and HDAC1 
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were inhibited as part of the CoREST ternary complex with IC50 values of 0.33 

and 0.206 µM respectively. For comparison, GSK2879552 inhibited LSD1 as part 

of this complex with an IC50 of 0.38 µM.138 

 

 
 

Figure 3.2. The tranylcypromine analogue of bizine and the corresponding 
LSD1/HDAC inhibitor hybrid.138 

 

3.1.1. Chapter aims. 
 

In this chapter we will present the synthesis and biological activity of a dual action 

LSD1/HDAC inhibitor (3.8). Like the novel LSD1 inhibitors presented in the 

previous chapter, our dual inhibitor is also based on the structure of the GSK 

clinical candidate, GSK2879552. The carboxylic acid functional group on 

GSK2879552, which was subsequently converted to an amide, is now converted 

to a hydroxamic acid. The change is minimal, adding only one nitrogen and one 

hydrogen but in doing so creates a hybrid compound with two modes of action. 

In addition, we have created a series of control compounds (1.35, 3.9, 3.10) to 

help us evaluate the biological activity of 3.8.  
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3.2. The synthesis of a dual LSD1/HDAC inhibitor (compound 3.8). 
 

There are two conventional methods of hydroxamic acid synthesis. The first is 

activation of the carboxylic acid by conversion to the acid chloride, followed by 

nucleophilic substitution with the appropriate O-protected hydroxamate. 

Deprotection then affords the hydroxamic acid. The second route is direct 

nucleophilic substitution of an ester with hydroxylamine.  

As our synthetic route to GSK2879552 (section 2.2) features the synthesis of an 

ester prior to the final carboxylic acid it seemed logical to go directly from the 

ester to the hydroxamic acid. Synthesis of the methyl ester was carried out as 

previously described (section 2.2). The methyl ester was then dissolved in 

anhydrous methanol before adding a solution of hydroxylamine in methanol and 

stirring at room temperature overnight. The pH of the mixture is then adjusted to 

~7 before filtering and purifying to give 3.8 as a white solid in around 25% yield 

with no starting material recovery (Scheme 3.1).  

 

 
Scheme 3.1. The synthesis of dual inhibitor, 3.8, from the  GSK2879552 methyl 

ester precursor. 

 

The low yield prompted us to explore a second approach to the synthesis of 3.8. 

Amitai et al. described a method for the synthesis of 4-bromomethyl 

benzhydroxamic acid139 (3.11). This method starts with bromomethylbenzoic acid 

(3.9) which is activated by conversion to the acid chloride (3.10) before 

substitution with hydroxylamine to give 3.11 in 79% yield (Scheme 3.2). In 

principle, 3.9 can then be used in place of 2.5a in the rest of the synthesis 

(Scheme 2.1, route B). In practice however, the solubility of 3.11 made the 

subsequent reactions difficult and this route was abandoned in favour of the 

original method.  
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Scheme 3.2. The synthesis of 4-bromomethylbenzhydroxylamine.139 

 

3.3. The synthesis of our control compounds. 
 

In order to effectively evaluate the biological activity of 3.8, we needed controls 

against which 3.8 could be compared. These control compounds would ideally 

be similar in structure to 3.8 but lacking either one or both pharmacophores so 

that any difference in activity could be attributed to the relevant feature.  

The positive control for LSD1 inhibition is GSK2879552. This should effectively 

inhibit LSD1 and hence provide a good benchmark against which to compare 3.8 

but is not expected to inhibit HDACs.  

The positive control for HDAC inhibition is compound 3.12. 3.12 has the same 

structure as 3.8 with the exception of the regiochemistry around the cyclopropyl 

ring. By placing both substitutions on the same carbon in place of adjacent 

carbons, LSD1 inhibitory activity was observed to be lost (See Section 3.4) and 

hence 3.12 should inhibit HDACs but not LSD1. 

Finally, we made negative control 3.13 which retains the carboxylic acid 

functional group of GSK2879552 but also contains the altered regiochemistry of 

the cyclopropyl group, thus rendering 3.13 inert to both LSD1 and HDAC activity. 
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Figure 3.3. The structure of our dual LSD1/HDAC inhibitor and control 
compounds. 

 

The synthesis of both 3.12 and 3.13 was carried out via the same route as for 3.8 

and 1.35 but using 1-phenyl-1-cyclopropylamine (3.15) in place of 

tranylcypromine. 3.15 was not commercially available but its synthesis could be 

achieved in one step via Curtius rearrangement from the carboxylic acid 3.14 
(scheme 3.3).  

 

 
 

Scheme 3.3. The conversion of carboxylic acid 3.14 to amine 3.15 via the 
Curtius rearrangement. 
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3.4. The biological activity of dual inhibitor 3.8. 
3.4.1. Cell free assays. 
 

LSD1 Inhibition. 
 

The first step was to test dual inhibitor 3.8 along with all control compounds for 

LSD1 inhibition in a cell free assay. Along with these compounds we also tested 

two further compounds for LSD1 activity, 3.15 and 3.16. 3.15 is the analogue of 

tranylcypromine and its status in terms of LSD1 inhibition has never been 

reported. 3.16, the precursor to 3.12 and 3.13, was also tested as again, the 

LSD1 activity of the 1-phenyl-1-cyclopropylamine containing compounds was 

hitherto unknown. 

 

 
 

Scheme 3.4. Reductive amination step with tranylcypromine analogue 3.15 to 
give the precursor compound to both 3.12 and 3.13. 

 

Assay results showed that both dual inhibitor 3.8 and GSK2879552 were the only 

active compounds thus showing that the regiochemistry of the cyclopropyl ring is 

important to LSD1 activity. 3.8 was found to have an IC50 value of 0.53 µM (pIC50: 

6.27±0.02). This was observed to be more potent than GSK2879552, which had 

an IC50 value of 1.54 µM (pIC50: 5.81±0.10).  
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Figure 3.4. Graphical representation of the LSD1 assay results for our dual 
inhibitor and control compounds. 

 
Data shown as % activity ± Std. Error, n=3. 

Data generated by Belle et al., Oxford University (unpublished). 
 

Compound LSD1 pIC50 
GSK2879552 5.81±0.10 

3.8 6.27±0.02 

3.12 < 4 

3.13 < 4 

3.15 < 4 

3.16 < 4 

 

Table 3.1. pIC50 data recorded for dual inhibitor 3.8 and control compounds. 

Data shown as pIC50 ± Std. Error, n=3. 
Data generated by Belle et al., Oxford University (unpublished). 

 
HDAC inhibition study. 
 

Having found that our dual inhibitor 3.8 inhibits LSD1 with a good level of potency, 

the next step was to test HDAC inhibitory activity. 3.8 along with control 

compounds GSK2879552, 3.12 and 3.13 were each tested for activity in HDAC 
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group and the lack of activity suggests that the rest of the molecule does not have 

sufficient binding affinity in the HDACs tested to hold the compound in place and 

allow the carboxylic acid to bind to the zinc cofactor. This result also shows that 

3.13 makes a good negative control for 3.8.  

Dual inhibitor 3.8 showed activity in all HDACs tested but was particularly potent 

in HDAC6 and to a slightly lesser extent HDAC8 with IC50 values of 5.04 (pIC50: 

5.27±0.01), 2.28 (pIC50: 5.64±0.02), 0.140 (pIC50: 6.85±0.22) and 0.287 µM 

(pIC50: 6.54±0.04) in HDAC1, 3, 6 and 8 respectively. 

Positive HDAC control 3.12 also showed good activity across the range and again 

showing higher specificity in HDAC6. IC50 values were 7.57 (pIC50: 5.12±0.01), 

4.09 (pIC50: 5.38±0.02), 0.248 (pIC50: 6.60±0.09), 0.449 µM (pIC50: 6.34±0.06), 

in HDAC1, 3, 6 and 8 respectively. This result is interesting as dual inhibitor 3.8 

is around twice as potent as 3.12 in all HDAC isoforms and suggests that the 

regiochemistry around the cyclopropyl ring is not only important for LSD1 

inhibition, but also affects HDAC affinity. One further point is that as well as being 

a good positive control compound, 3.12 is also a good, novel HDAC inhibitor in 

its own right. 

 

 
pIC50 

HDAC1 HDAC3 HDAC6 HDAC8 
GSK2879552 < 4 < 4 < 4 < 4 

3.8 5.27±0.01 5.64±0.02 6.85±0.22 6.54±0.04 

3.12 5.12±0.01 5.38±0.02 6.60±0.09 6.34±0.06 

3.13 < 4 < 4 < 4 < 4 

TSA 7.00±na 8.71±0.05 8.66±0.14 6.52±0.10 

 

Table 3.2. HDAC assay data recorded for dual inhibitor 3.8 and control 
compounds. TSA used as a standard. na = not available. 

Data shown as pIC50 ± Std. Error, n=3. 
Data generated by Ruzic et al., University of Belgrade (unpublished). 
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Figure 3.5. Graphical representation of the HDAC assays recorded for dual 
inhibitor 3.8 and positive HDAC control 3.12. 

 
Data shown as % inhibition ± Std.Error, n=3. 

Data generated by Ruzic et al., University of Belgrade (unpublished). 
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It should be noted that in November 2017, dual inhibitor 3.8 was reported in a 

patent filed by Jubilant Biosys Ltd.140 3.8 is listed as one of 160 compounds and 

has limited data attached. However, the patent does state the IC50 values for 

LSD1 and HDAC6 as 0.011 and 0.235 µM respectively. The stereochemistry of 

the patent compound is not disclosed and hence it is difficult to directly compare 

these data to the data we have collected for 3.8.  

 

3.4.2. Cellular Thermal Shift Assay (CETSA). 
 

CETSA was used to assess the thermal stability of the target enzymes, LSD1 

and HDAC 6, upon ligand binding in THP-1 cells. Cells were treated with 500 nM 

of each compound and the response measured using western blot (Figure 3.6).  

In terms of binding to LSD1, 3.8 was found to bind as well as GSK2879552 whilst 

both the positive HDAC control 3.12 and negative control 3.13 performed no 

better than untreated cells. These data are consistent with good engagement 

between dual inhibitor 3.8 and LSD1 and poor engagement between LSD1 and 

control compounds 3.12 and 3.13. 

 

 
Figure 3.6. Western blot of CETSA on dual inhibitor 3.8 and control 

compounds. 
Data generated by Bulut et al., Koc University (unpublished). 
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Binding to HDAC6 was observed in both 3.8 and positive HDAC control 3.12. 

GSK2879552 and negative control 3.13 both performed no better than untreated 

cells. Again, these data are consistent with good engagement between 3.8 and 

HDAC6 and taken together, these data support 3.8 as being a dual LSD1 HDAC 

inhibitor. 

 

3.4.3. Leukaemia cell viability. 
 

In cell activity was investigated by analysing dual inhibitor 3.8 and control 

compounds in both fused MLL and non-MLL fused cell lines (Table 3.4, Figure 

3.8, Figure 3.9). All cells showed sensitivity to 3.8 with IC50 values below 20 µM 

in all cells but in particular MOLM-13 in which 3.8 outperformed all controls with 

an IC50 of 1.3 µM. Negative control 3.13 behaved as anticipated with IC50 values 

above the maximum dose of 20 µM in all cells whilst positive LSD1 control, 

GSK2879552, only showed activity in MOLM-13. Positive HDAC control 3.12 

showed activity in all cell lines and again in particular MOLM-13. It is tempting to 

say this data may suggest a greater sensitivity to the HDAC inhibiting function of 

3.8 however, if this data is taken together with that for 2.8a-g (chapter 2) it shows 

that compounds based on GSK2879552 which inhibit LSD1 and not HDAC can 

be just as if not more active in these cell lines.  

 

Compound 
MLL-AF9 Fused Non-MLL Fused 

THP-1 
IC50 (µM) 

MOLM-13 
IC50 (µM) 

K562 
IC50 (µM) 

JURKAT 
IC50 (µM) 

GSK2879552 >20 15.0±3.5 >20 >20 

3.8 16.3±5.4 1.3±0.4 16.6±2.6 15.5±1.4 

3.12 9.7±2.4 6.7±1.6 17.6±1.6 10.7±0.8 

3.13 >20 >20 >20 >20 

 

Table 3.3. Tabulated cell viability data gathered for 3.8 and control compounds 
in MLL and non-MLL cell lines. 

Data shown as % cell viability ± stdp, THP-1 n=3, MOLM-13 n=4, K562 and JURKAT 
n=2. 

Data generated by Bulut et al., Koc University (unpublished). 
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Looking at THP-1 cell viability data for all these compounds thus builds up a 

slightly bigger picture of functional groups that show high activity in THP-1 (Figure 

3.7). Compounds with a carboxylic acid show poor activity in all cases. 

Compounds in which the carboxylic acid is substituted with an amide improves 

activity but not in all cases. Amides functionalised with a hydroxyl group show 

good activity in all tested cell lines, whilst amides functionalised with a carbon 

chain in which three carbons have also shown good activity in THP-1 but poor 

activity when the number of carbons is reduced.  

Regiochemistry around the cyclopropyl ring does not seem to have any 

significant effect. Comparing 3.8 and 3.12 shows that 3.8 has better activity in 

MOLM-13 and 3.12 is more active in THP-1 and JURKAT. Both have similar 

activity in K562. 

 

 
 

Figure 3.7. Comparison of the effect of changing the R-group at the end of 
GSK2879552 on activity in cancer cells. 
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Figure 3.8. Graphical representation of cell viability assays in THP-1 and 

MOLM-13 cells. 
 

Data shown as % cell viability ± stdp, THP-1 n=3, MOLM-13 n=4. 
Data generated by Bulut et al., Koc University (unpublished). 
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Figure 3.9. Graphical representation of cell viability assays in K562 and 

JURKAT cells. 
 

Data shown as % cell viability ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 
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3.4.4. Methylation and acetylation fold change in response to inhibition. 
 

As a dual inhibitor to both LSD1 and HDAC, an increase in both methylation and 

acetylation levels would be expected in cells treated with 3.8. H3K4me and 

H3K9me levels in THP-1 cells were analysed by western blot over 24 hours using 

a 5 µM dose of the appropriate inhibitor (Figure 3.10).  

 
 

Figure 3.10. Western blot of methylation and acetylation levels in THP-1 cells in 
response to inhibition of LSD1 and HDACs. 

Data generated by Bulut et al., Koc University (unpublished). 
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An observed 1.8-fold increase in H3K27Ac levels was seen in cells treated with 

3.8, lower than both control compounds, 3.12 and ricolinostat which showed 2 

and 6-fold increases respectively. Positive HDAC control 3.12 also showed a 1.9-

fold increase in H3K18Ac levels relative to just 1.1-fold for 3.8 (Figure 3.11, Table 

3.5). 

 

 
Figure 3.11. Graphical representation of methylation and acetylation levels in 

THP-1 cells in response to LSD1 and HDAC inhibition. 
 

Data shown as fold change ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 
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As a further control, levels of acetylated α-tubulin (Ac-Tub) were monitored. Both 

LSD1 inhibitors, GSK2879552 and 2.8a showed no change in Ac-Tub levels. 

Dual inhibitor 3.8 increased Ac-Tub levels over 3-fold compared to HDAC 

controls ricolinostat and 3.12 which increased levels around 14 and 7-fold 

respectively (Table 3.5, Figure 3.12).  

 

Substrate 
Fold Change 

DMSO GSK 2.8a Ric 3.8 3.12 
H3K4me 1 1.50±0.77 1.53±0.66 0.85±0.60 0.92±0.09 0.98±0.05 

H3K9me 1 0.97±0.41 1.28±0.57 1.06±0.54 0.80±0.23 0.95±0.16 

H3K18Ac 1 1.12±0.19 0.78±0.53 3.77±0.95 1.10±0.24 1.89±0.43 

H3K27Ac 1 1.33±0.73 0.94±0.27 6.34±0.99 1.82±0.07 2.15±0.64 

Ac-Tub 1 0.99±0.13 1.01±0.24 14.62±1.68 3.37±0.53 6.80±1.10 

 

Table 3.4. Tabulated data of methylation and acetylation levels in THP-1 cells 
in response to LSD1 and HDAC inhibition. 

Data shown as fold change ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 

 

 
 

Figure 3.12. Ac-Tub levels in THP-1 cells after treatment with LSD1 and HDAC 
inhibitors. 

 
Data shown as fold change ± stdp, n=2. 

Data generated by Bulut et al., Koc University (unpublished). 
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3.4.5. Gene expression changes. 
 

Just as CD86 and CD11b are downstream molecular markers for LSD1, HDAC 

inhibition is complicit in the upregulation of cyclin-dependent kinase inhibitor, p21.  

As such, just as the expression of CD86 and CD11b can be used to support a 

connection to LSD1 inhibition, p21 expression can be used as a tool to investigate 

if the activity of a drug is related to HDAC inhibition. As 3.8 is designed to be an 

inhibitor of both LSD1 and HDAC, its effect on all the aforementioned molecular 

markers has been explored.  

 

CD86 and CD11b expression. 
 

THP-1 cells were treated with 0.5 and 1.0 µM doses of dual inhibitor 3.8, along 

with all our control compounds and the HDAC6 inhibitor ricolinostat (Table 3.6, 

Figure 3.13, Table 3.7, Figure 3.14). The expectation is that the HDAC inhibitors 

and the negative control should not significantly increase CD86/CD11b 

expression but LSD1 inhibitors should. This pattern was observed in both the 

expression of CD86 and CD11b. HDAC controls, ricolinostat and 3.12 and 

negative control 3.13, all showed no significant change relative to untreated cells. 

In contrast, cells treated with a 0.5 µM dose of dual inhibitor 3.8 showed an 

increased CD86 and CD11b expression by 21 and 9-fold respectively. This was 

a similar fold change to that observed in GSK2879552 treated cells at this dose 

however at a dose of 1.0 µM, 3.8 revealed a 95 and 34-fold increase in CD86 

and CD11b expression respectively, relative to 43 and 9-fold respectively for 

GSK2879552. This is good evidence that 3.8 is acting as an LSD1 inhibitor. 
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Compound 
CD86 Fold Change 

0 µM 0.5 µM 1.0 µM 
GSK2879552 1.0±0.0 27.25±3.53 43.42±16.80 

3.8 1.0±0.0 21.14±1.65 95.63±9.64 

3.12 1.0±0.0 0.19±0.16 0.14±0.04 

3.13 1.0±0.0 1.13±0.47 0.95±0.59 

ricolinostat 1.0±0.0 9.19±12.36 0.20±0.07 

 

Table 3.5. CD86 expression change in response to LSD1 and HDAC inhibitor 
treated THP-1 cells. 

Data shown as fold change ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 

 

 
Figure 3.13. Graphical representation of data from Table 3.6. 

 
Data shown as fold change ± stdp, n=2. 

Data generated by Bulut et al., Koc University (unpublished). 
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Compound 
CD11b Fold Change 

0 µM 0.5 µM 1.0 µM 
GSK2879552 1.0±0.0 6.82±3.89 9.30±4.97 

3.8 1.0±0.0 9.31±2.50 34.57±10.43 

3.12 1.0±0.0 2.12±1.64 9.06±4.87 

3.13 1.0±0.0 0.82±1.13 2.69±1.34 

ricolinostat 1.0±0.0 1.99±0.89 10.45±3.15 

 

Table 3.6. CD11b expression change in response to LSD1 and HDAC inhibitor 
treated THP-1 cells. 

Data shown as fold change ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 

 

 

 
Figure 3.14. Graphical representation of the data from Table 3.7. 

 
Data shown as fold change ± stdp, n=2. 

Data generated by Bulut et al., Koc University (unpublished). 
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p21 expression. 
 

THP-1 cells were again treated with 0.5 and 1.0 µM doses of 3.8 and control 

compounds over 72 hours. Levels of p21 were then determined (Table 3.8, Figure 

3.15) with the expectation that LD1 inhibitors would present as no change in p21 

expression levels but HDAC inhibitors would cause an increase. At a dose of 0.5 

µM, none of the compounds resulted in any significant increase in p21 expression 

although it was noted that the negative control 3.13 showed a 0.56-fold decrease 

in expression. At the increased dose of 1.0 µM, all compounds lead to an increase 

in p21 expression. Single target HDAC inhibitors, 3.12 and ricolinostat both 

showed the largest increase of 3.7 and 8.8-fold respectively. In addition, LSD1 

inhibitor GSK2879552 presented a 1.7-fold increase and negative control 3.13 

showed a 2.5-fold increase. Dual inhibitor 3.8 increased p21 expression 3.8-fold 

but with a large error margin. The error means that p21 expression change due 

to treatment with 3.8 could lie anywhere between a 1.8 and 5.8-fold increase 

which may still be significant. However, given the high fold change observed in 

negative control 3.13, these results should be treated with caution.  

In summary, the only effect of note is in response to the control compound 

ricolinostat. The lack of effect in response to 3.8 and 3.12 may be due to time or 

the effect could be cell dependent. Further work is required to determine if 3.8 

has any effect on p21 in a cellular environment. 

 

Compound 
p21 Fold Change 

0 µM 0.5 µM 1.0 µM 
GSK2879552 1.0±0.0 1.20±0.40 1.73±0.20 

3.8 1.0±0.0 2.38±2.22 3.84±2.04 

3.12 1.0±0.0 1.41±0.43 3.72±0.09 

3.13 1.0±0.0 0.44±0.00 2.58±0.71 

ricolinostat 1.0±0.0 1.11±0.02 8.86±2.20 

 

Table 3.7. p21 expression change in response to LSD1 and HDAC inhibitor 
treated THP-1 cells. 

Data shown as fold change ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 
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Figure 3.15. Graphical representation of the data from Table 3.8. 

 
Data shown as fold change ± stdp, n=2. 

Data generated by Bulut et al., Koc University (unpublished). 
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Figure 3.16. Cell viability of THP-1 cells inhibited with combinations of our 

inhibitors and other known anti-cancer compounds. 
 

Data shown as % cell viability ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 
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3.8 and 3.12 were tested in combination with an additional topoisomerase type II 

inhibitor, etoposide.141 The results of the assay showed that neither 3.8 nor 3.12 

had any significant synergistic effect relative to lone treatment. In addition, 

doxorubicin was tested in combination with HDAC inhibitor, ricolinostat. Again, 

no significant synergistic effect was seen relative to doxorubicin alone (Figure 

3.7). 

 

 
Figure 3.17. Cell viability graph of 3.8 and 3.12 in combination with alternative 

Top2 inhibitor, etoposide. Cell viability graph of doxorubicin and HDAC inhibitor 
ricolinostat. 

 
Data shown as % Cell viability ± stdp, n=2. 

Data generated by Bulut et al., Koc University (unpublished). 
 

3.4.7. Inducing apoptosis. 
 

Caspase-3/7 assay. 
 

To further ascertain the synergistic effects of 3.8 with doxorubicin, as well as 

investigate if 3.8 has any apoptotic effect in cancer cells, THP-1 cells were treated 

with 3.8, both alone and in combination with doxorubicin. Like LSD1 inhibitor 

2.8a, the apoptotic effect of these compounds was measured in a caspase-3/7 
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At a concentration of 5 µM, nether 3.8 nor controls 3.12 and GSK2879552 

displayed any apoptotic effect in THP-1 cells when used alone. In combination 

with doxorubicin however, 3.8 and 3.12 demonstrated an excellent response. 

Over 80% of cells where observed to be in apoptosis or dead following treatment 

with 3.8 and 70% for 3.12, relative to just 20% in response to doxorubicin alone. 

In addition, GSK2879552 also showed a synergistic effect although less 

significant at around 50% of cells observed to be in apoptosis or dead. 

 

Inhibitor 
% Population 

Live Apoptotic Apoptotic/Dead Dead 
No Inhibitor 95.65±0.90 0.30±0.05 3.47±1.02 0.57±0.17 

doxorubicin 66.62±8.57 7.05±4.45 22.85±5.55 3.47±1.43 

GSK2879552 95.30±0.25 1.22±0.17 3.27±0.37 0.22±0.07 

GSK + dox 38.82±0.47 12.60±0.05 48.27±0.42 0.30±0.10 

3.8 95.85±0.55 0.25±0.20 2.75±0.15 1.15±0.60 

3.8 + dox 10.07±2.37 6.20±4.80 81.60±0.90 2.12±1.52 

3.12 93.62±0.07 0.45±0.30 4.62±0.52 1.30±0.90 

3.12 + dox 22.69±0.45 5.27±2.47 68.66±0.68 3.50±1.20 

 

Table 3.8. The apoptosis profile data of 3.8 and 3.12 both individually and in 
combination with doxorubicin in THP-1 cells measured using caspase 

activation. 

Data shown as % population ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 
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Figure 3.18. Apoptosis profiles for 3.8, 3.12 and doxorubicin in THP-1 cells. 

Data generated by Bulut et al., Koc University (unpublished). 

 

 
Figure 3.19. Graphical representation of apoptosis data presented in Table 3.9. 

 
Data shown as % population ± stdp, n=2. 

Data generated by Bulut et al., Koc University (unpublished). 
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Annexin V binding assay. 
 

The results of the annexin V binding assay where found to be largely consistent 

with that of the caspase assay. At a concentration of 5µM, both 3.8 and 3.12 

alone had little apoptotic effect relative to untreated cells at this concentration. 

However, both once again showed a large increase when in combination with 

doxorubicin. Following treatment of THP-1 cells with 3.8 and doxorubicin, around 

30% of cells were observed to be in early apoptosis and over 50% in late 

apoptosis/dead. A combination of 3.12 and doxorubicin led to around 50% of cells 

being found in early apoptosis and 25% in late apoptosis/dead. The annexin V 

assay did show a higher proportion of cells in apoptosis upon treatment with 

doxorubicin alone relative to the caspase assay, but even so, the effect seemed 

to be amplified upon co-treatment with our inhibitors.  

In addition, both 3.8 and 3.12 showed higher levels of cells in apoptosis both 

alone and in co-treatment with doxorubicin. 

 

Inhibitor 
% Population 

Live 
Early 

apoptosis 
Late 

apoptosis/Dead 
Dead 

No Inhibitor 78.39±5.04 16.43±3.21 4.93±1.67 0.24±0.16 

doxorubicin 39.77±2.07 41.31±1.83 18.70±0.10 0.21±0.13 

GSK2879552 93.73±0.09 3.05±0.01 2.84±0.06 0.38±0.04 

GSK + dox 55.01±2.69 11.14±1.06 31.50±3.68 2.35±0.07 

3.8 79.96±4.86 15.09±4.61 4.66±0.04 0.29±0.21 

3.8 + dox 16.87±8.67 31.07±10.12 51.70±1.20 0.35±0.25 

3.12 71.33±6.93 19.32±3.38 7.53±1.81 0.31±0.23 

3.12 + dox 23.57±3.72 50.42±4.77 25.65±8.60 0.35±0.10 

 

Table 3.9. The apoptosis profile data of 3.8 and 3.12 both individually and in 
combination with doxorubicin in THP-1 cells measured using Annexin V. 

Data shown as % population ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 
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Figure 3.20. Apoptosis profiles for 3.8, 3.12 and doxorubicin in THP-1 cells. 
Data generated by Bulut et al., Koc University (unpublished). 

 

 
Figure 3.21. Graphical representation of apoptosis data presented in Table 

3.10. 
 

Data shown as %population ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 
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3.4.8. Repair of doxorubicin induced damage 
 

THP-1 cells were treated with 5 µM doses of 3.8 and 3.12, both alone and in 

combination with doxorubicin (60 nM) (Table 3.11, Figure 3.22, Figure 3.23). 

Cells treated with either 3.8 or 3.12 alone showed no increase in γ-H2AX levels 

relative to untreated cells. However, they both showed an increase in levels when 

in combination with doxorubicin, relative to doxorubicin alone. 3.8 revealed just 

short of a 50% rise in γ-H2AX levels and 3.12 just over 50%, both better than 

the 36% increase observed in cells treated with doxorubicin alone. This is further 

evidence that 3.8 acts synergistically with doxorubicin. In addition, the low γ-

H2AX levels observed in cells treated with 3.8 and 3.12 alone shows that cell 

damage in the form of DSBs are not caused by 3.8 or 3.12. But the increased γ

-H2AX levels in co-treated cells supports the hypothesis that 3.8 and 3.12 

sensitises cells to DNA damage and hence when doxorubicin induces this 

damage the cell is unable to recover.  

 

Inhibitor % population 
No inhibitor 8.15±0.55 

doxorubicin 36.83±4.42 

3.8 6.70±2.80 

3.8 + doxorubicin 47.34±2.35 

3.12 9.35±1.85 

3.12 + doxorubicin 53.95±2.35 

 

Table 3.10. Tabulated % population data for γ-H2AX levels in THP-1 cells 
treated with doxorubicin, 3.8 and 3.12. 

Data shown as %population ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 
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Figure 3.22. Population profiles of phosphorylation vs H2AX expression in 

THP-1 cells treated with doxorubicin, 3.8 and 3.12. 
Data generated by Bulut et al., Koc University (unpublished). 

 

 
 

Figure 3.23. Graphical representation of γ-H2AX activation in THP-cells 
treated with doxorubicin, 3.8 and 3.12. 

 
Data shown as %population ± stdp, n=2. 

Data generated by Bulut et al., Koc University (unpublished). 

No Inhibitor 3.8

doxorubicin 3.8 + doxorubicin

3.12

3.12 + doxorubicin

0
dox 3.8

3.8
 + dox

3.1
2

3.1
2 +

 dox
0

10

20

30

40

50

60

%
 P

op
ul

at
io

n

γ-H2AX Activation



 126 

The formation of ROS. 
 

THP-1 cells were again treated with 5 µM doses of 3.8 and 3.12 both alone and 

in combination with a 60 nM dose of doxorubicin (Table 3.12, Figure 3.24, Figure 

3.25). Cells treated with 3.8 and 3.12 only revealed no increase in ROS relative 

to untreated cells suggesting that 3.8 and 3.12 do not generate ROS. When in 

combination with doxorubicin, neither 3.8 nor 3.12 displayed any significant 

change in ROS relative to doxorubicin alone. This suggests that co-treatment with 

doxorubicin and either 3.8 or 3.12 does not have any effect on the production of 

ROS relative to treatment with doxorubicin alone. 

 

Inhibitor 
% Population 

ROS (-) ROS (+) 

No inhibitor 95.15±0.65 4.49±0.41 

doxorubicin 56.35±3.65 43.5±3.50 

3.8 93.90±0.30 5.92±0.25 

3.8 + doxorubicin 48.75±3.75 49.95±3.05 

3.12 94.55±0.55 5.15±0.29 

3.12 + doxorubicin 55.50±6.50 43.75±6.25 

 

Table 3.11. ROS data for THP-1 cells treated with doxorubicin, 3.8 and 3.12. 

Data shown as % population ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 
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Figure 3.24. ROS profiles for THP-1 cells treated with doxorubicin, 3.8 and 
3.12. 

Data generated by Bulut et al., Koc University (unpublished). 

 

 
Figure 3.25. Graphical representation of ROS (+) profile data for THP-1 cells 

treated with doxorubicin, 3.8 and 3.12. 
 

Data shown as % population ± stdp, n=2. 
Data generated by Bulut et al., Koc University (unpublished). 
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3.5. Virtual docking study. 
 

Both 3.8 and 3.12 were modelled in a virtual docking (VD) study (Figure 3.26, 

Figure 3.27), carried out in order to determine the most likely binding position 

and mode of these compounds within the HDAC6 active site. VD was carried 

out in collaboration with Dusan Ruzic and Katarina Nikolic at the University of 

Belgrade, Serbia. Docking was performed using GOLD Software 5.6.0 (DOI: 
10.1006/jmbi.1996.0897). The HDAC6 crystal structure (human isoform, second 

catalytic domain) was taken from the Protein Data Bank, entry PDB:5EDU, 
prepared via PlayMolecule online platform (playmolecule.org/) and the number 

of docking runs set to 100. The ChemScore scoring function 
(doi.org/10.1002/prot.10465) was used to estimate the free energy of binding, 

as it additionally takes into consideration metal-ligand coordination important 
for Zn2+-hydroxamic acid binding.  
 

 
Figure 3.26. Position of ligand 3.8 inside the binding site of the HDAC6 seen 
from the extracellular side (left) and 2D presentation of important interactions 

with amino acid residues in the active pocket of HDAC6 (right). 
 

The most interesting feature to come out of the VD study of 3.8 was the unusual 

monodentate binding mode to the zinc co-factor of HDAC6. Whilst monodentate 

binding is not unheard of, it is quite rare. In 2017, Porter et al. reported the crystal 

structures of the HDAC6 inhibitors HPB, HPOB and ACY1083, along with minor 

conformers of both ricolinostat and TSA, showing monodentate binding to Zn2+. 
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They put forward evidence that phenylhydroxamates with bulky substituents, are 

able to exploit this mode of binding in the HDAC6 active site by coordinating with 

Zn2+ through a monodentate hydroxamate N-O- group while the C=O group 

accepted a hydrogen bond from a Zn2+ bound water molecule.142 Although 3.8 

has the phenylhydroxamate moiety, the monodentate binding mode predicted in 

our study suggests that it is the hydroxamate C=O that is bound in a monodentate 

fashion to Zn2+ with the N-H and O-H groups forming hydrogen bonds to HIS611, 

Gly619 and HIS610.  

In contrast, 3.12 is predicted to comprise a bidentate binding mode in which the 

hydroxamic acid is coordinated to the Zn2+ ion via both the C=O and N-O groups. 

The structure of 3.8 and 3.12 are identical with the exception of the 

regiochemistry around the cyclopropyl ring. Although this is a minor change it has 

the effect of shifting the π-donor hydrogen bond between Phe679 and the 

tranylcypromine amine in 3.8 to a π-π stacking interaction between Phe679 and 

the cyclopropylamine phenyl group of 3.12. The hydrogen bond between His610 

to the hydroxamic acid O-H group remains but the hydrogen bonds between the 

hydroxamic acid N-H of 3.8 and Gly619 and His611 are lost.  

 

 
 

Figure 3.27. Position of ligand MH-25 inside the binding site of the HDAC6 
seen from the extracellular side (left) and 2D presentation of important 

interactions with amino acid residues in the active pocket of HDAC6 (right). 
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value of 0.140 µM and a ChemSore value of 36.147 whist compound 3.12 has 

an IC50 of 0.248 µM and a ChemScore value of 34.961 (Table 3.13). This is a 

logical result as the compound with the lower IC50 also has the higher ChemScore 

value. 

 

Compound HDAC6 IC50 (µM) Gold ChemScore 
3.8 0.140 36.147 

3.12 0.248 34.961 

 

Table 3.12. Correlation between IC50 and Gold ChemScore values. 

Data generated by Ruzic et al., University of Belgrade (unpublished). 
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3.6. Conclusion and future work. 
 

This chapter has covered the synthesis and biological activity of a dual 

LSD1/HDAC inhibitor 3.8 along with a series of control compounds GSK2879552, 

3.12 and 3.13.  

In a cell free LSD1 assay, 3.8 showed good sub-micromolar activity (IC50 = 0.55 

µM) and was 3 times as potent as its precursor GSK2879552 (IC50 = 1.68 µM). 

In addition, 3.8 showed good sub-micromolar activity in in both HDAC6 and 8 

(IC50 = 0.248 and 0.449 µM respectively). Positive HDAC control 3.12 also 

showed good activity in HDAC6 and 8 but not in LSD1. Negative control 3.13 was 

not observed to have any activity in either the LSD1 or any of the HDAC assays. 

CETSA was used to determine if 3.8 showed target engagement to both LSD1 

and HDAC6 in THP-1 cells. This was indeed found to be the case, suggesting 

that 3.8 has affinity for both LSD1 and HDAC6. In addition, all controls behaved 

as expected. This is all good evidence, not only that 3.8 has affinity for both 

targets, but also that the control compounds can be used as a reliable measure 

of activity of 3.8. Future work will determine if target engagement is extended 

beyond HDAC6 to HDAC1 and 8. 3.8 has shown low µM activity in HDAC1 and 

nM activity in HDAC8, therefore good target engagement would be expected. 

Cell viability assays in both fused and non-fused leukaemia cell lines showed that 

3.8 is active in THP-1, K562 and JURKAT with an IC50 value around 15 µM in 

each and 1.3 µM in MOLM-13.  3.12 also performed best in MOLM-13 (~6 µM) 

and <20 µM in all others. In contrast positive LSD1 control GSK2879552 only had 

an IC50 <20 µM in MOLM-13 and negative control 3.13 was not active in any.  

Future work could extend this panel of cells, not only to other leukaemia cells but 

also to other cancer cell lines, to get a much deeper understanding of the activity 

of 3.8. 

Both methylation and acetylation levels were monitored in response to inhibition 

with our compounds. Both H3K4me and H3K9me levels showed no change 

relative to untreated cells, following treatment with either 3.8 or GSK2879552. 

However, there was a 2-fold increase H3K27Ac levels in response to 3.8 as well 

as ~2-fold increase in H3K18Ac and H3K27Ac levels in response to 3.12.  

Performance of 3.8 as a LSD1 inhibitor was further supported by examining 

molecular markers, CD86 and CD11b. 3.8 showed much higher fold changes 
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than GSK2879552 whilst both 3.12 and 3.13 displayed no change as anticipated. 

The HDAC6 molecular marker, p21, was also studied in response to treatment 

with 3.8 and 3.12 but no significant change in levels was observed. It is thought 

this could be a time or cell dependence issue and future work could extend this 

assay into different cells to determine if this is indeed the case. 

Synergy of 3.8 with other anti-cancer compounds was investigated. A cell viability 

assay in THP-1 cells found both 3.8 and 3.12 to have good synergy with 

doxorubicin. This activity was further investigated through analysis of caspase-

3/7 and annexin V assays. Both supported good synergistic behaviour with both 

3.8 and 3.12 showing increased levels of apoptosis relative to both doxorubicin 

alone and a combination of GSK2879552 and doxorubicin.  

An investigation of 3.8 and 3.12 in combination with doxorubicin on the effect of 

ROS produced in response to treatment with doxorubicin, showed that neither 

3.8 nor 3.12 had any effect on ROS levels.  

VD was carried out on the structures of both 3.8 and 3.12 and found them to have 

monodentate and bidentate binding modes respectively within the HDAC6 active 

site. In addition, 3.8 and 3.12 had ChemScore values of 36.147 and 34.961 

respectively which is in support of their respective IC50 values. 
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3.7. Chapter three experimental. 
 

3.7.1. Experimental procedures 
 

All experimental procedures are the same as for those described in Chapter two, 

section 2.7.1. 

 

 
N-hydroxy-4-[(4-{[(2-phenylcyclopropyl)amino]methyl}piperidin-1-
yl)methyl]benzamide (3.8) 
In separate flasks, 2.7a (1.00 g, 2.64 mmol), hydroxylamine hydrochloride (0.97 

g, 13.96 mmol) and potassium hydroxide (1.52 g, 27.09 mmol) were dissolved in 

dry methanol (25 ml, 5 ml, 8 ml) respectively. The potassium hydroxide solution 

was then slowly added to the hydroxylamine solution and the resulting mixture 

stirred at room temperature for 30 minutes. This mixture was then filtered, and 

the filtrate added to the benzoate solution, which was then stirred at room 

temperature overnight. Reaction completion was confirmed via TLC and then the 

reaction mixture pH adjusted to 7 with 6M HCl. The reaction mixture was filtered 

and concentrated. The concentrate was purified using a C18 reverse phase 

column, eluting with a gradient of 10-100 % methanol in water to give 3.8 (0.25 

g, 25 %), as a white solid. IR (cm-1) 2915, 1611; 1H NMR (400 MHz, DMSO-d6) δ 

7.69 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 7.21 (t, J = 7.5 Hz, 2H), 7.13 – 

7.06 (m, 1H), 7.03 – 6.99 (m, 2H), 3.45 (s, 2H), 2.82 – 2.70 (m, 2H), 2.46 (dd, J 

= 6.6, 2.2 Hz, 2H), 2.17 (ddd, J = 7.3, 4.4, 3.0 Hz, 1H), 1.88 (tdd, J = 11.5, 4.5, 

2.3 Hz, 2H), 1.74 (ddd, J = 9.0, 5.4, 2.7 Hz, 1H), 1.70 – 1.59 (m, 2H), 1.36 (ddt, 

J = 11.1, 7.5, 3.9 Hz, 1H), 1.11 (dddd, J = 15.5, 11.8, 7.6, 3.6 Hz, 2H), 0.97 – 

0.87 (m, 2H); 13C NMR (101 MHz, Methanol-d4) δ 175.3, 143.4, 140.5, 138.2, 

130.2, 130.1, 129.2, 126.7, 126.5, 64.0, 56.2, 54.5, 49.8, 42.6, 36.5, 31.1, 25.1, 

16.6; HRMS m/z calcd for C23H29N3O2 [M+H]+ 380.2333, found 380.2334; Purity 

97.5%. 

These data are consistent with that reported in the literature.140 
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1-Phenyl-1-cyclopropylamine (3.15).133 
1-Phenyl-1-cyclopropanecarboxylic acid (1.00 g, 6.14 mmol) was dissolved in 

anhydrous acetonitrile (40 ml). Triethylamine (0.85 ml, 6.14 mmol) was then 

added followed by diphenylphosphoryl azide (1.33 ml, 6.14 mmol) and the 

mixture heated to 50ºC for 2 hrs. After cooling to room temperature, 1M HCl (40 

ml) was added and the mixture refluxed for 16 hrs. The acetonitrile was removed 

under reduced pressure and the pH of the remaining aqueous mixture raised to 

13-14 with 1M NaOH. The aqueous phase was then extracted with 

dichloromethane (3 x 100 ml) and the combined organic extracts dried over 

MgSO4, filtered and concentrated. The concentrate was purified on a silica 

column eluting with a gradient of 10-100 % EtOAc in Hexanes to give 3.15 (0.64 

g, 61 %) as a yellow oil. 1H NMR (400 MHz, DMSO-d6) δ 7.32 – 7.23 (m, 4H), 

7.15 – 7.10 (m, 1H), 2.27 (brd-s, 2H), 0.98 – 0.93 (m, 2H), 0.92 – 0.86 (m, 2H); 
13C NMR (101 MHz, Chloroform-d) δ 147.0, 128.5, 126.0, 125.5, 36.8, 17.9; LC-

ToF (ESI) m/z calcd for C9H11N [M+H]+ 134.10, found 134.10. 

 

 
Methyl 4-{[4-({[1-phenylcyclopropyl]amino}methyl) piperidin-1-yl]methyl} 
benzoate (3.16). 
3.15 (0.50 g, 2.95 mmol) and 2.11a (0.68 g, 2.46 mmol) were dissolved in 

anhydrous methanol (5 ml) and placed under reflux for 1 hour. The mixture was 

then allowed to cool to room temperature before slowly adding NaBH4 (0.13 g, 

3.69 mmol) and stirring at ambient temperature for 1 hour. The mixture was 

quenched with water (50 ml) then extracted with dichloromethane (3 x 50ml), 

dried over MgSO4 and filtered. The filtrate was concentrated and purified on a 

silica column eluting with a gradient of 0-10 % MeOH in dichloromethane to give 

3.16 (0.81 g, 87 %) as a yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 7.89 (d, 

J = 8.3 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.26 – 7.18 (m, 4H), 7.15 – 7.10 (m, 

1H), 3.83 (s, 3H), 3.43 (s, 2H), 2.74 (d, J = 11.4 Hz, 2H), 2.34 (d, J = 6.5 Hz, 2H), 



 135 

1.85 (td, J = 11.5, 2.5 Hz, 2H), 1.57 (dd, J = 13.1, 2.9 Hz, 2H), 1.29 – 1.16 (m, 

1H), 1.14 – 1.11 (m, 2H), 0.90 – 0.85 (m, 1H), 0.85 – 0.80 (m, 1H); 13C NMR (101 

MHz, Chloroform-d) δ 167.2, 143.8, 129.6, 129.0, 128.9, 128.3, 127.4, 126.3, 

63.1, 53.9, 52.4, 52.1, 42.5, 36.6, 30.7, 15.9; LC-ToF (ESI) m/z calcd for 

C24H30N2O2 [M+H]+ 379.24, found 379.24. 

 

 
 

4-[(4-{[(1-phenylcyclopropyl)amino]methyl}piperidin-1-yl)methyl]benzoic 
acid (3.13). 
3.16 (0.40 g, 1.06 mmol) was dissolved in a 3:1 mixture of THF:H2O and to it 

added LiOH (0.08 g, 3.17 mmol) and stirred at 50 ºC for 16 hrs. The mixture was 

then allowed to cool to room temperature before adjusting to pH 2 with saturated 

KHSO4. It was then concentrated under reduced pressure and the concentrate 

purified on an amine functionalized silica column eluting with a gradient of 10-

100 % EtOAc in Petroleum ether to give 3.13 (0.81 g, 87 %) as a white solid. 1H 

NMR (400 MHz, Methanol-d4) δ 7.90 (d, J = 8.3 Hz, 2H), 7.36 – 7.26f (m, 6H), 

7.21 – 7.16 (m, 1H), 3.56 (s, 1H), 2.89 (d, J = 12.0 Hz, 2H), 2.36 (d, J = 6.7 Hz, 

2H), 2.03 (td, J = 11.9, 2.6 Hz, 2H), 1.73 – 1.65 (m, 2H), 1.43 – 1.32 (m, 1H), 1.20 

– 1.09 (m, 2H), 0.99 – 0.92 (m, 2H), 0.92 – 0.84 (m, 2H); 13C NMR (101 MHz, 

Methanol-d4) δ 175.1, 144.1, 139.9, 138.3, 130.2, 129.2, 128.9, 127.5, 63.8, 54.3, 

53.2, 43.5, 36.9, 31.0, 15.2; HRMS (ESI) m/z calcd for C23H28N2O2 [M+H]+ 

365.2224, found 365.2218; Purity 98.3%. 
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N-hydroxy-4-[(4-{[(1-phenylcyclopropyl)amino]methyl}piperidin-1-yl) 
methyl]benzamide (3.12). 
In separate flasks, 3.16 (1.00 g, 2.64 mmol), hydroxylamine hydrochloride (0.85, 

13.21 mmol) and potassium hydroxide (1.54 g, 26.42 mmol) were dissolved in 

dry methanol (15 ml, 10 ml, 10 ml) respectively. The potassium hydroxide solution 

was then slowly added to the hydroxylamine solution and the resulting mixture 

stirred at room temperature for 30 minutes. This mixture was then filtered, and 

the filtrate added to the benzoate solution and stirred at room temperature 

overnight. Reaction completion was confirmed by TLC and then the reaction 

mixture pH adjusted to 7 with 6M HCl. The reaction mixture was filtered and 

concentrated. The concentrate was then dissolved in cold ethanol and again 

filtered and concentrated. The concentrate was purified using an amine-

functionalised column, eluting with a gradient of 0-10 % methanol in 

dichloromethane to give 3.12 (0.30 g, 30 %) as a white solid. 1H NMR (400 MHz, 

Methanol-d4) δ 7.69 (d, J = 8.3 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 7.36 – 7.24 (m, 

4H), 7.21 – 7.14 (m, 1H), 3.53 (s, 2H), 2.83 (d, J = 11.8 Hz, 2H), 2.35 (d, J = 6.7 

Hz, 2H), 1.98 (td, J = 11.8, 2.5 Hz, 2H), 1.71 – 1.63 (m, 2H), 1.41 - 1.30 (m, 1H), 

1.20 – 1.06 (m, 2H), 1.00 – 0.91 (m, 2H), 0.91 – 0.84 (m, 2H); 13C NMR (101 

MHz, Methanol-d4) δ 196.1, 172.2, 170.7, 160.7, 159.0, 158.5, 157.4, 157.1, 

157.1, 156.2, 155.7, 91.9, 82.6, 81.4, 71.7, 65.1, 59.3, 43.3; HRMS (ESI) m/z 

calcd for C23H29N3O2 [M+H]+ 380.2333, found 380.2330; Purity 98.1%. 
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Chapter Four 
 

4. A series of novel zinc dependent HDAC inhibitors. 
4.1. Introduction 
 

The synthesis, structures, testing and clinical use of some zinc dependent HDAC 

inhibitors has been extensively explored in both chapters 1 and 3 of these theses. 

As such, the increasing number of clinically approved HDAC inhibitors and the 

continued efforts of pharmaceutical companies to develop further inhibitors of the 

HDACs suggests an ongoing need for further research within this area.  

During the synthesis of dual inhibitor 3.8, various methods for the synthesis of 

hydroxamic acids were explored. To facilitate this, two compounds were used as 

test molecules, 2.10a and 4.2 (scheme 4.1). These were precursors to 

GSK2879552 and chosen so as to have a structure similar to that of the target 

compound whilst still being easy and cheap to make. The resulting hydroxamic 

acid analogues, 4.1a and 4.3a (scheme 4.1), were subsequently submitted for in 

vitro testing and found to be inhibitors of HDAC6 with nano-molar levels of 

potency. As such, we have developed four series of novel compounds comprising 

small linker and cap groups for the inhibition of HDAC6.  

 

 
 

Scheme 4.1. The initial development of test molecules 4.2a and 4.2b. 
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4.1.1. Chapter aims. 
 

Four series of compounds containing the hydroxamic functional group have been 

synthesised based on the structure and subsequent in vitro activity of 4.1a and 

4.3a. The aim is to determine if the structure of these compounds can be further 

modified to give increased potency and selectivity for HDAC6. 

 

4.2. The synthesis of four series of potential HDAC inhibitors. 
 

The synthesis of these compounds is a simple one and each compound can be 

reached in just two steps. The first step is identical to that used in the first step of 

the synthesis of GSK2879552 (Chapter 2, Section 2.2), and is nucleophilic 

substitution between methyl-4-(bromomethyl)benzoate and the appropriate 

secondary amine. The resulting methyl ester is then converted to a hydroxamic 

acid (Scheme 4.2). The method for this conversion is that described in chapter 3 

section 3.2.  

Occasionally, for reasons not completely understood, this method would result in 

the formation of the carboxylic acid in place of the hydroxamic acid. This may be 

due to the presence of water in the reagents used but it only seemed to affect a 

small number of reactions and persisted on repeated experiments. Therefore, 

when this occurred, an alternative method was employed in which the methyl 

ester is hydrolysed to give the carboxylic acid followed by amide coupling with O-

benzyl hydroxylamine. This is then followed by a deprotection step with BCl3, to 

give the corresponding hydroxamic acid (Scheme 4.2). The more traditional 

method of benzyl deprotection with H2/Pd was initially tried but was found to 

additionally attack the N-benzyl group of the piperazine, thus breaking the 

molecule in half (Scheme 4.3). The yield for substitution of the methyl ester with 

benzyl protected hydroxylamine followed by deprotection of the hydroxamic acid 

with BCl3 carried an overall yield of around 11 % for these reactions. This is much 

lower than the standard method which has a yield of anything from ~10-90 % but 

often over 50 %. This method was therefore only used when necessary.  
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Scheme 4.2. General synthetic method including the alternative route via the 
carboxylic acid. 

 

 
 

Scheme 4.3. Deprotection with H2/Pd and the resulting undesired cleavage of 
the N-benzyl group. 

 

The initial series of compounds followed on from 4.2a and 4.2b giving further 

analogues in which the phenylhydroxymate is substituted in the para position 

(Figure 4.1). These analogues were then repeated with the substitution in the 

meta (Figure 4.2) and ortho (Figure 4.3) position. Finally, a series comprising an 

additional trans-alkene linker adjacent to the hydroxymate group was developed 

(Figure 4.4). 
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Figure 4.1. Para series of potential HDAC inhibitors and the methyl ester 
precursors. 
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Figure 4.2. Meta series of potential HDAC inhibitors and the methyl ester 
precursors. 
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Figure 4.3. Ortho series of potential HDAC inhibitors and the methyl ester 
precursors. 
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Figure 4.4. Alkene series of potential HDAC inhibitors and the methyl ester 
precursors. 
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4.3. Biological activity.  
 

4.3.1. Cell free HDAC assays. 
 

Compounds 4.2a and 4.2b, along with 2.10a and trichostatin A (TSA) as positive 

and negative reference compounds, were subjected to in vitro screening against 

HDAC1, 3, 6 and 8 (Table 4.1, Figure 4.4). These were carried out in collaboration 

with Dusan Ruzic of the University of Belgrade and carried out at the Fraunhofer 

Institute, Freiburg. 

 

Both 4.2a and 4.2b showed low µM activity in both HDAC1 and 3 and nM activity 

in both HDAC6 and 8. Of these both performed particularly well in HDAC6 with 

IC50 values of 0.30 (pIC50: 6.51±0.06) and 0.35 µM (pIC50: 6.44±0.05) for 4.2a 

and 4.2b respectively, more than 2-fold more active than in HDAC8. This 

suggests a certain amount of isoform specificity for the inhibition of HDAC6. 

Negative control 2.10a was not active at concentrations of less than 100 µM in 

any of the isoforms tested.  

 

Isoform 
pIC50 

4.2a 4.2b TSA 2.10a 

HDAC1 4.79±0.03 4.73±0.03 7.00±0.06 < 4 

HDAC3 4.98±0.04 4.91±0.03 8.71±0.05 < 4 

HDAC6 6.51±0.06 6.44±0.05 8.66±0.14 < 4 

HDAC8 6.14±0.04 6.09±0.05 6.52±0.10 < 4 

 

Table 4.1. HDAC assay data for compounds 4.2a and 4.2b along with positive 
and negative control compounds. 

Data generated by Ruzic et al., University of Belgrade (unpublished). 

 

These results seem to follow the same pattern as for both 3.8 and 3.12 which 

also both showed strongest activity in HDAC6 and were in turn about 2-fold more 

active than in HDAC8. This is not unexpected given the similarities in structure, 

but both 3.8 and 3.12 were more active across all tested HDAC isoforms 

suggesting that these compounds, which comprise a shorter linker, may be 
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limited in the level of potency as the number of interactions with the HDAC active 

site is naturally reduced. The extended linker in the alkene series of compounds 

(4.8a-f) should address this and it would be interesting to see if potency is 

increased when these are tested in the future.  

Further to this, selectivity should not be impacted by linker length and so it will 

also be interesting to see if any of the changes made do anything to improve 

selectivity for the HDAC6 isoform.  
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Figure 4.5. Graphical representation of the HDAC assay data for 4.2a and 4.2b. 
Data generated by Ruzic et al., University of Belgrade (unpublished). 
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4.3.2. Cell viability assay. 
 

A THP-1 cell viability assay became immediately available for the testing of these 

compounds and was used to get an indication of the activity levels of these 

compounds in the absence of an available in vitro HDAC assay.  

Testing was initially carried out at an inhibitor concentration of 100 µM. Any 

compounds that showed activity were then tested at a concentration of 10 µM 

and the IC50 of compounds active at this concentration were subsequently 

determined. Doxorubicin was used as a positive control. 

All inhibitors, 4.2a-f, 4.4a-f, 4.6a-f and 4.8a-f were analysed in a MTS cell viability 

assay in THP-1 cells at an inhibitor concentration of 100 µM (Figure 4.5). Only 

two compounds from the para-series showed sufficient activity to justify testing at 

a lower concentration, 4.2c and 4.2d. Compounds 4.2a and 4.2b, which are the 

only compounds from these series to have assessed for activity against HDACs 

in a cell free assay, both showed barely any activity within this particular cell line. 

No compounds from the meta-series of compounds showed any significant 

activity and again only two compounds in the ortho-series, compounds 4.6d and 

4.6f.  
In contrast however, the alkene series of compounds demonstrated much better 

activity within the THP-1 cell line. Five of the six tested were found to have 

sufficient activity to warrant testing at lower concentrations with only 4.8b not 

showing much activity.  
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Figure 4.6. THP-1 cell viability assay results at an inhibitor concentration of 100 

µM. 
 

Data shown as % cell viability ± std, n=3. 
Data generated by Burianova et al., UEA (unpublished). 

 

Compounds that showed activity were then tested at the reduced concentration 

of 10 µM (Figure 4.6). The two compounds brought forward from the para-series 

both showed no activity at this concentration. The same was found for the two 

compounds tested from the ortho-series. Again, the majority of compounds from 

the alkene series showed good levels of activity and only 4.8f was not submitted 
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Figure 4.7. THP-1 cell viability assay results at an inhibitor concentration of 10 
µM. 

 
Data shown as % cell viability ± std, n=3. 

Data generated by Burianova et al., UEA (unpublished). 
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Compound 4.8d and 4.8f are the respective Boc-protected and free base 

analogues of the piperazine substituted alkene series compounds. Boc-protected 

4.8d has an IC50 value of 22.70 µM whilst free base 4.8f was only active at a 

concentration of 100 µM. In addition, the comparative para-series compounds, 

4.2e and 4.2f also showed slightly better activity in the Boc-protected piperazine, 

suggesting that having a free amine at the cap end of the molecule is not 

beneficial in this cell line.  

The most active compound was found to be 4.8e which has an IC50 value of 4.01 

µM. The para-series analogue was not available so no direct comparison could 

be made to determine the impact of the additional alkene linker on this activity. 

The meta-series analogue 4.4e was moderately active at a concentration of 100 

µM as was the ortho-series analogue 4.6f but not active at 10 µM. 

 

 
 

Figure 4.8. THP-1 cell viability assay IC50 graphs for active compounds from 
the alkene series. 

 
Data shown as % cell viability ± std, n=3. 

Data generated by Burianova et al., UEA (unpublished). 
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Compound IC50 (µM) 
4.8a 6.27±0.46 

4.8c 8.68±1.99 

4.8d 22.70±1.14 

4.8e 4.01±1.24 

 

Table 4.2. Tabulated IC50 data from a THP-1 cell viability assay. 

Data shown as % cell viability ± std, n=3. 
Data generated by Burianova et al., UEA (unpublished). 

 

 

4.4 Virtual docking study. 
 

Both 4.2a and 4.2b were modelled in a VD study (Figure 4.8, Figure 4.9), carried 

out in order to determine the most likely binding position and mode of these 

compounds within the HDAC6 active site. VD was carried out in collaboration with 

Dusan Ruzic and Katarina Nikolic at the University of Belgrade, Serbia. Docking 

was performed using GOLD Software 5.6.0 (DOI: 10.1006/jmbi.1996.0897). The 

HDAC6 crystal structure (human isoform, second catalytic domain) was taken 

from the Protein Data Bank, entry PDB:5EDU, prepared via PlayMolecule online 

platform (playmolecule.org/) and the number of docking runs set to 100. The 

ChemScore scoring function (doi.org/10.1002/prot.10465) was used to estimate 

the free energy of binding, as it additionally takes into consideration metal-ligand 

coordination important for Zn2+-hydroxamic acid binding.  

The only difference in structure between 4.2a and 4.2b is the additional 

hydroxymethyl group at position 4 on the piperidine ring. The hydroxy group itself 

did not show any significant interactions in our model but several additional 

interactions between the HDAC6 active site residues and 4.2a were apparent. 

These included two additional pi-pi stacking interactions with Phe680 and His 651 

as well as a carbon hydrogen bond interaction with Ser568. Both 4.2a and 4.2b 

had predicted bidentate binding modes between the oxygen atoms of their 

respective hydroxamate groups and the Zn2+ cofactor.  

 



 153 

 
Figure 4.9. Position of ligand 4.2a inside the binding site of the HDAC6 seen 
from the extracellular side (left) and 2D presentation of important interactions 

with amino acid residues in the active pocket of HDAC6 (right). 
 

 

 

 
Figure 4.10. Position of ligand 4.2b inside the binding site of the HDAC6 seen 
from the extracellular side (left) and 2D presentation of important interactions 

with amino acid residues in the active pocket of HDAC6 (right). 
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4.5. Conclusion and future works. 
 

Four series of compounds comprising the hydroxamic acid functional group have 

been synthesised. Two of these compounds, 4.2a and 4.2b, have been shown to 

inhibit HDAC6 with nano-molar potency. Future work should extend this testing 

to all other compounds synthesised in order to determine how the structural 

changes made to each compound affect both potency and selectivity. 

All synthesised compounds were subjected to a cell viability assay using the THP-

1 cell line. Results suggested that the para, meta and ortho series did not show 

strong activity. The alkene series of compounds however, showed much stronger 

activity particularly compounds 4.8a, 4.8c and 4.8e. Of course, this is only one 

cell line and response can be cell line specific and hence future work should 

incorporate additional cell lines so as to better evaluate the in-cell 

pharmacological effects of these compounds.  

A virtual docking study was carried out on compounds 4.2a and 4.2b. Both 

compounds were predicted to have a bidentate binding mode between their 

respective hydroxamic acid functional groups and the HDAC6 Zn2+ cofactor. 

Future work could extend this study to other compounds in these series to 

determine how the differing structural changes affect binding and thus help to 

guide the structure of further analogues. 
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4.6. Chapter four experimental 
 

4.6.1. Experimental procedures 
 

All experimental procedures are the same as for those described in Chapter two, 

section 2.7.1. 

 

4.6.2. General procedure for synthesis of methyl ester precursors. 
 

A dry flask was charged with Methyl 4-(bromomethyl)benzoate (1 eq), followed 

by the appropriate piperazine/piperadine (1 eq). Acetonitrile (5 ml mmol-1) was 

added and stirred until all solids are dissolved. Potassium carbonate (3 eq) was 

added and the resulting mixture stirred at reflux under a nitrogen atmosphere for 

2 hrs. The mixture was then cooled to room temperature before filtering and 

concentrating. The concentrate was dissolved in EtOAc and washed with water 

and brine. The organics were dried over MgSO4 before drying in vacuo. If purity 

was deemed sufficient the resulting product was used in the subsequent step, if 

further purification was required this was carried out via column chromatography 

on silica in an appropriate mixture of EtOAc and hexanes.  

All reactions were carried out on either a 1 or 2 g scale with respect to methyl 4-

(bromomethyl)benzoate. 

 

4.6.3. General procedure for the synthesis of hydroxamic acids. 
 

In separate flasks, the appropriate methyl ester (1 eq), hydroxylamine 

hydrochloride (5 eq) and potassium hydroxide (8 eq) were dissolved in anhydrous 

methanol. The potassium hydroxide solution was then slowly added to the 

hydroxylamine solution and the resulting mixture stirred at room temperature for 

30 minutes. The mixture was then filtered, and the filtrate added to the benzoate 

solution, which was then stirred at room temperature overnight. The pH of the 

mixture was adjusted to ~7 with 6M HCl and subsequently filtered and 

concentrated. Purification was carried out on a C-18 reverse phase column, 

eluting with a gradient of 10-100 % methanol in water.  
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4.6.4. Para-series 
 

 
Methyl 4-{[4-(hydroxymethyl)piperidin-1-yl]methyl}benzoate (2.10a). 
Isolated as a white solid, (83%). 

Mp 57ºC; IR (cm-1) 3497, 2937, 2905, 2794, 2755, 1718, 1694; 1H NMR (400 

MHz, Chloroform-d) δ 7.97 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 8.7 Hz, 2H), 3.90 (s, 

3H), 3.55 (s, 2H), 3.48 (t, J = 5.4 Hz, 2H), 2.89 (d, J = 11.6 Hz, 1H), 2.00 (td, J = 

11.7, 2.5 Hz, 1H), 1.76 – 1.67 (m, 3H), 1.56 – 1.43 (m, 1H), 1.37 – 1.23 (m, 2H); 
13C NMR (101 MHz, Chloroform-d) δ 167.2, 144.3, 129.6, 129.0, 128.9, 67.9, 

63.1, 53.6, 52.1, 38.6, 28.9; HMRS (ESI) m/z calcd for C15H21NO3 [M+H]+ 

264.1594, found 264.1593. 

These data are consistent with that reported in the literature.102 

 

 
Methyl 4-[(piperidin-1-yl)methyl]benzoate (4.1a). 
Isolated as a colourless oil, (79%). 
1H NMR (400 MHz, Chloroform-d) δ 7.97 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.0 Hz, 

2H), 3.90 (d, J = 1.0 Hz, 3H), 3.50 (s, 2H), 2.36 (brd-s, 4H), 1.56 (p, J = 5.6 Hz, 

4H), 1.46 – 1.37 (m, 2H); 13C NMR (101 MHz, Chloroform-d) δ 167.2, 144.5, 

129.5, 129.0, 128.8, 63.5, 54.7, 52.0, 26.1, 24.4; No HRMS was obtained for this 

compound. 
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Methyl 4-{[4-(2-fluorophenyl)piperazin-1-yl]methyl}benzoate (4.1c). 
Isolated as a white solid, (65%). 

IR (cm-1) 3070, 3007, 2957, 2945, 2834, 2804, 2767, 1715; 1H NMR (400 MHz, 

Chloroform-d) δ 8.01 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.08 – 6.89 (m, 

3H), 3.92 (s, 3H), 3.63 (s, 2H), 3.12 (brd-s, 4H), 2.65 (brd-s, 4H); 13C NMR (101 

MHz, Chloroform-d) δ 167.1, 157.1, 154.6, 129.7, 129.1, 124.6, 124.5, 122.5, 

119.1, 119.0, 116.3, 116.1, 62.8, 53.3, 52.2, 50.6; 19F NMR (376 MHz, 

Chloroform-d) δ -122.72; HRMS (ESI) m/z calcd for C19H21FN2O2 [M+H]+ 

329.1660, found 329.1654. 

 

 
Methyl 4-{[4-(4-fluorophenyl)piperazin-1-yl]methyl}benzoate (4.1b). 
Isolated as a white solid, (51%). 

IR (cm-1) 2818, 1721; 1H NMR (400 MHz, Chloroform-d) δ 8.01 (d, J = 8.4 Hz, 

2H), 7.44 (d, J = 8.5 Hz, 2H), 6.99 – 6.90 (m, 2H), 6.90 – 6.82 (m, 2H), 3.91 (s, 

3H), 3.62 (s, 2H), 3.13 (t, J = 5.0 Hz, 4H), 2.66 – 2.62 (t, J = 5.0 Hz, 4H); 13C 

NMR (101 MHz, Chloroform-d) δ 167.1, 158.4, 156.0, 148.0, 148.0, 143.4, 129.7, 

129.2, 129.0, 117.9, 117.9, 115.7, 115.4, 62.6, 53.2, 52.1, 50.2; 19F NMR (376 

MHz, Chloroform-d) δ -124.62; HRMS (ESI) m/z calcd for C19H21FN2O2 [M+H]+ 

329.1660, found 329.1663. 
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tert-Butyl 4-{[4-(methoxycarbonyl)phenyl]methyl}piperazine-1-carboxylate 
(4.1d) 
Isolated as a white solid, (92%). 
1H NMR (400 MHz, Chloroform-d) δ 7.96 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.4 Hz, 

2H), 3.88 (s, 3H), 3.53 (s, 2H), 3.41 (t, J = 5.0 Hz, 4H), 2.36 (t, J = 5.0 Hz, 4H), 

1.43 (s, 9H); 13C NMR (101 MHz, Chloroform-d) δ 167.0, 154.8, 143.3, 129.6, 

129.1, 128.9, 79.6, 62.6, 52.9, 52.1, 28.4; HRMS (ESI) m/z calcd for C18H26N2O4 

[M+H]+ 335.1966, found 335.1958. 

 
 

N-hydroxy-4-{[4-(hydroxymethyl)piperidin-1-yl]methyl}benzamide (4.2a). 
Isolated as colourless solid, (54%). 
1H NMR (400 MHz, Methanol-d4) δ 7.71 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 8.6 Hz, 

2H), 3.57 (s, 2H), 3.39 (d, J = 6.4 Hz, 2H), 2.90 (brd-d, J = 11.6 Hz, 2H), 2.03 (td, 

J = 11.8, 2.6 Hz, 2H), 1.72 (d, J = 12.8 Hz, 2H), 1.54 – 1.40 (m, 1H), 1.26 (qd, J 

= 12.3, 3.8 Hz, 2H); 13C NMR (101 MHz, Methanol-d4) δ 167.9, 142.7, 132.6, 

130.8, 128.0, 67.8, 63.8, 54.4, 39.5, 29.6; HRMS (ESI) m/z calcd for C14H20N2O3 

[M+H]+ 265.1547, found 265.1545. 
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N-hydroxy-4-[(piperidin-1-yl)methyl]benzamide (4.2b). 
Isolated as a white solid, (40%). 

IR (cm-1) 3184, 2935, 2843, 2430, 1638; 1H NMR (400 MHz, DMSO-d6) δ 11.09 

(brd-s, 1H), 9.07 (brd-s, 1H), 7.69 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 

3.44 (s, 2H), 2.30 (brd-s, 4H), 1.48 (p, J = 5.5 Hz, 4H), 1.43 – 1.32 (m, 2H); 13C 

NMR (101 MHz, DMSO-d6) δ 164.1, 142.0, 131.3, 128.5, 126.7, 62.4, 53.9, 25.5, 

23.9; HRMS (ESI) m/z calcd for C13H18N2O2 [M+H]+ 235.1441, found 235.1437. 

 

 
 

4-{[4-(2-fluorophenyl)piperazin-1-yl]methyl}-N-hydroxybenzamide (4.2d). 
Isolated as a white solid, (48 %) 

IR (cm-1) 3479, 3354, 2951, 2851, 1657; 1H NMR (400 MHz, Methanol-d4) δ 7.73 

(d, J = 8.3 Hz, 2H), 7.48 (d, J = 8.3 Hz, 2H), 7.11 – 6.91 (m, 4H), 3.65 (s, 2H), 

3.10 (t, J = 4.9 Hz, 4H), 2.65 (t, J = 4.9 Hz, 4H); 13C NMR (101 MHz, Methanol-

d4) δ 158.5, 148.8, 146.4, 133.3, 131.8, 131.7, 123.1, 121.2, 118.6, 116.2, 116.2, 

114.4, 114.3, 110.8, 110.7, 107.5, 107.3, 53.9, 44.7, 42.0, 42.0; 19F NMR (376 

MHz, Methanol-d4) δ -124.74; HRMS (ESI) m/z calcd for C18H20FN3O2 [M+H]+ 

330.1613, found 330.1605. 
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4-{[4-(4-fluorophenyl)piperazin-1-yl]methyl}-N-hydroxybenzamide (4.2c). 
Isolated as a white solid, (11%) 

IR (cm-1) 3091, 2960, 2883, 2828, 1650; 1H NMR (400 MHz, Methanol-d4) δ 7.73 

(d, J = 8.3 Hz, 2H), 7.48 (d, J = 8.3 Hz, 2H), 6.96 (d, J = 6.5 Hz, 4H), 3.64 (s, 2H), 

3.15 – 3.09 (m, 4H), 2.66 – 2.59 (m, 4H); 13C NMR (101 MHz, DMSO-d6) δ 164.1, 

157.1, 154.8, 147.9, 141.4, 131.5, 128.7, 126.8, 117.1, 117.0, 115.3, 115.1, 61.5, 

52.5, 48.9; 19F NMR (376 MHz, DMSO-d6) δ -125.68; HRMS (ESI) m/z calcd for 

C18H20FN3O2 [M+H]+ 330.1612, found 330.1625. 

 

 
 

tert-Butyl 4-{[4-(hydroxycarbamoyl)phenyl]methyl}piperazine-1-
carboxylate (4.2e). 
Isolated as a white solid, (77%). 

 IR (cm-1) 3202, 2976, 2929, 2814, 1689, 1619; 1H NMR (400 MHz, DMSO-d6) δ 

11.16 (s, 1H), 9.00 (s, 1H), 7.71 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 3.51 

(s, 2H), 3.31 (t, J = 5.0 Hz, 4H), 2.30 (t, J = 5.0 Hz, 4H), 1.38 (s, 9H); 13C NMR 

(101 MHz, DMSO-d6) δ 164.1, 153.7, 141.2, 131.5, 128.7, 126.8, 78.7, 61.4, 52.3, 

28.0; HRMS (ESI) m/z calcd for C17H25N3O4 [M+H]+ 336.1918, found 336.1913. 
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N-hydroxy-4-[(piperazin-1-yl)methyl]benzamide (4.2f). 
Isolated as a white solid, (quant) 

IR (cm-1) 3476, 2963, 2686, 2570, 2451, 1713, 1637; 1H NMR (400 MHz, DMSO-

d6) δ 7.81 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 4.55 (s, 2H), 3.70 – 3.58 

(m, 8H); 13C NMR (101 MHz, DMSO-d6) δ 163.3, 133.6, 131.6, 129.5, 127.2, 

57.9, 47.3, 27.9; HRMS (ESI) m/z calcd for C12H17N3O2 [M+H]+ 236.1394, found 

236.1379. 

 

4.6.5. Meta-series 
 

 
 

Methyl 3-{[4-(hydroxymethyl)piperidin-1-yl]methyl}benzoate (4.3a). 
Isolated as a yellow oil, (72%). 

IR (cm-1) 3348, 2916, 2801, 2759, 1719; 1H NMR (400 MHz, Chloroform-d) δ 7.95 

(s, 1H), 7.91 (d, J = 7.7 Hz, 1H), 7.53 (d, J = 7.4 Hz, 1H), 7.37 (t, J = 7.7 Hz, 1H), 

3.90 (s, 3H), 3.52 (s, 2H), 3.47 (s, 2H), 2.87 (d, J = 11.3 Hz, 2H), 1.97 (t, J = 11.6 

Hz, 2H), 1.69 (d, J = 12.7 Hz, 2H), 1.55 – 1.42 (m, 1H), 1.27 (qd, J = 12.2, 3.2 

Hz, 2H); 13C NMR (101 MHz, Chloroform-d) δ 167.3, 139.0, 133.8, 130.3, 130.1, 

128.4, 67.9, 63.0, 53.5, 52.2, 38.6, 28.8; HRMS (ESI) m/z calcd for C15H21NO3 

[M+H]+ 264.1594, found 264.1584. 
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Methyl 3-[(piperidin-1-yl)methyl]benzoate (4.3b). 
Isolated as a colourless oil, (76%). 

IR (cm-1) 2933, 2852, 2794, 2755, 1721; 1H NMR (400 MHz, Chloroform-d) δ 7.96 

(s, 1H), 7.90 (dt, J = 7.7, 1.4 Hz, 1H), 7.53 (dt, J = 7.6, 1.6 Hz, 1H), 7.36 (t, J = 

7.7 Hz, 1H), 3.90 (s, 3H), 3.49 (s, 2H), 2.36 (t, J = 5.5 Hz, 4H), 1.60 – 1.51 (m, 

4H), 1.46 – 1.37 (m, 2H); 13C NMR (101 MHz, Chloroform-d) δ 167.3, 139.2, 

133.8, 130.3, 130.1, 128.3, 128.2, 63.5, 54.5, 52.1, 26.0, 24.4; HRMS (ESI) m/z 

calcd for C14H19NO2 [M+H]+ 234.1489, found 234.1479. 

 

 
 

Methyl 3-{[4-(4-fluorophenyl)piperazin-1-yl]methyl}benzoate (4.3c). 
Isolated as a yellow oil, (75%). 

IR (cm-1) 2948, 2814, 2770, 1718; 1H NMR (400 MHz, Chloroform-d) δ 8.03 – 

8.00 (m, 1H), 7.95 (dt, J = 7.7, 1.4 Hz, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.41 (t, J = 

7.7 Hz, 1H), 6.99 – 6.91 (m, 2H), 6.89 – 6.83 (m, 2H), 3.92 (s, 3H), 3.62 (s, 2H), 

3.16 – 3.09 (m, 4H), 2.65 – 2.59 (m, 4H); 13C NMR (101 MHz, Chloroform-d) δ 

167.2, 158.4, 156.1, 148.1, 148.0, 133.8, 130.3, 130.3, 128.6, 128.5, 117.9, 

117.9, 115.7, 115.5, 62.6, 53.1, 52.2, 50.2; 19F NMR (376 MHz, Chloroform-d) δ 

-124.63; HRMS (ESI) m/z calcd for C19H21FN2O2 [M+H]+ 329.1660, found 

329.1658. 
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tert-Butyl 4-{[3-(methoxycarbonyl)phenyl]methyl}piperazine-1-carboxylate 
(4.3d). 
Isolated as a yellow gel, (78%). 

IR (cm-1) 2975, 2950, 2807, 1721, 1690; 1H NMR (400 MHz, Chloroform-d) δ 7.94 

(s, 1H), 7.90 (d, J = 7.7 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 

3.88 (d, J = 0.8 Hz, 3H), 3.52 (s, 2H), 3.40 (t, J = 5.0 Hz, 4H), 2.36 (t, J = 5.0 Hz, 

4H), 1.42 (s, 9H); 13C NMR (101 MHz, Chloroform-d) δ 167.1, 154.7, 138.3, 

133.7, 130.2, 130.2, 128.5, 128.4, 79.6, 62.5, 52.8, 52.1, 43.6, 28.4; HRMS (ESI) 

m/z calcd for C18H26N2O4 [M+H]+ 335.1965, found 335.1963. 

 

 
 

Methyl 3-[(3,4-dihydroisoquinolin-2(1H)-yl)methyl]benzoate (4.3e). 
Isolated as a yellow oil, (74%). 

IR (cm-1) 3022, 2948, 2915, 2797, 2756, 1718; 1H NMR (400 MHz, Chloroform-

d) δ 8.07 (s, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.64 (d, J = 7.2 Hz, 1H), 7.42 (t, J = 

7.7 Hz, 1H), 7.19 – 7.07 (m, 3H), 7.03 – 6.95 (m, 1H), 3.93 (s, 3H), 3.74 (s, 2H), 

3.65 (s, 2H), 2.92 (t, J = 5.9 Hz, 2H), 2.76 (t, J = 5.9 Hz, 2H); 13C NMR (101 MHz, 

Chloroform-d) δ 167.2, 139.0, 134.8, 134.4, 133.7, 130.3, 130.2, 128.8, 128.5, 

128.5, 126.6, 126.2, 125.7, 62.4, 56.1, 52.1, 50.7, 29.2; HRMS (ESI) m/z calcd 

for C18H19NO2 [M+H]+ 282.1489, found 282.1484. 
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N-hydroxy-3-{[4-(hydroxymethyl)piperidin-1-yl]methyl}benzamide (4.4a) 
Isolated as a yellow oil, (67%). 

IR (cm-1) 3176, 2934, 2870, 1639; 1H NMR (500 MHz, Methanol-d4) δ 8.00 (s, 

1H), 7.84 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.57 (t, J = 7.8 Hz, 1H), 

4.43 (s, 2H), 3.50 (d, J = 12.3 Hz, 2H), 3.45 (d, J = 6.2 Hz, 2H), 3.11 (t, J = 13.6 

Hz, 2H), 1.97 (d, J = 12.9 Hz, 2H), 1.87 – 1.75 (m, 1H), 1.61 (q, J = 11.5 Hz, 2H); 
13C NMR (126 MHz, Methanol-d4) δ 167.1, 135.7, 134.2, 131.2, 131.2, 130.5, 

129.5, 66.3, 60.8, 53.2, 37.1, 26.8; HRMS (ESI) m/z calcd for C14H20N2O3 [M+H]+ 

265.1547, found 265.1541. 

 

 
N-hydroxy-3-[(piperidin-1-yl)methyl]benzamide (4.4b). 
Isolated as a yellow oil, (89%) 

IR (cm-1) 2945, 2677, 1644; 1H NMR (400 MHz, DMSO-d6) δ 7.95 (s, 1H), 7.78 

(t, J = 7.0 Hz, 2H), 7.49 (t, J = 7.7 Hz, 1H), 4.21 (s, 2H), 2.97 (s, 4H), 1.81 – 1.68 

(m, 4H), 1.54 – 1.40 (m, 2H); 13C NMR (101 MHz, DMSO-d6) δ 167.9, 134.3, 

133.6, 131.3, 130.5, 129.1, 127.8, 59.4, 52.2, 22.8, 22.1; HRMS (ESI) m/z calcd 

for C13H18N2O2 [M+H]+ 235.1441, found 235.1433. 
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3-{[4-(4-fluorophenyl)piperazin-1-yl]methyl}-N-hydroxybenzamide (4.4c). 
Isolated as a pale yellow solid, (25%). 

IR (cm-1) 2819, 1634; 1H NMR (400 MHz, Methanol-d4) δ 7.76 (t, J = 1.8 Hz, 1H), 

7.67 (dt, J = 7.8, 1.5 Hz, 1H), 7.53 (dt, J = 7.7, 1.5 Hz, 1H), 7.42 (t, J = 7.7 Hz, 

1H), 6.99 – 6.87 (m, 4H), 3.60 (s, 2H), 3.13 – 3.02 (m, 4H), 2.65 – 2.54 (m, 4H); 
13C NMR (101 MHz, Methanol-d4) δ 167.9, 159.8, 157.4, 149.3, 149.2, 139.1, 

133.9, 133.6, 129.6, 129.3, 127.1, 119.2, 119.1, 119.1, 116.3, 116.1, 63.3, 53.9, 

50.9; 19F NMR (376 MHz, Methanol-d4) δ -126.29; HRMS (ESI) m/z calcd for 

C18H20FN3O2 [M+H]+ 330.1612, found 330.1603. 

 
tert-Butyl 4-{[3-(hydroxycarbamoyl)phenyl]methyl}piperazine-1-
carboxylate (4.4d). 
Isolated as a white solid, (58%). 

IR (cm-1) 280, 1651; 1H NMR (400 MHz, DMSO-d6) δ 11.20 (brd-s, 1H), 9.02 (brd-

s, 1H), 7.69 (s, 1H), 7.63 (dt, J = 7.4, 1.6 Hz, 1H), 7.46 – 7.36 (m, 2H), 3.50 (s, 

2H), 3.31 (s, 4H), 2.31 (t, J = 5.0 Hz, 4H), 1.38 (s, 9H); 13C NMR (101 MHz, 

DMSO-d6) δ 164.2, 153.8, 138.2, 132.8, 131.6, 128.2, 127.4, 125.5, 78.7, 61.6, 

52.3, 43.2, 28.0; HRMS (ESI) m/z calcd for C17H25N3O4 [M+H]+ 336.1918, found 

336.1911. 
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N-hydroxy-3-[(piperazin-1-yl)methyl]benzamide (4.4f). 
Isolated as a white solid, (63 %) 

IR (cm-1) 3004, 2408, 1663; 1H NMR (400 MHz, DMSO-d6) δ 8.01 (s, 1H), 7.84 

(d, J = 7.7 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 4.47 (s, 2H), 

3.47 (brd-s, 8H); 13C NMR (101 MHz, DMSO-d6) δ 163.7, 134.3, 133.3, 130.6, 

129.1, 128.9, 127.9, 58.1, 47.2; HRMS (ESI) m/z calcd for C12H17N3O2 [M+H]+ 

236.1394, found 236.1378. 
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3-[(3,4-dihydroisoquinolin-2(1H)-yl)methyl]-N-hydroxybenzamide (4.4e). 
Isolated as a yellow solid, (62 %). 

IR (cm-1) 2800, 1634; 1H NMR (400 MHz, DMSO-d6) δ 11.23 (brd-s, 1H), 9.04 

(brd-s, 1H), 7.77 (s, 1H), 7.66 (dt, J = 7.6, 1.5 Hz, 1H), 7.51 (dt, J = 7.6, 1.5 Hz, 

1H), 7.42 (t, J = 7.6 Hz, 1H), 7.12 – 7.05 (m, 3H), 7.00 (dt, J = 6.3, 1.7 Hz, 1H), 

3.71 (s, 2H), 3.57 (s, 2H), 2.82 (t, J = 5.9 Hz, 2H), 2.71 (t, J = 5.9 Hz, 2H); 13C 

NMR (101 MHz, DMSO-d6) δ 164.2, 138.4, 134.4, 133.9, 132.8, 131.5, 128.4, 

128.3, 127.4, 126.3, 126.0, 125.5, 125.5, 61.4, 55.2, 50.1, 28.5; HRMS (ESI) m/z 

calcd for C17H18N2O2 [M+H]+ 283.1441, found 283.1450. 

 

4.6.6. Ortho-series 
 

 
Methyl 2-{[4-(hydroxymethyl)piperidin-1-yl]methyl}benzoate (4.5a). 
Isolated as a yellow oil, (98%). 

IR (cm-1) 3383, 2938, 2803, 2759, 1716; 1H NMR (400 MHz, Chloroform-d) δ 7.69 

– 7.65 (m, 1H), 7.46 – 7.35 (m, 2H), 7.27 (td, J = 7.5, 1.6 Hz, 1H), 3.86 (s, 3H), 

3.73 (s, 2H), 3.45 (t, J = 5.9 Hz, 2H), 2.80 (d, J = 11.5 Hz, 2H), 1.99 (t, J = 10.7 

Hz, 2H), 1.76 (t, J = 5.4 Hz, 1H), 1.65 (d, J = 13.6 Hz, 2H), 1.54 – 1.40 (m, 1H), 

1.20 (qd, J = 12.1, 3.9 Hz, 2H); 13C NMR (101 MHz, Chloroform-d) δ 169.4, 139.8, 

131.6, 131.0, 129.9, 129.6, 126.9, 67.9, 60.8, 53.4, 52.0, 38.6, 29.0; HRMS (ESI) 

m/z calcd for C15H21NO3 [M+H]+ 264.1594, found 264.1584. 
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Methyl 2-[(piperidin-1-yl)methyl]benzoate (4.5b). 
Isolated as a yellow oil, (91%). 

IR (cm-1) 2933, 2851, 2797, 2724, 1722; 1H NMR (400 MHz, Chloroform-d) δ 7.68 

(dd, J = 7.6, 1.2 Hz, 1H), 7.49 – 7.37 (m, 2H), 7.29 (td, J = 7.5, 1.6 Hz, 1H), 3.89 

(s, 3H), 3.71 (s, 2H), 2.36 (brd-s, 4H), 1.54 (p, J = 5.5 Hz, 4H), 1.43 (q, J = 6.0 

Hz, 2H); 13C NMR (101 MHz, Chloroform-d) δ 169.5, 140.0, 131.7, 130.9, 129.8, 

129.5, 126.8, 61.3, 54.5, 51.9, 26.2, 24.4; HRMS (ESI) m/z calcd for C14H19NO2 

[M+H]+ 234.1489, found 234.1482. 

 

 
Methyl 2-{[4-(2-fluorophenyl)piperazin-1-yl]methyl}benzoate (4.5d). 
Isolated as a yellow solid (53%). 

IR (cm-1) 3025, 3065, 2946, 2880, 2824, 1720; 1H NMR (400 MHz, Chloroform-

d) δ 7.71 (dd, J = 7.7, 0.9 Hz, 1H), 7.48 – 7.39 (m, 2H), 7.31 (td, J = 7.5, 1.8 Hz, 

1H), 7.07 – 6.87 (m, 4H), 3.89 (s, 3H), 3.83 (s, 2H), 3.06 (t, J = 4.8 Hz, 4H), 2.65 

– 2.57 (m, 4H); 13C NMR (101 MHz, Chloroform-d) δ 169.3, 157.0, 154.5, 140.3, 

140.2, 139.2, 131.8, 131.0, 130.0, 129.7, 127.1, 124.5, 124.4, 122.4, 122.3, 

118.9, 118.9, 116.2, 116.0, 60.6, 53.1, 52.0, 50.7, 50.7; 19F NMR (376 MHz, 

Chloroform-d) δ -122.58; HRMS (ESI) m/z calcd for C19H21FN2O2 [M+H]+ 

329.1660, found 329.1655. 

 

  



 169 

 
Methyl 2-{[4-(4-fluorophenyl)piperazin-1-yl]methyl}benzoate (4.5c) 
Isolated as a yellow solid, (58%). 

IR (cm-1) 2948, 2834, 2779, 1721; 1H NMR (400 MHz, Chloroform-d) δ 7.71 (dd, 

J = 7.6, 1.1 Hz, 1H), 7.49 – 7.39 (m, 2H), 7.31 (td, J = 7.5, 1.7 Hz, 1H), 6.99 – 

6.90 (m, 2H), 6.88 – 6.81 (m, 2H), 3.88 (s, 3H), 3.83 (s, 2H), 3.09 – 3.04 (m, 4H), 

2.62 – 2.56 (m, 4H); 13C NMR (101 MHz, Chloroform-d) δ 169.2, 158.3, 155.9, 

148.1, 148.1, 139.1, 131.7, 131.1, 130.0, 129.7, 127.1, 117.8, 117.7, 115.6, 

115.4, 60.5, 53.0, 52.0, 50.3; 19F NMR (376 MHz, Chloroform-d) δ -124.76; 

HRMS (ESI) m/z calcd for C19H21FN2O2 [M+H]+ 329.1660, found 329.1656. 

 
tert-Butyl 4-{[2-(methoxycarbonyl)phenyl]methyl}piperazine-1-carboxylate 
(4.5e). 
Isolated as a colourless oil, (89%). 

IR (cm-1) 2975, 2946, 2810, 1723, 1691; 1H NMR (400 MHz, Chloroform-d) δ 7.69 

(d, J = 7.5 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.33 – 7.26 (m, 1H), 3.87 (s, 3H), 3.77 

(s, 2H), 3.37 (t, J = 5.0 Hz, 4H), 2.36 (t, J = 5.0 Hz, 4H), 1.44 (s, 9H); 13C NMR 

(101 MHz, Chloroform-d) δ 169.1, 154.8, 138.9, 131.6, 131.1, 129.9, 129.7, 

127.1, 79.5, 60.5, 52.8, 52.0, 43.7, 28.4; HRMS (ESI) m/z calcd for C18H26N2O4 

[M+H]+ 335.1965, found 335.1960. 
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Methyl 2-[(3,4-dihydroisoquinolin-2(1H)-yl)methyl]benzoate (4.5f). 
Isolated as an orange solid, (95%). 

IR (cm-1) 3021, 2997, 2939, 2792, 2747, 2721, 1711, 1H NMR (400 MHz, 

Chloroform-d) δ 7.77 (dd, J = 7.7, 1.3 Hz, 1H), 7.58 (d, J = 7.7 Hz, 1H), 7.46 (td, 

J = 7.5, 1.5 Hz, 1H), 7.33 (td, J = 7.5, 1.4 Hz, 1H), 7.17 – 7.08 (m, 3H), 7.03 – 

6.97 (m, 1H), 3.99 (s, 2H), 3.82 (s, 3H), 3.68 (s, 2H), 2.88 (t, J = 5.9 Hz, 2H), 2.74 

(t, J = 5.9 Hz, 2H); 13C NMR (101 MHz, Chloroform-d) δ 169.0, 139.8, 135.0, 

134.5, 131.4, 131.3, 129.8, 128.7, 127.0, 126.5, 126.1, 125.5, 60.2, 56.1, 52.0, 

50.6, 29.3; HRMS (ESI) m/z calcd for C18H19NO2 [M+H]+ 282.1489, found 

282.1477. 

 

 
N-hydroxy-2-{[4-(hydroxymethyl)piperidin-1-yl]methyl}benzamide (4.6a) 
Isolated as a colourless solid, (93%). 

IR (cm-1) 3399, 3315, 3147, 3027, 2961, 2840, 1625; 1H NMR (400 MHz, 

Methanol-d4) δ 7.75 – 7.42 (m, 4H), 4.38 (s, 2H), 3.47 (d, J = 6.0 Hz, 4H), 3.13 (t, 

J = 13.7 Hz, 2H), 2.01 (d, J = 15.7 Hz, 2H), 1.91 – 1.76 (m, 1H), 1.53 (q, J = 10.8 

Hz, 2H); 13C NMR (101 MHz, Methanol-d4) δ 168.6, 134.8, 134.8, 133.1, 131.7, 

130.7, 130.0, 66.3, 52.9, 49.8, 37.3, 27.4; HRMS (ESI) m/z calcd for C14H20N2O3 

[M+H]+ 265.1547, found 265.1540.	
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N-hydroxy-2-[(piperidin-1-yl)methyl]benzamide (4.6b). 
Isolated as a white solid, (25%). 

IR (cm-1) 3191, 2931, 2848, 1653; 1H NMR (400 MHz, DMSO-d6) δ 7.56 (dd, J = 

7.4, 1.7 Hz, 1H), 7.45 – 7.32 (m, 3H), 3.49 (s, 2H), 2.38 (s, 4H), 1.49 (p, J = 5.1 

Hz, 4H), 1.45 – 1.36 (m, 2H); 13C NMR (101 MHz, DMSO-d6) δ 165.3, 135.1, 

134.8, 131.0, 129.6, 129.1, 127.5, 60.5, 52.9, 25.4, 23.7; HRMS (ESI) m/z calcd 

for C13H18N2O2 [M+H]+ 235.1441, found 235.1431. 

 

 
2-{[4-(2-fluorophenyl)piperazin-1-yl]methyl}-N-hydroxybenzamide (4.6d). 
Isolated as a yellow solid, (19%). 

IR (cm-1) 2816, 1650; 1H NMR (400 MHz, Methanol-d4) δ 7.72 (dd, J = 7.3, 1.6 

Hz, 1H), 7.50 – 7.37 (m 3H), 7.10 – 6.92 (m, 4H), 3.70 (s, 2H), 3.10 (brd-s, 4H), 

2.72 (brd-s, 4H); 13C NMR (101 MHz, Methanol-d4) δ 168.8, 158.3, 155.9, 141.1, 

141.0, 135.6, 135.5, 133.1, 131.7, 130.8, 129.4, 125.7, 125.7, 124.0, 124.0, 

120.3, 120.3, 117.0, 116.8, 61.8, 53.2, 51.6, 51.6; 19F NMR (376 MHz, Methanol-

d4) δ -124.81; HRMS (ESI) m/z calcd for C18H20FN3O2 [M+H]+ 330.1613, found 

330.1601. 
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2-{[4-(4-fluorophenyl)piperazin-1-yl]methyl}-N-hydroxybenzamide (4.6c). 
Isolated as a yellow solid, (71%). 

IR (cm-1) 2992, 2837, 2667, 1632; 
1H NMR (400 MHz, Methanol-d4) δ 7.75 – 7.59 (m, 4H), 7.10 – 6.97 (m, 4H), 4.52 

(s, 2H), 3.81 – 3.68 (m, 2H), 3.61 – 3.50 (m, 2H), 3.46 – 3.36 (m, 2H), 3.18 – 3.00 

(m, 2H); 13C NMR (101 MHz, Methanol-d4) δ 167.1, 159.3, 156.9, 146.3, 146.3, 

133.5, 133.4, 131.8, 130.5, 128.8, 128.6, 118.9, 118.8, 115.4, 115.1, 58.9, 51.1; 
19F NMR (376 MHz, Methanol-d4) δ -124.49; HRMS (ESI) m/z calcd for 

C18H20FN3O2 [M+H]+ 330.1613, found 330.1603.	

 
tert-Butyl 4-{[2-(hydroxycarbamoyl)phenyl]methyl}piperazine-1-
carboxylate (4.6e). 
Isolated as a pale orange solid, (73%). 

IR (cm-1) 2818, 1689, 1646; 1H NMR (400 MHz, DMSO-d6) δ 11.34 (brd-s, 1H), 

9.03 (brd-s, 1H), 7.45 – 7.37 (m, 3H), 7.37 – 7.30 (m, 1H), 3.57 (s, 2H), 3.30 (t, J 

= 5.0 Hz, 4H), 2.33 (t, J = 5.0 Hz, 4H), 1.39 (s, 9H); 13C NMR (101 MHz, DMSO-

d6) δ 165.7, 153.8, 135.3, 135.1, 130.2, 129.5, 128.3, 127.2, 78.8, 59.2, 51.9, 

43.2, 28.0; HRMS (ESI) m/z calcd for C17H25N3O4 [M+H]+ 336.1918, found 

336.1918. 

 

 

 
N-hydroxy-2-[(piperazin-1-yl)methyl]benzamide (4.6g). 
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Isolated as a pale pink solid, (quant). 

IR (cm-1) 1644; 1H NMR (400 MHz, DMSO-d6) δ 11.40 (brd-s, 1H), 10.08 (brd-s, 

1H), 7.94 (d, J = 7.4 Hz, 1H), 7.63 – 7.45 (m, 3H), 4.50 (s, 2H), 3.48 (brd-s, 8H); 

13C NMR (101 MHz, DMSO-d6) δ 165.2, 135.1, 133.1, 130.7, 129.9, 128.3, 127.8, 

56.4, 47.7, 39.7; HRMS (ESI) m/z calcd for C12H17N3O2 [M+H]+ 236.1394, found 

236.1372. 

 

 
2-[(3,4-dihydroisoquinolin-2(1H)-yl)methyl]-N-hydroxybenzamide (4.6f). 
Isolated as an orange solid, (48%). 

IR (cm-1) 3113, 2857, 1631; 1H NMR (400 MHz, DMSO-d6) δ 11.70 (brd-s, 1H), 

9.05 (brd-s, 1H), 7.53 – 7.41 (m, 3H), 7.37 (td, J = 7.3, 1.6 Hz, 1H), 7.15 – 7.06 

(m, 3H), 7.01 (d, J = 6.3 Hz, 1H), 3.74 (s, 2H), 3.58 (s, 2H), 2.82 (t, J = 5.6 Hz, 

2H), 2.72 (t, J = 5.7 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 165.5, 135.3, 

135.0, 134.2, 133.8, 130.5, 129.7, 128.6, 128.5, 127.4, 126.4, 126.1, 125.5, 59.3, 

54.7, 49.7, 28.5; HRMS (ESI) m/z calcd for C17H18N2O2 [M+H]+ 283.1441, found 

283.1429. 
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4.6.7. Alkene-series 
 

 
Methyl (2E)-3-{4-[(piperidin-1-yl)methyl]phenyl}prop-2-enoate (4.7a). 
Isolated as a white solid, (61 %) 
1H NMR (400 MHz, Chloroform-d) δ 7.68 (d, J = 16.0 Hz, 1H), 7.47 (d, J = 8.1 

Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 6.42 (d, J = 16.0 Hz, 1H), 3.80 (s, 3H), 3.48 (s, 

2H), 2.38 (t, J = 5.4 Hz, 4H), 1.58 (p, J = 5.6 Hz, 4H), 1.48 – 1.39 (m, 2H); 13C 

NMR (101 MHz, Chloroform-d) δ 167.6, 144.9, 141.5, 133.2, 129.7, 128.0, 117.3, 

63.5, 54.6, 51.8, 26.0, 24.4; HRMS (ESI) m/z calcd for C16H21NO2 [M+H]+ 

260.1645, found 260.1633. 

 
Methyl (2E)-3-(4-{[4-(2-fluorophenyl)piperazin-1-yl]methyl}phenyl)prop-2-
enoate (4.7c). 
Isolated as a white solid, (23%). 

IR (cm-1) 2933, 2826, 1707, 1635, 1609; 1H NMR (400 MHz, Chloroform-d) δ 7.69 

(d, J = 16.0 Hz, 1H), 7.50 (d, J = 8.2 Hz,21H), 7.41 (d, J = 7.9 Hz, 2H), 7.09 – 

6.89 (m, 4H), 6.44 (d, J = 16.0 Hz, 1H), 3.81 (s, 3H), 3.63 (s, 2H), 3.14 (brd-s, 

4H), 2.68 (brd-s, 4H); 13C NMR (101 MHz, Chloroform-d) δ 167.6, 157.0, 154.6, 

144.6, 129.9, 128.2, 124.6, 124.5, 119.1, 117.7, 116.3, 116.1, 62.7, 53.5, 53.2, 

51.8, 50.4; 19F NMR (376 MHz, Chloroform-d) δ -122.79; HRMS (ESI) m/z calcd 

for C21H23FN2O2 [M+H]+ 355.1817, found 355.1826. 
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Methyl (2E)-3-(4-{[4-(4-fluorophenyl)piperazin-1-yl]methyl}phenyl)prop-2-
enoate (4.7b). 
Isolated as a white solid, (55%). 

IR (cm-1) 2947, 2824, 1703, 1631, 1607; 1H NMR (400 MHz, Chloroform-d) δ 7.69 

(d, J = 16.0 Hz, 1H), 7.50 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 6.98 – 6.91 

(m, 2H), 6.90 – 6.83 (m, 2H), 6.44 (d, J = 16.0 Hz, 1H), 3.81 (s, 3H), 3.58 (s, 2H), 

3.15 – 3.08 (m, 4H), 2.66 – 2.57 (m, 4H); 13C NMR (101 MHz, Chloroform-d) δ 

167.6, 158.5, 156.1, 148.1, 148.0, 144.7, 133.5, 129.7, 128.2, 118.0, 117.9, 

117.6, 115.7, 115.5, 62.7, 53.2, 51.8, 50.2; 19F NMR (376 MHz, Chloroform-d) δ 

-124.60; HRMS (ESI) m/z calcd for C21H23FN2O2 [M+H]+ 355.1817, found 

355.1814. 

 
tert-Butyl 4-({4-[(1E)-3-methoxy-3-oxoprop-1-en-1-yl]phenyl}methyl) 
piperazine-1-carboxylate (4.7d). 
Isolated as a white solid, (84%). 

IR (cm-1) 2973, 2953, 2918, 1751, 1712, 1697, 1686, 1607; 1H NMR (400 MHz, 

Chloroform-d) δ 7.67 (d, J = 16.0 Hz, 1H), 7.47 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 

8.2 Hz, 2H), 6.41 (d, J = 16.0 Hz, 1H), 3.79 (s, 3H), 3.51 (s, 2H), 3.42 (t, J = 5.0 

Hz, 4H), 2.38 (t, J = 5.1 Hz, 4H), 1.44 (s, 9H); 13C NMR (101 MHz, Chloroform-

d) δ 167.5, 154.8, 144.6, 140.6, 133.5, 129.6, 128.1, 117.6, 79.7, 62.7, 52.9, 51.7, 

43.6, 28.5; HRMS (ESI) m/z calcd for C20H28N2O4 [M+H]+ 361.2122, found 

361.2123. 
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Methyl (2E)-3-{4-[(3,4-dihydroisoquinolin-2(1H)-yl)methyl]phenyl}prop-2-
enoate (4.7e). 
Isolated as a yellow solid, (56%). 

IR (cm-1) 3397, 3019, 2932, 2802, 2760, 1703, 1634, 1606; 1H NMR (400 MHz, 

Chloroform-d) δ 7.71 (d, J = 16.0 Hz, 1H), 7.50 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 

8.2 Hz, 2H), 7.16 – 7.07 (m, 3H), 7.01 – 6.95 (m, 1H), 6.44 (d, J = 16.1 Hz, 1H), 

3.81 (s, 3H), 3.70 (s, 2H), 3.64 (s, 2H), 2.91 (t, J = 5.9 Hz, 2H), 2.76 (t, J = 5.9 

Hz, 2H); 13C NMR (101 MHz, Chloroform-d) δ 167.6, 144.8, 141.1, 134.7, 134.3, 

133.4, 129.6, 128.8, 128.2, 126.7, 126.3, 125.7, 117.5, 62.4, 56.2, 51.8, 50.8, 

29.1; HRMS (ESI) m/z calcd for C20H21NO2 [M+H]+ 308.1645, found 308.1647. 

 
(2E)-N-hydroxy-3-{4-[(piperidin-1-yl)methyl]phenyl}prop-2-enamide (4.8a). 
Isolated as a yellow solid, (50%). 

IR (cm-1) 2932, 1653, 1608; 1H NMR (400 MHz, Methanol-d4) δ 7.59 (d, J = 8.2 

Hz, 1H), 7.56 (d, J = 15.8 Hz, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.37 (d, J = 8.1 Hz, 

2H), 6.46 (d, J = 15.8 Hz, 1H), 3.53 (s, 2H), 2.45 (brd-s, 4H), 1.61 (p, J = 5.6 Hz, 

4H), 1.51 – 1.42 (m, 2H); 13C NMR (101 MHz, Methanol-d4) δ 166.3, 141.2, 140.1, 

135.4, 131.4, 128.6, 118.3, 64.2, 55.3, 26.4, 25.0; HRMS (ESI) m/z calcd for 

C15H20N2O2 [M+H]+ 261.1598, found 261.1596. 
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(2E)-3-(4-{[4-(2-fluorophenyl)piperazin-1-yl]methyl}phenyl)-N-hydroxyprop-
2-enamide (4.8c). 
Isolated as an orange solid, (15%). 

IR (cm-1) 3125, 2984, 2833, 1650, 1607; 1H NMR (400 MHz, Methanol-d4) δ 7.57 

(d, J = 15.8 Hz, 1H), 7.53 (d, J = 7.9 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.10 – 6.90 

(m, 4H), 6.48 (d, J = 15.8 Hz, 1H), 3.61 (s, 2H), 3.08 (t, J = 4.8 Hz, 4H), 2.65 (t, 

J = 4.8 Hz, 4H); 13C NMR (101 MHz, Methanol-d4) δ 166.2, 158.3, 155.9, 141.2, 

141.1, 141.0, 140.0, 135.5, 131.3, 131.1, 128.8, 127.5, 125.7, 125.7, 124.0, 

123.9, 120.3, 120.2, 118.4, 117.0, 116.8, 63.4, 54.1, 51.3, 51.3; 19F NMR (376 

MHz, Methanol-d4) δ -124.67; HRMS (ESI) m/z calcd for C20H22FN3O2 [M+H]+ 

356.1769, found 356.1761. 

 

 
(2E)-3-(4-{[4-(4-fluorophenyl)piperazin-1-yl]methyl}phenyl)-N-hydroxyprop-
2-enamide (4.8b). 
Isolated as an orange solid, (5%). 

IR (cm-1) 2921, 2836, 2460, 1689, 1629; 1H NMR (400 MHz, Methanol-d4) δ 7.64 

(d, J = 16.3 Hz, 1H), 7.61 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.1 Hz, 2H), 6.97 (d, J 

= 6.5 Hz, 4H), 6.50 (d, J = 16.0 Hz, 1H), 3.76 (s, 2H), 3.21 – 3.12 (m, 4H), 2.82 – 

2.75 (m, 4H); 13C NMR (101 MHz, Methanol-d4) δ 165.7, 160.6, 158.2, 147.7, 

140.3, 138.1, 133.1, 131.3, 129.5, 120.3, 120.1, 120.1, 116.7, 116.5, 60.9, 52.9;	
19F NMR (376 MHz, Methanol-d4) δ -124.58; HRMS (ESI) m/z calcd for 

C20H22FN3O2 [M+H]+ 356.1769, found 356.1766.	
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tert-Butyl 4-({4-[(1E)-3-(hydroxyamino)-3-oxoprop-1-en-1-yl]phenyl} 
methyl)piperazine-1-carboxylate (4.8d). 
Isolated as a white solid, (23%). 

IR (cm-1) 3172, 2976, 2818, 1690, 1651, 1611; 1H NMR (400 MHz, Methanol-d4) 

δ 7.57 (d, J = 15.8 Hz, 1H), 7.53 (d, J = 8.1 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 6.46 

(d, J = 15.8 Hz, 1H), 3.55 (s, 2H), 3.43 (t, J = 5.1 Hz, 4H), 2.41 (t, J = 5.1 Hz, 4H), 

1.45 (s, 9H); 13C NMR (101 MHz, Methanol-d4) δ 166.3, 156.4, 141.3, 140.7, 

135.4, 131.0, 128.7, 118.2, 81.2, 63.4, 53.8, 28.6; HRMS (ESI) m/z calcd for 

C19H27N3O4 [M+H]+ 362.2074, found 362.2080. 

 
(2E)-N-hydroxy-3-{4-[(piperazin-1-yl)methyl]phenyl}prop-2-enamide (4.8f). 
Isolated as an off-white solid, (65%). 

IR (cm-1) 2682, 2443, 1659, 1638; 1H NMR (400 MHz, D2O) δ 7.68 (d, J = 7.9 Hz, 

2H), 7.55 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 15.9 Hz, 1H), 6.51 (d, J = 15.9 Hz, 1H), 

4.51 (s, 2H), 3.63 (s, 8H); 13C NMR (101 MHz, D2O) δ 165.7, 140.0, 136.3, 131.8, 

128.8, 128.6, 118.0, 60.2, 47.9, 40.6; HRMS (ESI) m/z calcd for C14H19N3O2 

[M+H]+ 262.1550, found 262.1545. 
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(2E)-3-{4-[(3,4-dihydroisoquinolin-2(1H)-yl)methyl]phenyl}-N-hydroxyprop-
2-enamide (4.8e). 
Isolated as a white solid, (62%). 

IR (cm-1) 2796, 1653, 1606; 1H NMR (400 MHz, Methanol-d4) δ 7.59 (d, J = 15.2 

Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.14 – 7.05 (m, 3H), 7.02 – 6.96 (m, 1H), 6.48 

(d, J = 15.8 Hz, 1H), 3.74 (s, 2H), 3.65 (s, 2H), 2.91 (t, J = 6.0 Hz, 2H), 2.79 (t, J 

= 6.0 Hz, 2H); 13C NMR (101 MHz, Methanol-d4) δ 141.2, 140.4, 135.5, 135.2, 

135.0, 131.2, 129.6, 128.8, 127.5, 127.5, 126.8, 118.4, 109.5, 63.2, 56.9, 51.7, 

29.5; HRMS (ESI) m/z calcd for C19H20N2O2 [M+H]+ 309.1598, found 309.1589. 
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Chapter Five 
 
5. The design and synthesis of a novel HDAC inhibitor with a 
carboxylic acid ZBG. 
 
5.1. Introduction 
 

HDAC inhibitors can be broadly defined as fitting into one of five structural classes 

based on their protein-ligand binding interactions; hydroxamates, cyclic 

tetrapeptides, benzamides, electrophilic ketones and carboxylic acids. Examples 

of each have been discussed in this thesis and in particular the hydroxamates. 

Hydroxamates are by far the most popular choice of ZBG for inhibitors of the zinc 

dependent HDACs due to the strong binding interaction between the 

hydroxamate group and the Zn2+ cation. This strong binding interaction however 

comes at a price. More than 300 enzymes are known to rely on zinc for their 

function143 and hence, the strong binding affinity of the hydroxamate group for 

zinc inevitably leads to a number of off-target effects.144 These high levels of 

toxicity are tolerated in the field of oncology but if the HDACs are to be targeted 

in the treatment of other less life-threatening conditions then much more targeted 

inhibitors are required.  

Carboxylic acids are an interesting alternative ZBG. The binding interaction 

between the HDAC Zn2+ cofactor and the carboxylic acid functional group is much 

weaker than that between Zn2+ and hydroxamates. This means that there is less 

chance of off-target effects. However, it also means that it is much more of a 

challenge to achieve high levels of potency. Indeed, inhibitors of HDACs 

containing a carboxylic acid ZBG are relatively rare and with IC50 values in the 

milli-molar range.  

To date, the most studied HDAC inhibitors containing containing a carboxylic acid 

ZBG are the short chain fatty acids valproic acid, butyric acid and phenylbutyrate 

(Figure 1.18). Valproic acid is an old drug used for the treatment of seizures,145 

butyric acid plays a role in the therapy of gastrointestinal diseases146 and 

phenylbutyrate is a prodrug approved for use in the treatment of 

hyperammonemia.147 All have since been identified as inhibitors of the HDACs, 

albeit in high doses.148–150 However, as mentioned these are old drugs and there 
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is very little activity around the development of novel HDAC inhibitors with a 

carboxylic acid functional group. As such, this chapter will present the synthesis 

of a novel HDAC inhibitor (5.6a) comprising a carboxylic acid ZBG, with low µM 

levels of potency. In addition, a series of analogues are also presented with the 

aim of determining which groups are important for binding interactions between 

5.6a and the HDAC active site as well as investigating if these changes lead to 

an increase in potency/isoform selectivity.  

 

5.2. The synthesis of a HDAC inhibitor comprising a carboxylic acid ZBG. 
 

Previous work in our group comprised the development of a series of novel 

irreversible LSD1 inhibitors with nano-molar levels of potency and included 

compound 5.8 (Scheme 5.1).151 Following this, we subsequently worked on a way 

to increase the specificity of 5.8 through N-alkylation, with the aim of reducing 

affinity for MAO. During that work we modified the synthetic route in order to 

reduce the number of steps and increase yield. It is that work that led to the 

discovery of a novel HDAC inhibitor with a carboxylic acid ZBG.  

The existing pathway comprised two pinch points, the creation of the cyclopropyl 

group from an alkene via a Johnson-Corey-Chaykovsky (JCC) reaction (Scheme 

5.1, Step 2) and the conversion of a carboxylic acid to an amide via Curtius 

rearrangement (Scheme 5.1, Step 4). A literature search turned up a general 

method, described by Barluenga et al. for the metal free cyclopropanation of 

alkenes using tosylhydrozones.152 This method allows the direct synthesis of 5.3 

in a two-step, one-pot process in which benzaldehyde 5.1 is converted to the 

appropriate cyclopropane 5.3, via the tosylhydrazone intermediate 5.9 (Scheme 

5.2). Benzaldehyde 5.1 is heated at 70 °C with tosylhydrazine for one hour before 

the addition of tert-butyl acrylate and an appropriate base then heating at 110 °C 

for a further six hours. Following an aqueous workup and purification by column 

chromatography, trans-5.3 is afforded in around 25% yield. 
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Scheme 5.1. Original synthesis of the LSD1 inhibitor 5.8 by Borrello et al.151  

 

 
 

Scheme 5.2. Alternative tosylhydrazone method of cyclopropane ring 
formation. 

 

The yield was comparable to that originally reported for the synthesis of 

compound 5.3 using the JCC method however, unlike the JCC method, it results 

in a mixture of both cis and trans diastereoisomers. The cis:trans ratio appeared 

to be low at around 0.34:1 as determined by the tert-butyl 1H NMR peaks (Figure 

5.1) and it was thought that it may be possible to decrease this ratio further by 

exploiting the acidic proton on the cyclopropyl ring of 5.3. In principle this should 

create an equilibrium which would favour the less sterically hindered trans isomer 
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(Scheme 5.3). To test this a cis/trans mixture of 5.3 was dissolved in deuterated 

methanol in the presence of NaOMe. Proton NMR spectra were then taken 

periodically over several days but no change in the tert-butyl peak ratio was 

observed, thus suggesting an unchanged diastereomeric ratio. Further to this, 

K2CO3 was substituted for NaOMe in the original reaction in order to see if the 

higher temperatures would help facilitate the equilibrium. This resulted in a 

slightly higher yield (~28%) but with no change in the diastereomeric ratio.  

 

 
Figure 5.1. The tert-butyl peak ratio, as determined by NMR, from a 
diastereomeric mixture of compound 5.3 following synthesis via the 

tosylhydrazone method. 
 

 
 

Scheme 5.3. The anticipated, but unobserved, cis/trans equilibration of 5.3 
under basic conditions. 

The lack of an increase in yield and relative difficulty of separating the cis/trans 

diastereoisomers led to us sticking with the JCC method for this reaction. As 
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is down to both the reversibility of the initial addition reaction and the ease of 

bond rotation of the resulting betaine to the more favourable trans-conformation 

to allow backside attack on the sulfonium (Scheme 5.4).153  

 

 
 

Scheme 5.4. The conversion of alkene 5.2 to cyclopropane 5.3 via the 
stereospecific JCC reaction. 

 

The low yield of the JCC reaction was still a problem however. Given that we 

believed the proton on the cyclopropyl ring to be acidic, using a strong base such 

as sodium hydride may have been contributing to this by breaking open the 

cyclopropyl ring upon formation. This was supported by the isolation of by-

product 5.10 following workup. It is believed that irreversible deprotonation leads 

to ring opening and the resulting anion quenched during the aqueous workup to 

give 5.10 (Scheme 5.5). Subsequently, we switched the base to potassium tert-

butoxide. This had good effect and yields more than doubled from around 25% 

to over 50%. By-product 5.10 was still observed in yields of around 9%. 
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Scheme 5.5. The proposed mechanism of the alkene by-product 5.10 during 
the JCC reaction. 

 

The second pinch point in Borrello’s synthetic route was the Curtius 

rearrangement of carboxylic acid 5.4 to amide 5.5 in 42% yield (Scheme 5.1, Step 

4). Borrello et al. chose to carry out the rearrangement at step 4 as they were 

creating a series of analogues in which a number of different amines were 

coupled to the carboxylic acid at position 4 of the benzene ring (Scheme 5.1, Step 

6). It therefore made sense to have the variable step at the end of the synthesis. 

We only needed to make one of these analogues and so were able to swap the 

amide coupling step with the Curtius rearrangement step. This allows the overall 

synthesis of 5.8 to be reduced from seven steps to six by allowing the moderately 

yielding Curtius rearrangement to be modified so as to give the primary amine in 

place of the Boc-protected amine (Scheme 5.7). This also helped to improve the 

yield. To get the Boc-protected amine the reaction is carried out in anhydrous 

tert-butanol. Any water has an adverse effect as it acts as a nucleophile, attacking 

the isocyanate intermediate and giving the carbamate. The carbamate 

subsequently breaks down through the loss of carbon dioxide to give the primary 

amine. This is not a problem if the protected amine is not required and following 

the formation of the isocyanate, the reaction is continued in the presence of 

aqueous acid. 

It was this modified synthetic route that produced intermediate carboxylic acid 

5.13a (Scheme 5.7). 
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Scheme 5.6. The mechanism of the Curtius rearrangement in both the 
presence and absence of water. 

 

 
 

Scheme 5.7. The modified Borrello synthesis used in this work. 
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5.3. The enzymatic evaluation of 5.13a. 
 

Compound 5.13a was analysed for inhibitory activity against HDAC1, 3, 6 and 8 

using a HDAC-GloTM I/II Assay from Promega in collaboration with Dusan Ruzic 

of the University of Belgrade, carried out at the Fraunhofer Institute, Freiburg. 

Compounds were measured at a concentration range of 100 - 0.10 µM, the half 

maximal inhibitory concentration (IC50) determined via a dose-response 

experiment and the data analysed using GraphPad Prism software. 

Results were relatively consistent across all isoforms suggesting that 5.13a is 

acting as a pan-HDAC inhibitor. Further testing across all other isoforms is 

required to determine if it is a true pan inhibitor or predominantly class I selective.  

5.13a inhibited all tested HDAC isoforms with IC50 values of around 20-25 µM 

(pIC50: 4.59–4.69). For a compound with a carboxylic acid ZBG this is an exciting 

result and gives the basis for further optimisation to improve potency further.  

 

 pIC50 ± Std. Error 
Compound HDAC1 HDAC3 HDAC6 HDAC8 

5.13a 4.69±0.04 4.59±0.08 4.60±0.05 4.63±0.03 

 

Table 5.1. Results of the HDAC assays carried out on compound 5.13a. 

Data given as pIC50 ± SE, n=3. 
Data generated by Ruzic et al., University of Belgrade (unpublished). 
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Figure 5.2. Graphical representation of the HDAC inhibition data presented in 
Table 5.1. 

 
Data shown as % inhibition ± Std. Error, n=3. 

Data generated by Ruzic et al., University of Belgrade (unpublished). 
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5.4. The synthesis of further analogues of 5.13a. 
 

To investigate which features of 5.13a are important for affinity to HDACs, several 

analogues were created which incorporated changes to both the cap and the 

linker, whist leaving the ZBG unchanged (Figure 5.3).  

 

 
Figure 5.3. Compound 5.13a showing the cap, linker and ZBG sections of the 

molecule. 
 

The cap was changed by varying the length of the carbon chain from two carbons 

to three and by changing the cap group completely from a phenethyl group to a 

1-(4-Fluorophenyl)piperazine group. The linker was changed by replacing the 

cyclopropane ring with both an unsubstituted trans-alkene and a methyl 

substituted trans-alkene (Scheme 5.8). 

The unsubstituted alkene 5.19 is synthesised as for 5.13a but with the omission 

of the cyclopropanation step. The methyl substituted alkene 5.16, adopted the 

first two steps of the synthesis as 5.13a, a Horner-Wadsworth-Emmons (HWE) 

reaction followed by JCC reaction of the resulting alkene 5.2. As discussed, the 

JCC reaction created both the cyclopropane 5.3a as the major product along with 

the substituted alkene 5.3b as the minor product. The synthesis of the minor 

product 5.3b was taken advantage of to create a product with a minimal change 

to the linker and along with 5.19, will allow us to investigate if it is the 

cyclopropane ring itself that is important or if it is the length/rigidity of the linker 

that matters. The major product 5.3a was used to create two products in which 

the cap group is altered (Scheme 5.8, 5.13b and 5.13c). 
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Scheme 5.8. The synthetic route of 5.13a along with analogues 5.13b, 5.13c, 
5.16 and 5.19. 
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5.5. Conclusion and future works. 
 

A novel HDAC inhibitor (5.13a) comprising a carboxylic ZBG was synthesised in 

five steps. 5.13a was tested in a cell free HDAC inhibition assay for activity in 

HDAC1, 3, 6 and 8, and found to consistently inhibit all isoforms at around IC50: 

20-25 µM (pIC50: 4.59-4.63) suggesting that 5.13a may be a pan-HDAC inhibitor. 

To investigate which features of 5.13a are important for its affinity to HDACs a 

small series of analogues were developed comprising changes to both the cap 

and linker sections of the inhibitor.  

Future work should extend HDAC assay testing of 5.13a to the remaining seven 

zinc dependent isoforms to determine if 5.13a is a true pan inhibitor or just class 

I selective. In addition, in cell assays should be performed to determine if activity 

extends to pharmacological effects beyond cell-free assays. 

Finally, all analogues require testing in HDAC1, 3 6 and 8 as a minimum so as to 

compare activity with 5.13a and establish the effects of the changes made. 
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5.6. Chapter five experimental. 
 

5.6.1. Experimental procedures 
 

All experimental procedures are the same as for those described in Chapter two, 

section 2.7.1. 

 

 
(E)-methyl-4-(3-(tert-butoxy)-3-oxyprop-1-en-1-yl)benzoate (5.2). 
Potassium tert-butoxide (4.28 g, 38.1 mmol) was dissolved in THF (30 ml) and 

cooled to -5 ºC. tert-Butyl diethylphoshonacetate (8.9 ml, 37.91 mmol) was slowly 

added and the resulting mixture stirred at -5ºC for 40 minutes. 5.1 (5.63 g, 34.32 

mmol) was dissolved in THF (40 ml) and added dropwise to the mixture with 

vigorous stirring at -5ºC over a period of 20 minutes before warming to room 

temperature. Stirring under a nitrogen atmosphere was continued for 16hrs 

before adding water (100 ml) and EtOAc (100 ml). The organic layer was 

separated, and the aqueous layer further extracted with EtOAc (2 x 100 ml). The 

combined organic layers were then washed with water (150 ml) and brine (150 

ml), dried over MgSO4, filtered and concentrated. The concentrate was purified 

on silica, eluting with a gradient of 0-5 % EtOAc in hexane to give 5.2 (7.82 g, 87 

%) as a white solid. Mp 63-64°C; 1H NMR (400 MHz, Chloroform-d) δ 8.03 (d, J 

= 8.3 Hz, 0H), 7.59 (d, J = 16.0 Hz, 0H), 7.56 (d, J = 8.5 Hz, 1H), 6.44 (d, J = 16.0 

Hz, 0H), 3.92 (s, 0H), 1.53 (s, 1H); 13C NMR (101 MHz, Chloroform-d) δ 166.6, 

165.9, 142.2, 139.0, 131.2, 130.1, 127.9, 122.7, 81.0, 52.3, 28.3; No HRMS was 

obtained for this compound. 

These data are consistent with that reported in the literature.151 
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Methyl 4-[2-(tert-butoxycarbonyl)cyclopropyl]benzoate (5.3a). 
A flame dried flask was charged with Potassium tert-butoxide (0.49 g, 4.37 mmol) 

and trimethylsufoxonium iodide (0.92 g, 4.18 mmol). DMSO (25 ml) was then 

added before stirring under a nitrogen atmosphere for 30 minutes. 5.2, (1.00 g, 

3.81 mmol) was then dissolved in DMSO (15 ml) before adding dropwise over 30 

minutes. The mixture was stirred at ambient temperature under a nitrogen 

atmosphere for 16hrs. Water (50 ml) and EtOAc (50 ml) were then added and the 

organic layer separated. The aqueous layer was extracted a further 4 times with 

EtOAc (50 ml) before drying the combined organic extracts over MgSO4 and 

concentrating. Purification by silica column chromatography gave 5.3a as a white 

solid (0.56 g, 53 %). Mp 39-41 °C; 1H NMR (400 MHz, Chloroform-d) δ 7.93 (d, J 

= 8.5 Hz, 2H), 7.13 (d, J = 8.1 Hz, 2H), 3.89 (s, 3H), 2.47 (ddd, J = 9.2, 6.3, 4.1 

Hz, 1H), 1.89 (ddd, J = 8.5, 5.4, 4.1 Hz, 1H), 1.58 (ddd, J = 9.1, 5.4, 4.5 Hz, 1H), 

1.47 (s, 9H), 1.27 (ddd, J = 8.5, 6.3, 4.6 Hz, 1H); 13C NMR (101 MHz, Chloroform-

d) δ 172.2, 167.0, 146.2, 129.8, 128.3, 126.0, 81.0, 52.1, 28.2, 25.9, 25.7, 17.6; 

HMRS (ESI) m/z calcd for C16H20O4 [M+NH4]+ 294.1700, found 294.1703, calcd 

for [M+Na]+ 299.1254, found 299.1257. 

These data are consistent with that reported in the literature.151  
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Methyl 4-[2-(tert-butoxycarbonyl)cyclopropyl]benzoate (5.3a). Alternative 
method. 
Methyl-4-formylbenzoate (5.1) (0.51 g, 3.09 mmol) was added to a flame dried 

round bottom flask. p-Toluenesulfonhydrazide (0.63 g, 3.37 mmol) was added 

along with anhydrous dioxane (10 ml) and the mixture heated to 70 ºC and stirred 

under a nitrogen atmosphere for 1 hr. tert-Butyl acrylate (0.9 ml, 6.14 mmol) and 

sodium methoxide (0.25 g, 4.68 mmol) were added before increasing the 

temperature to 100 ºC and stirring under nitrogen for a further 6 hrs. The flask 

was then allowed to cool to room temperature before adding water (20 ml) and 

EtOAc (10 ml). The organic layer was separated, and the aqueous layer extracted 

twice more with EtOAc. The combined organic layers were then dried over 

MgSO4 and concentrated. The concentrate was then purified by silica column 

chromatography (2:8, EtOAc:PE) to give 5.3a as a colourless oil (0.26 g, 30%). 
1H NMR (400MHz, Chloroform-d) δ 7.93 (d, J = 8.4Hz, 2H), 7.13 (d, J = 8.4Hz, 

2H), 3.90 (s, 3H), 2.49-2.44 (m, 1H), 1.89 (ddd, J = 8.5, 5.4, 4.2Hz, 1H), 1.62-

1.56 (m, 1H), 1.47 (s, 9H), 1.27 (ddd, J = 8.5, 6.3, 4.6Hz, 1H); 13C NMR (101 

MHz, Chloroform-d) δ 172.2, 167.1, 146.3, 130.0, 129.9, 128.7, 128.3, 126.1, 

81.0, 52.2, 28.3, 26.0, 25.7, 17.7. 
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4-[2-(tert-butoxycarbonyl)cyclopropyl]benzoic acid (5.11). 
To a solution of 5.3a, (3.45 g, 11.84 mmol) in a 3:1 mixture of THF:H2O (30 ml) 

was added lithium hydroxide (0.81 g, 36.76 mmol) and the resulting mixture 

stirred at 50 ºC for 24 hrs. The mixture was then cooled to room temperature and 

diluted with water (30 ml) before acidifying with KHSO4 to pH 1–2. The mixture 

was extracted three times with EtOAc (30 ml) and the combined organic layers 

dried over MgSO4, filtered and the solvent removed in vacuo to give 5.11 as a 

white solid (3.02 g, 92 %). 1H NMR (400 MHz, Chloroform-d) δ 8.01 (d, J = 8.4 

Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 2.50 (ddd, J = 9.2, 6.3, 4.1 Hz, 1H), 1.92 (ddd, 

J = 8.5, 5.5, 4.1 Hz, 1H), 1.61 (ddd, J = 9.1, 5.4, 4.6 Hz, 1H), 1.48 (s, 9H), 1.29 

(ddd, J = 8.5, 6.3, 4.6 Hz, 1H); 13C NMR (101 MHz, Chloroform-d) δ 172.1, 171.5, 

147.3, 130.5, 127.3, 126.2, 81.1, 28.3, 26.0, 25.8, 17.81; HRMS (ESI) m/z calcd 

for C15H18O4 [M-H]- 261.1132, found 261.1135. 

 
tert-Butyl 2-{4-[(2-phenylethyl)carbamoyl]phenyl}cyclopropane-1-
carboxylate (5.12a). 
To a suspension of 5.11 (2.15 g, 8.20 mmol) in dichloromethane (30 ml) was 

added DIPEA (2.8 ml) and stirred until clear. HOBt monohydrate (0.25 g, 1.63 

mmol) was then added followed by EDC hydrochloride (2.40 g, 12.5 mmol), and 

the resulting solution stirred at room temperature for 30 mins. Phenethylamine 

(1.3 ml, 10.3 mmol) was then added via syringe in one portion and the mixture 

stirred at room temperature under a nitrogen atmosphere overnight. The mixture 

was then diluted with dichloromethane (50 ml) and washed with 2M HCl (100 ml), 

1M NaOH (50 ml), 1M NaHCO3 (50 ml), H2O (100 ml) and brine (100 ml). The 

organic phase was then dried over MgSO4, filtered and concentrated. The 

concentrate was purified on silica, eluting with a gradient of 0-30 % EtOAc in 

hexane to give 5.12a (2.02 g, 67 %) as a white solid. 1H NMR (400 MHz, 

Chloroform-d) δ 7.59 (d, J = 8.4 Hz, 2H), 7.33 (tt, J = 7.0, 1.0 Hz, 2H), 7.28 – 7.20 
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(m, 3H), 7.11 (d, J = 8.4 Hz, 2H), 6.05 (brd-s, 1H), 3.76 – 3.68 (q, J = 6.8 Hz, 2H), 

2.93 (t, J = 6.9 Hz, 2H), 2.45 (ddd, J = 9.1, 6.4, 4.1 Hz, 1H), 1.85 (ddd, J = 8.5, 

5.4, 4.2 Hz, 1H), 1.60 – 1.53 (m, 1H), 1.47 (s, 9H), 1.24 (ddd, J = 8.5, 6.4, 4.5 Hz, 

1H); 13C NMR (101 MHz, Chloroform-d) δ 172.2, 167.1, 144.5, 139.0, 132.7, 

128.9, 128.8, 127.1, 126.7, 126.3, 81.0, 41.2, 35.8, 28.2, 25.7, 25.5, 17.5; LC-

ToF (ESI) m/z calcd for C23H27NO3 [M+H]+ 366.21, found 366.21. 

 
2-{4-[(2-phenylethyl)carbamoyl]phenyl}cyclopropane-1-carboxylic acid 
(5.13a). 
5.12a (0.30 g, 0.82 mmol) was dissolved in dichloromethane (10 ml) and 

trifluoroacetic acid (0.6 ml, 7.84 mmol) added in one portion. The resulting 

solution was stirred at room temperature in air overnight. The solution was diluted 

with dichloromethane (20 ml) and water was added (20 ml). 4M NaOH was added 

until the mixture was pH 12-14. The organic layer was removed, and the aqueous 

layer acidified with 2M HCl until pH 2 before extracting with dichloromethane (3 

x 30 ml). The combined organic layers were washed with brine and the solvent 

removed under reduced pressure to give 5.13a (0.17 g, 66 %) as a fluffy white 

solid. 1H NMR (400 MHz, Methanol-d4) δ 7.70 (d, J = 8.4 Hz, 2H), 7.32 – 7.16 (m, 

7H), 3.58 (t, J = 7.3 Hz, 2H), 2.91 (t, J = 7.8 Hz, 2H), 2.51 (ddd, J = 9.2, 6.5, 4.1 

Hz, 1H), 1.90 (ddd, J = 8.4, 5.4, 4.1 Hz, 1H), 1.58 (ddd, J = 9.2, 5.4, 4.6 Hz, 1H), 

1.41 (ddd, J = 8.5, 6.4, 4.5 Hz, 1H); 13C NMR (101 MHz, Methanol-d4) δ 176.5, 

169.9, 145.6, 140.6, 133.8, 129.8, 129.4, 128.5, 127.3, 127.1, 42.6, 36.5, 26.8, 

25.4, 17.7; HRMS (ESI) m/z calcd for C19H19NO3 [M+H]+ 310.1438, found 

310.1426. 
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tert-Butyl 2-[4-(benzylcarbamoyl)phenyl]cyclopropane-1-carboxylate 
(5.12b). 
Isolated as a white solid, (130 mg, 72 %). 

Synthesised using the procedure for compound 5.12a. 
1H NMR (400 MHz, Chloroform-d) δ 7.70 (d, J = 8.3 Hz, 2H), 7.38 – 7.27 (m, 5H), 

7.12 (d, J = 8.3 Hz, 2H), 6.39 (t, J = 5.0 Hz, 1H), 4.64 (d, J = 5.7 Hz, 2H), 2.46 

(ddd, J = 9.2, 6.4, 4.1 Hz, 1H), 1.86 (ddd, J = 8.5, 5.4, 4.1 Hz, 1H), 1.57 (ddd, J 

= 9.1, 5.4, 4.5 Hz, 1H), 1.47 (s, 9H), 1.28 – 1.21 (m, 1H); 13C NMR (101 MHz, 

Chloroform-d) δ 172.2, 167.0, 144.7, 138.3, 132.4, 128.9, 128.0, 127.7, 127.2, 

126.3, 81.0, 44.2, 28.2, 25.8, 25.5, 17.5; HRMS (ESI) m/z calcd for C22H25NO3 

[M+H]+ 352.1907, found 352.1906. 

 
2-[4-(benzylcarbamoyl)phenyl]cyclopropane-1-carboxylic acid (5.13b). 
Isolated as a white solid, (81 mg, 74 %). 

Synthesised using the procedure for compound 5.13a. 
1H NMR (400 MHz, DMSO-d6) δ 12.35 (s, 1H), 8.98 (t, J = 6.0 Hz, 1H), 7.81 (d, J 

= 8.4 Hz, 2H), 7.35 – 7.20 (m, 7H), 4.47 (d, J = 6.0 Hz, 2H), 2.45 (ddd, J = 9.1, 

6.3, 4.1 Hz, 1H), 1.88 (ddd, J = 8.4, 5.3, 4.1 Hz, 1H), 1.47 (ddd, J = 9.3, 5.4, 4.3 

Hz, 1H), 1.39 (ddd, J = 8.4, 6.4, 4.3 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 

173.7, 165.8, 143.8, 139.7, 132.1, 128.2, 127.3, 127.1, 126.6, 125.7, 42.5, 25.1, 

24.5, 17.0; HRMS (ESI) m/z calcd for C18H17NO3 [M+H]+ 296.1281, found 

296.1288. 
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tert-Butyl-2-{4-[4-(4-fluorophenyl)piperazine-1-carbonyl]phenyl} 
cyclopropane-1-carboxylate (5.12c). 
Isolated as a yellow solid, (529 mg, 65 %). 

Synthesised using the procedure for compound 5.12a. 
1H NMR (400 MHz, Chloroform-d) δ 7.35 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 8.2 Hz, 

2H), 7.01 – 6.93 (m, 2H), 6.91 – 6.84 (m, 2H), 3.75 (brd-d, J = 108.4 Hz, 4H), 

3.08 (brd-s, 4H), 2.46 (ddd, J = 9.2, 6.4, 4.1 Hz, 1H), 1.85 (ddd, J = 8.5, 5.4, 4.2 

Hz, 1H), 1.56 (ddd, J = 9.2, 5.4, 4.5 Hz, 1H), 1.47 (s, 9H), 1.28 – 1.20 (m, 1H); 
13C NMR (101 MHz, Chloroform-d) δ 172.2, 170.2, 158.9, 156.5, 147.6, 142.8, 

133.5, 127.5, 126.2, 118.8, 118.7, 115.9, 115.7, 80.9, 50.9, 28.2, 25.6, 25.5, 17.3; 

19F NMR (376 MHz, Chloroform-d) δ -123.14; HRMS (ESI) m/z calcd for 

C25H29FN2O3 [M+H]+ 425.2235, found 425.2251. 

 

 
2-{4-[4-(4-fluorophenyl)piperazine-1-carbonyl]phenyl}cyclopropane-1-
carboxylic acid (5.13c). 
Isolated as a white solid, (289 mg, 75 %). 

Synthesised using the general procedure for compound 5.13a. 
1H NMR (400 MHz, DMSO-d6) δ 12.34 (brd-s, 1H), 7.34 (d, J = 8.3 Hz, 2H), 7.24 

(d, J = 8.3 Hz, 2H), 7.10 – 7.02 (m, 2H), 7.00 – 6.93 (m, 2H), 3.59 (brd-d, J = 83.9 

Hz, 4H), 3.09 (s, 4H), 2.45 (ddd, J = 9.2, 6.4, 4.1 Hz, 1H), 1.87 (ddd, J = 8.4, 5.4, 

4.1 Hz, 1H), 1.46 (ddd, J = 9.4, 5.4, 4.4 Hz, 1H), 1.39 (ddd, J = 8.3, 6.4, 4.3 Hz, 

1H); 13C NMR (101 MHz, DMSO-d6) δ 173.7, 168.8, 157.4, 155.1, 147.6, 147.6, 

142.0, 133.6, 127.2, 125.9, 117.8, 117.7, 115.4, 115.2, 49.3, 25.0, 24.4, 16.8; 19F 

NMR (376 MHz, DMSO-d6) δ -124.79; HRMS (ESI) m/z calcd for C21H21FN2O3 

[M+H]+ 369.1609, found 369.1608. 



 199 

 
4-[(1E)-3-tert-butoxy-3-oxoprop-1-en-1-yl]benzoic acid (5.17). 
Isolated as a white solid, (905 mg, 63 %). 

Synthesised using the procedure for compound 5.11. 
1H NMR (400 MHz, DMSO-d6) δ 13.03 (s, 1H), 7.94 (d, J = 8.4 Hz, 2H), 7.80 (d, 

J = 8.1 Hz, 2H), 7.60 (d, J = 16.0 Hz, 1H), 6.63 (d, J = 16.0 Hz, 1H), 1.48 (s, 9H); 
13C NMR (101 MHz, DMSO-d6) δ 166.7, 165.2, 142.2, 138.2, 131.8, 129.7, 128.3, 

122.1, 80.2, 27.8; HRMS (ESI) m/z calcd for C14H16O4 [M+H]+ 247.0976 found 

247.0980. 

 

 
tert-Butyl (2E)-3-{4-[(2-phenylethyl)carbamoyl]phenyl}prop-2-enoate (5.18). 
Isolated as a white solid, (704 mg, 66 %). 

Synthesised using the procedure for compound 5.12a. 
1H NMR (400 MHz, Chloroform-d) δ 7.71 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 16.0 

Hz, 1H), 7.54 (d, J = 8.2 Hz, 2H), 7.39 – 7.31 (m, 2H), 7.31 – 7.22 (m, 3H), 6.42 

(d, J = 16.0 Hz, 1H), 6.29 (brd-t, J = 5.9 Hz, 1H), 3.74 (td, J = 6.9, 5.8 Hz, 2H), 

2.96 (t, J = 6.9 Hz, 2H), 1.56 (s, 1H); 13C NMR (101 MHz, Chloroform-d) δ 166.8, 

166.0, 142.2, 138.9, 137.6, 135.7, 128.9, 128.8, 128.1, 127.4, 126.7, 122.1, 80.9, 

41.3, 35.7, 28.2; HRMS (ESI) m/z calcd for C22H25NO3 [M+H]+ 352.1907 found 

352.1911. 

 

  



 200 

 
(2E)-3-{4-[(2-phenylethyl)carbamoyl]phenyl}prop-2-enoic acid (5.19). 
Isolated as a white solid, (133 mg, 28 %). 

Synthesised using the procedure for compound 5.13a. 
1H NMR (500 MHz, DMSO-d6) δ 12.50 (brd-s, 1H), 8.64 (t, J = 5.6 Hz, 1H), 7.84 

(d, J = 8.5 Hz, 2H), 7.77 (d, J = 8.5 Hz, 2H), 7.62 (d, J = 16.0 Hz, 1H), 7.32 – 7.27 

(m, 2H), 7.26 – 7.22 (m, 2H), 7.22 – 7.18 (m, 1H), 6.62 (d, J = 16.1 Hz, 1H), 3.52 

– 3.46 (m, 2H), 2.85 (t, J = 7.4 Hz, 2H); 13C NMR (126 MHz, DMSO-d6) δ 167.4, 

165.4, 142.8, 139.5, 136.7, 135.6, 128.6, 128.3, 128.0, 127.6, 126.1, 120.8, 40.9, 

35.0; HRMS (ESI) m/z calcd for C18H17NO3 [M+H]+ 296.1281 found 296.1288. 

 

 
Methyl 4-[(2E)-4-tert-butoxy-4-oxobut-2-en-2-yl]benzoate (5.3b). 
Isolated as a white solid. 

Recovered as a by-product during the synthesis of compound 5.3a. 
1H NMR (400 MHz, Chloroform-d) δ 8.02 (d, J = 8.8 Hz, 2H), 7.51 (d, J = 8.8 Hz, 

2H), 6.09 (q, J = 1.3 Hz, 1H), 3.92 (s, 3H), 2.54 (d, J = 1.4 Hz, 3H), 1.52 (s, 9H); 
13C NMR (101 MHz, Chloroform-d) δ 166.8, 166.1, 152.8, 147.1, 130.3, 129.8, 

126.4, 120.8, 80.5, 52.3, 28.4, 17.8. No HRMS was obtained for this compound. 
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4-[(2E)-4-tert-butoxy-4-oxobut-2-en-2-yl]benzoic acid (5.14). 
Isolated as a white solid, (1.50 g, 90 %). 

Synthesised using the procedure for compound 5.11. 
1H NMR (400 MHz, DMSO-d6) δ 13.00 (s, 1H), 7.94 (d, J = 8.6 Hz, 2H), 7.64 (d, 

J = 8.6 Hz, 2H), 6.10 (q, J = 1.3 Hz, 1H), 2.47 (d, J = 1.4 Hz, 3H), 1.47 (s, 9H); 
13C NMR (101 MHz, DMSO-d6) δ 166.8, 165.2, 152.2, 145.5, 131.0, 129.5, 126.4, 

119.6, 79.8, 27.8, 17.1; HRMS (ESI) m/z calcd for C15H18O4 [M-H]- 261.1132 

found 261.1124. 

 

 
tert-Butyl (2E)-3-{4-[(2-phenylethyl)carbamoyl]phenyl}but-2-enoate (5.15). 
Isolated as a white solid, (1.15g, 62 %). 

Synthesised using the procedure for compound 5.12a. 
1H NMR (400 MHz, Chloroform-d) δ 7.60 (d, J = 8.6 Hz, 2H), 7.40 (d, J = 8.6 Hz, 

2H), 7.28 – 7.22 (m, 2H), 7.20 – 7.13 (m, 3H), 6.14 (t, J = 5.4 Hz, 1H), 5.99 (q, J 

= 1.4 Hz, 1H), 3.65 (td, J = 6.9, 5.8 Hz, 2H), 2.86 (t, J = 6.9 Hz, 2H), 2.44 (d, J = 

1.4 Hz, 3H), 1.45 (s, 9H); 13C NMR (101 MHz, Chloroform-d) δ 166.9, 166.1, 

152.7, 145.6, 138.9, 134.7, 128.9, 128.8, 127.1, 126.7, 126.6, 120.4, 80.4, 41.2, 

35.8, 28.4, 17.7; HRMS (ESI) m/z calcd for C23H27NO3 [M+H]+ 366.2064 found 

366.2060. 

 

  



 202 

 
(2E)-3-{4-[(2-phenylethyl)carbamoyl]phenyl}but-2-enoic acid (5.16). 
Isolated as a white solid, (400 mg, 48%). 

Synthesised using the procedure for compound 5.13a. 
1H NMR (400 MHz, Acetone-d6) δ 7.90 (d, J = 8.6 Hz, 2H), 7.64 (d, J = 8.6 Hz, 

2H), 7.32 – 7.25 (m, 4H), 7.23 – 7.17 (m, 1H), 6.21 (q, J = 1.4 Hz, 1H), 3.69 – 

3.60 (m, 2H), 2.97 – 2.90 (m, 2H), 2.57 (d, J = 1.4 Hz, 3H); 13C NMR (101 MHz, 

DMSO-d6) δ 167.4, 165.5, 152.6, 143.8, 139.5, 134.8, 128.6, 128.3, 127.3, 126.1, 

126.0, 118.5, 40.8, 35.0, 17.1; HRMS (ESI) m/z calcd for C19H19NO3 [M+H]+ 

310.1438 found 310.1426. 
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Chapter two HPLC data 
 

 
 

Compound 2.8a 

λ (nm) 254 

Retention 
time (min) 10.8 

% Area 95.6 

 

 
 

Compound 2.8b 

λ (nm) 254 

Retention 
time (min) 10.8 

% Area 99.2 
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Compound 2.8c 

λ (nm) 254 

Retention 
time (min) 14.9 

% Area 100 

 

 
 

Compound 2.8d 

λ (nm) 254 

Retention 
time (min) 11.6 

% Area 99.2 
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Compound 2.8e 

λ (nm) 254 

Retention 
time (min) 10.6 

% Area 99.2 

 

 
 

Compound 2.8f 

λ (nm) 254 

Retention 
time (min) 10.8 

% Area 96.1 
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Compound 2.8g 

λ (nm) 254 

Retention 
time (min) 14.0 

% Area 97.1 

 

  



 221 

Chapter three NMR 
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Chapter three HPLC data 
 

 
Compound 3.8 

λ (nm) 254 

Retention 
time (min) 10.2 

% Area 97.5 

 

 
Compound 3.13 

λ (nm) 214 
Retention 
time (min) 11.1 

% Area 98.3 
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Compound 3.12 

λ (nm) 254 

Retention 
time (min) 10.1 

% Area 98.1 

 

 

Compound 
GSK2879552 

(1.35) 

λ (nm) 254 

Retention 
time (min) 11.4 

% Area 100 

 

 

 

  



 228 

Chapter four NMR. 
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Meta series. 
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Alkene series 
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Chapter five NMR 
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