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Abstract 
Purpose 
To develop an anomalous (non-Gaussian) diffusion model for characterizing skeletal 

muscle perfusion using multi-b-value DWI. 

Theory and Methods 
Fick’s first law was extended for describing tissue perfusion as anomalous super-

diffusion, which is non-Gaussian diffusion exhibiting greater particle spread than that of 

the Gaussian case. This was accomplished using a space-fractional derivative which 

gives rise to a power-law relationship between mean squared displacement and time, 

and produces a stretched exponential signal decay as a function of b-value. Numerical 

simulations were used to estimate parameter errors under in vivo conditions, and 

examine the effect of limited signal-to-noise and residual fat signal. Stretched 

exponential DWI parameters, α and 𝒟𝒟, were measured in thigh muscles of four healthy 

volunteers at rest and following in-magnet exercise. These parameters were related to a 

stable distribution of jump length probabilities and used to estimate microvascular 

volume fractions (MVF).  

Results 
Numerical simulations showed low dispersion in parameter estimates within 1.5% and 

1%, and bias errors within 3% and 10%, for α and 𝒟𝒟, respectively. Super-diffusion was 

observed in resting muscle, and to a greater degree post-exercise. Resting MVF was 

between 0.0067 and 0.0139 and increased between 2.2- and 4.7-fold post-exercise.  

Conclusions 
This model captures super-diffusive molecular motions consistent with perfusion, using 

a parsimonious representation of the DWI signal, providing approximations of MVF 

comparable with histological estimates. This signal model demonstrates low parameter 

estimation errors and thus holds potential for a wide range of applications in skeletal 

muscle and elsewhere in the body. 

 

Keywords: microvascular volume, hyperemia, anomalous diffusion, super-diffusion, 

intravoxel incoherent motion, fractional calculus 
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Introduction 
Adequate perfusion at rest and with increasing metabolic demand is essential for 

the preservation of muscle health and musculoskeletal function [1]. Impairment of the 

microvasculature secondary to disease [2, 3] and aging [4] may profoundly impair 

skeletal muscle metabolism and cause loss of muscle mass and strength. Robust and 

descriptive quantitative methods for mapping and quantifying perfusion non-invasively 

are important tools for research aimed at understanding the interplay between muscle 

perfusion, metabolism, and musculoskeletal function and identifying new therapeutic 

targets. 

Skeletal muscle is a complex multiscale porous structure in terms of both cellular 

structure and vasculature [5, 6]. DWI has proven to be a useful approach for probing 

both the cellular and circulatory properties, with various signal models used to evaluate 

different aspects of this tissue [7]. Accordingly, development of robust approaches to 

quantify anatomical and functional characteristics of tissue microvasculature using DWI 

in vivo is an active area of research. Examples of such approaches include mapping of 

microvascular pool size [8], architecture [9], and function [10, 11]. These require 

acquisition protocols and analysis models that are capable of distinguishing between 

signal arising from the microvascular space and that arising from parenchyma; this is 

often accomplished using the implicit assumption that the blood pool exhibits Gaussian 

distributed motions, albeit with greater diffusivity compared with water in parenchyma. 

Detailed invasive measurements of red blood cell motions in the microvascular 

system suggest non-Gaussian jump length distributions [12, 13]. The vascular system 

exhibits a space-filling fractal network of branching tubes with each branch diameter 

showing a power-law relationship to its source vessel [6]. Indeed, quantitative microCT 

measurements in skeletal muscle demonstrate broad distributions of microvascular 

blood vessel diameters skewed towards larger vessel diameters [5]. Furthermore, within 

individual capillary vessels between 2 and 5 μm in diameter, the distribution of blood 

flow velocities span a tenfold range skewed towards larger velocities [12]. Given the 

superposition of these structural features of the microvasculature that would produce a 

broad distribution of blood flow velocities and broad range of blood flow velocities within 

capillaries, there might be limitations in modeling incoherent motions of the 
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microvascular blood pool using the assumption of a classical Gaussian distributed 

probability of jump lengths. 

This work proposes an anomalous super-diffusion model, which is non-Gaussian 

diffusion exhibiting greater particle spread than that of the Gaussian case. This model 

extends Fick’s first law through application of a space-fractional derivative instead of the 

classical integer-order derivative. The fractional-space derivative gives rise to a power-

law relationship between mean squared displacement and time, ⟨[𝑥𝑥(𝑡𝑡) − 𝑥𝑥(0)]2⟩ ∝ 𝑡𝑡2/𝛼𝛼  

and produces a stretched exponential signal decay as a function of b-value. The 

stretching parameter, α, is connected to a stable distribution of particle jump lengths, 

which is a generalization of the Gaussian distribution. This approach provides a 

parsimonious representation of motional properties of skeletal muscle perfusion and can 

be interpreted in terms of skeletal muscle microvascular volume. Numerical simulations 

estimate model parameter errors under in vivo imaging conditions, and examine 

conditions of limited signal-to-noise and residual fat signal. Simulations also evaluate 

the effect of a reduced number of b-values, as would be required for increased temporal 

resolution in dynamic studies of perfusion changes, e.g. evaluating the time-course of 

post-exercise hyperemia. 

 

Theory 
The following is adapted from work in the field of hydrology that develops a 

fractional advection-dispersion equation for describing transport of ground water 

contaminants in a heterogeneous aquafer [14, 15]. Molecular diffusion is modeled using 

the deterministic partial differential equation: 

  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝒟𝒟 𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

 , (1) 

 

which describes the concentration of molecules for a given location in a continuum. The 

solution to this equation in unrestricted diffusion describes a Gaussian concentration 

distribution with zero mean, and variance that is related to the macroscopic diffusion 

coefficient, 𝒟𝒟.  

Underlying the diffusion equation is Fick’s first law: 



5 
 

 𝐹𝐹 = −𝒟𝒟 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 , (2) 

which indicates that the flux, F, of molecules per unit area per unit time, is proportional 

to the spatial gradient of the concentration. It can be shown when deriving one-

dimensional flux using a finite difference approach (see Appendix A.) that to recover 

Fick’s first law, as the limit of the cell dimension approaches zero, molecular jump 

lengths Δx must be proportional to Δt1/2. This relationship constrains molecular motions 

to a finite length scale per unit time. 

For incoherent motions exhibiting broad distributions of jump lengths, as 

expected in the microvascular system, the constraint of molecular jumps to a particular 

length scale for a given time interval is removed through the incorporation of the 

fractional derivative into Fick’s first law: 

 𝐹𝐹 = −𝒟𝒟𝐷𝐷𝛽𝛽
𝑚𝑚(𝐶𝐶), (3) 

where 𝐷𝐷𝛽𝛽𝑚𝑚(𝐶𝐶) is the fractional derivative of order m [16]. Fractional derivatives are 

frequently defined as a combination of left- (i.e. over the interval -∞ to x) [17] and right-

side (i.e. over the interval x to ∞) [18] derivatives denoted as 𝐷𝐷𝛽𝛽𝑚𝑚, where 𝛽𝛽 is the relative 

weighting of left- and right-side derivative functions. Unlike the integer-order equivalent, 

this fractional-order version of Fick’s first law requires molecular jump lengths, Δx, to be 

proportional to Δt1/(m+1), where m is the order of the derivative, which could be rational or 

integer; this removes the scale dependence on molecular velocities allowing for jump 

lengths exhibiting greater spread than the Gaussian distribution at the tails. 

Substituting fractional Fick’s first law into the one-dimensional conservation of 

mass equation: 

 −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, (4) 

yields the space-fractional diffusion equation 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝜕𝜕

�−𝒟𝒟𝐷𝐷𝛽𝛽
𝑚𝑚(𝐶𝐶)� = −𝒟𝒟𝐷𝐷𝛽𝛽

𝛼𝛼(𝐶𝐶), (5) 

with an integer time derivative and where 𝛼𝛼 =  𝑚𝑚 + 1 and thus 1 ≤ 𝛼𝛼 ≤ 2. See Appendix 

A. for additional details. 
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The stochastic (random walk) model can connect diffusion model parameters to 

a probability distribution of molecular motions within a continuum. For a large sum, n, of 

independent and identically distributed (iid) molecular jumps, ∆𝑥𝑥𝑖𝑖 | 𝑖𝑖 =  (1,2, … , 𝑛𝑛), with 

finite variance, the central limit theorem states that an appropriately normalized sum of 

jumps converges to a Gaussian distribution (N) with mean zero and unit variance:  

 
lim
𝑛𝑛→∞

∆𝑥𝑥1 + ∆𝑥𝑥2 + … + ∆𝑥𝑥𝑛𝑛

𝜎𝜎(𝑛𝑛)
1
2

= 𝑌𝑌~𝑁𝑁(𝜇𝜇 = 0,𝜎𝜎2 = 1), (6) 

forming a foundation for describing Brownian motion. The total number of jumps, n, can 

be replaced by the ratio of the total time, t, divided by the time increment ∆t, (i.e. n = 

t/∆t). This limit implies that the molecular displacement grows at the same rate as 

(t/Δt)1/2. 

The central limit theorem is a special case of the general limit (Levy) theorem 

which states that any iid random variable will converge to a stable distribution Sα(𝜇𝜇,𝛽𝛽,𝜎𝜎), 

yielding the following result for a random walk process: 

 
lim
𝑡𝑡
∆𝑡𝑡→∞

∆𝑥𝑥1 + ∆𝑥𝑥2 + … + ∆𝑥𝑥 𝑡𝑡
∆𝑡𝑡

𝜎𝜎 � 𝑡𝑡∆𝑡𝑡�
1
𝛼𝛼

= 𝑌𝑌~𝑆𝑆𝛼𝛼(𝜇𝜇 = 0,𝛽𝛽,𝜎𝜎 = 1). (7) 

Stable distributions are parameterized based on the index of stability 0 < 𝛼𝛼 ≤ 2, shift 

parameter μ, skewness parameter −1 ≤ 𝛽𝛽 ≤ 1, and spread parameter σ, with α and β 

being synonymous with fractional derivative 𝐷𝐷𝛽𝛽𝛼𝛼 parameters in Eq. 5. Note that the 

stable distribution is equivalent to the Gaussian for 𝛼𝛼 = 2. In contrast to the Gaussian 

probability, the limit above implies that molecular displacement grows at the same rate 

as (t/Δt)1/α and thus does not constrain molecular jump lengths to a fixed length scale for 

a given time increment. 

The mean squared displacement can be related as: 

 

 ⟨[𝑥𝑥(𝑡𝑡) − 𝑥𝑥(0)]2⟩ ∝ 𝑡𝑡2/𝛼𝛼, (8) 

 

and produces this super-diffusive (2/𝛼𝛼>1) behavior for α < 2 [19]. This can be 

appreciated in Figure 1, which shows a series of one dimensional random-walker jumps 
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for Gaussian (Fig. 1A) and non-Gaussian super-diffusion (Fig. 1B) conditions, with the 

latter showing large jump lengths. 

 

Methods 
Signal model 

As described in Eq. 5, the diffusion equation can be expressed in terms of the 

space-fractional derivative: 

 

 𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= 𝒟𝒟1,𝛼𝛼
𝜕𝜕𝛼𝛼𝐶𝐶(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕𝛼𝛼

, (9) 

 

where 1 < 𝛼𝛼 ≤ 2 represents the order of the fractional derivative and is related to the 

jump length probability distribution as described in Eq. 7. Note α in Eq. 9 is equivalent to 

the variable β previously described in the continuous time random walk model of Magin 

et al. [20-22]. For a displacement 𝑟𝑟 = 𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝑜𝑜, the probability density of displacements 

𝑃𝑃(𝑟𝑟, 𝑡𝑡) has been shown to be equivalent to the solution to Eq. 9 [23]. It has previously 

been shown that the signal from the pulsed field gradient diffusion measurement is 

proportional to the Fourier transform (FT) of the averaged probability density of 

displacements [24]. Based on Eq. 9, the following expression has previously been 

derived  [22]: 

 

 𝑝𝑝(𝑞𝑞, 𝑡𝑡) = exp�−𝒟𝒟1,𝛼𝛼|𝑞𝑞|𝛼𝛼𝑡𝑡�, (10) 

 

where 𝑝𝑝(𝑞𝑞, 𝑡𝑡) is the FT in space of the displacement probability density 𝑃𝑃(𝑟𝑟, 𝑡𝑡), and  𝒟𝒟1,𝛼𝛼 

is the generalized diffusion coefficient with units mm𝛼𝛼/s. Ingo et al. provide a compact 

form of this expression as a function of b-value, making the substitution 𝑏𝑏 = 𝑞𝑞2𝑡𝑡: 

 𝑝𝑝(𝑏𝑏) ∝ 𝑆𝑆(𝑏𝑏) = 𝑆𝑆(0) ∙ exp �−(𝑏𝑏𝒟𝒟)
𝛼𝛼
2�, (11) 

where 𝑆𝑆(𝑏𝑏) is the diffusion signal intensity, 𝑆𝑆(0) is signal intensity at b=0, 𝒟𝒟 is diffusivity 

scaled by a constant coefficient, with units mm2/s and the exponent 𝛼𝛼 is equivalent to 

the fractional derivative order [22]. Therefore, the model parameter 𝒟𝒟 follows from 
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spread parameter σ [25], and 𝛼𝛼 is equivalent to the index of stability in the stable 

distribution, and thus reflects the likelihood of jump lengths.  

 

Numerical simulations 

 Numerical simulations were used to evaluate fit errors in the presence of residual 

unsuppressed fat signal and image noise, to examine the utility of this model for in vivo 

imaging. Diffusion-weighted signals were generated using the following stretched 

exponential function: 

 𝑆𝑆(𝑏𝑏) = 𝑆𝑆(0) ∙ ��1 − 𝑓𝑓𝑓𝑓� ∙ exp �−(𝑏𝑏𝒟𝒟)
𝛼𝛼
2� + 𝑓𝑓𝑓𝑓� + 𝜀𝜀𝑛𝑛, (12) 

where tissue parameter values (𝒟𝒟 and α) were varied over a range of values observed in 

experimental data. Simulations did not account for anisotropic effects. An additional fat 

fraction (𝑓𝑓𝑓𝑓) term was included and varied from 0 to 18% in increments of 2%, to cover 

the range of residual fat signal magnitudes reported in healthy skeletal muscle [26, 27]. 

Modeling fat as a constant offset is a reasonable approximation for the relatively low b-

values studied in this work, given that the reported ADC of fat is 4 × 10-5 mm2/s—two 

orders of magnitude smaller than diffusion in free water [26]. Simulated b-values were 

based on the current and previous experimental studies, respectively [11, 28, 29]: (1) 0, 

3, 7, 10, 15, 20, 25, 30, 40, 50, 70, 100, 200, 400, 600, 800 s/mm2; and (2) 0, 10, 85, 

and 800 s/mm2. The first set is equivalent to our experimental acquisition, seeking to 

capture a maximum contribution from the microvasculature blood pool, and the second 

set represents a more limited acquisition, previously used to reduced scan time [30]. 

 Synthetic signals were simulated for each set of tissue and acquisition 

parameters and Rician noise was added. This was achieved by adding zero-mean 

Gaussian noise to each channel of the complex decay signal to achieve a specified 

SNR defined by the ratio of the b=0 signal to the standard deviation of the noise [31]. 

Each set of simulation parameters were generated using 1,000 independent noise 

realizations. Data simulated using Eq. 12 were fit to Eq. 11 and the same model with an 

offset term, 𝐵𝐵, to examine model fit performance when correcting for fat contamination:  

 𝑆𝑆(𝑏𝑏) = 𝑆𝑆(0) ∙ exp �−(𝑏𝑏𝑏𝑏)
𝛼𝛼
2�+ 𝐵𝐵, (13) 
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using a Levenberg-Marquardt nonlinear least squares algorithm. Relative bias was 

defined as the mean parameter value over all noise realizations subtracted from the true 

input simulated parameter value normalized by the true input value: (true-mean)/true. 

Dispersion was defined as the standard deviation of the fit parameter over all noise 

realizations divided by the true input simulation value.  

 

In vivo DWI measurements 

Four healthy volunteers were recruited (28-72 years old) and enrolled. Ethical 

approval was obtained from the local Institutional Review Board and, in accordance with 

the Declaration of Helsinki, a full description of the study was provided, including any 

associated risks, and informed consent was obtained before any information was 

collected or procedure performed. Exclusion criteria included standard contraindications 

to MRI, frailty, severe cardiovascular disease and peripheral artery disease. Study 

participants were imaged using a 3T Achieva MRI scanner (Philips Healthcare, Best, 

Netherlands) before and after in-magnet exercise in one session. 

In-magnet exercise was performed as previously described by our group [32]. 

Briefly, participants were positioned supine, feet first on the MRI table equipped with a 

customized MR-compatible ergometer (Quadspect, Ergospect, Innsbruck, Austria). 

Knees were supported at about 120° flexion with the ankles positioned under pedals 

designed for dynamic knee extension exercise. Study participants were instructed to 

use their quadriceps muscles to perform dynamic knee extension exercise by moving 

the pedal (up and down). After obtaining baseline DWI measurements of the thigh at 

rest, participants performed exercise using a frequency of 45 repetitions per minute for 

2.5 minutes using the left leg. A fixed pedal resistance of 0.4 bar was used for all 

subjects.  

Imaging was performed using a two-channel SENSE flexible coil positioned at 

the mid-thigh level, with one loop on the anterior aspect of the thigh and the other on the 

posterior aspect. Anatomic imaging included a 2D mDixon sequence with FOV 256 × 

224 mm (voxel size 1 × 1 × 22 mm) to assist in region of interest (ROI) analysis. DWI 

was acquired using a single transverse slice at 60% of the total femur length above the 

medial epicondyle with a slice thickness of 22 mm, using a spin echo single-shot EPI 
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readout with diffusion sensitization in the slice direction. This sequence included a triple 

fat suppression approach that combines water‐specific excitation, slice‐select gradient 

reversal and spectral attenuated inversion recovery, to reduce the deleterious impact of 

fat signal on our measurements [27]. Imaging parameters included TR=3000 ms, TE=46 

ms, SENSE factor 2, FOV 256 × 225 mm, matrix size 224 × 224; partial Fourier factor 

0.6, and 16 b-values (see b-value list (1) in Numerical simulations) as described in our 

previous work [32]. DWI data acquired prior to exercise at rest were obtained using 

NSA=20 (acquisition time 16.05 min) to provide an increased signal-to-noise ratio (SNR) 

under low perfusion conditions. Post-exercise DWI acquired dynamically after exercise 

was performed using NSA=4 (acquisition time 3.25 min) to permit finer temporal 

resolution during post-exercise hyperemia. The SNR for DWI was computed based on 

analysis of the b=0 image and a noise-only image obtained using an identical sequence 

with radiofrequency and gradient pulses turned off, making appropriate corrections for 

Rician distributed noise [27, 31, 32]. 

ROIs were carefully defined using both diffusion and mDixon images (as a 

reference) in both agonist and antagonist muscle groups (Figure 2A) excluding 

macroscopic signs of fasciae, fat, and blood vessels. Fits to Eq. 11 were performed 

using the average signal intensity from each ROI for each b-value. Group averages for 

model fit parameters were reported as mean (SD) for each muscle group by averaging 

over all participants (Figure 2B). 

Estimates of microvascular volume fraction (MVF) were computed based on 

experimental fit parameters. Fitted values of 𝒟𝒟 and α were used to compute the 

cumulative distribution function (CDF) from the corresponding stable distribution. Using 

the experimental diffusion encoding time, the CDF was integrated over a range of jump 

lengths spanning observed red blood cell velocities in skeletal muscle capillaries [12] to 

estimate the relative signal fraction within the capillary vessels. These computed 

fractions were then adjusted for relaxation effects using the same procedure used in 

intravoxel incoherent motion analysis [27].  

A pair-wise t-test was used to compare differences in fit parameter values and 

MVF estimates for each muscle group between baseline and post-exercise conditions. 

The F-test was used to evaluate if the stretching parameter resulted in a statistically 
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significant improvement in mean squared error [33]. All analysis and simulations were 

performed using MATLAB (The MathWorks, Natick, MA). 

 

Results 
All experimental DWI data yielded SNR>200. Under experimental imaging 

conditions (i.e. 16 b-values with SNR=200, black symbols), numerical simulation results 

based on fits using Eq. 11 demonstrate a positive bias in both α and 𝒟𝒟 with increasing 

fat content (Figure 3A and 3C). In Figure 3B and D, both model parameters based on 

Eq. 11 show low dispersion in fit estimates within 1.5% and 1% for α and 𝒟𝒟, 

respectively. Bias and dispersion of parameter estimates showed no noticeable 

relationship with the underlying model input parameters under these simulation 

conditions. Blue symbols in Figure 3 shows simulation results based on fits using Eq. 

13, demonstrating the expected trade-off in bias and dispersion that arises from 

including the offset fit parameter. Figure 3A and C based on Eq. 13 show a negative 

relative bias that is smaller compared with those of Eq. 11. All four panels suggest a 

moderate relationship between simulated fat fraction and bias and dispersion. 

Dispersion errors are slightly larger using Eq. 13 compared with those using Eq. 11, as 

would be expected from a model that incorporates an offset fit parameter in the 

presence of fat.  

Black symbols in Figure 4 show simulation results based on fits using Eq. 11 

under imaging conditions with a reduced number of b-values (4 b-values) and lower 

SNR (SNR=50). Eq. 11 results in Figure 4A and C show almost identical relative bias in 

both model parameters as was observed under more favorable acquisition conditions in 

Figure 3. Figure 4B and D show elevated dispersion in α and 𝒟𝒟 compared with Figure 3, 

as expected with fewer b-values and reduced SNR. Similar to results in Figure 3, input 

simulation parameters seem to have negligible influence on relative bias and dispersion 

in Figure 4 based on Eq. 11. Blue symbols in Figure 4 show simulation results using Eq. 

13 with these more challenging acquisition conditions, and the influence of input 

simulation parameters on both relative bias and dispersion can be appreciated in both α 

and 𝒟𝒟 when a baseline offset term is fit in conjunction with this model. Both parameters 
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are over-estimated regardless of the amount of fat, and these overestimates are greater 

for smaller values of α. Therefore, at smaller values of α (greater amount of perfusion), 

Eq. 13 will underestimate the perfusion more than at lower levels of perfusion. An 

inverse relationship between the true value of α and dispersion is also evident, where 

lower levels of perfusion (i.e. larger values of α) will result in less dispersion. 

Qualitatively, stretched exponential fits closely represent the data, particularly 

over low b-values that are heavily perfusion-weighted (Figure 2B); residuals were 

typically smaller than 1% of the total signal. The F-test quantitatively showed a 

significant improvement in the fit using the stretched exponential compared with the 

monoexponential model, with an average p-value from all subjects and ROIs of 0.017. 

Table 1 shows quantitative comparison of model parameters from selected ROIs 

between pre- and post-exercise conditions. Significant increases in 𝒟𝒟 are observed in 

all knee extensor groups involved in exercise while the knee flexor muscle showed no 

change. There was a significant decrease in α with exercise in the vastus lateralis and 

vastus intermedius, consistent with an increase in microvascular blood volume and 

blood flow velocity. Figure 5 shows parameter maps pre- and post-exercise illustrating 

these parameter changes with hyperemia. 

Figure 6A illustrates the direct connection between stretched exponential 

parameter α and the stable distributions, where fit parameters can be used to estimate 

distributions of jump lengths. Figure 6B shows a representative comparison between 

two stable cumulative distribution functions derived from fit parameters in knee 

extensors pre- and post-exercise, showing an increased probability of larger jump 

lengths post-exercise. 

Table 2 shows average values of MVF by muscle group before exercise, which 

range from 0.0067 to 0.0139. Immediately following in-magnet exercise, these volume 

fractions increase up to fourfold their resting values in knee extensor muscles, with the 

largest increase observed in the vastus intermedius. The rectus femoris showed a trend 

towards increasing MVF but this was not statistically significant (P=0.09). The biceps 

femoris showed no change in MVF (P=0.52), as expected in muscles that were 

uninvolved in exercise. 
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Discussion 
The connection between this stretched exponential signal model and the stable 

probability distribution provides intuition into multiscale structures like skeletal muscle 

and the vascular system exhibit multiple length scales related by power laws [6].  Stable 

probability distributions have been shown to provide good predictions of molecular 

motions in multiscale and heterogeneous structures [25, 34] and these parameters have 

demonstrated a connection with fractal dimensions [35, 36]. In addition to arguments 

based on observed power law structural relationships, even within a narrow range of 

capillary diameters, there exist broad distributions of blood flow velocity. For example, 

intravital microscopy studies of skeletal muscle and brain tissue in capillaries with 

diameters between 2-5 μm showed a distribution of flow velocities of red blood cells 

spanning a tenfold range with a skew towards greater velocities [12]. Further, 

observations of blood flow regulation within the capillaries show wide fluctuations of flow 

velocity at rest in a single capillary over the span of minutes. Others have reported 

similar observations of broad distributions of blood flow velocities in vivo in capillaries 

and arterioles [12, 13, 37].  

In the current work, the stretched exponential function fits multi-b-value DWI data 

from low b-values, i.e. 𝑏𝑏 ×  𝐷𝐷 ≤  1. Super-diffusive features of the decay are most 

prominent in b-values less than ~250 s/mm2. These fits produce stretching parameter 

values less than 2 that reflect a probability of jump lengths greater than that predicted 

from Gaussian diffusion. The improvement of stretched exponential fits over the 

monoexponential model was demonstrated statistically using the F-test, which showed 

the addition of the stretching exponent significantly reduced fitting errors. Stretched 

exponential model parameters changed significantly due to exercise-induced 

hyperemia, reflecting an increase in super-diffusion attributed to the microvascular 

blood pool. The shape of the model decay curve consistently fit the data at rest and 

post-exercise, suggesting this parsimonious model is flexible enough to capture these 

dynamic changes in the decay shape. This is consistent with previous work applying 

this model in other tissues exhibiting large perfusion fractions like in the prostate [38]. 

To evaluate this model further, microvascular volume fractions were estimated 

based on stretched exponential fit parameters to compare with reported capillary 
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density measurements. As noted, the stretching parameter, α, is equivalent to the 

stability index and 𝒟𝒟 can be related to the spread parameter [25] of the stable 

distribution allowing for probabilities to be calculated over a range of jump lengths (i.e. 

red blood cell velocities) observed in the capillary bed of skeletal muscle [12, 13, 37]. 

Based on typical reported densities of ~330 capillaries per mm2 of tissue and an 

average capillary diameter of 5 μm, a capillary volume fraction of 0.0065 can be 

estimated. Through integrating stable CDF’s over the range of reported red blood cell 

velocities, MVF in the current study was estimated between 0.0067 and 0.0139 in 

resting skeletal muscle. This volume fraction increased between 2.2- and 4.7-fold during 

hyperemia, which is consistent with reported changes observed in skeletal muscle [39, 

40]. 

The performance of the stretched exponential fits in the presence of noise and 

residual fat signal has been demonstrated previously and shown to produce more 

reliable estimates than other models such as the bi-exponential model [27, 33, 38]. For 

DWI applications in skeletal muscle perfusion, one important consideration that is not 

widely examined is the impact of fat signal on model parameter estimates [32]. This is 

particularly relevant in aging and musculoskeletal disease, which involve fatty 

replacement of muscle tissue and increased intramuscular and subcutaneous fat. 

Although fat suppression techniques reduce the contribution of fat signal, elimination of 

this signal is never completely realized so must be considered. Furthermore, chemical 

shift effects give rise to spatially-shifted fat signals in DWI sequences using single shot 

EPI readouts [27]. Simulations in the current work provide a simplified analysis of the 

impact of residual unsuppressed fat on the stretched exponential model both with and 

without an offset term and did not attempt to incorporate spectral modeling of fat. These 

analyses illustrate how, for low fractions of fat contamination, either model is 

reasonable, demonstrating relative low errors, but for larger fat signals the use of a 

baseline offset term will improve the interpretation of model parameters. Specifically, 

bias errors due to increased fat contamination would result in an underestimate of α, 

which would be misinterpreted as greater perfusion; such a conclusion could be 

antithetical to the underlying physiology. This is an important consideration in conditions 

such as neuromuscular disease, which can result in substantial fat replacement. 
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 An additional consideration for skeletal muscle perfusion studies is the need for 

higher temporal resolution to capture rapid perfusion dynamics, i.e. post-exercise 

hyperemia. The current work minimized acquisition time through limiting diffusion 

sensitization to the head-to-foot direction, approximately parallel to the thigh muscles, 

where maximum perfusion would be expected. Scan time is most readily reduced by 

minimizing the number of signal averages and b-values for a given dynamic, limiting the 

ability to obtain robust fits, and degrading SNR. However, simulations using only four b-

values and modest SNR demonstrate robust parameter estimates with the stretched 

exponential model. For low residual fat fractions (less than 5%), bias errors are within 

2.5% and 10% and dispersion within 9% and 8% for α and 𝒟𝒟, respectively (Figure 4). 

Under these restrictive conditions, incorporation of the additional baseline offset fitting 

parameter results in greater bias and dispersion results, which is expected given the 

limited number of b-values measured. The tradeoff between bias and dispersion errors 

in this low SNR and limited b-value situation shows the limitations of this model for 

absolute quantitation of perfusion, but its low dispersion suggests its strength for 

detecting dynamic changes in perfusion with reasonable precision (within ~10%). 

Improved methods for in vivo characterization of skeletal muscle perfusion are of 

particular importance for evaluation of the overall function of skeletal muscle and how 

function is modulated in disease and aging, and with therapeutic interventions. DWI 

provides quantitative information on molecular motions of water and blood in tissue, 

making it appealing for in vivo measurements. Attempts to disentangle and quantify the 

properties of these different compartments have been the subject of numerous studies. 

Average resting α values in the current study are within the wider range (i.e. 1.73 to 

1.96) reported in a recent aging study of individuals 22-89 years old, which showed a 

positive association between α and age [30]. The current work provides a physical 

model for more detailed interpretation of α as it relates to microvascular properties. 

Although these analyses have been initially focused on a single diffusion direction, 

robust parameter estimates suggest feasibility of extending this model to a tensor form 

to allow for combined measures of anisotropic properties of microvascular perfusion and 

muscle fibers.   
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Although the current work was focused on skeletal muscle perfusion, several 

studies have used of stretched exponential DWI in other settings, particularly using 

large b-value acquisitions (b × D > 1) in the context of hindered diffusion. Early work by 

Bennet et al. reported the stretched exponent as a heterogeneity parameter 

representing the superposition of a distribution of diffusion coefficients [41]. Hall and 

Barrick elegantly demonstrated a connection between a fractal dimension and the 

stretching exponent showing examples of this analysis in healthy human brain [42]. 

Others have demonstrated utility of this model to probe tissue microstructure in the 

context of tumor imaging [43-45].  

More recent work incorporating lower b-values (b × D < 1) where tissue perfusion 

would play more of a role, has demonstrated the ability to distinguish high grade 

glioblastoma [46] and shown efficacy in staging liver fibrosis [47] and detection of 

prostate cancer [38]. Mazaheri et al. proposed the stretched exponential model as a 

more robust, heuristic alternative to the intravoxel incoherent motion model to quantify 

perfusion, noting lower bias and dispersion errors. These examples demonstrate an 

increasing application of the stretched exponential model incorporating low b-value 

measurements in other tissues in which quantitative measures of perfusion are 

important. 

 

 

Conclusion 
A fractional Fickian diffusion model provides an intuitive picture for interpreting non-

Gaussian super-diffusion in a continuum, connecting parameters from the stretched 

exponential signal model to a stable probability distribution of jump lengths. This signal 

model captures perfusion motions with the parsimonious representation of a stretched 

exponential. Analysis of skeletal muscle DWI at rest and during hyperemia provides 

close approximations of microvascular volumes comparable with histological estimates. 

This signal model demonstrates low estimation errors that are predictable and thus 

holds potential for a wide range of applications. 
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Table 1. Region of interest analysis of stretched exponential model parameters from 

healthy volunteers before and immediately after in-magnet exercise. Changes in 𝒟𝒟 and 

α reflect post-exercise hyperemia in knee extensor muscles used during exercise. 

Symbols reflect levels of significance between pre- (resting) and post-exercise 

(hyperemia) conditions with (a) p<.05, (b) p=.01, (c) p<.01, (d) p<.005, (e) p<.001.  
 

Resting 
 

Hyperemia 

Muscle group 𝒟𝒟  μm2/ms 𝛼𝛼 
 

𝒟𝒟  μm2/ms 𝛼𝛼 

Rectus femoris (green) 2.1 (0.2) 1.88 (0.07) 
 

2.6 (0.1) (a) 1.83 (0.04) 

Vastus lateralis (blue) 2.3 (0.2) 1.86 (0.09) 
 

2.8 (0.2) (d) 1.59 (0.05) (b) 

Vastus intermedius (red) 2.3 (0.1) 1.80 (0.05) 
 

2.8 (0.1) (e) 1.56 (0.06) (c) 

Biceps femoris (orange) 1.9 (.04) 1.86 (0.07) 
 

1.9 (0.1) 1.81 (0.08) 
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Table 2. Microvascular fraction (MVF) estimates derived from analysis of stable 

cumulative distributions using fitted stretched exponential model parameters (Table 1). 

Integration of the cumulative distribution was performed over the range of reported 

capillary blood flow velocities. Pre- and post-exercise volumes are consistent with 

histological volume fractions. Symbol reflects significance between pre- and post-

exercise conditions with (a) p<.01.  

Muscle group MVF Resting MVF Hyperemia 

Rectus femoris (green) .0067 (.0049) .0149 (.0050) 

Vastus lateralis (blue) .0099 (.0079) .0463 (.0111) (a) 

Vastus intermedius (red) .0139 (.0057) .0497 (.0099) (a) 

Biceps femoris (orange) .0069 (.0037) .0102 (.0061) 
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Figure Legends 
Figure 1. One dimensional random walk simulation: A) Gaussian particle jumps with 𝛼𝛼 

= 2 reflecting the condition 2/𝛼𝛼 = 1. B) Non-Gaussian particle jumps with 𝛼𝛼 = 1.5 

reflecting the super-diffusion condition 2/𝛼𝛼 > 1 . Simulations performed using codes 

provided in M.M. Meerschaert and A. Sikorskii Stochastic Models for Fractional 

Calculus, De Gruyter, 2012. 

Figure 2. A) Representative region of interest selection from rectus femoris (RF, green), 

vastus lateralis (VL, blue), vastus intermedius (VI, red), and biceps femoris (BF, 

orange). B) Representative diffusion signal decay (open circles) from the VL at rest with 

stretched exponential model fit (dashed blue line) with fit residual (dot-dashed black 

line) below. An expanded semi-log view of the fit residual in the pane directly below the 

fit shows a magnified view of the fit error with values on the order of 0.1% of the total 

signal. The stretched exponential model fits data closely over the entire span of 

measured b-values. 

Figure 3. A) Relative bias and B) dispersion in α as a function of fat fraction. C) Relative 

bias and D) dispersion in 𝒟𝒟 as a function of fat fraction. All simulations based on 16 b-

values and SNR=200. Figure symbols represent: o input α =1.8, * input α = 1.7, + input 

α = 1.6. Black symbols reflect fits performed using Eq. 11, which does not use a 

baseline correction parameter. Blue symbols reflect fits performed using Eq. 13, which 

does use a baseline correction parameter. 

Figure 4. A) Relative bias and B) dispersion in α as a function of fat fraction. C) Relative 

bias and D) dispersion in 𝒟𝒟 as a function of fat fraction. All simulations based on 4 b-

values and SNR=50. Figure symbols represent: o input α =1.8, * input α = 1.7, + input α 

= 1.6. Black symbols reflect fits performed using Eq. 11, which does not use a baseline 

correction parameter. Blue symbols reflect fits performed using Eq. 13, which does use 

a baseline correction parameter. 

Figure 5. Representative stretched exponential parameter maps α, 𝒟𝒟, and 

microvascular volume fraction (MVF) at rest (top row) and during post-exercise 
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hyperemia (bottom row). Both α and 𝒟𝒟 maps in the bottom row reflect the increased 

perfusion in knee extensor muscles due to hyperemia.  

Figure 6. A) Representative displacement probability distributions based on the 

fractional Fickian model, plotted using stability index, 𝛼𝛼, varied from 1.5 to 2 and all 

other parameters held constant. As 𝛼𝛼 decreases from a value of 2 the PDF exhibits 

heavy tails representing an increase in the probability of greater jump lengths. B) 

Representative displacement cumulative distributions showing the heavy tails with 

decreasing values of stability index, 𝛼𝛼. Displacements correspond to typical diffusion 

coefficients observed and diffusion times used in the current study.  

Figure A.1. A) Diagram illustrating random molecular jumps between adjacent cells in 

one-dimension with cell indices i and i+1, and finite length Δx. B) Diagram illustrating 

random particle jumps that occur in fractional Fickian diffusion, where molecular jumps 

are not constrained to adjacent cells.  
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Figures 

 
Figure 1. One dimensional random walk simulation: A) Gaussian particle jumps with 𝛼𝛼 

= 2 reflecting the condition 2/𝛼𝛼 = 1. B) Non-Gaussian particle jumps with 𝛼𝛼 = 1.5 

reflecting the super-diffusion condition 2/𝛼𝛼 > 1 . Simulations performed using codes 

provided in M.M. Meerschaert and A. Sikorskii Stochastic Models for Fractional 

Calculus, De Gruyter, 2012. 
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Figure 2. A) Representative region of interest selection from rectus femoris (RF, green), 

vastus lateralis (VL, blue), vastus intermedius (VI, red), and biceps femoris (BF, 

orange). B) Representative diffusion signal decay (open circles) from the VL at rest with 

stretched exponential model fit (dashed blue line) with fit residual (dot-dashed black 

line) below. An expanded semi-log view of the fit residual in the pane directly below the 

fit shows a magnified view of the fit error with values on the order of 0.1% of the total 

signal. The stretched exponential model fits data closely over the entire span of 

measured b-values. 
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Figure 3. A) Relative bias and B) dispersion in α as a function of fat fraction. C) Relative 

bias and D) dispersion in 𝒟𝒟 as a function of fat fraction. All simulations based on 16 b-

values and SNR=200. Figure symbols represent: o input α =1.8, * input α = 1.7, + input 

α = 1.6. Black symbols reflect fits performed using Eq. 11, which does not use a 

baseline correction parameter. Blue symbols reflect fits performed using Eq. 13, which 

does use a baseline correction parameter. 
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Figure 4. A) Relative bias and B) dispersion in α as a function of fat fraction. C) Relative 

bias and D) dispersion in 𝒟𝒟 as a function of fat fraction. All simulations based on 4 b-

values and SNR=50. Figure symbols represent: o input α =1.8, * input α = 1.7, + input α 

= 1.6. Black symbols reflect fits performed using Eq. 11, which does not use a baseline 

correction parameter. Blue symbols reflect fits performed using Eq. 13, which does use 

a baseline correction parameter. 
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Figure 5. Representative stretched exponential parameter maps α, 𝒟𝒟, and 

microvascular volume fraction (MVF) at rest (top row) and during post-exercise 

hyperemia (bottom row). Both α and 𝒟𝒟 maps in the bottom row reflect the increased 

perfusion in knee extensor muscles due to hyperemia.  
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Figure 6. A) Representative displacement probability distributions based on the 

fractional Fickian model, plotted using stability index, 𝛼𝛼, varied from 1.5 to 2 and all 

other parameters held constant. As 𝛼𝛼 decreases from a value of 2 the PDF exhibits 

heavy tails representing an increase in the probability of greater jump lengths. B) 

Representative displacement cumulative distributions showing the heavy tails with 

decreasing values of stability index, 𝛼𝛼. Displacements correspond to typical diffusion 

coefficients observed and diffusion times used in the current study.  
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Figure A.1. A) Diagram illustrating random molecular jumps between adjacent cells in 

one-dimension with cell indices i and i+1, and finite length Δx. B) Diagram illustrating 

random particle jumps that occur in fractional Fickian diffusion, where molecular jumps 

are not constrained to adjacent cells.  
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Appendix A 
The following is an adaptation of detailed work by Schumer et al. describing the 

fractional advection dispersion equation both in the Eulerian [14] and Lagrangian [15] 

reference frame.  

Fick’s law relates the flux F of molecules to the molecular concentration C as: 

 𝐹𝐹 = −𝒟𝒟∇𝐶𝐶(𝑥𝑥, 𝑡𝑡), 

 

A.1 

where 𝒟𝒟 is the diffusion coefficient. For a one-dimensional molecular flux (Figure A.1.A), 

molecular concentration of the ith cell, with volume ∆v, containing Ni number of 

molecules, is expressed as 𝐶𝐶𝑖𝑖 = 𝑁𝑁𝑖𝑖
∆𝑣𝑣

 . For random molecular jumps occurring backwards 

and forwards to adjacent elements at a rate R in time interval ∆t, the flux in the ith 

element is expressed as: 

 𝐹𝐹𝑖𝑖 = 1
2

(𝐶𝐶𝑖𝑖 − 𝐶𝐶𝑖𝑖+1)𝑅𝑅∆𝑥𝑥. A.2 

𝐶𝐶𝑖𝑖 + 1 –  𝐶𝐶𝑖𝑖 is equivalently written as 𝐶𝐶(𝑥𝑥 + ∆𝑥𝑥, 𝑡𝑡) –  𝐶𝐶(𝑥𝑥, 𝑡𝑡) with Taylor series 

approximation: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑥𝑥, 𝑡𝑡)∆𝑥𝑥 + ℴ(∆𝑥𝑥). A.3 

Combining A.2 and A.3, flux becomes: 

 𝐹𝐹𝑖𝑖 =
1
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

∆𝑥𝑥 + ℴ(∆𝑥𝑥)�𝑅𝑅∆𝑥𝑥. A.4 

To recover Fick’s law (A.1) from Eq. A4 in the limit of ∆𝑥𝑥 → 0, 1
2
∆𝑥𝑥2𝑅𝑅 → 𝒟𝒟 and  

1
2
𝑅𝑅ℴ(∆𝑥𝑥2) → 0. This implies that ∆x2 must decrease at the same rate that R increases, 

meaning ∆x increases as (∆t)1/2. 

Non-local effects (Figure A.1.B) can be incorporated into Fick’s law through the 

use of fractional derivatives, which are non-local functions that depend on the weighted 

average of values over the entire function [17, 18]. These weights correspond to a 

power function defined by the order of the fractional derivative [48].  

Using the generalized Taylor series expansion [49], flux can be written in terms 

of the fractional derivative; thus, 𝐶𝐶(𝑥𝑥 + ∆𝑥𝑥, 𝑡𝑡) –  𝐶𝐶(𝑥𝑥, 𝑡𝑡) becomes: 
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 𝐶𝐶(𝑥𝑥 + ∆𝑥𝑥, 𝑡𝑡) = ∑ 𝐷𝐷𝛽𝛽
𝑛𝑛+𝑚𝑚(𝐶𝐶)∞

𝑛𝑛=−∞
∆𝑥𝑥𝑛𝑛+𝑚𝑚

Γ(𝑛𝑛+𝑚𝑚+1), A.5 

𝐷𝐷𝛽𝛽
𝑛𝑛+𝑚𝑚 is the fractional derivative with order n+m, where n is an integer index of 

summation, m is a rational number, β is a constant that weights the relative contribution 

of the left- and right-sided derivative, and Γ is the gamma function [17]. Detailed 

description of fractional derivatives can be found here [48]. Flux is written: 

 
𝐹𝐹 =

1
2
�𝐷𝐷𝛽𝛽

𝑚𝑚(𝐶𝐶)
∆𝑥𝑥𝑚𝑚

Γ(𝑚𝑚 + 1) + ℴ(∆𝑥𝑥𝑚𝑚)�𝑅𝑅∆𝑥𝑥, A.6 

and fractional Fick’s law is recovered in the limit of ∆x→0 

 𝐹𝐹 = −𝒟𝒟𝐷𝐷𝛽𝛽
𝑚𝑚(𝐶𝐶). A.7 

This implies that in the limit, ∆xm must decrease at the same rate that R increases, 

meaning ∆x increases as (∆t)1/α, where 𝛼𝛼 = 𝑚𝑚 + 1. Thus, molecules can move any 

distance from its origin in a given ∆t with a probability that decays as a power-law 

defined by the order of the fractional derivative.  
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