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Abstract

During a droplet impact onto a substrate, splashing is known to be caused by

the presence of surrounding gas or by surface roughness. Impact occurring in

a vacuum onto a smooth rigid wall results in droplet spreading, rather than

development of a corona or prompt splash. In this thesis we present an analytical

and numerical study of a third potential splashing mechanism, namely elastic

deformation of the substrate. An axisymmetric Wagner-style model of droplet

impact is formulated and solved using the method of normal modes, together with

asymptotic analysis and numerical methods. We highlight the effect that a flexible

substrate brings to the contact line velocity and jet behaviour, demonstrating that

oscillation of the substrate can cause blow-up of the splash jet which is absent

for a rigid substrate and indicate the onset of splashing.

In chapter 4 we investigate the important role air plays in the pre-impact

behaviour of a liquid droplet approaching a solid substrate. A model for the air

cushioning of a liquid droplet approaching a partially flexible solid substrate is

developed using asymptotic and complex analysis methods. The model is solved

numerically using boundary elements and method of normal modes. We show

the presence of an elastic plate causes a slowing of the impact and if positioned

directly underneath the droplet reduce the overall impact pressure. When the

plate is not placed symmetrically touch down is found at only one location,

with this touch down point having significantly higher impact pressures than

initially anticipated.
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Finally in chapter 5 we develop a model for the impact of a liquid droplet with

an attached air cavity. This preliminary model couples the various parameters

inside the gas to the classical Wagner approach for liquid impact and allows us

to investigate the evolution of the air cavity and its impact on the motion of the

contact points.
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Introduction

Liquid impact phenomena are ubiquitous in science, nature, and technology.

They are critically important in fields ranging from biotechnology and

agriculture to marine engineering. One particular phenomenon observed in

liquid impacts on solid surfaces is that of splashing, where the wetting front

propagating along the surface becomes unstable, detaches from the surface and

can subsequently disperse into multiple smaller droplets. Several mechanisms of

splashing initiation have been identified, for example, surface roughness and

interaction of the fast moving wetting jet with the surrounding air. Controlling

splashing is of practical interest. When designing a car windscreen splashing is

encouraged to disperse rain [Blocken and Carmeliet, 2004], whilst splashing

should be avoided in ink-jet printing [Martin et al., 2008]. Splashing is a

complicated process governed by several physical effects. It is determined by

properties of the liquid, substrate and surrounding atmosphere. Flexibility of

the substrate is another physical effect which may cause splashing. This effect

has not yet been fully understood for substrates with relatively high rigidity.

Despite the importance of splashing, the mechanisms that trigger splashing are

still not fully understood. It was discovered by experiments carried out by Xu

et al. [2005] that the pressure of the surrounding gas was critically important

for the splashing of a drop impacting a smooth surface. Xu [2007] later

experimentally studied the impact of liquid drops with a variety of surfaces and

found that the surrounding gas is responsible for “corona” splash and substrate
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roughness causes “prompt” splash. Riboux and Gordillo [2014] studied the

effects of the presence of surrounding gas in droplet impacts onto smooth

surfaces, deriving a relationship between splashing and a critical impact

velocity. Ellis et al. [2011] analytically investigated the impact of a liquid

droplet with a rough surface using the Wagner model for a surface of small

roughness, and an alternative model for more rough surfaces. Their study did

not incorporate splashing, but the analysis showed that the effect of surface

roughness can be modelled in an appropriate small roughness limit.

It has been shown experimentally that elasticity can play a key role in splashing.

Pepper et al. [2008] presented an experimental study of droplets impacting an

elastic membrane held under different tensions. They found indications that it

is the very early times after impact that are critical for determining whether

splashing will occur. They showed that a soft substrate can suppress splashing

entirely. Experimental studies (Alizadeh et al. [2013], Mangili et al. [2012]) of

droplets impacting deformable surfaces have focused on soft surfaces. In chapters

2 and 3 we introduce and investigate a brand new mechanism that can cause

splashing, the presence of an elastic plate. This is unexpected since, in previous

experimental studies flexible substrates have been found to suppress splashing but

by focusing on a regieme where the deflection of a small elastic plate is strongly

coupled to the hydrodynamics of an impacting droplet we show that elasticity

can infact cause splashing. This has potential applications in the modelling of

spraying pesticides on plants, improving the resolution of additive manufacturing

and the design of new micropatterned surfaces for example.

The Wagner model is used in several chapters of the thesis. It was first

developed by Wagner [1932] for evaluating the hydrodynamic loads on the

floaters of seaplanes during landing. The Wagner model assumes that the solid

surface, and the free surface of the liquid at impact are nearly parallel to

each-other with the normal displacements of these surfaces being much smaller

than the size of their contact region. The Wagner model is used during the

early stages of impact, when the geometry of the impacting surfaces, equations
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of the liquid flow, and the corresponding boundary conditions can be simplified.

However, the problem remains non-linear because the size of the wetted area is

unknown in advance and should be determined as part of the solution. The size

of the wetted part of the substrate is determined by using the so-called Wagner

condition. This condition requires that the liquid boundary, which includes the

liquid free surface and the wetted area of the substrate, is continuous and was

first described within the model by Wagner [1932]. This condition was formally

justified by Howison et al. [1991] through an asymptotic analysis of liquid

impact problems.

Many of the studies adopting the Wagner model have focused on two dimensional

problems. Liquid-liquid impacts were investigated by Semenov et al. [2015]. A

droplet-liquid impact problem was investigated by Howison et al. [2005]. Water

entry problems have received much more attention, stretching as far back as the

studies by von Karman [1929], who investigated the impact of a solid wedge onto

a water free surface. Other examples include Wu [2007] who investigated the

impact of liquid columns and droplets on solid wedges and Philippi et al. [2016]

who investigated the early stages of a liquid drop impacting with a solid plate.

Korobkin [1985] investigated a three dimensional water impact problem using the

displacement potential however he was not able to fully solve the problem. This

problem was later solved by Scolan and Korobkin [2001]. Liquid-elastic impacts

have begun to receive an increasingly large amount of attention. Khabakhpasheva

and Korobkin [2013] investigated the two dimensional liquid elastic wedge impact

problem and Tkacheva [2008] studied the impact of a box with an elastic base

onto a thin layer of liquid. Many of the papers studying the three dimensional

impact problem derive from the work presented by Scolan and Korobkin [2001]

and Korobkin and Scolan [2006]. Xu et al. [2011] investigated the axisymmetric

impact of a liquid block onto a solid surface and Scolan [2004] has produced one

of the few works on an axisymmetric liquid-elastic impact. Several of the previous

works studying liquid impact onto an elastic surface used the method of normal

modes, such as the studies by Korobkin and Khabakhpasheva [2006] and Scolan
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[2004]. In the method of normal modes deflections of an elastic substrate are

represented as a superposition of the substrates normal modes. By performing

our analysis in 3d in chapters 2 and 3 we will present results that can be used by

experimentalists to verify our predictions and model.

In the study of droplet impacts air effects are often neglected. When considering

water droplets in air at atmospheric pressure indeed it is difficult to immediately

see how large of an effect the air can have when there is three order of magnitude

difference in density. However in surprising experiments by Xu et al. [2005]

it was found that a reduction in air pressure, which can be thought of as a

reduction in air density, can suppress and completely remove splashing during

droplet impact. Sprittles [2017] investigated the maximum speed at which a

liquid-gas free surface can wet a solid by including gas effects in his analysis via

the Boltzmann equation. Moore et al. [2013] investigated the effects that air

cushioning has on the asymptotic ’outer’, ’jet-root’ and ’jet’ regions as defined

by Howison et al. [1991]. These and many other studies highlight the important

role that air can play in the behaviour of many different hydrodynamic systems.

One of the important effects of air on liquid droplets happens during impact with

a solid substrate. As the droplet nears the substrate air cannot evacuate the gap

between droplet and substrate fast enough, leading to an increase in air pressure

below the droplet. This increased air pressure then resists the downward motion

of the liquid droplet. The effect of this ’air-cushion’ is to delay impact time,

produce an impact at a line rather than a point (in 3d) and to trap an air bubble

inside the droplet upon impact. The earliest theoretical interest in air cushioning

comes from ship slamming where Verhagen et al. [1967] considered the gas in

a one dimensional channel during a slow impact. Wilson [1991] derived a set of

equations in two dimensions where the gas and liquid were both inviscid. Droplet

length scales are significantly smaller than those in ship slamming, prompting

Smith et al. [2003] to derive a set of equations which balance an inviscid liquid

with a viscous gas modelled with lubrication equations. The lubrication pressure

becomes extremely large as the free surface approaches the solid substrate which
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prevents numerical computation up to the point of touch down. Asymptotic

analysis centred on the touch down point were carried out and it was shown

that the touch down does occur in finite time when surface tension is neglected.

Following Smith et al. [2003] many extensions to the lubrication style approach

were made. Mandre et al. [2009] and Purvis and Smith [2004] extended the model

to include strong surface tension and concluded that in this case touch down

does not occur. The model was extended into three dimensions by Hicks and

Purvis [2010]. The predictions of bubble volume in Hicks and Purvis [2010] were

found to be in good agreement with experimental measurements by Thoroddsen

et al. [2005]. Air cushioning with a porous substrate was considered by Hicks

and Purvis [2017]. Some studies have focused on air cushioning between an

incoming droplet and a liquid layer, such as Hicks and Purvis [2011]. In these

liquid-liquid air cushioning problems both free surfaces are deformed by the air

cushion, somewhat similar to our situation where we have an elastic substrate

rather than a layer of liquid. However the dynamics of a partially elastic substrate

are different to that of a liquid substrate. For a start we can move the location of

the elastic plate introducing a variable level of asymmetry in the problem which

has an interesting effect on the impact pressures and touch down time of the

droplet. The edges of the elastic plate, where it is clamped to the solid part

of the substrate also influence the droplet, often causing touch down to occur

rapidly upon the spreading liquid drop encountering this area.

In most theoretical works, such as those considered by Moore et al. [2012], Scolan

[2004] and Semenov et al. [2015] the contact between the liquid and solid starts

at a single point. However, because of the air cushioning effect it is possible for

a small air bubble to be trapped inside the droplet, causing touch down at two

points (in 2d) or a line (in 3d). There are many experimental observations of

this effect, one of the earliest being Lesser and Field [1983]. Recent advances in

experimental techniques and high-speed photography contribute to a wide array

of air-cushioning experiments across a range of set-ups. Thoroddsen et al. [2003,

2005] captured the formation and contraction of the air bubble between a liquid
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droplet and solid shortly after impact using high speed photography. Driscoll and

Nagel [2011] used interference imaging to measure the thickness of the trapped

air pocket between a liquid droplet and solid post impact and found that it

dissipated before a splashing lamella was formed. Air cushioning also occurs in

impacts between two liquids.

Air cushioning is also of industrial interest. As explained by Poots et al. [2000]

during flight supercooled droplets impact with the aircraft, potentially freezing

and causing a reduction in lift which may prove catastrophic. Failure to

accurately predict where droplets impact, spread and splash with an aircraft

wing can lead to poorly placed or inadequate de-icing mechanisms. At the

typical velocities plane wings meet liquid droplets at the inclusion of

air-cushioning is vital for fully understanding and predicting icing. As discussed

by Purvis and Smith. [2016] predicting the impacting droplet speed and size is

critical for being able to properly model the size, speed and location of any ice

formation. Failure to predict these accurately can lead to inadequate or

improperly placed de-icing mechanisms with potentially lethal consequences.

Experiments have been carried out by Maitra et al. [2014a,b] where liquid

droplets impact textured and superhydrophobic substrates in an attempt to

control and predict the formation of ice. In these works pre-impact air

cushioning was seen to play an important role. With aircraft beginning to be

designed using complex new materials understanding the effect a variably

flexible material has on the build up of ice could be important for safe and

efficent flying.

The role that air plays in droplet evolution post impact has received attention

from experimentalists. Kolinski [2015] performed experiments showing the

evolution of the air film trapped below an impacting droplet and the method by

which it breaks up. Tran et al. [2013] carried out experiments with droplets

impacting a deep pool of liquid and showed the impact can cause air to become

entrained within the liquid. Due to the complexity of the dynamics when air is

included analytical progress of modelling the evolution of droplets post-impact
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has been slow. Verhagen et al. [1967] developed a model in which a flat

bottomed solid impacted a free surface with trapped air using experimental

insights to justify some assumptions. Moore and Oliver [2014] and Moore et al.

[2013] presented a modified Wagner model, with the air taken into account, and

showed how its presence affects the location of the contact points and lines in

2D and 3D. This model was started with a parabolic free surface touching down

on the solid substrate, neglecting the effect that pre-impact air cushioning has

on droplet shape. Riboux and Gordillo [2014] introduced a model for the

motion of the liquid jet and used it to derive an equation predicting when the

jet will lift off the solid substrate due to lubrication effects. Moore et al. [2013]

also investigated the impact air plays on the evolution of the liquid jet. They

introduced a series of models to take account for the surface tension and gravity.

Modelling the transition from pre-impact air cushioning to a post impact model

is a problem with no clear solution, hence the previous analytical works starting

at impact with an idealised set up. One potential area of investigation for this

problem is in modelling rarified gas to bridge the time between the breakdown

of air cushioning and the beginning of impact. Sprittles and Shikhmurzaev

[2012] incorporated kinetic effects of the gas at small length scales and showed

there is an appreciable affect in the maximum speed a solid can be wet. Unlike

most previous analytical work we present a model where there is a trapped air

cavity, rather than effectively ’turning on’ the air’s influence upon impact. This

additional phase along the solid surface adds a great deal of complexity and

allows us to investigate effects such as the halting of the inner contact point and

make some comparisons between the mechanics seen in our model and those

shown by previous experiments. Although the model we produce in chapter 5 is

preliminary it captures many complex behaviours and provides a strong

framework for future works in this very important area.



2

Droplet Impact onto a Simply

Supported Elastic Plate

2.1 Introduction

During a droplet impact onto a substrate, splashing is known to be caused by

the presence of surrounding gas or by surface roughness. Impact occurring in a

vacuum onto a smooth rigid wall results in droplet spreading, rather than

development of a corona or prompt splash. In this chapter we present an

analytical and numerical study of a third potential splashing mechanism,

namely elastic deformation of the substrate. An axisymmetric Wagner-style

model of droplet impact is formulated and solved using the method of normal

modes, together with asymptotic analysis and numerical methods. We highlight

the effect that a flexible substrate brings to the contact line velocity and jet

behaviour, demonstrating that elasticity can cause rupture of the splash jet

which is absent for a rigid substrate.

In section 2.2 we introduce the problem of a droplet impacting upon a substrate

which includes an elastic part. We introduce the relevant scales and

non-dimensional variables for the early stage of droplet impact within a

potential flow model. Both the coupled elastic and hydrodynamic problems are

described at the leading order. These problems are coupled, in particular, via

the equation for the unknown radius of the contact region between the droplet
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Figure 2.1.1: A schematic of the impact problem showing the outer, jet-root and
jet regions.

and substrate. The resulting model is based on the Wagner model of liquid

impact. In section 2.3, the plate deflection is obtained by the normal mode

method and the hydrodynamic pressure in the contact region is determined as a

solution of an axisymmetric mixed boundary value problem for the velocity

potential of the flow in the droplet. The obtained solution predicts singular flow

velocities close to the advancing contact line. The Wagner solution is corrected

near the contact region in section 2.4.1, where the jet-root region is introduced.

The solution of the problem in the jet-root region provides the speed of the flow

at the entrance to the jet sheet and the thickness of this sheet. The jet flow is

described by the one-dimensional non-linear model in subsection 2.4.2. It is

shown that the nonlinear jet solution breaks down if the acceleration of the

contact line is positive, predicting unbounded jet thickness. This is interpreted

as splashing. In section 2.5, the coupled problem of hydroelasticity is solved

numerically. Convergence and stability of the numerical algorithm are

discussed. The results of the analysis are presented in section 2.6. It is shown

that the Wagner model of liquid impact is no longer appropriate for very thin

plates, or for very flexible plates. Conditions of splashing are obtained and

explained. Figure 2.1.1 shows a depiction of the three flow regions we consider

in this chapter.
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Figure 2.2.1: A two-dimensional representation of the problem. A spherical
droplet of radius R, travelling with constant speed V , impacts onto a circular
elastic plate of radius L (thin horizontal line) housed in a solid housing of
otherwise infinite extent (thick horizontal line).

2.2 Formulation of the problem

In this chapter we address the normal impact between an axisymmetric liquid

droplet and a circular elastic plate which is housed within an otherwise rigid

flat surface. The radius of the elastic plate is taken to be much smaller than the

radius of the liquid droplet. This configuration is used to highlight the effects of

the elastic vibrations of the circular plate on triggering splashing. We

concentrate on a parameter regime where the plate has a relatively high rigidity

so that rather than simply being deformed by the impact it can vibrate. The

period of the substrate vibration is of the order of the duration of the impact

stage, and deflections of the elastic plate remain small. Vibration of the

substrate and the liquid flow in the impacting droplet are coupled through the

hydrodynamic pressure and the kinematic boundary condition on the wetted

part of the substrate. The effects of viscosity, surface tension and gravity are

assumed to play a negligible role during the early stages of impact. We assume

the conditions are such that the flow caused by the impact is inertia driven, and

described by the theory of potential flow. The gas surrounding the droplet is

also not taken into account. The axisymmetric problem of a liquid droplet
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impacting onto a partly elastic substrate is formulated in non-dimensional

variables. The liquid drop is taken to be spherical before impact, with radius R.

The impact speed V is constant. At the instant of impact (t = 0), the drop

touches the elastic circular plate at its central point. The circular elastic plate

of radius L is housed in an otherwise rigid substrate, and is simply supported at

its edge (see Figure 2.2.1). The liquid in the drop is assumed inviscid and

incompressible, and the subsequent flow is irrotational and axisymmetric. The

radius of the elastic plate, L, is assumed to be much smaller than the radius of

the drop, R. The ratio

ε = L/R, (2.2.1)

is the small parameter in the present study.

The early stage of the impact with a strong coupling between the deflection of the

elastic plate and the liquid motion is considered in this chapter. The dimensional

scales are taken to be: L is the length scale, V is the velocity scale and ρV 2R/L

is the pressure scale. The typical time scale T of this stage of the impact is taken

as the time required for the elastic plate to be completely wetted. Geometrical

considerations yield T = L2/(V R). The displacements of the plate deflection and

of the free surface of the liquid drop are of order V T . All variables used later on

in this chapter are non-dimensional unless explicitly stated otherwise.

The problem is studied by using the cylindrical coordinate system (r, z). Initially,

t = 0, the drop is spherical and touches the flat horizontal substrate, z = 0, at a

single point which is taken as the origin of the coordinate system (see Figure 1).

The initial surface of the drop is described by the equation

z =
ε

2

(
r2 + z2

)
. (2.2.2)

For mathematical convenience we chose a frame of reference where the droplet is

initially at rest and the substrate hits the liquid drop at unit speed from below.
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The position of the moving substrate is given by

z = ε(t− w(r, t)), (2.2.3)

where w(r, t) is the deflection of the elastic part, r < 1, of the substrate, and

w(r, t) = 0 elsewhere. The deflection w(r, t) is taken to be positive in the negative

z-direction.

The flow in the droplet is described by the velocity potential ϕ(r, z, t). The

potential satisfies Laplace’s equation in the flow region, Ω(ε, t), and is subject to

the kinematic boundary condition,

ϕz = εηrϕr + ηt, (2.2.4)

on the free surface of the drop, z = εη(r, t), where η(r, 0) = 1
2r

2 + O(ε) and

r = O(1). We require that the normal velocities of the liquid and solid substrate

match along their interface, this is called the body boundary condition and takes

the vector form

∇ϕ · n̂ = Vb · n̂, (2.2.5)

where n̂ is the unit normal to the moving boundary and Vb is its velocity. This

takes the form

ϕz = 1− wt − εwrϕr, (2.2.6)

on the moving substrate (2.2.3), in the wetted region where r < a(t, ε). This

wetted region is unknown in advance and should be found as part of the solution;

the unknown function a(t, ε) gives the radius of the contact region (neglecting

the thin jet-sheet discussed later). The dynamic boundary condition on the free

surface of the impacted drop is

p(r, εη(r, t), t) = 0, (2.2.7)
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where the hydrodynamic pressure p(r, z, t) is given by the Bernoulli equation,

p(r, z, t) = −ϕt −
1

2
ε|∇ϕ|2. (2.2.8)

The plate deflection w(r, t) is taken to be described by the thin plate theory:

αwtt + β∇4w = p(r, ε(t− w(r, t)), t), (r ≤ 1), (2.2.9)

where

α =
ρph

ρL
, β =

Eh3ε2

12(1− ν2)ρV 2L3
, (2.2.10)

ρp is the density of the elastic plate, h is the plate thickness, E is the Young

modulus of the plate material, and ν is the Poisson ratio. The parameter α

indicates the importance of the structural mass per unit area of the plate, ρph,

compared to the added mass of the liquid per unit area, which is of order O(ρL).

The parameter β can be considered as the dynamic rigidity of the plate. This

parameter depends on the elastic characteristics of the plate, speed of impact and

the size of the drop. We assume that both α and β are of order O(1) in the present

analysis. For small α and β the plate equation (2.2.9) should be investigated using

asymptotic methods. If α becomes very small then we can neglect the structural

inertia by setting α=0. However, this case requires an early time asymptotic

analysis when t = o(ε2). If β is small then a matched asymptotic analysis at the

edges of the plate is required. Neither of these asymptotic analyses are performed

in the present work. Outside of the wetted region, r > a(t, ε), the right-hand side

in (2.2.9) is zero. We assume that the elastic plate is simply supported at r = 1

and flat initially. Then the plate equation is to be solved subject to

w = 0, wrr +
ν

r
wr = 0, (r = 1), (2.2.11)

w(r, 0) = 0, wt(r, 0) = 0 (r ≤ 1). (2.2.12)
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The formulation of the fully coupled problem is completed by the initial conditions

ϕ(r, z, 0) = 0, (2.2.13)

a(0, ε) = 0, (2.2.14)

η(r, 0) =
1

2
r2 +O(ε), (2.2.15)

where r = O(1) and z = O(1). The pressure p(r, z, t) in (2.2.7) and (2.2.8) does

not account for ambient pressure, hydrostatic pressure and the pressure due to

surface tension effects. The hydrostatic pressure is of order ρgR which is much

smaller than the pressure scale ρV 2R/L if ε(gR/V 2) � 1. The surface tension

can be neglected at leading order if σ/(ρV 2R) � 1, where σ is the coefficient

of surface tension of the liquid. For a water droplet of density ρ = 1000 kg/m3,

surface tension σ = 7.197× 10−2 N/m and radius R = 5× 10−3 m with g = 9.81

m/s2 impacting an elastic circular disk of radius L = 1 × 10−3m at velocity

V = 1 m/s we have σ/(ρV 2R) < 2 × 10−4 and ε(gR/V 2) < 10−2. Hence we

neglect surface tension and gravity as both provide smaller contributions to the

hydrodynamic pressure compared to that from inertia.

The problem formulated above is strongly coupled. The plate deflection depends

on the hydrodynamic loads through the right-hand side of (2.2.9), and both the

hydrodynamic pressure (2.2.8) and the flow in the liquid droplet depend on the

elastic deflection of the plate through the body boundary condition (2.2.6). The

flow region, Ω(ε, t), and the wetted area of the plate, r < a(t, ε), are unknown in

advance and should be determined along with the hydrodynamic and structural

characteristics of the problem.

The problem (2.2.2)-(2.2.15) can be simplified during the early stage of impact.

The approximate solution can be obtained by asymptotic methods as ε → 0.

Equations (2.2.2)-(2.2.3) show that the flow region can be approximated by the

upper half-space, z > 0, to leading order, and the boundary conditions (2.2.4)-

(2.2.7) can be linearised and imposed on the plane z = 0. In addition, the

linearised dynamic condition (2.2.7) can be integrated in time using the initial
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conditions. Below we keep the original notation of the unknown functions for their

leading-order terms. At leading order, the hydrodynamic part of the problem

reads

∇2ϕ = 0, (z > 0), (2.2.16)

ϕ = 0, (z = 0, r > a(t)), (2.2.17)

ϕz = 1− wt(r, t), (z = 0, r ≤ a(t)), (2.2.18)

ϕ→ 0, (r2 + z2 →∞), (2.2.19)

where w(r, t) = 0 for r > 1. The hydrodynamic pressure is given by the linearised

Bernoulli equation, p(r, z, t) = −ϕt(r, z, t). The plate equation (2.2.9) at leading

order then becomes

∂

∂t
(αwt(r, t) + ϕ(r, 0, t)) + β∇4w = 0, (r < 1). (2.2.20)

Equation (2.2.20) is solved subject to the boundary conditions (2.2.11) and initial

conditions (2.2.12). The shape of the liquid free surface, z = εη(r, t), is provided

at leading order by ηt(r, t) = ϕz(r, 0, t), where r > a(t), which follows from the

kinematic condition (2.2.4). Note that η(r, 0)→ r2/2 as ε→ 0. The equations of

flow, (2.2.16)-(2.2.19), and the equation of the plate deflection (2.2.20) at leading

order are linear but still coupled.

The radius of the contact region between the liquid and substrate, r < a(t), is

determined by using the condition that the vertical coordinate of the free surface,

z = εη(a(t), t) at the contact line r = a(t), and the vertical coordinate of the

elastic substrate (2.2.3) are equal, namely

η(a(t), t) = t− w(a(t), t). (2.2.21)

Condition (2.2.21) is known as the Wagner condition Wagner [1932]. The Wagner

condition comes from assuming that the contact points This condition assumes

that the free surface meets the impacting body at the turn over points. This
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assumed that the spray jet is thin and can be neglected at leading order as ε→ 0.

To derive the Wagner condition we introduce the displacement potential φ(r, z, t)

which is the analog of velocity potential but for displacements and is related to

the velocity potential via φ̇ = ϕ. The governing equations for the displacement

potential are

∇2φ = 0, (z > 0), (2.2.22)

φ = 0, (z = 0, r > a), (2.2.23)

φz = t− w(r, t)− r2

2
= F (r, t), (z = 0, r ≤ a(t)), (2.2.24)

φr = 0, (z = 0, r = 0), (2.2.25)

φ→ 0, (r2 + z2 →∞). (2.2.26)

The boundary value problem (2.2.22)-(2.2.26) is solved by introducing a new

unknown function G(λ, a(t)) such that

φ(r, z, t) =

∫ ∞
0

G(λ, a)e−λzJ0(λr)dλ. (2.2.27)

By substituting the expression for φ from equation (2.2.27) into the boundary

conditions (2.2.23) and (2.2.24) we obtain the pair of equations

∫ ∞
0

G0(λ, a)J0(λr) = 0, (2.2.28)∫ ∞
0

G0(λ, a)λJ0(λr) = −F (r, t). (2.2.29)

The set of equations (2.2.28)-(2.2.29) are solved by use of the Titchmarsh solution

McBride [1979] giving

G0(λ, a) = −
√

2λ

π

∫ a

0
xJ 1

2
(xλ)dx

∫ x

0

ρF (ρ, t)dρ√
x2 − ρ2

. (2.2.30)

By substituting G0 from equation (2.2.30) into the solution for φ (2.2.27) and
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rearranging integrals we find

φ(r, 0, t) = − 2

π

∫ a

r

dx√
x2 − r2

∫ x

0

ρF (ρ, t)√
x2 − ρ2

dρ. (2.2.31)

In order for the radial derivative at the contact line to be finite we require that

∫ a

0

ρF (ρ, t)dρ√
a2 − ρ2

dρ = 0. (2.2.32)

By making the obvious substitution we arrive at the form of the Wagner condition

used throughout this chapter,

∫ π
2

0
sin(θ)F (a(t) sin(θ), t)dθ = 0, (2.2.33)

Note that the radius of the contact region a(t) depends strongly on the plate

deflection w(r, t).

The hydrodynamic problem (2.2.16)-(2.2.19) is solved by the method of dual

integral equations [McBride, 1979] and the plate deflection is obtained by the

method of normal modes [Korobkin, 1998, Scolan, 2004] applied to the structural

problem (2.2.20), (2.2.11), (2.2.12), where the radius a(t) of the contact region is

determined by equation (2.2.33).
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Figure 2.2.2: A sketch of the problem away from the contact region. The light
grey paraboloid shows the liquid free surface z = εη(r, t), the dark grey circle is
the elastic plate with deformation z = ε(t − w(r, t)) and the light gray square
region indicates the infinite rigid housing for the elastic plate.

2.3 Coupled problem of hydroelastic impact

The full formulated problem described above and given by (2.2.11)-(2.2.12),

(2.2.16)-(2.2.33) is coupled. The hydrodynamic part of the problem (2.2.16)

subject to (2.2.17)-(2.2.19), and the structural part of the problem (2.2.20),

subject to (2.2.11)- (2.2.12) should be solved simultaneously, together with the

Wagner condition (2.2.33) for the unknown radius of the contact region, a(t).

Structural problem

It is convenient to introduce a new unknown function, called the auxiliary function

q(r, t) = − 1

β
(αwt(r, t) + ϕ(r, 0, t)) , (2.3.1)

where 0 ≤ r < 1, and to rewrite equation (2.2.20) as

qt = ∇4w, αwt + ϕ(r, 0, t) = −βq(r, t). (2.3.2)
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Here ϕ(r, 0, t) = 0, where a(t) ≤ r < 1, during the early stage when the elastic

plate is only partly in contact with the liquid, a(t) < 1. Within the method of

normal modes, the deflection w(r, t) and auxiliary function q(r, t) are sought in

the forms

w(r, t) =
∞∑
n=1

An(t)wn(r), (2.3.3)

q(r, t) =

∞∑
n=1

k4
nqn(t)wn(r), (2.3.4)

where An(t) and qn(t) are the coefficients to be determined. The functions

wn(r) are the non-trivial bounded solutions to the homogeneous boundary value

problem

∇4wn = k4
nwn, r < 1, (2.3.5)

wn(1) = 0, w′′n(1) + νw′n(1) = 0, (2.3.6)

and kn are the corresponding eigenvalues. The functions wn(r) describe the

axisymmetric shapes of free vibrations of a circular simply supported plate with

frequencies proportional to k2
n [Leissa, 1969]. The solutions have the form

wn(r) = J0(knr)−
J0(kn)

I0(kn)
I0(knr), (2.3.7)

where kn are the solutions of the equation

J1(kn)

J0(kn)
+
I1(kn)

I0(kn)
=

2kn
1− ν , (2.3.8)

with n ≥ 1 and kn+1 > kn. Here Jn(r) and In(r) are the Bessel functions of the

first kind and modified Bessel functions of the first kind of order n respectively.

The functions (2.3.7) are orthogonal but not normalised

∫ 1

0
wn(r)wm(r)rdr = Unδnm, (2.3.9)

where Un are given in Appendix A, and where δnm = 0 for n 6= m and δnn = 1.
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2.3.1 Coupled problem

The first equation in (2.3.2) and equations (2.3.3), (2.3.4) together with initial

conditions (2.2.12) provide the system of ordinary differential equations for the

vector q(t)={q1(t), q2(t), ...},

q̇ = A(t), q(0) = 0, (2.3.10)

where A(t) = {A1(t), A2(t), ...} is the vector of coefficients in the series (2.3.3),

and overdot stands for time derivative. The boundary problem (2.2.16)-(2.2.19)

for the velocity potential ϕ(r, z, t) and the series for the plate deflection (2.3.3)

lead to the following decomposition of the potential

ϕ(r, z, t) = ϕ0(r, z, a)−
∞∑
n=1

Ȧn(t)ϕn(r, z, a). (2.3.11)

Here ϕ0(r, z, a) is the potential of the flow caused by the impact of the rigid

circular disk of radius a with the condition on the disc, ϕ0,z(r, 0, a) = 1. The

potentials ϕn(r, z, a) satisfy (2.2.16) and (2.2.19), with the condition (2.2.18)

becoming ϕn,z(r, 0, a) = wn(r), for r < a. Substituting (2.3.11) and (2.3.3) into

the second equation of (2.3.2), multiplying both sides of this equation by wm(r)r

and integrating in r from 0 to 1 we find

αȦmUm +

∫ a

0
ϕ0(r, 0, a)wm(r)rdr −

∞∑
n=0

Ȧn(t)

∫ a

0
ϕn(r, 0, a)wm(r)rdr

= −βk4
mqm(t)Um, (2.3.12)

which can be written more concisely in vector form as

Ȧ = − (Λ + W(a))−1 (Zq− g(a)) , A(0) = 0. (2.3.13)
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Here Λ = diag{αU1, αU2, ...} and Z = diag{βk4
1U1, βk

4
2U2, ...} are diagonal

matrices. The elements of the vector g(a) are

gn(a) = −
∫ a

0
ϕ0(r, 0, a)wn(r)rdr, (2.3.14)

and the symmetric matrix of added masses W (a) has the elements

Wnm(a) = −
∫ a

0
ϕn(r, 0, a)wm(r)rdr. (2.3.15)

The system of ordinary differential equations (2.3.10) and (2.3.13) is valid for

a ≤ 1 . For the later stages, when a(t) > 1 and the elastic plate is completely

wetted, we should change the upper limits in (2.3.14) and (2.3.15) to 1 and set

wn(r) = 0, where r > 1 in the boundary conditions for the potentials ϕn(r, z, a).

The coefficients in (2.3.13) depend on the radius of the wetted area, a(t), which

is defined by equation (2.2.33) . Substituting for F (r, t) and the series (2.3.3) in

(2.2.33), we find

t− 1

2
a2(t)

∫ π
2

0
sin3(θ)dθ −

∞∑
n=1

An(t)

∫ π
2

0
sin(θ)wn(a sin(θ))dθ = 0, (2.3.16)

and then

a2(t) = 3t− 3A(t)Q(a), (2.3.17)

where

Qn(a) =

∫ π
2

0
sin(θ)wn(a sin(θ))dθ =

1

a

∫ a

0

ρwn(ρ)dρ√
a2 − ρ2

. (2.3.18)

Note that wn(a sin(θ)) ≡ 0 where a sin(θ) > 1. The system (2.3.10), (2.3.13) and

(2.3.17) can be solved numerically once the integrals (2.3.14),(2.3.15) and (2.3.18)

are known explicit functions of a. The functions Qn(a) and gn(a) are evaluated

in Appendices B and C respectively.
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2.3.2 Hydrodynamic problem

The hydrodynamic problem (2.2.16)-(2.2.19), together with the decomposition

(2.3.11), leads to two mixed boundary value problems. The rigid part of the

decomposition (2.3.11) becomes

∇2ϕ0 = 0, (z > 0), (2.3.19)

ϕ0 = 0, (z = 0, r > a(t)), (2.3.20)

ϕ0,z = 1, (z = 0, r ≤ a(t)), (2.3.21)

ϕ0 → 0, (r2 + z2 →∞), (2.3.22)

whilst the elastic part of the decomposition requires

∇2ϕn = 0, (z > 0), (2.3.23)

ϕn = 0, (z = 0, r > a(t)), (2.3.24)

ϕn,z = wn(r), (z = 0, r ≤ a(t)), (2.3.25)

ϕn → 0, (r2 + z2 →∞), (2.3.26)

where n ≥ 1.

These mixed boundary value problems are solved through the use of Hankel

transformations. Equations (2.3.19) and (2.3.22) give

ϕ0(r, z, a) =

∫ ∞
0

G0(λ, a)e−λzJ0(λr)dλ, (2.3.27)

where G0(λ, a) is a new unknown function. Substituting (2.3.27) in the boundary

conditions (2.3.20) and (2.3.21) gives us the dual integral equations

∫ ∞
0

G0(λ, a)J0(λr)dλ = 0, r > a (2.3.28)∫ ∞
0

G0(λ, a)λJ0(λr)dλ = −1, r ≤ a. (2.3.29)

These equations are solved by using the Titchmarsh solution [McBride, 1979]
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giving,

G0(λ, a) = −
√

2λ

π

∫ a

0
xJ 1

2
(xλ)dx

∫ x

0

ρdρ√
x2 − ρ2

. (2.3.30)

Equations (2.3.27) and (2.3.30) yield the expression

ϕ0(r, 0, a) = −
√

2

π

∫ a

0

√
xdx

∫ x

0

ρdρ√
x2 − ρ2

∫ ∞
0

√
λJ0(λr)J 1

2
(λx)dλ. (2.3.31)

This can be integrated directly (with the λ integral given by 6.575.1 of Gradshteyn

and Ryzhik [2007]) to give an explicit expression for the rigid velocity potential

evaluated on z = 0,

ϕ0(r, 0, a) = − 2

π

√
a2 − r2, (r ≤ a). (2.3.32)

The elastic part of the problem (2.3.23)-(2.3.26) is solved using the same method.

The elastic terms of the velocity potential, ϕn(r, 0, a), are given by

ϕn(r, 0, a) = − 2

π

∫ a

r

dx√
x2 − r2

∫ x

0

ρwn(ρ)dρ√
x2 − ρ2

. (2.3.33)

By using (2.3.18) we can express (2.3.33) as

ϕn(r, 0, a) = − 2

π

∫ a

r

xQn(x)dx√
x2 − r2

= −Φn(r, a), (2.3.34)

and (2.3.11) as

ϕ(r, 0, a) = − 2

π

√
a2 − r2 +

∞∑
n=1

Ȧn(t)Φn(r, a), (r ≤ a). (2.3.35)

The added mass elements (2.3.15) then become

Wnm =
2

π

∫ a

0

(∫ a

r

xQn(x)dx√
x2 − r2

)
wm(r)dr =

2

π

∫ a

0
x2Qn(x)Qm(x)dx. (2.3.36)

The integrals (2.3.36) are evaluated in Appendix D. Integrating in (2.3.34) by
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parts, we obtain

Φn(r, a) =
2

π
Qn(a)

√
a2 − r2 − 2

π

∫ a

r

√
x2 − r2Q′n(x)dx, (2.3.37)

where Qn(a) is given by (2.3.18).

Equations (2.3.37) and (2.3.35) provide the behaviour of the velocity potential

close to the contact line as r → a(t),

ϕ(r, 0, t) = B(t)
√
a(t)− r +O

(
(a− r) 3

2

)
, (2.3.38)

where

B(t) =
2

π

√
2a

( ∞∑
n=1

Ȧn(t)Qn(a)− 1

)
. (2.3.39)

Therefore the Wagner condition predicts a square-root singularity in the radial

velocity of the flow in the main region, (∂ϕ/∂r)(r, 0, t), and in the hydrodynamic

pressure, p(r, 0, t) = −∂ϕ/∂t, at the contact line as r → a(t). The coefficient of

this singularity, B(t), depends on the plate deflection and is calculated as part

of the solution in the main flow region. The Wagner condition is not valid at

the periphery of the contact region. In Wagner-type problems, this singularity

is resolved by introducing an inner region, the so called jet-root region, around

the contact line [Howison et al., 1991]. This locally resolves the singularity by

the presence of a thin jet running along the substrate. This local inner solution

is discussed below.

2.4 Jet-root and jet regions

The dynamics of the jet sheet and its dependence on elastic oscillations of the

plate play a key role in potential splashing of the droplet. We distinguish the

jet-root region, which is in a small vicinity of the contact line and is

characterised by large velocities and pressures there, and the jet itself. The

equations governing the flows in both the jet-root region and the jet region are
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derived by using stretched variables and asymptotic methods, see Howison et al.

[1991] and Oliver [2002] for full details of the case for impact with a rigid

substrate. The introduction of the jet-root region removes the singularity of the

Wagner solution, and provides characteristics of the initiation of the thin jet

sheet that spreads along the substrate.

2.4.1 Jet-root region

In order to resolve the singularity found in the leading order velocity and pressure

at the contact line, we consider a local region around the contact line described

by the stretched inner variables X,Z where

r = a(t) + ε2X, z = ε (t− w(a, t)) + ε2Z. (2.4.1)

We also introduce the inner potential φ(X,Z, t) by

ϕ = ε (φ(X,Z, t) + ȧ(t)X) . (2.4.2)

This inner potential describes the relative flow in the moving coordinate system

(X,Z), see Howison et al. [1991].

The original equations of the hydrodynamic problem (2.2.2)-(2.2.8) written in

the inner variables (2.4.1) become at leading order as ε→ 0

∂2φ

∂X2
+
∂2φ

∂Z2
= 0, (in the flow region), (2.4.3)

∂φ

∂n
= 0, (on the flow boundaries), (2.4.4)(

∂φ

∂X

)2

+

(
∂φ

∂Z

)2

= ȧ2, (on the free surface). (2.4.5)

As illustrated in Figure 2.4.1, the free surface of the droplet turns over in the

jet-root region producing the jet along the solid substrate.

Matching the outer velocity potential (2.3.38) and the inner velocity potential
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Z = ς(X, t)

Z

X

|∇φ| = ȧ
∂φ
∂n

= 0

∂φ
∂Z

= 0

φ(X, 0, t)→ −ȧX − RiB
√
X

∇2φ = 0

Hj

Figure 2.4.1: A sketch of the jet-root region problem.

(2.4.1) yields the far-field condition

φ(X, 0, t) ≈ −ȧ(t)X +B
√
−X, (X → −∞), (2.4.6)

along the wall and

φ ≈ −ȧ(t)X as X2 + Z2 →∞ (2.4.7)

along the free surface, where B(t) is given by (2.3.38). Equation (2.4.3) implies

that the flow in the jet-root region is two-dimensional at leading order and the

inner stream function ψ(X,Z, t) can be introduced. The boundary condition

(2.4.4) requires that the stream function is constant along the solid boundary,

Z = 0, and along the free surface, Z = ς(X, t). The shape of the free surface,

ζ(X, t), is unknown in advance and should be determined as part of the inner

solution by using the dynamic boundary condition (2.4.5). The right-hand sides

of (2.4.5) and (2.4.6) depend on time t through the speed of the contact line, ȧ(t),

and the coefficient B(t) given by (2.3.39). However, there are no time derivatives

of the solution in the leading order inner problem (2.4.3)-(2.4.6). Therefore, the

leading order inner flow is quasi-stationary, non-linear and two-dimensional in

contrast to the flow in the main region, which is three-dimensional, linear and
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−φZ

φX

Free Surface

Far Field

Solid Substrate

Jet

ȧ

ȧ(t)−ȧ(t)

U

Figure 2.4.2: A sketch of the hodograph plane for the jet-root region U = φX −
iφZ .

inertia driven. The solution of the inner problem (2.4.3)-(2.4.7) was given by

Howison et al. [1991]. Here we are concerned only with the thickness of the jet,

Hj(t), and the speed of the jet, which are needed to integrate the equations of the

jet dynamics introduced in the next subsection. In particular, we are interested in

the effect of the elastic plate deflection on the quantities which enter this jet-root

region via B(t) in (2.4.6)

The problem (2.4.3)-(2.4.7) can be formulated in terms of the complex potential,

W = φ+iψ, as a function of the complex velocity U = dW/dζ = φX−iφZ , where

ζ = X+iZ. The flow region (see Figure 2.4.1) in the plane of the complex velocity

corresponds to the semi-circle, φ2
X + φ2

Z < ȧ2, −φZ > 0, see Figure 2.4.2. The

far field of the flow region, where X2 +Z2 →∞, corresponds to the corner point

U = −ȧ(t), and the jet, where 0 < Z < Hj and X → +∞, to the corner point

U = ȧ(t). The dynamic boundary condition (2.4.5) and the assumption that the

jet thickness approaches a constant value Hj as X → +∞ provide φX → ȧ(t) and

φz → 0 in the jet as X → +∞. This result, along with equations (2.4.1)-(2.4.2),

yields that the jet speed is double the speed of the contact line, 2ȧ(t), in the

global coordinate system. The kinematic boundary condition (2.4.4) gives that

the stream function ψ(X,Z, t) is independent of X and Z on the boundary of the

flow region. We take ψ = 0 on the solid boundary, Z = 0, and ψ = Q(t) on the

free surface, where the function Q(t) is to be determined.
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The horizontal velocity in the jet approaches ȧ(t) as X → +∞, see Figure 2.4.1,

which gives

φX = ψZ → ȧ(t). (2.4.8)

Integrating this expression in Z across the jet (see Figure 2.4.1) and taking into

account that ψ = 0 at Z = 0 and ψ = Q(t) on the free surface, we find

Q(t) = ȧ(t)Hj(t). (2.4.9)

The complex potential W (U) is an analytic function in |U |< ȧ(t), =(U) > 0,

satisfies the boundary conditions =(W ) = 0 on =(U) = 0 and =(W ) = Q(t) on

|U |= ȧ(t), and behaves as W ∼ 1
4 ȧB

2(t) (U + ȧ)−2 as U → −ȧ(t). The latter

behaviour follows from the far-field condition (2.4.6) written in terms of the

complex potential. In addition dW/dU should be zero at the stagnation point,

where U = 0. This condition follows from the equalities U = dW/dζ = dW/dU ·

dU/dζ and the condition at the stagnation point, dU/dζ 6= 0. The solution is

composed as the sum of two analytic functions, W (U) = W1(U) + W2(U), such

that

W1(U) = −1

4
B2U (U + ȧ)−2 , W2(U) = − 2

π
Q(t) ln

(
ȧ− U
ȧ+ U

)
, (2.4.10)

where W1(U) has the required behaviour close to U = −ȧ(t) and =(W1) = 0 on

the boundary of the flow region in the U -plane, and W2(U) satisfies the boundary

condition for W (U) on |U |= ȧ(t). Close to the stagnation point, U = 0, these

functions behave as

W1(U) ∼ −B
2U

4ȧ2
, W2(U) ∼ 4

π

Q(t)

ȧ
U. (2.4.11)

The condition that dW/dU = 0 at the stagnation point is satisfied if

Q =
π

16

B2

ȧ
. (2.4.12)
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This equation together with (2.4.9) provide the jet thickness

Hj(t) =
π

16

B2

ȧ2
. (2.4.13)

Without the elastic deflection of the plate, Aj(t) = 0 in (2.3.17) and (2.3.39), we

find a(t) =
√

3t and B = −2
√

2a/π in the non-dimensional variables. Then the

jet thickness (2.4.13) is equal to 2t3/2/(
√

3π). In the dimensional variables the

jet thickness at the entrance to the jet is 2R(V td/R)3/2/(
√

3π), where td is the

dimensional time and V td is the displacement of the droplet. The obtained

results are in agreement with the results by Korobkin and Scolan [2003] in the

problem of an elliptic paraboloid impact onto the flat water surface. Note that

the uniform velocity in the jet, ȧ(t), and the constant jet thickness Hj are

approached exponentially quickly as X increases. In particular,

φX(X, 0, t) = ȧ(t) + O(exp[−πX/2Hj ]) as X → +∞ along the plate. The

pressure in the jet-root region is much greater than in the main flow region with

p = ȧ2/(2ε) at the stagnation point. However, the hydrodynamic pressure

approaches zero in the jet exponentially quickly as X → +∞.

2.4.2 Jet region

As the flow leaves the jet-root region with X → +∞ it enters a long thin jet

sheet detailed here. Motivated by matching to the jet-root region, the

axisymmetric flow in the jet sheet is described in cylindrical coordinates r, Z

where z = εZp(r, t) + ε2Z, with Zp(r, t) = −w(r, t) + t and r > a(t). The

substrate corresponds to Z = 0 in the new coordinates, and the free surface of

the jet sheet is Z = h(r, t). The size of the jet region in the radial direction is of

order O(1) in the non-dimensional variables and it is the same as in the main

flow region, see section ??. The vertical scale of the jet region is that of the

jet-root region, O(ε2). The horizontal speed of the flow, ϕr, at the entrance to

the jet region, r = a(t), is 2ȧ(t)/ε (see section 2.4.1). The initial thickness of the

jet h(a(t), t) is given by Hj(t) from (2.4.13). We note here that the jet thickness
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in the dimensional variables is L3h(r, t)/R2.

To describe the flow in the jet region we introduce an inner velocity potential,

φ̃(r, Z, t, ε), defined by

ϕ(r, z, t) = ε−1φ̃(r, Z, t, ε), (2.4.14)

in order to satisfy the matching condition with the horizontal velocity of the flow

at the entrance to the jet region emanating from the jet-root.

The Laplace equation for the velocity potential in the inner stretched variables,

the body boundary condition (2.2.6) and the kinematic boundary condition

(2.2.4) become

φ̃ = φ̃0(r, t) + εφ̃1(r, t) + ε2φ̃2(r, t) + ε3
(
φ̃3(r, t) +

(
Zp,t + Zp,rφ̃0,r

)
Z
)

+ ε4
(
φ̃4(r, t) + Zp,rφ̃1,rZ −

1

2

(
φ̃0,rr +

1

r
φ̃0,r

)
Z2

)
+O(ε5),

(2.4.15)

h(r, t) = h0(r, t) + εh1(r, t) +O(ε2), (2.4.16)

where the boundary-value problem for the velocity potential of order O(ε4) has

a solution only if the leading order potential φ̃0 and leading order jet thickness

h0(r, t) are related by

∂h0

∂t
+

1

r

∂

∂r

(
r
∂φ̃0

∂r

∂h0

∂r

)
= 0. (2.4.17)

This equation corresponds to the one-dimensional axisymmetric equation of mass

conservation across the jet sheet. The Bernoulli equation (2.2.8) and the dynamic

boundary condition (2.2.7) give the hydrodynamic pressure in the jet at leading

order as

p(r, Z, t) = ε2 (h0(r, t)− Z)
(
Zp,t + Zp,rφ̃0,r

)
t
+O(ε3), (2.4.18)

and equations for the potentials φ̃n, n = 0, 1, 2, 3, 4. In particular, at leading
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order, we have

φ̃0,t +
1

2

(
φ̃0,r

)2
= 0. (2.4.19)

It is seen that the pressure distribution over the substrate in the jet region is

proportional to the jet thickness and the vertical acceleration of liquid particles

travelling along the moving substrate. Differentiating (2.4.19) with respect to

r and introducing the leading-order radial velocity of the flow in the jet sheet,

u(r, t) = ∂φ̃0/∂r, we arrive at the equations for the flow velocity in the jet, u(r, t),

and the jet thickness, h0(r, t),

∂h0

∂t
+

1

r

∂

∂r
(ruh0) = 0, (2.4.20)

∂u

∂t
+ u

∂u

∂r
= 0, (2.4.21)

where r > a(t). The boundary conditions for (2.4.20) and (2.4.21) are

u(a, t) = 2ȧ(t), h0(a, t) = Hj(t). (2.4.22)

Equations (2.4.20) and (2.4.21) are the one-dimensional shallow water equations

for axisymmetric flow without gravity. Equation (2.4.21) implies that liquid

particles move in the jet at speeds which are independent of time. If a liquid

particle has entered the jet sheet at a time instant τ with speed 2ȧ(τ), then this

particle will be at the distance

r = a(τ) + 2ȧ(τ) (t− τ) , (2.4.23)

at time t, where t ≥ τ .

To integrate equation (2.4.20), we introduce a new unknown function h̃(τ, t) =

h0(r(τ, t), t), where r = r(τ, t) is given by (2.4.23). Then using (2.4.20),

∂h̃

∂t
=
∂h0

∂t
+
∂h0

∂r

∂r

∂t
= −

(
ur +

u

r

)
h̃, (2.4.24)
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and

∂ ln(h̃)

∂t
= −∂u

∂τ

∂τ

∂r
− 2ȧ(τ)

a(τ) + 2ȧ(τ)(t− τ)
, (2.4.25)

where ∂u/∂τ = 2ä(τ) and

∂τ

∂r
=

1

2ä(τ)(t− τ)− ȧ(τ)
. (2.4.26)

This leaves

∂ ln(h̃)

∂t
= − 1

t− τ − ȧ(τ)/2ä(τ)
− 1

t− τ + a(τ)/2ȧ(τ)
, (2.4.27)

and then

h̃(τ, t)

∣∣∣∣t− τ − ȧ(τ)

2ä(τ)

∣∣∣∣ ∣∣∣∣t− τ +
a(τ)

2ȧ(τ)

∣∣∣∣ = C(τ), (2.4.28)

where C(τ) is a constant of integration and t > τ . This solution and the initial

condition, h̃(τ, τ) = Hj(τ), yield the jet sheet thickness as

h(r, t) = Hj(τ)

(
1− 2ä(τ)(t− τ)

ȧ(τ)

)−1(
1 +

2ȧ(τ)

a(τ)
(t− τ)

)−1

, (2.4.29)

where r is given by (2.4.23).

This jet thickness has been derived under the assumption that the flow in the

main region is described by the Wagner model of liquid impact. The Wagner

model requires, in particular, that the contact region expands in time, namely

that ȧ(t) > 0. Therefore 1 + 2ȧ(τ)(t− τ)/a(τ) ≥ 1 in (2.4.29). The last term in

(2.4.29) describes a decrease of the jet thickness as the particles spread further

from the contact line in order to conserve mass.

It can be seen from (2.4.29) that the jet thickness h(r, t) becomes large if the

acceleration of the contact line ä(τ) is positive as 2ä(τ)(t−τ)
ȧ(τ) → 1 at some time

instant. This unbounded growth in h(r, t) violates the assumptions of our shallow

water model as the vertical extent of the jet will grow beyond the O(ε2) thickness

we have assumed. We interpret this break-down of the shallow water model as

an indication of the onset of splashing. Note that the contact line acceleration
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is strictly negative for a rigid substrate, where a(t) =
√

3t, see equation (2.3.17).

In this case h(r, t) in (2.4.29) is always bounded, and the entire jet region is

adequately described using the shallow water model. Once we include the elastic

plate however, we find that the contact line acceleration ä(t) can become positive,

and splashing can be prompted in the jet region.

In light of this requirement on the contact line acceleration for a bounded solution,

the jet thickness (2.4.29) yields conditions for when splashing might be observed.

For negative acceleration ä(τ), we have

1− 2ä(τ)(t− τ)

ȧ(τ)
= 1 +

2|ä(τ)|(t− τ)

ȧ(τ)
≥ 1, (2.4.30)

where t ≥ τ . If ä(τ) > 0 for a certain τ , then h(r, t) → ∞ as t → tc(τ), where

tc(τ) is determined by the equation

2ä(τ)

ȧ(τ)
(tc(τ)− τ) = 1, (2.4.31)

and tc(τ) > τ . For a given function a(τ), we need to find the minimum value,

tmin, of the function tc(τ). The solution (2.4.29) can be used only during the

initial stage, 0 < t < tmin. At t = tmin the solution (2.4.29) predicts the flow in

the normal direction to the substrate, which is interpreted here as splashing of

the droplet. The elastic plate motion affects the jet behaviour through the initial

jet thickness, Hj , see equations (2.3.38) and (2.4.13) but also it is responsible for

triggering splashing through the varying acceleration of the contact line.

To calculate tmin and the radius rs at which the splashing occurs, we analyse the

following function of τ ,

1

tc(τ)
=

2ä(τ)

ȧ(τ) + 2τ ä(τ)
, (2.4.32)

and find its maxima there, where this function satisfies the inequality

0 <
1

tc(τ)
<

1

τ
. (2.4.33)
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This approach provides a graphical way to find the time tmin and the

corresponding value of τ = τmin, such that tc(τmin) = tmin. The radius rs at

which splashing occurs then follows from (2.4.23)

rs = a(τmin) +
ȧ2(τmin)

ä(τmin)
. (2.4.34)

2.5 Numerical solution

The system (2.3.10), (2.3.13) and (2.3.17) which describes the response of the

elastic plate and the flow in the main flow region, is solved numerically. Note

that the right-hand sides of (2.3.10) and (2.3.13) depend on the unknown vector-

functions q, A and the radius of the contact region a(t), where da/dt > 0 during

the impact stage. It is convenient numerically to take the radius a as a new time-

like variable and consider the time varying functions vectors q, A as functions of

a. Differentiating the Wagner condition, (2.3.17), with respect to time, we obtain

dt

da
=

2
3a+ A ·Q′(a)

1− Ȧ ·Q(a)
= G(A,q, a), (2.5.1)

where Ȧ is given by (2.3.13). Note that G(A,q, a) does not depend on the

unknown function t(a). Next we multiply both sides of equations (2.3.10) and

(2.3.13) by dt/da and use (2.5.1) to derive the equations for A(a) and q(a):

dA

da
= − (Λ + W(a))−1 (Zq(a)− g(a))G(A,q, a), (2.5.2)

dq

da
= A(a)G(A,q, a). (2.5.3)

The initial conditions for the system of ordinary differential equations (2.5.1)-

(2.5.3) are

A = 0, q = 0, at t = 0 or a = 0. (2.5.4)

The initial value problem (2.5.1)-(2.5.4) is regular at a = 0. In particular, t =

O(a2). The new time-like variable allows us to avoid difficulties with starting
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simulations from t = 0, where da/dt → ∞ as t → 0, see for example Korobkin

and Khabakhpasheva [2006] for more detail. The system of ordinary differential

equations (2.5.1)-(2.5.3) is truncated to N modes and integrated by using the

fourth order Runge-Kutta scheme. In total 2N + 1 equations are integrated.

The step of integration, δa, is related to the time step, δt, by equation (2.5.1),

δt = Gδa, where G = O(a) for small time. To properly capture the highest Nth

mode, the time step δt should be smaller than the non-dimensional period of the

Nth mode. The natural frequency of the Nth mode is equal to (β/α)
1
2k2
N , which

follows from the plate equation (2.2.9) and equation (2.3.5). The time step δt is

at least six times smaller than the period of the Nth mode if

δt < (α/β)
1
2k−2
N . (2.5.5)

Correspondingly the step δa should be smaller than

δa < (α/β)
1
2k−2
N G−1(A,q, a). (2.5.6)

It is seen that the upper limit of the integration step δa depends on the solution

through the speed of the contact radius da/dt = G−1(A,q, a). Initially the speed

is very high, which makes it possible to use a relatively large step δa. However

as the speed da/dt becomes small the right hand side in (2.5.6) decreases and

this inequality requires a very small step of integration. In such conditions we

swap between numerical stepping in contact line radius, a, and stepping in time,

t, depending on the contact line velocity da/dt. We make this transition around

da/dt = 2.5. If the stepping in time is used, the radius a(t) is obtained from the

Wagner condition, (2.3.17), by a root finding method.

It was confirmed numerically that the solution converges with increasing number

of modes and that the number of modes used in our calculations captures the

physics of the full system with sufficient accuracy. We confirmed the convergence

with number of modes by analysing, in particular, the behaviour of the added

mass matrix, W(a). It was found that as the number of modes increases the
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elements of the added mass matrix rapidly decay, as can be seen in the Appendix

D, Figure D.0.1. The convergence with number of modes was found to be fairly

good, with 10 modes providing very good accuracy during the impact stage with

a partially wetted plate. Later, when the elastic plate is fully wetted, the method

is found to have substantially better convergence, with 5 modes providing an

adequate long term representation of the flow and plate deflection. This stems

from the elastic effects (and hence the added mass contribution) becoming much

less important compared with the rigid terms during the stage with a fully wetted

plate .

Although the method of normal modes provides a good basis to investigate the

velocity field in the droplet, plate deflection and elastic stresses, it does not allow

us to accurately determine the pressure distribution over the wetted region. The

pressure singularity at the contact line, coupled with poor convergence of the

modal series for the plate acceleration wtt(r, t), make a series representation of

the pressure impractical as discussed by Korobkin [1998]. However, our main goal

in this paper is to study the effect of elasticity on the spreading and splashing

of a droplet. We assume that the pressure in the wetted part of the substrate

does not reduce to the vapour pressure due to the elastic plate vibration. Thus

cavitation does not occur, and both the spreading and splashing of the droplet

are not affected by finer details of the pressure distribution.

2.6 Results

Due to constraints of the Wagner model of liquid impact, simulations should be

terminated if the contact region begins to shrink, da/dt < 0, or if the velocity

of the contact region expansion becomes comparable with the speed of sound

in the liquid for t > 0. This means that for some values of the parameters α

and β in (2.2.9) the simulations cannot be completed up to the time the plate is

fully wetted. Figure 2.6.1 depicts the regions in the parameter plane (α, β) where

these two types of failure were found. The scales of the regions match those found
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Figure 2.6.1: Parametric plane showing the regions of negative and unbounded
contact line velocity. Pluses represent simulations which encountered contact
line shrinkage, a cross represents a simulation with no problems and a filled circle
represents a simulation with an unbounded contact line velocity.

by Korobkin and Khabakhpasheva [2006] in the corresponding two-dimensional

problem of water wave impact onto a simply supported elastic plate. Figure 2.6.1

is obtained by integration of the system (2.5.1)-(2.5.3) in the interval 0 < a ≤ 1

for values of β from 0.0005 to 0.016 in steps of 0.0005 and α from 0.001 to 0.07

in steps of 0.001. It is seen that the regions of failure are limited to small values

of both α and β. The Wagner model can be used for any values of β if α > 0.07.

For an aluminium plate, with density ρp=2700 kg/m3, of radius L = 1 mm and

a water droplet of density ρ = 1000 kg/m3, this inequality provides the thickness

of the plate as 26µm.

To understand the physical reasons for the very small and very large velocities of

the contact line for some conditions of the drop impact, note that the denominator

in (2.5.1) is responsible for relative velocity of impact and the numerator for

the relative angle between the initial shape of the droplet and the shape of the

deformed elastic plate. This becomes more transparent if we return to the Wagner

condition (2.2.33) for the radius of the contact region a(t), differentiate it in time
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and introduce the new variable of integration, r = a(t) sin(θ),

da

dt
· 1

a2

∫ a

0

(
r +

∂w

∂r
(r, t)

)
r2dr√
a2 − r2

=
1

a

∫ a

0

(
1− ∂w

∂t
(r, t)

)
rdr√
a2 − r2

. (2.6.1)

In (2.6.1), r in the first integral is equal to the slope of the initial shape of the

droplet and ∂w/∂r is the slope of the deformed plate in the contact region, 0 <

r < a. The integral on the left-hand side of (2.6.1) divided by a2 represents the

averaged difference of the slopes with the weighting r2/
√
a2 − r2. The weighting

determines the relative importance of the local difference in slope. The weighting

r2/
√
a2 − r2 indicates that the value of the integral depends mainly on the relative

slope near the contact line. The same is valid for the integral on the right hand

side of (2.6.1). This integral divided by a is the averaged relative velocity of

the impact with weighting r/
√
a2 − r2 . In the Wagner model of impact, both

integrals should be positive. If the velocity of the plate deflection, ∂w/∂t, becomes

large and the integral in the right hand side of (2.6.1) approaches zero then da/dt

also approaches zero and the contact region stops expanding. This type of failure

is shown in Figure 2.6.1 by pluses. Another type of failure corresponds to the case

where the slope of the deformed plate, −∂w/∂r, becomes large and approaches

the slope, r, of the free surface of the undisturbed droplet. Then the integral

on the left hand side of (2.6.1) approaches zero and da/dt → ∞. Both types

of failure occur at the later stage, when the main part of the elastic plate has

been wetted. The first type of failure is illustrated by Figures 2.6.2 and 2.6.3 for

α = 0.01 and β = 0.001. These values of the non-dimensional parameters α and

β imply that for the aluminium plate of radius 1 mm and droplet radius 5 mm,

the impact speed is 9.67m/s and the elastic plate thickness is 3.7µm. Figure 2.6.2

shows that the non-dimensional contact line speed, da/dt, for this elastic plate

is smaller than that for the corresponding rigid substrate, and the contact line

speed starts oscillating at a ≈ 0.65, well before the plate is fully wetted. The

averaged plate deflection and velocity,

∫ 1

0
w(r, t)rdr,

∫ 1

0
wt(r, t)rdr, (2.6.2)



Chapter 2: Droplet Impact onto a Simply Supported Elastic Plate 54

are shown in Figure 2.6.3. Both the averaged deflection and velocity are very

small for 0 < a ≤ 0.2. However, the plate deflection cannot be neglected even

during this early stage. The effect of the plate deflection on the speed of the

contact line is significant (see Figure 2.6.2). Note that the acceleration of the

contact line, d2a/dt2, is always negative for rigid plates, but oscillates for an

elastic plate.

The second type of failure is related to the shape of the deformed plate. The

non-dimensional speed of the contact line and the shapes of the plate at time

instants corresponding to the radius of the contact line with a step of 0.05 from

a = 0 to a = 0.9 are shown in Figure 2.6.4 for α = 0.005 and β = 0.014. These

values of α and β correspond to an aluminium plate of radius 1 mm and the

thickness 2µm impacted by a droplet of water with radius 5 mm and speed 0.9

m/s. The speed of the contact line becomes unbounded shortly before the plate is

completely wetted. While the elastic plate is partially wetted the contact region

expands slower than for a rigid plate, which qualitatively agrees with the results

by Pepper et al. [2008]. This is not typically true as the contact line approaches

the edge of the plate. This phenomenon was not observed by Pepper et al. [2008],

where an elastic film of large radius was considered. The early stages, where the

wetted region is far smaller than the elastic plate, act as an approximation to the

situation investigated by Pepper et al. [2008].

Since the slope of the substrate is discontinuous at the edge of the simply

supported elastic plate, the contact line speed increases rapidly as the contact

line passes over the edge of the plate. The present model can take the change in

slope into account, as shown in Figure 2.6.5 for α = 0.1 (h = 36 µm) and

β = 0.02 (V = 68 m/s). This Figure demonstrates that, as the contact line

advances beyond the edge of the elastic plate the influence of the plate

vibrations on the contact line velocity rapidly decays.

Figure 2.6.6 illustrates the method to determine the conditions of splashing, see

section 2.4.2. Splashing occurs for any τ such that the function 1/tc(τ), given by
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Figure 2.6.2: Contact line velocity da/dt for α = 0.01, β = 0.001 as a function of
the non-dimensional contact line radius a(t).
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Figure 2.6.3: The averaged plate displacement (a) and averaged plate velocity
(b) for α = 0.01, β = 0.001 as functions of contact line radius a.
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Figure 2.6.4: The contact line velocity (a) and plate shapes (b) calculated at
intervals of a = 0.05 for α = 0.005, β = 0.014.
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Figure 2.6.5: Contact line velocity da/dt for α = 0.1, β = 0.02 as a function of
contact line radius a.

(2.4.32) and shown in Figure 2.6.6 by the solid line, satisfies both inequalities in

(2.4.33). The limits in (2.4.33) are shown by dotted lines in Figure 2.6.6. The

earliest time of splashing, tmin, corresponds to the maximum of 1/tc(τ) under

conditions (2.4.33). This value is shown in Figure 2.6.6 by a circle. Splashing

occurs also for liquid particles with their Lagrangian coordinates τ around 0.2 and

0.35 but slightly later than for the earliest splash. For the parameters shown in

Figure 2.6.6 we can see that the first splash occurs at τ = 0.071 and is seen around

non-dimensional time t = 1/3.87 ≈ 0.258. It is expected that surface tension,

viscosity and some other factors not included in our model may smooth the

predicted splash. Profiles of the jet thickness as functions of the radial coordinate

r > a(t), at t = 0.07, 0.12 and 0.19 are shown in Figure 2.6.7a and in Figure 2.6.7b

as functions of the Lagrangian coordinate τ at different time instants. It is seen

that the jet thickness decreases in front and behind the liquid particle at which

splashing occurs.

The region of the parametric plane α, β, where splashing can occur is large, see

Figure 2.6.8, and include all cases studied above. As parameter pairs come closer

to the edge of the splashing region the time in which we see the splash occur

grows rapidly.
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Figure 2.6.7: For the parameters α = 0.1 and β = 0.5 (a) shows the jet thickness
h(r, t) given by (2.4.29) as the function of r, where r > a(t) for t = 0.07, 0.12 and
0.19. Plot (b) shows the growth of the splash for the interval 0.12 < τ < 0.14
of the Lagrangian coordinate τ , from time t = 0.07 to t = 0.18 in steps of 0.01.
Increasing time is shown by increasing maximum in both plots.
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3

Impact of a droplet with a clamped

elastic plate

In the previous chapter we analysed a liquid droplet impacting a simply supported

elastic plate and found the inclusion of the plate was sufficient to cause splashing

even when all other common mechanisms that cause splashing, such as the air,

were neglected. In light of this result we now model the same situation as in

chapter 2, with a change in the edge conditions from simply supported to clamped.

This edge condition is more representative of a wide range of real world situations

and is motivated by models of weld seams. It is common to model a welded join

using the edge condition (at the weld)

∂2w

∂r2
= h

∂w

∂r
, (3.0.1)

where h is a positive real number [Narita, 1980]. The clamped and simply

supported edge conditions act as limiting cases of this model. In this section we

will model the plate using a clamped edge condition which, together with the

previous section, provide results supporting the more physically relevant

situation given by equation (3.0.1)
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3.1 Problem formulation

We consider the normal impact of an axisymmetric liquid droplet of radius R with

a circular elastic plate of radius L clamped at its edges to an otherwise rigid flat

substrate. The droplet impacts at the centre of the elastic plate which is where we

place origin of our cylindrical coordinate system with positive z pointing towards

the incoming liquid droplet. The droplet impacts at a constant speed V and we

assume the radius of the elastic plate to be much smaller than that of the droplet

such that

ε = L/R� 1. (3.1.1)

As in the previous section we are interested in a short time after impact,

motivating us to take the scales of L for length, V for velocity, ρV 2R/L for

pressure, T = L2/(V R) for time and V T for displacement. We use a frame of

reference where the droplet is held at rest and the substrate move towards it.

We introduce the velocity potential ϕ(r, z, t), liquid pressure p(r, t) and elastic

plate displacement w(r, t). Following linearisation, see the previous section for

details, the hydrodynamic part of our problem is formulated as

∇2ϕ = 0, (z > 0), (3.1.2)

ϕ = 0, (z = 0, r > a(t)), (3.1.3)

ϕz = 1− wt(r, t), (z = 0, r ≤ a(t)), (3.1.4)

ϕ→ 0, (r2 + z2 →∞), (3.1.5)

with the elastic part being given by

αwtt + β∇4w = p(r, ε(t− w(r, t)), t), (r ≤ 1), (3.1.6)

w = 0, wr = 0, (r = 1), (3.1.7)

w(r, 0) = 0, wt(r, 0) = 0 (r ≤ 1). (3.1.8)
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In equations (3.1.2)-(3.1.8) we introduced the contact line r = a(t) and elastic

parameters α =
ρph
ρL and β = Eh3ε2

12(1−ν2)ρV 2L3 . Note that the formulation (3.1.2)-

(3.1.8) is identical to that used in the previous section except the elastic plate

edge condition (3.1.7). As such, we solve the system of equations (3.1.2)-(3.1.8)

in the same way as the previous section, using the method of dual integrals for

the hydrodynamic problem and method of normal modes for the elastic one.

We begin by considering the elastic problem. We represent the elastic plate using

a set of normal modes wn(r) such that

w(r, t) =
∞∑
n=1

An(t)wn(r), (3.1.9)

where the modes wn(r) are the solutions to the problem

∇4wn = k4
nwn, r < 1, (3.1.10)

wn(1) = 0, w′n(1) = 0, (3.1.11)

with eigenvalues kn. Leissa [1969] gives the solution of (3.1.10) as

wn(r) = J0(knr)−
J0(kn)

I0(kn)
I0(knr), (3.1.12)

with eigenvalues kn given by

J0(kn)I1(kn) + I0(kn)J1(kn) = 0. (3.1.13)

Note that the difference in plate boundary condition between this chapter and

the previous has been captured purely by the frequencies of the modes, governed

by equation (3.1.12).The equations governing the shape of the elastic modes in

this section and the previous section, (3.1.12) and (2.3.7), are the same but the

equations governing the frequencies (3.1.13) and (2.3.8) are different. The first

4 modes from equation (3.1.9) are plotted in Figure 3.1.1 for the clamped and

simply supported boundary conditions. Note the difference in mode behaviour
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Figure 3.1.1: The first 4 normal modes for the clamped boundary condition (a)
and simply supported (b).

near r = 1, this will be the factor driving any changes in our results presented

in section 3.2. As such the equations governing the problem are the same, aside

from (3.1.13), and are solved using the same methods as in the previous section.

We use the same symbols as in that section, so that we have to solve

q̇ = A, (3.1.14)

Ȧ = − (Λ + W(a))−1 (Zq− g(a)) , (3.1.15)

subject to initial conditions

A(0) = 0, q(0) = 0, (3.1.16)

with the motion of the contact line being given by

a2(t) = 3t− 3A(t)Q(a), (3.1.17)

The change in plate boundary condition between this and the previous chapter

does not affect the jet root or jet regions explicitly, so the jet sheet thickness will

be given by

h(r, t) = Hj(τ)

(
1− 2ä(τ)(t− τ)

ȧ(τ)

)−1(
1 +

2ȧ(τ)

a(τ)
(t− τ)

)−1

. (3.1.18)

The system of equations (3.1.14)-(3.1.15) is solved using the same set of numerical
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methods as outlined in the previous chapter.

3.2 Results

We begin by analysing the contact line motion for a typical set of plate

parameters. In Figure 3.2.1 we show the contact line motion for both a clamped

and simply supported plate with the same set of parameters α = β = 1.5. We

can see that initially the contact line behaviour is similar for the simply

supported and clamped elastic plate, however later on around a(t) = 0.6 the

contact line on the clamped plate speeds up relative to both the simply

supported and rigid plates. As we can see from the plate shapes in Figure

3.2.10, as the contact line approaches the edge of the plate the clamped plate

begins to decelerate while the simply supported plate is still accelerating

downwards. This leads the contact line on the clamped plate to gain speed

relative to the contact line on the simply supported plate.
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Figure 3.2.1: Contact line velocity against contact line position for the clamped,
simply supported and rigid substrates. The elastic plates have parameters α=1.5,
β=1.5.
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Figure 3.2.2: Plate shapes taken at snapshots of a = 0.1 for the plate parameters
α = β = 1.5. Figure (a) is a clamped plate and Figure (b) simply supported

As with the previous section there is a range of plate parameters for which the

contact line velocity either stops or grows extremely large. If either of these

things happen we must immediately stop the numerics due to a break down in

the Wagner model. In Figure 3.2.3 we show the regions where the contact line

stops in blue stars and where the contact line velocity becomes extremely large

in red crosses. When comparing Figure 3.2.3 to the equivalent for the simply

supported plate, Figure 2.6.1 the parameter region where these break downs are

encountered is much smaller for the clamped case. The shape of Figures 3.2.3

and 2.6.1 are qualitatively very similar.

In addition to the small parameter regimes shown in Figure 3.2.3 we can

investigate a wide range of α and β. We will do so while focusing on splashing

as that was the key result from the previous chapter. Showing that elastic

substrates can cause splashing, rather than simply reduce it as seen by Pepper

et al. [2008] and Howland et al. [2016] is a key result. However the simply

supported edge condition is less physically relevant than a clamped plate. Since

the clamped plate is generally less responsive to the liquid droplet than a

simply supported plate of the same parameters some changes in the splashing

behaviour are expected. In Figure 3.2.4 we plot the conditions described in

section 2.4.2 and by equation (2.4.33). Following those methods Figure 3.2.4

indicates that splashing does occur for this set of parameters and the time of

splashing is t = 1/4.12 = 0.24 occurring at Lagrangian coordinate τ = 0.097. In
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Figure 3.2.3: A parametric α − β plot showing regions where the contact line
velocity becomes zero (blue stars), very large (red crosses) and reaches the end
of the plate with no issue (black pluses)

Figure 3.2.5 we show the jet profile corresponding to the splashing conditions in

Figure 3.2.4. As we can see by comparing these two Figures to Figures 2.6.6

and 2.6.7 we see that the generation, growth and eventual splash of the jet has

the same mechanism whether the plate is simply supported or clamped.

In Figure 3.2.6 we perform a parametric analysis, showing the regions of α and β

for which splashing is predicted. Compared with the same result for the simply

supported plate Figure 2.6.8 we can see that splashing is far less common for the

clamped plate. This is not unexpected as the time scale of the clamped plates

oscillations is longer than that of the simply supported plate as evidence by the

difference in k1 (3.196 for clamped and 2.222 for simply supported). This causes

the clamped plate to become fully wetted quicker than the simply supported

plate with the same parameters, for example for a plate with parameters α = 0.1

and β = 0.5 the clamped plate is fully wetted at time t = 0.349 and the simply

supported plate at time t = 0.3977. Since the clamped plate has less influence

over the motion of the contact line, and the clamped plate effect on the contact
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Figure 3.2.4: Plot of splashing conditions (2.4.33) for α = 0.1 and β = 0.5. The
circle indicates the τ at which splashing is first seen.
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Figure 3.2.5: The shape of the jet at times t = 0.1, 0.155, 0.21, 0.265 for plate
parameters α = 0.1 and β = 0.5
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Figure 3.2.6: A parametric α−β plot showing regions where splashing is predicted
(black crosses) and not predicted (red pluses)

line is the cause of splashing in our model, as discussed in the previous chapter,

the reduction in the size of the α− β region in which we predict splashing for a

clamped plate makes sense. When comparing Figures 3.2.6 and 2.6.8 we can

see that there are some areas in which splashing is predicted for both plate

types, some where it doesn’t happen in either as in Figure 3.2.1 and some where

splashing is predicted for the simply supported plate but not the clamped plate.

In Figure 3.2.7 we plot the contact line velocity against contact line position for

α = 1.5 and β = 0.5. This pair of parameters are such that splashing is predicted

to occur on the simply supported plate but not the clamped one. Although hard

to see, the gradient of the clamped plate contact line velocity never becomes

positive, however at a = 0.964 the simply supported contact line have a small

positive velocity, causing splashing. In Figure 3.2.9 we show the contact line

velocity again but for this set of parameters (α = 0.1 and β = 0.5) splashing is

predicted for both the clamped and simply supported plate.

These results confirm the findings in the previous chapter in relation to the

presence of an elastic plate causing splashing and extend them to a more
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Figure 3.2.7: Contact line velocity for clamped, simply supported and rigid
substrates. The elastic substrates have parameters α = 1.5 and β = 0.5. For
these parameters a splash is predicted for the simply supported plate only.
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Figure 3.2.8: Plate shapes taken at snapshots of a = 0.1 for the plate parameters
α = 1.5 and β = 0.5. Figure (a) is a clamped plate and Figure (b) simply
supported

physically relevant clamped plate. This provides experimentalists with a much

simpler set up to test our findings, this is of great interest as previous

experimental results surrounding deformable solids have shown a decrease in

splashing, as opposed to our situation where we generate splashing purely due

to the deformable substrate. By predicting splashing for both simply supported

and clamped plates we also expect to see it for a plate with a welded edge,

modelled by equation (3.0.1), although this is left as future work.
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Figure 3.2.9: Contact line velocity for clamped, simply supported and rigid
substrates. The elastic substrates have parameters α = 0.1 and β = 0.5. For
these parameters a splash is predicted for both the simply supported and clamped
plates.
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Figure 3.2.10: Plate shapes taken at snapshots of a = 0.1 for the plate parameters
α = 0.1 and β = 0.5. Figure (a) is a clamped plate and Figure (b) simply
supported



4

Air cushioning

4.1 Air cushioning with an elastic substrate

In this chapter we analyse the pre-impact deformation in a liquid free surface

and elastic substrate due to the presence of a gas layer. A coupled lubrication

style problem is derived from the dimensional Navier-Stokes equation and solved

in section 4.1.2. The numerical methods used to solve the coupled lubrication

problem are discussed in section 4.2 with validation presented in section 4.2.1.

The touchdown point is investigated using asymptotic methods in section 4.2.2.

Results and analysis are presented in section 4.3.

4.1.1 Problem Definition

We investigate the pre-impact gas cushioning behaviour of a droplet approaching

touchdown onto a partially elastic substrate. We assume the two dimensional

liquid droplet is initially a circle of radius R and approaches the substrate with a

normal velocity U . Using a Cartesian coordinate system (x, y) with origin placed

directly below the centre of the liquid droplet on the solid substrate. The time

origin t = 0 is the time at which an uncushioned droplet would first impact the

solid substrate. The undisturbed liquid free surface f(x, t) is given by

y = f(x, t) = ±
√
R2 − x2 +R− Ut. (4.1.1)



Chapter 4: Air cushioning 71

The substrate contains an elastic plate of length L ≥ 0 centred at x = x0. The

solid substrate is described by

y = W (x, t) =


0 x ≤ x0 − L

2 ,

w(x, t) x0 − L
2 < x < x0 + L

2 ,

0 x0 + L
2 ≤ x,

(4.1.2)

where w(x, t) is the displacement of the elastic part of the substrate. A schematic

of the problem geometry can be seen in Figure 4.1.1.

x

y

y = f(x, t)

y = W (x, t)

U

Figure 4.1.1: Schematic showing the problem being considered in this section.

The liquid droplet is assumed to be incompressible and irrotational. The liquid

velocity field u1 = (u1, v1) is governed by the Navier-Stokes equations

∇ · u1 = 0, (4.1.3)

D1u1

Dt
=

(
∂

∂t
+ u1 · ∇

)
u1 = − 1

ρ1
∇p1 +

µ1

ρ1
∇2u1. (4.1.4)

Subscript 1 denotes a property of the liquid. In equation (4.1.4) ρ1 is the liquid

density, µ1 is the liquid dynamic viscosity and p1 is the liquid pressure, measured

relative to an atmospheric pressure pa such that pl = pa + p1 gives the total

hydrodynamic pressure in the liquid droplet.

We denote gas properties by a subscript 2. The gas is assumed to be irrotational
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and incompressible. The gases velocity field u2 = (u2, v2) is governed by

∇ · u2 = 0, (4.1.5)

D2u2

Dt
=

(
∂

∂t
+ u · ∇

)
u2 = − 1

ρ2
∇p2 +

µ2

ρ2
∇2u2. (4.1.6)

As in the liquid we measure the gas pressure relative to the atmospheric pressure

pa so pg = pa+p2 provides the total pressure in the gas. The material parameters

ρ2 and µ2 are the density and dynamic viscosity of the gas respectively. On

the free surface interface between the liquid and gas, y = f(x, t), we have the

kinematic and dynamic boundary conditions

D1(y − f(x, t))

Dt
=
D2(y − f(x, t))

Dt
= 0, (4.1.7)

n · (T1 −T2) · n = σ∇ · n, (4.1.8)

n · (T1 −T2) · t = 0. (4.1.9)

We have introduced the constant surface tension σ, inward pointing unit normal

and tangential vectors to the free surface n and t and liquid and gas stress tensors

T1 and T2. The stress tensors are given by

T1 = −p1I + 2µ1 (∇u1 + (∇u1)ᵀ) (4.1.10)

On the interface between the gas and solid substrate, y = W (x, t), we have the

no slip and impermeability conditions

v2 =
∂W

∂t
, u2 = 0. (4.1.11)

As in the previous chapters we use thin plate theory to model the elastic part

of the substrate. Modelling the plate as an Euler beam with clamped edges at

x = x0 ± L/2. The governing equation for the plate shape is given by

µp
∂2w

∂t2
+ EI

∂4w

∂x4
= p2(x, y = w(x, t), t), (4.1.12)
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∂w

∂x
= w = 0, x = x0 ±

L

2
. (4.1.13)

In the plate equation (4.1.12) µp is the mass per unit length of the plate and the

product EI is the flexural rigidity.

We assume that at some time t = t0 < 0 the droplet free surface is undeformed

and gas pressure is the same as atmospheric pressure and the plate is flat and

stationary. These assumptions form our initial conditions

f(x, t0) = ±
√
R2 − x2 − Ut0 + r, p2(x, y, t0) = 0, (4.1.14)

w(x, t0) = 0,
∂w(x, t0)

∂t
= 0. (4.1.15)

We now non-dimensionalise the model. The droplet radius R is used as the

characteristic length scale, impact speed U as velocity scale, the ratio R/U as time

scale. Since the dynamic effects of the incoming droplet dominate the problem

we use ρ1U
2 as the pressure scale. The free surface and elastic plate shapes are

non-dimensionalised using the same scale as the vertical coordinate, R. Denoting

dimensionless variables with an over-bar, x = Rx̄ for instance, we have the liquid

governing equations

∇̄ · ū1 = 0, (4.1.16)

D1ū1

Dt̄
= −∇̄p̄2 +

1

Re
∇̄2ū1. (4.1.17)

We have introduced the liquid Reynolds number Re = ρ1UR/µ1. The free surface
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boundary conditions become

D1(ȳ − f̄(x̄, t̄))

Dt̄
=
D2(ȳ − f̄(x̄, t̄))

Dt̄
= 0, (4.1.18)

n ·
(

(p̄2 − p̄1) I +
2

Re

(
∇̄ū1 −

(
∇̄ū1

)ᵀ)− 2µ2

µ1Re

(
∇̄ū2 −

(
∇̄ū2

)ᵀ)) · n =
1

We
∇̄ · n̄,

(4.1.19)

n ·
(

(p̄2 − p̄1) I +
2

Re

(
∇̄ū1 −

(
∇̄ū1

)ᵀ)− 2µ2

µ1Re

(
∇̄ū2 −

(
∇̄ū2

)ᵀ)) · t = 0,

(4.1.20)

where We = Rρ1U
2/σ is the Weber number. The gas governing equations take

the form

∇̄ · ū2 = 0, (4.1.21)

ρ̄2

ρ1

D2ū2

Dt̄
= −∇̄p̄2 +

µ2

Reµ1
∇̄2ū2. (4.1.22)

The elastic plate governing equations take the form

W̄ (x̄, t̄) =


0 x̄ ≤ x̄0 − L̄

2 ,

w̄(x̄, t̄) x̄0 − L̄
2 < x̄ < x̄0 + L̄

2 ,

0 x̄ ≥ x̄0 + L̄
2 ,

(4.1.23)

α
∂2w̄

∂t̄2
+ β

∂4w̄

∂x̄4
= p̄2(x̄, ȳ = w̄, t̄), (4.1.24)

∂w̄

∂x̄
= w̄ = 0, x̄ = x̄0 ±

L̄

2
, (4.1.25)

where

α =
ρph

ρ1R
, β =

EI

ρ1R3U3
. (4.1.26)

As in the previous chapters, the parameter α governs the important of the

structural mass of the plate to the added mass of the liquid and depends on the

plate thickness h and plate density ρp. The parameter β can be thought of as



Chapter 4: Air cushioning 75

the dynamic rigidity of the plate. The initial conditions applied at some time

t̄ = t̄0 < 0 are given in non-dimensional form by

f̄(x̄, t̄0) = ±
√

1− x̄2 − t̄0 + 1, p̄2(x̄, ȳ, t̄0) = 0, (4.1.27)

w̄(x̄, t̄0) = 0,
∂w̄(x̄, t̄0)

∂t̄
= 0. (4.1.28)

The gas-substrate boundary conditions retain their form

v̄2 =
∂W̄

∂t̄
, ū2 = 0, ȳ = W̄ . (4.1.29)

In addition to the droplet radius R there is another, shorter, length scale H.

The scale of H corresponds to the thickness of the air gap when pressure in the

air film makes a leading order contribution to the free surface and elastic plate

deformation. We assume that H � R and introduce a small parameter δ

δ =
H

R
. (4.1.30)

Since the gas has a much lower density than the liquid it only has an appreciable

effect on the liquids movement when the gap between solid substrate and liquid

droplet is very small. We investigate the air cushioning dynamics during a short

time before impact, motivating a rescaling of time t̄ = δ2t. We reuse symbols from

the dimensional terms, with the understanding that from here on in all variables

are dimensionless and scaled. As in the Wagner model of liquid impacts we are

interested in a small square window close to the touchdown region, motivating a

rescaling of coordinates to (x̄, ȳ) = δ(x, y). However even on this small vertical

scale the pressure in the gas is not high enough to deform the liquid free surface.

As such in the gas we have a separation of vertical and horizontal scales, providing

(x̄, ȳ) = δ(x, δy). In order to maintain conservation of mass the length scales force

the gas velocity scales (ū2, v̄2) = (δ−1u2, v2). To allow for deformations in the free

surface and substrate deformation the substrate is scaled to match the vertical
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scale, f̄ = δ2f . Pressure is scaled, p̄2 = δ−1p2, is motivated from matching the

liquid pressure scale discussed below. We substitute

(x̄, ȳ, t̄, ū2, v̄2, f̄ , p̄2) = (δx, δ2y, δ2t, δ−1u2, v2, δ
2f, δ−1p2) (4.1.31)

into the horizontal component of the gas momentum balance equation (4.1.22)

δ2 ρ2

ρ1

D2u2

Dt
= −δ3∂p2

∂x
+

µ2

Reµ1

(
δ2∂

2u2

∂x2
+
∂2u2

∂y2

)
. (4.1.32)

When considering a typical gas-liquid pairing, air and water for instance, we find

that the ratios ρ2/ρ1 and µ2/µ1 are both small, with the density ratio smaller

than the viscosity ratio. From this we can see that for some range of Re the

∂2u/∂2y term is the largest in equation (4.1.32). In order to satisfy boundary

conditions this must be balanced by another term. The pressure gradient term is

the next largest, motivating a balance between the pressure gradient and ∂2u/∂y2

which requires δ to take the form

δ =

(
µ2

Reµ1

) 1
3

. (4.1.33)

Note that depending on the parameters the inertial term could be larger than the

viscous term which would have a different form of the small parameter δ. This

inviscid air cushioning is what Wilson [1991] studied.

Using the definition of δ above and by comparing the viscous to inertial terms in

equation (4.1.32) we find that

Re <

(
ν2

ν1

)3(µ1

µ2

)2

, (4.1.34)

for our value of δ to be correct. Substituting the values for, say, air and water

into equation (4.1.34) we find Re < 107. Similarly by requiring that δ < 1

and again using the dynamic viscosities of water and air we find Re > 0.02,

providing a wide range of applicability for our model. The leading order vertical

and horizontal components of the gas momentum equation (4.1.32) become the
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lubrication equations

∂p2

∂y
= 0,

∂2u2

∂y2
=
∂p2

∂x
, (4.1.35)

with the gas continuity equation reading

∂u2

∂x
+
∂v2

∂y
= 0. (4.1.36)

Substituting the scales (4.1.31) into the kinematic boundary condition (4.1.7)

provides

u2 = 0, v2 =
∂f

∂t
, y = f(x, t). (4.1.37)

When considering scales for the liquid phase we are interested the same small time

just before impact, providing the time scale t̄ = δ2t. The horizontal scale must

match that used in the gas x̄ = δx. The vertical scale is one order of magnitude

bigger, ȳ = δy. In the gas the vertical scale is of order O(δ2) to allow for the gas,

with its comparatively low density, to act against the liquid. This is not required

in the liquid giving us a difference in vertical scales between the gas and liquid.

We match the vertical scale in the liquid with that of the gas so that v̄1 = v1.

Conservation of mass (4.1.17) then requires we set the horizontal velocity scale to

ū1 = u1. By examining the horizontal and vertical components of the momentum

conservation equation (4.1.16) and giving pressure and unknown scale p̄1 = δap1

we find

δ−2∂ū1

∂t̄
+ δ−1ū1

∂ū1

∂x̄
+ δ−1v̄1

∂ū1

∂ȳ
= −δa−1∂p̄1

∂x̄
+ δ−2Re−1

(
∂2ū1

∂x̄2
+
∂2ū1

∂ȳ2

)
,

(4.1.38)

δ−2∂v̄1

∂t̄
+ δ−1ū1

∂v̄1

∂x̄
+ δ−1v̄1

∂v̄1

∂ȳ
= −δa−1∂p̄1

∂ȳ
+ δ−2Re−1

(
∂2v̄1

∂x̄2
+
∂2v̄1

∂ȳ2

)
.

(4.1.39)

By matching the pressure terms to the time derivatives we find a = −1 so that the

pressure scale p̄1 = δ−1p1 which also informed the previously used gas pressure
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scale. We now substitute all scales

(
x̄, ȳ, ū1, v̄1, f̄ , p̄1

)
=
(
δx, δy, u1, v1, δ

2f, δ−1p
)

(4.1.40)

into the liquid governing equations equations (4.1.16) and (4.1.17) and retain

only leading order terms to obtain the linearised Euler equations

∂u1

∂x
+
∂v1

∂y
= 0,

∂u1

∂t
= −∂p1

∂x
,

∂v1

∂t
= −∂p1

∂y
. (4.1.41)

The normal stress boundary condition, with compressibility neglected in the gas,

takes the form

p1 − p2 = δWe−1∇ · n. (4.1.42)

We can neglect the effects of surface tension provided δWe−1 � O(1) or smaller.

Using water as our liquid the inverse Weber number We−1 = σ/(Rρ1U
2)=7.28×

10−5m3s−2/(RU2). Considering droplets in the millimetre to centimetre range

we require U > 0.26ms−1 and U > 0.085ms−1. Considering our Reynolds number

has the limit Re < 107 we can comfortably neglect the effects of surface tension.

Under this assumption the dynamic boundary condition takes the form

p1 = p2, y = f(x, t). (4.1.43)

The plate is governed by the same short time scale as the other phases, t̄ = δ2t.

In order to retain a coupled problem the plate deformation has the same scale as

free surface deformations w̄ = δ2w. The small square region close to the contact

point motivates coordinate scalings of (x̄, ȳ) = δ(x, y) for the elastic plate. The

pressure scale matches that used in the gas problem p̄2 = δ−1p2. If we use a

different scale for the plate deformation w̄ or pressure the plate problem will

decouple from the gas-liquid problem, removing its dynamics from any leading

order behaviour further on in this chapter. Substituting the scales

(x̄, ȳ, t̄, w̄, p̄2) =
(
δx, δy, δ2t, δ2w, δ−1p2

)
, (4.1.44)
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into the plate governing equation (4.1.24) and boundary conditions (4.1.25)

α̂
∂2w

∂t2
+ β̂

∂4w

∂x4
= p2, (4.1.45)

∂w

∂x
= w = 0, x = x0 ±

L

2
, (4.1.46)

∂w

∂t
= v2, x = x0 ±

L

2
, y = f(x, t), (4.1.47)

where we defined two new parameters

α̂ =
α

δ
=

ρphU
1
3

(ρ1R)
2
3 µ

1
3
2

, β̂ =
β

δ
=

EI

ρ
2
3
1R

8
3U

8
3µ

1
3
2

. (4.1.48)

We assume that α̂ and β̂ are both of order O(1). For example if we consider

a water droplet of radius 1 cm impacting an aluminium plate of thickness 0.05

mm at a speed of 4 m/s we get α̂ = 1/7 and β̂ = 1.66 with a Weber number

We = 4.5× 10−4 � 1 and Reynolds number of Re = 2× 10−4 � 10−7.

4.1.2 Problem Solution

The pre-impact gas cushioning problem derived in the previous sections is non-

linear, coupled to both liquid and elastic phases and very difficult to solve. The

introduction of scaling arguments, based on considering a short time pre-impact,

has simplified equations to be solved. Nevertheless, the problem remains coupled

to both liquid and elastic phase and non-linear. We turn the system above into a

pair of coupled integral equations together with the plate equation to be solved

with numerical methods described later.

To begin with use the equations (4.1.35) to find u2,

u2(x, y, t) =
1

2

∂p2(x, t)

∂x
y2 +A(x, t)y +B(x, t), (4.1.49)

where A and B are unknown functions, introduced by integration. In order to
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set these functions we make use of the boundary conditions on the free surface

and solid substrate, equations (4.1.37) and (4.1.29) respectively. We arrive at a

system of two equations,

1

2

∂p2

∂x
f2 +Af +B = 0, (4.1.50)

1

2

∂w

∂x
w2 +Aw +B = 0. (4.1.51)

The simultaneous equations (4.1.50)-(4.1.51) are solved for A and B providing

A = −1

2

∂p2

∂x
(f + w) , B =

1

2

∂p2

∂x
fw. (4.1.52)

Now we take the gas continuity equation (4.1.36) and integrate across the gas

from y = w(x, t) to y = f(x, t),

∫ f(x,t)

w(x,t)

∂u2

∂x
dy + v

∣∣∣∣f(x,t)

w(x,t)

= 0. (4.1.53)

Substituting our expression for u2, equation (4.1.49) with (4.1.50)-(4.1.51), and

using boundary conditions (4.1.37) and (4.1.47) we find

1

2

∂

∂x

(
∂p2

∂x

(∫ f

w
y2 − (f + w)y + fw

))
+
∂

∂t
(f − w) = 0. (4.1.54)

Integrating equation (4.1.54) provides us with the first governing equation,

1

12

∂

∂x

(
∂p2

∂x
(f − w)2

)
=

∂

∂t
(f − w) . (4.1.55)

We take the liquid governing equations (4.1.41) and differentiate the horizontal

and vertical momentum equations with respect to x and y respectively,

∂

∂y

(
∂v1

∂t

)
=

∂

∂x

(
∂p1

∂x

)
,

∂

∂x

(
∂v1

∂t

)
= − ∂

∂y

(
∂p1

∂x

)
, (4.1.56)

which are the Cauchy-Riemann equations for v1 and p1. By definition equations

(4.1.56) give us an analytic function K(z, t) = ∂v1
∂t + i∂p1∂x in the fluid y ≥ f(x, t).
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Using the Hilbert formula provides

< [K(x+ if, t)] =
1

π
P.V.

∫ ∞
−∞
= [K(ξ + if, t)]

dξ

x− ξ , (4.1.57)

where P.V. indicates a principal value integral. Substituting K into equation

(4.1.57) results in

∂v1(x, f, t)

∂t
=

1

π
P.V.

∫ ∞
−∞

∂p1(ξ, f, t)

∂ξ

dξ

x− ξ . (4.1.58)

The dynamic and kinematic boundary conditions on y = f(x, t) then give us the

second governing equation

∂2f

∂t2
=

1

π
P.V.

∫ ∞
−∞

∂p2(ξ, t)

∂ξ

dξ

x− ξ . (4.1.59)

4.2 Numerical Methods

The full system of governing equations,

∂

∂x

(
∂p2

∂x
(f − w)3

)
= 12

∂

∂t
(f − w) , (4.2.1)

∂2f

∂t2
=

1

π
P.V.

∫ ∞
−∞

∂p2(ξ, t)

∂ξ

dξ

x− ξ , (4.2.2)

α̂
∂2w

∂t2
+ β̂

∂4w

∂x4
= p2, x0 −

L

2
≤ x ≤ x0 +

L

2
, (4.2.3)

together with boundary conditions

∂w

∂x
= 0, w = 0, x = x0 ±

L

2
, (4.2.4)

p2 = 0, f =
x2

2
− t, x2 →∞, (4.2.5)

and initial conditions

p2 = 0, f =
x2

2
− t, w = 0, t→ −∞, (4.2.6)
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form coupled system of linear partial differential equations to be solved with one

spatial dimension and time. We use finite differences to solve the liquid and gas

problems (5.3.10b)-(4.2.2) and the method of normal modes to solve the plate

equation (4.1.45).

For the finite difference solutions we use uniform grids in x and t with node

spacings of δx, δt respectively. We introduce the notation

f(x, t) = F ij , p2(x, t) = P ij , w(x, t) = W i
j , (4.2.7)

where the subscript j and superscript i refer to the value of the function at the

time node tj and position node xi respectively. Implementing the trapezium rule

using first order centred differences we find that the free surface equation (4.2.2)

gives

F ij−1 − 2F ij + F ij+1

(δt)2
=

N∑
k=0
k 6=i

P k+1
j − P k−1

j

(xi − xk)
mk, (4.2.8)

where mk is the weight function such that mk = 2δx at the end points k =

0, k = N and mk = δx otherwise. The k 6= i is required for the principal value

integration in order to avoid the singularity when xi = xk. In the far field we

assume that the gas pressure and liquid free surface are undisturbed from their

starting values, P ij = 0 and F ij =
(
xi
)2
/2− tji for i /∈ [0, N ].

Equation (4.2.8) is rearranged to give the next time steps value of the free surface

in terms of known quantities

F ij+1 = 2F ij − F ij−1 + (δt)2
N∑
k=0
k 6=i

P k+1
j − P k−1

j

(xi − xk)
mk. (4.2.9)

In the pressure integro-differential equation (5.3.10b) we expand the left hand

side,

∂2p2

∂x2
(f − w)3 + 3 (f − w)2 ∂p2

∂x

∂ (f − w)

∂x
, (4.2.10)
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which we then use finite differences to find

P i−1
j

(
4
(
F ij −W i

j

)3 − 3
(
F ij −W i

j

)2 ((
F i+1
j −W i+1

j

)
−
(
F i−1
j −W i−1

j

)))
+ P i+1

j

(
4
(
F ij −W i

j

)3
+ 3

(
F ij −W i

j

)2 ((
F i+1
j −W i+1

j

)
−
(
F i−1
j −W i−1

j

)))
− 8Pji

(
F ij −W i

j

)3
=

24δx2

δt

((
F ij+1 −W i

j+1

)
−
(
F ij−1 −W i

j−1

))
. (4.2.11)

The pressure equation (4.2.11) can be written as a tridiagonal matrix of the form



b0 c1 0

a1 b1
. . .

. . .
. . . cN

0 aN bN





P 0
j

P 1
j

...

PNj


=



d0

d1

...

dN


, (4.2.12)

where

ai =
(

4
(
F ij −W i

j

)3 − 3
(
F ij −W i

j

)2 ((
F i+1
j −W i+1

j

)
−
(
F i−1
j −W i−1

j

)))
,

(4.2.13)

bi = −8
(
F ij −W i

j

)3
(4.2.14)

ci = P i+1
j

(
4
(
F ij −W i

j

)3
+ 3

(
F ij −W i

j

)2 ((
F i+1
j −W i+1

j

)
−
(
F i−1
j −W i−1

j

)))
(4.2.15)

di =
24δx2

δt

((
F ij+1 −W i

j+1

)
−
(
F ij−1 −W i

j−1

))
. (4.2.16)

The matrix problem (4.2.12) is solved for P ij using standard linear algebra

numerical methods.

For the plate problem (4.1.45) we use the method of normal modes to find the

plate displacement. This method expresses the plate displacement in terms of

eigenfunctions of its free vibrations, such that w = w(x) sin(ωt). To find the

normal modes of the plate equation we let p = 0 in the plate equation (4.1.45)

and substitute the expansion above to obtain

d4w

dx4
=
αω2

β
w. (4.2.17)
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The eigenvector problem (4.2.17) has the general solution

w(x) = A cos(kx) +B sin(kx) + C cosh(kx) +D sinh(kx), (4.2.18)

where k4 = αω2/β. If the problem has an elastic plate with its centre at x0 = 0,

then the boundary conditions can be written as

dw

dx
= 0, w = 0, x = ±L

2
, (4.2.19)

which we can use to set B = D = 0 and retain only the boundary conditions at

L/2 to set A and C. The remaining problem can be written in matrix form

 cos
(
kL
2

)
cosh

(
kL
2

)
− sin

(
kL
2

)
sinh

(
kL
2

)

A
D

 =

0

0

 . (4.2.20)

There is a non-trivial solution if the 2 × 2 determinant is zero, which provides

us with a set of kj j ≥ 1 which are the frequencies for the normal modes, wj(x).

Taking the determinant we find that kj are the positive non-trivial real roots of

f(kj) = cos

(
kjL

2

)
sinh

(
kjL

2

)
+ sin

(
kjL

2

)
cosh

(
kjL

2

)
. (4.2.21)

We then use the first line of (4.2.20) to obtain a relationship between A and D

which allows us to write the modes, up to an arbitrary scalar coefficient, as

wj(x) = cos(kjx)−
cos
(
kjL

2

)
cosh

(
kjL

2

) cosh(kjx), (4.2.22)

for the plate with its centre at x0 = 0. If the centre of the elastic plate is not at

the origin, x0 6= 0, then we have to solve (4.2.18) subject to

dw

dx
= 0, w = 0, x = a, b, (4.2.23)

where we have introduced a = x0−L/2 and b = x0 +L/2. We can let x→ x− a
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to translate the problem to

dw

dx
= 0, w = 0, x = (0, L). (4.2.24)

Solution for the eigenvalue problem (4.2.17) subject to conditions (4.2.24) was

given by Leissa [1969]. Using his solution we can write the normal modes, in the

off-centred plate case, as

wj =


cos
(
lj
(
x−a
L − 1

2

))
+

sin
(
lj
2

)
sinh

(
lj
2

) cosh
(
lj
(
x−a
L − 1

2

))
, i = 2, 4, 6...,

sin
(
kj
(
x−a
L − 1

2

))
+

sin
(
kj
2

)
sinh

(
kj
2

) sinh
(
kj
(
x−a
L − 1

2

))
, j = 1, 3, 5...

(4.2.25)

where {lj} and {kj} are the sets of non-trivial positive real roots of

tan

(
lj
2

)
+ tanh

(
lj
2

)
= 0, (4.2.26)

tan

(
kj
2

)
− tanh

(
kj
2

)
= 0, (4.2.27)

respectively. Since the modes (4.2.22) and (4.2.25) form a complete orthogonal

set we express the plate displacement in terms of them,

w(x, t) =
∞∑
j=1

Aj(t)wj(x), (4.2.28)

so that the plate equation takes the form

∞∑
j=1

(
αÄj(t) + βk4

jAj(t)
)
wj(x) = p2(x, t). (4.2.29)

Taking the projection of wi(x) against (4.2.29) and using the mode orthogonality,

Ui,jδi,j =

∫ L
2

+x0

−L
2

+x0

wi(x)wj(x)dx, (4.2.30)

we move all spatial dependence to just the pressure term,

∞∑
i=1

Uii

(
αÄi(t) + βk2

i

)
=

∫ L
2

+x0

−L
2

+x0

wi(x)p2(x, t)dx. (4.2.31)
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The integral in the right-hand side of (4.2.31) is calculated using the discrete

form of p2(x, t) as

∫ L
2

+x0

−L
2

+x0

wi(x)p2(x, t)dx =
k=b∑
k=a

P kj wi(xk)mk, (4.2.32)

where mk is the discrete weight function defined earlier and xa and xb give the

end points of the elastic plate. We can then solve the plate equation (4.2.29) for

the future value of A(t) using finite differences to arrive at

Aj,k+1 = 2Aj,k −Aj,k−1 −
(δt)2

α

(
βg4

jAj,k +

k=b∑
k=a

P kj wi(xk)mk

)
, (4.2.33)

gj =


kj , x0 = 0,

lj
L , x0 6= 0, j = 2, 4, 6...

kj
L , x0 6= 0, j = 1, 3, 5....

(4.2.34)

The plate deformation can then be put into discrete form via

W i
j =


∑∞

l=0

∑b
k=aAl,jwl(xk)

0 for all xk k 6= [a, b],

(4.2.35)

with W i
j being used in the pressure equation (4.2.12).

We now have the three equations to be solved, (4.2.9), (4.2.12) and (4.2.33). At

each time step we use the known current and past values of F , P and W to

calculate an approximate for the next value of the free surface F ij+1 via (4.2.9).

The approximate value of F and previous values of P and W then give the

pressure from (4.2.12) which is then used to calculate a plate shape (4.2.33).

The approximate values of F, P and W are then iterated until the change in

pressure between successive iterations is acceptably small. In testing requiring

the maximum difference between pressure at two iterations, Perr, to be less than

10−7 is sufficient. The values of F , P and W are then updated and the process

restarted.
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As the gap between the substrate and free surface become small the number of

iterations required for convergence increases. We set a cap on how many iterations

is allowed to occur prior to stopping the algorithm. This cap is typically set at

100 iterations, with a convergent set of F, P and W being found in less than 5

iterations for the majority of the simulation time. When we are interested in

dynamics close to touch down we reduce the time step and increase the iteration

cap.

We start our simulations from a time t = t0 < 0, this time is such that the

droplet is far enough from the substrate so that gas pressure is zero, the droplet

free surface is a parabola and the elastic plate flat and stationary. A typical

value of this starting time is t0 = −10. We chose the width of the simulation

in x to be such that the free surface at the edges matches the far field condition

throughout the simulation. When choosing the range of our simulation we have

found requiring the edge of the zone is at least 10 away from the furthest edge

of the elastic plate is sufficient. In testing, we have found that M = 10 plate

modes are sufficient for accurate and convergent modelling of the plate behaviour,

although this does depend on the plate parameters and typically M = 20 is used.

In testing choices of δx we have found that for most elastic plate parameters

δx = 0.01 provides accurate simulation. If the elastic plate is small or has a very

high frequency then a smaller δx may be required in order to accurately perform

the integral (4.2.32).

As mentioned previously, as the gas between free surface and solid substrate

becomes very thin the number of iterations to find a convergent set of F, P and

W grows rapidly. As the gap between free surface and substrate, F − W

becomes small the pressure P becomes locally extremely large. This is seen in

all lubrication style problems. From reality we know that the free surface does

touch down, or impact, the substrate. Local asymptotics are used in a later

section to show that a touch down does occur in finite time for our problem.
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Figure 4.2.1: Time evolution of the free surface height (a), elastic plate deflection
(b) and pressure (c) at the origin for plate parameters α = 1.0, β = 1.0, x0 =
0, L = 10. In each Figure there are 3 plots, calculated with differing time steps
and a spatial step of δx = 0.01.
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Figure 4.2.2: Time evolution of the free surface height (a), elastic plate deflection
(b) and pressure (c) at the origin for plate parameters α = 1.0, β = 1.0, x0 =
0, L = 10. In each Figure there are 3 plots, calculated with different spatial step
and a time step of δx = 0.01.

4.2.1 Numerical Validation

The numerical scheme described in section 4.2 contains many parameters which

must be chosen correctly to obtain accurate and reliable results. We have the

spatial and temporal step sizes δx and δt, the number of modes used in solving the

elastic plate problem M , the initial time t0 and the maximum error allowed in the

pressure per iteration Perr. Within a given time step we take an estimated free

surface shape F which is used to estimate P which is used to estimate W which

is then used to estimate a new F . This iteration continues until the maximum

difference between two subsequent pressure estimations is less than Perr. In

Figure 4.2.1 we plot the free surface height, elastic plate deflection and pressure

at the origin against time for different time steps. The Figures show very good

convergence with the time step. The time we halt simulation at is different for the

three time steps shown in Figure 4.2.1. For the plate parameters used in Figure
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Figure 4.2.3: Time evolution of the free surface height (a), elastic plate deflection
(b) and pressure (c) at the origin for plate parameters with different starting
times t = t0.

4.2.1 the δt = 0.01 simulation ran until time t = 8.28, the δt = 0.0001 ran until

time t = 9.007. This is not an issue with convergence, we could continue any of

the simulations further by allowing more iterations at each time step. In Figure

4.2.2 we also see very good convergence with respect to node spacing δx. As we

will see in the results, for example in Figure 4.3.1, touchdown often occurs at a

sharp corner like structure. Decreasing δx allows this structure to be examined

more closely but the resolution required to round this point off requires a long

computational time. Instead we investigate this touchdown region asymptotically

in the next section.

Finally we look at the effect the initial time, t = t0, has on our numerics. When

choosing t0 we must ensure that any influence due to the droplet moving through

−∞ < t < t0 is small. In Figure 4.2.3 we can see the free surface height, elastic

plate deflection and pressure at the origin against time for 4 values of starting time

ranging from t0 = −10 to t0 = −16. As we can see, while the is some quantitative

difference in the plots qualitatively the behaviour shown is consistent between the

different initial times. In addition the difference between successive choices of t0

reduces meaning that, while we could keep reducing t0 to very large numbers the

accuracy will not increase significantly for the increase in computational time and

a choice of t0 = −10 is adequate for most situations.
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4.2.2 Touchdown

In the numerical solution to the air cushioning problem (5.3.10b)-(4.2.3),

discussed in section 4.2, we approach, but do not encounter, touchdown. Smith

et al. [2003] investigated the local asymptotics for the touchdown region, the

analysis in this section follows his ideas, with the added complication of the

presence of the elastic plate. The numerical solution does indicate touchdown

occurring at some finite time and position, T0 and X0 respectively. As an

estimate we can use the final time and location of the thinnest gas film from the

numerics. We investigate the region local to the touchdown point by using

matched asymptotics. We assume there is a similarity variable η of the form

X −X0 = (T0 − T )a η, (4.2.36)

and that the free surface, pressure and plate shape all scale as

f ≈ (T0 − T )b F̃ (η) +A0, p2 ≈ (T0 − T )c P̃ (η), w ≈ (T0 − T )d W̃ (η) +A0,

(4.2.37)

where F̃ > 0 and W̃ > 0 and A0 is some constant determined by matching to

the outer solution. We substitute the local coordinates and functions (4.2.36)

and (4.2.37) into the cushioning problem (5.3.10b)-(4.2.3) to arrive at the local

problem

(T0 − T )b−2
(
b(b− 1)F̃ + aη(2b− 1)F̃ ′ + a2η2F̃ ′′

)
=

(T0 − T )c−a

π
PV

∫ ∞
−∞

P̃ ′(η̂)dη̂

η − η̂ ,

(4.2.38)

1

12

(
P̃ ′
(
F̃ − (T0 − T )d−b W̃

)3
)′

= (T0 − T )2a−2b−c−1 (aη
(
F̃ ′ − (T0 − T )d−b W̃ ′

)
− bF̃ + d (T0 − T )d−b W̃ ), (4.2.39)

α (T0 − T )d−2
(
d(d− 1)W̃ − aη(2d− 1)W̃ ′ + a2η2W̃ ′′

)
+ β (T0 − T )d−4a W̃ ′′′′ = − (T0 − T )c P. (4.2.40)
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By inspection we set b = d in order to retain both F̃ and W̃ in (4.2.39). Then

in order to maintain a critical balance in equations (4.2.39) and (4.2.38) we set

b = (a + 1)/3 and c = (4a − 5)/3. Since the local pressure must be regular but

large a is restricted to 0 < a < 5
4 . Using these scalings we can rewrite the local

plate equation (4.2.40) as

α (T0 − T )
12a−4

3

(
(a+ 1)(a− 2)

9
W̃ − aη

3
(2a− 1) W̃ ′ + a2η2W̃ ′′

)
+ βW̃ ′′′′

= − (T0 − T )5a− 4
3 P. (4.2.41)

The dominant terms are given by

W̃ ′′′′ = 0,
1

3
< a <

5

4
, (4.2.42)

α

9

(
−20

9
W̃ − η

3
W̃ ′ + η2W̃ ′′

)
+ βW̃ ′′′′ = 0, a =

1

3
, (4.2.43)

(a+ 1)(a− 2)

9
W̃ − aη

3
(2a− 1)W̃ ′ + a2η2W̃ ′′ = 0, 0 < a <

1

3
. (4.2.44)

We require that in the far field the plate displacement must be finite to match

with the outer solution. The only way to satisfy this is if W̃ = A, where A is a

constant. Our inner problem (4.2.38)-(4.2.40) takes the form

(a+ 1)(a− 2)

9
F̃ − aη

3
(2a+ 1)F̃ ′ + a2η2F̃ ′′ =

1

π
PV

∫ ∞
−∞

P̃ (η̂)dη̂

η − η̂ , (4.2.45)

1

12

(
P̃ ′
(
F̃ −A

)3
)′

= aηF̃ ′ − a+ 1

3
(F̃ −A). (4.2.46)

Smith et al. [2003] attempted to solve the local problem (4.2.45)-(4.2.46)

numerically with A = 0. They could not find an acceptable smooth solution.

The inclusion of an A 6= 0 does not change this. The implication is that the

solution of equations (4.2.45) and (4.2.46) should be irregular at some point,

η = −c1 such that

F̃ ≈ |η + c1|
2
3 , P̃ ≈ |η + c1|−

1
3 , W̃ ≈ A, η → −c1. (4.2.47)
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This motivates the consideration of a shorter time scale,

X −X0 = − (T0 − T )a c1 + (T0 − T )n ξ, n > a. (4.2.48)

By analysing the largest order terms we find that the free surface and pressure

behave as

f ≈ (T0 − T )
2n−a+1

3 F̃1 +A, p2 ≈ (T0 − T )
5a−5−n

3 P̃1, (4.2.49)

where the A term takes into account the elastic plate. The scaled free surface

and pressure are governed by

P̃ ′1(ξ)(F̃1(ξ)−A1)3 = −12ac1

(
F̃1 − C −A1

)
, (4.2.50)

a2c2F̃ ′′1 (ξ) =
1

π
PV

∫ ∞
−∞

P̃ ′1(ξ̂)dξ̂

ξ − ξ̂
, (4.2.51)

where C is a constant introduced via integration. The matching conditions are

F̃1 ≈ λ1ξ
2
3 , P ≈ λ2ξ

− 1
3 , ξ →∞, (4.2.52)

F̃1 → C −A1, P ≈ λ3|ξ|−
1
3 , ξ → −∞, (4.2.53)

with the λ constants set via

λ1 =

(
12

ac1

) 1
3 3

5
6

2
1
3

, λ2 =
(
12a5c5

1

) 1
3

(
2

3

) 2
3

, λ3 = 2λ2. (4.2.54)

The F̃1 → B − A1 condition comes from first considering a form of the far field

condition F̃1 → λ4|ξ|
2
3 , and finding that λ4 is required to be non-physically

negative at large negative ξ.

The problem defined by equations (4.2.50)-(4.2.54) can be made identical to

that analysed by Smith et al. [2003] by the substitution of F̃1 − A → F̃1. As

such, the presence of the elastic plate does not cause any local changes to the

mechanics of touchdown relative to the impact of a liquid with a flat solid
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substrate. In the paper by Smith et al. [2003] a numerical solution of equations

(4.2.50)-(4.2.54) with Ã = 0 was presented with a brief description of their

method. Their method involves substituting equation (4.2.50) into equation

(4.2.51) to obtain an equation for only F which is then iterated upon until a

converged solution is found. The details of their numerical procedure are not

given. I could not find a converged solution using their method, despite trying a

range of parameters such as grid resolutions and distance the far field conditions

are imposed. A variety of numerical schemes were used and none gave a

converged solution. Despite corresponding with the lead author of the work, I

could not replicate their results.

4.3 Results

For comparison with later results, and validation against other air-cushioning

works, we first present a set of results with a rigid solid substrate at y = 0. In

Figure 4.3.1 we show time evolution of the free surface and pressure. Figure 4.3.1

shows the same qualitative features seen in Smith et al. [2003], although the initial

free surface shapes are different. Here a free surface equation of F (x, t) = x2/2−t

is used, where in Smith et al. [2003] F (x, t) = x2 − t was used. We have the

1/2 in our shape from considering circular droplets. Despite this difference the

underlying features of air cushioning are the same. We initially see the droplet

uniformly moving at a velocity very close to −1. As the gap between the lowest

part of the droplet, initially at x = 0 and the substrate shrinks we see pressure

start to rise and the centre of the droplet slow then stop its decent. As the

centre of the droplet slows areas away from x = 0 encounter a lower pressure and

continue to move downwards. This causes the lowest part of the droplet to change

from a single minimum to two symmetrical minima. The lowest part of the free

surface continues to move out and down with the maximal pressure constantly

increasing until our iterative procedure cannot converge in a reasonable time, at

which point we stop the simulation. Touchdown has been significantly delayed
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Figure 4.3.1: Time evolution of the free surface (a) and pressure (b) with a rigid
substrate. Curves are taken at time intervals of t = 1 and at the time step before
termination of the simulation. The red line corresponds to time t = 0 and blue
to the final iteration.

by the air-cushioning effect, occurring at time t = 4.601 rather than time t = 0.

The touchdown occurs as x = ±4.51. Both the touchdown locations and time

of touchdown match the values given by Hicks and Purvis [2017] to two decimal

places.

In Figures 4.3.2 and 4.3.3 we show the free surface, substrate and pressure

evolution over time for a substrate with an elastic plate of length L = 10 and

parameters α = β = 1.0. The presence of the elastic plate acts to delay the time

of impact. As the pressure begins to build under the centre of the droplet it

begins to move both the free surface and elastic part of the substrate. Since

there are two moveable surfaces for the pressure to work against the influence of

the pressure on the free surface alone is reduced relative to the rigid substrate

case, as seen in Figure 4.3.2a. However the gap between the free surface and

substrate, depicted in Figure 4.3.3 shows a qualitatively similar behaviour to

that of the rigid case from Figure 4.3.1. The main difference we see is the

elastic plate acts to delay touchdown. For the plate parameters in Figure 4.3.2

touchdown occurs at a time t = 8.875 compared with t = 4.601 for the rigid

case. This increased touchdown time also causes the droplet to spreads further,

touching down at x = ±5.11 and trapping a higher volume gas bubble of 33.16

compared to 16.4 for the rigid plate.
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Figure 4.3.2: Time evolution of the free surface (a), elastic plate deformation (b)
and pressure (c) for a substrate with elastic parameters L = 10, α = β = 1.0.
Curves are taken at time intervals of t = 1 and at the time step before termination
of the simulation. The red line corresponds to time t = 0 and blue to the final
iteration.
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Figure 4.3.3: Time evolution of the distance between the free surface and
substrate for elastic parameters L = 10, α = β = 1.0. Curves are taken at
time intervals of t = 1 and at the time step before termination of the simulation.
The red line corresponds to time t = 0 and blue to the final iteration.

In Figures 4.3.2 and 4.3.3 the touchdown occurs almost immediately beyond the

edge of the elastic plate. By varying plate parameters we can cause touchdown

to occur on the plate itself. In Figure 4.3.4 we have a plate of length L = 20

and parameters α = β = 1.0. Touchdown occurs at x = ±8.12, significantly

after the 5.11 of our previous case but still on the elastic plate which extends to

x = ±10. It takes significantly longer for this droplet to touch down, occurring

at time t = 30.6 and trapping a much larger gas bubble of volume 54.45.
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Figure 4.3.4: Time evolution of the free surface (a), elastic plate deformation (b)
and pressure (c) for a substrate with elastic parameters L = 20, α = β = 1.0.
Curves are taken at time intervals of t = 1 and at the time step before termination
of the simulation. The red line corresponds to time t = 0 and blue to the final
iteration.

In Figures 4.3.5 and 4.3.6 we show time evolution of the gap between free surface

and substrate F−W and pressure P for a range of plate parameters α and β. The

Figures are presented such that reading down a column fixes β with α increasing

and reading across a row fixes α with β increasing. We can immediately see that

increases in both α and β cause a reduction in the volume of the bubble trapped

at touchdown. In Figure 4.3.6 we also see the pressure at both the touchdown

points and more generally across the gas increasing with both α and β. Not

shown in Figures 4.3.5 and 4.3.6 but of interest is the impact of α and β on

touchdown time, in general the more flexible the elastic plate the longer touch

down takes. For example, for β = 0.5 and α = 0.5, 1.0 and 2.0 the touchdown

times area t = 10.02, 9.89 and 9.26 respectively. Physically these results make

sense, since the pressure acts on both the free surface and solid substrate we can

decelerate the gap F −W to near zero speed with a much lower pressure than

would be needed to stop the free surface with a rigid substrate. This causes the

lower pressures at touch down we see in Figure 4.3.6 and further throughout this

chapter. It also explains the longer touch down time, as the gap F −W is easier

to decelerate than just the free surface F .

In the previous results we considered only the case where the centre of the elastic

plate was at the origin, x0 = 0. However, we formulated the problem to allow

us any combination of plate centre x0 and plate length L. From here we will

be considering the effect moving the impact location away from the centre of
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Figure 4.3.5: A set of plots showing the time evolution of the gap between free
surface and substrate F −W for different plate parameters. In each Figure the
plate length L = 10. Figures are arranged such that columns from left to right
have β = 0.5, 1.0 and 2.0 while rows from top to bottom have α = 0.5, 1.0 and
2.0.

the elastic plate has on the air cushioning mechanics, and any resulting effects

it has on touchdown. By moving the impact away from the centre of the elastic

plate we introduce a variable element of asymmetry into the problem which can

produce some interesting results. In Figure 4.3.7 we see the effect of changing

the plate position, we keep the plate parameters of α = β = 1.0 and L = 10

but move the plate centre across x0 = 0, 2, 4, 6 which is shown in each column of

Figure 4.3.7 respectively. The rows, from top to bottom, show the free surface

F , gap between the free surface and substrate F −W , substrate deformation W ,

pressure P , horizontal gas velocity at the centre of the gap U(x, y = (F−W )/2, t)

and horizontal gas flux. Note the difference in x-ranges in Figures showing the

substrate deformation and horizontal velocity versus the other Figures. In Figures

4.3.7f-4.3.7h we see the free surface gap in x < 0 moves qualitatively similar

to both the centred substrate in Figure 4.3.7e and the classical problem of a
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Figure 4.3.6: A set of plots showing the time evolution of the gas pressure P for
different plate parameters. In each Figure the plate length L = 10. Figures are
arranged such that columns from left to right have β = 0.5, 1.0 and 2.0 while
rows from top to bottom have α = 0.5, 1.0 and 2.0.

simple solid substrate shown in Figure 4.3.1a. Unlike the symmetric situations

considered earlier we see a touchdown at only one point.

An unexpected result seen in the pressure. In Figures 4.3.7n-4.3.7p we can see the

maximum pressure under the touchdown points is markedly higher than in the

symmetric case 4.3.7m. Not only that, but the pressure in the centre of droplet

is also higher in the off-centre cases. The reason for this can best be seen in the

fluxes 4.3.7u-4.3.7x. As the free surface moves towards the solid substrate the

air must be pushed out of the way, in the symmetric case 4.3.7u we see that the

flux on either side is balanced, with both touchdown points pushing air out of

the squeeze film either into the bubble or towards the far field. In the off-centre

case however the one touchdown point pushes the air not into the ’bubble’ but

out towards both far fields, this can best be seen in Figure 4.3.7v. In order for

this to happen there must be a higher pressure under the centre of the droplet
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Figure 4.3.7: A set of plots showing the effect of altering the location of the
elastic plate. Columns from left to right have plate centres at x0 = 0, 2, 4 and 6
respectively. Rows from top to bottom show the free surface F (x, t), gap between
free surface and substrate F (x, t)−W (x, t), plate deformation W (x, t), pressure
P (x, t) and horizontal velocity of the gas at the centre of the gap U(x, y =
(F (x, t) −W (x, t))/2, t) and horizontal flux of the gas. In all Figures the plate
has parameters α = 1.0, β = 1.0 and a length of L = 10. In the first two rows of
Figures the vertical lines show the edge of the elastic plate.
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Figure 4.3.8: A set of plots showing the effect of altering the location of the
elastic plate. Columns from left to right have plate centres at x0 = 0, 2, 4 and 6
respectively. Rows from top to bottom show the gap between free surface and
substrate F (x, t)−W (x, t), pressure P (x, t) and horizontal flux of the gas. In all
Figures the plate has parameters α = 0.3, β = 0.3 and a length of L = 10. In the
first two rows of Figures the vertical lines show the edge of the elastic plate.

which then requires the squeeze film under the touchdown point to have a higher

pressure. We see this effect in a wide range of plate parameters, in Figure 4.3.8l

we show the same effect for plate parameters α = β = 0.3.

As we have seen from Figures 4.3.7-4.3.8 introducing even a small level of

asymmetry by moving the plate centre from x0 = 0 to x0 = 2 causes a dramatic

change in the air cushioning behaviour. Touch down occurs in only one place

and with a gas pressure which is far more complicated than the symmetric case,

being much higher close to the one touch down point but generally lower

elsewhere.



5

Impact of a droplet which contains a

trapped gas cavity

5.1 Problem definition

After investigating air cushioning and the asymptotic behaviour of the touch

down points t the pre-impact stage we now seek an understanding of the spreading

and impact of the cushioned droplet with a solid substrate. Unlike the previous

sections an elastic substrate will not be included in this section. We will only

consider here the two dimensional impact with solid substrates for simplicity.

There are several factors complicating the definition of our problem. We must

chose a model for the free surface shape and trapped gas. We will be analysing

a situation where the free surface at the initial contact points is smooth and

flat. We begin our problem definition by considering a droplet of radius R with

a trapped cavity of length 2L and height at its centre H. We introduce the

length scale L such that the two initial impact points are located at x = ±1. We

introduce the non-dimensional free surface shape such that

y =


L
Rf(x), |x|> 1,

H
L g(x), |x|< 1.

(5.1.1)

Where L/R is the scale of the droplet free surface and H/L is the scale of the

trapped cavity. If H/L ≈ L/R then we have the situation where both the outer
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droplet and inner cavity are of the same scale which gives rise to a coupled

problem where there exists a dynamic contact point on either side of each contact

region. By considering the scales and simulations from the previous chapter we

have H ≈ 4Rδ2 and L ≈ 4Rδ where δ � 1. With these scales we see that H/L

is indeed of the same small scale as L/R = ε � 1. As such we replace the split

free surface shape from equation (5.1.1) with one of the form,

y = εF (x), (5.1.2)

in the non-dimensional variables.

We need a model for the behaviour of the gas in the trapped cavity. We make the

assumption that the gas pressure is uniform (independent of position) and that

the gas is ideal. Gas compressibility was not included in the previous sections

work on air cushioning as that was not the main focus of that chapter. However

gas compressibility has been included in air cushioning models by ?. We start

with the gas in equilibrium. As we can see in Figure 4.3.5 for a large portion of

the cavity the free surface is approximately stationary and pressure distribution is

flat. The assumption that the gas is ideal and pressure distribution independent

of position is influenced by, but not entirely justified by, the dynamics of the pre-

impact air cushioning. Instead we use it to simplify an already highly complicated

non-linear problem.

We assume the flow is irrotational and the liquid is inviscid and incompressible.

The liquid impacts at constant speed V normal to the flat solid surface occupying

y = 0, see Figure 5.1.1. We introduce the displacement potential φ(x, y, t), such

that

∂φ

∂x
= X(x, y, t),

∂φ

∂y
= Y (x, y, t), (5.1.3)

where X and Y are the liquid displacements in the x and y directions respectively.

The axis x points along the flat solid surface and y perpendicular to it, with

positive y towards the liquid droplet. The origin is placed on the solid surface

under the centre of the liquid droplet.
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1

y = yb(x, t) = f(x)− t

x = −1

y = η(x, t)

x = 1

Figure 5.1.1: A schematic showing the problem being considered after inversion
from a liquid impacting solid problem to a solid impacting liquid one.

We introduce the following scales in this chapter. L, the initial half length of

the cavity, as the length scale. H as the scale of liquid displacements. HL as

the scale of the displacement potential. The constant speed of impact V as the

velocity scale. The ratio H/V is taken as the time scale and ρV 2/ε as pressure

scale. Under these scales the touch down points are initially at x = ±1. The

non-dimensional linearised Wagner model for the displacement potential is given

by

∇2φ = 0, y < 0, (5.1.4)

∂φ

∂x
= 0, y = 0, x /∈ [−b,−a] ∪ [a, b] (5.1.5)

∂φ

∂y
= f(x)− h(t) = yb(x, t), y = 0, x ∈ [−b,−a] ∪ [a, b], (5.1.6)

φ→ 0, x2 + y2 →∞, (5.1.7)

pc(t) = C0Vc(t)
−γ , −a ≤ x ≤ a, (5.1.8)

where the points x = −b(t), x = −a(t), x = a(t), x = b(t) are the four contact

points from left to right. The system of equations (5.1.4)-(5.1.8) are solved subject

to the initial conditions

a(0) = 1, b(0) = 1, Vc(0) =

∫ 1

−1
f(x)dx, φ = 0. (5.1.9)

In equation (5.1.8) pc(t) is the pressure in the cavity, Vc(t) is the volume of the

cavity, γ is the gas constant, equal to 1.4 for air, and C0 = pc(0)/Vc(0)−γ is the
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compressibility factor. All other symbols are reused from earlier in this chapter

but with the understanding that from here on all quantities are dimensionless

unless explicitly stated otherwise. In the set of equations (5.1.4)-(5.1.8) we have

inverted the problem, so that rather than a liquid droplet approaching a flat solid

surface from above a flat liquid occupies the lower half plane with an appropriately

shaped solid approaching it from above. Performing this transformation does not

alter the leading order dynamics in anyway but allows for the use of some complex

analysis tools to solve the problem.

5.2 Problem Solution

We now solve the system of equations (5.1.4)-(5.1.8) subject to initial conditions

(5.1.9). A sketch of this boundary value problem can be seen in Figure 5.2.1.

From conservation of mass (5.1.4) and definition of the displacement potential

(5.1.3) we can write Xx +Yy = 0. By requiring there be no vorticity in the liquid

we have

∇×∇φ = ∇× (X(x, y, t), Y (x, y, t)) = 0, (5.2.1)

which provides Xy − Yx = 0. These two expressions linking X and Y are the

Cauchy-Riemann equations for the complex displacement w(z, t) = X(z, t) −

iY (z, t). The function w(z, t) is analytic in the lower half plane. In the contact

zones, x ∈ [−b,−a] ∪ [a, b] boundary condition (5.1.6) provides Y (x, y = 0, t) =

yb(x, t). Along the rest of the boundary y = 0 we have X(x, y = 0, t) = 0. We

introduce a function G(z), which is analytic in the lower half plane, on y = 0.

G(x) is purely imaginary for a(t) ≤ |x|≤ b(t), and real otherwise. The function

xx = −b(t) x = −a(t) x = a(t) x = b(t)

∂φ
∂x = 0

∂φ
∂y = yb(x, t)

∂φ
∂y = yb(x, t)

∂φ
∂x = 0 ∂φ

∂x = 0

∇2φ(x, y, t) = 0

Figure 5.2.1: Sketch of the boundary value problem (5.1.4)-(5.1.8).



Chapter 5: Impact of a droplet which contains a trapped gas cavity 105

G(z, t) =
√

(z2 − b2) (z2 − a2), has the correct behaviour on the boundary z =

x− i0. The function G(z) takes the values of

G(x− 0i, t) =



√
(x2 − a2)(x2 − b2), x ≤ −b,

i
√

(b2 − x2)(x2 − a2), −b ≤ x ≤ −a,

−
√

(b2 − x2)(x2 − a2), −a ≤ x ≤ a,

−i
√

(b2 − x2)(x2 − a2), a ≤ x ≤ b,√
(x2 − b2)(x2 − a2), b ≤ x,

(5.2.2)

along the boundary y = 0 when we approach from the lower half plane.

We introduce a new unknown function F (z, t) = w(z, t)G(z, t) which is analytic

in the lower half plane by construction. The real values of F along the boundary

y = 0 are

<F (x, t) =



0, x ≤ −b,

yb(x, t)H(x, t), −b ≤ x ≤ −a,

0, −a ≤ x ≤ a,

−yb(x, t)H(x, t), a ≤ x ≤ b,

0, b ≤ x,

(5.2.3)

where H(x, t) =
√

(b2 − x2) (x2 − a2) can now be solved. We will use the

Hilbert equation to relate real and complex parts of the analytic function

F (z, t) along the boundary y = 0. However the Hilbert equation requires

F (x, t) → 0 as |x|→ ∞. It is well known that the vertical displacement

Y (x, t) ≈ 1/x2 as x→ 0. This result was derived by Korobkin [1996] for a more

simple set of boundary conditions. However in the limit |x|→ ∞ the influence of

the two finite contact regions become negligible and the far field behaviour

holds. We can see that G(x, t) ≈ x2 in the far field, so it is reasonable to assume

F (x, t) ≈ −iφy(x, t)/x2 → iĀ(t) where Ā is a real function. We can now use the

Hilbert equation for the function F (z, t) − iĀ(t) since it decays in the far field
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by construction and is analytic in the lower half plane. We obtain

= (F (x, t))− Ā(t) =
1

π
−
∫ ∞
−∞

<F (τ, t)dτ

τ − x . (5.2.4)

From equation (5.2.4) we can extract the vertical displacement away from the

contact regions,

Y (x, 0, t) =


1

π
√

(b2−x2)(a2−x2)

(
A(t)− 2

∫ b
a

τyb(τ,t)
√

(b2−τ2)(τ2−a2)

τ2−x2

)
, −a ≤ x ≤ a,

1

π
√

(x2−b2)(x2−a2)

(
2
∫ b
a

τyb(τ,t)
√

(b2−τ2)(τ2−a2)

τ2−x2 −A(t)

)
, b ≤ |x|.

(5.2.5)

where we have set A(t) = πĀ(t).

The Wagner condition requires the vertical displacement at the contact points to

be finite, this provides the two conditions

A(t) + 2−
∫ b

a
τyb(τ, t)

√
τ2 − a2

b2 − τ2
dτ = 0, (5.2.6)

2−
∫ b

a
τyb(τ, t)

√
b2 − τ2

τ2 − a2
−A(t) = 0. (5.2.7)

An implicit assumption in the Wagner model requires that the contact points

do not stop moving, as if they do we cannot maintain a finite displacement at

the contact point. We therefore require ḃ(t) > 0 and ȧ(t) < 0. In the Wagner

impact of a parabolic free surface with a rigid plate in two dimension there are

only two contact points. The location of these points behave as a(t) ≈ 2
√
t in two

dimensions, so that their velocity only reaches zero as t→∞. In our problem it

is possible for the velocity of the inner contact line to become zero in finite time

due to the influence of the gas trapped in the cavity.

We remove singularities from the integrands in the Wagner conditions (5.2.6)-
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(5.2.7) by the use of a substitution τ = (b− a) sin2(θ) + a, providing

4(b− a)

∫ π
2

0
sin2(θ)((b− a) sin2(θ) + a)yb((b− a) sin2(θ) + a, t)√

(b− a) sin2(θ) + 2a

(b− a) sin2(θ) + b+ a
dθ +A(t) = 0, (5.2.8)

4(b− a)

∫ π
2

0
cos2(θ)((b− a) sin2(θ) + a)yb((b− a) sin2(θ) + a, t)√

(b− a) sin2(θ) + b+ a

(b− a) sin2(θ) + 2a
dθ −A(t) = 0. (5.2.9)

Equations (5.2.8)-(5.2.9) are differentiated in time providing these two ordinary

differential equations for the contact line velocities,

c11(t)ȧ+ c12(t)ḃ+ c13(t) + Ȧ(t) = 0, (5.2.10)

c21(t)ȧ+ c22(t)ḃ+ c23(t)− Ȧ(t) = 0, (5.2.11)

where

c11(t)

= −4

∫ π
2

0
sin2(θ)((b− a) sin2(θ) + a)yb((b− a) sin2(θ)

+ a, t)

√
(b− a) sin2(θ) + 2a

b+ a+ (b− a) sin2(θ)
dθ + 4(b

− a)

∫ π
2

0
cos2(θ) sin2(θ)yb((b− a) sin2(θ) + a, t)

√
(b− a) sin2(θ) + 2a

b+ a+ (b− a) sin2(θ)
dθ

+ 4(b− a)

∫ π
2

0
cos2(θ) sin2(θ)((b− a) sin2(θ) + a)y′b((b− a) sin2(θ)

+ a, t)

√
(b− a) sin2(θ) + 2a

b+ a+ (b− a) sin2(θ)
dθ + 2(b

− a)

∫ π
2

0

sin2(θ)(2− sin2(θ))((b− a) sin2(θ) + a)yb((b− a) sin2(θ) + a, t)dθ√
((b− a) sin2(θ) + 2a)(b+ a+ (b− a) sin2(θ))

− 2(b− a)

∫ π
2

0
sin2(θ) cos2(θ)((b− a) sin2(θ) + a)yb((b− a) sin2(θ)

+ a, t)

√
(b− a) sin2(θ) + 2a

(b+ a+ (b− a) sin2(θ))3
,
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c12(t) = 4

∫ π
2

0
sin2(θ)((b− a) sin2(θ) + a)yb((b− a) sin2(θ)

+ a, t)

√
(b− a) sin2(θ) + 2a

b+ a+ (b− a) sin2(θ)
dθ

+ 4(b− a)

∫ π
2

0
sin4(θ)yb((b− a) sin2(θ) + a, t)

√
(b− a) sin2(θ) + 2a

b+ a+ (b− a) sin2(θ)
dθ

+ 4(b− a)

∫ π
2

0
sin4(θ)((b− a) sin2(θ) + a)y′b((b− a) sin2(θ)

+ a, t)

√
(b− a) sin2(θ) + 2a

b+ a+ (b− a) sin2(θ)
dθ

+ 2(b− a)

∫ π
2

0

sin4(θ)((b− a) sin2(θ) + a)yb((b− a) sin2(θ) + a, t)dθ√
((b− a) sin2(θ) + 2a)(b+ a+ (b− a) sin2(θ))

− 2(b− a)

∫ π
2

0
sin2(θ)(1 + sin2(θ))((b− a) sin2(θ) + a)yb((b− a) sin2(θ)

+ a, t)

√
(b− a) sin2(θ) + 2a

(b+ a+ (b− a) sin2(θ))3
,

c13(t) = 4(b− a)

∫ π
2

0
sin2(θ)((b− a) sin2(θ) + a)ẏb((b− a) sin2(θ)

+ a, t)

√
(b− a) sin2(θ) + 2a

(b− a) sin2(θ) + a+ b
.

c21(t) = −4

∫ π
2

0
((b− a) sin2(θ) + a) cos2(θ)yb((b− a) sin2(θ)

+ a, t)

√
b+ a+ (b− a) sin2(θ)

(b− a) sin2(θ) + 2a
dθ

+ 4(b− a)

∫ π
2

0
cos4(θ)yb((b− a) sin2(θ) + a, t)

√
b+ a+ (b− a) sin2(θ)

(b− a) sin2(θ) + 2a
dθ

+ 4(b− a)

∫ π
2

0
cos4(θ)((b− a) sin2(θ) + a)y′b((b− a) sin2(θ)

+ a, t)

√
b+ a+ (b− a) sin2(θ)

(b− a) sin2(θ) + 2a
dθ

+ 2(b− a)

∫ π
2

0

cos4(θ)((b− a) sin2(θ) + a)yb((b− a) sin2(θ) + a, t)√
(b+ a+ (b− a) sin2(θ))((b− a) sin2(θ) + 2a)

dθ

− 2(b− a)

∫ π
2

0
(2− sin2(θ)) cos2(θ)((b− a) sin2(θ) + a)yb((b− a) sin2(θ)

+ a, t)

√
b+ a+ (b− a) sin2(θ)

((b− a) sin2(θ) + 2a)3
,
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c22(t)

= 4

∫ π
2

0
cos2(θ)((b− a) sin2(θ) + a)yb((b− a) sin2(θ)

+ a, t)

√
b+ a+ (b− a) sin2(θ)

(b− a) sin2(θ) + 2a
dθ + 4(b

− a)

∫ π
2

0
sin2(θ) cos2(θ)yb((b− a) sin2(θ) + a, t)

√
b+ a+ (b− a) sin2(θ)

(b− a) sin2(θ) + 2a
dθ

+ 4(b− a)

∫ π
2

0
sin2(θ) cos2(θ)((b− a) sin2(θ) + a)y′b((b− a) sin2(θ)

+ a, t)

√
b+ a+ (b− a) sin2(θ)

(b− a) sin2(θ) + 2a
+ 2(b

− a)

∫ π
2

0

cos2(θ)(1 + sin2(θ))((b− a) sin2(θ) + a)yb((b− a) sin2(θ) + a, t)dθ√
(b+ a+ (b− a) sin2(θ))((b− a) sin2(θ) + 2a)

− 2(b− a)

∫ π
2

0
sin2(θ) cos2(θ)((b− a) sin2(θ) + a)yb((b− a) sin2(θ)

+ a, t)

√
b+ a+ (b− a) sin2(θ)

((b− a) sin2(θ) + 2a)3
,

c23(t) = 4(b− a)

∫ π
2

0
cos2(θ)((b− a) sin2(θ) + a)ẏb((b− a) sin2(θ)

+ a, t)

√
b+ a+ (b− a) sin2(θ)

(b− a) sin2(θ) + 2a
dθ.

By rearranging equations (5.2.10)-(5.2.11) we then have the evolution of the

contact line velocities given by

da

dt
=
c12(t)

(
c23(t)− Ȧ(t)

)
− c22(t)

(
c13(t) + Ȧ(t)

)
c22(t)c11(t)− c12(t)c21(t)

, (5.2.12)

db

dt
=
c11(t)

(
c23(t)− Ȧ(t)

)
− c21(t)

(
c13(t) + Ȧ(t)

)
c21(t)c12(t)− c11(t)c22(t)

. (5.2.13)

We introduce u(x, y, t) and v(x, y, t), the horizontal and vertical velocity of the
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flow respectively. The velocities are governed by the set of equations

∂u

∂x
+
∂v

∂y
= 0, y < 0, (5.2.14)

∂v

∂x
− ∂u

∂y
= 0, y < 0, (5.2.15)

v = ẏb(x, t), y = 0, x ∈ [−b,−a] ∪ [a, b], (5.2.16)

u = 0, y = 0, x /∈ [−b,−a] ∪ [a, b], (5.2.17)

by using the conservation of mass, vorticity and boundary conditions. The

combination u − iv forms a function which is analytic in the lower half plane.

We will use the same method as previously used of constructing a function with

u and v which has real values are known along the boundary y = 0 and apply

the Hilbert equation to find the velocities. Multiplying the function u− iv by G

defined in (5.2.2) provides another analytic function which has real values along

the boundary given by,

< (G(x, t) (u(x, t)− iv(x, t))) =



0, x ≤ −b,

ẏb
√

(b2 − x2)(x2 − a2), −b ≤ x ≤ −a,

0, −a ≤ x ≤ a,

−ẏb
√

(b2 − x2)(x2 − a2), a ≤ x ≤ b,

0, b ≤ x.
(5.2.18)

From here on we will take ẏb = −1 to match the constant speed of impact

described in the problem definition. In order to use the Hilbert equation we

must again take care of the far-field behaviour of our analytic function. By

definition velocity is the time derivative of displacement so, v = Ẏ . It follows

that that v ≈ 1/x2 as |x|→ ∞, while G ≈ x2 as |x|→ ∞ so that the combination

G(u− iv)→ iC̄ as x→∞, where C̄(t) is a real function. By constructing a new

analytic function

G(x, t) (u(x, t)− iv(x, t))− iC̄(t), (5.2.19)
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we satisfy the requirements of the Hilbert equation for the function to decay in

the far field and be analytic in the lower half plane. Using the Hilbert equation

provides

=G(x, t) (u(x, t)− iv(x, t))− C̄(t) =
2

π
−
∫ b

a

τ
√

(b2 − x2)(x2 − a2)dτ

τ2 − x2
. (5.2.20)

We can find the vertical velocity away from the contact regions,

v(x, t) =


1

π
√

(b2−x2)(a2−x2)

(
C(t) + 2−

∫ b
a

τ
√

(b2−τ2)(τ2−a2)dτ

τ2−x2

)
, −a ≤ x ≤ a,

−1

π
√

(x2−b2)(x2−a2)

(
2−
∫ b
a

τ
√

(b2−τ2)(τ2−a2)dτ

τ2−x2 + C(t)

)
, b ≤ x,

(5.2.21)

where we have introduced C̄(t) = πC(t). The horizontal velocity in the contact

regions is given by

u(x, t) =
−1

π
√

(b2 − x2)(x2 − a2)

(
2−
∫ b

a

τ
√

(b2 − τ2)(τ2 − a2)dτ

τ2 − x2
+ C(t)

)
.

(5.2.22)

We now evaluate the behaviour of the vertical velocity, from equation (5.2.21),

and vertical displacement, from equation (5.2.5) in the far field, x→∞. We find

v ≈ −C(t)/πx2 and Y ≈ −A(t)/πx2. By using the kinematic boundary condition

∂Y

∂t
= v, y = 0, x /∈ [−b− a] ∪ [a, b], (5.2.23)

we find

dA

dt
= C(t). (5.2.24)

We seek to simplify the integrals in equations (5.2.21) and (5.2.22), we consider

the integral

−
∫ b

a

τ
√

(b2 − τ2)(τ2 − a2)dτ

τ2 − x2
. (5.2.25)

By making a substitution of τ2 = u and multiplying numerator and denominator
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by the square roots we obtain

−
∫ b

a

τ
√

(b2 − τ2)(τ2 − a2)dτ

τ2 − x2
=

1

2
−
∫ b2

a2

(b2 − u)(u− a2)du

(u− x2)
√

(b2 − u)(u− a2)
. (5.2.26)

The non-square root terms can be rewritten using

(b2 − u)(u− a2)

u− x2
=

(
1 +

x2 − a2

u− x2

)
(b2−u) =

(
b2 − u− x2 + a2

)
+(x2−a2)

(
b2 − x2

u− x2

)
.

(5.2.27)

We substitute (5.2.27) into the right hand integral in equation (5.2.26) and

separate the resulting expression into two integrals,

1

2
−
∫ b2

a2

(b2 − u)(u− a2)du

(u− x2)
√

(b2 − u)(u− a2)
=

1

2

∫ b2

a2

(
b2 − u− x2 + a

)
du√

(b2 − u)(u− a2)

+
(x2 − a2)(b2 − x2)

2
−
∫ b2

a2

du

(u− x2)
√

(b2 − u)(u− a2)
.

(5.2.28)

We let u = A+Bξ such that ξ = −1 corresponds to u = a2 and ξ = 1 corresponds

to u = b2. This provides A =
(
a2 + b2

)
/2 and B =

(
b2 − a2

)
/2. Making this

substitution transforms the right hand side of equation (5.2.28) into

1

2

∫ 1

−1

(
B(1− ξ) + (a2 − x2)

)
dξ√

1− ξ2
+
x2 − a2

2B
−
∫ 1

−1

dξ(
ξ − A−x2

B

)√
1− ξ2

. (5.2.29)

We begin by considering just the regular integral on the left hand side of equation

(5.2.29), direct integration provides

1

2

∫ 1

−1

B(1− ξ) + a2 − x2√
1− ξ2

dξ =
π

2

(
b2 + a2

2
− x2

)
. (5.2.30)

For x ∈ [−b,−a] ∪ [a, b] we have 0 ≤ A−x2
B ≤ 1. It is a standard result that for

this range of x this principal value integral is zero. Then we have

x2 − a2

2B
−
∫ 1

−1

dξ(
ξ − A−x2

B

)√
1− ξ2

=
x2 − a2

2B

∫ 1

−1

dξ(
ξ − A−x2

B

)√
1− ξ2

, x /∈ [−b,−a]∪[a, b],

(5.2.31)
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which we can then directly integrate to obtain

x2 − a2

2B

∫ 1

−1

dξ(
ξ − A−x2

B

)√
1− ξ2

= −π
2

√
(a2 − x2)(b2 − x2), x /∈ [−b,−a]∪[a, b].

(5.2.32)

Using results from equations (5.2.30) and (5.2.32) together with equations (5.2.21)

and (5.2.22) allows us to find horizontal velocity in the contact regions u,

u(x, 0, t) =
π
(
x2 − b2+a2

2

)
− C(t)

π
√

(b2 − x2)(x2 − a2)
, a ≤ x ≤ b. (5.2.33)

and the vertical velocity in the cavity,

v(x, 0, t) =
C(t)− π

√
(b2 − x2)(a2 − x2) + π

(
b2+a2

2 − x2
)

π
√

(x2 − b2)(x2 − a2)
, −a ≤ x ≤ a.

(5.2.34)

To set C(t) and find A(t) we use the cavity properties of pressure, velocity

potential and volume. We find the time derivative of cavity volume from the

integral

dVc
dt

= 2
d

dt

∫ a

0
(yb(x, t)− ηb(x, t)) dx = −2

∫ a

0
(1 + v(x, t))dx, (5.2.35)

where we used yb(a, t)− η(a, t) = 0 and the kinematic boundary condition. The

form of equation (5.2.35) comes from our inversion from a liquid droplet impacting

a flat solid substrate to a shaped solid impacting an initially flat free surface.

Substituting the vertical velocity equation (5.2.34) into (5.2.35) provides

dV

dt
= −

2K
(
a
b

)
b

C(t) + π
(
b2+a2

2

)
π

− 2b
(
K
(a
b

)
− E

(a
b

)) , (5.2.36)

where K and E are complete elliptic integrals defined as

K(x) =

∫ π
2

0

dθ√
1− x2 sin2(θ)

, (5.2.37)
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and

E(x) =

∫ π
2

0

√
1− x2 sin2(θ)dθ, (5.2.38)

respectively. By using the definition of the velocity potential, u(x, t)∂ϕ/∂x, and

integrating across the contact region [a, b] we find

∫ b

a
u(x, t)dx = −ϕ(a, t) = −ϕc(t), (5.2.39)

where ϕc(t) is the velocity potential of in the cavity and is linked to the pressure

in the cavity through the non-dimensional Bernoulli equation,

pc(t) = −ϕ̇c(t). (5.2.40)

Substituting the horizontal velocity (5.2.33) into equation (5.2.39) provides

− ϕc(t) = bE

(√
b2 − a2

b

)
−K

(√
b2 − a2

b

)( π
2 (b2 + a2) + C(t)

bπ

)
, (5.2.41)

which is rearranged for C(t)

C(t) = − πb

K
(√

b2−a2
b

) (bE(√b2 − a2

b

)
+ ϕc(t)

)
− π

2
(b2 + a2). (5.2.42)
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We then have a set of coupled ordinary differential equations to be solved;

da

dt
=
c12(t)

(
c23(t)− Ȧ(t)

)
− c22(t)

(
c13(t) + Ȧ(t)

)
c22(t)c11(t)− c12(t)c21(t)

, (5.2.43)

db

dt
=
c11(t)

(
c23(t)− Ȧ(t)

)
− c21(t)

(
c13(t) + Ȧ(t)

)
c21(t)c12(t)− c11(t)c22(t)

, (5.2.44)

dA

dt
= C(t), (5.2.45)

dVc
dt

= −

2K
(
a
b

)
b

C(t) + π
(
b2+a2

2

)
π

− 2b
(
K
(a
b

)
− E

(a
b

)) , (5.2.46)

dϕc(t)

dt
= −pc(t), (5.2.47)

pc(t) = C0V
−γ
c , (5.2.48)

C(t) = − πb

K
(√

b2−a2
b

) (bE(√b2 − a2

b

)
+ ϕc(t)

)
− π

2
(b2 + a2), (5.2.49)

together with initial conditions

a = b = 1, Vc =

∫ 1

−1
f(x)dx, A = 0, C = 0, ϕ = 0, t = 0.

(5.2.50)

5.2.1 Numerical Solution

We solve the set of ordinary differential equations (5.2.43)-(5.2.49) using the

Runge-Kutta Fourth order method. It is difficult to start the numerical scheme

from time t = 0 using time as the independent variable due to the time derivatives

of the contact line positions being undefined. Instead we rewrite the problem with
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a(t), the inner contact line position, as the independent variable.

dt

da
=

c22(t)c11(t)− c12(t)c21(t)

c12(t)
(
c23(t)− Ȧ(t)

)
− c22(t)

(
c13(t) + Ȧ(t)

) , (5.2.51)

db

da
=
c21(t)

(
c13(t) + Ȧ(t)

)
− c11(t)

(
c23(t)− Ȧ(t)

)
c12(t)

(
c23(t)− Ȧ(t)

)
− c22(t)

(
c13(t) + Ȧ(t)

) , (5.2.52)

dA

da
=
dt

da
C(t), (5.2.53)

dVc
da

= − dt
da

2K
(
a
b

)
b

C(t) + π
(
b2+a2

2

)
π

− 2b
(
K
(a
b

)
− E

(a
b

)) , (5.2.54)

dϕc(t)

da
= − dt

da
pc(t). (5.2.55)

Doing this allows us to bypass the unbounded velocity in our numerics by forcing

the contact line position to move and updating time t to match this movement.

Since ȧ is unbounded at time t = 0 we have dA/da = 0, dVc/da = 0, dϕc/da = 0

initially. However, ḃ is also unbounded at time t = 0 so we must investigate the

very initial moments of impact to find db/da in order to act as an initial condition

for our numerics. In the Wagner impact problems discussed in previous chapters

this was not needed. Here it is needed because of the presence of the cavity,

which provides two pairs of different contact points, that causes this additional

complexity. At initial times the two contact regions will not affect each other, so

we consider the behaviour local to one impact point only and for simplicity move

this contact point to the origin. If we have the location of the solid substrate

given by

yb(x, t) = f(x)− t, f(x) = f(−x), (5.2.56)

then as shown in Korobkin [1982] the Wagner condition for a body of the form

(5.2.56) is given by ∫ π
2

0
yb (c(t) sin(θ), t) dθ = 0, (5.2.57)

where c(t) is the position of the symmetric contact line. For example, for

f1(x) = x4/2 and f2(x) = x2/2 (5.2.56) provides c1(t) =
(

16t
3

) 1
4 and c2(t) = 2

√
t
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respectively.

yb(x, t) =


f1(x, t)− t, x < 0,

f2(x, t)− t, x > 0.

(5.2.58)

Where in this local model we would identify c1(t) as 1+a(t) and c2(t) as 1+ b(t).

Given we are interested in the ratio of velocities, that is db/da = dc2/dc1, only

at time t = 0 we assume that each contact moves as it would do if the free

surface were of the form in equation (5.2.56). For example for f1 = x4/2 and

f2 = x2/2 we assume c1(t) =
(

16t
3

) 1
4 and c2(t) = 2

√
t at time t = 0. Then we have

db/da = dc2/dc1 ≈ t
1
4 = 0 at time t = 0. So, if the free surface inside the cavity

is of a different order in x to that outside we have a simple initial condition for

our numerics. However, if the free surface is the same order on each side of the

contact points we must be more careful and provide a detailed local analysis of

the motion of the two contact points. If the free surface, local to the touchdown

points, has the same behaviour from the left and the right we can set da/db = −1

initially.

We will be considering two initial solid substrate shapes, the simplest shape we

use is that discussed above,

f(x) =
(x2 − 1)2

8
, (5.2.59)

which provides a simple case to investigate the underlying mechanics of the

presence of air. We then investigate an initial free surface shape of

f(x) =


(x2−1)

2

8 , |x|< 1,

(x−1)2

2 , |x|> 1.

(5.2.60)

This provides us with a more representative problem to solve, since the free

surface in the far field in equation (5.2.60) tends to x2/2 as required to make the

link to a droplet, unlike that in equation (5.2.59). From the above discussion on

initial conditions and the two free surface shapes in equations (5.2.59)-(5.2.60)
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we have initial conditions of

a(0) = b(0) = 1,
db

da
= −1, A(0) = 0, C(0) = 0, (5.2.61)

Vc =
2

15
, p(0) = C0V

−γ
c , (5.2.62)

which are used to start the solution of the system of equations (5.2.51)-(5.2.55).

However, as time t increases the inner contact line velocity da
dt begins to reduce

towards zero. As the inner contact line velocity becomes small it affects our

numerics negatively, and as such once da/dt > −1 we change from using a as the

independent variable to time t such that the system of equations being solved

changes to the system of equations (5.2.43)-(5.2.49). The numerics terminate if

any of the conditions

da

dt
= 0,

db

dt
= 0,

∣∣∣∣dadt
∣∣∣∣→∞, ∣∣∣∣dbdt

∣∣∣∣→∞, (5.2.63)

occur due to assumptions within the Wagner model. However, within this model

we do not expect to encounter large velocities in the outer contact points,
∣∣db
dt

∣∣→
∞, since the shape of the impacting free surface does not become parallel to the

solid substrate other than at the initial touchdown points. However, as a → 0

since the free surface shapes we use become flat da/dt can become very large.

Similarly there is no mechanism to cause db/dt = 0 and as such it is only da/dt = 0

and a→ 0 that causes our model to break down for the chosen substrate shapes

which requires stopping the numerics.

5.3 Results

We begin analysis of the results by investigating the impact behaviour if there

were no gas in the cavity. For this we set ϕc(t) = 0 in equation (5.2.49) and remove

the three equations linking the cavity volume, pressure and velocity potential,
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leaving us to solve the system of equations

dt

da
=

c22(t)c11(t)− c12(t)c21(t)

c12(t) (c23(t)− C(t))− c22(t) (c13(t) + C(t))
, (5.3.1)

db

da
=
c21(t)

(
c13(t) + Ȧ(t)

)
− c11(t)

(
c23(t)− Ȧ(t)

)
c12(t)

(
c23(t)− Ȧ(t)

)
− c22(t)

(
c13(t) + Ȧ(t)

) , (5.3.2)

C(t) = − πb

K
(√

b2−a2
b

) (bE(√b2 − a2

b

))
− π

2
(b2 + a2), (5.3.3)

subject to initial conditions

a(0) = 1, b(0) = 1,
db(0)

da
= −1, C(0) = 0, (5.3.4)

initially, and change to solving

da

dt
=
c12(t) (c23(t)− C(t))− c22(t) (c13(t) + C(t))

c22(t)c11(t)− c12(t)c21(t)
, (5.3.5)

db

dt
=
c11(t) (c23(t)− C(t))− c21(t) (c13(t) + C(t))

c21(t)c12(t)− c11(t)c22(t)
, (5.3.6)

C(t) = − πb

K
(√

b2−a2
b

) (bE(√b2 − a2

b

))
− π

2
(b2 + a2), (5.3.7)

as ȧ < −1.

In Figures 5.3.1 and 5.3.2 we show the behaviour of the contact points found by

solving system of equations (5.3.5)-(5.3.3) subject to the initial shapes (5.2.59)

and (5.2.60), respectively. In both solutions we see that as a comes close to 0 its

speed increases rapidly. This comes from considering the shape of the incoming

solid substrate f(x) = (x2 − 1)2/8.0 close to the origin. Here the substrate

becomes close to parallel to the initially flat liquid free surface, which causes this

increase in wetting speed. This is the same mechanism that caused extremely

high contact line speeds in the earlier sections on droplet impact with an elastic

substrate. The behaviour of a(t) seen in Figures 5.3.1 and 5.3.2 hints at an

interesting possibility in the motion of a(t) once the gas is included. As a(t)

becomes small so does the volume of the cavity, which causes the pressure of the
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Figure 5.3.1: The contact point positions (a) and contact point velocities (b) for
the substrate surface shape given in equation (5.2.59) and with no gas in the
cavity.

cavity to become extremely large. This high pressure in turn acts to slow the

movement of the contact point down, as the flattening of the free surface is acting

to speed it up.

As expected the external contact point b(t) moves faster in Figure 5.3.2 than in

Figure 5.3.1, however this is not the only difference between the results generated

from the pair of solid substrate shapes. In Figure 5.3.3 we show the difference in

inner contact line motion, a(t), caused by different solid shapes for |x|> 1. As we

can see the motion of a(t) is dominated by the shape of the solid inside the cavity.

In reality the shape of the cavity is determined by the air cushioning process,

detailed in chapter 4. This indicates that the motion of the inner contact point

after impact may be governed in large part by the influence of the air before touch

down. Figures 5.3.3 and 5.3.1 also indicate that when using the Wagner model

for the impact of an asymmetric shaped liquid with a solid substrate splitting the

free surface into multiple parts and solving them separately could be adequate

as the two parts of the free surface only have a small effect on each other under

some circumstances.

In Figure 5.3.4 we show the contact point position and velocity together with

the cavity pressure and volume. The incoming solid shape is the same as that

in Figure 5.3.1 but we have included the gas compressibility by setting C0 = 1.

We can immediately see the effect of the trapped gas on the behaviour of the

inner contact point a(t). In contrast to the no gas result in Figure 5.3.1 the
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Figure 5.3.2: The contact point positions (a) and contact point velocities (b) for
the substrate shape given in equation (5.2.60) and with no gas in the cavity.
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Figure 5.3.3: A comparison of the evolution of a(t) between the free surface shape
being the same on either side of the contact line, (5.2.59), and different on either
side of the contact line, (5.2.60)

inner contact point reaches zero velocity, at which point we have to stop our

numerics due to the Wagner theory breaking down. In Figure 5.3.5 we show

the contact point positions for C0 = 0.1 and C0 = 2. As expected, with a less

compressible gas (higher C0) we see the deceleration of the inner contact point

occurring much quicker, and with the lower C0 it happens much more slowly. In

Figure 5.3.6 we show the motion of the outer contact point for a range of C0,

including C0 = 0 from Figure 5.3.1. We see that as the inner contact line slows

down (as we approach the end of each of the coloured lines) the outer contact
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Figure 5.3.4: The contact point position (a), contact point velocity (b), pressure
in the cavity (c) and volume of the cavity (d) for the solid substrate shape given
in equation (5.2.59) with C0 = 1.

point gains speed relative to the result with no gas. This happens because fluid

which would flow with the contact point if there were no gas cannot do so due

to the cavity pressure so to balance this extra mass out the outer contact point

speed has to increase.

Although our model cannot formally continue once one of the contact points has

stopped moving we can still discuss possible mechanics of the following stages.

One possibility is that the acceleration of the contact point a(t) continues, with

it becoming positive and the cavity starting to expand laterally. Vertically the

solid substrate would continue to move down at a constant speed. This could then

cause the contact point to be pinched off, trapping a small cavity of air behind the

new contact point. Another possibility is that the gas has become as compressed

as possible and the appropriate model is to model it as a solid structure. Finally,

it is likely that beyond the limits of the Wagner model the air cavity becomes

unstable in some way. Since the solid surface continues to compress the cavity

the pressure in it will rise even further. Eventually the pressure will be so high
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Figure 5.3.5: The contact line positions for C0 = 0.1 (a) and C0 = 2 (b)
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Figure 5.3.6: Comparing the motion of b(t) for a range of C0.

that the liquid free surface becomes unstable and the gas will become a liquid-

air mixture, rather than pure gas. At this point we would need to change the

model of the gas cavity to include a features such a new speed of sound and

compressibility for example.

In Figures 5.3.7-5.3.9 we show the contact points behaviour and cavity volume

for a range of C0 using the free surface shape from equation (5.2.60) which has

a different shape outside the cavity region to inside. As we can see by

comparing Figures 5.3.4-5.3.5 and 5.3.7-5.3.9 the features are both

quantitatively and qualitatively very similar, with the inner contact point
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Figure 5.3.7: The contact line position (a), contact line velocity (b) and cavity
volume (c) for the free surface shape given in equation (5.2.60) and C0 = 0.1.

slowing down at a rate depending on the compressibility of the gas and

eventually stopping. The largest difference for example is found by comparing

the time at which the inner contact point stopped moving for C0 = 0.1. In

Figure 5.3.5a a(t) = 0 at t = 0.0128 versus a(t) = 0 and t = 0.0153 in Figure

5.3.8. We find a similar discrepancy with C0 = 0.1 and 2.0. For C0 = 0.1 the

final times were 0.132 and 0.127 while for C0 = 2.0 the times were 0.00287 and

0.00281. In all cases the quadratic outer surface shape prolonged the time until

the inner contact point stopped. Because the outer contact point moves faster

with the quadratic than quartic solid shape at any given time the contact

regions b(t) − a(t) are larger for the quadratic shape. Because of this the

pressure in the cavity has more fluid to work against in order to slow the

motion of the inner contact point a(t) which requires a higher pressure thus a

smaller volume which takes more time to generate.

In Figure 5.3.10 we show parametric results for a(tf ), b(tf ), tf and Vc(tf ) where

tf is the final time before a(t) = 0. The Figures show both free surfaces defined
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Figure 5.3.8: The contact line position (a), contact line velocity (b) and cavity
volume (c) for the free surface shape given in equation (5.2.60) and C0 = 1.
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Figure 5.3.9: The contact line position (a), contact line velocity (b) and cavity
volume (c) for the free surface shape given in equation (5.2.60) and C0 = 0.1.
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Figure 5.3.10: Parametric plots showing the inner contact line position (a), outer
contact line position (b), time (c) and cavity volume (d) at the final iteration
time t = tf . for both the purely quartic incoming solid shape in equation 5.2.59
and the mixed quartic quadratic shape from equation 5.2.60

by the mixed quartic quadratic equations (5.2.59) and (5.2.60).

As we discussed previously it is expected that the cavity will become unstable at

some point beyond the limits of the Wagner model. Experiments have shown that

capillary waves can be generated along the cavity free surface during impact of

a liquid with trapped air cavity. Here we investigate the stability of our solution

by placing a small disturbance in the solid surface shape. We do this by taking

the free surface shapes defined in (5.2.59) and (5.2.60) and adding a disturbance.

We place this disturbance away from the initial contact point x = 1 and have its

amplitude be small relative to the solid surface height. We do this by adding

D

(
1 + cos

(
kπ

l
(x− x0)

))
, x0 − l ≥ x ≥ x0 + l. (5.3.8)

Where D > 0 is the amplitude, k the frequency and required to be an odd integer

so that the derivative at the edges is zero, 2l the length over which we apply the
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disturbance and x0 is the central point the disturbance. We require that the

amplitude is small D � 1, that the disturbance is not near the initial impact

point x0 + l < 1, and that it is not crossing the origin x0 − l > 0. As such we

investigate a solid shape defined by

y =



(x2−1)2

8 − t, 0 ≤ |x|≤ x0 − l,
(x2−1)2

8 − t+D
(
1 + cos

(
kπ
l (x− x0)

))
, x0 − l ≤ |x|≤ x0 + l,

(x2−1)2

8 − t, x0 + l ≤ |x|,
(5.3.9)

Note that for the solid shapes in equations (5.3.9) the initial condition on the

volume changes from Vc = 2/15 to Vc = 2/15− 2Dl for odd integer k.

In Figure 5.3.11a we compare the motion of the contact points between an

unperturbed solid shape and one with parameters

D = 0.005, k = 1, l = 0.2, x0 = 0.5. We can see that the motion of the outer

contact point is largely unchanged by the perturbation, but the motion of the

inner contact point a(t) is affected greatly. After the perturbation is

encountered at a(t) = 0.7 we see its influence almost immediately. The contact

line slows down relative to the unperturbed motion and even stops sooner. In

Figure 5.3.11b we plot the difference in the two contact line positions divided by

the amplitude of the perturbation D = 0.005. Since this plot is neither small

nor stable in time it indicates that the motion of the inner contact line is

sensitive to a small perturbation to initial solid shape. We see this effect across

a range of parameters, for example in Figure 5.3.12 and conclude that indeed

the motion of the contact line is sensitive to small perturbations in the shape of

the solid impactor.
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Figure 5.3.11: Figure (a) shows the contact line positions against time for
an unperturbed free surface (5.2.59) and a perturbed free surface (5.3.9) with
parameters D = 0.00, k = 1, l = 0.2, x0 = 0.7. Figure (b) shows the difference
between perturbed and unperturbed inner contact line positions a(t) divided by
the amplitude of the perturbation D = 0.005 against time. The compressibility
coefficient was set to C0 = 0.1
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Figure 5.3.12: Figure (a) shows the contact line positions against time for
an unperturbed free surface (5.2.59) and a perturbed free surface (5.3.9) with
parameters D = 0.0008, k = 5, l = 0.1, x0 = 0.5. Figure (b) shows the difference
between perturbed and unperturbed inner contact line positions a(t) divided by
the amplitude of the perturbation D = 0.0008 against time. The compressibility
coefficient was set to C0 = 0.1



6

Conclusions and future work

6.1 Conclusions

In chapters 2 and 3 a model of droplet impact onto an elastic plate was

presented. The model generalises the Wagner theory of water impact to

axisymmetric configurations and elastic surface of the body. The uniformly

valid description of the resulting flow was obtained using the asymptotic

approach by Howison et al. [1991]. The flow region was divided into three

sub-regions: the main flow region with its size of order of the elastic plate

diameter, the small jet-root region at the periphery of the wetted part of the

substrate, and the jet region where splashing can be observed. The pressure and

velocity field of the main flow region are singular at the contact line,

necessitating the formation of an asymptotic jet-root close to the contact line.

In order to conserve mass, a liquid jet emanates from the jet-root region in a

direction normal to the contact line. It was shown that the vibrating substrate

does not directly interact with the jet-root region at leading order, only

providing a contribution to the jet parameters through the far field condition.

The leading-order solutions in each sub-domain of the flow region were obtained

and matched to each other. The flow in the main flow region was coupled with

the plate vibration caused by impact. It was shown that the radius of the contact

region is strongly dependent on the deflection of the elastic substrate. The jet

flow is smooth and finite only if the acceleration of the contact line is negative,
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as it is for a rigid substrate. Elasticity of the substrate may change the sign of

the contact line acceleration if the substrate starts to oscillate during the early

impact stage. This can occur only for the finite elastic substrate with a relatively

small period of natural vibration. It was shown that a positive acceleration of the

contact line leads to blowing-up of the jet flow with formation of the secondary

torus jet in the direction normal to the surface of the substrate. The formation of

this secondary jet is treated in the present model as splashing. Conditions of the

splashing were derived in terms of the parameters of impact and characteristics

of the substrate, α and β. A graphical way to predict the time and location at

which splashing will first be seen was discussed and presented. The evolution of

the jet thickness from a small bump to a large splash was shown against Eulerian

and Lagrangian variables. Finally a parametric analysis of the values of α and

β for which splashing is predicted was performed. It was found that there is a

large range of α and β for which splashing occurs for both a clamped and simply

supported elastic plate, although with the simply supported elastic plate having

a large region where splashing is predicted..

The Wagner model requires that during the impact the contact line velocity

is positive and finite. We obtained the range of the non-dimensional elastic

parameters α and β for which the Wagner model is valid. Mechanisms behind

the unbounded contact line velocity and contact line shrinking were investigated

and both tied directly to behaviour of the elastic plate. These critical regimes of

a droplet impact are related to the early stage when the elastic plate is partly

wetted. It was shown that the elastic effects decay quickly after the elastic plate

is wetted completely and the contact region continues to expand along the rigid

part of the substrate.

We have shown that the presence of an elastic plate can cause splashing in absence

of interaction with surrounding gas or substrate roughness. However, the roles

of the liquid surface tension and viscosity in the formation or suppression of

the splash are still unclear. Vibrations of the elastic plate can cause cavitation

which can be responsible for damage to the substrate. The present model does
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not allow us to control the distribution of the hydrodynamic pressure near the

contact region and its evolution in time. This is due to the very slow convergence

of the series for the pressure in terms of the normal modes of the elastic plate,

see discussion of this problem by Korobkin [1998]. In these chapters we assumed

axisymmetry of the flow. It is interesting to investigate how much a fully three

dimensional situation would change the dynamics of spreading and splashing.

The three-dimensionality of the flow and elastic response can be achieved by

moving the impact point away from the centre of the plate, or by considering the

impact of an ellipsoidal liquid droplet.

In chapter 4 we develop a model of a droplet approaching an elastic plate while

being affected by air cushioning. The deformation of both the droplet free surface

and elastic plate were coupled through the gas pressure in a complex non-linear

way. The model considers a asymptotically short time before touch down in which

the gas pressure becomes high enough to overcome the difference in liquid and

gas densities to cause deflections in the liquid free surface and solid substrate.

Appropriate non-dimensional scales were derived, indicating that in order to for

the elastic plate to be deflected on the same scale as the liquid free surface the

plate must be very flexible. Examples of this included extremely thin plates as

well as foils. By finding the horizontal velocity of the gas in terms of the free

surface height and plate displacement we derived the first governing equation

from the gas continuity equation. The second governing equation was found by

using complex analysis on an analytic function generated from the liquid vertical

velocity and pressure with the final governing equation given directly from the

plate equation. This set of governing equations was solved using a system of

numeric methods. We used the boundary element method to solve two of the

governing equations and the method of normal modes to solve the plate equation.

Due to the coupled non-linear nature of the set of governing equations at each

time step a convergent solution must be iterated upon.

As the thickness of the gas layer becomes small this becomes increasingly

difficult, to the point that a convergent solution cannot be found any more.
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Once this happens we must stop our simulation. By increasing the resolution of

our numerics we can reduce the gap thickness at which this happens, but we

can never get to the point of touch down within our numerics. In order to

analyse this region we investigated a small asymptotic region close to the touch

down point and showed that the presence of the elastic plate does not cause any

local changes to the touch down behaviour described by Smith et al. [2003].

We investigated two distinct situations, one where the droplet is centred on the

elastic plate and one where it was not. When centred we have shown that the

presence of the elastic plate universally slows the time of touch down, traps

a bigger volume of gas upon touch down and has a lower pressure in the gas

relative to having a rigid substrate. This is caused by the pressure acting on two

deformable surfaces, rather than just the deformable free surface. Once the plate

is set in motion the gap bubble closes more slowly, leading to a slower build up

of pressure which causes the delay in touch down and the trapping of a larger

volume of gas. Touch down typically occurs at or near the edge of the elastic

plate, as here the effects of the elastic plate on reducing gas pressure and slowing

the approach of the free surface to the substrate are lessened.

When the droplet is not centred on the elastic plate an element of asymmetry

has been introduced which creates many interesting phenomena. We find that

touch down occurs at only one point, instead of two like in the centralised impact.

We demonstrated that close to this touch down point the pressure is very high,

but with a generally lower pressure across the rest of the gas relative to having

the plate be centralised. These effects reach a maximum for some location of

the plate and then decay as the plate is moved far enough away to influence the

droplet minimally. By analysing the flux we showed that this is caused by the one

touch down point forcing gas out under what would have been the other touch

down point if the plate were centralised, which requires a higher pressure at the

touch down point and causes more flow in the gas, thus reducing its pressure.

Throughout chapter 4 we neglected the influence of gas compressibility and
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thermal effects, liquid surface tension and restricted ourself to 2D. Work has

been performed in the past on including these physical factors and modelling a

3d air cushion but would still interesting to see how the change from 2D-3D2

especially would change the mechanisms we see. Although the touch down

asymptotic tell us that touch down does occur in a finite time it does not give

us many details we can use to continue to post impact, investigating this

transition from air cushioning to liquid impact problem is of great interest for

the future, with potential solutions being found by including kinetic effects of

the gas and other statistical physics models.

In chapter 5 we introduce a model for the impact of a liquid droplet with an

attached cavity filled with gas. By using the scales and results from chapter 4 we

showed that there exists a regime in which the gas cavity is at the same scale as

the Wagner vertical scale. This is key as it allows us to create a model in which

the gas and liquid behaviours are coupled. We introduced the Wagner model

with an attached cavity which was solved using a variety of complex analysis

tools, eventually leaving us with a system of ordinary differential equations to

solve for the two contact point locations and various cavity properties. This set

of equations was solved numerically, however initialising the numerical simulation

is not trivial. As we discussed since the contact point velocities are unbounded

initially we cannot use time as an independent variable. When we encountered

this issue in chapters 2 and 3 we resolved it by changing independent variable

to the contact line position. However since there are two pairs of independent

contact points in chapter 5 this is not trivial as we must determine their relative

velocities. If the shape of the impactor near the initial contact point is symmetric

we can set the contact points relative velocity to -1 and begin our numerics. In

other situations however it is far more complicated and is a very important area

for future work.

We have shown that as the gas cavity is compressed its pressure rises to the point

of stopping the motion of one pair of contact points. Due to the limitations of

the Wager model we must stop our simulation at this time, however it is of great
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interest what happens just after this point. It is unclear if the inner contact points

become in effect pinned, begin expanding or if the cavity becomes unstable. We

showed that the motion of the inner contact point is sensitive to small changes

in impactor geometry. If the cavity does become unstable it is possible that

the trapped gas turns into a mixture of gas and liquid which has a different

compressibility and speed of sound to a pure gas cavity. From here compression

could continue. In experiments by Thoroddsen et al. [2005] small gas bubbles

were left behind the motion of the inner contact point, it is possible this happens

after the inner contact point stops moving in our simulations. Although the gas

cavity pressure has grown high enough to stop the motion of the contact point

this does not stop the motion of the solid impactor which could pinch off small

sections of the cavity close to the static contact point. In order to investigate

these possibilities a more complicated model for the gas will be required which

includes the flow and thermal dynamics of the gas. This is a highlight non-trivial

inclusion in the model whose effects are not immediately obvious. Performing full

direct numerical simulations will be an invaluable tool in investigating the role

of surface tension, viscosity, more complex gas dynamics and in the transition

from air cushioning to impact problem and can be used to inform our asymptotic

models.

6.2 Future Work

There are a number of interesting and important areas for further research

following the work within this thesis. Of particular interest to the author is an

investigation of the splashing result shown in chapters 2 and 3. This result runs

counter to the currently published experimental results by Pepper et al. [2008].

The published experimental works all operate on a different time scale to the

problems considered in chapters 2 and 3, as such having an experimental

investigation of the shorter timescale we used would be interesting. It is

possible that splashing will not be seen in this regime due to effects like surface
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tension or viscosity in the jet-region. Here, as in all work the author is aware of,

these effects are taken to be higher order corrections but finding the exact

influence they have is interesting. This could be done either with asymptotic

modelling or possibly more reasonably with direct numerical simulation.

Another area of future work is on the touch down process itself. The transition

from pre-impact air cushioning to impact mechanics is extremely complicated

and an area which could contain a large amount of interesting mathematics and

physics. Particularly it is plausible that continuum models are not sufficient to

model this process and instead statistical physics or molecular dynamics

approaches would be necessary. Results from this type of analysis could help

inform extensions to the model of droplet impact with an attached air cavity

introduced in chapter 5 by providing more accurate initial conditions. Other

extensions to that model are a more complicated and potentially physically

relevant model of the gas, the free surface near the touchdown points taking

more wedge like shape and including surface tension with particular interest in

any capillary waves generated on the free surface of the trapped bubble and

their impact on the stability of the model.
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A

Integrals Un

The integrals

Un =

∫ 1

0
rw2

n(r)dr, (A.0.1)

where

wn(r) = J0(knr)−
J0(kn)

I0(kn)
I0(knr), (A.0.2)

and kn are the real solutions of the equation (2.3.8), provide

Un =

∫ 1

0
r

(
J0(knr)−

J0(kn)

I0(kn)
I0(knr)

)2

dr. (A.0.3)

The integrals (A.0.3) are evaluated by using the standard integrals:

∫ 1

0
xJ2

0 (ax)dx =
1

2

(
J2

0 (a) + J2
1 (a)

)
, (A.0.4)∫ 1

0
xI2

0 (ax)dx =
1

2

(
I2

0 (a)− I2
1 (a)

)
, (A.0.5)∫ 1

0
xJ0(ax)I0(ax)dx =

J0(a)I1(a) + J1(a)I0(a)

2a
. (A.0.6)

The result is

Un =

(
1− 2

1− ν −
2k2

n

(1− ν)2

)
J2

0 (kn) +
2kn

1− ν J0(kn)J1(kn), (A.0.7)

where Un = O(kn) as n→∞.



B

Integrals Qn(a)

Substituting the normal modes (2.3.7) of a circular simply supported plate into

(2.3.18),

Qn(a) =

∫ π
2

0
sin(θ)

(
J0(akn sin(θ))− J0(kn)

I0(kn)
I0(akn sin(θ)

)
dθ, (B.0.1)

and using the standard relations:

∫ π
2

0
sin(θ)J0(X sin(θ))dθ =

sin(X)

X
, (B.0.2)∫ π

2

0
sin(θ)I0(X sin(θ))dθ) =

sinh(X)

X
, (B.0.3)

we find

Qn(a) =
sin(akn)

akn
− J0(kn)

I0(kn)

sinh(akn)

akn
. (B.0.4)

The functions Qn(a) are depicted in figure B.0.1, for n = 1, 2, 3, 4. The functions

behave as sin(akn)/(akn) for large n because J0(kn)/I0(kn) → 0 as n → ∞ in

(B.0.4).
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Figure B.0.1: The functions Qn(a) for n = 1, 2, 3 and 4 using modes calculated
with ν = 0.3.



C

Calculation of the vector elements

gn(a)

Substituting (2.3.7) and (2.3.32) in (2.3.14),

gn(a) =
2ḣ

π
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r
√
a2 − r2

(
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The four integrals in (C.0.2) are given by:

∫ π
2
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sin(θ)J0(K sin(θ))dθ =

sin(K)

K
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K
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. (C.0.6)

Combining (C.0.3)-(C.0.6) with (C.0.2) gives

gn(a) =
2ḣ

πk3
n
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sin(akn)− akn cos(akn)− J0(kn)
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Figure C.0.1: gn versus a for n = 1, 2, 3 and 4 using modes calculated with ν = 0.3
for ḣ = 1.

The functions gn(a)/ḣ are depicted in figure C.0.1 for n = 1, 2, 3, 4. The functions

behave as −(2a/πk2
n) cos(akn) as n→∞.
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Elements of the added-mass matrix

The integrals (2.3.36),

Wnm(a) =
2a3

π

∫ 1

0
y2Qn(ay)Qm(ay)dy, (D.0.1)

are evaluated analytically by using Qn(ay) and Qm(ay) from (B.0.4):
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The result is
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Figure D.0.1: (a) The first 4 diagonal elements of the added mas matrix, Wnn(a).
(b) The first 3 off diagonal elements of the first column of the added mass matrix,
Wnm(a).

The functions Wnm(a) are depicted in figure D.0.1. The diagonal elements of the

added mass matrix, Wnn(a), behave as 1/k2
n when n→∞.
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