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Abstract 
Transmembrane protease serine-2 (TMPRSS2) is a cell-surface protein expressed by epithelial cells of specific tissues 
including those in the aerodigestive tract. It helps the entry of novel coronavirus (n-CoV) or Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2) in the host cell. Successful inhibition of the TMPRSS2 can be one of the crucial 
strategies to stop the SARS-CoV-2 infection. In the present study, a set of bioactive molecules from Morus alba Linn. were 
screened against the TMPRSS2 through two widely used molecular docking engines such as Autodock vina and Glide. 
Molecules having a higher binding affinity toward the TMPRSS2 compared to Camostat and Ambroxol were considered 
for in-silico pharmacokinetic analyses. Based on acceptable pharmacokinetic parameters and drug-likeness, finally, five 
molecules were found to be important for the TMPRSS2 inhibition. A number of bonding interactions in terms of hydrogen 
bond and hydrophobic interactions were observed between the proposed molecules and ligand-interacting amino acids of 
the TMPRSS2. The dynamic behavior and stability of best-docked complex between TRMPRSS2 and proposed molecules 
were assessed through molecular dynamics (MD) simulation. Several parameters from MD simulation have suggested the 
stability between the protein and ligands. Binding free energy of each molecule calculated through MM-GBSA approach 

 *	 Md Ataul Islam 
	 ataul.islam80@gmail.com

1	 Department of Pharmaceutical Sciences, Faculty of Science 
and Engineering, Dibrugarh University, Dibrugarh, 
Assam 786 004, India

2	 School of Pharmacy, University of East Anglia, Norwich 
Research Park,  Norwich NR5 7TJ, UK

3	 Chemistry Department, College of Science, King Saud 
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

4	 Department of Chemistry, College of Science, Princess 
Nourah bint Abdulrahman University, Riyadh 11671, 
Saudi Arabia

5	 Bioinformatics Research Centre, Dr. D. Y. Patil 
Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil 
Vidyapeeth, Tathawade, Pune, India

6	 Division of Pharmacy and Optometry, School of Health 
Sciences, Faculty of Biology, Medicine and Health, 
University of Manchester, Manchester, UK

7	 School of Health Sciences, University of Kwazulu-Natal, 
Westville Campus, Durban, South Africa

8	 Department of Chemical Pathology, Faculty of Health 
Sciences, University of Pretoria, Pretoria, South Africa

http://orcid.org/0000-0001-5622-3981
http://orcid.org/0000-0001-6286-6262
http://crossmark.crossref.org/dialog/?doi=10.1007/s11030-021-10209-3&domain=pdf


	 Molecular Diversity

1 3

from the MD simulation trajectory suggested strong affection toward the TMPRSS2. Hence, proposed molecules might be 
crucial chemical components for the TMPRSS2 inhibition.

Graphic abstract
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Introduction

The pandemic outbreak of the novel Coronavirus (n-CoV) 
or Severe Acute Respiratory Syndrome Coronavirus 
2 (SARS-CoV-2) causes the respiratory illness and named 
as coronavirus disease-2019 (COVID-19) worldwide [1]. 
So far, this deadly disease left millions of human being 
infected and thousands of deaths [2]. Of these unfortu-
nate deaths, United States of America shares about 55%, 
Europe contributes almost 25% followed by South-East 
Asia about 10% [3]. Notably, with time progress the num-
ber of infected individuals and figures related to death 
are gradually raising. Thus, there is an urgent need for 
effective and preventive therapeutic intervention against 

COVID-19. A number of drug discovery approaches 
including molecular docking, molecular similarity, phar-
macophore and artificial intelligence can be used to facili-
tate the drug discovery efforts for COVID-19 [4–6]. The 
availability of experimental drug targets associated with 
COVID-19 is the key for clinical/biologic evaluations of 
drug efficacies, investigations of therapeutic mechanisms 
and searches of drug-repurposing opportunities [7, 8].

Genomic studies suggest high sequence identity between 
the genome of existing SARS-CoV and current SARS-
CoV-2 [9]. As the most critical step during infection, SARS-
CoV-2 uses its Spike (S) protein receptor-binding domain 
(S-RBD) to engage with the host cell receptor angiotensin-
converting enzyme 2 (ACE2) [10]. The SARS-CoV-2 needs 
to enter into the cells, which is allowed through ACE2 via 
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the action of transmembrane protease serine-2 (TMPRSS2). 
The TMPRSS2 is a cell-surface protein that is expressed 
by epithelial cells of specific tissues including those in the 
aerodigestive tract [11]. The TMPRSS2 triggers the prim-
ing of the virus’s S protein by assisting the cleavage of the 
S proteins at the S1/S2 and S2 sites [12]. Thus, the cleavage 
step or the TMPRSS2 activity is necessary for the virus-host 
cell membrane fusion and cell entry [13]. Apart from the 
said pathological role, ACE2 also possesses essential phys-
iological roles such as regulation of vasoconstriction and 
blood pressure, which might become difficult to target ACE2 
in therapies [14]. Interestingly, the TMPRSS2-expressing 
cells are more susceptible to SARS-CoV-2 infection and 
knockout mouse models show that lack of TMPRSS2 in the 
airways reduces the severity of lung pathology after SARS-
CoV and MERS-CoV infection [15]. Therefore, targeting the 
TMPRSS2 is a rational approach to manage the spread and 
infection caused by SARS-CoV-2 and to treat the COVID-19 
patients [16, 17].

Medicinal plants have historically proven their value as a 
source of molecules with therapeutic potential, and nowadays 
still represent an important tool for the identification of novel 
drug leads. A range of secondary metabolites are the poten-
tial bioactive compounds, which were naturally selected for 
thousands of years to improve the specificity and cover a very 
wide range of functions, depending on the origin, the habitat 
and the specific activity carried out in the organism of ori-
gin [18, 19]. Morus alba Linn. (Family: Moraceae), named 
as ‘white mulberry’, is one of the deciduous medium-sized 
trees cultivated in the tropical countries for rearing silkworms 
and ruminants [20]. The natives of India use the leaves of M. 
alba to treat cough, asthma, bronchitis, eye infection, head-
ache and dizziness [21]. The inhabitants of lesser Himalayas 
in Pakistan take fresh fruits and leaves decoction orally for 
throat ache [22]. The root bark has been used in traditional 
Korean medicine for upper respiratory diseases [23]. The 
European countries, M. alba is welcomed as a ‘superfood’ due 
to the presence of the high amount of bioactive constituents 
which are beneficial to promote health and longevity [24]. The 
M. alba juice and the seed have been reported to possess anti-
viral activities against influenza viruses, A/Brisbane/59/2007 
(H1N1) (BR59), pandemic A/Korea/01/2009(H1N1) (KR01), 
A/Brisbane/10/2007(H3N2) (BR10), and B/Florida/4/2006 
(FL04) [25]. The aqueous extract of the M. alba exhibited 
potential anti-dengue activity against varied stages of the 
dengue virus replication cycle due to the presence of flavo-
noids [26]. A report suggests that M. alba juice and its frac-
tions may inhibit internalization and replication of murine 
norovirus-1 (MNV-1), whereas it may influence adherence or 
internalization of feline calicivirus-F9 (FCV-F9) virions [27]. 
The M. alba extract has also been effective against Herpes 
Simplex Virus type 1 (HSV-1) in an in-vitro finding on the 
Vero cell lines, which might be due to available flavonoid 

compounds [28]. Moreover, phenolic compounds from M. 
alba root bark such as moralbanone, kuwanon S, mulberroside 
C, cyclomorusin, eudraflavone B hydroperoxide, oxydihydro-
morusin, leachianone G and α-acetyl-amyrin have promising 
anti-infective property specifically against the replication of 
HSV-1 or herpes simplex virus 2 (HSV-2) possibly via by 
inhibiting HSV-1 DNA polymerase and HSV-2 protease [29]. 
Additionally, mulberrofuran G and isomulberrofuran G iso-
lated from the root bark of M. alba showed moderate activity 
by inhibiting hepatitis B virus (HBV) DNA replication in an 
anti-HBV assay on the HepG 2.2.15 cell line [30]. Iminosugar 
derivatives of 1-deoxynojirimycin have demonstrated anti-
viral activity against bovine viral diarrhea virus (BVDV) and 
GB virus-B (GBV-B), both members of the Flaviviridae fam-
ily, and against woodchuck hepatitis virus (WHV) and hepati-
tis B virus (HBV), both members of the Hepadnaviridae family 
of viruses [31]. Furthermore, a recent investigation suggests 
the efficacy of the water and water-alcohol plant extracts of the 
leaves and stem bark of M. alba against the viral respiratory 
infections caused by human coronavirus (HCoV 229E) and 
picornaviruses [32].

Therefore, in the view of the facts mentioned above, this 
study was aimed to investigate the TMPRSS2 inhibitory 
potential of bioactive isolated from the M. alba using in-
silico modeling. Each of the bioactive compounds in this 
collection has been optimized for efficacy, safety, and bio-
availability using high-throughput virtual screening tools. 
This enables the leveraging of considerable investments in 
research and development to compress the timeline required 
for drug discovery and development. Molecular docking is 
an essential and widely used pharmacoinformatics approach 
in which the favorable binding mode of the small molecules 
is predicted in the target site through conformational analy-
ses. Due to its fast in execution, trustworthy and ease to 
use, molecular docking has become favorable to the wider 
community of researchers from academia and industry. 
Molecular docking is extremely successful to screen larger 
datasets of small molecular to achieve potential lead-like 
molecules for a specific target. In-silico pharmacokinetic 
and drug-likeness assessment are critical strategies to select 
lead-like molecules from a pool of initial hits [33]. Molecu-
lar dynamics (MD) simulation is an important method to 
assess the behavior of protein–ligand complex in dynamic 
states. Hence, the above approaches might be crucial to iden-
tify potential molecules for a certain target.

Materials and methods

A dataset of small molecules belongs to M. alba Linn. 
was screened against the TMPRSS2 through two separate 
molecular docking engines, Glide [34] of Schrodinger suite 
and Autodock vina (ADV) [35]. By following a number 
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of screening criteria, finally, five molecules were found to 
be potential for the TMPRSS2 inhibition. The all-atoms 
MD simulation [36] was carried out to explore the stabil-
ity of complexes between the TMPRSS2 and the final pro-
posed molecules. The MD simulation trajectory was also 
used to study the affinity of the final molecules toward the 
TMPRSS2 through the molecular mechanics-generalized 
born surface area (MM-GBSA) [37] approach.

Small molecular dataset and protein structure 
preparation

In order to screen the potential bioactive compounds for the 
effective inhibition of the TMPRSS2, a set of 144 reported 
bioactive compounds of M. alba Linn. was retrieved from 
the PubChem [38]. The two-dimensional representation of 
each 144 molecules is given in Table S1 (Supplementary 
file). It is already been proved that the different parts of the 
M. alba possess strong anti-viral activity. Hence, screening 
the above molecules through already established druggable 
targets such as the TMPRSS2 can give few crucial molecules 
for successful inhibition the same. TMPRSS2 is one of the 
crucial targets to stop SARS-CoV-2 infection. Recently our 
group has developed the 3D coordinates of the TMPRSS2 
through the homology modeling [39] followed by screen-
ing the Selleckchem database (https://​www.​selle​ckchem.​
com/) and it has been published [17]. The same TMPRSS 
structure was considered to screen the above 144 bioactive 
compounds belong to the M. alba Linn.

Before docking, the entire dataset of small molecules 
was prepared through the LigPrep [40] module of the 
Schrodinger suite. The maximum number of stereoiso-
mer generation was allowed to 32 at a pH of 7.0 ± 2.0. 
The ‘Epik’ functionality of the LigPrep [40] was used to 
retain the chirality and ionization states of the molecules. 
The OPLS3 force field [41] was used for the optimiza-
tion of the structure. Followed by successful validation of 
TMPRSS2 structure [17] generated through the homology 
model [39], the same was considered for MD simulation to 
minimized and remove the steric clashes. Details analysis 
and protocol can be found in our previous publication [17]. 
Final coordinates of TMPRSS2 after a 100 ns all-atoms 
MD simulation were considered for molecular docking 
study. The SiteMap [42] and MOE [43] tools were used 
to find the active site. Receptor site confining the His18, 
Gln21, Glu23, Asn24, Pro25, Val49, Pro50, Gln51, Tyr52, 
Ala53, Pro54, Arg55, Gln59, Val65, Gln68, Pro69, Val96, 
Gly97, Ala98, Ala99, Ala101, Met371, Met372, Leu373, 
Gln374, Glu376, Gln377, Leu378, Thr447, Lys449, 
Asn450, Asn451, Ile452, and Trp454 was considered as 
the active site. The Grid generation module was used to 
develop the grid around the above amino acids. It is impor-
tant to note that the catalytic triads of TMPRSS2 were 

reported as His296, Asp345 and Ser441 [44]. The grid 
generated by confining the active site residues was also 
found to contains the catalytic triads.

To dock the entire set of molecules through ADV, the 
Autodock tools (ADT) [45] was used to prepare and con-
vert all the molecules into.pdbqt format. Similarly, the 
ADT interface was used to prepare the TMPRSS2 for the 
input of the ADV program. In protein preparation, the 
hydrogen and Gasteiger charge were added and atom type 
was assigned as AD4 (Autodock 4) type. The prepared 
protein was saved as. pdbqt for the input of ADV. The 
grid coordinate was assigned as 48.554, 60.627 and 44.601 
along the x-, y- and z-axis, respectively. To accommodate 
all the amino acids present in the active site, the grid size 
was set to 60 Å × 60 Å × 60 Å along the x-, y- and z-axis 
, respectively.

Virtual screening

Virtual screening of phytochemicals through the pharma-
coinformatics approach has become a vital tool in the drug 
discovery and development phase. In the current study, the 
published 3D structure of the TMPRSS2 [17] was used 
as a target for virtual screening of a set of 144 reported 
bioactive compounds of M. alba, which were retrieved 
from the PubChem [38]. The molecular docking simula-
tion studies were performed on two of the most widely 
used and trusted steadfast docking simulation tools, i.e., 
ADV program [35] and Glide module [34] of the Schrod-
inger suite. Out of five standard drug molecules, Camostat 
and Ambroxolwere selected as control molecules based on 
binding energy and binding interactions. Details about the 
selection procedure can be found in our previous publica-
tion [17]. In Glide docking, molecules having a higher 
Glide score compare to Camostat and Ambroxol were 
removed for further assessment. On the parallel approach, 
entire molecular set along with Camostat and Ambroxol 
were docked in the TMPRSS2 through ADV. The bind-
ing free energy of Camostat and Ambroxol obtained from 
ADV was used as a threshold to remove the low poten-
tial molecules. Molecules found common in both Glide 
and ADV docking studies and screen out through the 
threshold value of Camostat and Ambroxol were further 
used to calculate the binding free energy through Prime-
MMGBSA. Molecules having Prime-MMGBSA binding 
energy higher than Camostat and Ambroxol were removed. 
Finally, a number of drug-likeness and pharmacokinetic 
parameters included Lipinski’s rule of five (LoF), Gastro 
intestine (GI) absorption, total polar surface area (TPSA), 
blood–brain barrier (BBB) permeation, Veber’s rule and 
synthetic accessibility were used to remove the less poten-
tial molecules.

https://www.selleckchem.com/
https://www.selleckchem.com/
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Molecular dynamics simulation

The behavior and dynamic nature of the protein–ligand 
complex were assessed through MD simulation study. Also, 
this approach helps in binding interactions between protein 
and ligand along with energetically favorable conformation 
analyses. Complexes between the TMPRSS2 and final pro-
posed inhibitors were considered for all-atoms 100 ns MD 
simulation. The Amber18 [46] software tool was used to 
perform the MD simulation and it is installed at the Compu-
tational Shared Facility (CSF3), University of Manchester, 
UK. Prior to simulation, each system was solvated using 
TIP3P [47] water model and immersed in a truncated octa-
hedron box. A sufficient number of Na+ and Cl− were added 
to neutralize the system. The physiological pH was retained 
by maintaining the ionic strength of 0.15 M. The protein 
forcefield, ff14SB [48] was applied to generate the protein 
topology. The GAFF2 [49] force field was used to gener-
ate the ligand topology. The PMEMD.CUDA module [50] 
was considered to perform the simulation. Throughout the 
simulation, a constant temperature of 300 K was retained 
using the Langevin thermostat with a collision frequency of 
2 ps-1, at 1 atm using a Monte Carlo barostat with volume 
exchange attempts every 100 fs. The integration step was 
kept with a 2 fs step. The hydrogens associated with covalent 
bonds were constraint using the SHAKE [51] algorithm. A 
cut-off of 8 Å was considered for the short-range nonbonded 
interaction, while the particle mesh Ewald method [52] was 
used for the long-range electrostatics. A total of 10 ns time 
span equilibration was performed consisting of rounds of 
NVT and NPT. On successful completion of the MD simula-
tion, several parameters such as root-mean-square deviation 
(RMSD) of the TMPRSS2 backbone, root-mean-square fluc-
tuation (RMSF) and radius of gyration (RoG) were explored 
using CPPTRAJ [53] over full trajectory, taking configura-
tion every 2 ps.

Binding free energy calculation through MM‑GBSA 
approach

There are two most trustworthy and widely used binding 
free energy calculations from MD simulation trajectory, 
namely Molecular Mechanics/Poisson-Boltzmann Surface 
Area (MM/PBSA) and the Molecular Mechanics/General-
ized Born Surface Area (MM/GBSA) [54]. Both models 
calculate binding free energies by combining molecular 
mechanics calculations and continuum solvation models. 
Both approaches are used in a number of interesting studies 
[55–58] included by our research group [59–61]. Hou et al. 
[62] considered both the approaches and calculated binding 
free energy of several ligands. It was concluded that MM/
GBSA gives better correlations than MM/PBSA in most 
systems. Hence, the MM-GBSA was used to calculate the 

binding free energy (∆Gbind) of the TMPRSS2 inhibitors. 
The post-processed ensemble of structures are considered 
from the MD simulation trajectories to calculate the ∆Gbind 
of each molecule. The following step by step expressions are 
used for ∆Gbind calculation.

Equation (1) is used to calculate the total binding energy 
(∆Gbind). Basically, ∆Gbind is the difference of free energy 
between complex (∆Gcom) and addition of the receptor 
(∆Grec) and ligand (∆Glig). The enthalpy (∆H) and entropy 
(T∆S) terms are associated in the ∆Gbind (Eq. 2). The GBSA 
approach is used to get the enthalpy term. The normal mode 
analysis (NAM) and interaction entropy (IE) methods are 
considered to calculate the entropy. The ∆H is the term in 
which molecular mechanical energy (∆EMM) and solvation 
free energy (∆Esol) are involved. A combination of intra-
molecular (∆Eint), electrostatic (∆Eele) and the van der 
Waals interaction (∆Evdw) energies gives the ∆EMM. The 
addition of polar (∆Gpol) and non-polar (∆Gnpol) energies 
gives the solvation (∆Gsol). Both ∆Gpol and ∆Gnpol obtained 
from the LCPO algorithm [63] which is based on SASA are 
calculated using the modified generalized Born (GB) [64] 
method.

Results and discussion

Virtual screening

A set of 144 bioactive molecules isolated from the M. alba 
were used for screening against the TMPRSS2. A schematic 
flow diagram of the virtual screening is given in Fig. 1. 
The Glide score of two control molecules, Camostat and 
Ambroxol was found to be − 7.21 and − 6.23 kcal/mol, 
respectively. On docking of both Camostat and Ambroxol 
through ADV, the binding energy was obtained as − 7.90 and 
− 7.20 kcal/mol, respectively. Moreover, Prime-MMGBSA 
binding energy was found to be − 25.00 and − 44.48 kcal/
mol for Camostat and Ambroxol, respectively. Hence, to 
reduce the chemical space, the threshold glide score, ADV 
binding energy and Prime-MMGBSA binding free energy 

(1)ΔGbind = Gcom − (Grec + Glig)

(2)ΔGbind = ΔH − TΔS

(3)ΔGbind = ΔE
MM

+ ΔGsol − TΔS

(4)ΔE
MM

= ΔEint + ΔEele + ΔE
vdw

(5)ΔGsol = ΔGpol + ΔGnpol
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were considered to be − 7.21, − 7.90 and − 44.48 kcal/mol, 
respectively.

Parallelly two molecular docking engines such as Glide 
and ADV were used to dock the entire set of small mol-
ecules in the TMPRSS2. On successful docking of the 
entire molecular set in TMPRSS2 through the Glide, mol-
ecules having glide score less than − 7.21 kcal/mol were 
considered. On the other hand, the binding energy of all 

molecules was explored after docking through ADV. Mol-
ecules found with higher binding energy than − 7.90 kcal/
mol was removed and remaining carried forward for the next 
level of assessment. A total of 36 molecules were found 
common in both steps of Glide and ADV docking study and 
considered for further screening approaches. Moreover, 
the Prime-MMGBSA approach was used to calculate the 
binding free energy of each molecule. Molecules having 
higher Prime-MMGBSA-based binding free energy than 
− 44.48 kcal/mol were removed and a total of 26 molecules 
retained. The drug-likeness and pharmacokinetic parameters 
were assessed. Molecules violating LoF and Veber’s rules, 
having GI absorption = low or moderate, TPSA > 140 Å2, 
BBB permeation = yes and SA > 6 were removed. Following 
the above set of screening criteria, a total of five molecules 
such as (phenylethyl-D-rutinoside, 8-geranylapigenin, Moru-
sin, Kaempferol and Sanggenol L) remained and considered 
to be promising TMPRSS2 inhibitors. For simplicity, from 
here onwards, phenylethyl-D-rutinoside, 8-geranylapigenin, 
Morusin, Kaempferol and Sanggenol L can be known as A1, 
A2, A3, A4 and A5, respectively. A two-dimensional repre-
sentation of the final selected molecules is given in Fig. 2.

Binding interactions analysis

The glide XP score, ADV binding energy and Prime-MMG-
BSA binding energy of final molecules are given in Table 1. 
Several potential hydrogen bonds (HB) and non-bonding 
interactions were observed between the ligands (phyto-
chemicals) and binding site amino residues of the TMPRSS2 
shown in A1 of Figs. 3 and 4. Compound A1, phytochemi-
cal obtained from ethanolic extract of the M. alba fruits. 
On docking of A1 into the active site of TMPRSS2, its 
aliphatic side chain contains phenyl group hydrophobic 
interact with Pro54, Gln374 and Arg55 with a distance of 
3.56 and 3.80 Å, respectively. Another pyran ring with two 
hydroxy and two methyl groups was interacting with Tyr52 
and Ala99 through 1,1 HB interaction along with intera-
tomic distance 3.84–3.99 Å. Furthermore, cyclohexane ring 
substituted with 3′ OH group was found critical to form one 
HB bond with Leu378 with the bond distance of 3.38 Å. 
In addition, cyclohexane ring substituted with 4′ OH group 
was also found crucial to interact with Asn450 and Asn451 
through HB interactions.

Cyclohexane ring substituted with 5′ OH group was found 
to interact with Ile452 to form two HBs with a distance of 
2.09 and 3.04 Å. Another pyran ring contains two hydroxyl 
and two methoxy functional groups was seen to form HB 
along with a distance of 2.44 Å. Furthermore, A1 interacted 
with the TMPRSS2 to with better affinity as suggested by the 
highest Prime-MMGBSA binding energy (− 70.472 kcal/
mol), along with a Glide dock score (− 9.574 kcal/mol) and 
the ADV binding energy (− 8.80 kcal/mol). Compound A2, 

Fig. 1   Virtual screening work of TMPRSS2 inhibitors
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phytochemical investigation of the MeOH extract of the M. 
alba leaves and known as flavonoids. After successful dock-
ing of A2 into the active site of the TMPRSS2 (A2 in Figs. 3 
and 4), its aliphatic side chain (2,6-dimethylocta-1,5-diene) 
interacted with Pro54, Arg55 and Gln51 with a distance of 
3.44 and 3.61 Å, respectively. Another flavonoids ring with 
two hydroxyl groups and one ketone group were interacted 
with Ile452 and Asn451 with a distance of 3.92 and 2.83 Å, 
respectively. Moreover, flavonoids ring substituted with phe-
nyl OH group was found to be important to interact with 
Gly97 via HB interactions. The flavonoids ring with two 
hydroxyl groups form three HBs with Leu378, Ile452 and 
Asn451. This compound showed better interaction with the 
TMPRSS2 as demonstrated by the calculated Prime-MMG-
BSA BE (− 56.060Kcal/mol), with an ADV binding energy 
(− 9.00 kcal/mol) and the Glide dock score (− 7.980 kcal/
mol). Compound A3 is an extended flavonoid obtain from 
leaves M. alba and known as flavone substituted by hydroxy 

groups at positions 5, 2′ and 4′, a phenyl group at position 
3 and a 2,2-dimethyl pyran group across positions 7 and 
8. Docking results (A3 in Figs. 3 and 4) indicated that A3 
contains an aliphatic side chain (2-methylbut-2-ene) sub-
stituted at a flavone ring to form HB with Trp454 with an 
interatomic distance of 3.57 Å. The ketonic functional group 
present in the flavone ring in Morusin was found to form 
HB interaction with Ile452 and Asn451 with a distance of 
3.54–3.51 Å, respectively. In addition, the flavone 5 hydroxy 
group to form HB interactions with Arg55 and Gln374 with 
an interatomic distance of 3.49–3.63 Å. Another pyrin ring 
contains a methyl group present in the flavone ring to form 
HB interactions with Gln371 and Leu378 with interatomic 
distance 3.65–3.339 Å, respectively. Hydrogen bond inter-
action with residue Met372 was found with a flavone 2′ 
hydroxy group with a distance of 1.93 Å. Furthermore, the 
binding site of amino residues such as Ile452 and Asn451 
were found to interact with the ketonic group of flavone 
through two hydrogen bonding with distance of 2.227 and 
3.43 Å, respectively. Another pyrin ring contains carbon-
hydrogen groups that interacted with Gln377 with a dis-
tance of 2.94 Å. In addition, the methyl group of pyrin ring 
was found to form one HB with Leu378 with a distance of 
3.09 Å. The 5-hydroxyl functional group present in flavone 
was found to one HB with Lys449 with an interatomic dis-
tance of 2.05 Å. Furthermore, compound A3 interacted with 
the TMPRSS2 as shown by the calculated Prime-MMGBSA 
BE (− 50.510 kcal/mol), which was less than compound 
A1 and A2 but higher than compound A4 along with ADV 
binding energy (− 8.90 kcal/mol) and the Glide dock score 
(− 7.888 kcal/mol).

Fig. 2   Two-dimensional representation of the selected bioactives compounds, A1, A2, A3, A4 and A5 from the M. alba considered potential 
anti-TMPRSS2 activity

Table 1   Dock score from Glide and Autodock vina, and binding 
energy from Prime-MMGBSA

Compound Prime-
MMGBSA 
BE

Glide dock score Vina dock score

A1 − 70.472 − 9.574 − 8.80
A2 − 56.060 − 7.980 − 9.00
A3 − 50.510 − 7.888 − 8.90
A4 − 46.680 − 7.807 − 8.10
A5 − 60.830 − 7.426 − 9.30
Ambroxol − 25.000 − 6.230 − 7.20
Camostat − 44.480 − 7.210 − 7.90
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Compound A4 is a natural flavonoid that has been isolated 
from leaves M. alba and it is known as 3,4′,5,7-tetrahydroxy-
flavone. From the molecular docking study of A4, it was 
clearly indicated that A4 contains a phenyl ring substituted 
at flavone to form one HB interaction with Thr447 along 
with an interatomic distance of 3.90 Å. The 5-hydroxyl func-
tional group present chromone ring in Kaempferol was found 
to form one HB with amino residues such as Gly97 with a 
distance of 2.75 Å. In addition, the binding site of amino 
residues such as Ala98 and Ala101 were found to interact 
with hydroxy groups present chromone ring through two 
HBs with the distance of 1.83 and 2.77 Å, respectively. One 
of the hydroxyl groups of phenyl ring linkage with chromone 

ring was formed one HB with Lys449 a distance of 2.03 Å. 
The Prime-MMGBSA binding energy of A4 was analyzed 
with their corresponding dock conformation at receptor 
binding sites. Results indicating that the Prime-MMGBSA 
binding energy of A4 (− 46.680 kcal/mol) was lesser than 
the other four compounds. Glide dock score (− 7.807 kcal/
mol) lesser than the ADV binding energy (− 8.10 kcal/mol). 
Compound A5 is a natural flavonoid present in the root barks 
of M. alba. From the molecular docking of A5 into the active 
site of the receptor (A5 of Figs. 3 and 4), it was found that an 
aliphatic chain (4-methylpent-3-en-1-yl) form HB interacted 
with Gln51 and Lys449 with a distance of 3.37 and 3.90 Å, 
respectively. Furthermore, the carbon atoms of the chromone 

Fig. 3   The binding interaction of A1, A2, A3, A4 and A5 with the active site of the TMPRSS2

Fig. 4   The binding mode of A1, 
A2, A3, A4 and A5 with the 
active site of the TMPRSS2
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ring in the molecular system potentially was established the 
HB interaction with Gln377 with a distance of 3.94 Å. The 
ketonic functional group present in the chromone ring in 
A5 was found to form two HBs with amino residues such 
as Ile452 and Asn451 with an interatomic distance of 2.01 
and 3.02 Å respectively. The 5 hydroxyl functional groups 
present in the chromone ring in Sanggenol L were found 
to form two H bonds with amino residues such as Lys449 
and Gln377, respectively. Furthermore, Gly97 was found to 
interact with 4′ hydroxyphenyl group linkage with chromone 
ring through one HB interaction with a distance of 1.86. 
The binding energy of title phytochemical was analyzed 
by their docking conformation at the active binding site 
of the receptor. The results showed that Prime-MMGBSA 
binding energy of A5 (− 60.830 kcal/mol) was lower than 
compound A1 but higher than the compounds A2, A3 and 
A4. The glide dock score (− 7.426 kcal/mol) lower than 
the other four compounds and the ADV binding energy the 
(− 9.30 kcal/mol) higher than the other four phytochemi-
cals. Thus, compound A1, A2, A3, A4 and A5 showed the 
highest Prime-MMGBSA binding energy and dock score as 
compared to both standard drugs (Camostat and Ambroxol) 
[17]. It is worth to note that no binding interaction was seen 
to form with catalytic triads in the molecular docking study. 
This might be due to unfavorable structural orientations of 
the proposed molecules at the active site cavity. It also can 
be observed that a number of nearby amino acids of cata-
lytic triads were present in close proximity of the proposed 
ligands. The close proximate amino acids of the proposed 
TMPRSS2 modulators are given in Figure S1 (Supplemen-
tary data). Hence, optimization and/or different conforma-
tion analyses can form potential interactions with the cata-
lytic triads.

Pharmacokinetic and drug‑likeness

The drug-likeness and pharmacokinetic parameters of the 
final five molecules are given in Table 2. It can be seen that 
all molecules follow the LoF and Veber’s rule. The TPSA 
was found to be in the range of 90–128 Å2 which is accept-
able being a lead-like molecule. All molecules were found 
to be high penetrable to the gastro intestine. Not a single 
molecule was found to have synthetic accessibility of more 

than 6 which undoubtedly explained that all molecules can 
be synthesized easily.

Molecular dynamics simulation

The MD simulation becomes a pivotal and essential tool to 
explore a number of biological characteristics and dynamic 
behavior of the protein–ligand complex. The complex of 
small molecules bound protein systems are extremely impor-
tant in biochemistry. Hence, the stability of the complex 
and the binding nature of the small molecules need to be 
explored through biochemical and biophysical approaches. 
For this purpose, all complexes of proposed molecules with 
TRMPSS2 were considered for subjected to 100 ns all-atoms 
MD simulation study in an explicit hydration environment. 
On successful completion, the MD simulation, the entire 
trajectory of each complex was analyzed in terms of a num-
ber of parameters included RMSD of protein backbone and 
ligand, RMSF of individual amino acid, hydrogen bond 
analysis between protein and ligand, RoG of the system and 
finally, the binding affinity of the molecules in terms of bind-
ing energy calculated through MM-GBSA approach.

Root mean‑square deviation

The structural conformation of the protein backbone dur-
ing the MD simulation can be assessed through RMDS of 
each frame obtained from the entire trajectory. RMSD of 
Ca, C and N atoms each frame was calculated and plotted 
against the simulation time and it is given in Fig. 5. The sta-
bility protein–ligand complex can be explained by the low 
deviation and constant variation of the RMSD throughout 
the simulation. From Fig. 5, it can be seen that initially the 
RMSD deviated but afterward all complexes achieved stabil-
ity. It is important to note that all complexes were found to a 
gradual increase of RMSD un till about 20 ns of simulation 
time. Followed by about 20 ns all complexes were seen to 
equilibrated with small deviation which indicated that sys-
tems folded in more stable conditions in comparison to the 
native structure. Average, maximum and minimum RMSD 
was calculated and these are given in Table 3. The average 
TMPRSS2 backbone RMSD was found to be 3.702, 2.550. 
3.421, 3.730 and 3.8832 Å when bound with A1, A2, A3, A4 

Table 2   Pharmacokinetic and 
drug-likeness properties

Compound Violation of 
LoF

GI absorption TPSA BBB per-
meation

Veber’s rule 
violation

Synthetic 
accessibility

A1 0 High 128.84 No 0 5.63
A2 0 High 90.90 No 0 4.24
A3 0 High 100.13 No 0 4.43
A4 0 High 111.13 No 0 3.14
A5 0 High 96.22 No 0 4.77
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and A5, respectively. The same protein bound with Camostat 
and Ambroxol was given an average RMSD of 3.265 and 
3.909 Å, respectively [17]. The above data clearly suggest 
that the average RMSD of TMPRSS2 backbone bound with 
proposed molecules given almost similar deviation to the 
control molecules.

Root‑mean square fluctuation

The RMSF parameter is extremely essential to explore the 
role of individual amino acid in the stability of any pro-
tein–ligand complex. It is the fluctuation of each amino acid 
backbone during the simulation with respect to the initial 
orientation in the native state. The RMSF of each amino 
acid was calculated from the MD simulation trajectory and 

it is given in Fig. 6. The average, maximum and minimum 
RMSF values are given in Table 3. It can be seen that all 
the trajectories fluctuated almost in a similar fashion with 
a small variation. Amino acid around 25 of TMPRSS2 
bound with A1 and A5 were found to fluctuated higher in 
comparison to others but the remaining residues are shown 
similar fluctuation. It is important to note that similar fluc-
tuation of TMPRSS2 was observed when it bounds to the 
Ambroxol and Camostat [17]. A little bit higher fluctuations 
were observed around Pro30, Arg150, Met320, Lys390 and 
Phe480 in comparison to the other amino acids. The above 
higher fluctuation might be due to the breaking of binding 
interactions between the proposed molecules and ligand-
binding amino residues in the dynamic states during MD 
simulation. The average RMSF value can give an idea about 
the fluctuation of the amino residues during the simulation. 
From Table 3, it can be seen the average RMSF value of 
1.898, 1.595, 1.809, 1.719 and 2.001 Å was observed when 
bound to A1, A2, A3, A4 and A5, respectively. The above 
RMSF data undoubtedly suggested that during the simu-
lation, amino residues of TMPRSS2 bound with proposed 
molecules remained consistent.

Radius of gyration

The rigidity comparative analysis of protein-bound with 
small molecules can be assessed through the radius of gyra-
tion. It is reported that almost intact RoG variation explain 
the folding of the protein during the MD simulation. On the 
contrary, the high deviation of RoG describes the unfold-
ing of the macromolecules. The RoG of each frame of the 
TMPRSS2 complex with the final proposed molecules was 
extracted and plotted against the time of simulation (Fig. 7). 
The pattern of RoG variation for each system clearly indi-
cated the consistency during the simulation. No abnormal 
variation of the RoG value was found in any of the systems. 
The difference between the maximum and minimum RoG 
was found to be 1.163, 1.043, 1.314, 0.942 and 1.303 Å 
when TMPRSS2 bound with A1, A2, A3, A4 and A5, 
respectively. Such a low difference undoubtedly explained 
that not abnormal opening of the protein was seen.

Hydrogen bond analysis

The protein–ligand complex stability and affinity of the 
ligand toward the receptor can be assessed the hydrogen 
bond analysis of each frame generated during the MD sim-
ulation. The hydrogen bonds formed by each ligand with 
TMPRSS2 in each frame were calculated and it is given in 
Fig. 8. The maximum number of hydrogen bonds formed 
by A1, A2, A3, A4 and A5 with TMPRSS2 was found to 
be 7, 4, 5, 5 and 4, respectively. In each and every mol-
ecule, a small number of frames were also found without 

Fig. 5   TMPRSS2 backbone RMSD bound with proposed molecules

Table 3   Average, maximum and minimum values of MD simulation 
parameters

Parameters A1 A2 A3 A4 A5

RMSD (Å)
TMPRSS2 (Ca, C and N)
Average 3.702 2.550 3.421 3.730 3.832
Maximum 5.286 3.811 4.446 5.437 5.887
Minimum 0.000 0.000 0.000 0.000 0.000
Ligand
Average 1.634 0.378 0.311 0.289 0.313
Maximum 2.734 1.375 1.238 1.310 0.688
Minimum 0.000 0.000 0.000 0.000 0.000
RMSF (Å)
Average 1.898 1.595 1.809 1.719 2.001
Maximum 13.293 9.379 9.486 8.344 12.260
Minimum 0.541 0.488 0.535 0.597 0.737
RoG (Å)
Average 24.280 23.965 24.624 23.791 24.677
Maximum 24.942 24.568 25.229 24.315 25.308
Minimum 23.779 23.525 23.915 23.373 24.005
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any hydrogen bonds but those frames were remained stabled 
with non-hydrogen bond interactions.

Idris et al. [65] were performed the pharmacophore-
based virtual screening of the ZINC database against 
TMPRSS2 target. After molecular docking and in-silico 
pharmacokinetic analyses, they were found two promis-
ing molecules. A 50 ns time span of MD simulation was 
performed for the complex of TMPRSS2 and the final 
two molecules. Average protein backbone RMSD they 

have reported as 4.52 and 5.28 Å bound with ligand1 
and ligand2, respectively. In the current study, the aver-
age TMPRSS2 backbone RMSD bound with all five mol-
ecules was found to be in the range of 2.5 to 3.9 Å. The 
Average RMSF was reported for ligand1 and ligand2 as 
of 1.87 and 2.06 Å, respectively. Similar to the above 
average RMSF (< 2.002 Å) was seen for the TMPRSS2 
bound with A1–A5. In the above study, the average RoG 
of ligand1 and ligand2 was found to be 20.63 and 20.32 
Å, respectively. Mean RoG of TMPRSS2 bound with pro-
posed molecules (A1–A5) was seen to be less than 25 Å. 
The RMSD and RMSF profile of the TMPRSS2 inhibitors 
in our previous publication [17] were also corroborated 
with the current findings.

Binding energy calculation using MM‑GBSA 
approach

Binding free calculation through MM-GBSA from a set of 
frames obtained in MD simulation can be considered more 
accurate and trustworthy in comparison to the molecular 
docking study. Hence, for each proposed molecule, last 
10,000 frames were used to calculate the ΔGbind through 
MM-GBSA approach. The ΔGbind along with different com-
ponents of the binding free energy was calculated and these 
are given in Table 4. The same approach was used in our 
previous study [17] to calculate the ΔGbind of Ambroxol 
and Camostat, and the value was found to be − 44.480 and 
− 25.00 kcal/mol respectively. In the current study, ΔGbind of 
A1, A2, A3, A4 and A4 was found to be − 36.546, − 42.252, 
− 36.534, − 30.462 and 42.916 kcal/mol, respectively. It is 
quite interesting that ΔGbind of all molecules was found to 
be more than the binding free energy of Camostat and com-
parable with Ambroxol. The above value clearly indicated 
that all proposed molecules were showed strong affection 
toward the TMPRSS2.

Table 4   Binding free energy of proposed TMPRSS2 inhibitors

a Electrostatic
b ven der Waal’s

Molecule Energy (Kcal/mol) Standard 
error of 
∆Gbind

aElec bvdW ∆Gbind

A1 − 37.317 − 43.564 − 36.546 4.726
A2 − 19.191 − 51.521 − 42.252 3.370
A3 − 18.494 − 45.633 − 36.534 2.617
A4 − 25.883 − 35.702 − 30.462 3.079
A5 − 25.566 − 50.009 − 42.916 3.845

Fig. 6   RMSF of individual amino residue of TMPRSS2 bound with 
A1, A2, A3, A4 and A5

Fig. 7   Radius of gyration against simulation time of TMPRSS2 
bound with A1, A2, A3, A4 and A5

Fig. 8   The number of HBs forming between TMPRSS2 and proposed 
ligands in due course of simulation time
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Conclusion

In the current study, five promising molecules were 
obtained through structure-based virtual screening for 
TMPRSS2 inhibition. The potentiality of each molecule 
was adjudged through binding interaction, in-silico phar-
macokinetic and MD simulation assessments. The molecu-
lar docking study was clearly explained that a number of 
crucial amino acids including Arg55, Glu374, Leu376, 
Asn451, etc. found to be critical to hold the ligands inside 
the active site of TMPRSS2. The pharmacokinetics and 
drug-likeness characteristics of each ligand suggested the 
potentiality of the selected molecules. To check the behav-
ior of each molecule in the dynamic state, an all-atom 
MD simulation was performed. A number of parameters 
included RMSD, RMSF, RoG and hydrogen bond analysis 
were suggested the stability of protein–ligand complexes. 
MD simulation trajectory was used to calculate the bind-
ing free energy through the MM-GBSA approach. The 
high binding free energy of each molecule obtained from 
the above approach undoubtedly was explained the strong 
affection toward the TMPRSS2. Hence, the final proposed 
molecule might be crucial for TMPRSS2 inhibition and 
can be used for the management of COVID19, subjected 
to experimental validations.
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