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Abstract

This work predicts the effects of molecular motions on NMR

measurements, namely 2H NMR line shapes arising from quadrupolar

coupling (Pake pattern) and T1 relaxation times directly and completely

from the results of all-atom MD simulations. Simulations were performed

on a host guest system of ImTPA crystals at two characteristic

temperatures. The resulting trajectories have been used for the first time

to predict 2H NMR line shapes based on the theoretical and

computational methodology originally developed by Oganesyan for the

prediction of EPR spectral line shapes from atomistic MD trajectories [1]

adapted for predicting NMR spectra.

DFT methods have been employed to optimise the structures of host and

guest molecules, generating parameters for the forcefields in MD runs using

GROMACS and calculated the quadrupolar coupling tensor components of

2H sites in Imadazolium Ions.

2H NMR spectra were predicted using two approaches; i) direct

propagation of the density matrix (DP) for the spin system using the

Stochastic Liouville Equation (SEL) [2] and time dependent Liouville

superoperator and ii) applying fast motional limit (FML) approximation
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which employs the motionally averaged quadrupolar coupling tensor. The

results are compared to the experimental measurements available from the

literature.

It is concluded that the NMR predictions based on the FML approach

provide an adequate representation of the two-states jump motions of the

Imidazolium Ions in ImTPA capturing accurately their impact on the

NMR line shapes at different temperatures. Predictions by DP method are

broadly in agreement with the FML but, in comparison with EPR, require

longer trajectories for an adequate spectral simulation.

Predictions of T1 relaxation times arising from the dynamical modulation

of the quadrupolar coupling term in the spin-Hamiltonian are reported at

both temperatures for a range of magnetic field strengths using the same

MD trajectories.
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1

Introduction

1.1 NMR

Nuclear Magnetic Resonance Spectroscopy (NMR) [6] is an analytical

technique used to investigate the structure and dynamics of a chemical

system. These features are investigated by measuring the frequencies, ω,

of precession of nuclei in the system around a magnetic field.

This precession occurs in nuclei with non-zero net spin at a rate dependent

on the strength of the magnetic field, B, and a fundamental quantity of

the isotope involved, the gyromagnetic ratio ,γ [7]. This allows for the

presence of specific NMR active nuclei to be identified in the species,

including distinguishing between isotopes of the same element with

different spins or gyromagnetic ratios [8].

While this is true for a single isolated nucleus it is an incomplete picture,

as it assumes the local environment has no effect on the magnetic field

experienced by the precessing nuclei. In single crystal NMR the influences

of local environment are also important, this introduces interactions with

the nuclei and local magnetic field, chemical shielding [9], as well as coupling

between pairs of nuclear spins, J coupling [10] through bonds and dipolar
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coupling [11] through space, and for nuclei with absolute spins greater than

1
2

coupling between nuclear quadrupoles and electric field gradients in the

local structure [12].

These effects introduce additional sensitivity into the NMR spectrum

allowing for more details to be determined about the structure. The

dependency of chemical shielding on the local environment allows nuclei to

be distinguished by their surrounding environment. This includes

distinguishing between the head groups of polymers [13] and site specific

measurements of isotopic abundance [14]. While dependence on the

distances between nuclei in dipolar coupling can measure the distance [15]

[16] in molecular structure and similarly J coupling can measure angles in

structures [17].

Further there’s the potential for orientational dependence, for example

chemical shielding around a nucleus is not necessarily the same in all

directions, chemical shift anisotropy, leading to a difference in the

shielding observed dependent on the orientation of the molecule relative to

the external magnetic field. This allows orientations to be distinguished

[18]. Beyond the single crystal case, these orientational dependencies can

reveal information about order and the distributions of molecular

orientations in a larger structure through the broadening of frequencies for

each chemical environment [19][20].

These orientations can also be time dependent, where the rates of change

in orientation affect the extent of coupling observed. Because of this NMR

can be used to study the dynamics of systems [21] [22] [23]. This allows

NMR to distinguish between phases by the rates of motion and the range

of accessible orientations, for example quadrupolar coupling is observed in

solid state NMR but absent in solution. Allowing the detection of phase

24
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transition between solid and liquid phases and liquid phases of different

orders [24].

Similarly this can be used to detect binding between molecules and the wider

structures which has the effect of restricting motions, this is valuable in both

an inorganic context, when looking at host guest interaction in zeolites [25]

[26] [27], and metal organic frameworks [28] [29]. In an organic context this

is useful when studying the binding of molecules to lipid bi-layers [30] [31]

[32] and proteins [33].

25



Chapter 1: Introduction 26

1.2 Computational Chemistry

The use of computational techniques in chemistry presents a powerful tool

for the modeling of chemical systems and the prediction of bulk properties

from first principles without relying on experiments. This has several

advantages over conventional measurement, for example simulation of high

energy systems [34] allows data to be collected on systems that would

otherwise be prohibitively difficult to study under laboratory conditions.

While computational studies of reaction pathways [35] [36] [37] allow for

the prediction of behaviours that can’t be monitored as easily

experimentally. For example the positions of individual atoms and the

properties of extremely short lived excited [38] [39] or transition [40] [41]

states.

Oganesyan [1] has developed a technique for the prediction of EPR spectra

of spin systems, this approach involves calculating a Liouvillian

Superoperator which expresses how the distribution of spins in the system

change with time. This Superoperator is the sum of the Superoperators

for individual magnetic interactions which for EPR are the Zeeman

interaction [42], zero field splitting [43], exchange interactions [44] and

hyperfine coupling [45]. This approach has been successfully applied to

investigation of structure and dynamics of bio molecules including DNA

[46], lipid bi-layers [47] and myoglobin [48].

Calculating the Superoperator for each interaction requires a spherical

tensor, dependent on the electron spins in the system, as well as a lattice

tensor that describes the surrounding structure and a Wigner matrix

modeling the relative orientation of the surrounding structure to the

external magnetic field. For NMR, the spin tensors are dependent on

26
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nuclear spin and characteristic properties of each isotope only, so are the

same for all nuclei of each isotope.

The lattice tensors are more complex to calculate, first involving the

optimisation of structure of individual molecules in the system [49] [50]

from which the relevant lattice tensors can be calculated. This project

focuses on the quadrupolar coupling interaction where the lattice tensor

required is the electric field gradient tensor which can be calculated from

the distribution of charges in the molecule [51]. While quadrupolar

coupling was chosen for this project the approach can be applied

analogously to the other magnetic interactions.

Finally the Wigner matrices are derived from molecular dynamics

simulations which allow the positions of individual nuclei to be tracked in

the form of a trajectory file, this part of the approach is the same for both

EPR and NMR [52].

27
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1.3 NMR Measurements

To measure the NMR spectra of a system it is placed in a magnetic field, B0.

B0 defines the z direction for the experiment and a detector coil is placed

perpendicular to B0 in the x-y plane of this laboratory fixed axis system.

B0 =


0

0

B0z

 (1.1)

In the presence of B0, nuclei with non zero spin, I, in the system precess

around the field at a frequency, ω0, proportional to the strength of the field

and γ a characteristic constant for a given isotope, Hz T−1.

ω0 = B0γ (1.2)

A second magnetic field, Bt, is then applied. Bt is carried by an

electromagnetic pulse in the radio frequency, r.f, range, that propagates

perpendicular to the z direction in the x-y plane. As it’s carried by an

oscillating wave, Bt is time dependent, rotating in the x-y plane around

the z direction with frequency, ωt, the same as the frequency of the pulse.

This pulse can either be applied as a single continuous wave, which sweeps

through a range of frequencies (building up the spectra over a longer time)

or can be applied simultaneously in a pulse made up of multiple

frequencies at once.

Now it’s the resultant of these two fields on the nucleus, Beff , that the

nucleus precesses around, which is given by.

Beff =

√(
(B0(1− ωt

ω0

))2 + (Bt)2

)
(1.3)

28
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[53] Normally B0 >> Bt, meaning that Beff ≈ B0, unless ωt is equal to

or almost equal to ω0, referred to as the pulse being on or near resonance.

When the field Bt oscillates at the same rate that the nucleus precesses,

ω0 = ωt,

Beff = Bt (1.4)

the resultant field on the nucleus is Bt which is a constant, B1, with respect

to the nucleus. This negates the effect of B0 on the nucleus leading it to

precess only around B1. As B1 is perpendicular to B0 the precession of the

nucleus has been rotated 90◦ into the plane of the detector coil.

After the pulse, the detector coil placed in the x-y plane is switched on.

This coil detects voltage associated with the movement of charges as nuclei

precess, which vary with time. For a single type of nucleus the result is

a dampened sine-wave, FID, with the same frequency as the frequency of

precession.

For multiple types of nuclei precessing simultaneously, the voltage detected

in the coil is a superposition of the voltages due to each precession, which

are not necessarily of the same frequency. This signal in time can then be

converted from the time domain to the frequency domain to separate it into

its component frequencies using a Fourier transform. This will correspond

to which NMR active nuclei are present in the system.

There’s another source of information in the spectra, which comes into effect

after the pulse ends. During the pulse, there’s an energetic incentive to be

aligned with the magnetic field in the x-y plane and the effects of B0 are

negated.

After the pulse this is no longer true and so there’s a loss of this alignment,

both through realignment with B0 via T1 relaxation and loss of coherence
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Figure 1.3.1: FID for single NMR active nucleus in the sample. Plotted as
cos(25t)et.

Figure 1.3.2: FID for multiple NMR active nuclei in the same sample with
different characteristic frequencies. (cos(25t) + cos(35t))2e−t.
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in the x-y plane by entropic effects in T2 relaxation. The result of this

relaxation is a dampening of the signal detected by the coil in the x-y

plane. Where the rates of relaxation reveal information about the system,

including how able nuclei in the system are to reorient themselves, which

reveals information about the dynamics.
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1.4 NMR Theory

1.4.1 Zeeman Splitting

Nucleons, protons and neutrons, possess a quantity called spin of 1
2
. In the

nucleus there is a tendency for nucleons of the same type to pair up positive

to negative, reducing the net spin, I, of the nucleus. For an even number

of both types of nucleon this pairing is complete resulting in I = 0.

But for an odd number of either nucleon, or both, the pairing is

incomplete resulting in a nucleus with I 6= 0. Though at this point the

distinction between a positive and negative spin is arbitrary as there’s no

energy difference between the two.

The two states are no longer degenerate, of equal energy, in the presence of

a magnetic field, B0, where the nuclear spin can be aligned with, or opposed

to, the field, and the energy difference between states, ∆E, is given by

∆E = ∆mγB0~ (1.5)

Being aligned with the field is lower energy than being opposed to it. ~

is the reduced Planck’s constant and γ is the gyromagnetic ratio, a value

for the rate a nucleus rotates at for a given field strength. This energy

difference corresponds to a frequency, ω, of radiation that can be absorbed

or emitted to transition between states.

E = hω (1.6)
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Figure 1.4.1: Increasing ∆E between spins aligned and opposed spins with
increasing magnetic field.

Under these conditions the nuclear spins in the species exist in two states

with a ratio between the population in the high energy, E+, and low energy,

E−, states of

E+

E−
= exp

(
−∆E

kBT

)
(1.7)

This has a few consequences, as kB is constant, the two relevant properties

are ∆E, proportional to constants and the magnetic field, and temperature

T.

As the magnetic field increases, the splitting between states is higher and

so the spins tend towards being aligned completely for an infinite magnetic

field, while for no field the populations are even, corresponding to the

degeneracy mentioned earlier. As for temperature the species approaches

equal populations of both spin states as temperature approaches infinity

as thermal energy overcomes the energetic incentive to be aligned with the

field.

However, this is an incomplete picture as there are additional factors to

consider when not dealing with single isolated nuclei in a magnetic field.
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1.4.2 Quadrupolar Coupling

Quadrupolar coupling is a interaction, due to the coupling between electric

field gradients, V , present in the species and asymmetries in the charge

distribution present in certain nuclei.

The electric field gradient is the derivative of the electric field potential at

a given point in a species, where the electric field potential for a nuclei is

the sum of the potentials VE due to each surrounding nuclei, i.

VE =
∑
i

1

4πε0
.
qi
r

(1.8)

where ε0 is the permittivity of free space, q is the charge of the nucleus and

r is the distance from that charge.

The electric field gradient is also the 2nd derivative with respect to distance

in the directions xa and xb.

Vab =
∂2V

∂xa∂xb
(1.9)

Which are arranged into a tensor, as with shielding.

V =

∣∣∣∣∣∣∣∣∣∣
Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

∣∣∣∣∣∣∣∣∣∣
(1.10)

A consequence of the formula for the derivative being the same on exchange

of a and b.

∂2V

∂xa∂xb
=

∂2V

∂xb∂xa
(1.11)
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Is that

Vab = Vba (1.12)

meaning that the matrix is symmetrical along its main diagonal.

The axes are conventionally defined as

| Vzz |≥| Vyy |≥| Vxx | (1.13)

and the asymmetry parameter, η, is defined as

ηV =
Vyy − Vxx

Vzz
(1.14)

which is unitless.

Another feature of this gradient is that the trace of the matrix,

Tr(V ) = Vxx + Vyy + Vzz = 0 (1.15)

This is because the electric field gradient follows the Laplace equation where

the sum of the 2nd partial derivatives of V in each direction is 0.

∆V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0 (1.16)

where ∆ is the Laplace operator [54]. If this value was non zero it would

result in a net force on the nucleus and the species would not be at

equilibrium.

In the principal axis system V PAS of the tensor only the diagonal values of

V are non zero.

35



Chapter 1: Introduction 36

V PAS =

∣∣∣∣∣∣∣∣∣∣
Vxx 0 0

0 Vyy 0

0 0 Vzz

∣∣∣∣∣∣∣∣∣∣
(1.17)

But not all species have an electric field gradient. For a gradient to exist over

the species there needs to be asymmetry in at least one direction. Otherwise

the species possesses an inversion centre and any gradient respective to a

nucleus in one part of the molecule is cancelled out by an equal and opposite

gradient relative to an equivalent nucleus through the inversion centre and

the two orientations are indistinguishable.

As well as specific requirements for the structure of a species, there are also

limits on the nuclei that can display quadrupolar coupling. Nuclei have

spherical charge distribution when, | I |< 1, but for absolute nuclear spins

of 1 or greater the nucleus will be either oblate or prolate with non spherical

charge distribution. This produces a quadrupole in the nucleus which can

be thought of as two bisecting perpendicular lines of positive and negative

charge respectively.

When both requirements are met, the electric field gradient exerts torque

on the quadrupole. This results in a change in the frequency of precession

of nuclei as the nucleus needs to push with or against this torque. With the

frequency accounting for quadrupolar interactions, ωQ, given by

ωQ = ω0 −
3

8

(
2m− 1

I(2I − 1)

)
χ(3 cos2 θ − 1) (1.18)

where the angle, θ, is the angle between the quadrupole and the z axis of

the external magnetic field, B0 [55].

This equation also gives the value for the magic angle, where the
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perturbation term cancels out, at 54.74◦ degrees. As a consequence

spinning the sample sufficiently quickly at an angle of 54.74◦ eliminates

broadening due to quadrupolar coupling.

For the I = 1 case, m is 0 or ±1 corresponding to the spin state of the

nucleus, χ is a constant for the system representing the strength of

quadrupolar coupling

χ =
e2qQ

~
(1.19)

where e is the electron charge, and Q is the nuclear quadrupolar moment

and q is an expression of anisotropy in the electron cloud, and θ is the angle

in degrees between the quadrupole and B0 and eq is the anisotropy in the

tensor Vzz.

eq = Vzz (1.20)

χ =
eVzzQ

~
(1.21)

The Hamiltonian for the energy of this interaction is given by

ĤQ =
eQ

2I(2I − 1)
.

[
Ix Iy Iz

] ∣∣∣∣∣∣∣∣∣∣
Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

∣∣∣∣∣∣∣∣∣∣


Ix

Iy

Iz

 (1.22)

In the simplest quadrupolar case of a spin 1 nucleus, for example deuterium,

there are two transitions to consider, -1 to 0 and 0 to 1 of equivalent energy.

Assuming all nuclei are in equivalent environments and orientation with

isotropic shielding, this results in a peak for each transition.

However in the powder spectrum, where the molecules in the system are

distributed evenly across all possible orientations, these two peaks are

spread across frequencies corresponding to the range of angles, θ. Between

a peak corresponding molecules where V PAS
zz is perpendicular to B0,
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trailing off to minimum intensity where V PAS
zz is perpendicular.

There are three different splittings ∆ν1, ∆ν2 and ∆ν3 in each spectra, values

of these splitting being dependent on orientations and motions in the system

[56].

Figure 1.4.2: Pake Pattern with splitting values nu 1, 2 and 3 labeled by
Gall et al.

These splitting values are given by

∆ν1 =
3

8
χ(1− η) (1.23)

∆ν2 =
3

8
χ(1 + η) (1.24)

∆ν3 =
3

4
χ (1.25)

38



Chapter 1: Introduction 39

1.4.3 What can be distinguished

A key assumption for the above is that two non-equal frequencies can be

distinguished, which is not necessarily true. The limit to what can be

distinguished is a result of time–energy uncertainty, which is a minimum

value of the product of uncertainty in the values of energy and time [57].

∆E∆t ≥ ~
2

(1.26)

This means that the more precisely the time is known the less precision

there can be in energy measurements, and if uncertainty in energy

measurements is greater than the difference in energy between two states,

they are indistinguishable. This means for a given frequency difference,

∆ν, there’s a limit to how short lived the shortest lived state can exist for

before all that’s seen is the average of the two states, referred to as the

coalescence time, τ which is the inverse of the rate of interchange between

the states, k.

τcoalescence = (
√

2π∆ν)−1 = k−1 (1.27)

And the factors affecting rate can be modeled with the Arrhenius equation,

k = A.exp

(
− Ea
RT

)
(1.28)

where A is a proportionality constant for a given process, Ea is the activation

energy for that process and R is the molar gas constant. Because of these

dependencies there are ways to improve the ability of an experiment to

distinguish between two states. In the case of chemical shielding the energy

difference

Ĥσ = ~γÎσB̂ (1.29)
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is proportional to the magnetic field strength, allowing larger magnets to

increase the resolution. However this is not true in the case of quadrupolar

splitting, which is a function of inherent properties in the molecule and not

due to the external magnetic field. In both cases the rate dependence on

temperature opens the possibility of lowering temperature to slow down the

interchange between states. There are two limits to these effects, the fast

limit and the rigid limit where

k � ∆ν (1.30)

and

k � ∆ν (1.31)

respectively.

At the fast limit multiple different transitions display as a single peak and

at the rigid limit they appear distinctly. This is also why broadening due

to quadrupolar coupling isn’t observed in liquid or gaseous state NMR,

where rapid molecular tumbling results in such short lived orientations that

none can be distinguished and a single distinct average peak is all that is

observed.

1.4.4 Definition of Reference Frames

A reference frame is a coordinate system defined by a set of three

orthogonal cartesian axes. This project requires conversion between

multiple reference frames because the physical quantities used are known

and defined in different reference frames. The electric field gradient tensor

is known relative to each individual molecule but the degree to which
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these gradients lead to splitting is dependent on their magnitude relative

to the external magnetic field so each individual molecular tensor needs to

be rotated into a common frame, that of the magnetic field.

The relevant reference frames in this project are

The Principle Axis System (PAS) defined by features of the molecule

• Pz - The direction of the greatest eigenvalue of the electric field

gradient tensor.

• Py - The direction of the middle eigenvalue of the electric field gradient

tensor.

• Px - The direction of the lowest eigenvalue for the electric field gradient

tensor.

The Laboratory Frame (LAB) defined by the external magnetic field and

the axis used in GROMACS simulations

• Lz -The direction of the external magnetic field

• Ly and Lx two vectors mutually perpendicular to Lz

1.4.5 Transformation between frames

In order to transform one reference frame into another a series of three

rotations are needed [58]. Each individual rotation is described by a rotation

matrix Ra(θ) anticlockwise about an axis, a, by an angle of θ. For the x, y
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and z axis these rotation matrices are.

Rx(α) =


1 0 0

0 cosα −sinα

0 sinα cosα

 (1.32)

Ry(β) =


cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ

 (1.33)

Rz(γ) =


cosγ −sinγ 0

sinγ cosγ 0

0 0 1

 (1.34)

These rotations may either be active, A, or passive, P. Active rotations

involve the movement of a rigid body within the reference frames. As

opposed to passive rotations where the frames themselves are rotated

while the body, in this case a molecule, remains static. For conversion

between reference frames passive rotations are used.

For converting from X, Y and Z in the Principle Axis System to the

laboratory frame.


XLAB

YLAB

ZLAB

 = ProtatedX3Y2Z1(γ, β, α)


XPAS

YPAS

ZPAS

 (1.35)

three steps are required.

1. Rotation about the ZPAS axis by an angle of α rotates xyz to x′y′z′

42



Chapter 1: Introduction 43

Figure 1.4.3: Transformation between two frames by three rotations [3].

where z = z′. 
x′

y′

z′

 =


cosα −sinα 0

sinα cosα 0

0 0 1



x

y

z

 (1.36)

2. Rotation about the the new axis y′ by an angle β where y′ = y′′.


x′′

y′′

z′′

 =


cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ



x′

y′

z′

 (1.37)

3. And finally rotation about x′′ axis by an angle of γ where x′′′y′′′z′′′ are

the lab frame XLABYLABZLAB.


x′′′

y′′′

z′′′

 =


1 0 0

0 cosγ −sinγ

0 sinγ cosγ



x′′

y′′

z′′

 (1.38)

These transformations can then be expressed as a single 2nd rank Wigner
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D matrix, which takes the form.


( 1+cosβ

2
)2e−2i(α+γ) − 1+cosβ

2
sinβe−i(2α+γ)

√
3
8
sin2βe−i2α − 1−cosβ

2
sinβei(−2α+γ) ( 1−cosβ

2
)2e2i(−α+γ)

1+cosβ
2

sinβe−i(2α+γ) [cos2β − 1−cosβ
2

]ei(α+γ) −
√

3
8
sin(2β)e−iα [ 1−cosβ

2
− cos2β]ei(−α+γ) − 1−cosβ

2
sinβei(−α+2γ)√

3
8
sin2βe−i2γ

√
3
8
sin(2β)e−iγ 3cos2β−1

2
−
√

3
8
sin(2β)eiγ

√
3
8
sin2βei2γ

1−cosβ
2

sin2βei(α−2γ) [ 1+cosβ
2

− cos2β]ei(2α−γ)
√

3
8
sin2βeiα [cos2β − 1−cosβ

2
ei(α+γ)] − 1+cosβ

2
sinβei(α+2γ)

( 1−cosβ
2

)2e2i(α−γ) ( 1−cosβ
2

)sinβei(2α−γ)
√

3
8
sin2βei2α ( 1+cosβ

2
)sinβei(2α+γ) ( 1+cosβ

2
)2e2i(α+γ)


(1.39)

The terms of which are found in the tensor components for the magnetic

interactions.
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1.5 Spectra Prediction From Direct

Propagation

The method of prediction for EPR, which is a sister technique to NMR,

reported in [1] was adapted for the purpose of simulation of Pake pattern line

shapes arising from 2H quadrupolar coupling interactions. A brief overview

of this method is given below.

1.5.1 The Density Operator

The formal solution to the Stochastic Liouville Equation is given by the

following expression for the density operator at a given time, found by

evolution of the density operator at thermal equilibrium, ρ(0), using the

Liouville Superoperator
ˆ̂
L.

ρ(t) =

〈
exp

(
−i
∫ t

0

ˆ̂
L(τ)dτ

)〉
ρ(0) (1.40)

where 〈...〉 is an average across the entire ensemble of particles in the

system. The density operator at thermal equilibrium is a description of

the superposition of different spins in the system [59].

The density matrix ρ(0) satisfies the following requirements.

• The trace is 1 as the sum of the proportions of nuclei in each spin

state is 1.

• The matrix is hermitian, meaning it is equal to it’s conjugate

transpose.

For I = 1 and at thermal equilibrium ρ is ρ(0) a 3 by 3 matrix of the states
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−1, 0 and +1 in the z direction.

ρ(0) =


p+ 0 0

0 p0 0

0 0 p−

 (1.41)

1.5.2 The Liouvillian

The Liouville Superoperator,
ˆ̂
L , is an operator that differentiates the

density operator at a given time as expressed in the von Neumann form of

the SLE, which is explicitly dependent on time.

dρ(t)

dt
= ˆ̂L(t).ρ(t) (1.42)

Where the product of the Liouville Superoperator and density matrix at

a given time is the commutator of the spin Hamiltonian, Ĥ, and density

operator at a given time.

ˆ̂L(t).ρ(t) = [Ĥ(t), ρ(t)] (1.43)

This Superoperator,
ˆ̂
L, for a given magnetic interaction, α, summed over

the spins in the system, P , the ranks, y, of the tensors involved and the

indexes of those tensors n,m, k is dependent on

ˆ̂
Lα(t) = λα

∑
P

∑
y

∑
n,m,k

ˆ̂
T yαPn V̄ αy

−kD
y
km(ΩP→M)Dy

mn(ΩM→L(t)) (1.44)

• λα a constant for a given magnetic interaction.

• ˆ̂T a spherical Superoperator for the given interaction, a function of

the spin operators present in the system.
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• V̄ a lattice tensor representing the interaction between the spins and

the molecular structure, expressed in the principle axis frame, these

are not necessarily spherical and so may have orientational

dependence.

• Dy
km(ΩP→M) a time independent Wigner matrix that expresses the

passive rotation for the transformation between the principle frame

and a frame for the molecule, this is a function of three Euler angles.

• Dy
mn(ΩM→L)(t) a time dependent Wigner matrix that maps a frame

for the molecule to the laboratory frame.

Though this expression can be simplified for systems where the principle

frame is chosen to be coincident with the molecular frame, an assumption

which can be made for small rigid molecules, in which case Dy
km can be

neglected and only the time dependent Wigner matrix is needed.

ˆ̂
Lα(t) = λα

∑
P

∑
y

∑
n,m,k

ˆ̂
T yαPn V̄ αy

−kD
y
mn(ΩM→L(t)) (1.45)

1.5.3 Intensity

This intensity in the spectrum, I(ω), as a function of frequency, is given by

the real part of the integral

I(ω) = Re

∫ ∞
0

exp(−iωt) 〈M+(t)〉 dt (1.46)

while the imaginary part gives the gradient of this intensity

dI(ω)

dω
= Im

∫ ∞
0

exp(−iωt) 〈M+(t)〉 dt (1.47)
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The magnetization, M+, of the system is proportional to

〈M+(t)〉 ∝ Tr(
ˆ̂
Isumρ(t)) (1.48)

where
ˆ̂
Isum is a Superoperator of the sum of spin operators in the system

and ρ(t) is the density operator at a given time. Tr defines the trace of a

given matrix, which is the sum of the matrix’s diagonal elements. The sum

of the spin operators in the system is given by

Îsum =
∑
i

Î isum =
1√
2

∑
i

(Î ix + iÎ iy) (1.49)

and

ˆ̂
Isum = Î+ ⊗ Û − Û ⊗ Îsum (1.50)

where Û is the identity operator with the same dimensions as Îsum and ⊗

is the Kronecker product. For a 3 by 3, n by n, matrix

Â =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 (1.51)

48



Chapter 1: Introduction 49

the superoperator takes the form of a 9 by 9 matrix ,n2 by n2.

ˆ̂
A =



0 −A21 −A31 A12 0 0 A13 0 0

−A12 (A11−22) −A32 0 A12 0 0 A13 0

−A13 −A22 (A11−33) 0 0 A12 0 0 A13

A21 0 0 (A22−11) −A21 −A31 A23 0 0

0 A21 0 −A12 0 −A32 0 A23 0

0 0 A21 −A13 −A23 (A22−33) 0 0 A23

A31 0 0 A32 0 0 (A33−11) −A21 −A31

0 A31 0 0 A32 0 −A12 (A33−22) −A32

0 0 A31 0 0 A32 −A13 −A23 0


(1.52)

1.5.4 Nyquist-Shannon Sampling Theorem

In order for the half-Fourier transform (equation 1.46) to fully capture

motions in the system in the time domain and convert them into the

frequency domain there are two requirements that need to be met.

Measurements need to be taken for a sufficient amount of time and

sufficiently often [60]. The length of time the simulations are run for must

be greater than the reciprocal of the resolution in the frequency domain.

T ≥ 1

δω
(1.53)

While the measurement need to happens at least as often as the required

resolution in the time domain. In terms of simulation how often the

measurement is taken is equivalent to the discrete time step, ∆t, used for
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propagation of the density matrix.

∆t ≤ δt ≤ 1

∆ω
(1.54)

where ∆ω is the width of the entire spectrum in the frequency domain.

1.5.5 Hamiltonian

In EPR the spin Hamiltonian, Ĥ, is a value for the energy of the system,

modeled as the sum of Hamiltonians for different spin interactions, α.

This can be done equivalently in NMR where the interactions are chemical

shielding between nuclei and external magnetic fields mitigated by local

fields, J coupling between nuclei connected by bonds, dipole coupling

between nuclear dipoles over space, and quadrupolar coupling between

nuclear quadrupoles and electric field gradients that exist across the

molecule.

Ĥ =
∑
α

Ĥα = γ~
∑
I

ÎIσB+π
∑
I1,I2

I1J
I1I2I2+

∑
I1I2

+I1D
I1I2I2+

∑
I

IV I
eQ

2I(21− 1)

(1.55)

Where, σ, J , D and V are magnetic tensors that describe the interactions

between spins and magnetic fields, pairs of spins though bond and space

and spins with electric field gradients respectively.

The Hamiltonians for each of these interactions, α, can in turn be modeled

as the sum of products of the irreducible components of a spherical tensor

operator T̂ and lattice tensor V multiplied by a constant λ dependent on

which magnetic interaction is involved.

Ĥα(t) = λα
∑
y

y∑
n=−y

(−1)nT̂ (α.y)
n V

(α,y)
−n (t) (1.56)
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For Quadrupolar interactions the spherical components of the spin operator

T̂ are

T̂
Q(2)LAB
0 =

1√
6

(
3Î2
z − Î

2
)

(1.57)

T̂
Q(2)LAB
±1 = ∓1

2

(
Îz Î± + Î±Îz

)
(1.58)

T̂
Q(2)LAB
±2 = ∓1

2
Î2
± (1.59)

And the components of the lattice tensor are

V
(2)PAS

0 =

√
3

2
Vzz (1.60)

V
(2)PAS
±1 = 0 (1.61)

V
(2)PAS
±2 = −1

2
Vzzη (1.62)

However these lattice tensor components are given in the principle axis

frame, PAS, of the electric field gradient V .

V PAS is transformed into V LAB by the multiplication of it’s components

with the Wigner matrix D2(ΩM→L) for transformation from the magnetic

to laboratory frame.

V (2)LAB
n =

2∑
m=−2

V (2)PAS
m D(2)

mn(ΩM→L) (1.63)

For Quadrupolar coupling the interactions are all 2nd rank. This is due to

the electric field gradient having a trace of zero. This limits the equation to

ĤQ(t) = λQ

2∑
n=−2

(−1)nT̂ (Q,2)
n V

(Q,2)P
−n (t) (1.64)
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Where λQ is a constant relevant to the quadrupolar interaction.

λQ =
eQ

2I(2I − 1)~
(1.65)

This is further simplified by the High-Field approximation.

1.5.6 The High-Field Approximation

The High-Field approximation assumes that energy difference due to

Zeeman splitting is significantly larger than any interactions from internal

fields, for example quadrupolar coupling, and as such these internal effects

can be treated as small perturbations on the Zeeman splitting. This

means that only terms in the perturbing Hamiltonian that commute with

the Zeeman splitting are significant to the overall energy, these are the

secular terms.

In terms of the Hamiltonian equations this is the equivalent of the magnetic

field being entirely in the z direction and so only nuclear spins in that

direction are significant to the energy difference between spin states.

ĤQ =
eQ

2I(2I − 1)
.

[
0 0 Iz

] ∣∣∣∣∣∣∣∣∣∣
Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

∣∣∣∣∣∣∣∣∣∣


0

0

Iz

 (1.66)

ĤQ =
eQ

2I(2I − 1)
.Iz

2Vzz (1.67)

In terms of spherical tensor components this means that only Îz is non zero.

Î± = Îx ± iÎy = 0 (1.68)
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and

Î = Îz (1.69)

This is equivalent to

T̂
Q(2)Lab
0 =

1√
6

(3Î2
z − Î) (1.70)

T̂
Q(2)Lab
±1 = 0 (1.71)

T̂
Q(2)Lab
±2 = 0 (1.72)

Which removes the n 6= 0 terms from the Hamiltonian.

ĤQ(t) = λQT̂
(Q,2)
0

2∑
m=−2

V (2)PAS
m D

(2)
m0(ΩM→L) (1.73)

Where the summation over m gives

2∑
m=−2

V (2)PAS
m D

(2)
m0(ΩM→L) =

√
3

2
Vzz

(
D2

00(ΩM→L)− η√
6

(D2
−20(ΩM→L) +D2

20(ΩM→L))

)
(1.74)

Which can be simplified by defining the combination of Wigner matrices

under the high-field assumption as D0.

D0 =

(
D2

00(ΩM→L)− η√
6

(D2
−20(ΩM→L) +D2

20(ΩM→L))

)
(1.75)

Further simplifying the Quadrupolar Hamiltonian to.

ĤQ(t) = λQ
1

2
(3Î2

z − Î)VzzD0 (1.76)
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1.5.7 Averaging and Rediagionalisation of the

Hamiltonian

There are two equivalent approaches to averaging the Hamiltonian, and by

extension the Liouvillian, across either the ensemble or time. In the

cartesian expression the electric field gradient tensor is averaged, Î is

constant so doesn’t need to be averaged.

〈
ĤQ
〉

= Î 〈V 〉 Î (1.77)

Whereas in terms of spherical tensors, it’s the Wigner matrices for the

transformation between reference frames that are averaged.

〈Dh〉 =

〈(
D2

0h(ΩM→L)
〉
− η√

6
(
〈
D2
−2h(ΩM→L)

〉
+
〈
D2

2h(ΩM→L)
〉
)

)
(1.78)

〈
ĤQ
〉

=
1

2
(3Î2

z − Î)Vzz 〈D0〉 (1.79)

Importantly the averaging of tensors that are diagonal in their principle axis

system can lead to non diagonal tensors, which need to be rediagionalised

through the use of an operator R and its transpose RT which are function

of the directions of the normalised principle values of the relevant tensors

v̄xx, v̄yy and v̄zz.

V d = R 〈V 〉RT (1.80)

An advantage of the random distribution of orientations in the systems is

that the orientations of the averaged EFG tensors for each molecule are

themselves averaged out across the system, this means that orientations of

specific molecular EFG tensors aren’t needed.
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1.5.8 Autocorrelation Functions

The auto-correlation function G(∆t) is another ensemble averaged quantity.

For a time dependent function, f(t), the autocorrelation function is.

G(∆t) = 〈f(t)f(t+ ∆t)〉 (1.81)

[53] where the autocorrelation function for a given time difference is the

ensemble average of the product of the function, f , before and after that

time difference. The more disordered the system the more the function for

different molecules will cancel each other out resulting in a lower value for

G for any given time step.

Similarly G(τ) decreases exponentially with time for isotropic rotational

diffusion dependent on the correlation time of the molecules, τc, as more

rapid molecular motions lead to faster averaging of molecular positions and

more cancellation.

G(τ) = exp

(
−| τ |

τc

)
(1.82)

Eventually this value reaches a plateau where the autocorrelation function

stops decreasing with time, at this point the coherence between orientations

has been completely lost.

The relevant function in this case is a function of the angle between the z

axes in the two reference frames.

f(β) =
3cos2β − 1

2
(1.83)
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1.5.9 Fast Motional Limit Prediction

[1] also provides a general equation for the prediction of motional line

shapes under FML. In this case it is assumed that molecular motions have

correlation times, τc, significantly shorter than the propagation time step,

∆t, and as such the ensemble average at any time will be constant. This

allows for the prediction of the spectra from the formula (23) in [1]

adapted for the quadrupolar case by neglecting all terms where rank

γ 6= 2.

I(ω) = ReTr(
ˆ̂
I+(ω

ˆ̂
I − i ˆ̂

Λ0 − i ˆ̂Λ2
N(2) 〈D0〉+

ˆ̂
Λ2
N(2)

ˆ̂
Λ2
K(2)λ)−1ρ(0)) (1.84)

where N(2) and K(2) are combinations of indices for a 5 by 5 matrix (-2:2,

-2:2).
ˆ̂
Λ is a time independent super operator.

ˆ̂
ΛQ2
nm =

∑
q,k

ˆ̂
T (Q,2)
q V

(Q,2)PAS
−k D2

km(ΩP→M)D2
nq(ΩD→L) (1.85)

Where the Wigner matrix D2
nq(ΩD→L) is a time independent mapping of

the director frame, the frame in which simulation takes place, onto the

laboratory frame.

λ is the decay function, the integral of ensemble averaged autocorrelation

function for the function f(Ω).

λ =

∫ ∞
0

〈f(Ω(0)f(Ω(τ))〉 dτ (1.86)

Where f(Ω) is the difference between a set of Wigner matrix elements and

the average of those Wigner Matrix elements.

f(Ω) = D0 − 〈D0〉 (1.87)
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As the autocorrelation function for the system decays λ tends to 0 at which

point the system is completely motionally averaged, leaving only the time

independent terms

I(ω)FullMotionalAveraging = ReTr(
ˆ̂
I+(ω

ˆ̂
I− iΛ0− i ˆ̂Λ2

N(2) 〈D0〉 )−1ρ(0)) (1.88)

Under the high field assumption Λ is further simplified. Λ only has value

when q = 0 reducing it to

ˆ̂
ΛQ2
nm =

ˆ̂
T

(Q,2)
0

∑
k

V
(Q,2)PAS
−k D2

km(ΩP→M)D2
n0(ΩD→L) (1.89)

And as before the summation over k simplifies the entire expression to.

ˆ̂
ΛQ2
nm =

1

2
(3Î2

z − Î)Vzz 〈Dm〉D2
n0(ΩD→L) (1.90)

The advantage of this method as opposed to direct propagation is that it

uses significantly shorter simulation times. Averaging of transformation

from the magnetic to laboratory frame can be done using single molecular

trajectories, as opposed to direct propagation which requires

concatenation of all molecules in the system into a single trajectory to

extend the simulation time.

1.5.10 Orientational Averaging of the Quadrupolar

Spectra

There are two factors that average the orientational dependence in the

quadrupolar Hamiltonian. The distributions of orientation across

57



Chapter 1: Introduction 58

molecules in the system at any single time, static averaging, and the range

of orientations any single molecule takes over time, motional averaging.

1.5.11 Static Averaging

In the rigid regime the molecules are functionally static on the NMR time

scale resulting in splitting values that are the equivalent to the values

predicted by the electric field gradient tensor in the principle axis frame,

averaged using the probability distribution of orientations in the system.

ν1 = ±Vxx = ±3

8
χ(1− η) (1.91)

ν2 = ±Vyy = ±3

8
χ(1 + η) (1.92)

ν3 = ±Vzz = ±3

4
χ (1.93)

The result is the distinctive Pake Pattern.

Figure 1.5.1: Quadrupolar spectra showing static averaging (Pake Pattern),
with no 0 (left) and 0.1 (right) asymmetry. Simulated with NMR-WEBLAB
[4]

.
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1.5.12 Motional averaging

The effect of motion on the spectra is to further reduce this splitting. Gall

et al [56] discuss two common types of motions.

Fast Flips

Fast flips are significant because they change the orientation of individual

molecules providing an additional source of averaging which further reduces

the extent of quadrupolar coupling in the NMR spectra. This is distinct

from continuous motions, as two or more orientations are relatively long

lived compared to the intermediate positions [61].

In the Fast Flips regime, the system swaps between a limited number of

orientations which has the effect of partially averaging the electric field

gradient tensor. For two orientations, a and b, the flip angle between them,

θ, is the angle between the z principle axis of V a and V b.

The flip averaged tensor V F is then the average of V aand V b when they

are rotated into their midpoint by ± θ
2

perpendicular to the plane of the flip

angle (x-z plane in this case) respectively.

Figure 1.5.2: Diagram showing the averaging of the directions of the x and
z axis between tensors V a and V b for V F
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Then when static averaging is applied to this averaged tensor the resulting

components of the averaged tensor for a flip angle are

ν1 = ±V F
xx = ±Vxxcos2 θ

2
− Vzzsin2 θ

2
(1.94)

ν2 = ±V F
yy = ±Vyy (1.95)

ν3 = V F
zz = ∓Vxxsin2 θ

2
− Vzzcos2 θ

2
(1.96)

[62]

This reduces the splitting in the directions in the plane of the flip, but

leaves the splitting in the direction perpendicular to the flip unchanged.

Essentially each molecule is now treated as static and in the average of the

two positions it occupies.

Figure 1.5.3: Spectrum simulated for a 90 degree flip between two sites with
no asymmetry. [4]

For a flip in the x-z plane this results in contraction of the outer and inner

most splitting but not the middle splitting value.
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Rapid Rotation

The effect of rapid rotation is to further average the interaction tensor V

by transforming it into the rotational frame V R where α and β are Euler

angles that relate these two frames.

ν1 = ν2 = V R
xx = V R

yy =
1

2
(1−cos2αsin2β)Axx+

1

2
(1−sin2β)Ayy+

1

2
(sin2β)Azz

(1.97)

ν3 = V R
zz = sin2βcos2αVxx + sin2βsin2αVyy + cos2βVzz (1.98)

[62] This results in only two splitting as the rotation completely averages

the splitting in its plane.

Figure 1.5.4: Spectrum simulated for rapid rotation about a 90 degree
angle.[4]

61



Chapter 1: Introduction 62

1.6 The Sample System

The sample system of imidazolium ions in a hydrogen terephthalate lattice,

as studied by Shi et al. [5], was chosen for simulation in this work for

numerous reasons.

Figure 1.6.1: Im 1-d3 isomorph (left), with site 1 in blue and sites 2 & 3 in
red, and TPA (right)

The availability of experimental data in the source literature includes a

series of spectra at temperatures between 300 K and 450 K that all show

the distinctive Pake pattern, associated with quadrupolar coupling, but also

show features that depend on motion to varying extents.

This provides a valuable opportunity to compare the results of simulations

to experimental data, in this case the simulations can be validated by their

ability to reproduce both the commonalities, Pake pattern, and differences,

the extend of motional averaging, between spectra.

However, there are limitation to these experimental spectra, as spectra are

measurements of the bulk system. This means, the individual deuterium

sites in isomorphs with multiple deuterium nuclei can’t be distinguished,

Shi et al. assume these produce equivalent spectra but this assumption can

be checked by simulating the spectrum due to each site individually.

In the model proposed by Shi et al to explain this behaviour, imidazolium
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ions undergo rapid 95◦ flips around an axis perpendicular to the plane of

the molecule at 450 K which do not happen at 300 K. These flips would

have an identical effect on motional averaging at each site and would

produce the observed splitting but MD presents an opportunity to directly

observe simulated molecular motions. And through the use of

autocorrelation functions performed on individual bond angles in the

system the order and degree of motional averaging can be quantified

individually.

This project focuses on the 1-d3 isotopologue with 3 deuterium atoms in the

Imidazolium ions and none in the lattice. This choice of isomorph provides

two distinct chemical environments, site 1 and sites 2 and 3, to study which

can potentially be distinguished by collecting data on each individually.

It’s also important to consider other contributions to the NMR spectra that

may complicate or obscure observations of deuterium signals. In terms of

other constituents of the system there’s atomic hydrogen, carbon, oxygen

(exclusively in the HTP lattice) and nitrogen. The two considerations here

are whether these will produce signals on their own and whether there will

be any interaction between the deuterium of interest and other spins in

the Im cation. Both 12C and 16O are spin 0 and so neither produce NMR

signals or couple with other spins. However, 1H and 14N have spins of 1
2

and 1 respectively so there is potential for dipole-dipole and J coupling as

well as the nuclei producing their own signals.

The potential for NMR signals from other Nuclei is not a concern as the

two nuclei in question have gyromagnetic ratios of 3.08 (14N) and 42.6 MHz

T−1 (1H) both sufficiently different from the value of 6.54 MHz T−1 for 2D

that neither chemical shift (on the order of KHz) or quadrupolar effects (on

the order of 100s of KHz for organic systems) would result in nitrogen or
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hydrogen signals in the range that the deuterium signal would be observed.

While J coupling is only on the order of Hz and so would result in changes

below the required resolution for this work and so can be ignored.

As well as the physical properties of the system that give rise to behaviour

that can potentially be reproduced in this project, it is also key to consider

the computational cost of running the simulations. The two important

computational operations in this case are the optimisation of the structure

and the MD simulations themselves. For both of these smaller molecules

reduce the number of calculations that need to be completed, for

optimisation this affects the accuracy by limiting the extent to which the

assumptions underlying HF optimisation need to be applied, while for MD

this is largely a question of the time it takes to run simulations. Im is a 10

nuclei cation while TPA consists of 13 nuclei both sufficiently small for HF

optimization to produce accurate values. And the number of atoms in a

system with on the order of 100 of each molecule would only be 2300

atoms, allowing for the behaviour of multiple copies of each molecule to be

observed for microseconds within reasonable simulation times.

When fitting the rates of motion to the Arrhenius equation Shi et al.

calculated an activation energy, Ea = 52.1 KJ mol−1, and rate constant ,

A = 7.44× 1012 s −1.

Giving a rate of

k = A.exp

(
−Ea
RT

)
(1.99)

With a factor between the two rates of

kT1

kT2

= exp

(
−Ea
R

(
1

T1
− 1

T2

))
(1.100)

which for the values above gives a difference between rates of a factor on
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the order of 1000 times faster at 450 than 300K.

At 450K these values predict a rate of k450 = 6.66× 106s−1 or 6.66 MHz as

opposed to k300 = 6.66 kHz.

However, this is not necessarily a complete picture, as it assumes the

activation energy of jumps is constant which is not necessarily true as Shi

et al. also found evidence for multiple phases of the structure, where the

phases show different amounts of hydrogen bonding between the guest and

host crystal. This data can in turn be checked and potentially confirmed

by physically counting the number of flips that appear within a given time

scale.

An assumption made by Shi et al. in their simulation was that the electric

field gradients at these nuclei are axially symmetric, η = 0. This is

something that can be checked by the output of HF optimisation as it has

implications for the amount of discontinuities shown in the spectra.

Temperature ν1 kHz ν2 kHz ν3 kHz

300 K ±63 ±84 ±140

450 K ±26 ±43 ±68

Table 1.1: Shi et al. splitting values
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Figure 1.6.2: Shi et al. measured (black) and simulated (red) spectra at
300 K (left) and 450 K (right)

Figure 1.6.3: Experimental spectra of ImTPA from Shi et al [5]. (digitized)
at 300K (blue) and 450K(red).
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Molecular Dynamics

Simulations

2.1 Perpetration of inputs

Molecular dynamics simulations in this project are run in GROMACS [63]

which is software that simulates molecular dynamics using classical

mechanics.

GROMACS simulations begin with atoms in a periodic box. This periodic

box and its contents are defined in a .gro or .pdb file which contains the

atom types and locations of each atom as well as the size of the box.

For this product the structure file was built using the structures Shi.et.al[5]

contributed to the Cambridge Crystallographic Data Centre, specifically

CCDC 1493605, which gives the unit cell for the triply deuterated structure

from which the entire structure can be derived. By repeating this cell with

four instances of each molecule three times in each direction, a periodic box

with 108 of both molecules is created.

The bulk structure is modelled as repeated identical copies of this periodic

box, as a consequence of this any atoms that leave the periodic box in one
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direction will be replaced by the same atom entering from the opposite

direction as it leaves an identical box on the other side. This means the

number of atoms in the periodic box is constant.

In addition to this structure, a force-field, .itp, is required. This contains the

parameters for calculation of potential energy in the system. The potential

energy, E, is modeled as the sum of bonded and non-bonded interactions.

E =
∑
Bonds

Kr(r − req)2 +
∑
Angles

Kθ(θ − θeq)2+

∑
Dihedral

Vn
2

[1 + cos(nφ− γ)] +
∑

Non−bonded

(
C

(12)
ij

R12
ij

−
C

(6)
ij

R6
ij

+
qiqj
εRij

) (2.1)

2.1.1 Bonded Interactions

The bonded interactions in a system are calculated between bonded sets of

two (bonds) three (angles) and four (dihedrals)atoms.

For the bonds between pairs of atoms, i and j, the force on each atom is

given by the deviation of the bond length rij from it’s equilibrium value, bij

squared multiplied by the force constant for the bond.

Fi(rij) =
1

2
kbij(rij − bij)2 = −Fj (2.2)

Similarly for angles between the bonds i− j and j − k, it’s the deviation of

the bond angle from it’s equilibrium value giving a potential of

Va(θijk) =
1

2
kθijk(θijk − θ0

ijk)
2 (2.3)
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and the 2nd derivative of potential gives the force on each atom.

Fi = −dVa(θijk)
dRi

(2.4)

Fk = −dVa(θijk)
dRk

(2.5)

Fj = −Fi − Fk (2.6)

The same principle is true for the dihedral and improper dihedral angles

which are interactions between four atoms i, j, k and l

The dihedral angle,φ, is the angle between the planes ijk and jkl where

atom i is bonded to atom j which in turn is bonded to atom k which is

bonded to atom l.

In this case the potential energy is given by

Vd(φijkl) = kφ(1 + cos(nφ− φ0)) (2.7)

[63]

where kφ is the force constant for the dihedral angle, φ0 is the equilibrium

value and n is an integer value for the periodicity around the jk bond.

While an improper dihedral angle corresponds to an arrangement where one

atom i is bonded to atoms j, k and l which are not bonded to each other,

forming a structure like a triangular based pyramid. The improper dihedral

is the angle between the plane formed by jkl, the base of the pyramid, and

one of the sides ijk.

The potential of this is given by
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Vid(ψijkl) = kψ(ψijkl − ψ0)2 (2.8)

2.1.2 Non-bonded Interactions

The non-bonded interactions are interactions between all atoms within a

cut off distance of each other and functions of that distance, R, where the

net potential, V , on atom, i, due to the sum of it’s potential from each

interaction with the other atoms, j.

V (r1...rN) =
∑
ij

Vij(Rij) (2.9)

And the force, Fi on the atom i is the sum over all other atoms j of the

derivatives of that potential.

Fi = −
∑
j

dVij(rij)

drij

Rij

rij
(2.10)

Where R is the vector form of distance r so that
Rij
rij

defines the distance

the over which the force acts.

The interactions that make up this non-bonded potential between two given

atoms are.

The Lennard-Jones interaction

FLJ(rij) = (12
C

(12)
Aij

r13
ij

− 6
C

(6)
Bij

r7
ij

)
Rij

rij
(2.11)

Where C
(12)
ij and C

(6)
ij are properties of the atoms involved, the distance at

which the Lennard Jones potential around a given atom is zero.
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And coulombic interactions between atoms which carry charge, q, with a

force on i of.

Fi(rij) = f
qiqj
εrr2

ij

Rij

rij
(2.12)

Where f is.

f =
1

4πε0
(2.13)

Where ε0 is vacuum permittivity and εr is the relative dielectric constant.

However for both of these interactions there’s a potential issue, because

the force is proportional to distance there’s no point where the potential is

completely zero. There will be interactions between atom i and it’s

reflections in the copies of the periodic box. For this reason a cut off

distance is introduced which ignores the potential due to atoms beyond a

certain distance. This distance is less than the dimensions of the periodic

box ensuring no interaction between instances of the same atom.

It’s the force-field that stores the partial charges on each atom for these

calculation and also stores the equilibrium bond lengths and angles for

calculation of the bonded interactions.

2.1.3 Force-field and Topology Creation of Im and

TPA

The force-field was built in the AMBER program Antechamber [64] derived

fully from ab initio methods.

AMBER identifies the atom types within a single IM and TPA and the

bonding between them. From which the partial charges and equilibrium

bond lengths can be calculated, from the molecule in the form of a
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molecule structure file antechamber generates a Gaussian input file. Then

ab initio calculation at the Hartree-Fock level of theory (6-31G*)

calculates the molecular orbitals for the system.

2.1.4 Hartree-Fock Minimization

The Hartree-Fock [65] method is an iterative process to calculate the wave-

function of electrons in a system. Starting with the coordinates of atomic

nuclei, which are assumed to be stationary, the electrons are added as single

electron orbitals, ĥ. For each electron, i, there is a Fock operator, F̂ .

F̂ (i) = ĥ(i) +

n
2∑

J=1

[2Ĵj − K̂j] (2.14)

where n is the number of electrons, n
2

is the number of orbitals and Ĵ and K̂

are operators for interactions with other electrons in the system, coulomb

repulsion and exchange respectively.

F̂ can then be diagonalized to produce a new set of orbitals that account for

the interactions between electrons that were absent in the initial ĥ operators.

These new orbitals can then be used to produce a new Fock matrix.

Once the force-field is made it is then combined with the structure file to

produce a topology file, .top and position restraint file .itp. The topology

file contains the positions of each element as well as the force-field to be

used and the inputs for that force-field, the partial charges, bond lengths

and various angles. From these components simulations can then be run.

The coordinates and partial charges of the atoms, in angstroms and electron

charges, of the optimised structure produced in Gaussian are
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Atom X Y Z Partial Charge

C1 0.68 0.98 0 0.058

C2 -0.68 0.98 0 0.058

N1 -1.07 -0.35 0 -0.534

C3 0 -1.14 0 0.329

N2 1.07 -0.35 0 -0.534

H1 2.03 -0.68 0 0.415

D1 1.39 1.80 0 0.257

D2 -1.39 1.80 0 0.257

H2 -2.03 -0.68 0 0.415

D3 0 -2.22 0 0.279

Table 2.1: Gaussian optimised Im structure

2.1.5 Electric Field Gradient Calculation

From these partial charges the electric field can be calculated at any point

in space. For each nuclei this is the sum of the potentials due to the partial

charges, q, on each other nuclei at the position of that nuclei a distance r

from the nuclei.

VE =
∑
i

1

4πε0
.
qi
r

(2.15)

And the gradient is then the 2nd derivative with respect to each pair of

directions, xyz.

2.2 Running Simulations

GROMACS simulates molecular motions by using the equations described

above to calculate the potentials and forces acting on each atom in a system

which then lead to the movement of those atoms. Using Newton’s equations
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and the ’s,u,v,a,t’ (displacement, initial velocity, final velocity, acceleration

and time) equations.

v = u+ at (2.16)

s = ut+
1

2
at2 (2.17)

s = vt− 1

2
at2 (2.18)

s =
1

2
(u+ v)t (2.19)

v2 = u2 + 2as (2.20)

However, this presents an issue. As the potentials are position dependent

any alteration to their positions due to the forces acting on them will then

alter those potentials.

2.2.1 Leapfrog Algorithm

The solution is to use a leapfrog algorithm [66] where the acceleration of

atoms due to the forces on them are assumed to be constant for a small

time difference ∆t. So that the change in velocity between t− ∆t
2

and t+ ∆t
2

can be calculated.

v(t+
∆t

2
) = v(t− ∆t

2
) + a(t)∆t (2.21)

From these velocities the change in position, x, over a time step can also be

calculated

x(t+ ∆t) = x(t) + v(t+
∆t

2
)∆t (2.22)

and then from these new positions the forces can be recalculated and the

process repeats.
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2.2.2 Run Files .mdp

Each run in GROMACS is described by a .mdp file this file defines the

parameters for simulation including.

nstep: The number of simulation steps.

pbc: The type and dimensions of the periodic box

∆t: The time interval per step, multiplied by the number of steps to give

the simulation duration.

Integrator: The algorithms used for integrating Newton’s equations.

cutoff: The method used for limiting the range of non-bonding interactions.

Followed by the specific distances to cut off given interactions.

tcoupl: Thermostat used to regulate temperature in the system

pcoupl: Barostat used to regulate pressure in the system.

2.2.3 Minimisation

Before the main molecular dynamics simulations can be run the system

needs to undergo energy minimisation to release strain in the system,

followed by temperature and pressure equilibration. Each step takes the

form of a run with it’s own .mdp file.

Energy minimisation reduces potential energy in the system to ensure the

full run happens on a system that’s representative of the real system, for

example avoiding situations where multiple atoms occupy the same position.

A common method for energy minimisation is the steepest descent method
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[67]. Starting with atoms in position rn the forces, F, and potential energy

are calculated leading to a new set of positions rn+1.

rn+1 = rn +
Fn

max(| Fn |)
hn (2.23)

Where max(| Fn |) is the maximum value for force and hn is the maximum

value for displacement both set in the .mdp file.

The two sets of positions are then compared in terms of their potential

energy. If the change has reduced the potential in the system then the

process repeats with the new positions and a larger value for hn while if

the potential energy has not decreased then the process repeats with the

original positions and a constricted hn

The .mdp file for energy used for minimisation used the following

parameters.

• Integrator = Steep ; Use the steepest descent algorithm

• emtol = 1000.0 ; Stop minimization when the maximum force ¡ 1000.0

kJ/mol/nm

• nsteps = 50000 ; Maximum number of (minimization) steps to perform

• nstlist = 1 ; Frequency to update the neighbour list and long range

forces

• cutoff-scheme = Verlet

• ns type = grid ; Method to determine neighbour list (simple, grid)

• coulombtype = PME ; Treatment of long range electrostatic

interactions

76



Chapter 2: Molecular Dynamics Simulations 77

• rcoulomb = 1.0 ; Short-range electrostatic cut-off

• rvdw = 1.0 ; Short-range Van der Waals cut-off

• pbc = xyz ; Periodic Boundary Conditions (yes/no)

2.2.4 NVT Equilibration

After energy minimisation the next step is an NVT run which keeps the

number of particles in the box and the volume of the box constant and

regulates the average temperature with a thermostat. With the heavy atoms

constrained by a .itp file, to prevent large scale structural changes, the

system is run to allow the temperature to reach the required value.

As an example thermostat is the Andersen thermostat which regulates

temperature by periodically randomising the velocity of some or all

particles in the system using the Boltzmann distribution of expected

energies at the target temperature to determine the likelihood of a particle

having a given velocity. Though this method is not compatible with

restraints.

Alternatively the Berendsen thermostat gradually changes the temperature

towards the goal T0 at a rate defined by the current temperature and time

constant, τ .

dT

dt
=
T0 − T
τ

(2.24)

This is done by scaling the velocities of particles in the system by a factor

λ

λ =

[
1 +

nTC∆t

τT

(
T0

T (t− 1
2
∆t)

)] 1
2

(2.25)
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where

τ =
2CV τT
Ndfk

(2.26)

CV is the system’s heat capacity and Ndf is the number of degrees of freedom

in the system.

The .mdp file for this run needs to define

• The thermostat used

• If the system contains a single group for temperature coupling or

multiple groups

• The target temperature for each of the groups to be temperature

couples

For the Andersen thermostat

• How frequently to randomize the velocities of particles

• The portion of particle velocities to randomise each time some are

randomised

For the Berendsen thermostat

• The time constant, τ

• How often the temperature is coupled, nTC (every n steps)

• A factor representing how much of the temperature added or removed

from the system is instead gained as potential energy τT

However the Berendsen thermostat requires correction as it doesn’t

produce the correct distribution of kinetic energy only giving the correct
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average. This is covered which by velocity-rescaling temperature coupling

which modifies the kinetic energy K in the system via a random force W .

dK = (K0 −K)
dt

τT
+ 2

√
KK0

Ndf

dW
√
τT

(2.27)

The end result of this equilibration is a system with an average temperature

with minimal temperature fluctuation.

For this project the NVT run at 300K uses the following parameters.

• integrator = md ; leap-frog integrator

• nsteps = 50000 ; 2 * 50000 = 100 ps

• dt = 0.002 ; 2 fs

• nstxout = 500 ; save coordinates every 1.0 ps

• nstvout = 500 ; save velocities every 1.0 ps

• nstenergy = 500 ; save energies every 1.0 ps

• nstlog = 500 ; update log file every 1.0 ps

• continuation = yes ; Restarting after minimization

• constraint algorithm = lincs ; holonomic constraints

• constraints = all-bonds ; all bonds (even heavy atom-H bonds)

constrained

• lincs iter = 1 ; accuracy of LINCS

• lincs order = 4 ; also related to accuracy

• cutoff-scheme = Verlet
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• ns type = grid ; search neighboring grid cells

• nstlist = 10 ; 20 fs, largely irrelevant with Verlet scheme

• rcoulomb = 1.0 ; short-range electrostatic cutoff (in nm)

• rvdw = 1.0 ; short-range van der Waals cutoff (in nm)

• coulombtype = PME ; Particle Mesh Ewald for long-range

electrostatics

• pme order = 4 ; cubic interpolation

• fourierspacing = 0.16 ; grid spacing for FFT

• tcoupl = V-rescale ; modified Berendsen thermostat

• tc-grps = System ;Non-Protein ; two coupling groups - more accurate

• tau t = 0.1 ;0.1 ; time constant, in ps

• ref t = 300 ;300 ; reference temperature, one for each group, in K

2.2.5 NPT Equilibration

Now that the temperature is constant, in addition to the volume and number

of particles, the system can be equilibrated in terms of pressure, P, and

density ρ. For this run in addition to temperature coupling a pressure

coupling barostat is introduced.

Parinello-Rahman pressure coupling scales the dimensions of the simulation

box with volume V , and dimensions represented by a matrix b, in order for

pressure to reach a target pressure Pref . [63]
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Where the 2nd derivative of box dimensions with time is then given by.

db2

dt2
= VW−1b′−1(P − Pref ) (2.28)

WhereW−1 is a matrix parameter representing the strength of the coupling

interaction with elements given by.

(W−1)ij =
4π2βij
3τ 2
pL

(2.29)

Where β is isothermal compressibility of the system in directions i and j,

τp is the pressure time constant and L is the largest element of matrix b.

In addition to the values defined for the NVT run the system NPT mdp file

also needs to define

• The target pressure

• How often the pressure is coupled τp

• The compressability

• Whether pressure is isotropic, semi-isotropic (axially symmetric) or

anisotropic.

And as such uses the same file as above with the following additions

Pressure coupling is on

• pcoupl = Parrinello-Rahman ; Pressure coupling on in NPT

• pcoupltype = isotropic ; uniform scaling of box vectors

• tau p = 2.0 ; time constant, in ps
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• ref p = 20 ; reference pressure, in bar

• compressibility = 4.5e-5 ; isothermal compressibility of the system,

bar̂-1

• refcoord scaling = com{}

2.2.6 Simulation run

Simulations were performed on the same system equilibrated at two different

temperatures, 300K and 450K. Each simulation is run for a total 5µs with

the first 0.5µs being used to ensure the system is fully equilibrated while

the remaining 4.5µs are used for spectra prediction.

2.2.7 Processing Outputs

The output of the simulation relevant for this project is the .xtc file, which

stores the cartesian coordinates of each atom at each time step, in this case

each picosecond, ps. But for further processing this can be reduced to one

frame every 20ps and 10ns respectively.

The coordinates for each of the 108 molecules in the dt= 10ns .xtc file (451

frames) can then be concatenated together into a single trajectory for a

total of 4.9 µ s of simulation time and 48708 frames.

However there’s an important caveat, concatenating the molecules together

with respect to the Laboratory frame will result in discontinuities, where the

molecules rapidly reorient when one molecule’s frames end and the others

begin. If the molecules are all independently oriented at the initial time step

then their final positions won’t necessarily correlate which could artificially
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accelerate any loss of order.

The solution is the introduction of an additional frame for each molecule,

which is defined by the molecule’s initial position, then for each molecule

the changes in position can be tracked relative to that molecule’s initial

position limiting the discontinuities. As well as this the first frame of each

molecule is rotated to match the last frame of the previous molecule.

The next step is to validate the system using a combination of inspection

in VMD [68] and the plotting of autocorrelation functions. This has been

performed using the appropriate cartesian transformations resulting in a

single continuous trajectory.

2.2.8 VMD Validation

VMD is software used to visualise molecular dynamics, starting with a

.gro or .pdb file for the system and then loading the trajectory file for a

simulation run into it.

This also allows for the tracking of single Im cations to view their individual

motions at both temperatures.
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Figure 2.2.1: ImTPA system at 300K, frame 100. Showing the LAB frame

Figure 2.2.2: ImTPA system at 450K, frame 100. Showing the LAB frame
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2.2.9 T1 Relaxation

T1 relaxation is the realignment of magnetisation with B0 after the pulse is

no longer being applied. In terms of magnetization, M , it is the restoration

of the equilibrium magnetization in the z direction Mz,eq. After a pulse that

turns the magnetization of the species 90◦, Mz(0) = 0, the magnetization

in z as a function of time is

Mz(t) = Mz,eq(1− e
−t
T1 ) (2.30)

The relaxation rate in the z direction is given by the Bloch equation [69].

∂Mx(z)

∂t
= γ(M(t)×B(t))z −

Mz(t)−M0

T1

(2.31)

This occurs by multiple mechanisms at different rates with the overall

relaxation rate, R, being the sum of the rates via each mechanism. For

this project, the contribution of quadrupolar relaxation is considered,

though an analogous treatment works for other sources of relaxation

including chemical shift anisotropy.

1

T1

= R =
∑
α

Rα (2.32)

where T1 is the inverse of the sum of rates of each contributing mechanism,

R.

The quadrupolar relaxation rate for I = 1 is given by

RQR =
3

2
π2(1 +

η2

3
)χ2 × [J(ω0) + 4J(2ω0)] (2.33)

[70]
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Where J(ω0) is a one sided Fourier transform of the autocorrelation function

for the molecular motions

J(ω) =

∫ ∞
0

C2(t)cos(ωt)dt (2.34)

[71]

In this case the relevant motions are the orientations of the principle axis

of the quadrupolar coupling tensor to the external magnetic field, described

by the 2nd order Legendre polynomial of the angle between the principle

axes θ.

P2(θ) =
1

2
(3cos(θ)2 − 1) (2.35)

which is the same as the D2
00 term of the Wigner matrix.
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Methods - Calculations

3.1 The Hamiltonian

Under the high-field assumption the quadrupolar Hamiltonian is

ĤQ(t) = λQ
1

2
(3Î2

z − Î)VzzD0 (3.1)

Where

λQ =
eQ

2I(2I − 1)~
(3.2)

Which for I = 1 deuterium reduces to

λQ =
eQ

2~
(3.3)

ĤQ(t) =
eQ

4~
(3Î2

z − Î)VzzD0 (3.4)

Where the spin matrix elements for Î are

Î =


1 0 0

0 0 0

0 0 −1

 (3.5)
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Î2
z =


1 0 0

0 0 0

0 0 1

 (3.6)

ĤQ(t) =
eQ

4~


2 0 0

0 0 0

0 0 4

VzzD0 (3.7)

ĤQ(t) =
eQ

~


1
2

0 0

0 0 0

0 0 1

VzzD0 (3.8)

3.2 Calculation of Lattice Tensors in the

principle axis frame

The lattice tensors V PAS are dependent on the components of the electric

field gradient in the principle axis system of each nuclei. As the sample

contains three different Deuterium nuclei this is calculated for each

independently. Calculations were performed in Gaussian [72] by

minimising the energy of electrons in the system using the Hartree-Fock

method discussed earlier.

V
(2)PAS

0 =

√
3

2
Vzz (3.9)

V
(2)PAS
±1 = 0 (3.10)

V
(2)PAS
±2 = −1

2
Vzzηλ (3.11)
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3.3 Transformation of V into the Laboratory

Frame

The transformation of Vzz into the required reference frames is given by D0

which is a function of the Wigner matrix elements dependent on

D2
00 =

3cos2β − 1

2
(3.12)

D2
±20 =

√
3

8
sin2βe∓i2γ (3.13)

Where β is the angle between the z axes of the PAS and LAB frames and

γ is the angle between the y axes.

3.4 Calculation of Wigner Matrix Elements

In the method developed by Oganesyan for EPR spectra simulations from

MD, two sets of Wigner matrices are used. The first maps the magnetic

frame onto the molecular frame and the second maps the molecular frame

onto the laboratory frame.

However it’s possible to simplify this to one frame, assuming that the

molecular frame is chosen to coincide with the magnetic frame, which

would be true if the molecule is rigid, which is an assumption made for the

Im+ cation.

In this case the vectors used to track the movement of the V tensor in the

laboratory frame are

• zPAS - The normalized vector product of the C-C and/or C-N bonds,
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orthogonal to the plane of the molecule.

• xPAS - The normalized projection of the C-D bond in the plane of the

molecule

• yPAS- the normalized cross product of z and x.

Though conventionally the PSA is defined with z pointing along the C-

D bond, for the purpose of tracking the motions in simulation these are

equivalent approaches as it’s the changes in orientation over the course of

the simulation that are of interest.

Figure 3.4.1: Diagram of Im+ cation optimised structure with x axis (along
the C-D bond) z axis (out of the page) and y axis (cross product of x and
z) for site 1.

From these vectors the projection cosines between the vectors that define

the two frames were calculated. The x, y and z direction in the principle axis

system each have components in the x, y and z directions of the Laboratory
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frame.

xPAS =


xPASxLAB

xPASyLAB

xPASzLAB

 (3.14)

3.5 Calculation of the Liouvillian

The Liouvillian for quadrupolar coupling can then be calculated for each

spin, P , in the system where many of the same assumptions and apply. As

with the Hamiltonian for the same interaction only the 2nd rank

components are non-zero, as the electric field gradient is traceless, and

high-field approximation limits the Liouvillian to n = 0. Which for the

small and rigid Im cation with the principle and molecular frame being

coincident leaves.

ˆ̂
LPQ(t) =

ˆ̂
T 2Q

0 λQ
∑
m,k

V̄ Q2
−k D

2
m0(ΩM→L(t)) (3.15)

3.6 Evolution of the Density Matrix in DP

approach

The Liouvillian is then averaged across the system to calculate the density

matrix as a function of time.

ρ(t) =

〈
exp

(
−i
∫ t

0

ˆ̂
LQ(τ)dτ

)〉
ρ(0) (3.16)
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3.7 Calculation of the Spectrum

From which the spectrum can be calculated by

I(ω) = Re

∫ ∞
0

exp(−iωt) 〈M+(t)〉 dt (3.17)

Where the magnetization M+ is proportional to the trace of the super

operator

〈M+(t)〉 ∝ Tr(
ˆ̂
I+ρ(t)) (3.18)

Îtot =
∑
i

Î itot =
1√
2

∑
i

(Î ix + iÎ iy) (3.19)

Simulations were performed using the general purpose SpinMolDyn

simulation suite originally developed by Oganesyan,[1], in MATLAB for

prediction of EPR spectra from MD and recently extended to NMR

prediction (Copyright University of East Anglia).
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Results and Discussion

In aiming to demonstrate the applicability of MD simulations to the

prediction of NMR spectra line shapes there are several key results that

reveal the degree to which MD simulations can produce agreement with

experimental data. As well as exciting cases where MD simulations can

study behaviour that wouldn’t otherwise be experimentally accessible to

support or contest theoretical models.
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4.1 EFG tensor

The principle values of the EFG tensor calculated in Gaussian in atomic

units from the HF optimised structure are.

i V PAS
zz , δλ V PAS

yy V PAS
xx η Tr χ kHz

1 -0.292 0.162 0.130 0.110 0 196

2 -0.299 0.165 0.134 0.104 0 201

3 -0.299 0.165 0.134 0.104 0 201

Site 1 to 2/3 ratio 0.98 0.97 0.98

Table 4.1: EFG tensor values for Imidazolium Ion

These values are consistent with the observation that positions 2 and 3 in

the Im molecule are symmetrical and supports the findings of Shi et al. that

these nuclei all produce equivalent spectra, as their electric field gradients

in each direction are all within 3% of each other. But it’s worth noting

these values are taken in the PAS of each deuterium site so don’t account

for differences in orientation between the sites or differences in mobility

of the sites. The orientational differences aren’t significant because the

distribution of molecular orientations over the system will average out the

orientations of each site to the same extent. This is sufficient evidence to

conclude that these sites will produce the same spectra in the static regime

but can’t be used to reach the conclusion that the spectra in the context of

motional averaging will be uniform across all sites.

From these tensor values calculated in Gaussian the quadrupolar coupling

constant, χ, asymmetry parameter, η, and trace of the tensor were

calculated.

The trace is 0 at all sites, which is evidence that the optimisation of the
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Site ν1 kHz ν2 kHz ν3 kHz

1 ±65 ±82 ±147

2-3 ±67 ±84 ±150

Table 4.2: Splitting predictions at 300 K

electronic structure in Gaussian has been successful as it means there’s no

net force due to the electric field potential that would result in a change of

that structure.

The values for V PAS
zz have been used to calculate the quadrupolar coupling

constant which for all three sites is approximately 200 kHz and can in turn

be used to calculate the expected static splitting, ν3, for each site. As the

values for Vyy and Vxx are also known, the asymmetry was also calculated,

giving values of approximately 10% in each case, importantly this disagrees

with the assumption of axial symmetry made by Shi et al. that was used in

their simulations of spectra. Additionally, from the asymmetry parameter

and V PAS
zz , ν2 and ν1 were calculated for the static regime. These static

values closely match the values measured by Shi et al for the system at 300

K.

This supports the validity of computational approaches to prediction of

static splitting but is insufficient to reach conclusions about molecular

motions.
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4.2 Autocorrelation Functions

ACFs were calculated for the D2
00 Wigner matrix element ( f(β) as defined

in equation 1.83) for each cartesian axis in the PAS averaged among all

molecule for each site at both temperatures with a length of 3 µs. From

these plots the correlation time can be estimated, as can the order parameter

from the square root of the Autocorrelation that the function levels off to.

Temperature Site Order x Order y Order z τz ns τy ns τz ns

300 K 1 0.77 0.81 0.84 1 - 10 1 - 10 1 - 10

2 0.76 0.76 0.81 1 - 10 1 - 10 1 - 10

3 0.81 0.77 0.77 1 - 10 1 - 10 1 - 10

450 K 1 0.76 0.81 0.81 1 - 10 1 - 10 1 - 10

2 0.42 0.42 0.77 730 730 1 - 10

3 0.45 0.45 0.77 800 800 1 - 10

Table 4.3: Autocorrelation Data

At site 1 all six autocorrelation functions show rapid relaxation within 10

ns to order parameters between 0.75 and 0.85, with the primary

distinction being the smoothness of the function, which shows less random

variation at 450 K than 300 K. This indicates that temperature does not

introduce additional sources of motional averaging, but that the motions

that cause this averaging are happening faster, leading to less variation in

the autocorrelation function with time.

There are two possible explanations for the initial ns scale relaxation both

at site 1 and the other sites. Either rapid librational motions in the

system, or alternatively this is the system equilibrating during the MD

simulation run. That the system has undergone energy minimisation

followed by temperature and pressure equilibration is evidence against the
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Figure 4.2.1: ACF for Site 1 at 300 K.

Figure 4.2.2: ACF for Site 1 at 450 K.
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second case.

Additionally the fact this has happened after the first 0.5 µs of simulation,

which weren’t included in calculations of autocorrelation functions, is

evidence in support of them being librational as opposed to due to

equilibration, as the observed relaxation happens on the ns scale and so

would be expected to have resolved within the first 0.5 µs where as

librational motions would be a persistent feature of the system at all times

in the simulation.

There’s minimal difference between the three directions, though at both

temperatures there is slightly less order in the x direction than in the y or

z direction which are closer together. The difference between these order

parameters is lower at the higher temperature though the exact cause of

this, whether it’s a fundamental difference in the behaviour of those axes or

to an extent random, is unclear at this point.

Key here is that neither spectra for site 1 show any evidence of the flips

that would be expected under the model proposed by Shi et al despite the

overall spectra Shi et al. produced showing motional averaging due to the

flips which undermines the conclusion that these sites behave equivalently.

Which would be true if the rotation happened around an axis perpendicular

to the plane of the molecule.
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Figure 4.2.3: ACF for Site 2 at 300 K.

Figure 4.2.4: ACF for Site 2 at 450 K.
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Figure 4.2.5: ACF for Site 3 at 300 K.

Figure 4.2.6: ACF for Site 3 at 450 K.
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Sites 2 and 3 show a similar pattern at 300 K with the order parameters

falling within the same range and with the same rapid relaxation within

10 ns to a leveled order parameter. This supports the equivalence of the

motional behaviour of the three sites at 300 K and the three direction in

the system. Interestingly the same pattern of the z direction relative to the

molecule being more ordered compared to x and y is consistent between all

three sites at 300 K indicating this may be more than random variation due

to limited sample sizes, sites 2 and 3 also show less distinction between the

x and y directions with both having identical order parameters as opposed

to site 1 where the y direction is more distinct from the x direction.

A drastic difference between sites 2 and 3 compared to site 1 at 450 K is

found in the distinction between the z axis and the x and y axes. In addition

to the same rapid relaxation within 10 ns to the 300 K order parameter for

all axes, there’s a second relaxation that occurs in the x and y direction

over orders of magnitude longer times, 730 to 800 ns, to an order parameter

of between 0.4 and 0.45 at which point the x and y axis of the same site are

indistinguishable.

This decrease in order parameter is clear evidence of additional sources

of motional averaging, at 450 K for sites 2 and 3, where the inverse of

these correlation times gives rates of 1.37 and 1.25 MHz for sites 2 and

3 respectively which are on the same order of magnitude as the flip rate

proposed by Shi et al.

Further, that this relaxation happens in two axes but not the third is

support for motions that happen exclusively in the x-y plane

perpendicular to the z axis. This would be consistent with the expected

behaviour of flips occurring in the plane of the molecule which zPAS as

defined in this work is perpendicular to, hence why it’s the z axis that
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Figure 4.2.7: Flip diagram for proposed alternative flip model of flips taking
place around the x axis of site 1.

doesn’t show the additional relaxation.

This ability to distinguish between sites using the data produced by MD

simulations is significant as it helps challenge assumptions of uniformity

between sites that can’t be distinguished experimentally.

This leads to the proposal of an alternative model to the one suggested by

Shi et al [5] of in plane flips, that takes account of the distinction between

sites. In this model the molecule flips 180 degrees around an axis co-linear

with the C-D bond of site 1. Which suggests the presence of hydrogen

bonding at site 1, as seen in the Shi et al paper, to the TPA lattice that

restricts the motions of the Im cation preventing in plan rotations.

The effects of this flip is to invert the z axis at each site as well as the y

axis of site 1, but leaving the x axis of site 1 unchanged. The x and y axis

of the PAS at sites 2 and 3 are both rotated by 72◦.

The function that the autocorrelation is taken for is D2
00, which is dependent

on cos2θ. In the cases of the inversions of each z axis, and y at site 1,
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this doesn’t affect the autocorrelation as D2
00 is periodic over 180◦and so

unaffected. In the reference frame of sites 2 and 3 this would be equivalent

to a flip in the x y plane of 72◦ analogous to the model in [62].
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4.3 VMD Check

By inspecting the .xtc visually in VMD it’s possible to check both the

arrangement of molecules in space and the motions of individual

molecules. Visual inspection shows that at both temperatures the

structure forms a host guest system of Im ions in hexagonal cells of the

TPA lattice. However, the alignment between the TPA ions in the lattice

appears more disordered at the higher temperature. These systems also

show apparently random distributions of Im ions within the cells which

matches observations of splitting demonstrating the Pake pattern in the

300 K spectra.

Additional features can be discovered by watching the molecules in motion.

Specifically flips can be checked for and counted by focusing on a single Im

molecule in the host guest structure, an example of these motions is shown

in figures 4.3.1-10 where it can be seen that both temperatures display

random motions between frames.

While at 450 K, as well as random motions, there are more clear changes

in the orientation of the ring in the plane it’s being viewed from. However

these are ambiguous in terms of whether they represent rapid flips or liable

motions. This can be quantified by counting the observed number of these

orientational changes for every 10th molecule over 1 µs (100 frames).

While this is ultimately a rough estimate, as there’s ambiguity in identifying

flips visually, these results generally agree with the conclusion that flips

don’t happen at 300 K (100 kHz being the minimum detectable rate if one

of the ten molecules flipped once) and happen significantly more at 450 K.

This rate estimate can further be compared to the rate predicted for 450 K
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Figure 4.3.1: 300 K, t = 0

Figure 4.3.2: 300 K, t = 100ns

Figure 4.3.3: 300 K, t = 200ns

Figure 4.3.4: 300 K, t = 300ns

Figure 4.3.5: Four frames of the system at 300 K, 100ns (10 frames) apart.
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Figure 4.3.6: 450 K, t = 0

Figure 4.3.7: 450 K, t = 100 ns

Figure 4.3.8: 450 K, t = 200 ns

Figure 4.3.9: 450 K, t = 300 ns

Figure 4.3.10: Four frames of the system at 450 K, 100ns (10 frames) apart.
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Molecule id Flip per µs at 300 K 450 K

110 0 4

120 0 1

130 0 2

140 0 0

150 0 1

160 0 0

170 0 0

180 0 0

190 0 0

200 0 2

Average 0 1

ω k Hz <100 1000

Table 4.4: Flip rate comparison for each temperature.

from the values given by Shi et al for activation energy Ea = 52.1 kj mol−1

and the pre-expinential factor 7.44× 1012 s−1. Which at 450 K gives a rate

of approximately 6.70 MHz so the estimate given by the counting frames is

low but on the same order of magnitude and either rate would be sufficient

to qualify for the fast flips regime.

VMD also allows for the alternative model to be tested as well. By labeling

the deuterium nuclei at sites 2 and 3 as L and R, symmetrical flips can be

observed in the spectra as a reversal of those two labels an example of which

is shown in figures 4.3.11 and 4.312.

These flips where observed at 450 K happening in under 10 ns (between

two single frames) indicating they are fast on the NMR time scale which is

supporting evidence for their role in motional averaging via flips that leave

site 1 unchanged.
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Figure 4.3.11: Single Im cation at 450 K, time 100 ns with sites 2 and 3
labeled L and R respectively, with the laboratory axis for reference.

Figure 4.3.12: Second frame of the same Im cation 10 ns (1) frame later,
showing 180◦ around the site 1 C-D bond.
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4.4 Spectra Predictions

The spectra for each position were predicted by both FML and DP methods.

4.4.1 FML

First the spectrum for each individual site was calculated at the two

characteristic temperatures.

At 300 K the three sites all show the expected characteristic Pake pattern

and site 1 is in close agreement with sites 2 and 3 which are coincident. The

differences are most noticeable for ν1 where site 1 is within the splitting for

sites 2 and 3, the opposite is true for ν2, and ν3 is equal for all sites.

At 450 K the three sites show strong agreement as well, sites 2 and 3 are

again coincident while site 1 shows greater ν3 and ν2 with the three sites
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Figure 4.4.1: Spectra for the three deuterium sites at 300 K via FML. With
sites 2 and 3 coincident.
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Figure 4.4.2: Spectra for the three deuterium sites at 450 K via FML. With
sites 2 and 3 coincident.

being the same in terms of ν1. All three sites display the expected pattern

for flip averaging

However it’s curious that site 1 displays motional flip averaging when

evidence of these flips isn’t seen in the autocorrelation function for that

site. This suggest a source of averaging not present at 300 K or visible in

the autocorrelation functions behind this behaviour.
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Figure 4.4.3: Comparison between the three site averages of the spectra at
the two characteristic temperatures.

Temperature ν1 kHz ν2 kHz ν3 kHz

300 K 37 71 109

450 K 17 69 87

Table 4.5: Averages of 300 K and 450 K Spectra

These spectra are then averaged for comparison to the each other. Key here

is that there’s a reduction in splitting values ν3 and ν1, the inner and outer

components. This reduction is evidence of additional motional averaging at

450 K which matches the behaviour seen in the autocorrelation function of

the x and y axes for sites 2 and 3. That this reduction is negligible (71 to

69) in the splitting value associated with Vyy is evidence that this motion

happens perpendicular to the y axis of the PAS.

This provides evidence for flips, though for sites 2 and 3 doesn’t

distinguish between the motions proposed by Shi et al. and by this work,

so doesn’t help with resolving the disagreement between the conclusions of

the autocorrelation functions and these simulated spectra.
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However, it also implies a disagreement between the labeling of directions

of the PAS and the molecular features used to track these motions. If the

flips occur perpendicular to the y axis then Vyy, the middle splitting value,

doesn’t appear to be in the plane of the molecule.
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Next the averaged spectra for each temperature is compared to digitisation

of the spectra measured by Shi et al.

Thought the spectra at 300 K broadly match there are key differences.

The digitized spectrum shows greater values for splitting with low intensity

motions at the edges of the spectrum, attributed to a rigid component

of the system by Shi et al that has not been accounted for in this work.

Additionally the digitized spectra are not symmetrical around the mid point

at 0, unlike the spectra simulated by this work. The digitized spectra is

generally wider than the simulated one and doesn’t show the asymmetry as

clearly.

At 450 K the difference is reversed, with the digitized spectra being

significantly narrower than the predictions made by this work and doesn’t

as clearly display the expected pattern.

Overall there’s a consistent pattern of FML based prediction producing

general agreement with experimental data for this system including

modeling the expected reduction in splitting due to flip averaging. This

technique provides evidence in support of the flips happening in the

system at 450 K including that these flips happen within a specific plane.

It also provides the ability to distinguish between different deuterium sites

with individual plots, which is something that’s not accessible

experimentally when taking NMR measurements of the bulk system where

the signals of different sites are aggregated.

This demonstrates the potential of FML to reproduce experimental data and

further to offer insight on a molecular scale to enhance understanding from

experimental data. This is accomplished using only a short simulation time

and averaged values for Wigner matrices from a single molecular trajectory.
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Figure 4.4.4: Comparison of average and digitised spectra at 300 K.
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Figure 4.4.5: Comparison of averaged and digitised 450 K spectra.
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Figure 4.4.6: Comparison of Site 2 spectra from DP between temperatures.

4.4.2 DP

In contrast to FML the spectra produced by the DP method only very

qualitatively match the expected spectra, this is attributed to insufficient

simulation time for sampling, leading to a poor signal to noise ratio making

it difficult to take any readings of ν values.

However it’s possible to break these spectra down into two components

corresponding to the two transitions in the I = 1 quadrupolar nucleus

(−1→ 0) and (0→ +1).

What can be seen from these contributions is a broad tendency for the
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Figure 4.4.7: Contributions to the site 2 spectra. -1 to 0 (red) and 0 to 1
(blue).

splitting between the two transitions to decrease with temperature which

is consistent with the behaviour observed in the FML prediction and

experimental spectra.

This demonstrates a weakness of direct propagation as a method for the

prediction of spectra that make it difficult to judge its applicability to this

problem without further testing. The existence of noise also indicates the
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employed MD trajectory is of insufficient length to resolve spectral features

in DP simulations, e.g. the splitting of inner peaks.
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4.5 Prediction of T1 relaxation time from

MD

Relaxation times were predicted for all three sites at both temperatures for

magnetic field strengths ranging from 0 to 15 tesla.

The predicted relaxation times as a function of field strength divide the three

sites at two temperatures into two groups. Those with short relaxation times

that reach a maximum of approximately 0.1 ms and then don’t vary as the

field increases, sites 2 and 3 at 450 K, and those with greater relaxation

time for all field strengths and much more oscillation in that relaxation as

field strength varies, all three sites at 300 K, with site 1 at 450 K showing

close to the same relaxation times as 300 K but with less oscillation though

still more than the other 450 K sites.

As χ and η aren’t temperature dependent, these are the results of the

differences in autocorrelation function. As such it’s to be expected that

the same division between these plots exists between the sites that do and

don’t show correlation times of 730 and 800 ns in their autocorrelation

functions. The effect of this motional averaging appears to be to allow for

faster relaxation. While this is a demonstration of the use of MD

simulations it is not independent conformation of its validity as

consistency between autocorrelation functions and predicted T1 is a

consequence of autocorrelation functions being used to produce T1 not

necessarily the correctness of either.

However, the demonstration of the technique does open up the opportunity

for further research and testing by making relaxation time measurements of

systems at variable temperatures and field strengths.
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Figure 4.5.1: Relaxation time prediction time for site 1 at 300K (red) and
450K (blue)

Figure 4.5.2: Relaxation time prediction time for site 2 at 300K (red) and
450K (blue)

Figure 4.5.3: Relaxation time prediction time for site 3 at 300K (red) and
450K (blue)
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This method is also applicable to T2 relaxation which is analogous to T1

relaxation but dependent on a different combination of power spectra [70].
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Conclusion

The task of using MD to produce predictions of 2D quadrupolar coupling

NMR line shapes for a host guest ImTPA system was approached by two

methods.

FML produced spectral predictions that showed the expected lines shapes

at the two characteristic temperature for the system, including recreating

static quadrupolar coupling and motional averaging leading to good

qualitative agreement with the spectra available in the literature. This

was demonstrated to be possible from a limited single molecule MD

trajectory through the use of statistical averaging to give a representative

sample of the distribution of orientations in the bulk structure.

In contrast the results from DP methods were inconclusive, producing

spectra with insufficiently good signal to noise ratios for data collection,

this was attributed to an insufficiently long molecular trajectory even with

concatenation, which highlights a difficulty in using adapted EPR

methods to systems where the relevant motions are on a longer time scale.

As such this is an area where further study would be required.

Further, the outputs of these simulations were used to produce site specific

autocorrelation functions and predictions of T1 relaxation times. This site
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specific analysis highlights a strength of computational chemistry to study

individual components of a system whose properties would otherwise be

averaged out. Importantly, this can be seen in the comparison of

autocorrelation functions between sites that Shi et al.[5] assumed to be

equivalent that shows a distinction in the motions those sites undergo

providing evidence against their proposed model, which was in turn

backed up by visual evidence from VMD of flips.

This method was carried out entirely from first principles aside from the

input of initial positions of atoms as a short cut to structure optimisations

available via the CCDC, using fundamental physical constants and

characteristic qualities of the nuclei involved from which DFT methods

produced all of the required inputs for simulation which in turn produced

the required outputs using the values in the force field and Newton’s

equations of motions, employed in MD methods. In addition to a

demonstration of this method for quadrupolar coupling, this approach

would be equally applicable to other magnetic interactions, for example

chemical shift, by using the corresponding tensor, in the same way this

method has been used previously for EPR interactions.
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Appendix

A.1 Output of Gaussian NMR Optimisation

Entering Gaussian System, Link 0=g09

1multiplicity_after_op_2_for_dft_op_2L.com

Output=/gpfs/home/dck13qfu/Imadazonium_Duterated_1ch

arge_

1multiplicity_after_op_2_for_dft_op_2L.log

Initial command:

/gpfs/software/gaussian/09-c01/g09/l1.exe /local/Gau-

6804.inp

-scrdir=/local/

Entering Link 1 = /gpfs/software/gaussian/09-c01/g09/l1.exe

PID= 6806.

Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2011,

Gaussian, Inc. All Rights Reserved.

This is part of the Gaussian(R) 09 program. It is based on

the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),



Chapter A: Appendix 126

the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),

the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),

the Gaussian 92(TM) system (copyright 1992, Gaussian,

Inc.),

the Gaussian 90(TM) system (copyright 1990, Gaussian,

Inc.),

the Gaussian 88(TM) system (copyright 1988, Gaussian,

Inc.),

the Gaussian 86(TM) system (copyright 1986, Carnegie

Mellon

University), and the Gaussian 82(TM) system (copyright

1983,

Carnegie Mellon University). Gaussian is a federally

registered trademark of Gaussian, Inc.

This software contains proprietary and confidential

information, including trade secrets, belonging to Gaussian,

Inc.

This software is provided under written license and may be

used, copied, transmitted, or stored only in accord with that

written license.

The following legend is applicable only to US Government

contracts under FAR:

RESTRICTED RIGHTS LEGEND
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Use, reproduction and disclosure by the US Government is

subject to restrictions as set forth in subparagraphs (a)

and (c) of the Commercial Computer Software - Restricted

Rights clause in FAR 52.227-19.

Gaussian, Inc.

340 Quinnipiac St., Bldg. 40, Wallingford CT 06492

---------------------------------------------------------------

Warning -- This program may not be used in any manner

that competes with the business of Gaussian, Inc. or will

provide assistance to any competitor of Gaussian, Inc. The

licensee of this program is prohibited from giving any

competitor of Gaussian, Inc. access to this program. By

using this program, the user acknowledges that Gaussian,

Inc. is engaged in the business of creating and licensing

software in the field of computational chemistry and

represents and warrants to the licensee that it is not a

competitor of Gaussian, Inc. and that it will not use this

program in any manner prohibited above.

---------------------------------------------------------------

\clearpage

Cite this work as:

Gaussian 09, Revision C.01,

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,

M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.

Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
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H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.

Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.

Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.

Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F.

Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V.

N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K.

Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.

Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E.

Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.

Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.

Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K.

Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.

Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B.

Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian,

Inc., Wallingford CT, 2010.

******************************************

Gaussian 09: EM64L-G09RevC.01 23-Sep-2011

8-Aug-2019

******************************************

%chk=Imadazonium.chk

-----------------------------------------

# nmr=giao b3lyp/6-31g(d) prop=(read,efg)

-----------------------------------------

1/38=1/1;

2/12=2,17=6,18=5,40=1/2;

3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,74=-5/1,2,8,3;

4//1;
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5/5=2,38=5/2;

8/6=1,10=90,11=11/1;

10/13=100,45=16/2;

6/7=2,8=2,9=2,10=2,14=1,15=1,28=1/1,2;

99/9=1/99;

---------------------

DFT optimisatised NMR

---------------------

Charge = 1 Multiplicity = 1

Symbolic Z-Matrix:

C 0.68166 0.97815 0.00005

C -0.68169 0.97813 0.00007

N -1.07432 -0.34847 0.00002

C 0.00001 -1.14277 -0.0001

N 1.07433 -0.34843 -0.00003

H 2.03375 -0.6796 -0.00007

H(Iso=2) 1.39 1.80 0.00

H(Iso=2) -1.39 1.80 0.00

H -2.03372 -0.67966 0.00003

H(Iso=2) 0.00 -2.22 -0.00

Input orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.681658 0.978152 0.000050

2 6 0 -0.681688 0.978131 0.000069
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3 7 0 -1.074316 -0.348465 0.000016

4 6 0 0.000012 -1.142774 -0.000099

5 7 0 1.074327 -0.348433 -0.000034

6 1 0 2.033749 -0.679602 -0.000065

7 1 0 1.392890 1.789600 0.000088

8 1 0 -1.392937 1.789564 0.000130

9 1 0 -2.033722 -0.679664 0.000029

10 1 0 0.000047 -2.222671 -0.000183

---------------------------------------------------------------------

Distance matrix (angstroms):

1 2 3 4 5

1 C 0.000000

2 C 1.363346 0.000000

3 N 2.200763 1.383479 0.000000

4 C 2.227772 2.227769 1.336079 0.000000

5 N 1.383480 2.200764 2.148643 1.336088 0.000000

6 H 2.139228 3.181458 3.125655 2.085813 1.014970

7 H 1.079027 2.227635 3.264725 3.246371 2.161635

8 H 2.227630 1.079027 2.161640 3.246369 3.264724

9 H 3.181453 2.139224 1.014964 2.085796 3.125649

10 H 3.272592 3.272598 2.160302 1.079897 2.160288

6 7 8 9 10

6 H 0.000000

7 H 2.551011 0.000000

8 H 4.223619 2.785827 0.000000

9 H 4.067471 4.223616 2.551018 0.000000

10 H 2.552843 4.247156 4.247168 2.552859 0.000000

Stoichiometry C3H5N2(1+)
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Framework group C1[X(C3H5N2)]

Deg. of freedom 24

Full point group C1 NOp 1

Largest Abelian subgroup C1 NOp 1

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.681675 -0.978140 0.000050

2 6 0 0.681671 -0.978143 0.000069

3 7 0 1.074322 0.348446 0.000016

4 6 0 0.000008 1.142774 -0.000099

5 7 0 -1.074321 0.348452 -0.000034

6 1 0 -2.033737 0.679638 -0.000065

7 1 0 -1.392922 -1.789576 0.000088

8 1 0 1.392905 -1.789589 0.000130

9 1 0 2.033734 0.679628 0.000029

10 1 0 -0.000008 2.222671 -0.000183

---------------------------------------------------------------------

Rotational constants (GHZ):

8.4754635 7.6817047 4.0295432

Standard basis: 6-31G(d) (6D, 7F)

There are 85 symmetry adapted basis functions of A

symmetry.

Integral buffers will be 131072 words long.

Raffenetti 2 integral format.
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Two-electron integral symmetry is turned on.

85 basis functions, 160 primitive gaussians,

85 cartesian basis functions

18 alpha electrons 18 beta electrons

nuclear repulsion energy 172.7668505020 Hartrees.

NAtoms= 10 NActive= 10 NUniq= 10 SFac= 1.00D+00

NAtFMM=

60 NAOKFM=F Big=F

One-electron integrals computed using PRISM.

NBasis= 85 RedAO= T NBF= 85

NBsUse= 85 1.00D-06 NBFU= 85

Harris functional with IExCor= 402 diagonalized for initial

guess.

ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02

IAcc=

1 IRadAn= 1 AccDes= 0.00D+00

HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1

IDoV= 1

ScaDFX= 1.000000 1.000000 1.000000 1.000000

FoFCou: FMM=F IPFlag= 0 FMFlag= 100000

FMFlg1= 0

NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T

Omega= 0.000000 0.000000 1.000000 0.000000 0.000000

ICntrl=

500 IOpCl= 0

NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1

NMtDS0=

0 NMtDT0= 0
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I1Cent= 4 NGrid= 0.

Petite list used in FoFCou.

Initial guess orbital symmetries:

Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A)

Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A)

The electronic state of the initial guess is 1-A.

Requested convergence on RMS density matrix=1.00D-08

within 128

cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

Keep R1 ints in memory in canonical form, NReq=7709885.

Integral accuracy reduced to 1.0D-05 until final iterations.

Initial convergence to 1.0D-05 achieved. Increase integral

accuracy. SCF Done: E(RB3LYP) = -226.592173173 A.U.

after 12 cycles Convg = 0.4674D-08 -V/T = 2.0099

Range of M.O.s used for correlation: 1 85

NBasis= 85 NAE= 18 NBE= 18 NFC= 0 NFV= 0

NROrb= 85 NOA= 18 NOB= 18 NVA= 67 NVB= 67

Differentiating once with respect to magnetic field using

GIAOs.
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Electric field/nuclear overlap derivatives assumed to be

zero.

Keep R3 ints in memory in canonical form, NReq=7504090.

FoFCou: FMM=F IPFlag= 0 FMFlag= 0

FMFlg1= 0

NFxFlg= 0 DoJE=F BraDBF=F KetDBF=T FulRan=T

Omega= 0.000000 0.000000 1.000000 0.000000 0.000000

ICntrl= 6100 IOpCl= 0

NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1

NMtDS0= 0

NMtDT0= 0

I1Cent= 7 NGrid= 10.

Symmetry not used in FoFCou.

There are 3 degrees of freedom in the 1st order CPHF.

IDoFFX=0.

3 vectors produced by pass 0 Test12= 4.02D-14 3.33D-08

XBig12=

2.57D+00 9.78D-01.

AX will form 3 AO Fock derivatives at one time.

3 vectors produced by pass 1 Test12= 4.02D-14 3.33D-08

XBig12= 1.71D-

03 1.84D-02.

3 vectors produced by pass 2 Test12= 4.02D-14 3.33D-08

XBig12= 5.51D-

06 1.38D-03.

3 vectors produced by pass 3 Test12= 4.02D-14 3.33D-08

XBig12= 7.78D-

09 3.50D-05.
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3 vectors produced by pass 4 Test12= 4.02D-14 3.33D-08

XBig12= 2.07D-

11 2.80D-06.

1 vectors produced by pass 5 Test12= 4.02D-14 3.33D-08

XBig12= 7.11D-

14 1.25D-07.

Inverted reduced A of dimension 16 with in-core refinement.

Calculating GIAO nuclear magnetic shielding tensors.

SCF GIAO Magnetic shielding tensor (ppm):

1 C Isotropic = 74.3719 Anisotropy = 117.4075

XX= 64.9658 YX= -4.8060 ZX= -0.0010

XY= -5.9855 YY= 5.5064 ZY= 0.0093

XZ= -0.0058 YZ= 0.0090 ZZ= 152.6436

Eigenvalues: 5.0208 65.4515 152.6436

2 C Isotropic = 74.3730 Anisotropy = 117.4050

XX= 64.9686 YX= 4.8049 ZX= -0.0018

XY= 5.9848 YY= 5.5074 ZY= 0.0079

XZ= 0.0035 YZ= 0.0087 ZZ= 152.6430

Eigenvalues: 5.0219 65.4541 152.6430

3 N Isotropic = 91.6771 Anisotropy = 161.1263

XX= 11.0854 YX= -34.7846 ZX= -0.0053

XY= -37.8892 YY= 64.8512 ZY= 0.0069

XZ= 0.0001 YZ= 0.0075 ZZ= 199.0946

Eigenvalues: -7.2319 83.1685 199.0946

4 C Isotropic = 66.4742 Anisotropy = 115.6612

XX= 37.9074 YX= 0.0011 ZX= -0.0023

XY= 0.0013 YY= 17.9335 ZY= 0.0120

XZ= -0.0014 YZ= 0.0146 ZZ= 143.5816
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Eigenvalues: 17.9335 37.9074 143.5816

5 N Isotropic = 91.6736 Anisotropy = 161.1267

XX= 11.0804 YX= 34.7871 ZX= -0.0037

XY= 37.8907 YY= 64.8491 ZY= 0.0094

XZ= -0.0083 YZ= 0.0080 ZZ= 199.0914

Eigenvalues: -7.2380 83.1675 199.0914

6 H Isotropic = 23.0683 Anisotropy = 7.6231

XX= 27.7100 YX= -1.2640 ZX= 0.0002

XY= -1.5510 YY= 23.6517 ZY= -0.0004

XZ= 0.0002 YZ= -0.0004 ZZ= 17.8433

Eigenvalues: 17.8433 23.2113 28.1504

7 H Isotropic = 24.6285 Anisotropy = 3.2939

XX= 25.8760 YX= 0.9977 ZX= 0.0001

XY= 0.1090 YY= 26.5015 ZY= -0.0004

XZ= -0.0001 YZ= -0.0004 ZZ= 21.5078

Eigenvalues: 21.5078 25.5532 26.8244

8 H Isotropic = 24.6285 Anisotropy = 3.2940

XX= 25.8761 YX= -0.9977 ZX= 0.0001

XY= -0.1091 YY= 26.5015 ZY= -0.0004

XZ= 0.0003 YZ= -0.0004 ZZ= 21.5078

Eigenvalues: 21.5078 25.5532 26.8245

9 H Isotropic = 23.0685 Anisotropy = 7.6233

XX= 27.7103 YX= 1.2640 ZX= 0.0002

XY= 1.5511 YY= 23.6518 ZY= -0.0003

XZ= 0.0003 YZ= -0.0003 ZZ= 17.8433

Eigenvalues: 17.8433 23.2114 28.1507

10 H Isotropic = 24.1056 Anisotropy = 4.2627

XX= 24.5759 YX= 0.0002 ZX= 0.0001
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XY= 0.0001 YY= 26.9474 ZY= -0.0005

XZ= 0.0001 YZ= -0.0001 ZZ= 20.7934

Eigenvalues: 20.7934 24.5759 26.9474

End of Minotr Frequency-dependent properties file 721

does not exist.

End of Minotr Frequency-dependent properties file 722

does not exist.

*********************************************************************

*

Population analysis using the SCF density.

*********************************************************************

*

Orbital symmetries:

Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A)

Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
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(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A)

The electronic state is 1-A.

Alpha occ. eigenvalues --

-14.62592 -14.62591 -10.49323 -10.43710 -10.43639

Alpha occ. eigenvalues --

-1.26837 -1.13549 -0.98576 -0.88513 -0.83878

Alpha occ. eigenvalues --

-0.79428 -0.72914 -0.67200 -0.67103 -0.65502

Alpha occ. eigenvalues --

-0.64559 -0.53823 -0.45927

Alpha virt. eigenvalues --

-0.21116 -0.16562 -0.12646 -0.08742 -0.06164

Alpha virt. eigenvalues --

-0.03181 -0.02621 -0.00318 0.01211 0.10761

Alpha virt. eigenvalues --

0.12474 0.21682 0.29254 0.31772 0.34766

Alpha virt. eigenvalues --

0.36546 0.37313 0.38928 0.39344 0.39996

Alpha virt. eigenvalues --

0.42114 0.54361 0.55877 0.58796 0.61068

Alpha virt. eigenvalues --

0.63042 0.65819 0.68458 0.72043 0.73806

Alpha virt. eigenvalues --

0.79945 0.95822 1.00144 1.06619 1.07429

Alpha virt. eigenvalues --

1.09378 1.11460 1.14105 1.18355 1.29910

Alpha virt. eigenvalues --
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1.30301 1.41268 1.56221 1.70785 1.76340

Alpha virt. eigenvalues --

1.82354 1.82736 1.90383 1.97632 1.99656

Alpha virt. eigenvalues --

2.02749 2.05919 2.10786 2.11173 2.32312

Alpha virt. eigenvalues --

2.33979 2.43132 2.45773 2.46544 2.71258

Alpha virt. eigenvalues --

2.80807 2.81709 3.63662 3.76562 3.88804

Alpha virt. eigenvalues --

4.02048 4.14954

Condensed to atoms (all electrons):

1 2 3 4 5 6

1 C 4.758854 0.621253 -0.041671 -0.093153 0.361879

-0.020294

2 C 0.621253 4.758857 0.361879 -0.093153 -0.041672

0.004721

3 N -0.041671 0.361879 6.598634 0.427475 -0.071013

0.003616

4 C -0.093153 -0.093153 0.427475 4.669247 0.427472

-0.026199

5 N 0.361879 -0.041672 -0.071013 0.427472 6.598642

0.319610

6 H -0.020294 0.004721 0.003616 -0.026199 0.319610

0.307057

7 H 0.375719 -0.027998 0.002859 0.004742 -0.035498

-0.002175

8 H -0.027998 0.375719 -0.035498 0.004742 0.002859
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-0.000074

9 H 0.004721 -0.020294 0.319612 -0.026200 0.003616

-0.000061

10 H 0.002749 0.002749 -0.031916 0.375634 -0.031917

-0.001049

7 8 9 10

1 C 0.375719 -0.027998 0.004721 0.002749

2 C -0.027998 0.375719 -0.020294 0.002749

3 N 0.002859 -0.035498 0.319612 -0.031916

4 C 0.004742 0.004742 -0.026200 0.375634

5 N -0.035498 0.002859 0.003616 -0.031917

6 H -0.002175 -0.000074 -0.000061 -0.001049

7 H 0.426113 -0.000552 -0.000074 -0.000067

8 H -0.000552 0.426112 -0.002175 -0.000067

9 H -0.000074 -0.002175 0.307057 -0.001049

10 H -0.000067 -0.000067 -0.001049 0.405808

Mulliken atomic charges:

1

1 C 0.057941

2 C 0.057940

3 N -0.533979

4 C 0.329393

5 N -0.533980

6 H 0.414849

7 H 0.256931

8 H 0.256931

9 H 0.414849

10 H 0.279125
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Sum of Mulliken atomic charges = 1.00000

Mulliken charges with hydrogens summed into heavy

atoms:

1

1 C 0.314872

2 C 0.314871

3 N -0.119131

4 C 0.608517

5 N -0.119131

Sum of Mulliken charges with hydrogens summed into

heavy atoms = 1.00000

Electronic spatial extent (au): <R**2>= 283.2593

Charge= 1.0000 electrons

Dipole moment (field-independent basis, Debye):

X= 0.0000 Y= 1.4143

Z= -0.0001

Tot= 1.4143

Quadrupole moment (field-independent basis, Debye-Ang):

XX= -12.3528

YY= -16.2678

ZZ= -29.7278

XY= 0.0000

XZ= 0.0004

YZ= -0.0009

Traceless Quadrupole moment (field-independent basis,

Debye-Ang):

XX= 7.0967

YY= 3.1816
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ZZ= -10.2783

XY= 0.0000

XZ= 0.0004

YZ= -0.0009

Octapole moment (field-independent basis, Debye-Ang**2):

XXX= -0.0001

YYY= 5.5696

ZZZ= -0.0002

XYY= -0.0001

XXY= 3.4737

XXZ= 0.0002

XZZ= 0.0000

YZZ= 1.4310

YYZ= -0.0004

XYZ= 0.0001

Hexadecapole moment (field-independent basis, Debye-

Ang**3):

XXXX= -88.9481

YYYY= -122.9264

ZZZZ= -27.4504

XXXY= 0.0000

XXXZ= 0.0003

YYYX= -0.0003

YYYZ= 0.0010

ZZZX= -0.0014

ZZZY= 0.0053

XXYY= -35.4599

XXZZ= -32.5751
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YYZZ= -35.2229

XXYZ= 0.0006

YYXZ= -0.0001

ZZXY=

0.0000

N-N= 1.727668505020D+02

E-N=-8.628661240468D+02

KE= 2.243634271971D+02

**********************************************************************

Electrostatic Properties Using The SCF Density

**********************************************************************

Atomic Center 1 is at -0.681675 -0.978140 0.000050

Atomic Center 2 is at 0.681671 -0.978143 0.000069

Atomic Center 3 is at 1.074322 0.348446 0.000016

Atomic Center 4 is at 0.000008 1.142774 -0.000099

Atomic Center 5 is at -1.074321 0.348452 -0.000034

Atomic Center 6 is at -2.033737 0.679638 -0.000065

Atomic Center 7 is at -1.392922 -1.789576 0.000088

Atomic Center 8 is at 1.392905 -1.789589 0.000130

Atomic Center 9 is at 2.033734 0.679628 0.000029
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Atomic Center 10 is at -0.000008 2.222671 -0.000183

-----------------------------------------------------------------

Electrostatic Properties (Atomic Units)

-----------------------------------------------------------------

Center Electric -------- Electric Field --------

Potential X Y Z

-----------------------------------------------------------------

1 Atom -14.489758 0.011118 -0.020156 0.000001

2 Atom -14.489758 -0.011119 -0.020156 0.000001

3 Atom -18.053697 0.004230 -0.003087 0.000002

4 Atom -14.431811 -0.000001 0.015744 -0.000001

5 Atom -18.053698 -0.004229 -0.003086 0.000001

6 Atom -0.764409 -0.044400 0.014598 -0.000002

7 Atom -0.873603 -0.023368 -0.030829 0.000002

8 Atom -0.873603 0.023368 -0.030828 0.000003

9 Atom -0.764409 0.044404 0.014599 0.000000

10 Atom -0.836678 0.000001 0.039163 -0.000003

-----------------------------------------------------------------

-----------------------------------------------------

Center ---- Electric Field Gradient ----

XX YY ZZ

-----------------------------------------------------

1 Atom -492.370043 -492.670708 -492.626546

2 Atom -492.370034 -492.670696 -492.626524
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3 Atom -798.110755 -798.155064 -797.467103

4 Atom -492.441709 -492.137282 -492.442781

5 Atom -798.110758 -798.155054 -797.467091

6 Atom -1.927259 -1.522899 -1.420397

7 Atom -1.760777 -1.815872 -1.540815

8 Atom -1.760771 -1.815877 -1.540814

9 Atom -1.927285 -1.522907 -1.420404

10 Atom -1.564773 -1.986947 -1.532500

-----------------------------------------------------

-----------------------------------------------------

Center ---- Electric Field Gradient ----

XY XZ YZ

-----------------------------------------------------

1 Atom 0.174050 -0.000001 -0.000003

2 Atom -0.174054 0.000012 -0.000011

3 Atom 0.050085 -0.000055 0.000049

4 Atom -0.000004 -0.000002 -0.000020

5 Atom -0.050084 0.000023 0.000057

6 Atom 0.158536 -0.000016 0.000009

7 Atom -0.214924 0.000010 0.000013

8 Atom 0.214924 -0.000017 0.000020

9 Atom -0.158541 -0.000007 0.000002

10 Atom 0.000005 -0.000001 0.000035

-----------------------------------------------------

-----------------------------------------------------

Center ---- Electric Field Gradient ----

---- Eigenvalues ----

-----------------------------------------------------
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1 Atom -492.750361 -492.626546 -492.290390

2 Atom -492.750352 -492.626524 -492.290378

3 Atom -798.187676 -798.078143 -797.467103

4 Atom -492.442781 -492.441709 -492.137282

5 Atom -798.187669 -798.078144 -797.467091

6 Atom -1.982004 -1.468154 -1.420397

7 Atom -2.005007 -1.571642 -1.540815

8 Atom -2.005006 -1.571641 -1.540814

9 Atom -1.982031 -1.468162 -1.420404

10 Atom -1.986947 -1.564773 -1.532500

-----------------------------------------------------

-----------------------------------------------------

Center ---- Electric Field Gradient ----

( tensor representation )

3XX-RR 3YY-RR 3ZZ-RR

-----------------------------------------------------

1 Atom 0.185722 -0.114942 -0.070780

2 Atom 0.185717 -0.114944 -0.070773

3 Atom -0.199781 -0.244090 0.443871

4 Atom -0.101118 0.203308 -0.102190

5 Atom -0.199790 -0.244087 0.443877

6 Atom -0.303741 0.100619 0.203121

7 Atom -0.054956 -0.110051 0.165006

8 Atom -0.054950 -0.110056 0.165007

9 Atom -0.303753 0.100625 0.203128

10 Atom 0.129967 -0.292207 0.162240

-----------------------------------------------------

-----------------------------------------------------
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Center ---- Electric Field Gradient ----

( tensor representation )

---- Eigenvalues ----

-----------------------------------------------------

1 Atom -0.194595 -0.070780 0.265375

2 Atom -0.194601 -0.070773 0.265374

3 Atom -0.276702 -0.167169 0.443871

4 Atom -0.102190 -0.101118 0.203308

5 Atom -0.276701 -0.167176 0.443877

6 Atom -0.358486 0.155364 0.203121

7 Atom -0.299186 0.134179 0.165006

8 Atom -0.299186 0.134179 0.165007

9 Atom -0.358499 0.155371 0.203128

10 Atom -0.292207 0.129967 0.162240

-----------------------------------------------------

1\1\GINC-E0002\SP\RB3LYP\6

31G(d)\C3H5N2(1+)\ROOT\08-Aug-2019\0\\# nmr

=giao b3lyp/6-31g(d) prop=(read,efg)\\DFT optimisatised

NMR\\1,1\C,0,0

.681658,0.978152,0.00005\C,0,-0.681688,0.978131,0.000069\N,

0,-1.0

74316

,-0.348465,0.000016\C,0,0.000012,-1.142774,-0.000099\N,0,1.0

7432

7,-0.3

48433,-0.000034\H,0,2.033749,-0.679602,-0.000065\H,0,1.392
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8

9,1.7

896,0.

000088\H,0,-1.392937,1.789564,0.00013\H,0,-2.033722,-0.679

6

64,0.

000029

\H,0,0.000047,-2.222671,-0.000183\\Version=EM64L-

G09RevC.01\State=1-A\

HF=-226.5921732\RMSD=4.674e-

09\Dipole=0.0000108,-0.5564373,-0.0000382\

Quadrupole=5.2762011,2.3654635,-7.6416645,0.0000327,-0.000

2718,

0.00067

11\PG=C01 [X(C3H5N2)]\\@

ON A TOMBSTONE, "HERE LIES LESTER MOORE,

FOUR SLUGS FROM A 44, NO LES, NO MORE".

Job cpu time: 0 days 0 hours 0 minutes 9.3 seconds.

File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk=
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8

Scr= 1

Normal termination of Gaussian 09 at Thu Aug 8 16:26:59

2019.
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A.2 Topology File for Im

; Imd_GMX.top created by acpype (Rev: 0)

on Mon Sep 24 14:13:15 2018

[ moleculetype ]

;name nrexcl

Imd 3

[ atoms ]

; nr type resi res atom cgnr charge mass

; qtot bond_type

1 cc 1 Imd C1 1

0.069250 12.01000

; qtot 0.069

2 cc 1 Imd C2 2

-0.123052 12.01000

; qtot -0.054

3 cd 1 Imd C3 3

-0.123052 12.01000

; qtot -0.177

4 na 1 Imd N1 4

-0.158974 14.01000

; qtot -0.336

5 hn 1 Imd H1 5

0.374831 1.00800

; qtot 0.039

6 h5 1 Imd H2 6
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0.243370 1.00800

; qtot 0.282

7 hn 1 Imd H3 7

0.374831 1.00800

; qtot 0.657

8 h4 1 Imd H4 8

0.250885 1.00800

; qtot 0.908

9 h4 1 Imd H5 9

0.250885 1.00800

; qtot 1.159

10 na 1 Imd N2 10

-0.158974 14.01000

; qtot 1.000

[ bonds ]

; ai aj funct r k

1 4 1

1.3802e-01 3.5631e+05

; C1 - N1

1 6 1

1.0819e-01 2.9430e+05

; C1 - H2

1 10 1

1.3802e-01 3.5631e+05
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; C1 - N2

2 3 1

1.3729e-01 4.1915e+05

; C2 - C3

2 8 1

1.0817e-01 2.9455e+05

; C2 - H4

2 10 1

1.3802e-01 3.5631e+05

; C2 - N2

3 4 1

1.3802e-01 3.5631e+05

; C3 - N1

3 9 1

1.0817e-01 2.9455e+05

; C3 - H5

4 5 1

1.0100e-01 3.4175e+05

; N1 - H1

7 10 1

1.0100e-01 3.4175e+05
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; H3 - N2

[ pairs ]

; ai aj funct

1 8 1 ; C1 - H4

1 9 1 ; C1 - H5

2 5 1 ; C2 - H1

3 7 1 ; C3 - H3

4 7 1 ; N1 - H3

4 8 1 ; N1 - H4

5 9 1 ; H1 - H5

6 2 1 ; H2 - C2

6 3 1 ; H2 - C3

6 5 1 ; H2 - H1

6 7 1 ; H2 - H3

7 8 1 ; H3 - H4

8 9 1 ; H4 - H5

9 10 1 ; H5 - N2

10 5 1 ; N2 - H1

[ angles ]

; ai aj ak funct theta cth

1 4 3 1

1.2801e+02 5.3095e+02

; C1 - N1 - C3

1 4 5 1

1.2550e+02 3.9120e+02

; C1 - N1 - H1
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1 10 2 1

1.0990e+02 5.7304e+02

; C1 - N2 - C2

1 10 7 1

1.2550e+02 3.9120e+02

; C1 - N2 - H3

2 3 4 1

1.0699e+02 6.1446e+02

; C2 - C3 - N1

2 3 9 1

1.2848e+02 3.9556e+02

; C2 - C3 - H5

2 10 7 1

1.2550e+02 3.9120e+02

; C2 - N2 - H3

3 2 8 1

1.2848e+02 3.9556e+02

; C3 - C2 - H4

3 2 10 1

1.0699e+02 6.1446e+02

; C3 - C2 - N2

3 4 5 1

1.2550e+02 3.9120e+02

; C3 - N1 - H1

4 1 6 1

1.2155e+02 4.1489e+02

; N1 - C1 - H2

4 1 10 1
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1.0660e+02 6.2902e+02

; N1 - C1 - N2

4 3 9 1

1.2053e+02 4.1664e+02

; N1 - C3 - H5

6 1 10 1

1.2155e+02 4.1489e+02

; H2 - C1 - N2

8 2 10 1

1.2053e+02 4.1664e+02

; H4 - C2 - N2

[ dihedrals ] ; propers

; treated as RBs in GROMACS to use combine multiple

AMBER torsions per quartet

; i j k l func C0 C1 C2

C3 C4 C5

1 4 3 2 3

14.22560 0.00000 -14.22560

0.00000 0.00000 0.00000

; C1- N1- C3- C2

1 4 3 9 3

14.22560 0.00000 -14.22560

0.00000 0.00000 0.00000

; C1- N1- C3- H5

1 10 2 3 3

14.22560 0.00000 -14.22560

0.00000 0.00000 0.00000
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; C1- N2- C2- C3

1 10 2 8 3

14.22560 0.00000 -14.22560

0.00000 0.00000 0.00000 ;

C1- N2- C2- H4

2 3 4 5 3

14.22560 0.00000 -14.22560

0.00000 0.00000 0.00000 ;

C2- C3- N1- H1

3 2 10 7 3

14.22560 0.00000 -14.22560

0.00000 0.00000 0.00000 ;

C3- C2- N2- H3

4 1 10 2 3

14.22560 0.00000 -14.22560

0.00000 0.00000 0.00000 ;

N1- C1- N2- C2

4 1 10 7 3

14.22560 0.00000 -14.22560

0.00000 0.00000 0.00000 ;

N1- C1- N2- H3

4 3 2 8 3

33.47200 0.00000 -33.47200

0.00000 0.00000 0.00000 ;

N1- C3- C2- H4

4 3 2 10 3

33.47200 0.00000 -33.47200

0.00000 0.00000 0.00000 ;
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N1- C3- C2- N2

5 4 3 9 3

14.22560 0.00000 -14.22560

0.00000 0.00000 0.00000 ;

H1- N1- C3- H5

6 1 4 3 3

14.22560 0.00000 -14.22560

0.00000 0.00000 0.00000 ;

H2- C1- N1- C3

6 1 4 5 3

14.22560 0.00000 -14.22560

0.00000 0.00000 0.00000 ;

H2- C1- N1- H1

6 1 10 2 3

14.22560 0.00000 -14.22560

0.00000 0.00000 0.00000 ;

H2- C1- N2- C2

6 1 10 7 3

14.22560 0.00000 -14.22560

0.00000 0.00000 0.00000 ;

H2- C1- N2- H3

7 10 2 8 3

14.22560 0.00000 -14.22560

0.00000 0.00000 0.00000 ;

H3- N2- C2- H4

8 2 3 9 3

33.47200 0.00000 -33.47200

0.00000 0.00000 0.00000 ;
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H4- C2- C3- H5

9 3 2 10 3

33.47200 0.00000 -33.47200

0.00000 0.00000 0.00000 ;

H5- C3- C2- N2

10 1 4 3 3

14.22560 0.00000 -14.22560

0.00000 0.00000 0.00000 ;

N2- C1- N1- C3

10 1 4 5 3

14.22560 0.00000 -14.22560

0.00000 0.00000 0.00000 ;

N2- C1- N1- H1

[ dihedrals ] ; impropers

; treated as propers in GROMACS to use correct AMBER

analytical function

; i j k l func phase kd pn

; Dennis added the last 3 dihedrals on oct 8th 2018

1 2 10 7 1

180.00 4.60240 2 ;

C1- C2- N2- H3

1 3 4 5 1

180.00 4.60240 2 ;

C1- C3- N1- H1

; 6 1 4 10 1

180.00 4.60240 2 ;

H6- C1- N10- N4
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; 8 2 3 10 1

180.00 4.60240 2 ;

H8- C2- C3- N10

; 9 3 2 4 1

180.00 4.60240 2 ;

H9- C3- C2- N10
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A.3 Topology file for TPA

; HTp_GMX.top created by acpype (Rev: 0) on Mon Sep 24 14:33:08 2018

[ moleculetype ]

;name nrexcl

HTp 3

[ atoms ]

; nr type resi res atom cgnr charge mass

; qtot bond_type

1 ca 1 HTp C1 1

-0.147815 12.01000

; qtot -0.148

2 ca 1 HTp C2 2

-0.200250 12.01000

; qtot -0.348

3 ca 1 HTp C3 3

0.092635 12.01000

;qtot -0.255

4 ca 1 HTp C4 4

-0.200250 12.01000

; qtot -0.456

5 ca 1 HTp C5 5

-0.147815 12.01000

; qtot -0.603

6 ca 1 HTp C6 6

-0.098594 12.01000
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; qtot -0.702

7 ha 1 HTp H1 7

0.140937 1.00800

; qtot -0.561

8 ha 1 HTp H2 8

0.143673 1.00800

; qtot -0.417

9 ha 1 HTp H3 9

0.143673 1.00800

; qtot -0.274

10 ha 1 HTp H4 10

0.140937 1.00800

; qtot -0.133

11 c 1 HTp C7 11

0.766855 12.01000

; qtot 0.634

12 o 1 HTp O1 12

-0.634101 16.00000

; qtot -0.000

13 oh 1 HTp O2 13

-0.660660 16.00000

; qtot -0.661

14 ho 1 HTp H5 14

0.435810 1.00800

; qtot -0.225

15 c 1 HTp C8 15

0.767597 12.01000

; qtot 0.543
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16 o 1 HTp O3 16

-0.771316 16.00000

; qtot -0.229

17 o 1 HTp O4 17

-0.771316 16.00000

; qtot -1.000

[ bonds ]

; ai aj funct r k

1 2 1 1.3984e-01 3.8585e+05

; C1 - C2

1 6 1 1.3984e-01 3.8585e+05

; C1 - C6

1 7 1 1.0860e-01 2.8937e+05

; C1 - H1

2 3 1 1.3984e-01 3.8585e+05

; C2 - C3

2 8 1 1.0860e-01 2.8937e+05

; C2 - H2

3 4 1 1.3984e-01 3.8585e+05

; C3 - C4

3 15 1 1.4906e-01 2.8945e+05

; C3 - C8

4 5 1 1.3984e-01 3.8585e+05

; C4 - C5

4 9 1 1.0860e-01 2.8937e+05

; C4 - H3

5 6 1 1.3984e-01 3.8585e+05
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; C5 - C6

5 10 1 1.0860e-01 2.8937e+05

; C5 - H4

6 11 1 1.4906e-01 2.8945e+05

; C6 - C7

11 12 1 1.2183e-01 5.3363e+05

; C7 - O1

11 13 1 1.3513e-01 3.3480e+05

; C7 - O2

13 14 1 9.7300e-02 3.1079e+05

; O2 - H5

15 16 1 1.2183e-01 5.3363e+05

; C8 - O3

15 17 1 1.2183e-01 5.3363e+05

; C8 - O4

[ pairs ]

; ai aj funct

1 4 1 ; C1 - C4

1 10 1 ; C1 - H4

1 12 1 ; C1 - O1

1 13 1 ; C1 - O2

1 15 1 ; C1 - C8

2 5 1 ; C2 - C5

2 9 1 ; C2 - H3

2 11 1 ; C2 - C7

2 16 1 ; C2 - O3

2 17 1 ; C2 - O4
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3 10 1 ; C3 - H4

4 8 1 ; C4 - H2

4 11 1 ; C4 - C7

4 16 1 ; C4 - O3

4 17 1 ; C4 - O4

5 12 1 ; C5 - O1

5 13 1 ; C5 - O2

5 15 1 ; C5 - C8

6 3 1 ; C6 - C3

6 8 1 ; C6 - H2

6 9 1 ; C6 - H3

6 14 1 ; C6 - H5

7 3 1 ; H1 - C3

7 5 1 ; H1 - C5

7 8 1 ; H1 - H2

7 11 1 ; H1 - C7

8 15 1 ; H2 - C8

9 10 1 ; H3 - H4

9 15 1 ; H3 - C8

10 11 1 ; H4 - C7

12 14 1 ; O1 - H5

[ angles ]

; ai aj ak funct theta cth

1 2 3 1

1.2002e+02 5.5748e+02

; C1 - C2 - C3

1 2 8 1
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1.1988e+02 4.0317e+02

; C1 - C2 - H2

1 6 5 1

1.2002e+02 5.5748e+02

; C1 - C6 - C5

1 6 11 1

1.2033e+02 5.3790e+02

; C1 - C6 - C7

2 1 6 1

1.2002e+02 5.5748e+02

; C2 - C1 - C6

2 1 7 1

1.1988e+02 4.0317e+02

; C2 - C1 - H1

2 3 4 1

1.2002e+02 5.5748e+02

; C2 - C3 - C4

2 3 15 1

1.2033e+02 5.3790e+02

; C2 - C3 - C8

3 2 8 1

1.1988e+02 4.0317e+02

; C3 - C2 - H2

3 4 5 1

1.2002e+02 5.5748e+02

; C3 - C4 - C5

3 4 9 1

1.1988e+02 4.0317e+02
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; C3 - C4 - H3

3 15 16 1

1.2260e+02 5.7505e+02

; C3 - C8 - O3

3 15 17 1

1.2260e+02 5.7505e+02

; C3 - C8 - O4

4 3 15 1

1.2033e+02 5.3790e+02

; C4 - C3 - C8

4 5 6 1

1.2002e+02 5.5748e+02

; C4 - C5 - C6

4 5 10 1

1.1988e+02 4.0317e+02

; C4 - C5 - H4

5 4 9 1

1.1988e+02 4.0317e+02

; C5 - C4 - H3

5 6 11 1

1.2033e+02 5.3790e+02

; C5 - C6 - C7

6 1 7 1

1.1988e+02 4.0317e+02

; C6 - C1 - H1

6 5 10 1

1.1988e+02 4.0317e+02

; C6 - C5 - H4
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6 11 12 1

1.2260e+02 5.7505e+02

; C6 - C7 - O1

6 11 13 1

1.1345e+02 5.7865e+02

; C6 - C7 - O2

11 13 14 1

1.0655e+02 4.1740e+02

; C7 - O2 - H5

12 11 13 1

1.2210e+02 6.3530e+02

; O1 - C7 - O2

16 15 17 1

1.3025e+02 6.5220e+02

; O3 - C8 - O4

[ dihedrals ] ; propers

; treated as RBs in GROMACS to use combine multiple

AMBER torsions per quartet

; i j k l func C0 C1

C2 C3 C4 C5

1 2 3 4 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; C1- C2- C3- C4

1 2 3 15 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000
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; C1- C2- C3- C8

1 6 5 4 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

C1- C6- C5- C4

1 6 5 10 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; C1- C6- C5- H4

1 6 11 12 3

8.36800 0.00000 -8.36800

0.00000 0.00000 0.00000

; C1- C6- C7- O1

1 6 11 13 3

8.36800 0.00000 -8.36800

0.00000 0.00000 0.00000

; C1- C6- C7- O2

2 1 6 5 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; C2- C1- C6- C5

2 1 6 11 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; C2- C1- C6- C7

2 3 4 5 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000
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; C2- C3- C4- C5

2 3 4 9 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; C2- C3- C4- H3

2 3 15 16 3

8.36800 0.00000 -8.36800

0.00000 0.00000 0.00000

; C2- C3- C8- O3

2 3 15 17 3

8.36800 0.00000 -8.36800

0.00000 0.00000 0.00000

; C2- C3- C8- O4

3 4 5 6 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; C3- C4- C5- C6

3 4 5 10 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; C3- C4- C5- H4

4 3 2 8 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; C4- C3- C2- H2

4 3 15 16 3

8.36800 0.00000 -8.36800

0.00000 0.00000 0.00000
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; C4- C3- C8- O3

4 3 15 17 3

8.36800 0.00000 -8.36800

0.00000 0.00000 0.00000

; C4- C3- C8- O4

4 5 6 11 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; C4- C5- C6- C7

5 4 3 15 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; C5- C4- C3- C8

5 6 11 12 3

8.36800 0.00000 -8.36800

0.00000 0.00000 0.00000

; C5- C6- C7- O1

5 6 11 13 3

8.36800 0.00000 -8.36800

0.00000 0.00000 0.00000

; C5- C6- C7- O2

6 1 2 3 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; C6- C1- C2- C3

6 1 2 8 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000
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; C6- C1- C2- H2

6 5 4 9 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; C6- C5- C4- H3

6 11 13 14 3

19.24640 0.00000 -19.24640

0.00000 0.00000 0.00000

; C6- C7- O2- H5

7 1 2 3 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; H1- C1- C2- C3

7 1 2 8 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; H1- C1- C2- H2

7 1 6 5 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; H1- C1- C6- C5

7 1 6 11 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; H1- C1- C6- C7

8 2 3 15 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000
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; H2- C2- C3- C8

9 4 3 15 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; H3- C4- C3- C8

9 4 5 10 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; H3- C4- C5- H4

10 5 6 11 3

30.33400 0.00000 -30.33400

0.00000 0.00000 0.00000

; H4- C5- C6- C7

12 11 13 14 3

27.19600 -7.94960 -19.24640

0.00000 0.00000 0.00000

; O1- C7- O2- H5

[ dihedrals ] ; impropers

; treated as propers in GROMACS to use correct AMBER

analytical function

; i j k l

func phase kd pn

1 3 2 8 1

180.00 4.60240 2

; C1- C3- C2-

H2

3 5 4 9 1
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180.00 4.60240 2

; C3- C5- C4-

H3

3 16 15 17 1

180.00 4.60240 2

; C3- O3-

C8- O4

4 6 5 10 1

180.00 4.60240 2

; C4- C6-

C5- H4

6 13 11 12 1

180.00 43.93200 2

; C6- O2-

C7- O1

7 1 6 2 1

180.00 4.60240 2

; H1- C1-

C6- C2
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Abbreviations

Abbreviation Meaning

ACF Autocorrelation Function

AMBER Assisted Model Building with Energy Refinement

CCDC Cambridge Crystallographic Data Centre

CF Cone Frame

DFT Density Function Theory

DP Direct Propagation

EFG Electric Field Gradient

EPR Electron Paramagnetic Resonance Spectroscopy

FFT Fast Fourier Transform

FID Free Induction Decay

FML Fast Motional Limit

GROMACS GROningen MAchine for Chemical Simulations

Im Imidazolium Cation

LAB Laboratory Frame

LINCS LINear Constraint Solver

MD Molecular Dynamics

NMR Nuclear Magnetic Resonance Spectroscopy

Table A.1: List of Abbreviations
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PAS Principle Axis system

r.f Radio Frequency

SLE Stochastic Liouville Equation

TPA Hydrogen Terephthalate Anion

VMD Visual Molecular Dynamics

Table A.1: List of Abbreviations
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