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Abstract

Let G be a Symplectic group or a Split Special Orthogonal group defined over

a dyadic field. We begin by classifying the reductive quotients of most maximal

parahoric subgroups of G so that we can explicitly describe its irreducible cuspi-

dal depth-zero representations in terms of their local data. By a result of Blondel

we compute the reducibility points of a parabolically induced representation from

a cuspidal representation of a maximal Levi subgroup. These reducibility points

are described by certain parameters of a spherical Hecke algebra occuring in the

construction of a Bushnell–Kutzko cover. Using classical Deligne–Lusztig theory for

finite reductive groups, we verify an equality due to Mœglin which (conjecturally)

allows one to identify the Langlands parameter associated to an irreducible cuspidal

depth-zero representation of G through the local Langlands correspondence.

We then begin an exhaustive investigation into positive-depth cuspidal repre-

sentations of Sp4(F ) over a dyadic field. By using both the languages of Bushnell–

Kutzko and Moy–Prasad we show that any irreducible representation of Sp4(F )

contains a G-fundamental stratum. We then take the first steps towards the com-

putation of intertwining of G-fundamental strata by explicitly describing the distin-

guished double-coset representatives of the maximal parahoric subgroups.
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Chapter 1

Introduction

1.1 Overview

Let F be a non-archimedean local field of residual characteristic p. Let G be a connected

reductive algebraic group with G = G(F ) the F -points of G, which we call a p-adic group.

The local Langlands correspondence (LLC), which is now known to hold in many cases,

predicts a relationship between two different mathematical objects. Denote by R(G) the

category of smooth complex representations of G, with Irr(G) the set of equivalence classes

of irreducible representations in R(G). On the p-adic side of the LLC we have Irr(G). On

the other, we have certain analogues of Galois representations which we call Langlands

parameters (these are certain homomorphisms from the Weil–Deligne group W ′F into the

Langlands dual group LG of G). The LLC then says that there is a surjective map from

Irr(G) to the set of Langlands parameters of G (which preserves certain arithmetical prop-

erties). The fibre of a given Langlands parameter is finite and is called an L-packet. The

beauty of the LLC is that it allows one to transfer questions from one side to the other,

where they may be easier to answer. There are certain cases where explicit constructions

of Irr(G) is known. It is then hoped that knowing explicitly the LLC in these cases means

11
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that one may transfer across arithmetical information about p-adic groups to previously

unknown information about the associated Galois representation.

When G = GLn(F ), the LLC was proved independently by Harris–Taylor [HT01] and

Henniart [Hen00], in which they show that this map is a bijection (and so the L-packets

are singletons). While they prove the existence of the LLC, they do not give an ex-

plicit description of the correspondence. Bushnell–Henniart, in a series of papers [BH05a,

BH05b, BH10, BH14] prove many results which works towards making this description

explicit using the construction of Irr(G) due to Bushnell–Kutzko [BK93a]. The LLC is

also proven to exist in other cases: for SLn(F ) [GK82,HS12], quasi-split Orthogonal and

Symplectic groups [Art13], quasi-split Unitary groups [Mok15] and both GSp4(F ) and

Sp4(F ) [GT11,GT10]. In these cases the LLC is proven to not be a bijection.

The representation theory of p-adic groups relies on understanding Irr(G). In particu-

lar, one would like to know precisely how one can obtain all irreducible representations

in Irr(G). For G connected reductive there is a general procedure to do this. Take P

a parabolic subgroup of G with Levi factor M. Since M is of smaller semisimple rank

compared to G, its representation theory is moderately simpler. One takes an irreducible

representation of M, and through a process called parabolic induction obtains a finite

length representation of G, which one can decompose into irreducibles. This does not

capture all irreducible representations of G; the irreducibles which do not appear as sub-

quotients of parabolically induced representations are called supercuspidal representations.

One obtains all irreducible representations of G in the following way. First one takes an

irreducible cuspidal representation of a Levi subgroup (including G itself), and then de-

compose the parabolically induced representation into irreducibles. Therefore the problem

of understanding Irr(G) begins with understanding the construction of supercuspidal rep-

resentations of a Levi subgroup M.

We can interpret this in the LLC as follows. For GLn(F ), we have that irreducible cuspidal

representations of GLn(F ) are in bijection with irreducible n-dimensional representations
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of the Weil group WF . This simple description becomes more complicated for classical

groups, by which we mean Symplectic, Special Orthogonal or Unitary groups. Here L-

packets are no longer singletons, and they can contain both cuspidal and non-cuspidal

representations. However, in [Mg14], Mœglin gives a description of those Langlands pa-

rameters whose packets contain cuspidal representations, including the expected number

in the packet. Let Cusp(G) denote the set of equivalence classes of irreducible cuspi-

dal representations of G. Given σ ∈ Cusp(G) and π ∈ Cusp(GLn(F )), we can view

M ' GLn(F ) × G as a maximal Levi subgroup of a classical group G′ of the same type

as G. Mœglin’s work, which uses the language of Jordan sets, then gives a description of

the Langlands parameter associated to σ through the LLC in terms of reducibility points

of the parabolically induced representation

IndG
′

M,P π| det |r ⊗ σ, r ∈ R

for | · | the normalized absolute value on F and P any parabolic subgroup containingM.

One looks at the self-dual π which gives reducibility at some r > 1/2, as these are precisely

the ones which contribute to the Jordan set/Langlands parameter. In order to compute

these points of reducibility we need to understand the construction of σ.

Originating with the work of Howe, the structure of an irreducible cuspidal representation

of G is long conjectured to be of the following form. Given σ ∈ Cusp(G), there should

exist an open compact-modulo-centre subgroup J̄ of G and an irreducible representation

Λ of J̄ such that

σ ' indGJ̄ Λ

where ind denotes the functor of compact induction. While this problem remains open for

arbitrary connected reductive algebraic groups G, it is known to be true in many cases:

– G = GLn(F ), SLn(F ) due to Bushnell–Kutzko [BK93a,BK93b,BK94];

– G arbitrary, but σ of “depth-zero”, due to Moy–Prasad and Morris [MP94, MP96,

Mor99];
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– G arbitrary, but σ “tamely ramified”, due to Yu and Kim [Yu01,Kim07];

– G an inner form of GL due to Sécherre and Stevens [Séc05,SS08] ;

– G a classical group (i.e. Symplectic, Special Orthogonal or Unitary) provided p 6= 2,

due to Stevens [Ste08];

– G a connected reductive algebraic group which splits over a tamely ramified exten-

sion of F and p does not divide the order of the Weyl group of G, due to Fintzen

[Fin19].

Here we see the first stratification of cuspidal representations, that is the notion of depth.

A representation σ ∈ Irr(G) is said to be of depth-zero if σ has fixed vectors under the

pro-unipotent radical of a parahoric subgroup of G. The classification of depth-zero cus-

pidal representations of an arbitrary connected reductive algebraic group, as given by

Moy–Prasad and Morris, is characteristic free. Using this concrete description of Irr(G),

DeBacker and Reeder [DR09] constructed an explicit map from a large class of irreducible

cuspidal depth-zero representations of G to a certain subset of Langlands parameters satis-

fying the conditions of the LLC. Namely, they considered tame regular discrete Langlands

parameters. These are parameters which are trivial upon restriction to the wild inertia

subgroup of WF .

Lust and Stevens [LS15] build upon this work by considering tame Langlands parameters

and all irreducible cuspidal depth-zero representations of G, whilst imposing that G be

a classical group defined over a non-archimedean local field of odd residual characteristic

instead of an arbitrary connected reductive group. Their method involves computing the

reducibility points of the parabolically induced representation via a result of Blondel by

looking at the Hecke algebra of a cover (in the sense of Bushnell–Kutzko). This relies on

knowing the local data which describes the representations π and σ. In this thesis, we

do the same for dyadic fields (finite extensions of Q2) for the Symplectic group and most

irreducible cuspidal depth-zero representations of a Split Special Orthogonal group. This

amounts to showing that, if for all self-dual irreducible cuspidal depth-zero representations
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of GLmπ(F ) we write r = rπ for the unique non-negative real number r such that the

parabolically induced representation

IndG
′

M,P π| det |r ⊗ σ

is reducible, that the sum

∑
π self-dual cuspidal

mπ ·max{2rπ − 1, 0}

is equal to NLG, the dimension of the natural representation of the Langlands dual group

LG of G. While this sum does not require that π is of depth-zero, we show that this

equality holds for depth-zero representations π already, so that no other representations

contribute to the sum.

For positive-depth cuspidal representations of a classical group G, we have seen that the

construction of Stevens is exhaustive and complete in the sense that given σ ∈ Cusp(G),

one can describe the local datum associated to σ. The only requirement is that the residual

characteristic p is odd. Unlike the depth-zero case, trying to emulate these results here

for dyadic fields is much more difficult because at almost every stage the construction due

to Stevens fundamentally requires that p 6= 2. Here we restrict ourselves to the group

G = Sp4(F ) and take the first steps towards an exhaustive construction of positive-depth

cuspidal representations.

1.2 Summary of Chapters

In Chapter 2 we start by recalling the necessary material needed to define our classical

groups G, by which we mean G is either a Symplectic group or a Split Special Orthogonal

group. We then move on to prove new results about the reductive quotients of maximal

parahoric subgroups of G. For the Symplectic group, we show that the description of the

maximal parahorics and their reductive quotients is uniform for all p:
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Proposition. (2.9.2) Let K be a maximal parahoric subgroup of G stabilizing an almost

self-dual lattice L with dimkF (L/L#) = 2m. Then the reductive quotient K/K1 is

K/K1 ' Sp2m(kF )× Sp2(n−m)(kF ).

For the Split Special Orthogonal group we restrict ourselves to dyadic fields. Even in this

case, we are not able to consider all maximal parahoric subgroups, only those that arise

from certain almost self-dual lattices Lm (Proposition 2.10.5 and Proposition 2.10.6). We

then obtain the following description of their reductive quotients.

Corollary. (2.10.7) Let Gi be a Split Special Orthogonal group with i = dimVan. Let Ki

denote the stabilizer of the lattice Lm define above and K◦i denote the maximal parahoric

associated to Ki. Suppose m 6= 1, 2, n− 2, n− 1 for i = 0 and m 6= n− 2, n− 1 for i = 1.

Then

K◦0/K
1
0 ' SO+

2m(kF )× SO+
2(n−m)(kF )

and

K◦1/K
1
1 ' SO2m+1(kF )× SO+

2(n−m)(kF )

' Sp2m(kF )× SO+
2(n−m)(kF ).

In addition we give a classification of the isometry classes of anisotropic quadratic forms

over Q2. We do this because in order to try and give a full classification of the reductive

quotients for an arbitrary Special Orthogonal group, we need to have a complete under-

standing of the Witt group of F . For p 6= 2, Morris uses the structure of the Witt group

to classify the possible symmetric bilinear forms which arise [Mor91, Section 1.8], which in

turn classifies the reductive quotients for the Special Orthogonal group. We note how the

Witt group of F a dyadic fields depends on the degree of the field extension F/Q2, and

so one would need to understand this fully to classify the reductive quotients in general.

In Chapter 3 we recall the representation theory of p-adic groups needed to state and prove

our results. In Chapter 4 we consider G a Symplectic or Split Special Orthogonal group.

For most irreducible cuspidal depth-zero representations σ of G we describe the Langlands
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parameter associated to σ through the local Langlands correspondence by appealing to

work of Mœglin. We do this by proving the following Theorem.

Theorem. (4.6.1) If G is a Symplectic group, let π be an arbitrary irreducible cuspidal

depth-zero representation. If G is a Split Special Orthogonal group, let π be an irreducible

cuspidal depth-zero representation arising from a maximal parahoric subgroup as consid-

ered in Corollary 2.10.7. Then

∑
(π,n)∈Jord(σ)

π∈Cusp(F ) of depth zero

⌊
sσ(π)2

⌋
mπ = NLG.

This requires us to prove a statement of Blondel (Proposition 4.4.1), which readily extends

to dyadic fields, that allows us to interpret the reducibility points of a parabolically in-

duced representation of a maximal Levi subgroup in terms of quadratic parameters arising

in certain spherical Hecke algebras of a cover. We also need the relevant Deligne–Lusztig

theory of (unipotent) cuspidal representations of finite classical (Symplectic, Special Or-

thogonal and Unitary) groups and general linear groups in characteristic 2 in order to

calculate these quadratic parameters.

In Chapter 5 we begin an exhaustive investigation into the description of irreducible cus-

pidal representations of dyadic G = Sp4(F ). We note that Asmuth–Keys [AK91] also

started this investigation for GSp4(F ) but they do not use the language of types, nor

did they claim to construct all cuspidals. Our intentions were to give a construction of

cuspidal representations of G in terms of the theory of types, as used by Bushnell–Kutzko

and Stevens, but we do not get that far. We do manage to reprove a result of Moy–Prasad

which says that any irreducible representation of G contains a G-fundamental stratum

(Theorem 5.5.6). Note that the correct definition of G-fundamental requires the language

of Moy–Prasad which uses filtrations on the dual of the Lie algebra g of G.

We show that interpreting the definition in terms of the Moy–Prasad filtration is necessary

by way of Example 5.4.5; this is because we obtain our characters ψβ of our G-fundamental

strata of Sp4(F ) by restriction of characters of strata on GL4(F ). We then move onto deriv-
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ing a complete description of the distinguished (i.e. shortest) double-coset representatives

for the three conjugacy classes of maximal parahoric subgroups of G (Theorem 5.6.3). This

could be used in further work to compute the intertwining of the characters corresponding

to G-fundamental strata (which are the building blocks for cuspidal representations).



Chapter 2

Classical Groups

2.1 Bilinear Forms

For a full treatise on bilinear forms and quadratic forms over arbitrary fields, we rec-

ommend [KL90] and [EKM08]. In particular, the book of Elman–Karpenko–Merkurjev

adopts a characteristic free approach.

Let V be a finite-dimensional vector space over a field F of arbitrary characteristic. A

bilinear form h is a map h : V × V → F such that for all u, v, w ∈ V and λ ∈ F ,

h(u+ v, w) = h(u,w) + h(v, w);

h(u, v + w) = h(u, v) + h(u,w);

h(λu, v) = h(u, λv) = λh(u, v).

The bilinear form h is said to be symmetric if h(u, v) = h(v, u) for all u, v ∈ V , skew-

symmetric if h(u, v) = −h(v, u) and alternating if h(u, u) = 0 for all u ∈ V . Alternating

forms are skew-symmetric, since

0 = h(u+ v, u+ v)

19
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= h(u, u) + h(u, v) + h(v, u) + h(v, v)

= h(u, v) + h(v, u).

If the characteristic of F is not 2 then the converse is also true: every skew-symmetric

bilinear form is alternating since h(u, u) = −h(u, u).

If the characteristic of F is 2, we need only consider symmetric and alternating bilinear

forms since the notions of symmetric and skew-symmetric coincide. Moreover, by the

calculation above, every alternating bilinear form is symmetric. However, the converse is

not true: there exist symmetric bilinear forms which are not alternating.

Example 2.1.1. Let V = F2
2 with basis e1, e2. Let h(e1, e1) = h(e1, e2) = h(e2, e1) = 1

and h(e2, e2) = 0. Then h is a symmetric bilinear form which is not alternating.

The Gram matrix of h, with respect to the basis {ei} of V , is the matrix Ah whose ijth

entry is h(ei, ej). The Gram matrix encodes all the properties of h which we wish to know.

A form h is alternating if (Ah)ii = 0 for all i. Similarly, a bilinear form h is symmetric if

Ah is a symmetric matrix. In the example above, the Gram matrix of h is

Ah =

1 1

1 0

 .

If h, h′ are bilinear forms on F -vector spaces V, V ′ respectively, an isometry is an invert-

ible linear map f : V → V ′ which preserves the bilinear form i.e. h(u, v) = h′(f(u), f(v))

for all u, v ∈ V ′. Equivalently, h and h′ are isometric if there exist bases with respect

to which their Gram matrices coincide. A vector v which satisfies h(v, v) = 0 is called

isotropic. Note that for h an alternating form every vector is isotropic. Denote by dimh

the dimension of h which is equal to dimV .

Let V ∗ = Hom(V, F ) denote the dual vector space of V . Consider the map fu : V → V ∗

which sends v to fu(v) := h(u, v), for non-zero u ∈ V . If u 7→ fu is an isomorphism
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between V and V ∗ then h is called non-degenerate, otherwise h is said to be degenerate.

A symplectic form h is a non-degenerate alternating bilinear form. In practice, we will be

able to test degeneracy of bilinear forms in the following way.

Two vectors u and v are orthogonal if h(u, v) = 0. For W a subspace of V , define the

orthogonal complement W⊥ of W by

W⊥ = {v ∈ V | h(v,W ) = 0}.

For U,W subspaces of V , if W ⊆ U⊥ then we say that W is orthogonal to U . The subspace

radh := V ⊥ of V is called the radical of h. The bilinear form h is non-degenerate if and

only if radh = 0.

Suppose V = U ⊕W with W ⊆ U⊥. We write h = h |U⊥ h |W and say h is the orthogonal

sum of the forms h |U and h |W . If v = u+w, v′ = u′+w′, with u, u′ ∈ U and w,w′ ∈ W ,

then

h(v, v′) = h |U (u, u′) + h |W (w,w′).

Proposition 2.1.2. Let h be a bilinear form on V . Let W be a subspace of V such that

V = radh⊕W . Then

h = 0 |radh⊥ h |W

with h |W non-degenerate.

Proof. Note that we need only show that the restriction of h to W is non-degenerate.

Suppose w ∈ rad (h |W ). Then w ∈ W⊥; since w ∈ W ⊆ (radh)⊥ also, we have w ∈

(W + radh)⊥ = V ⊥ so w ∈ radh. Therefore w ∈ W ∩ radh = {0}.

2.2 Quadratic Forms

Let V be a finite-dimensional vector space over a field F of arbitrary characteristic. A

quadratic form Q on V is a map Q : V → F satisfying:
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1) Q(λv) = λ2Q(v) for all v ∈ V, λ ∈ F ;

2) h : V × V → F given by h(u, v) := Q(u+ v)−Q(u)−Q(v) is a bilinear form.

The bilinear form h associated to any quadratic form is automatically symmetric since

h(u, v) = Q(u+ v)−Q(u)−Q(v) = h(v, u).

Furthermore, it is alternating if charF = 2 because

h(u, u) = Q(u+ u)−Q(u)−Q(u) = 4Q(u)− 2Q(u) = 2Q(u) = 0.

Let Ah denote the Gram matrix of the bilinear form h associated to Q. The upper

triangular matrix AQ satisfying

AQ + ATQ = Ah

is called the Gram matrix of Q.

An isometry between two quadratic forms Q and Q′, defined over V and V ′ respectively,

is an invertible linear map f : V → V ′ such that Q(v) = Q′(f(v)) for all v ∈ V . If there

exists an isometry between Q and Q′ then the two forms are isometric. Note that if f

is an isometry for Q, then it is also an isometry for the corresponding form h, but the

converse is false in general. If V = V ′ then the two forms Q and Q′ above are said to be

equivalent if there exists an invertible matrix C such that Q(v) = Q′(Cv) for all v ∈ V .

We see from the definitions that the equivalence classes of quadratic forms correspond to

the isometry classes of quadratic spaces.

Let Q be a quadratic form over V and a ∈ F . We say Q represents a if there exists some

v ∈ V such that Q(v) = a. We call Q(v) the norm of v. If Q represents every a ∈ F×

then Q is said to be universal. We denote by Im(Q) the image of Q, which is the set of

all possible norms of Q, i.e.

Im(Q) = {Q(v) : v ∈ V }.
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Proposition 2.2.1. [dSP11, Partie 1.III] Suppose charF 6= 2. Two quadratic forms are

equivalent if and only if they have the same image.

The dimension of Q, denoted dimQ, is the dimension of V . A non-zero vector v ∈ V is

singular if v has norm 0, otherwise it is anisotropic. A subspace W of V is anisotropic if

W contains no singular vectors. A quadratic form Q is anisotropic if V is anisotropic.

Remark 2.2.2. If a vector v is singular then it is isotropic for h. The converse is true

when charF 6= 2 since h(v, v) = 2Q(v). When charF = 2 the converse is false, see

Example 2.2.4.

The radical of Q, denoted radQ, is the subset of vectors of radh of norm 0 i.e.

radQ = {v ∈ radh | Q(v) = 0}.

Recall that h is non-degenerate if radh = 0. The quadratic form Q is regular if radQ = 0.

We say Q is non-degenerate if Q is regular and dim radh ≤ 1. Thus we see that if h is

non-degenerate then Q is non-degenerate, but the converse is not always true.

Remark 2.2.3. Some sources say that Q is non-degenerate if its associated bilinear form is

non-degenerate. While this definition coincides with the definition above when charF 6= 2

(as rad h = radQ), it is too restrictive in our case in the sense that it will omit many

quadratic forms from consideration. Consider the following example.

Example 2.2.4. Let Q be the 3-dimensional quadratic form defined by Q(x, y, z) =

x2 + y2 + yz + z2 over V = F3
2 with basis e1, e2, e3. Q has associated bilinear form h with

Gram matrix

Ah =


0 0 0

0 0 1

0 1 0

 ,

which is degenerate with radical 〈(1, 0, 0)〉F2 . The only singular vector v ∈ radh is v =

0, and so Q is regular. Since its associated bilinear form h is degenerate with a one-

dimensional radical, Q is in fact non-degenerate.
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Lemma 2.2.5. Let Q be a regular quadratic form over a finite field F of characteristic 2.

Then Q is non-degenerate.

Proof. Suppose radh 6= {0} and let v ∈ radh be non-zero. Since x 7→ x2 is an auto-

morphism of F , we may scale v so that Q(v) = 1. For non-zero u ∈ radh, we have

Q(u) 6= 0 by regularity of Q. For some δ ∈ F× we have Q(u) = δ2 = Q(δv). By definition,

Q(u+ δv) = Q(u) + h(u, δv) +Q(δv) = h(u, δv) = 0, with the last equality holding since

u, v ∈ radh. By regularity Q(u+ δv) = 0 implies u = δv. Hence dim radh = 1.

Suppose that charF 6= 2, then there exists a basis {e1, . . . , en} of V such that Q is

diagonal, i.e. we write Q = 〈λ1, . . . , λn〉 for the form

Q

(
n∑
i=1

aiei

)
= λ1a

2
1 + · · ·λna2

n.

Unless otherwise stated, if the characteristic of F is not 2, then we assume that our

quadratic form is diagonal.

The hyperbolic form H(V ) = QH on V ⊕ V ∗ is defined as

QH(v, f) := f(v)

for all v ∈ V and f ∈ V ∗. If Q is a quadratic form isometric to H(V ′) for some vector

space V ′, we say Q is a hyperbolic form. We call H(F ) the hyperbolic plane and denote

it by H. If Q is isometric to H, then two vectors u, v satisfying Q(u) = Q(v) = 0 and

h(u, v) = 1 are called a hyperbolic pair.

We now turn to the question of classifying quadratic forms (up to isometry). In order to

this, we make use of the following Theorem.

Theorem 2.2.6 (Witt’s Decomposition Theorem). Let Q be a quadratic form on V .

There exist subspaces V1 and V2 of V such that Q = Q |radQ⊥ Q |V1⊥ Q |V2 with Q |V1
anisotropic and Q|V2 hyperbolic. Moreover, Q|V1 and Q|V2 are uniquely determined up to

isometry by (V,Q).
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Remark 2.2.7. In Example 2.2.4 above, we have V = radQ ⊕ V1 where radQ = 〈e1〉F2

and V1 = 〈e2, e3〉F2 anisotropic.

In reality, the quadratic forms we consider will be non-degenerate. In particular, we will

be interested in the group of isometries of such forms. If the dimension of the radical is

zero, then Witt’s Decomposition Theorem simplifies to the following.

Theorem 2.2.8. Let V be a finite dimensional F -vector space. Then there exists an n

such that

V = Van ⊕ nH,

where nH denotes n copies of the hyperbolic plane and Van denotes the anisotropic subspace

uniquely determined by V (up to isometry).

We see that in order to understand the group of isometries of a quadratic form we now

need to understand the isometry classes of anisotropic quadratic forms. The study of such

spaces is dependent on the choice of underlying field; for our purposes we only consider

finite fields of characteristic 2 and dyadic fields.

A quadratic space X = (VX , QX) is a vector space VX endowed with a quadratic form QX .

Let X be an anisotropic quadratic space. Denote by [X] the class of quadratic spaces

(V,QV ) such that the anisotropic subspace Van of V is isometric to VX . We call [X] the

Witt class of X. The set of Witt classes has a natural group structure which is defined as

follows.

The identity is the zero class [0], which corresponds to the zero form Q0 = 0 defined over

the zero space V0 = {0}. This is trivially anisotropic. Given two Witt classes [X] and [Y ],

their sum [X + Y ] is the class of quadratic forms which contains VX ⊥ VY , equipped with

the quadratic form QX ⊥ QY ; this is independent of the choice of representatives X, Y .

Given [X], its inverse [−X] is the Witt class whose anisotropic subspace is isometric to

VX with quadratic form −QX .
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2.3 Anisotropic Quadratic Forms over Dyadic Fields

Let F be a dyadic field. The following Theorem sheds light on a bound for the dimension

of anisotropic forms.

Theorem 2.3.1. [Lam05, Chapter 6] Any five-dimensional quadratic form Q over F is

isotropic.

Whilst the Theorem above tells us that any anisotropic space is at most 4-dimensional, it

does not shed any light on any of their other properties. It is natural to ask how many

isometry classes of anisotropic forms there are for a given field F . It turns out that the

number of isometry classes is closely related to the degree of the field extension F/Q2.

Proposition 2.3.2. [Lam05, Chapter 6] If F is a finite extension of Q2 of degree n, then

F has 2n+4 anisotropic forms (up to isometry).

We now have an explicit formula for the number of anisotropic forms, but in order to

understand their nature, we must understand the Witt group W (F ) of F . While we will

not be working explicitly with W (F ), we will need to make use of its structure, which is

described in the following Theorem.

Theorem 2.3.3. [Lam05, Chapter 6] Let F be a dyadic field of degree n over Q2.

(i) If −1 ∈
(
F×
)

2 then W (F ) ' (Z/2Z)n+4;

(ii) If −1 /∈
(
F×
)

2, but −1 is the sum of two squares in F , then W (F ) ' (Z/4Z)2 ⊕

(Z/2Z)n;

(iii) If −1 is not the sum of two squares in F , then W (F ) ' (Z/8Z)⊕ (Z/2Z)n+1.

2.3.1 Classification of Anisotropic Forms over Q2

We explicitly study the case that F = Q2, so n = [F : Q2] = 1. By the Theorems above,

we know that there are 21+4 = 32 anisotropic forms up to isometry, including the 0-form.

Moreover, since −1 is not a sum of two squares in Q2, we know that Witt group of Q2 is

of the form W (Q2) ' (Z/8Z)⊕ (Z/2Z)⊕ (Z/2Z). We now classify the anisotropic forms
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by their dimension, starting with the one-dimensional forms.

Suppose we have two one-dimensional quadratic forms Q1 and Q2 defined over V1 = V2 =

F , spanned by some fixed vector v. They are isometric precisely when there exists an

isometry f : Q1 → Q2 such that Q1(v) = Q2(f(v)). Writing f(v) = λv for some λ ∈ Q×2
we have that Q1 and Q2 are isometric when Q1(v) = λ2Q2(v) i.e. when Q1 and Q2 differ

by a square in Q×2 . This shows that the one-dimensional anisotropic forms are in bijection

with Q×2 /(Q×2 )2. Thus the inequivalent one-dimensional forms are

〈1〉, 〈3〉, 〈5〉, 〈7〉, 〈2〉, 〈6〉, 〈10〉, 〈14〉.

From [Sch85, Chapter 5] in Q2 there is a unique four-dimensional anisotropic quadratic

form, namely Q = 〈1, 1, 1, 1〉. Moreover, this form is universal. Using this fact, alongside

Theorem 2.3.1, we are able to find the three-dimensional forms immediately.

Since every five-dimensional form is isotropic, we can find a hyperbolic space, and, using

Witt’s Decomposition Theorem, we find a three-dimensional anisotropic subform. In this

way, the anisotropic subform of the five-dimensional isotropic form 〈1, 1, 1, 1〉 ⊥ 〈−1〉 is

〈1, 1, 1〉. Since 〈1, 1, 1, 1〉 is universal it is isometric to 〈λ, λ, λ, λ〉 for any λ ∈ Q×2 . By this

procedure above, for all isometry classes of one-dimensional forms we get the following

list of three-dimensional anisotropic forms:

〈1, 1, 1〉, 〈3, 3, 3〉, 〈5, 5, 5〉, 〈7, 7, 7〉, 〈2, 2, 2〉, 〈6, 6, 6〉, 〈10, 10, 10〉, 〈14, 14, 14〉.

Since we only have the two-dimensional forms to find, we know that there are 32 − 1 −

1− 8− 8 = 14 such forms.

For any a, b ∈ Q×2 when is the quadratic form Q = 〈a, b〉 anisotropic? Recall that Q is

anisotropic if the only vector with norm 0 is the zero vector. Therefore Q is anisotropic

if and only if the only solution to ax2 + by2 = 0 is x = y = 0. If (both) x, y are non-zero,

we rearrange to get −a/b = y2/x2, so non-zero vectors can have zero norm if and only

if −a and b differ by a square in Q2. Using this criterion, we find that every anisotropic
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quadratic form is isometric to one of the following:

〈1, 1〉, 〈1, 3〉, 〈1, 5〉, 〈1, 2〉, 〈1, 6〉, 〈1, 10〉, 〈1, 14〉,

〈2, 3〉, 〈2, 5〉, 〈2, 7〉, 〈2, 2〉, 〈2, 6〉, 〈2, 10〉,

〈3, 3〉, 〈3, 7〉, 〈3, 6〉, 〈3, 10〉, 〈3, 14〉,

〈5, 5〉, 〈5, 7〉, 〈5, 6〉, 〈5, 10〉, 〈5, 14〉,

〈6, 7〉, 〈6, 6〉, 〈6, 14〉,

〈7, 7〉, 〈7, 10〉, 〈7, 14〉,

〈10, 10〉, 〈10, 14〉,

〈14, 14〉.

We now need only classify the isometry classes of these forms. Two forms are isomet-

ric if and only if they represent the same numbers. One way to identify the isometry

classes could be to calculate the square classes which each form represents, but this is

a cumbersome method. Instead, we make use of work of [Sch85, Chapter 5]. Here the

author gives a list of the square classes represented by quadratic forms of the form 〈1, a〉,

where a ∈ Q×/(Q×2 )2 . Using properties of the tensor product of quadratic forms, and the

necessary condition that two forms are isometric if they have the same determinant, we

are able to identify the square classes represented by all the two-dimension forms above

immediately.

Example 2.3.4. We ask if the forms 〈5, 6〉 and 〈1, 14〉 are isometric. With multiplication

defined over Q×2 /(Q×2 )2, since the representatives for the square classes satisfy 5 ·6 = 14 =

1 · 14, we have that the forms have the same determinant. We now check if they represent

the same square classes in Q2, with the understanding that the multiplication above is

of square classes in Q2/(Q×2 )2. We write 〈5, 6〉 as 〈5〉 ⊗ 〈1, 14〉. Since 〈1, 14〉 represents

1, 2, 7, 14, the form 〈5, 6〉 ' 〈5〉 ⊗ 〈1, 14〉 represents 5 · 1 = 5, 5 · 2 = 10, 5 · 7 = 3, 5 · 14 = 6.

Since {1, 2, 7, 14} 6= {3, 5, 6, 10} we have that 〈5, 6〉 is not isometric to 〈1, 14〉.

A routine calculation in this fashion gives the following isometry classes of two-dimensional
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forms over Q2:

〈1, 1〉, 〈3, 3〉, 〈1, 2〉, 〈1, 3〉, 〈1, 5〉, 〈1, 6〉, 〈2, 3〉, 〈1, 10〉,

〈1, 14〉, 〈2, 5〉, 〈2, 6〉, 〈2, 10〉, 〈3, 10〉, 〈5, 10〉.

Table 2.1 summarises the results above to give a classification of all anisotropic quadratic

forms over Q2.

0-dimensional 〈0〉

1-dimensional
〈1〉, 〈3〉, 〈5〉, 〈7〉,
〈2〉, 〈6〉, 〈10〉, 〈14〉

2-dimensional

〈1, 1〉, 〈3, 3〉, 〈1, 2〉, 〈1, 3〉,
〈1, 5〉, 〈1, 6〉, 〈2, 3〉, 〈1, 10〉,
〈1, 14〉, 〈2, 5〉, 〈2, 6〉, 〈2, 10〉,
〈3, 10〉, 〈5, 10〉

3-dimensional

〈1, 1, 1〉, 〈3, 3, 3〉, 〈5, 5, 5〉,
〈7, 7, 7〉, 〈2, 2, 2〉, 〈6, 6, 6〉,
〈10, 10, 10〉, 〈14, 14, 14〉

4-dimensional 〈1, 1, 1, 1〉

Table 2.1: Isometry classes of anisotropic forms over Q2.

2.4 Symplectic Groups over Finite Fields of

Characteristic 2

Let V be a finite-dimensional vector space over F a finite field of characteristic 2 and let

h be a symplectic form on V . Recall that since charF = 2 the form h is symmetric. The

Symplectic group Sp(V ) is the group of isometries of h, i.e.

Sp(V ) = {g ∈ GL(V ) | h(gu, gv) = h(u, v) for all u, v ∈ V }.

A symplectic basis of V is a basis {e−i, ej : 1 ≤ i, j ≤ n} of V satisfying h(e−i, ej) = δij.

Given any symplectic form h, we find a symplectic basis of V inductively as follows.
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Pick two vectors u and v such that h(u, v) = λ 6= 0 . Set e−1 := u, e1 := λ−1v and

U = 〈e−1, e1〉F . With respect to the basis {e−1, e1} the symplectic form h |U satis-

fies h(e−1, e−1) = h(e1, e1) = 0 and h(e−1, e1) = 1. Since h is non-degenerate we have

V = U ⊥ U⊥ and h |U⊥ is non-degenerate. We restrict h to U⊥ and repeat. In this way

we obtain a symplectic basis {e−n, . . . , e−1, e1, . . . , en} for V .

Given non-zero v ∈ V , the symplectic transvection associated to v is the linear map

tv : V → V given by tv(u) = u + h(u, v)v for all u ∈ V . Since we are in characteristic 2,

the symplectic transvections are in fact involutions:

tv(tv(u)) = tv(u+ h(u, v)v)

= u+ h(u, v)v + h(u+ h(u, v)v, v)v

= u+ h(u, v)v + h(u, v)v + h(u, v)h(v, v)v

= u.

By [O’M78, Chapter 2], the Symplectic group is generated by symplectic transvections,

i.e.

Sp(V ) = 〈tv | v ∈ V 〉.

2.5 Special Orthogonal Groups over Finite Fields of

Characteristic 2

Let V be a finite-dimensional vector space over F a finite field of characteristic 2. Let

Q be a quadratic form defined over V with associated bilinear form h. The Orthogonal

group O(Q) is the group of isometries of Q i.e.

O(Q) = {g ∈ GL(V ) | Q(gv) = Q(v) for all v ∈ V }.

Let v ∈ V be a non-singular vector. The reflection in v is the map rv : V → V given by

u 7→ u− h(u, v)

Q(v)
v, for u ∈ V .
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The map rv truly is an involution:

rv(rv(u)) = rv

(
u− h(u, v)

Q(v)
v

)

= u− h(u, v)

Q(v)
v −

h
(
u− h(u,v)

Q(v)
v, v
)

Q(v)
v

= u− h(u, v)

Q(v)
v − h(u, v)

Q(v)
v +

h(u, v)

Q(v)2 h(v, v)v

= u,

as h is alternating and charF = 2. Moreover, we have that rv(u) = rλv(u) for all λ ∈ F×

since

rλv(u) = u− h(u, λv)

Q(λv)
λv

= u− λ2h(u, v)

λ2Q(v)
v

= u− h(u, v)

Q(v)
v

= rv(u).

Remark 2.5.1. Note that the reflection defined above is not a Euclidean reflection σv(u),

which is of the form

σv(u) = u− 2
h(u, v)

Q(u)
v.

Proposition 2.5.2. Suppose Q is a regular quadratic form on a vector space V of dimen-

sion 2n+ 1. Then O(Q) ∼= Sp2n(F ).

Proof. We know by Proposition 2.2.5 that the radical of h is at most one-dimensional.

Since V is of odd dimension, the bilinear form associated to Q is alternating and degen-

erate which means that V0 = radh is precisely 1-dimensional. By scaling if necessary, we

may assume that v0 ∈ V spans V0 and has norm 1.

Let G be the group of isometries of Q, and Ḡ be the group of isometries of the form

induced by h on V/V0. This form is non-degenerate so V/V0 is a symplectic space of
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dimension 2n, and so Ḡ ' Sp2n(F ). If v ∈ V then the other elements of v + V0 are of the

form v + λv0, where λ ∈ F ; then

Q(v + λv0) = Q(v) + λ2Q(v0)− h(v, λv0)

= Q(v) + λ2

since v0 ∈ V0 and v0 has norm 1. As squaring is a bijection on F , every coset in V/V0

contains a vector of every possible norm. Moreover, there is a unique vector of each norm,

since if Q(v + λ1v0) = Q(v + λ2v0) the calculation above shows that λ1 = λ2.

Let K denote the kernel of the homomorphism G → Ḡ and let k ∈ K. Not only must k

fix each coset of V/V0, but it must map an element in the coset to another element of the

same norm. Since there is precisely one vector of each norm in every coset, we must have

that k is the identity. Thus K = {Id} and G ↪→ Ḡ.

Lastly, we must show that we can lift every isometry of Ḡ to an isometry of G. The

Symplectic group is generated by symplectic transvections tv̄, so we need only prove that

any tv̄ can be lifted. Since we have an element of every possible norm in each coset, we

may choose a lift v ∈ V of v̄ with norm Q(v) = 1. Then the reflection rv ∈ G is a lift of

tv̄, as required.

Thus, if V is odd-dimensional we can view the orthogonal group of a regular quadratic

form on V as a Symplectic group of smaller dimension. We therefore restrict ourselves to

the case that V is even-dimensional and regular, so h is non-degenerate. We now find an

orthogonal basis for V , which will depend on Q. We find a basis for V inductively in the

same way as we do for the Symplectic group, except that we choose our basis vectors to

be singular whenever possible.

If dimV > 2, the vector space V is isotropic and so we can remove a hyperbolic space

(by application of Witt’s Decomposition Theorem), reducing ourselves to the case that

dimV = 2 [KL90, Lemma 2.5.2].
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Up to equivalence, there are two quadratic forms of dimension 2. The first is of plus type,

which means there exists a basis of V such that Q(x, y) = xy. In characteristic 2, this

form is equivalent to a hyperbolic space. The second is of minus type, which means that

there exists a basis of V such that Q(x, y) = x2 + xy + λy2, where λ ∈ F× is such that

X2 +X + λ ∈ F [X] is irreducible.

For any vector space associated to Q, we can find a basis of the following kind:

1. B+ = {e−n, . . . , e−1, e1, . . . , en} whereQ |〈e−i,ei〉F is hyperbolic and the spaces 〈e−i, ei〉F
are pairwise orthogonal;

2. B− = {e−(n−1), . . . , e−1, e−0, e+0, e1, . . . , en−1} whereQ |〈e−i,ei〉F is hyperbolic, Q |〈e−0,e+0〉F

is of minus type and the spaces 〈e−i, ei〉F are pairwise orthogonal.

We define the sign of Q as

sgnQ =

 +, if V has basis B+,

−, if V has basis B−.

If sgnQ = + the orthogonal space (V,Q) is hyperbolic or of Witt defect 0. If sgnQ = −,

we refer to (V,Q) as anisotropic or of Witt defect 1. We therefore have two classes of

Orthogonal groups, namely O+
2n(F ) if Q is hyperbolic and O−2n(F ) if Q is anisotropic.

Proposition 2.5.3. [KL90, Proposition 2.5.6] Let F be a finite field of characteristic

2. Provided (n, F ) 6= (2,F2), the Orthogonal group O±2n(F ) is generated by the set of

reflections {rv : Q(v) 6= 0}.

While we would like to define the Special Orthogonal group SO±2n(k) as the index two

subgroup of O±2n(k), we see below that this is not always well-defined. Provided (n, F ) 6=

(2,F2),

SO±2n(F ) =

{
g ∈ O±2n(F ) :

g can be written as a product of an

even number of reflections

}
.
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Suppose now we are in the case (n, F ) = (2,F2). Let Q be a 4-dimensional non-degenerate

quadratic form which has no singular vectors, which has Gram matrix

AQ =


1

1

0

0


with respect to the fixed basis B+ above. Let U denote the set of all maximal singular

subspaces of V . Define an equivalence relation on U by saying that two subspaces W ,W ′

are related, writtenW ∼W ′, if dim(W∩W ′) is even. There are precisely two equivalence

classes under this relation, which we denote Ui for i = 1, 2. The Orthogonal group O+
4 (F2)

preserves this equivalence relation, which gives a homomorphism ϕ from the orthogonal

group to the symmetric group on {U1,U2}. The Special Orthogonal group SO+
4 (F2) is

then defined as the kernel of ϕ.

Proposition 2.5.4. [KL90, Proposition 2.5.9] Let Q be the quadratic form defined above.

There are three distinct subgroups of index 2 of O(Q) = O+
4 (F2):

(i) the subgroup of O(Q) generated by reflections;

(ii) the subgroup of O(Q) consisting of elements which induce an even permutation of U ;

(iii) the subgroup kerϕ.

Remark 2.5.5. If we are not in the case (n, F ) = (2,F2), then the three subgroups defined

above coincide.

Remark 2.5.6. Similar to the symplectic case, it can be shown that for arbitrary fields

F with charF 6= 2 that the Orthogonal group of dimension n is generated by reflections

[Gro02, Theorem 6.6]

2.6 Parabolic Subgroups

We refer the reader to Chapter 1 III - Paraboliques of [MgVW87] for more information

on the following section. Let F be a field of characteristic different from 2 and V be an n-
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dimensional F -vector space endowed with either a symplectic form h or a non-degenerate

quadratic form Q. A self-dual flag in V is a flag of isotropic subspaces

{0} = Vr ( Vr−1 ( · · · ( V1 ( V0.

We then define

V−i = {v ∈ V : h(v, w) = 0 for all w ∈ Vi} = V ⊥i .

The stabilizers of the self-dual flags are parabolic subgroups of G. Parabolic subgroups P

admit a Levi decomposition P = M n N , where M ' P/N is a Levi subgroup which

is reductive and N its unipotent radical. While there is no canonical Levi subgroup M,

any two Levi subgroups of P are conjugate within P . In order to explicitly describe M,

we first must choose a decomposition

V ⊥0 = W0 ⊕W1 ⊕ · · · ⊕Wr

such that Vi =
⊕

j>iWj. The stabilizer of this decomposition is then a Levi subgroup and

we get an isomorphism

M' G′0 ×
r∏
i=1

GL(Wi),

where G′0 is the classical group of (W0, h |W0) (resp. (W0, Q |W0)). The unipotent radicalN

is the set of elements of P which act trivially on all quotient spaces Vi/Vi+1 for −r < i ≤ r.

The parabolic subgroup B associated to a maximal self-dual flag is called a Borel subgroup.

It has a Levi decomposition B = T nN0 where T is the centralizer of a maximal F -split

torus. If we fix such a group B, then we say that any parabolic subgroup P containing B

is standard. Moreover, if we fix T then any Levi subgroup containing T is called standard.

2.7 Parahoric Subgroups

Let F be a dyadic field with oF its ring of integers of F and pF its unique maximal ideal

so that the residue field kF = oF/pF is finite of cardinality q = pr for some r ∈ N. Fix



36 Michael Arnold

$F a uniformizer of F . When there is no ambiguity we will drop the subscript F from

the notation above.

Let V be a finite-dimensional vector space defined over F . Let G be a classical group,

by which we mean either V has Symplectic form h and G = Gh = Sp(V ) is a Symplectic

group or V has a non-degenerate quadratic form Q and G = GQ = SO(V ) is a Special

Orthogonal group. In the latter case, we let h denote the associated bilinear form to Q:

h(u, v) = Q(u+ v)−Q(u)−Q(v).

An oF -lattice in V is a compact open oF -submodule of V . Let L denote the set of lattices

in V . For L ∈ L, the lattice

L# = {v ∈ V : h(v, L) ⊆ pF}

is called the dual lattice of L. The notion of dual lattice defined here is a duality, i.e.(
L#
)

# = L and (L∩M)# = L# +M# for all lattices L,M ∈ L. A lattice L is said to be

almost self-dual if

L ⊇ L# ⊇ pFL.

An oF -lattice sequence is a function Λ : Z→ L satisfying:

(i) Λ(n) ⊇ Λ(n+ 1) for all n ∈ N;

(ii) there exists an e(Λ) ∈ N such that, for all n ∈ N, we have $Λ(n) = Λ(n+ e(Λ)).

The integer e = e(Λ) is called the oF -period of Λ. An oF -lattice chain is an injective

lattice sequence. The notion of duality carries over to lattice sequences. The dual lattice

sequence Λ# of Λ is the lattice sequence Λ# satisfying

Λ#(n) = (Λ(−n))#

for all n ∈ N. We say that Λ is self-dual if there exists k ∈ Z such that Λ(n) = Λ#(n+ k)

for all n ∈ N.



37

For a self-dual lattice sequence Λ and l ∈ Z, let Λl denote the lattice sequence which is a

translate of Λ defined by Λl(n) = Λ(n + l) for all n ∈ Z. By considering an appropriate

translate, we may assume that k = 0 or 1 for any self-dual lattice sequence.

For Λ a lattice sequence and m ∈ Z let

Am = Am(Λ) = {x ∈ EndF (V ) : xΛ(n) ⊆ Λ(n+m) for all n ∈ Z}.

The additive subgroup A = A0(Λ) is a hereditary order.

An oF -order is a unital subring of EndF (V ) which is itself an oF -lattice. After fixing a

suitable basis for V the hereditary order A is identified as a block matrix which has entries

on and above the diagonal in oF , and matrices below the diagonal with entries in pF . The

Jacobson radical P = radA is the maximal two-sided invertible fractional ideal of A. It

consists of block matrices which has entries in oF above the diagonal, and entries in pF

along and below the diagonal. The Jacobson radical satisfies Pe(Λ) = $A = Ae(Λ).

We momentarily restrict ourselves to the case G = GLN(F ). The unit group

U(Λ) = U(A) = A×

is a parahoric subgroup of GLN(F ). If we let A be a minimal hereditary order (i.e. e = n)

then the unit group I = U(A) is called an Iwahori subgroup. For arbitrary Λ the unit

group comes with a natural filtration by normal compact open subgroups

Un(Λ) = 1 + An,

for n ≥ 1. Since A has blocks along the diagonal with entries in oF of size ni such that∑e
i ni = N , the quotient U(Λ)/U1(Λ) is isomorphic to the group

∏e
i GLni(kF ) defined

over the residue field kF .

The normalizer K(Λ) = {g ∈ GLN(F ) : gΛ = Λ} of Λ is an open, compact-mod-centre

subgroup of GLN(F ). It normalizes U(Λ) and contains U(Λ) as its maximal compact
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subgroup. The normalizer of U(Λ) is EU(Λ) for some field extension E of F with

e(E/F ) = e(Λ) where e(E/F ) is the ramification degree of E/F . Therefore, the nor-

malizer modulo U(Λ) is isomorphic to Z, generated by a uniformizer $E of E.

We now return to the case of Λ being a self-dual lattice sequence. The subgroup

K(Λ) = U(Λ) ∩G

of G is compact open, with a filtration by normal subgroups

Kn(Λ) = Un(Λ) ∩G

for n ≥ 1. When the meaning is clear, we omit Λ from the notation and write K = K(Λ)

and Kn = Kn(Λ). The pro-p-radical K1 of K is the maximal normal pro-p subgroup.

The reductive quotient G = K/K1 is a reductive group defined over kF which need not

be connected. We write G◦ for the connected component of K/K1 and denote by K◦ the

inverse image of G◦ in K. We call K◦ a parahoric subgroup of G.

In order to explicitly describe the parahoric subgroups of G we must return to the study

of almost self-dual lattices. Let K be a compact subgroup of G. Since K is compact, it

must stabilize some lattice: if we take a basis B of V the oF -linear span of the image of

the action of K on B defines such a lattice. We now work towards showing that every

compact subgroup is the stabilizer of some almost self-dual lattice.

Proposition 2.7.1. Let K be a compact subgroup of G and Σ be the set of all oF -lattices

stabilized by K.

(1) If L ∈ Σ then L# ∈ Σ;

(2) If L1, L2 ∈ Σ then L1 ∩ L2 ∈ Σ;

(3) If L1, L2 ∈ Σ then L1 + L2 ∈ Σ.

Proof. (1) If x ∈ L# then h(x, L) ⊆ pF . For k ∈ K, h(k ·x, L) = h(k ·x, k ·L) = h(x, L) ⊆

pF , with the last equality holding since k ∈ G preserves h. Thus k · x ∈ L#.
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(2) Take y ∈ L1 ∩ L2 and k ∈ K. Then y ∈ L1 and y ∈ L2. As each Li ∈ Σ we have

k · y ∈ L1 and k · y ∈ L2 for all k ∈ K. Thus k · y ∈ L1 ∩ L2.

(3) By definition L1 + L2 = {v ∈ V : ∃a ∈ L1, ∃b ∈ L2 such that v = a + b}. Take

z ∈ L1 + L2, so z = a + b for some a ∈ L1 and b ∈ L2. As each L1, L2 ∈ Σ we

have that k · a = a′ and k · b = b′ for some a′ ∈ L1, b
′ ∈ L2 and k ∈ K. Then

k · z = k · (a+ b) = k · a+ k · b = a′ + b′. Thus k · z ∈ L1 + L2.

Theorem 2.7.2. Every compact subgroup K stabilizes an almost self-dual lattice.

Proof. Since K is compact it must stabilize some lattice, which we denote by L. If

L + L# then we replace L by M = L + L# which contains its dual M# because

M# = (L + L#)# = L# ∩ (L#)# = L# ∩ L. Since the set of lattices Σ stabilized by

K is closed under taking duals, intersections and sums, K stabilizes M .

Thus K stabilizes some lattice L with the property L ⊇ L# and, amongst all such, we

choose L such that dimkF (L/L#) is minimal. Take n ∈ N minimal such that L# ⊇ $nL.

We claim that n = 1. If not, form the lattice M = L ∩ $1−nL# which has dual M# =

L# + $n−1L. We have M ⊇ M# since L ⊃ L# by assumption and $1−nL# ⊇ $n−1L

because, rearranging, this is equivalent to L# ⊇ $2(n−1)L which is true as n > 1. This

gives the following chain of inclusions

L )M ⊇M# ) L#,

which shows that dimkF (M/M#) < dimkF (L/L#), contradicting our choice of lattice L.

Therefore L# ⊇ $L and so we have found an almost self-dual lattice stabilized by K.

2.8 Classification of Reductive Quotients

In the classification of depth-zero cuspidal representations of both GLN(F ) and classical

groups G over non-archimedean local fields of odd residue characteristic, the starting point
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is to take a cuspidal representation of the reductive quotient of a maximal parahoric sub-

group. For positive-depth representations, one similarly needs a cuspidal representation

of the reductive quotient of a maximal parahoric subgroup of G. It is therefore important

to know precisely what the reductive quotients are in these cases.

If G = GLN(F ) the reductive quotient of a maximal parahoric subgroup is GLN(kF ), a

finite reductive group defined over the residue field kF . If G is a classical group defined

over a p-adic field of odd residue characteristic, then even though the classification is more

complicated, it is known and described in [LS15, Section 1].

2.9 Reductive Quotients of the Symplectic Group

In this subsection we let F be a dyadic field. Let h be a symplectic form defined on an

F -vector space V of dimension 2n. Let G = Sp(V ) be the Symplectic group. We now

describe the maximal parahoric subgroups of G and their reductive quotients.

Proposition 2.9.1. Let L be an almost self-dual lattice. Then there exist a Witt basis

{e−n, . . . , e−1, e1, . . . , en} and a non-negative integer m with 0 ≤ m ≤ n such that

L = oF e−n ⊕ · · · ⊕ oF e−1 ⊕ oF e1 ⊕ · · · ⊕ oF em ⊕ pF em+1 ⊕ · · · ⊕ pF en,

and

L# = oF e−n ⊕ · · · ⊕ oF e−m−1 ⊕ pF e−m ⊕ · · · ⊕ pF e−1 ⊕ pF e1 ⊕ · · · ⊕ pF en.

Proof. We proceed by induction on the Witt index n. Suppose first L 6= L# and take

e1 ∈ L \ L#. On V 1 := L/L# we have the induced form

h1(u+ L#, v + L#) := h(u, v) + pF .

The form h1 is non-degenerate, so there exists a e−1 ∈ L \ L# such that h1(e−1, e1) =

1. Since h(e−1, e1) ∈ o×F , we may replace e−1 with h(e−1, e1)−1e−1 and assume that
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h(e−1, e1) = 1. Set X = 〈e−1, e1〉F and Y = X⊥.

For any z ∈ L, since e−1, e1 ∈ L ⊆ p−1
F L#, we have both h(e−1, z), h(e1, z) ∈ oF . We put

x = h(e1, z)e−1 + h(e−1, z)e1 ∈ L ∩X and y = z − x. Then

h(y, e1) = h(z − x, e1) = h(z, e1)− h(x, e1)

= h(z, e1)− h(e−1, z)h(e1, e−1)− h(e−1, z)h(e−1, e−1)

= 0,

since h(e1, e−1) = −1 and h(u, u) = 0. Similarly, we find that h(y, e−1) = 0 and so

y ∈ L ∩ Y . Therefore we have

L = (L ∩X)⊕ (L ∩ Y ).

Similarly, if z ∈ L# then we write z = x+ y with x ∈ X, y ∈ Y . For any w ∈ L we write

w = xw + yw with xw ∈ L ∩X and yw ∈ L ∩ Y . This gives

h(x,w) = h(x, xw) = h(z, xw) ∈ pF ,

and so x ∈ L# ∩X. It follows that y ∈ L# ∩ Y and

L# = (L# ∩X)⊕ (L# ∩ Y ).

Applying the inductive hypothesis to L ∩ Y in Y , and adjoining the basis elements e−1

and e1, we achieve a Witt basis as required.

Now suppose L = L#. We apply the same argument to L# \ pFL. Take e′2 ∈ L# \ pFL.

On V 2 := L#/pFL we have the induced form

h2(u+ pFL, v + pFL) := $−1h(u, v) + pF .

The form h̄2 is non-degenerate, so there exist e′−2 ∈ L# \ pFL such that h2(e′−2, e
′
2) = 1.

Since$−1h(e′−2, e
′
2) ∈ o×F , we may replace e′−2 by$h(e′−2, e

′
2)−1e′−2 and assume h(e′−2, e

′
2) =

$. Put e2 = $−1e′2, e−2 = e′−2, X = 〈e−2, e2〉F = 〈e′−2, e
′
2〉F and Y = X⊥.
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For any z ∈ L# we have both h(e−2, z), h(e2, z) ∈ pF . Put x = h(e2, z)e−2 + h(e−2, z)e2 ∈

L# ∩X and y = z − x. Then the same calculation as above gives h(y, e−2) = h(y, e2) = 0

which shows y ∈ L# ∩ Y . Therefore

L# = (L# ∩X)⊕ (L# ∩ Y ).

As in the first case we deduce that

L = (L ∩X)⊕ (L ∩ Y ).

Applying the inductive hypothesis to L∩Y in Y , and adjoining the basis elements e−2, e2,

we achieve a Witt basis as required.

It follows directly from the Proposition above that for K a maximal parahoric subgroup

of G with pro-unipotent radical K1, the reductive quotient

K/K1 ↪→ Sp2m(kF )× Sp2(n−m)(kF ).

Here 2m = dimkF (L/L#), where L is the almost self-dual lattice stabilized by K.

Proposition 2.9.2. Let K be a maximal parahoric subgroup of G stabilizing an almost

self-dual lattice L with dimkF (L/L#) = 2m. Then the reductive quotient K/K1 is

K/K1 ' Sp2m(kF )× Sp2(n−m)(kF ).

Proof. We know that in arbitrary characteristic the Symplectic group is generated by

symplectic transvections, which are maps of the form tu(v) = u + h(u, v)v for u, v ∈ V .

Therefore it is enough to show that we can lift symplectic transvections through the quo-

tient.

Using Proposition 2.9.1 we obtain a Witt basis for V so that L decomposes nicely with

respect to this basis. We write U = Span{ei : L ∩ Fei 6= L# ∩ Fei} and W = Span{ej :

L# ∩ Fej 6= pFL ∩ Fej} so that V = U ⊕W .

Let t̄ū be a transvection in Sp2m(kF ), acting on L/L#. We lift ū ∈ L/L# to an element

u ∈ L ∩ U and denote by tu the transvection associated to u defined on U . Therefore
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tu is a lift of t̄ū. Similarly, for t̄w̄ a transvection in Sp2(n−m)(kF ) acting on L#/pFL, let

w ∈ L# ∩W denote a lift of w̄ so that the transvection tw defined on W is a lift of t̄w̄.

Let g = tu + tw be the automorphism of V defined by

g(u′ + w′) = tu(u
′) + tw(w′)

for u′ ∈ U,w′ ∈ W . Then g is the required lift of the pair of transvections (t̄ū, t̄w̄).

It remains to show that the stabilizers of the almost self-dual lattices above are maximal

compact.

Proposition 2.9.3. Let L be the standard almost-self dual lattice defined above with K =

Stab(L). Then K is maximal compact.

Proof. Suppose K ( K ′ is compact. Then K ′ stabilizes some almost self-dual lattice

L′ 6= L. Since K ⊂ K ′, K also stabilizes L′.

We put

M = L ∩ (L# + L′) = L# + (L ∩ L′)

so

M# = (L ∩ (L# + L′))# = L# + (L ∩ L′#) ⊆M.

Then we have the containments

L ⊇M ⊇M# ⊇ L#

so M is another almost self-dual lattice stabilized by K.

We put

N = L+ (p−1
F L# ∩ L′) = p−1

F L# ∩ (L+ L′)
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so

N# = pFL+ (L# ∩ L′#) = L# ∩ (pFL+ L′#) ⊆ N.

Moreover, pFN = L# ∩ (pFL+ pFL
′) ⊆ N# and so we have

N ⊇ L ⊇M ⊇M# ⊇ L# ⊇ N# ⊇ pFN.

Suppose L = M = N . Then L = M = L# +(L∩L′) and L# = N# = pFL+(L#∩L′#) ⊆

pFL + (L ∩ L′) so L = pFL + (L ∩ L′). We deduce L = L ∩ L′ and so L ⊆ L′. Since

L′ ⊇ p−1
F L′# ⊇ p−1

F L# we get N = L + (p−1
F L# ∩ L′) = L + L′, and since L = N , we see

that L = L′ which is absurd.

Therefore at least one of M,N is not L and so we have found an almost self-dual lattice

L′′ stabilized by K such that either

L ) L′′ ⊃ L′′# ) L# or L′′ ) L ⊇ L# ) L′′#.

Then (the image of) K stabilizes the non-trivial subspaces

0 6= L′′#/L# ( L/L# or 0 6= pFL
′′/pFL ( L#/pFL.

But K surjects onto the connected component of the group of isometries of L/L# and of

L#/pFL and this group of isometries acts irreducibly, giving a contradiction.

Remark 2.9.4. The classification of the reductive quotient for the Symplectic group as

given in Proposition 2.9.2 coincides with the description when p is odd. Therefore, the

description is uniform for all primes p.

2.10 Reductive Quotients of the Special Orthogonal

Group

In [Mor91, 1.8] Morris gives a classification of all possible anisotropic symmetric bilinear

forms h in odd residual characteristic. Moreover, in each case, he gives a description of the
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unique almost self-dual lattice which it stabilizes. This information is all that is needed

to extrapolate the classification of the reductive quotients in the case 2 ∈ o×F . This is

expected since the description of the Witt ring is uniform for all such fields (it depends

on whether −1 is a square or not). However, we have seen that the Witt group for dyadic

fields depends on the degree of the field extension (as well as whether −1 is a square or

a sum of two squares), and we only know the full classification of the isometry classes of

the anisotropic quadratic forms for the case F = Q2. It is for this reason that we restrict

ourselves so that F = Q2, and even in this the simplest case, there are issues which arise.

Let Q be a non-degenerate quadratic form defined over F . Using Witt’s Decomposition

Theorem we can write

Q = Q|radQ⊥ Q|V1⊥ Q|V2

with Q |V1 anisotropic and Q |V2 hyperbolic. Since Q is non-degenerate we have radQ =

{0}. Therefore, in order to understand the possible reductive quotients for the maximal

parahorics of G, we need to understand what reductive quotients arise for Q anisotropic

and Q hyperbolic.

2.10.1 Anisotropic Orthogonal Groups

In this section we restrict ourselves so that F = Q2. Let Q be an anisotropic quadratic

form over Q2 on a vector space V , let h be the associated bilinear form and denote by K

the group of isometries of (V,Q). Suppose L is an almost self-dual lattice in V stabilized

by K. On one hand, we have

Q(L) = {Q(v) : v ∈ L} =

{
1

2
h(v, v) : v ∈ L

}
⊇
{

1

2
h(v, v′) : v ∈ V and v′ ∈ L#

}
since L ⊇ L#

=
1

2
pF

= oF .
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On the other,

Q(L) = {Q(v) : v ∈ L} =

{
1

2
h(v, v) : v ∈ L

}
=

{
1

4
h(v, 2v) : v ∈ L

}
⊆ 1

4
pF since 2v ∈ pFL ⊆ L#

= p−1
F .

Thus any almost self-dual lattice L in V must satisfy

oF ⊆ Q(L) ⊆ p−1
F .

We write N = {v ∈ V : Q(v) ∈ p−1
F } and M = {v ∈ V : Q(v) ∈ oF}. It follows from the

definition that every g ∈ K stabilizes both N and M :

gN = {gv : v ∈ V,Q(v) ∈ p−1
F }

= {gv : v ∈ V,Q(gv) ∈ p−1
F }

= {u : u ∈ V,Q(u) ∈ p−1
F }

= N,

and similarly gM = M . An analogous argument shows that g stabilizes both N# and

M#. Therefore any g ∈ K must stabilize all of N,M,N# and M#.

We now consider quadratic forms, characterized by their dimension, starting with the

1-dimensional anisotropic form Q = 〈a〉 for a ∈ Q×2 /(Q×2 )2. It is sufficient to consider the

form Q = 〈1〉 since any other 1-dimensional quadratic form is just a scalar multiple of Q

and so their groups of isometries coincide.

Case 1 : Q = 〈1〉

Write V = 〈e1〉F so that Q(λ1e1) = λ2
1. Since Q is 1-dimensional, we immediately see

that N = M = oF e1 which is self-dual. Therefore, on M/pFN we get an induced form Q̄
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given by

Q̄(v + pFM) := Q(v) + pF

which is non-degenerate anisotropic. Therefore, we have

K/K1 ↪→ O1(F2).

Since O1(F2) is trivial, we see that K is itself a pro-2 group.

For the 2-dimensional forms, recall that we can write Q = 〈λa, λb〉 = 〈λ〉 ⊗ 〈a, b〉 and so

the group of isometries of Q is the same as the group of isometries of Q′ = 〈a, b〉. Thus

we need only consider forms 〈1, b〉, for b in a set of representatives for Q×2 /(Q×2 )2.

Suppose Q = 〈1, b〉 with valF (b) = 0. Then for v = (λ1, λ2) ∈ V , since we wish to describe

the lattices N and M , we are interested in the quantity valF (λ2
1 + bλ2

2). By scaling if

necessary, we may assume λi ∈ oF , and so λ2
i ≡ 0, 1 mod 4 for i = 1, 2. Therefore

λ2
1 + bλ2

2 ≡ 0, 1, b, b+ 1 mod 4. We deduce that the isometry groups of the forms 〈1, b〉 and

〈1, b+4〉 stabilize the “same” lattices and will have the same reductive quotient. Similarly,

if valF (b) = 1 then the lattices M and N are “independent” of the choice of b. Therefore,

we need only consider the forms

Q ∈ {〈1, 1〉, 〈1, 2〉, 〈1, 3〉} .

Case 2 : Q = 〈1, 1〉

We write V = 〈e1, e2〉F so Q(λ1e1 + λ2e2) = λ2
1 + λ2

2. Recall N = {v = λ1e1 + λ2e2 ∈ V :

Q(v) = λ2
1 + λ2

2 ∈ p−1
F }. Take v = λ1e1 + λ2e2 ∈ N arbitrary. If valF (λ1) = −n < 0 then

valF (λ2
1 + λ2

2) ≥ −1 implies that valF (λ2) = −n < 0. Writing µi := $n
Fλi gives µi ∈ o×F

such that µ2
1 + µ2

2 ∈ p2n−1
F .

Suppose n > 1. Reducing mod p2
F we get µ2

1 = µ2
2 ≡ 0 mod 4. However, squares in Z×2 are

congruent to 1 mod 8, which in turn are congruent to 1 mod 4, and so µ2
1 +µ2

2 ≡ 2 mod 4
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a contradiction. Therefore n = 1 and µi ∈ o×F such that µ2
1 + µ2

2 ∈ pF . This last condition

is equivalent to µ1 + µ2 ∈ pF since the µ2
1 + µ2

2 ≡ (µ1 + µ2)2 mod 2 and the valuation of a

square is even. Scaling back gives

N = {λ1e1 + λ2e2 ∈ V : λ1, λ2 ∈ p−1
F such that λ1 + λ2 ∈ oF}

=
〈1

2
(e1 + e2), e2

〉
oF
.

Writing v = µ1e1 + µ2e2 ∈ V and u = λ1(1
2
(e1 + e2)) + λ2e2 ∈ N# we have

v = µ1e1 + µ2e2 ∈ N# ⇐⇒ h(v,N) ⊆ pF

⇐⇒ h(v, u) ⊆ pF for all λi ∈ oF

⇐⇒ Q(v + u)−Q(v)−Q(u) ⊆ pF for all λi ∈ oF

⇐⇒ µ1λ1 + 2µ2λ2 + µ2λ1 ∈ pF for all λi ∈ oF

⇐⇒ λ1(µ1 + µ2) + 2λ2µ2 ∈ pF for all λi ∈ oF

⇐⇒ µ2 ∈ oF and µ1 + µ2 ∈ pF

⇐⇒ µ1, µ2 ∈ oF such that µ1 + µ2 ∈ pF .

Hence

N# = {µ1e1 + µ2e2 ∈ V : µ1, µ2 ∈ oF such that µ1 + µ2 ∈ pF} = pFN.

We now consider M = {v ∈ V : Q(v) ∈ oF}. Note that if either λ1, λ2 ∈ p−1
F \ oF then

Q(v) ∈ p−1
F 6⊆ oF and so λi ∈ oF with no other restrictions. Thus M = oF e1 ⊕ oF e2 and a

direct calculation shows that M# = M . Therefore K stabilizes N ⊃ M = M# ⊃ N# =

pFN , and both M,N are almost self-dual.

The group K/K1 acts on the the 1-dimensional kF space V̄1 := N/M , which is spanned

by the image of v1 = 1
2
(e1 + e2) in the quotient N/M . We have the induced form

Q̄1(v +M) := $Q(v) + pF ,

given by

Q̄1

(
λ1

(
1

2
(e1 + e2)

))
= 2Q

(
λ1

(
1

2
(e1 + e2)

))
+ pF
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= 2

(
λ1

4
+
λ1

4

)
+ pF

= λ1 + pF ,

which is non-degenerate anisotropic. Similarly we get a 1-dimensional non-degenerate

anisotropic form on the quotient V̄2 := M/pFN , which is spanned by the image of v2 = e2,

given by

Q̄2(v +N#) := Q(v) + pF .

Therefore

K/K1 ↪→ O1(F2)×O1(F2).

As in Case 1 above, this is the trivial group so K is in fact a pro-2 group.

Case 3 : Q = 〈1, 2〉

We write V = 〈e1, e2〉F so Q(λ1e1 + λ2e2) = λ2
1 + 2λ2

2. Writing N = {v ∈ V : Q(v) ∈ p−1
F }

we have

v = λ1e1 + λ2e2 ∈ N ⇐⇒ λ2
1 + 2λ2

2 ∈ p−1
F

⇐⇒ both λ2
1, 2λ

2
2 ∈ p−1

F since valF (λ2
1) is even and

valF (2λ2
2) is odd

⇐⇒ λ1 ∈ oF and λ2 ∈ p−1
F .

Thus

N = oF e1 ⊕ p−1
F e2.

Similarly, we have M = {v ∈ V : Q(v) ∈ oF} which gives

v = λ1e1 + λ2e2 ∈M ⇐⇒ λ2
1 + 2λ2

2 ∈ oF

⇐⇒ λ1, λ2 ∈ oF ,
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and so

M = oF e1 ⊕ oF e2.

A direct calculation shows that M = N# and so N is the unique almost self-dual lattice

stabilized by K with N ) N# ) pFN . Writing V̄1 = N/M and V̄2 = M/pFN , spanned

by the image of the vectors v1 = 1
2
e2 and v2 = e1 respectively, we have induced non-trivial

non-degenerate kF -quadratic forms

Q̄1(v +M) := 2Q(v) + pF

for all v ∈ N , and

Q̄2(w + pFN) := Q(w) + pF

for all w ∈M . Therefore

K/K1 ↪→ O1(F2)×O1(F2)

is again trivial and so K is a pro-2 group.

Case 4 : Q = 〈1, 3〉

Write V = 〈e1, e2〉F so that Q(λ1e1 + λ2e2) = λ2
1 + 3λ2

2. Suppose λi ∈ p−nF \ p
1−n
F . Then

writing λi = µi$
−n with µi ∈ o×F we have

Q(λ1e1 + λ2e2) = µ2
1$
−2n + 3µ2

2$
−2n ∈ p−2n+2

F \ p−2n+3
F

since µ2
i ≡ 1 mod 8 =⇒ µ2

1 + 3µ2
2 ≡ 4 mod 4. If both λi have the same valuation, then

Q(v) has an even valuation, which shows N = M . Carrying through the same analysis as

in Case 2 gives

N = M = {λ1e1 + λ2e2 ∈ V : λi ∈ p−1
F such that λ1 + λ2 ∈ oF}

=
〈1

2
(e1 + e2), e2

〉
oF
.
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Put v = µ1e1 + µ2e2 ∈ V and u = λ1(1
2
(e1 + e2)) + λ2e2 ∈M#. Therefore

v = µ1e1 + µ2e2 ∈M# ⇐⇒ h(v,M) ⊆ pF

⇐⇒ h(v, u) ⊆ pF for all λi ∈ oF

⇐⇒ Q(v + u)−Q(v)−Q(u) ⊆ pF for all λi ∈ oF

⇐⇒ µ1λ1 + 6µ2λ2 + 3µ2λ1 ∈ pF for all λi ∈ oF

⇐⇒ λ1(µ1 + 3µ2) + 6λ2µ2 ∈ pF for all λi ∈ oF

⇐⇒ µ2 ∈ oF and µ1 + µ2 ∈ pF

⇐⇒ µ1, µ2 ∈ oF such that µ1 + µ2 ∈ pF .

Therefore M# = pFM and so the space M/pFN , spanned by the image of the vectors

v1 = 1
2
(e1 + e2), v2 = e2 in the quotient, is 2-dimensional with induced form Q̄ given by

Q̄(v + pFN) := Q(v) + pF .

The space M/pFN contains the image of the vectors v1 = 1
2
(e1 + e2), v2 = e2 in the

quotient. The form Q̄2 is

Q̄2(λ1v1 + λ2v2) = Q(λ1v1 + λ2v2) + pF

=
λ2

1

4
+ 3

(
λ1

2
+ λ2

)2

+ pF

= λ2
1 + λ1λ2 + λ2

2 + pF ,

which is non-degenerate anisotropic. Therefore

K/K1 ↪→ O−2 (F2).

As abstract groups, we have O−2 (F2) = GL2(F2) = S3.

For the 3-dimensional anisotropic forms, we have seen that every form is isometric to

〈λ, λ, λ〉 = 〈λ〉 ⊗ 〈1, 1, 1〉 for λ ∈ Q2/(Q×2 )2. Therefore they all have the same group of

isometries, so we need only analyze Q = 〈1, 1, 1〉.
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Case 5 : Q = 〈1, 1, 1〉

Write V = 〈e1, e2, e3〉F so Q(λ1e1 + λ2e2 + λ3e3) = λ2
1 + λ2

2 + λ2
3. Recall N = {v =

λ1e1 + λ2e2 + λ3e3 ∈ V : Q(v) ∈ p−1
F }. Let v = λ1e1 + λ2e2 + λ3e3 ∈ N and sup-

pose −n = valF (λ1) ≤ valF (λ2) ≤ valF (λ3). By the same analysis as in Case 3 we get

µ1, µ2 ∈ o×F , µ3 ∈ oF such that µ2
1 + µ2

2 + µ2
3 ∈ p2n−1

F when −n < 0. Assuming n > 1 we

have µ2
1 + µ2

2 + µ2
3 ∈ p3

F . However, µ1
1 ≡ µ2

2 ≡ 1 mod 8 and µ2
3 ≡ 0, 1, 4 mod 8, which

implies µ2
1 + µ2

2 + µ2
3 6≡ 0 mod 8, contradicting n > 1. Therefore

N = {v = λ1e1 + λ2e2 + λ3e3 ∈ V : Q(v) ∈ p−1
F }

= {λ1e1 + λ2e2 + λ3e3 ∈ V : λ1, λ2, λ3 ∈ p−1
F such that λ1 + λ2 + λ3 ∈ oF}

=
〈1

2
(e1 + e2),

1

2
(e1 + e3), e3

〉
oF
.

Writing v = µ1e1 + µ2e2 + µ4e3 ∈ V and u = λ1(1
2

(e1 + e2)) + λ2(1
2

(e1 + e3)) + λ3e3 ∈ N

gives

v = µ1e1 + µ2e2 + µ4e3 ∈ N# ⇐⇒ h(v,N) ⊆ pF

⇐⇒ h(v, u) ⊆ pF for all λi ∈ oF

⇐⇒ Q(v + u)−Q(v)−Q(u) ⊆ pF for all λi ∈ oF

⇐⇒ λ1(µ1 + µ2) + λ2(µ2 + µ3) + 2λ3µ3 ∈ pF for all λi ∈ oF

⇐⇒ µ3 ∈ oF , µ1 + µ2 ∈ pF , µ2 + µ3 ∈ pF

⇐⇒ µi ∈ oF such that µ1 + µ2 ≡ µ1 + µ3 ≡ µ2 + µ3 ≡ 0 mod pF .

Therefore

N# = {λ1e1 + λ2e2 + λ3e3 ∈ V : λ1, λ2, λ3 ∈ oF such that λ1 + λ2, λ1 + λ3, λ2 + λ3 ∈ pF}

= 〈2e1, 2e2, e1 + e2 + e3〉oF 6= pFN.

Similarly, we find that

M = {λ1e1 + λ2e2 + λ3e3 ∈ V : Q(v) ∈ oF} = oF e1 ⊕ oF e2 ⊕ oF e3

and M = M# by a direct calculation. Unlike the previous cases, we do not have a chain

of inclusions. However, we do have the following diagram of containments:
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N

M = M#

N# pFN

pFM

2

2 1

1 2

.

First consider the 2-dimensional space V̄1 = N/M . It contains the image of the vectors

v1 = 1
2
(e1 + e2) and v2 = 1

2
(e1 + e3), so the induced form Q̄1 is given by

Q̄1(v +M): = $Q(v) + pF ,

where v = λ1v1 + λ2v2. Calculating the induced form gives

Q̄1(λ1v1 + λ2v2) = 2Q(λ1v1 + λ2v2) + pF

= 2Q

(
(λ1 + λ2)

2
e1 +

λ1

2
e2 +

λ2

2
e3

)
+ pF

= λ2
1 + λ1λ2 + λ2

2 + pF

which is a 2-dimensional non-degenerate anisotropic form.

Now consider the 1-dimensional space V̄2 = M/pFN spanned by the image of the vector

v3 = e1 in the quotient. We have the induced form Q̄2 given by

Q̄2(v + pFN) := Q(v) + pF

is 1-dimensional non-degenerate anisotropic. Therefore

K/K1 ↪→ O−2 (F2)×O1(F2).

Case 6 : Q = 〈1, 1, 1, 1〉

Write V = 〈e1, e2, e3, e4〉F so Q(λ1e1 + λ2e2 + λ3e3 + λ4e4) = λ2
1 + λ2

2 + λ2
3 + λ2

4. By

the same analysis as in previous cases, we find

N = {λ1e1 + λ2e2 + λ3e3 + λ4e4 ∈ V : λ1, λ2, λ3, λ4 ∈ p−1
F such that λ1 + λ2 + λ3 + λ4 ∈ oF}
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=
〈1

2
(e1 + e2 + e3 + e4),

1

2
(e1 + e2),

1

2
(e1 + e3), e4

〉
oF
.

One would expect to find that M is the obvious lattice oF e1⊕oF e2⊕oF e3⊕oF e4. However,

in this particular case, we find that M also contains vectors of the form λ1e1 + λ2e2 +

λ3e3 + λ4e4 with λi ∈ p−1
F \ oF . Therefore

M = {λ1e1 + λ2e2 + λ3e3 + λ4e4 ∈ V : either λi ∈ p−1
F \ oF for all i or λi ∈ oF}

=
〈1

2
(e1 + e2 + e3 + e4), e2, e3, e4

〉
oF
.

Writing u = λ1e1 + λ2e2 + λ3e3 + λ4e4 ∈ N gives

v = µ1e1 + µ2e2 + µ3e3 + µ4e4 ∈ N# ⇐⇒ h(v,N) ∈ pF

⇐⇒ h(v, u) ∈ pF for all λi ∈ oF

⇐⇒ Q(v + u)−Q(v)−Q(u) ⊆ pF for all λi ∈ oF

⇐⇒ µ1λ1 + µ1λ2 + µ1λ3 + µ2λ1 + µ2λ2 + µ3λ1+

µ3λ3 + µ4λ1 + 2µ4λ4 ∈ pF for all λi ∈ oF

⇐⇒ λ1(µ1 + µ2 + µ3 + µ4) + λ2(µ1 + µ2) + λ3(µ1 + µ3)+

2λ4(µ4) ∈ pF for all λi ∈ oF

⇐⇒ µ1 + µ2 + µ3 + µ4 ∈ pF , µ1 + µ2 ∈ pF , µ1 + µ3 ∈ pF ,

µ4 ∈ oF

⇐⇒ µ1, µ2, µ3, µ4 ∈ oF such that µ1 + µ2 + µ3 + µ4 ∈ pF ,

µ1 + µ2 ∈ pF , µ1 + µ3 ∈ pF .

By symmetry

N# = {µ1e1 + µ2e2 + µ3e3 + µ4e4 ∈ V : µi ∈ oF such that µi + µj ∈ pF for i 6= j}

= pFM.

In the same way one could calculate M# explicitly to show M# = pFN , but one could

also use properties of duality:

N = (N#)# = (pFM)# = p−1
F M# =⇒ M# = pFN.
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First consider the 2-dimensional space V̄1 = N/M . It contains the image of the vectors

v1 = 1
2
(e1 + e2), v2 = 1

2
(e1 + e3) and so the reduced form Q̄1 is given by

Q̄1(v +M) := $Q(v) + pF .

By writing v = λ1v1 + λ2v2 we find that Q̄1 is

Q̄1(λ1v1 + λ2v2) = 2Q(λ1v1 + λ2v2) + pF

= 2

(
Q

(
λ1

2
(e1 + e2) +

λ2

2
(e1 + e3)

))
+ pF

= 2

(
Q

(
(λ1 + λ2)

2
e1 +

λ1

2
e2 +

λ2

2
e3

))
+ pF

= λ2
1 + λ1λ2 + λ2

2 + pF ,

which is non-degenerate anisotropic. Similarly, the 2-dimensional space V̄2 = M/pFN has

induced form Q̄2 given by

Q̄2(v + pFN) := Q(v) + pF .

By writing v3 = 1
2
(e1 + e2 + e3 + e4) and v4 = e4 we find that Q̄2 is

Q̄2(v + pFN) = Q(v) + pF

= Q (λ3v3 + λ4v4) + pF

= Q

(
λ3

2
e1 +

λ3

2
e2 +

λ3

2
e3 +

(λ3 + 2λ4)

2
e4

)
+ pF

= λ3
2 + λ3λ4 + λ4

2 + pF ,

which is non-degenerate anisotropic. Therefore

K/K1 ↪→ O−2 (F2)×O−2 (F2).

In all cases above we have shown that given K the group of isometries of (V,Q) that

K/K1 injects into the groups U(Q̄1) × U(Q̄2). However, we do not know if we have an

isomorphism. It turns out that in most cases this is true.

Proposition 2.10.1. Let Qan be an anisotropic non-degenerate quadratic over Q2 with

K the stabilizer of . Then K/K1 is of the following form:
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Case Qan K/K1

1 1-dimensional trivial

2 〈1, 1〉, 〈1, 5〉, 〈3, 3〉, 〈2, 10〉 trivial

3
〈1, 2〉, 〈1, 6〉, 〈1, 10〉, 〈1, 14〉,
〈2, 3〉, 〈2, 5〉, 〈3, 10〉, 〈5, 10〉

trivial

4 〈1, 3〉, 〈2, 6〉 O−2 (F2)

5 3-dimensional O−2 (F2)

6 4-dimensional O−2 (F2)×O−2 (F2)

.

Proof. Since there is no occurrence of O+
4 (F2) we know that the Orthogonal groups are

generated by reflections [Gro02, Theorem 6.6] and [KL90, Proposition 2.5.6]. In the same

way as Proposition 2.9.2, we show that we can lift reflections through the quotient.

Let N,M, vi, Q̄i be as in Cases 1 − 6 above. Let U = Span{vi : N ∩ Fvi 6= M ∩ Fvi}

and W = Span{vj : M ∩ Fvj 6= pFN ∩ Fvj} so that V = U ⊥ W . With respect to these

vectors we have that the lattices N and M decompose nicely i.e.

N = (N ∩ U)⊕ (N ∩W ),

M = (M ∩ U)⊕ (M ∩W ).

Let

rū = x̄− h(x̄, ū)

Q̄1(ū)
ū

be a reflection in O(Q̄1) acting on N/M with ū non-singular and x̄ ∈ N/M . We choose

any lift u ∈ N ∩ U of ū so that the reflection

ru(x) = x− h(u, x)

Q(u)
u, x ∈ N

is a lift of rū, which is possible by the non-degeneracy of Q̄1. Similarly, for rw̄ a reflection

in O(Q̄2) acting on M/pFN , we choose a lift w ∈M ∩W of w̄ so that the reflection rw is

a lift of rw̄. Define g = ru + rw by

g(u′ + w′) = ru(u
′) + rw(w′)

for all u′ ∈ U,w′ ∈ W , which is an element of K.
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2.10.2 Split Special Orthogonal Groups

Let F be a dyadic field and G be a Split Special Orthogonal group, Then, given a non-

degenerate quadratic form Q defined over V , we can write Q = nQH ⊥ Qan where nQH

is the orthogonal sum of n-copies of the hyperbolic form QH and Qan is is either zero or

1-dimensional anisotropic.

Ideally one would like to be able to have an analogous version of Proposition 2.9.1 for the

case of Orthogonal groups. In the proof of the Proposition, the key point is that given

v ∈ L \ L#, we can find a u ∈ L \ L# with h(u, v) = 1. However, in our case if we take

v ∈ L \ L# with Q(v) = 0, we are not guaranteed that we can find a u ∈ L \ L# with

Q(u) = 0 and h(u, v) = 1. Therefore, given a maximal compact subgroup K of G, even

though it stabilizes some almost self-dual lattice L, we can not find a Witt basis with

respect to which L nicely decomposes. This is already visible with the following example

of K = O(QH).

Suppose Q = QH and e1, e2 is a Witt basis with respect to the symmetric bilinear form h

associated to Q. A direct matrix calculation shows that

O(Q) ' F× o C2 '


x 0

0 x−1

 ,

 0 x

x−1 0

 : x ∈ F×
 .

The cyclic group C2 is generated by

0 1

1 0

 which acts on F× by x 7→ x−1, and the

Special Orthogonal group SO(Q) is just F×.

Consider the lattice L = oF (e1 + e2) + oF e2 stabilized by K. One can check that it is

self-dual, and so on L/pFL we have an induced form

Q̄(v + pFL) := Q(v) + pF

which is degenerate with a 1-dimensional radical. The stabilizer of L also stabilizes the

pre-image of rad(Q̄) in L, which is the dual of the almost self-dual lattice L′ spanned by
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e1 and e2. Therefore we chose the ‘wrong’ almost self-dual lattice: the compact subgroup

which is the stabilizer of L stabilizes more that one almost self-dual lattice.

We return to the general setting. Put V = VnH ⊥ Van with VnH hyperbolic of dimension

2n and Van anisotropic of dimension at most 1. Let h be the non-degenerate symmetric

bilinear form associated to Q. We write Q = nQH ⊥ Qan and h = nhH ⊥ han.

We choose a Witt basis for VnH so that VnH = 〈e−n, . . . , e−1, e1, . . . , en〉F with h(e−i, ej) =

δij. We now consider two cases.

Firstly, suppose V = VnH so Van = {0} and Q = QnH is hyperbolic. Then G is an even

Split Special Orthogonal group. For some 0 ≤ m ≤ n with m 6= 1, 2, n− 2, n− 1, let Lm

be the almost self-dual lattice

Lm =
−1⊕
i=−n

oF ei ⊕
m⊕
j=1

oF ej ⊕
n⊕

k=m+1

pF ek

with dual

L#
m =

−(m+1)⊕
i=−n

oF ei ⊕
−1⊕

j=−m

pF ej ⊕
n⊕
k=1

pF ek.

Let V̄1 := Lm/L
#
m and V̄2 := L#

m/pFLm. The space V̄1 is 2m-dimensional with induced

induced form

Q̄1(v + L#) := Q(v) + pF

which has basis the image of the vectors e−m, . . . , e−1, e1, . . . , em in the quotient. This

form is non-degenerate and hyperbolic, so Q̄1 is the orthogonal sum of m-copies of the

hyperbolic form Q̄H over the residue field kF .

Similarly, the space V̄2 is 2(n−m)-dimensional with induced form

Q̄2(v + pFLm) := $−1Q(v) + pF
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which has basis the image of the vectors e−n, . . . , e−(m+1), $em+1, . . . , $en in the quotient.

This form is non-degenerate hyperbolic, so Q̄2 is the orthogonal sum of (n−m) copies of

the hyperbolic form Q̄H over the residue field kF .

Let K be the stabilizer of Lm, which is compact open. Then K/K1 is a subgroup of

O(Q̄1)×O(Q̄2) ' O+
2m(kF )×O+

2(n−m)(kF ). (†)

Remark 2.10.2. The reason why we require m 6= 2, n − 2 is that in this instance there

would be a factor of O+
4 (kF ), which we have seen is not generated by reflections if F = Q2.

This then begs the question as to what the reductive quotient would be in this case. Since

we can lift reflections through the quotient, we expect that the reductive quotient would

have as a factor the index 2 subgroup of O+
4 (F2) generated by an even number of reflections,

which is not SO+
4 (F2).

Secondly, suppose Van = 〈e0〉F so G is an odd Split Special Orthogonal group. Then the

form Qan is isometric to 〈λ〉 for some λ ∈ Q×2 /(Q×2 )2. Moreover, by choosing instead our

basis for VnH so that h |VnH (e−i, ej) = λδij, and then rescaling our form h, we may assume

that λ = 1 since forms which differ by an element of F× have isomorphic isometry groups.

For some 0 ≤ m ≤ n with m 6= 1, let Lm be the almost self-dual lattice

Lm =
−1⊕
i=−n

oF ei ⊕ Lan ⊕
m⊕
j=1

oF ej ⊕
n⊕

k=m+1

pF ek

with dual

L#
m =

−(m+1)⊕
i=−n

oF ei ⊕
−1⊕

j=−m

pF ej ⊕ Lan ⊕
n⊕
k=1

pF ek,

where Lan = oF e0 is the unique self-dual lattice stabilized by Qan.

Put Nm = {v ∈ L#
m : Q(v) ∈ pF}, which is a lattice stabilized by K = Stab(Lm): if k ∈ K

and v ∈ Nm then kv ∈ L#
m as v ∈ L#

m and Q(kv) = Q(v) ∈ pF so kv ∈ Nm. Now compute
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Q(
∑n

i=1 λivi) =
∑n

i=1 λiλ−i + λ2
0 so we get

Nm = =

−(m+1)⊕
i=−n

oF ei ⊕
−1⊕

j=−m

pF ej ⊕ pFLan ⊕
n⊕
k=1

pF ek

Then K stabilizes

Lm ⊇ L#
m ⊃ Nm ⊇ pFLm.

Let V̄1 := Lm/Nm and V̄2 := Nm/pFLm. The space V̄1 is (2m + 1)-dimensional with

induced form

Q̄1(v +Nm) := Q(v) + pF

which has basis the image of the vectors e−m, . . . , e−1, e0, e1, . . . , em in the quotient. This

form is non-degenerate isotropic, so Q̄1 is the orthogonal sum of m copies of the hyperbolic

form Q̄H and the one-dimensional anisotropic form Q̄an over the residue field kF .

The space V̄2 is 2(n−m)-dimensional with induced form

Q̄2(v + pFLm) := $−1Q(v) + pF

which has basis the image of the vectors e−n, . . . , e−(m+1), $em+1, . . . , $en in the quotient.

This form is non-degenerate and hyperbolic, so Q̄2 is the orthogonal sum of (n−m)-copies

of the hyperbolic form Q̄H over the residue field kF .

Proposition 2.10.3. Let G be a Split Special Orthogonal group and let Lm be the almost

self-dual lattice defined above with stabilizer K with m 6= 1, 2, n − 2, n − 1. Suppose

that we cannot lift the identity of the reductive quotient K/K1 to an element of O(Q) of

determinant −1. Then

K/K1 '

{
(g1, g2) ∈ O(Q̄1)×O(Q̄2) :

either both gi ∈ SO(Q̄i) or both

gi ∈ O(Q̄i) \ SO(Q̄i)

}
= H.

Proof. We have seen in Proposition 2.10.1 that we can lift orthogonal reflections over the

residue field to a reflections over the p-adic field. Moreover, an orthogonal reflection over

the p-adic field has determinant −1. Let V̄i be the spaces above with induced forms Q̄i.
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Suppose ḡi ∈ O(Q̄i) lifts to g = g1 + g2 ∈ O(Q) such that g |V̄i= ḡi. Then g ∈ SO(Q) if

and only if det(g) = det(g1) det(g2) = 1 which immediately shows that K/K1 ⊇ H. The

assumption forces equality.

Remark 2.10.4. The hypothesis that we cannot lift the identity to an element of deter-

minant −1 is not always necessary. For unramified extensions F of Q2 the proof of this is

as follows. Suppose g is such a lift with determinant −1. We can write g = 1 + 2X with

det(g) = −1 and X ∈ Mat2n(oF ). On one hand, we have det(g) = −1 ∈ 1 + 2tr(X) + p2
F

which holds if and only if tr(X) ≡ 1 mod pF . On the other, if g ∈ SO(Q) then, by writing

Ah = antidiag(1, . . . , 1) for the Gram matrix of the bilinear form h associated to Q, we

have gTAhg = Ah implies tr(X) ≡ 0 mod pF a contradiction.

It now remains to show that the stabilizers of the lattices Lm above are maximal compact.

We first consider the even Split Special Orthogonal groups.

Proposition 2.10.5. Let G be an Even Split Special Orthogonal group so Q is a non-

degenerate hyperbolic quadratic form on V with associated bilinear form h. With respect

to h, let {e−n, . . . , e−1, e1, . . . , en} be a Witt basis for V . Write Lm for the almost self-dual

lattice

Lm =
−1⊕
i=−n

oF ei ⊕
m⊕
j=1

oF ej ⊕
n⊕

k=m+1

pF ek.

with stabilizer K. Suppose m 6= 1, n− 1. Then K is maximal compact.

Proof. This is identical to the proof of Proposition 2.9.3 by taking L = Lm.

Proposition 2.10.6. Let G be an Odd Split Special Orthogonal group so Q = QVnH ⊥ Qan

is a non-degenerate anisotropic quadratic form on V = VnH ⊥ Van with associated bilinear

form h = h |VnH ⊥ h |Van. With respect to h, let {e−n, . . . , e−1, e1, . . . , en} be a Witt basis

for VnH and e0 be a basis for Van. Write Lm for the almost self-dual lattice

Lm =
−1⊕
i=−n

oF ei ⊕ Lan ⊕
m⊕
j=1

oF ej ⊕
n⊕

k=m+1

pF ek.
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with stabilizer K, where Lan = oF e0 is self-dual. Write Nm for lattice

Nm =
−1⊕
i=−n

oF ei ⊕ pFLan ⊕
m⊕
j=1

oF ej ⊕
n⊕

k=m+1

pF ek.

Suppose m 6= n− 1. Then K is maximal compact.

Proof. Write L = Lm. The same argument as in Proposition 2.9.3 shows the existence

of another self-dual lattice L′′ stabilized by K. We write Nm = L# ∩ Q−1(pF ) and

N ′′m = L′′# ∩Q−1(pF ). We then have either

L ) L′′ ⊇ N ′′m ) Nm

or

L′′ ) L ) Nm ) N ′′m ⊇ pFL
′′ ) pFL.

In the former case the stabilizer of L′′/Nm in L/Nm is a proper parabolic subgroup of G.

Similarly, in the latter case the stabilizer of pFL
′′/pFL in Nm/pFL is a proper parabolic

subgroup of G. In either case, K surjects onto the connected component of L/Nm and

Nm/pFL, and this group of isometries acts irreducibly, giving the required contradiction.

Recall that a maximal parahoric subgroup of G is the inverse image in K/K1 of the

connected component of K/K1 for K a maximal compact open subgroup of G. This

immediately gives the following.

Corollary 2.10.7. Let Gi be a Split Special Orthogonal group with i = dimVan. Let Ki

denote the stabilizer of the lattice Lm define above and K◦i denote the maximal parahoric

associated to Ki. Suppose m 6= 1, 2, n− 2, n− 1 for i = 0 and m 6= n− 2, n− 1 for i = 1.

Then

K◦0/K
1
0 ' SO+

2m(kF )× SO+
2(n−m)(kF )

and

K◦1/K
1
1 ' SO2m+1(kF )× SO+

2(n−m)(kF )

' Sp2m(kF )× SO+
2(n−m)(kF ).
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Remark 2.10.8. In our situation, we have given a description of the reductive quotients

for the maximal parahoric subgroups corresponding to the stabilizers of certain almost

self-dual lattices. This coincides with the description of the reductive quotient for G a

Split Special Orthogonal group when p is odd (albeit “swapped around” in the sense that

the same groups appear in the direct product but in a reverse order as m ranges over its

possible values). We recall this description below.

Suppose p is odd and $F is a fixed uniformizer of F . We define G = SO(h) as the group of

isometries of a symmetric bilinear form h. Note that we need not consider quadratic forms

since h(u, v) = 1
2

(Q(u+ v)−Q(u)−Q(v)) in this case. Let Lm be an almost self-dual

lattice for some m subject to 0 ≤ m ≤ n. Write L = Lm with dual L# = L#
m. On L/L#

we have the induced form

h(v + L#, w + L#) := h(v, w) + pF , for v, w ∈ L.

Similarly, on L#/pFL the induced form is

h(v′ + pFL,w
′ + pFL) := $−1

F h(v′, w′) + pF , for v′, w′ ∈ L#.

Write K for the maximal parahoric corresponding to the lattice L, with pro-unipotent

radical K1:

– If G = SO2n then

K/K1 ' SO+
2n(kF )× SO+

2(n−m)(kF )

for 0 ≤ m ≤ n with m 6= 1, n− 1.

– If G = SO2n+1 then

K/K1 ' SO+
2m(kF )× SO2(n−m)+1(kF )

for 0 ≤ m ≤ n with m 6= 1.

The only difference here is that in odd characteristic we no longer have the isomorphism

between odd-dimensional Special Orthogonal groups and Symplectic groups of codimen-

sion 1 over finite fields. Moreover, in our work we have the added caveat that we do not
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consider maximal parahorics which have a factor of SO+
4 (F2) appearing in their reductive

quotient.



Chapter 3

Representation Theory

Let F be a non-archimedean local field and G be a locally profinite group, by which we

mean G is a topological group in which every open neighbourhood of the identity contains

a compact open subgroup. Our aim is to study the representation theory of G, in partic-

ular, we will be interested in complex representations.

A representation of G is a pair (π,V) where π : G→ GL(V) is a homomorphism of groups

and V is a C-vector space. We omit the use of complex and simply talk of representations

of G. A representation (π,V) of G is smooth if, for every vector v ∈ V , the stabilizer of v

stabG(v) = {g ∈ G : π(g)v = v}

is open. For (π1,V1), (π2,V2) smooth representations of G, we write HomG(π1, π2) for the

space of G-homomorphisms between (π1,V1) and (π2,V2). We denote by R(G) the cate-

gory of smooth representations of G.

A representation (π,V) is irreducible if there are no proper submodules of V which are

stable under G. Let Irr(G) denote the set of equivalence classes of irreducible smooth

65
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representations of G. For ease of notation we often simply write π for the representation

(π,V).

Let (π,V) ∈ R(G). We call (π,V) admissible if the space VH = {v ∈ V : π(h)v = v} is

finite-dimensional for all open subgroups H of G. Admissible representations admit nice

properties which are useful in the study of the representation theory of G. One would

hope that admissible representations encompass a large class of objects in R(G). This

turns out to be the case.

Theorem 3.0.1. [Jac75] Let (π,V) ∈ Irr(G). Then (π,V) is admissible.

A classical result in representation theory which will be of use to us is Schur’s Lemma.

Theorem 3.0.2. [BH06, Chapter 1] Let π1, π2 ∈ Irr(G). Then HomG(π1, π2) 6= 0 if and

only if π1 ' π2. Moreover EndG(π1) = C.

Suppose (π,V) is an irreducible smooth representation of G. Let Z(G) denote the centre

of G. It follows from Schur’s Lemma that Z acts on V via a character ωπ : Z(G) → C×.

We call ωπ the central character of G.

3.1 Hecke Algebras

If G is a finite group, then the study of representations of G is equivalent to studying

modules over the group algebra CG. This is no longer true in our setting. Instead, we

get an analogous result if we replace the group algebra CG with what is called the Hecke

algebra of G.

Let C∞c (G) denote the space of functions φ : G→ C which are locally constant and have

compact support. The group G acts on C∞c (G) by left and right translation:

πgφ :h 7−→ φ(g−1h),

π′gφ :h 7−→ φ(hg),
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for all g, h ∈ G and all φ ∈ C∞c (G). A function φ ∈ C∞c (G) is said to be positive if

f(g) ≥ 0 for all g ∈ G, in which case we write φ ≥ 0. A left Haar integral I on G is

a non-zero linear functional I : C∞c → C which is invariant under left translation and is

positive on positive functions φ ∈ C∞c (G); it is unique up to multiplication by a positive

real scalar. One defines a right Haar integral in the same way. A group G is said to be

unimodular if left Haar integrals and right Haar integrals coincide. Any reductive p-adic

group is unimodular [Ren10, Proposition V.5.4].

Let X be a Hausdorff topological space. A Borel set S is a set which can be formed by

countable unions, countable intersections or complementations of open subsets of X. A

σ-algebra Σ on X is a subset of the power set P(X) such that

i) X ∈ Σ;

ii) Σ is closed under taking complements;

iii) Σ is closed under taking countable unions.

A Radon measure µ on G is a measure µ on the σ-algebra of Borel sets of G which is finite

on compact sets, outer-regular on Borel sets i.e.

µ(S) = inf{µ(U) : S ⊆ U, U open},

and inner-regular on open sets i.e.

µ(U) = sup{µ(K) : K ⊆ U,K compact}.

A (left)-Haar measure µ is a non-zero Radon measure which is invariant under left-

translation i.e. µ(gS) = µ(S) for all Borel sets S ⊆ G and g ∈ G [BH06, Chapter

1.3]. Moreover it is unique up to multiplication by positive scalars. An immediate conse-

quence of this is that there exists a function δ : G→ (0,∞) called the modulus character

of G satisfying µ(Sx) = δ(x)µ(S) for all Borel sets S. This character is unique and has

the property that G is unimodular if and only if δ(G) = 1.
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Haar measures enable us to define a convolution product on C∞c (G) as follows. Let µ be a

left Haar measure on G. For any f1, f2 ∈ C∞c (G) we define the convolution product f1 ∗f2

as

f1 ∗ f2(g) =

∫
G

f1(h)f2(h−1g)dµ(h).

With respect to the convolution product we can view C∞c (G) as an associative algebra. We

call the algebra H(G) = (C∞c (G), ∗) the Hecke algebra of G. While H(G) is non-unital, it

contains many idempotents. For any compact open subgroup K of G the function

eK(g) =

 1
µ(K)

if g ∈ K,

0 otherwise,

is an idempotent in H(G). Once can easily form a unital subalgebra of H(G), namely the

algebra eK ∗ H(G) ∗ eK with unit eK . This is the space of functions φ ∈ C∞c (G) which

satisfy φ(k1gk2) = φ(g) for all k1, k2 ∈ K. These subalgebras have the property that

H(G) =
⋃
K

eK ∗ H(G) ∗ eK ,

where K runs over all compact open subgroups of G. An H(G)-module M is smooth if

for all m ∈ M , there exists a compact open subgroup K of G such that eK ·m = m. Let

M1,M2 be smooth H(G)-modules. We write HomH(G)(M1,M2) for the space of all H(G)-

homomorphisms from M1 to M2. If we take objects to be smooth H(G)-modules and

morphisms to be H(G)-homomorphisms then we can construct the category H(G)-Mod

of smooth H(G)-modules.

Theorem 3.1.1. There is an equivalence of categories between R(G), the category of

smooth representations of G, and H(G)-Mod, the category of smooth H(G)-modules.

The action of ϕ ∈ H(G) on a representation V ∈ R(G) is given by

ϕ · v =

∫
G

ϕ(g)π(g)v dg,

which gives V the structure of a left H(G)-module. This is a finite sum since both ϕ and v

are smooth. On the other side, for a smooth H(G)-module M , g ∈ G acts in the following
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way:

π(g) ·m =
1

µ(K)
1gK ·m

for m ∈M satisfying eK ·m = m. Here 1gK denotes the characteristic function of gK.

3.2 Induction and Restriction

Let H be a closed subgroup of G and R(H) denote the category of smooth representa-

tions of H. Let (ρ,W) ∈ R(H). Then one can construct from (ρ,W) a representation

(IndGH ρ, IndGHW) ∈ R(G) as follows. Let IndGHW denote the vector space of functions

f : G→ W satisfying

i) f(hg) = ρ(h)f(g) for all h ∈ H, g ∈ G;

ii) there exists a compact open subgroup K of G such that f(gk) = f(g) for all k ∈ K.

The group G acts on IndGHW by right translation. The induction functor IndGH is right

adjoint to the restriction functor

ResGH : R(G) −→ R(H)

which restricts representations and morphisms from G to H in the natural way. We can

interpret this property in the following classical result.

Theorem 3.2.1 (Frobenius Reciprocity). Suppose H is a closed subgroup of G. Let

(ρ,W) ∈ R(H) and (π,V) ∈ R(G). Then

HomG(π, IndGH ρ) ' HomH(ResGH π, ρ).

If H is also open, ResGH has a left adjoint which is compact induction, denoted indGH . In

terms of functions, indGHW is the subspace of IndGHW consisting of functions which are

compactly supported modulo H. In this case, there is an analogous version of Frobenius

Reciprocity.
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Theorem 3.2.2 (Frobenius Reciprocity). Suppose H is an open subgroup of G. Let

(ρ,W) ∈ R(H) and (π,V) ∈ R(G). Then

HomG(indGHπ, ρ) ' HomH(π,ResGH ρ).

This says that compact induction indGH is left-adjoint to the restriction functor.

3.3 Parabolic Induction and Cuspidal

Representations

Let G be a reductive p-adic group. We have seen above that we can obtain representations

of G by the process of induction. When we start with a representation of a Levi subgroup

and induce, this is known as parabolic induction. It is this method which we now describe.

Let P be a parabolic subgroup with Levi decomposition P = M n N . Let (ρ,W) be a

representation of M. Since M ' P/N we can inflate ρ to a representation of P , which

we denote InflPMρ. We abuse notation and also refer to this inflated representation as ρ.

This gives a functor InflPM : R(M)→ R(P).

We can then induce from P to G to obtain a representation of G. The composition of

these two functors gives a functor IndGM,P which we call parabolic induction. The space

IndGM,P ρ consists of all locally constant functions f : G→W such that

f(pg) = ρ(p)f(g)

for all p ∈ P , g ∈ G. There is also a variant of parabolic induction called normalized

parabolic induction. This is again a functor ιGM,P : R(M) → R(G). However, ιGM,PW is

now the space of locally constant functions f : G→W such that

f(pg) = δ
1
2
P (p)ρ(p)f(g)

for all p ∈ P and g ∈ G. Here δP is the modulus character of P . By definition, we have

ιGM,P(ρ) = IndGM,P(δ
1
2
P ⊗ ρ).
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Whilst the definitions of the two functors are similar, normalized parabolic induction has

the added benefit that it preserves unitary representations i.e. if ρ is a unitary represen-

tation then ιGM,P(ρ) is a unitary representation.

One can ask if by ranging over all proper parabolic subgroups of G whether all irreducible

representations of G appear as an irreducible subquotient of a (normalized) parabolically

induced representation. This turns out to be false, and leads to the definition of a cuspidal

representation.

Let π be an irreducible representation of G. We say that π is cuspidal if it is not a quo-

tient of ιGM,Pρ, for any proper parabolic subgroup P of G with Levi factor M and σ an

irreducible representation ofM. We call π supercuspidal if is not a subquotient of ιGM,Pρ,

for any parabolic subgroup P of G with Levi factorM and σ an irreducible representation

of M.

In order to understand the representation theory of G, we therefore need to understand

all cuspidal representations of G. This is a difficult problem which, although it has not

yet been answered in full generality, has been resolved in many cases. The known results

all suggest that the following long-standing conjecture is true, although not everyone in

the mathematical community believes that this is the case.

Conjecture 3.3.1. Let π be an irreducible cuspidal representation of G. There exist an

open, compact mod-centre subgroup J̃ of G and an irreducible representation Λ of J̃ such

that

π ' indG
J̃

Λ.

3.4 Intertwining

We have seen above that in order to understand R(G) for a reductive p-adic group G,

we need to understand the irreducible cuspidal representations of G. A powerful concept
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which is used when giving an explicit construction of such representations is that of in-

tertwining.

Let J, J ′ be compact open subgroups of G, and let ρ, ρ′ be representations of J, J ′ respec-

tively. Let g ∈ G. We say that g intertwines λ with λ′ if

HomJ∩gJ ′(λ,
gλ′) 6= 0.

Here gJ ′ = gJ ′g−1 and gλ : j 7→ λ(g−1jg) for j ∈ gJ ′. We denote the set of g ∈ G which

intertwine λ with λ′ by IG(λ, λ′). Furthermore, if λ = λ′ we say that g intertwines λ

and write IG(λ) for the set of g which intertwine λ. While intertwining is both reflexive

and symmetric, it falls short of being an equivalence relation because transitivity is not

guaranteed.

The following Theorem due to Carayol lies at the heart of all proofs concerning classifi-

cation Theorems of cuspidal representations. It highlights the importance of intertwining

in these instances.

Theorem 3.4.1. [Car84, Proposition 1.5] Let J̃ be an open, compact mod-centre subgroup

of G. Let λ be an irreducible representation of J̃ . If IG(λ) = J̃ , then indG
J̃
λ is irreducible

and cuspidal.

3.5 Bernstein Decomposition

We note that while we have an equivalence of categories in Theorem 3.1.1, the categories

are too large to work with. One would hope that it is possible to decompose both cate-

gories into pieces and that there is an analogous result for each piece. This decomposition

is known as the Bernstein Decomposition. For a more comprehensive treatise of the fol-

lowing material, see [BK98].

An unramified character of G is a character of the form g 7→| φ(g) | s where φ is an F -

rational character of G and s ∈ C. Let X0(G) denote the group of unramified characters
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of G. Unramified characters have the property that they are trivial on every compact

subgroup of G and are determined by their valuation on a uniformizer of F .

Let π be an irreducible representation of G. Let M be a Levi subgroup of a parabolic

subgroup P of G and σ be an irreducible cuspidal representation of G. We call the pair

(M, σ) a cuspidal pair. If the representation π is equivalent to a subquotient of the (nor-

malized) parabolically induced representation ιGM,Pσ, we refer to the cuspidal pair (M, σ)

as the cuspidal support of π, which is unique up to conjugacy.

Two cuspidal pairs (M, σ) and (M′, σ′) are inertially equivalent if there exist a g ∈ G

and χ ∈ X0(M′) satisfying M′ = gM and σ′ = gσ ⊗ χ. The inertial support of π is the

inertial equivalence class of its cuspidal support. We denote the inertial equivalence class

of (M, σ) by [M, σ]G and the set of inertial equivalence classes of G by B(G). We call

B(G) the Bernstein spectrum of G.

We can now state the Bernstein Decomposition which describes a decomposition of the

category R(G) of smooth representations of G.

Theorem 3.5.1 (Bernstein). [Ber84] For each s ∈ B(G), let Rs(G) be the full subcategory

of R(G) consisting of representations whose irreducible subquotients have inertial support

contained in s ∈ B(G). Then

R(G) =
∏

s∈B(G)

Rs(G).

That is, if (π,V), (ρ,W) are representations in R(G) then V =
⊕

s V
s where Vs is the

space associated to the block Rs(G) and HomG(V ,W) =
∏

s HomG(Vs,Ws).

Given such a decomposition, the task is now to find a nice description of each Rs(G),

which we call a block.

Bernstein affords one way of splitting up R(G), but we shall now consider another which

uses idempotents.
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Let (ρ,W) be a smooth irreducible representation of K, a compact open subgroup of G,

and (π,V) be a smooth representation of G. We write Vρ for the sum of all irreducible

K-subspaces of V which are equivalent to ρ and call it the ρ-isotypic component of V .

Since K is compact, the restriction of π to K is semisimple, so we can write

V =
⊕

ρ∈Irr(G)

Vρ.

We say V contains ρ if Vρ 6= 0. Let Rρ(G) denote the full subcategory of R(G) consisting

of representations which are generated (as representations of G) by their ρ-isotypic vectors.

Now fix a Haar measure µ on G. Define eρ ∈ H(G) by

eρ =


dimρ
µ(K)

trW (ρ(x−1)) if x ∈ K,

0 otherwise.

This provides the projection of V onto each piece Vρ. Given two representations ρ and

ρ′ one then has eρ ∗ eρ′ = eρ if and only if ρ ' ρ
′
, otherwise eρ ∗ eρ′ = 0. Moreover

eρ · V = Vρ. This construction is important because we obtain the scalar Hecke algebra

Hρ(G) := eρ ∗ H(G) ∗ eρ which is a subalgebra of H(G) with unit eρ. The ρ-isotypic

component V ρ is then a left Hρ(G)−module.

Whilst the scalar Hecke algebra gives a nice splitting of the category H(G), the subalgebra

Hρ(G) is still too large to work with. Instead, we turn to another type of Hecke algebra

which is Morita equivalent to Hρ(G), the spherical Hecke algebra H(G, ρ), defined as

H(G, ρ) = EndG(indGKρ).

The following result of Bushnell–Kutzko gives a pair of functors which describe an equiv-

alence of categories between Rρ(G) and the categories of smooth modules over the two

Hecke algebras described above, under certain conditions.

Theorem 3.5.2. [BK98, Proposition 3.3, Theorem 4.3] Let Rρ(G), H(G, ρ) and Hρ(G)

be as above. The following are equivalent:
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i) Rρ(G) is closed under subquotients;

ii) The functor Mρ : R(G) → Hρ(G)-Mod which maps a smooth representation to its

ρ-isotypic component induces an equivalence of categories Rρ(G) ' Hρ(G)-Mod;

iii) The functor mρ : R(G)→ H(G, ρ)-Mod which maps the representation π to HomK(ρ, π)

induces an equivalence of categories Rρ(G) ' H(G, ρ)-Mod;

iv) Every irreducible subquotient of indGKρ contains ρ;

v) There exists a finite subset S ⊂ B(G) such that

Rρ(G) =
∏
s∈S

Rs(G).

We say that (K, ρ) is an S-type if satisfies the properties of Theorem 3.5.2. If S is a

singleton then we simple refer to (K, ρ) as a type. Types are important because if we

have an explicit description of a type (K, ρ) and of its spherical Hecke algebra H(G, ρ)

for each block Rs(G), then using the Bernstein Decomposition above we have an explicit

description of the category R(G).
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3.6 Representation Theory of GLN(F )

3.6.1 Notation

In this section we recall the classification of irreducible cuspidal representations as given

by Bushnell–Kutzko in [BK93a]. The treatment given here is by no means complete, we

shall only give the most basic details of the construction. We refer the reader to the

original source above, or to the notes of Conley [Con09] which give a more comprehensive

exposition.

Let F be a p-adic field, with no restriction on the residue characteristic. We write oF for

its ring of integers, pF for the unique maximal ideal, and kF = oF/pF for the residue field

which is finite of characteristic qF = pr for some r ∈ N. Fix $F a uniformizer of F . Let

V be an N -dimensional F -vector space. Write A = EndF (V ) and G = AutF (V ) which,

after fixing a basis for V , is isomorphic to GLN(F ).

Let A be a hereditary oF -order in A with Jacobson radical P. The unit group

U(A) = A×

is a parahoric subgroup of GLN(F ), and every parahoric subgroup is the unit group of

some hereditary order. The group U(A) comes with a natural filtration by normal compact

open subgroups

Un(A) = 1 + Pn,

for n ≥ 1, where P is the Jacobson radical of A. With respect to a suitable choice

of basis A consists of block matrices which are upper triangular mod p, with block sizes

N1, . . . , Ne satisfying
∑e

i=1 Ni = N . The quotient U(A)/U1(A) is isomorphic to the group∏e
i GLNi(kF ).

The normalizer K(A) = {g ∈ GLN(F ) : g−1Ag = A} of A is an open, compact-mod-centre

subgroup of GLN(F ). It normalizes Un(A) for each n and contains U(A) as its maximal
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compact subgroup.

We fix ψF an additive character of F with conductor pF i.e. ψF is trivial on pF but

nontrivial on oF . We write tr for the trace map tr : A → F so that ψA = ψF ◦ tr is a

character of A. For integers 1 ≤ m ≤ n ≤ 2m we have the canonical isomorphism

Pm/Pn ' Um(A)/Un(A)

induced by x 7→ 1 + x. For S a subset of A we write S∗ = {a ∈ A : ψA(aS) = 1}. Then

(Pn)∗ = P1−n and we get an isomorphism

P−n/P−m '
(
Pm+1/Pn+1

) ∧
between cosets P−n/P−m and characters of Pm+1 trivial on Pn+1. If we impose 0 ≤ m ≤

n ≤ 2m+ 1 then we have an isomorphism

P−n/P−m '
(
Um+1(A)/Un+1(A)

)∧
β + P−m 7→ ψβ,

where ψβ is the character given by ψβ(1 + x) = ψA(β(x)) for 1 + x ∈ Um+1(A), which is

trivial on Un+1(A). If we let νA : A → Z be the map νA(x) = sup{k ∈ Z : x ∈ Pk} then

ψβ is nontrivial on Un(A) provided νA(β) = −n.

We call the four-tuple [A, n,m, β] a stratum if

1. A is a hereditary order;

2. m < n are nonnegative integers;

3. β ∈ P−n.

We say that any two strata [A1, n1,m1, β1] and [A2, n2,m2, β2] are equivalent if

β1 + P−m1
1 = β2 + P−m2

2 ,

where Pi is the Jacobson radical of Ai. We write [A1, n1,m1, β1] ∼ [A2, n2,m2, β2] to

denote this equivalence. One can show that if the two strata above are equivalent, then
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A1 = A2, m1 = m2 and n1 = n2.

We say that g ∈ G intertwines the strata [A1, n1,m1, β1] and [A2, n2,m2, β2] if

g−1(β1 + P−m1
1 )g ∩ (β2 + P−m2

2 ) 6= ∅.

If 0 ≤ mi ≤ ni ≤ 2mi−1, for i = 1, 2, then this is equivalent to saying that the two strata

intertwine if and only if, on the level of the characters ψβi ,

gψβ1 | gUm1 (A1)∩Um2 (A2)= ψβ2 | gUm1 (A1)∩Um2 (A2) .

We denote the set of g ∈ G which intertwine the two strata by

IG([A1, n1,m1, β1], [A2, n2,m2, β2]),

which we abbreviate to IG([A, n,m, β]) when both strata are equivalent to [A, n,m, β].

3.6.2 Fundamental Strata

Before we move on and give the necessary definitions in order to review the construction

of cuspidal representations of G, we first detour and look at a certain class of strata.

Let [A, n, n − 1, β] be a stratum with no condition on n. We say that [A, n, n − 1, β] is

fundamental if the coset β + P1−n does not contain a nilpotent element of A. A stratum

which is not fundamental is called non-fundamental.

Remark 3.6.1. In practice, to identify if a stratum is fundamental or not, we use the

following equivalent condition. Let [A, n, n − 1, β] be a stratum in A and write yβ =

$n/gβe/g ∈ A with e = e(A) and g = gcd(n, e). Let Φ(X) be the characteristic polynomial

of yβ and write ϕβ(X) ∈ kF [X] for the reduction mod pF of Φ(X). We call ϕβ(X) the

characteristic polynomial of the stratum. A stratum [A, n, n − 1, β] is then said to be

fundamental if ϕβ(X) 6= Xn.

The following Proposition gives one a way to identify non-fundamental strata.

Proposition 3.6.2. Let [A, n, n− 1, β] be a stratum in A. The following are equivalent:
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(i) the coset β + P1−n contains a nilpotent element;

(ii) there exists m ≥ 1 such that βm ∈ P1−mn.

We use the second condition to identify non-fundamental stratum, which says that the

stratum is non-fundamental if β is nilpotent mod pF . This is because β ∈ P−n and so

while we expect βm ∈ P−mn, βm actually lies one step further in the filtration. The reason

why fundamental strata are important is seen in the following key result.

Theorem 3.6.3. Let [A, n, n− 1, β] be a stratum in A. Write P for the Jacobson radical

of A and e for the period of A. The following are equivalent:

(i) the stratum [A, n, n− 1, β] is non-fundamental;

(ii) there exists a stratum [A′, n′, n′ − 1, β′] such that

β + P1−n ⊆ P′−n
′

and
n′

e′
<
n

e
,

where P′ is the Jacobson radical of A′, which has period e′.

The implications of this result for the representation theory of G are as follows.

Theorem 3.6.4. Let π be an irreducible smooth representation of G. Then precisely one

of the following occurs:

(i) there exists a hereditary order A in A such that π contains the trivial character of

U1(A);

(ii) there exists a fundamental stratum [A, n, n − 1, β] with n ≥ 1 such that π contains

the character ψβ of Un(A).

Moreover, if we are in the latter case, then for any other stratum [A′, n′, n′ − 1, β′] with

n′ ≥ 1 such that π contains the character ψβ′ of Un′(A′), we have

n

e
≤ n′

e′
,

where e (resp. e′) is the period of A (resp. A′).
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This Theorem implies that the fundamental strata in π can be categorised as the strata

for which n/e is minimal amongst all strata in π. We call the invariant n/e the depth or

normalized level of π.

We note that in the setting of Theorem 3.6.4, if we are in case (i) then we say π is of depth-

zero; this means that π has fixed vectors under the pro-unipotent radical of the maximal

parahoric subgroup GLN(oF ) of G. If we are in the latter case then π is of positive-depth.

We note that the classification of depth-zero cuspidal representations of G is easier than

that for positive-depth cuspidals, and so we split out attention into the two cases below.

3.6.3 Construction of Depth-Zero Cuspidal Representations

Here we give the outline of the construction of an irreducible cuspidal representation of

G of depth-zero. Let A be a principal hereditary order over A with period e = e(A). Set

Ne = N/e. Then there exists a basis for V such that

A =


oF oF · · · oF

pF oF
. . .

...
...

. . . . . . oF

pF · · · pF oF


where each entry is a block of size Ne × Ne. Moreover, the Jacobson radical P has the

form

P =


pF oF · · · oF

pF pF
. . .

...
...

. . . . . . oF

pF · · · pF pF

 .

The groups U(A) and U1(A) have the property that

U(A)/U1(A) '
e∏
i=1

GLNe(kF ).
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A representation σ0 of GLNe(kF ) is cuspidal if, for any proper parabolic subgroup P of

GLNe(kF ) with unipotent radical N , the restriction of σ0 to N does not contain the trivial

character of N . We take σ0 an irreducible cuspidal representation of GLNe(kF ) and form

the tensor representation σ = σ⊗e0 , a representation of U(A)/U1(A). We inflate σ to a

representation of U(A) which we also denote by σ. We then extend σ to a representation

λ of the compact mod-center subgroup J = K(A) of G. The representation

π = indGJ λ

is irreducible and cuspidal if and only if e = 1 i.e. if and only if A is a maximal order and

K(A) = F×U(A).

3.6.4 Construction of Positive-Depth Cuspidal Representations

Let [A, n,m, β] be an arbitrary stratum in A. We say that [A, n,m, β] is pure if

(i) the algebra E = F [β] is a field;

(ii) E× ⊆ K(A);

(iii) νA(β) = −n.

If [A, n,m, β] is pure, then we can consider V as an E-vector space. It is then natural

to consider Bβ = EndE(V ) the centralizer of β in A. We write Bβ = A ∩ Bβ and

Qβ = rad(Bβ) = P ∩ Bβ. Note that Bβ is a hereditary oE-order with Jacobson radical

Qβ. For fixed β, we define the map aβ : A→ A by

aβ(x) = βx− xβ, for x ∈ A,

which is a (Bβ, Bβ)-bimodule homomorphism with kernel Bβ. For k ∈ Z, define

Nk(β,A) = {x ∈ A : aβ(x) ∈ Pk}.

Then Nk(β,A) is a lattice in A since A ⊇ Nk(β,A) ⊇ Pk+n. Moreover, Nk(β,A) ∩ Bβ =

Bβ. For sufficiently large k we have Nk(β,A) ⊆ Bβ + P. On the other hand, if k is
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sufficiently small, we have Nk(β,A) = A. This leads to the following important definition:

k0(β,A) =

max{k ∈ Z : Nk(β,A) * Bβ + P} if E 6= F ,

−∞ if E = F .

The reason why we set k0(β,A) = −∞ in the latter case is because A = Bβ + P =

Nk(β,A), for all k ∈ Z. Suppose that the stratum [A, n,m, β] is pure. If it satisfies

−m > k0(β,A) then we call [A, n,m, β] simple. While we have a concrete definition for

a simple stratum, calculating k0(β,A) is difficult to do. Instead, we use the following

alternate characterization of a simple stratum which does not rely on the value k0(β,A)

[BK93a, (2.4.1)(i)].

A pure stratum [A, n,m, β] is called simple if, amongst all pure strata [A, n,m, β′] equiva-

lent to [A, n,m, β], the field extension F [β]/F has minimal degree i.e. [F [β] : F ] ≤ [F [β′] :

F ] for all equivalent pure strata [A, n,m, β′].

The first class of examples of simple strata is given by strata in which β is minimal over

F . Let νE be the normalized additive valuation on E = F [β] and write ν = νE(β). Let

e(E | F ) denote the ramification index of the field extension E/F . We say β is minimal

over F if

(i) gcd(ν, e(E | F )) = 1;

(ii) the element $−νF βe(E|F ) + pE ∈ kE generates the residue class field extension kE/kF .

Moreover, the second condition is independent of the choice of uniformizer $F . If E = F ,

then β is always minimal over F . If β is minimal over F with E = F [β] then it is possible

to choose a hereditary order A with the property E× ⊆ K(A). One then simply sets

n = −νA(β) to obtain a simple stratum [A, n,m, β]. We call this class of simple strata

minimal strata. Note that the authors of [BK93a] call these strata alfalfa.

For brevity we now always consider β minimal over F (unless otherwise stated). This

affords us the luxury of not having to define important (but superfluous to our needs)
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notions like defining sequences and the oF -orders H(β,A) ⊆ J(β,A) ⊆ A. Let [A, n, 0, β]

be a minimal stratum with νA(β) = −n. We define the groups

H = U(Bβ)Ub
n
2 c+1(A),

J = U(Bβ)Ub
n+1
2 c(A),

which have filtration subgroups

Hk = H ∩ Uk(A),

Jk = J ∩ Uk(A).

We have seen that for any stratum [A, n,m, β] with 2m + 1 ≥ n ≥ m ≥ 0 we obtain a

character ψβ of Um+1(A) trivial on Un+1(A). We now wish to define characters θ of the

group Hm+1(β) which contain ψβ.

Let [A, n, 0, β] be a minimal stratum with νA(β) = −n. Let detBβ : Bβ → E× denote

the determinant map. For 0 ≤ m < n, let C(A,m, β) denote the set of characters θ of

Hm+1(β) such that

(i) θ |
Hm+1(β)∩Ub

n
2 c+1(A)

= ψβ;

(ii) θ |Hm+1(β)∩B×β
factors through detBβ .

Note that the restriction of ψβ to Ub
n
2 c+1(A) ∩ B×β factors through detBβ and that the

G-normalizer K(Bβ) normalizes ψβ. We call such θ ∈ C(A,m, β) simple characters.

Remark 3.6.5. In the case that β is not minimal over F , the authors of [BK93a] give an

inductive definition of simple characters and an algorithm to compute them. This relies

on the notion of defining sequence which we have not covered here. For our purposes we

need only know that these characters exist and have the properties (i) and (ii) above.

We started with characters ψβ of Um+1(A) which we could then extend to simple characters

θ ∈ C(A, 0, β) of the group H1(β). By definition we see that we have inclusions

H1(β) ⊆ J1(β) ⊆ J0(β) = J(β).
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Thus it follows that we wish to extend further our simple characters of H1(β) to the

groups J1(β) and J(β). The first of these steps is the simpler of the two.

Proposition 3.6.6. [BK93a, (5.1.1)] Let [A, n, 0, β] be a simple stratum in A and θ ∈

C(A, 0, β). There exists a unique irreducible representation η(θ) of J1(β) with the property

that η(θ) |H1(β)= θ
⊕
t where t = [J1(β) : H1(β)]. Moreover, the G-intertwining of η(θ) is

J1(β)B×β J
1(β).

We call η(θ) a Heisenberg extension of θ. Now given a representation η(θ) of J1(β), we

no longer have such a nice choice of extension as we did in the previous step. There are

many possible extensions of η(θ) to a representation of J(β), not all having the desired

properties. This leads us to the notion of a β-extension of η(θ).

Let [A, n, 0, β] be a simple stratum in A, θ ∈ C(A, 0, β) a simple character and η the

Heisenberg extension of θ. A β-extension of η is a representation κ of J(β) satisfying

(i) κ | J1(β)= η;

(ii) B×β ⊆ IG(κ).

If we take χ any character of o×E trivial on 1 + pE then χ ◦ detBβ defines a character of the

quotient U(Bβ)/U1(Bβ). Using the canonical isomorphism between U(Bβ)/U1(Bβ) and

J(β)/J1(β), which follows from the definitions and theorems, we can view χ ◦ detBβ as a

character of J(β)/J1(β). This leads to the following Theorem.

Theorem 3.6.7. [BK93a, (5.2.2)] Let [A, n, 0, β] be a simple stratum in A, θ ∈ C(A, 0, β)

a simple character with Heisenberg extension η.

(i) There exists a β-extension κ of η.

(ii) If κ is a β-extension of η, then all other β-extensions are of the form κ⊗ (χ ◦detBβ)

for some character (χ ◦ detBβ) of U(Bβ)/U1(Bβ).

(iii) Distinct characters χ give rise to non-isomorphic representations κ ⊗ (χ ◦ detBβ)

which do not intertwine.
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We are now able to define simple types, which will result in us being able to state the main

theorems of [BK93a], namely the classification of cuspidal representations of GLN(F ). Let

J be a compact open subgroups of G and λ and irreducible representation of J . We call

the pair (J, λ) a simple type if it is one of the following [BK93a, (5.5.10)]:

(1) (J, λ) = (J0(β), κ⊗ σ) where

(i) the stratum [A, n, 0, β] is simple with A a principal hereditary oF -order in A;

(ii) for some simple character θ ∈ C(A, 0, β), κ is a β-extension of the Heisenberg

representation η(θ);

(iii) let E = F [β] and e = e(Bβ) so that σ is the inflation to J0(β) of σ⊗e where σ0

is an irreducible cuspidal representation of GLN/[E:F ](kE).

(2) (J, λ) = (U(A), σ) where e = e(Bβ), E = F , A is a principal hereditary oF -order and

σ is the inflation of σ⊗e0 for σ0 an irreducible cuspidal representation of GLN/e(A)(kF ).

In fact, the distinction here is not necessary. We can view case (2) as a special case of

case (1) by setting E = F , B = A, Jn(β,A) = Un(A) and taking θ, η, κ all trivial.

Furthermore, a maximal simple type is a simple type (J, λ) for which e(E | F ) = e(A). We

are now ready to state the follow Theorem which summarises the main results of [BK93a].

Theorem 3.6.8. (1) Let π be an irreducible cuspidal representation of G. Then π con-

tains some simple type (J, λ).

(2) If π is an irreducible cuspidal representation of G then π contains a maximal simple

type (J, λ) with multiplicity 1. Moreover, if π contains two maximal simple types

(J1, λ1) and (J2, λ2), then (J1, λ1) and (J2, λ2) are conjugate in G.

(3) Let (J, λ) be a maximal simple type. If π is an irreducible representation of G which

contains λ, then π is cuspidal. Moreover, if π′ is another irreducible representation

of G which contains λ, then π′ ' π ⊗ (χ ◦ detG) for χ an unramified character of F×

and detG : G→ F× the determinant map i.e. π and π′ are inertially equivalent.
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(4) Let (J, λ) be a maximal simple type and π an irreducible cuspidal representation of G

containing λ. Then there exists a unique representation Λ of E×J extending λ such

that

π ' indGE×JΛ.



Chapter 4

Depth-Zero L-parameters of

Classical Groups

4.1 Depth Zero Cuspidal Representations

In this section we concern ourselves with recalling the classification of depth zero irre-

ducible cuspidal representations of GLN(F ) and a classical group G, by which we mean a

Symplectic group or Split Special Orthogonal group.

We write CuspN(F ) for the set of equivalence classes of irreducible cuspidal represen-

tations of GLN(F ). We set Cusp(F ) =
⋃
N≥1 CuspN(F ) with the understanding that

π ∈ Cusp(F ) is an irreducible cuspidal representation of some GLN(F ).

A representation π is said to be self-dual if π is isomorphic to its dual representation; we

write Cusp∗N(F ) for the set of self-dual irreducible cuspidal representations of GLN(F ),

and Cusp∗(F ) =
⋃
N≥1 Cusp∗N(F ).

87
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We recall that a representation π ∈ Cusp(F ) is of depth zero if there exist non-zero vec-

tors which are fixed by the pro-p-radical of the maximal parahoric subgroup GLN(oF ) of

GLN(F ). The set of equivalence classes of irreducible cuspidal representations contained

in Cusp(F ) of depth zero is denoted Cusp[0](F ). Similarly, we write Cusp∗[0](F ) for the set

of equivalence classes of depth zero self-dual irreducible cuspidal representations, which is

contained in Cusp(F ).

Any π ∈ Cusp[0](F ) is of the form

π = ind
GLN (F )

F×GLN (oF )
ωπλπ

where λπ is the inflation of an irreducible cuspidal representation τπ from the finite re-

ductive quotient GLN(kF ). One then extends λπ to F×GLN(oF ) by the central character

ωπ and compactly induces to π. Provided the representation λπ is self-dual and ωπ is

quadratic, then its compactly induced representation π is also self-dual [Adl97].

We write Cusp(G) for the set of equivalence classes of irreducible cuspidal representations

of G, which contains the set of equivalence classes of depth zero cuspidal representations

of the classical group G, which we denote Cusp[0](G). Any σ ∈ Cusp[0](G) can be written

as

σ = indGJσΛσ

where Jσ is the normalizer of a maximal parahoric J◦π of G, itself a classical group. More-

over, Λσ |J◦π= λπ is the inflation of τσ = τ (1)
σ ⊗τ (2)

σ an irreducible cuspidal representation of

the finite reductive quotient J◦σ/J
1
σ ' GN1×GN2 . The integers Ni satisfy N1 +N2 = dimG

and are wholly determined by σ.
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4.2 Covers and Hecke Algebras

Let π be a depth-zero irreducible cuspidal representation of GLmπ(F ) and σ be a depth-

zero irreducible cuspidal representation of a classical group G. We naturally view M '

GLmπ(F )×G as a maximal Levi subgroup of G′ a larger classical group of the same type

as G. We now construct a cover in the sense of Bushnell–Kutzko using the local data

describing π and σ, as given in the previous section.

Write P+ = MN+ for a parabolic subgroup of G′ with Levi factor M and denote by

P− = MN− for the opposite parabolic subgroup to P+. Set JM = GLmπ(oF ) × Jσ a

compact open subgroup of M and λM = λπ ⊗ λσ an irreducible representation of JM.

The pair (JM, λπ) is a type for M.

Recall from [BK98, (8.1)] that there exist a compact open subgroup J of G and a repre-

sentation λ of J satisfying:

i) J ∩M = JM;

ii) λ |JM= λM;

iii) λ |J∩N± is trivial.

Whilst J is not itself a maximal compact subgroup of G′, it is contained in the intersection

of two maximal compact subgroups, namely J1 := JN1+mπ ,N2 and J2 := JN1,N2+mπ . The

reductive quotients J1/J
1
1, J2/J

1
2 are isomorphic to G(1) := GN1+mπ ,N2 , G(2) := GN1,N2+mπ

respectively. The maximal compacts Ji come equipped with Weyl group elements si ∈ Ji.

These elements are denoted s1, s2 = s$1 in [Ste08, Section 6.2] and interchange (up to

scalars) the GLmπ factors in M whilst stabilizing the block associated to G.

The embedding of J into the maximal compact subgroup Ji give rise to the following
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commutative diagram:

J Ji

P(i) Ji/J
1
i

	 .

Here P(i) are parabolic subgroups: they are the image in Ji/J
1
i of the parahoric J◦ asso-

ciated to J . The parabolics have Levi factors M(i) ' GLmπ(kF ) × GN1 × GN2 . We write

G(mπ)
Ni

:= GLmπ(kF )× GNi .

The embedding of J into the maximal compact Ji also gives rise to an embedding of

spherical Hecke algebras

EndG(i)(Ind
G(i)
G(mπ)
Ni

τ (i)) = H(G(i), τ
(i)) ' H(Ji, λ) ↪→ H(G, λ),

for τ (i) a representation of the parabolic P(i) which satisfies τ (i) |G(mπ)
Ni

= τπ ⊗ τ (i)
σ . The

endomorphism algebra EndG(i)(Ind
G(i)
G(mπ)
Ni

τ (i)) is two-dimensional, so Ind
G(i)
G(mπ)
Ni

τ (i) = τ ′(i)⊕τ
′′

(i)

with dim τ ′(i) ≥ dim τ
′′

(i) [HL80, 3.18,4.5]. We take T i ∈ H(G(i), τ
′) with support on the non-

trivial double coset P(i)siP(i) and which satisfies the quadratic relation (T i+1)(T i−qri) =

0, where (up to normalization)

qri :=
dim τ ′(i)

dim τ
′′
(i)

.

Through the embedding, this element corresponds to Ti ∈ H(G′, λ) which is supported on

the non-trivial double coset JsiJ , which also satisfies the quadratic relation (Ti + 1)(Ti −

qri) = 0.

We form the element φ = T2T1, which is invertible since each Ti is invertible, with support

supp (φ) ⊆ Js2Js1J

= J s2(J ∩N−)s−1
2︸ ︷︷ ︸

⊆ J ∩N+

s2(J ∩M)s−1
2︸ ︷︷ ︸

⊆ J ∩M

s2s1 s
−1
1 (J ∩N+)s1︸ ︷︷ ︸
⊆ J ∩N−

J

= Js2s1J.
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Thus φ is an invertible element of H(G′, λ) which is supported on the double coset Js2s1J ,

with s2s1 a strongly positive element of the centre ofM, showing that (J, λ) is a cover of

(JM, λM).

4.3 Reducibility of Parabolic Induction and the

Jordan Set

We are motivated in this section to understand the nature of reducibility of parabolically

induced representations. More precisely, we want to answer this question when we consider

G as part of a maximal Levi subgroup M ' GLmπ(F )×G of a larger classical group G′

of the same type as G. This means we concern ourselves with the parabolically induced

representation

I(π, s, σ) = Ind G′

M,P π | det | s ⊗ σ

for s ∈ C. In each inertial equivalence class [π] = {π | det | t : t ∈ C} it is sufficient to fix

one representation π and consider I(π, s, σ), since I(π | det | t, s, σ) = I(π, s+ t, σ).

The following Theorems due to Silberger, the first coming from [Sil79, 5.4.2.2 − 3], and

the second from [Sil80, Theorem 1.6], tells us the importance of self-dual representations

in our situation. Note that the results of Silberger apply to arbitrary representations π,

not just depth-zero representations of a classical group G.

Theorem 4.3.1. (i) If there exists s ∈ R such that I(π, s, σ) is reducible, then there

exists t ∈ R such that π| det | t is self-dual.

(ii) Suppose I(π, s, σ) is reducible for some s ∈ R and π self-dual. Then there exists a

unique real number sσ(π) ∈ R≥0 such that, for s ∈ R, I(π, s, σ) is reducible if and

only if s = ±sσ(π).

Remark 4.3.2. We note that while Silberger’s result only tells us when we obtain real

points of reducibility, we are able to extrapolate from it points of complex reducibil-

ity. This is because if π is a self-dual irreducible cuspidal representation of GLmπ(F ) of
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depth zero, then there are two unramified twists of π which are self-dual: namely π and

π′ := π | det |
πi

m log q .

Knowing the reducibility points of parabolically induced representations has the following

impact for the local Langlands correspondence. In the same way as [LS15] and [BHS18],

we define Red(σ) as the set of isomorphism classes of cuspidal representations π of some

GLmπ(F ), with mπ ≥ 1, such that n := 2sσ(π) − 1 ∈ Z is non-negative. We then define

the Jordan set Jord(σ) as the set of pairs (π, n) such that n ≥ 1 and (π, n+2k) ∈ Red(σ).

Using the language of Jordan sets, Mœglin [Mg14] gives a criterion in which one is (hypo-

thetically) able to determine the Langlands parameter φ for a given irreducible cuspidal

representation σ of G. Explicitly, let WF denote the Weil group of F and LG be the

Langland’s dual group of G of dimension NLG. Assume G is split. Let φ be the Langlands

parameter

φ :WF × SL2(C)→ LG

whose L-packet
∏

φ contains σ (as conjectured by the local Langlands correspondence).

Let ι denote the natural injection from LG into GLNLG(C) ×WF . If one has an explicit

description of Jord(σ) then one expects φ to be of the form

ι ◦ φ =
⊕

(π,n)∈Jord(σ)

φπ ⊗ Stn

where φπ is the irreducible representation ofWF corresponding to π via the local Langlands

correspondence for GLmπ(F ), and Stn is the unique irreducible n-dimensional representa-

tion of SL2(C). This result implies the following equality:∑
(π,n)∈Jord(σ)

mπn = NLG,

which is equivalent to ∑
π∈Cusp(F )

⌊
sσ(π)2

⌋
mπ = NLG

since all but finitely many sσ(π) are 0 or 1
2

so bsσ(π)c2 = 0.
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Remark 4.3.3. This sum includes both depth-zero and positive-depth irreducible cuspidal

representations π of GLmπ(F ). Whilst in this thesis we only consider (π, n) ∈ Jord(σ)

with π of depth-zero, we do not verify that there is no contribution from positive-depth

cuspidal representations. However, we later see that, at least for certain groups G,∑
(π,n)∈Jord(σ)

π∈Cusp(F ) of depth zero

⌊
sσ(π)2

⌋
mπ = NLG

which, when combined with Mœglin’s result, implies that the we have found all of Jord(σ).

4.4 A Result of Blondel

Our problem of finding reducibility points for parabolic induction reduces to finding the

numbers ±sσ(π) and ±sσ(π′). The following Proposition, due to Blondel [Blo12, 3.12],

shows the connection between the points of reducibility for the parabolically induced rep-

resentation I(π, s, σ) and the eigenvalues of the generators for the spherical Hecke algebra

H(G′, λ) in Section 4.2.

We note that Blondel works under the hypothesis that the residue characteristic is odd.

This is necessary since she considers positive-depth cuspidal representations of a classical

group, which were classified by [Ste08] in the case of odd residue characteristic. More-

over, she uses the construction of covers given in [MS14] which only holds under this

assumption. However, since the classification of depth-zero cuspidal representations of

an arbitrary connected reductive algebraic group is known with no restrictions on residue

characteristic, her result stands with only minor modifications. Namely we use the explicit

construction of a cover for a maximal Levi given in Section 4.2.

Let M be a maximal Levi subgroup of G′, so M ' GLm(F ) × G. Take π an irreducible

cuspidal representation of GLm(F ) and σ an irreducible cuspidal representation of G, both

of depth-zero. We can therefore write π ' ind
GLm(oF )

F×Jπ
Λπ and σ ' indGJσλσ as described in

Section 4.1. The type (J, λ) is then a G′-cover of (JM, λM) = (Jπ×Jσ, λπ⊗λσ). Moreover,

we saw that the spherical Hecke algebraH(G′, λ) = EndG′(indG
′

J λ) is two-dimensional with
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generators T1, T2 subject only to the quadratic relations

(Ti + 1)(Ti − qri) = 0,

for i = 1, 2 and ri ∈ R non-negative.

Proposition 4.4.1. Let M, π, σ be as above. The real parts of the points of reducibility

of the parabolically induced representation IndG
′

M,P π| det |s ⊗σ are

{±sσ(π),±sσ(π′)} =

{
±(r1 + r2)

2m
,±(r1 − r2)

2m

}
.

Proof. Since (JM, λM) is an M-type, using the Bernstein Decomposition of R(M), the

block R[π⊗σ](M) is the full subcategory of R(M) consisting of elements whose irreducible

subquotients are representations ofM which are unramified twists of π ⊗ σ. The functor

mM : R[π⊗σ](M) → Mod–H(M, λM) which sends the representation τ to the module

HomJM(λM, τ) is an equivalence of categories.

Similarly, using the Bernstein decomposition forR(G′) we have the blockR[π⊗σ](G′) corre-

sponding to the type (J, λ) is the full subcategory of R(G′) whose irreducible subquotients

are representations of G′ which have supercuspidal support an unramified twist of π ⊗ σ.

The functor mG
′ : R[π⊗σ](G′) → Mod-H(G′, λ) which sends the representation τ to the

module HomJ(λ, τ), which again gives an equivalence of categories.

As (J, λ) is a cover of (JM, λM), we have a normalized embedding of spherical Hecke

algebras t : H(M, λM) ↪→ H(G′, λ) which gives the following commutative diagram:

R[π⊗σ](G′) Mod−H(G′, λ)

R[π⊗σ](M) Mod−H(M, λM)

mG′

	IndG
′
P

mM

t∗ .

Here IndG
′

P denotes the functor of parabolic induction and t∗ is the functor mapping a

module X ∈ Mod-H(M, λM) to HomH(M,λM)(H(G′, λ), X) with the module structure of

H(G′, λ) given by the embedding t.
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Since the diagram is commutative, the representation IndG
′

P π| det |s ⊗σ is reducible if

and only if the module t∗mM(IndG
′

M π| det |s⊗ σ) is reducible. We therefore need to know

when the module t∗X of an irreducible module X ∈ Mod-H(M, λM) is reducible.

Since (JM, λM) is a G′-cover, we know that the spherical Hecke algebra H(G′, λ) has two

generators T1, T2 subject to the quadratic relations

(T1 + 1)(Ti − qri) = 0

for i = 1, 2 (see section 4.2). Moreover, the element T2T1 is supported on the double coset

JζJ for ζ a strongly-positive element of the centre of M. The spherical Hecke algebra

H(M, λM) is isomorphic to H(GLm(F ), λπ), which in turn is isomorphic to C[Z±1] by

[BK93a, Section 5.5] with Z supported on ζJM. The irreducible representations of this

algebra are characters defined by their value on Z. Since t(Z) also has support on the

double coset JζJ , we normalize Z so that t(Z) = T2T1.

The group X0(GLm(F )) of unramified characters of GLm(F ) acts on H(GLm(F ), λπ) by

(χf)(x) = χ(x)f(x)

where χ ∈ X0(GLm(F )), f ∈ H(GLm(F ), λπ) and x ∈ GLm(F ). If π ∈ Irr(GLm(F )) and

χ ∈ X0(GLm(F )) the image of π⊗χ under mM is the character of H(M, λM) defined by

mM(π ⊗ χ)(Z) := χ−1($F )mM(π)(Z). (◦)

Since Mod-H(M, λM) is a commutative ring, all simple modules are 1-dimensional. The

embedding t(H(M, λM)) has index 2 in H(G′, λ), so for any simple H(M, λM) module

M , the H(G′, λ) module t∗(M) is 2-dimensional. Such a module is reducible if and only

if it contains a 1-dimensional submodule. Suppose V is a 1-dimensional H(G′, λ)-module.

Then for any v ∈ V we have

v · Ti = λivi

for some λi ∈ C× and i = 1, 2. The quadratic relations for the Ti give the possible values

for λi, namely

λi ∈ {−1, qri}
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for i = 1, 2. This gives at most 4 possible 1-dimensional modules V . If V were now

a submodule of t∗(M), then by adjunction we have that V |H(M,λM)= M . These four

H(M, λM)-modules M are precisely the modules for which t∗(M) is reducible. On the

modules, Z acts as T2T1, i.e. with eigenvalue in

{1,−qr1 ,−qr2 , qr1+r2} (†)

Suppose now that π is chosen such that Ind G′

M,P π | det |s ⊗ σ is reducible for some s ∈ R.

Then Theorem 4.3.1 tells us that s = ±s1 for some non-negative s1 ∈ R. Moreover, we

know that given such a π there is a unique inequivalent unramified twist π′ of π with π′

is self-dual, namely π′ = π | det |
πi

n log q . Again this is reducible for s′ = ±s2 with s2 ∈ R

non-negative. This gives at most 4 points of reducibility, associated to the representations

{IndG
′

M π| det |s1 ⊗ σ, IndG
′

M π| det |−s1 ⊗ σ,

IndG
′

M π| det |s2+ πi
n log q ⊗ σ, IndG

′

M π| det |−s2+ πi
n log q ⊗ σ}.

Using (◦) the representations π| det |±s1 and π| det |±s2+ πi
n log q correspond to the simple

modules in H(M, λM) on which Z acts by

{
qs1nmM(π)(Z), q−s1nmM(π)(Z),−qs2nmM(π)(Z),−q−s2nmM(π)(Z)

}
. (‡)

The sets (†) and (‡) must coincide. By taking quotients of pairs of elements of each set,

and then looking at which pairs give a positive quotient, we find that

{±s1,±s2} =

{
±(r1 + r2)

2m
,±(r1 − r2)

2m

}
.

4.5 Jordan Decomposition of Characters

Let G be a linear algebraic group. Its Jordan decomposition means that we can write ev-

ery g ∈ G uniquely as g = su with s semisimple and u unipotent such that s, u commute.

If G is abelian, then G is isomorphic to the group Ĝ of characters χ : G→ C. In this way

we obtain a Jordan decomposition for Ĝ. The idea behind the work of Lusztig [Lus77] is
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to do this for G non-abelian. To keep with normal notation for finite reductive groups on

this matter, the notation used in this section is independent from the rest of the thesis.

In order to classify the unipotent cuspidal representations of our finite classical groups, we

need to introduce the notion of self-dual polynomials. Let k = Fq be a finite field of charac-

teristic 2. An irreducible polynomial P ∈ k[X] is self-dual if P (0)P (X) = XdegPP (X−1).

Suppose P is a self-dual irreducible polynomial of odd degree. We write P (X) = adegPX
degP+

· · ·+a1X+a0 so a0 = P (0) 6= 0. By definition, the coefficients of P satisfy a0ai = adegP−i

for all i, and so an even number of the ai are non-zero. This implies P (1) = 0. By

irreducibility of P it follows that the only self-dual irreducible polynomial of odd degree is

precisely X + 1. For P self-dual irreducible of even degree, let kP be a degree P extension

of k and k◦P be the degree (P/2) extension of k contained in kP .

Let G be a classical group defined over k̄. Denote by F the standard Frobenius map

which raises each coefficient of g to the qth power. The fixed points of G under F is the

classical group GF defined over the finite field k. By classical group we mean G is one of

the following types:

(a) GF = Sp2n(k) (for n ≥ 1);

(b) GF = SO±2n(k) (for n ≥ 2).

Remark 4.5.1. Recall from Proposition 2.5.2 that for finite fields of characteristic 2

the groups Sp2n and O2n+1 are isomorphic. We therefore need only consider Special

Orthogonal groups of even dimension.

The group G is defined by its root datum, and by taking the dual root datum, we obtain

the dual group G∗ to G. Writing F for the standard Frobenius map on the G∗ we have

that G∗F is a finite group dual to GF . In particular

(a) G∗F = SO2n+1(k) (for n ≥ 1);

(b) G∗F = SO±2n(k) (for n ≥ 2).



98 Michael Arnold

Denote by E(GF) the set of equivalence classes of complex irreducible representations of

GF . This set has a partition into geometric Lusztig series

E(GF) =
⊔
s

E(GF , s)

where s runs over conjugacy classes of semisimple elements of G∗F . We now describe this

partition.

Let T be any F -stable maximal torus in G∗ containing s and Rs
T be the corresponding

Deligne–Lusztig character [Car85, Proposition 7.2.3]. An irreducible representation ρ ∈

E(GF) lies in E(GF , s) if and only if

〈Rs
T , ρ〉 =

1

| GF |

∑
g∈GF

Rs
T (g)tr(ρ(g−1)) 6= 0.

One can also obtain a criterion for checking whether a given representation ρ ∈ GF is

cuspidal. A representation ρ is cuspidal if and only if, for any pair (T , s) with T an F -

stable maximal torus contained in a proper F -stable parabolic subgroup of G∗F , we have

〈Rs
T , ρ〉 = 0.

We wish to be able to obtain information about cuspidal representations appearing in a

particular E(GF , s), in particular we want to know the dimensions of these representations.

This motivates the following definition. An irreducible representation ρ is unipotent if it

appears in E(GF , 1).

Write G∗Fs for the centralizer of s in G∗F . The Jordan decomposition of characters [Lus77,

Section 7] gives a bijection of sets

ψGs : E(GF , s) −→ E(G∗,Fs , 1),

which satisfies the following properties:

(i) for any ρ ∈ E(GF , s) there exists a constant cs such that

dimψGs ρ = cs dim ρ; (♣)
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(ii) if the identity components of the centres of G∗ and G∗s have the same k-rank, then

ψGs maps cuspidal representations to cuspidal representations.

For m ∈ Z let mp′ be the maximal divisor of m prime to p. The constant cs above is then

cs =| G∗F | −1
p′ · | G

∗F
s |p′ .

We are therefore able to classify irreducible cuspidal representations of GF for any G,

providing we can classify the pairs (s, ρ) where s is a semisimple element of G∗F such that

the identity components of Z(GF) and Z(G∗F) have the same k-rank and ρ an irreducible

cuspidal unipotent representation of G∗Fs . In [Lus77, Section 8] Lusztig classified the

irreducible cuspidal unipotent representations of finite classical groups. He showed that in

any given geometric Lusztig series E(GF , s) there is at most one cuspidal representation.

Moreover, the author proceeded to show that the equivalence classes of irreducible cuspidal

representations of GF are in bijection with the conjugacy classes of semisimple elements

s ∈ G∗F which have characteristic polynomial

Ps(X) =
∏
P

P (X)aP (X + 1)a+ ,

where P runs over all self-dual polynomials of even degree and the exponents satisfy

Case (a) –
∑

P aP deg P + a+ = 2n+ 1;

– aP = 1
2
(m2

P +mP ) for some mP ∈ Z;

– a+ = 2(m2
+ +m+) + 1 for some m+ ∈ Z.

Case (b) –
∑

P aP deg P + a+ = 2n;

– aP = 1
2
(m2

P +mP ) for some mP ∈ Z;

– a+ = 2m2
+ for some m+ ∈ Z with the sign ± = (−1)m+ .

Remark 4.5.2. If G∗F is an arbitrary reductive group then it is no longer the case that

a geometric Lusztig series contains at most one cuspidal representation. For example, if

G∗F is an exceptional group then there are at least 2 unipotent cuspidal representations,

and so it is possible for a geometric Lusztig series to contain more than one cuspidal

representation.
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In addition, Lusztig tells us precisely when the groups Sp2n(k) and SO±2n(k) contain ir-

reducible cuspidal unipotent representations. For G = Sp2n(k) we require n = t2 + t for

some t ≥ 1, and this unique representation has dimension

|Sp2n(k)|p′ · q(
2t
2 )+(2t−2

2 )+···

2t(q + 1)2t(q2 + 1)2t−1 · · · (q2t + 1)
.

We note that if n = 2 then this is the representation θ10 introduced by Srinivasan [Sri68].

Similarly, the Special Orthogonal group GF = SO±2n(k) (with n > 1) has an irreducible

cuspidal unipotent representation when n = t2 for some t ≥ 2, with ± = (−1)t. This

representation has dimension

|SO±2n(k)|p′ · q(
2t−1

2 )+(2t−3
2 )+···

2t−1(q + 1)2t−1(q2 + 1)2t−2 · · · (q2t−1 + 1)
.

Now consider s ∈ G∗F semisimple and supposeM∗ is an F -stable Levi subgroup contained

in an F -stable parabolic subgroup P∗ of G containing s. By dualizing, we have an F -

stable Levi subgroup M of an F -stable parabolic subgroup P of G. Write M∗
s for the

centralizer of s in M, which is an F -stable Levi subgroup of G∗s. In this way, we obtain

an analogous Jordan decomposition of characters for our Levi MF

ψM
F

s : E(MF , s) −→ E(M∗F
s , 1)

which has the same properties as ψGs .

Every irreducible representation ρ of GF appears as a component in the composition series

of a representation parabolically induced from an irreducible cuspidal representation of

a Levi subgroup MF to a parabolic subgroup PF of GF . This means that the study

of irreducible representations of GF reduces to understanding the irreducible cuspidal

representations of Levi subgroups of GF . Any Levi subgroup MF of GF is of the form

MF '
∏
ni

GLFni ×H
F ,
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with HF a classical group the same type as GF . By dualizing, we have

M∗F '
∏
ni

GLFni ×H
∗F

since finite general linear groups are self-dual. Therefore, we can write s = (s1, . . . , sm, sH).

In this way, any cuspidal representation ρ appearing in E(MF , s) is of the form

ρ = ρ1 ⊗ · · · ρm ⊗ ρH ,

with each ρi ∈ E(GLFni , si), ρH ∈ E(HF , sH) cuspidal. Using the Jordan decomposition of

characters, the unipotent cuspidal representation ψM
F

s (ρ) has a similar decomposition.

This gives the following commutative diagram

ZE(GF , s) E(G∗Fs , 1)

ZE(MF , s) ZE(M∗F
s , 1)

ψGs

	

ψMs

IndG
F
MF ,PF

Ind
G∗Fs
M∗Fs ,P∗,Fs

,

with the vertical arrows corresponding to parabolic induction. On the left hand side, we

have normal parabolic induction from our maximal LeviMF to GF . As discussed before,

the induced representation has length two and the quotient of the dimensions of the rep-

resentations is precisely the parameter qri . However, on the right hand side, the nature of

the induced representation is the same by (♣). Moreover, the quotient of the dimensions

of the representations is again qri . Since the right hand side consists of unipotent repre-

sentations, we can use Table II from [Lus78] to find the parameter qri , once we identify

the groups M∗F
s and G∗Fs .

4.6 Calculation of Parameters

We now return to the notation used previously in this thesis. In this section G is either:

– Sp2n(F ) for F an arbitrary non-archimedean local field of even residue characteristic;
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– a Split Special Orthogonal group defined over F a dyadic field.

We consider each case separately. We use the results of the previous section in order to

verify the calculation of Mœglin [Mg14]. Explicitly, we prove the following (see Section

4.3 for notation).

Theorem 4.6.1. Suppose G is as above. If G is a Symplectic group, let π be an arbitrary

irreducible cuspidal depth-zero representation. If G is a Split Special Orthogonal group, let

π be an irreducible cuspidal depth-zero representation arising from a maximal parahoric

subgroup as considered in Corollary 2.10.7. Then

∑
(π,n)∈Jord(σ)

π∈Cusp(F ) depth-zero

⌊
sσ(π)2

⌋
mπ = NLG.

4.6.1 Symplectic Group

Let G = Sp2n(F ) and σ be an irreducible cuspidal depth zero representation of G, so we

write

σ = indGJ λσ.

As in Section 2.9 J is the maximal parahoric associated to the almost self-dual lattice Lm

with irreducible representation λσ which is the inflation of an irreducible cuspidal repre-

sentation τσ = τ (1)
σ ⊗ τ (2)

σ of the reductive quotient J/J1 ' Sp2m(kF )× Sp2(n−m)(kF ). Put

N1 = m and N2 = n−m.

For i = 1, 2, there exists a unique conjugacy class s(i)
σ in SO2Ni+1(kF ) such that τ (i)

σ is in

the Lusztig series E(Sp2Ni
(kF ), s(i)

σ ). We denote by

∏
P

P (X)a
(i)
P (X + 1)a

(i)
+

the characteristic polynomial of s(i)
σ where the product runs over self-dual irreducible monic

polynomials P ∈ kF [X] of even degree. From the the previous section we know that the

exponents a
(i)
P satisfy the conditions



103

–
∑

P a
(i)
P degP + a

(i)
+ = 2Ni + 1;

– a
(i)
P = 1

2
m

(i)
P (m

(i)
P + 1) for some integer m

(i)
P ;

– a
(i)
+ = 2m

(i)
+ (m

(i)
+ + 1) + 1 for some integer m

(i)
+ .

Let π be a cuspidal self-dual depth-zero irreducible representation of GLmπ(F ). Then we

can write

π = ind
GLmπ (F )

F×GLmπ (oF )
Λπ

where Λπ |GLmπ (oF ) is inflated from τπ a cuspidal self-dual irreducible representation of

GLmπ(kF ). We now consider the groupMkF ' GLmπ(kF )×Sp2Ni
(kF ) with representation

τπ ⊗ τ (i)
σ which naturally appears as a maximal Levi subgroup of GkF ' Sp2(Ni+mπ)(kF ).

We are interested in the quadratic parameter qri for the generators Ti of the spherical

Hecke algebra H(Sp2(Ni+mπ)(F ), π ⊗ σ), which arises from the spherical Hecke algebra

H(GkF , τπ ⊗ τ (i)
σ ) = EndGkF

(
Ind

GkF
MkF

τπ ⊗ τ (i)
σ

)
over the residue field.

We require that the induced representation Ind
GkF
MkF

τπ ⊗ τ (i)
σ is reducible, which we know

occurs if and only if the representation τπ is self-dual, which implies mπ = 1 or mπ even.

The representation τπ is in the Lusztig series associated to some conjugacy class sπ in

GLmπ(kF ), with self-dual irreducible characteristic polynomial Q.

Suppose mπ = 1 so Q(X) = X + 1. Over the residue field, this gives a maximal Levi

subgroup MkF ' GL1(kF ) × Sp2Ni
(kF ) of GkF ' Sp2Ni+2(kF ). There exists a unique

conjugacy class s = (1, s(i)
σ ) in M∗

kF
such that the representation τπ ⊗ τ (i)

σ lies in the

Lusztig series E(M∗
kF
, s). The corresponding centralizer of s in M∗ is

M∗
s,kF
' GL1(kF )× SO

a
(i)
+

(kF )×
∏
P

U
a
(i)
P

(kP/k
◦
P ).

The corresponding centralizer of s in G∗ is

G∗s,kF ' SO
a
(i)
+ +2

(kF )×
∏
P

U
a
(i)
P

(kP/k
◦
P ).



104 Michael Arnold

From the description of the groupsM∗
s,kF

and G∗s,kF above, we see that parabolic induction

is only occurring on the groups GL1(kF )× SO
a
(i)
+

(kF ) ⊆ SO
a
(i)
+ +2

(kF ). Since SO2t+1(kF ) is

of type Bt, we find from Table II in [Lus78] that

ri = 2m
(i)
+ + 1.

Using Proposition 4.4.1 we have

{±sσ(π),±sσ(π′)} =

{
±((2m

(1)
+ + 1) + (2m

(2)
+ + 1))

2
,±((2m

(1)
+ + 1)− (2m

(2)
+ + 1))

2

}
,

and so

bsσ(π)c2 + bsσ(π′)c2 = (m
(1)
+ +m

(2)
+ + 1)2 + (m

(1)
+ −m

(2)
+ )2

= 2m
(1)
+ (m

(1)
+ + 1) + 2m

(2)
+ (m

(2)
+ + 1) + 1

= a
(1)
+ + a

(2)
+ − 1.

Now suppose mπ is even. Over the residue field, this gives a maximal Levi subgroup

MkF ' GLmπ(kF )× Sp2Ni
(kF ) of GkF ' Sp2(Ni+mπ)(kF ). There exists a unique conjugacy

class s = (sπ, s
(i)
σ ) in M∗

kF
such that the representation τπ ⊗ τ (i)

σ lies in the Lusztig series

E(M∗
kF
, s). The corresponding centralizer of s in M∗ is

M∗
s,kF
' GL1(kQ)× U

a
(i)
Q

(kQ/k
◦
Q)×

∏
P 6=Q

U
a
(i)
P

(kP/k
◦
P )× SO

a
(i)
+

(kF ).

The centralizer of s in G∗ is

G∗s,kF ' U
a
(i)
Q +2

(kQ/k
◦
Q)×

∏
P 6=Q

U
a
(i)
P

(kP/k
◦
P )× SO

a
(i)
+

(kF ).

From the description of the groupsM∗
s,kF

and G∗s,kF above, we see that parabolic induction

is only occurring on the groups GL1(kQ)×U
a
(i)
Q

(kQ/k
◦
Q). Since Ut is of type 2At−1, we have

from Table II in [Lus78] that

ri = (2m
(i)
Q + 1)

mπ

2
.

Using Proposition 4.4.1 we have

{±sσ(π),±sσ(π′)} =

{
±

((2m
(1)
Q + 1)mπ

2
+ (2m

(2)
Q + 1)mπ

2
)

2mπ

,±
((2m

(1)
Q + 1)mπ

2
− (2m

(2)
+ + 1)mπ

2
)

2mπ

}
.
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Precisely one of these quantities is an integer, whilst the other is a half-integer. Taking

this into account gives

bsσ(π)c2 + bsσ(π′)c2 =
(m

(1)
Q +m

(2)
Q + 1)2

4
+

(m
(1)
Q −m

(2)
Q )2

4
− 1

4

=
1

2
m

(1)
Q (m

(1)
Q + 1) +

1

2
m

(2)
Q (m

(2)
Q + 1)

= a
(1)
Q + a

(2)
Q .

Therefore, summing over all self-dual irreducible cuspidal depth-zero representations π of

GLmπ(F ) gives

∑
π∈Cusp∗[0](F )

bsσ(π)c2nπ =

(∑
P

(a
(1)
P + a

(2)
P ) deg P

)
+ a

(1)
+ + a

(2)
+ − 1

= (2N1 + 1) + (2N2 + 1)− 1

= 2n+ 1.

The Langlands dual group of G = Sp2n(F ) is LG = SO2n+1(C), and since the the sum-

mation above gives 2n + 1 = NLG, we have found all of Jord(σ) and so Theorem 4.6.1 is

verified in this case.

4.6.2 Even Split Special Orthogonal Groups

We now consider the case G = SO+
2n(F ). As in Section 2.10.2, let J◦ be a maximal para-

horic subgroup associated to the almost self-dual lattice Lm for 0 ≤ m ≤ n. Recall that

we impose m 6= 1, 2, n−2, n−1. Take σ an irreducible cuspidal depth-zero representation

of G, so we can write

σ = indGJ Λσ

for J the normalizer of J◦ in G. Here Λσ is the extension of the representation λσ of

J which is the inflation of an irreducible cuspidal representation τσ = τ (1)
σ × τ (2)

σ of the

reductive quotient J◦/J1 ' SO+
2m(kF )× SO+

2(n−m)(kF ). Put N1 = m and N2 = n−m.
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For i = 1, 2, there exists a unique conjugacy class s(i)
σ in SO+

2Ni
(kF ) such that τ (i)

σ is in the

Lusztig series E(SO+
2Ni

(kF ), s(i)
σ ). We denote by

∏
P

P (X)a
(i)
P (X + 1)a

(i)
+

the characteristic polynomial of s(i)
σ where the product runs over self-dual irreducible

polynomials P of even degree in kF [X]. From the the previous section we know that the

exponents a
(i)
P satisfy the conditions

–
∑

P a
(i)
P degP + a

(i)
+ = 2Ni;

– a
(i)
P = 1

2
m

(i)
P (m

(i)
P + 1) for some integer m

(i)
P ;

– a
(i)
+ = 2(m

(i)
+ )2 for some integer m

(i)
+ and ε(i) = (−1)m

(i)
+ .

As before let π be a cuspidal self-dual depth zero irreducible representation of GLmπ(F )

so

π = ind
GLmπ (F )

F×GLmπ (oF )
Λπ

where Λπ |GLmπ (oF ) is inflated from τπ a cuspidal self-dual irreducible representation of

GLmπ(kF ). The representation τπ is in the Lusztig series associated to some conjugacy

class sπ in GLmπ(kF ) with self-dual irreducible characteristic polynomial Q.

Suppose mπ = 1 so Q = X+1. We consider the maximal Levi subgroupMkF ' GL1(kF )×

SO+
2Ni

(kF ) of GkF ' SO+
2Ni+2(kF ). There exists a unique conjugacy class of s = (1, s(i)

σ )

in M∗
kF

such that the representation τπ ⊗ τ (i)
σ lies in the Lusztig series E(M∗

kF
, s). The

corresponding centralizer of s in M∗ is

M∗
s,kF
' GL1(kF )× SOε(i)

a
(i)
+

(kF )×
∏
P

U
a
(i)
P

(kP/k
◦
P ),

whereas the centralizer of s in G∗ is

G∗s,kF ' SOε(i)

a
(i)
+ +2

(kF )×
∏
P

U
a
(i)
P

(kP/k
◦
P ).
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From the description of the groupsM∗
s,kF

and G∗s,kF above, we see that parabolic induction

is only occurring on the groups GL1(kF ) × SOε(i)

a
(i)
+

(kF ) ⊆ SOε(i)

a
(i)
+ +2

(kF ). Since SO2t is of

type Dt, we have from Table II in [Lus78] that

ri = 2m
(i)
+ .

Using Proposition 4.4.1 gives

{±sσ(π),±sσ(π′)} =

±
(

2m
(1)
+ + 2m

(2)
+

)2

2
,±

(
2m

(1)
+ − 2m

(2)
+

)2

2

 ,

and so

bsσ(π)c2 + bsσ(π′)c2 = (m
(1)
+ +m

(2)
+ )2 + (m

(1)
+ −m

(2)
+ )2

= 2(m
(1)
+ )2 + 2(m

(2)
+ )2

= a
(1)
+ + a

(2)
+ .

Now suppose mπ is even. We consider the maximal Levi subgroup MkF ' GLmπ(kF ) ×

SO+
2Ni

(kF ) of GkF ' SO+
2(Ni+mπ)(kF ). There exists a unique conjugacy class of s = (sπ, s

(i)
σ )

in M∗
kF

such that the representation τπ ⊗ τ (i)
σ lies in the Lusztig series E(M∗

kF
, s). The

corresponding centralizer of s in M∗ is

M∗
s,kF
' GL1(kQ)× U

a
(i)
Q

(kQ/k
◦
Q)×

∏
P 6=Q

U
a
(i)
P

(kP/k
◦
P )× SOε(i)

a
(i)
+

(kF ),

whereas the centralizer of s in G∗ is

G∗s,kF ' U
a
(i)
Q +2

(kQ/k
◦
Q)×

∏
P 6=Q

U
a
(i)
P

(kP/k
◦
P )× SOε(i)

a
(i)
+

(kF ).

We are interested in the quadratic parameter qai for the generators Ti of the spherical

Hecke algebra H(SO+
2n+2(F ), π ⊗ σ), which arises from the spherical Hecke algebra

H(GkF , τπ ⊗ τ (i)
σ ) = EndGkF

(
Ind

GkF
MkF

τπ ⊗ τ (i)
σ

)
over the residue field.
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From the description of the groupsM∗
s,kF

and G∗s,kF above, we see that parabolic induction

is only occurring on the groups GL1(kQ)× U
a
(i)
Q

(kQ/k
◦
Q) ⊆ U

a
(i)
Q +2

(kQ/k
◦
Q). Since Ut is of

type 2At−1, we have from Table II in [Lus78] that

ri = (2m
(i)
Q + 1)

mπ

2
.

This is precisely the same as the case mπ ∈ 2Z for the Symplectic group and so we have

bsσ(π)c2 + bsσ(π′)c2 =

(
m

(1)
Q +m

(2)
Q + 1

)2

4
+

(
m

(1)
Q −m

(2)
Q

)2

4
− 1

4

= a
(1)
Q + a

(2)
Q .

Therefore, summing over all self-dual irreducible cuspidal representations π gives∑
π∈Cusp∗[0](F )

bsσ(π)c2mπ =

(∑
P

(a
(1)
P + a

(2)
P ) degP

)
+ a

(1)
+ + a

(1)
+

= 2N1 + 2N2

= 2m+ 2(n−m)

= 2n,

and so Theorem 4.6.1 is verified in this case.

4.6.3 Odd Split Special Orthogonal Groups

We now consider the case G = SO2n+1(F ) the group isometries of a non-degenerate

quadratic form Q with a 1-dimensional anisotropic subform. As in Section 2.10.2, let

J◦ be a maximal parahoric subgroup associated to the almost self-dual lattice Lm for

0 ≤ m ≤ n. Recall that we impose m 6= n − 2, n − 1 so that we do not have a factor of

SO+
2 (kF ) or SO+

4 (kF ) appearing in the reductive quotient. Take σ an irreducible cuspidal

depth-zero representation of G, so we can write

σ = indGJ Λσ

for J the normalizer of J◦ in G. Here Λσ is the extension of the representation λσ of J

which is the inflation of an irreducible cuspidal representation τσ = τ (i)
σ ×τ (2)

σ of the reduc-

tive quotient J◦/J1 ' O2m+1(kF )×SO+
2(n−m)(kF ). Put N1 = m and N2 = n−m. In what
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follows we use the isomorphism O2N1+1(kF ) ' Sp2N1
(kF ) for finite fields of characteristic

2 so that we can use the work of Lusztig on the Jordan Decomposition of Characters for

the odd Orthogonal group.

Since we have different classical groups arising in the reductive quotient, we cannot con-

sider the cases i = 1, 2 concurrently. For i = 1 there exists a unique conjugacy class s(1)
σ

in O+
2N1+1(kF ) ' Sp2N1

(kF ) such that τ (1)
σ is in the Lusztig series E(Sp2N1

(kF ), s(1)
σ ). We

denote by

∏
P

P (X)a
(1)
P (X + 1)a

(1)
+

the characteristic polynomial of s(1)
σ where the product runs over self-dual irreducible

polynomials P of even degree in kF [X]. From the the previous section we know that the

exponents a
(1)
P satisfy the conditions

–
∑

P a
(1)
P degP + a

(1)
+ = 2N1 + 1;

– a
(1)
P = 1

2
m

(1)
P (m

(1)
P + 1) for some integer m

(1)
P ;

– a
(1)
+ = 2m

(1)
+ (m(1) + 1) + 1 for some integer m

(1)
+ .

Similarly, for i = 2 there exists a unique conjugacy class s(2)
σ in SO+

2N2
(kF ) such that τ (2)

σ

is in the Lusztig series E(SO+
2N2

(kF ), s(2)
σ ). We denote by

∏
P

P (X)a
(2)
P (X + 1)a

(2)
+

the characteristic polynomial of s(2)
σ where the product runs over self-dual irreducible

polynomials P of even degree in kF [X]. From the the previous section we know that the

exponents a
(2)
P satisfy the conditions

–
∑

P a
(2)
P degP + a

(2)
+ = 2N2;

– a
(2)
P = 1

2
m

(2)
P (m

(2)
P + 1) for some integer m

(2)
P ;

– a
(2)
+ = 2

(
m

(2)
+

)2

for some integer m
(2)
+ and ε = (−1)m

(2)
+ .
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Let π be a cuspidal self-dual depth-zero irreducible representation of GLmπ(F ). We con-

sider the group

M(i)
kF
'

GLmπ(kF )× Sp2N1
(kF ) if i = 1,

GLmπ(kF )× SO+
2N2

(kF ) if i = 2,

with representation τπ ⊗ τ (i)
σ which naturally appears as a maximal Levi subgroup of

G(i)
kF
'

Sp2(N1+mπ)(kF ) if i = 1,

SO+
2(N2+mπ)(kF ) if i = 2.

As before, we require that the induced representation Ind
G(i)kF
M(i)

kF

τπ⊗ τ (i)
σ be reducible, which

we know occurs if and only if the representation τπ is self-dual, which implies mπ = 1 or

mπ even. The representation τπ is in the Lusztig series associated to some conjugacy class

sπ in GLmπ(kF ), with self-dual irreducible characteristic polynomial Q.

Suppose mπ = 1 so Q = X + 1. First we consider i = 1 so we have the maximal Levi

subgroup MkF ' GL1(kF ) × Sp2N1
(kF ) of GkF ' Sp2N1+2(kF ). There exists a unique

conjugacy class of s = (1, s(1)
σ ) in M∗

kF
such that the representation τπ ⊗ τ (1)

σ lies in the

Lusztig series E(M∗
kF
, s). The corresponding centralizer of s in M∗ is

M∗
s,kF
' GL1(kF )× SO

a
(1)
+

(kF )×
∏
P

U
a
(1)
P

(kP/k
◦
P ),

whereas the centralizer of s in G∗ is

G∗s,kF ' SO
a
(1)
+ +2

(kF )×
∏
P

U
a
(1)
P

(kP/k
◦
P ).

From the description of the groupsM∗
s,kF

and G∗s,kF above, we see that parabolic induction

is only occurring on the groups GL1(kQ)× SO
a
(1)
+

(kF ) ⊆ SO
a
(1)
+ +2

(kF ). Since SO2t+1 is of

type Bt, we have from Table II in [Lus78] that

r1 = 2m
(1)
+ + 1.

Now suppose i = 2 so MkF ' GL1(kF )× SO+
2N2

(kF ) of GkF ' SO+
2N2+2(kF ). There exists

a unique conjugacy class of s = (1, s(2)
σ ) inM∗

kF
such that the representation τπ ⊗ τ (2)

σ lies
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in the Lusztig series E(M∗
kF
, s). The corresponding centralizer of s in M∗ is

M∗
s,kF
' GL1(kF )× SOε

a
(2)
+

(kF )×
∏
P

U
a
(2)
P

(kP/k
◦
P ),

whereas the centralizer of s in G∗ is

G∗s,kF ' SOε

a
(2)
+ +2

(kF )×
∏
P

U
a
(2)
P

(kP/k
◦
P ).

From the description of the groupsM∗
s,kF

and G∗s,kF above, we see that parabolic induction

is only occurring on the groups GL1(kQ) × SOε

a
(2)
+

(kF ) ⊆ SOε

a
(2)
+ +2

(kF ). Since SO2t is of

type Dt, we have from Table II in [Lus78] that

r2 = 2m
(2)
+ .

Proposition 4.4.1 yields

{±sσ(π),±sσ(π′)} =

{
±(2m

(1)
+ + 1 + 2m

(2)
+ )

2
,±(2m

(1)
+ + 1− 2m

(2)
+ )

2

}
.

Since both reducibility points are half-integers, we have

bsσ(π)c2 + bsσ(π′)c2 =

(
m

(1)
+ +

1

2
+m

(2)
+

)2

+

(
m

(1)
+ +

1

2
−m(2)

+

)2

− 1

2

= 2
(
m

(1)
+

)2

+ 2m
(2)
+ (m

(2)
+ + 1)

= a
(1)
+ + a

(2)
+ − 1.

Now suppose mπ is even and i = 1. We consider the maximal Levi subgroup MkF '

GLmπ(kF ) × Sp2N1
(kF ) of GkF ' Sp2(N1+mπ)(kF ). There exists a unique conjugacy class

of s = (sπ, s
(1)
σ ) in M∗

kF
such that the representation τπ ⊗ τ (1)

σ lies in the Lusztig series

E(M∗
kF
, s). The corresponding centralizer of s in M∗ is

M∗
s,kF
' GL1(kQ)× U

a
(1)
Q

(kQ/k
◦
Q)×

∏
P 6=Q

U
a
(1)
P

(kP/k
◦
P )× SO

a
(1)
+

(kF ),

whereas the centralizer of s in G∗ is

G∗s,kF ' U
a
(1)
Q +2

(kQ/k
◦
Q)×

∏
P 6=Q

U
a
(1)
P

(kP/k
◦
P )× SO

a
(1)
+

(kF ).
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From the description of the groupsM∗
s,kF

and G∗s,kF above, we see that parabolic induction

is only occurring on the groups GL1(kQ)×U
a
(1)
Q

(kQ/k
◦
Q) ⊆ U

a
(1)
Q +2

(kQ/k
◦
Q). Since Ut is of

type 2At−1, we have from Table II in [Lus78] that

r1 =
(

2m
(1)
Q + 1

) mπ

2
.

For i = 2 we have the maximal Levi subgroup MkF ' GLmπ(kF ) × SO+
2N2

(kF ) of GkF '

SO+
2(N2+mπ)(kF ). There exists a unique conjugacy class of s = (sπ, s

(2)
σ ) in M∗

kF
such

that the representation τπ ⊗ τ (2)
σ lies in the Lusztig series E(M∗

kF
, s). The corresponding

centralizer of s in M∗ is

M∗
s,kF
' GL1(kQ)× U

a
(2)
Q

(kQ/k
◦
Q)×

∏
P 6=Q

U
a
(2)
P

(kP/k
◦
P )× SOε

a
(2)
+

(kF ),

whereas the centralizer of s in G∗ is

G∗s,kF ' U
a
(2)
Q +2

(kQ/k
◦
Q)×

∏
P 6=Q

U
a
(2)
P

(kP/k
◦
P )× SOε

a
(2)
+

(kF ).

From the description of the groupsM∗
s,kF

and G∗s,kF above, we see that parabolic induction

is only occurring on the groups GL1(kQ)×U
a
(2)
Q

(kQ/k
◦
Q) ⊆ U

a
(2)
Q +2

(kQ/k
◦
Q). Since Ut is of

type 2At−1, we have from Table II in [Lus78] that

r2 =
(

2m
(2)
Q + 1

) mπ

2
.

In the same way as for the Symplectic group and the Even Split Special Orthogonal group

we have that

bsσ(π)c2 + bsσ(π′)c2 =

(
m

(1)
Q +m

(2)
Q + 1

)2

4
+

(
m

(1)
Q −m

(2)
Q

)2

4
− 1

4

= a
(1)
Q + a

(2)
Q .

Therefore, summing over all self-dual irreducible cuspidal representations π gives

∑
π∈Cusp∗[0](F )

bsσ(π)c2mπ =

(∑
P

(a
(1)
P + a

(2)
P ) degP

)
+ a

(1)
+ + a

(2)
+ − 1

=

(∑
P

a
(1)
P degP + a

(1)
+

)
+

(∑
P

a
(2)
P degP + a

(2)
+

)
− 1
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= (2N1 + 1) + (2N2)− 1

= 2m+ 1 + 2(n−m)− 1

= 2n.

This completes the proof of Theorem 4.6.1.





Chapter 5

Positive Depth Representations of

Sp4(F )

5.1 Notation

Let F be a dyadic field with oF its ring of integers and pF its unique maximal ideal so

that the residue field kF ' oF/pF is finite. Fix a uniformizer $ of F .

Let V be a 4-dimensional F -vector space and write A = EndF (V ). Let h : V × V → F

be a symplectic bilinear form with ordered Witt basis {e−2, e−1, e1, e2} so that the Gram

matrix associated to h is

Ah =


1

1

−1

−1

 .

With respect to this basis, we identify AutF (V ) with G̃ = GL4(F ). The Symplectic group

115
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G = Sp4(F ), the subgroup of G̃ consisting of elements which preserve the symplectic form

h, is then

Sp4(F ) = {g ∈ V | gTAhg = Ah}.

5.2 Root System of Sp4(F )

Let g = {X ∈M4(F ) : AhX+XTAh = 0} denote the Lie algebra of G. By this definition,

a matrix X ∈ A is in g if and only if X is of the form

X =


x11 x12 x13 x14

x21 x22 x23 x13

x31 x32 −x22 −x12

x41 x31 −x21 −x11

 .

Since G is a linear algebraic group it has the rational representation Ad : G → GL(g)

with action given by conjugation. Let T = {diag(t1, t2, t
−1
2 , t−1

1 ) : ti ∈ F×} be a maximal

F -split torus in G. If we consider the image of T under the adjoint representation Ad(T )

we get a set of commuting semisimple elements, which can be diagonalized. We write

X(T ) = Hom(T, F×) for the set of rational characters of T . For χ ∈ X(T ) the weight

space associated to χ is the T -eigenspace

gχ = {X ∈ g : Ad(t)X = χ(t)X for all t ∈ T}.

We call χ the weight of gχ. The set Φ of non-zero weights with non-zero eigenspaces is

called the set of roots of G. Let g0 denote the 0-weight space, which is a self-normalizing

nilpotent subalgebra of g called the Cartan subalgebra. With respect to our basis, g0 is

the subalgebra of diagonal matrices. We obtain the weight space decomposition of g

g = g0 ⊕
⊕
γ∈Φ

gγ.

Let Eij denote the monomial matrix with (i, j) coefficient 1 and all other coefficients 0.

From our explicit description of the Lie algebra of G we have the following basis for g,

where gγ is spanned by Xγ and, writing g0 = gT1 + gT2 , gTi is spanned by Xi (i = 1, 2).
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Xα = E12 − E34 X−α = E21 − E43

Xβ = E23 X−β = E32

Xα+β = E13 + E24 X−(α+β) = E31 + E42

X2α+β = E14 X−(2α+β) = E41

X1 = E11 − E44 X2 = E22 − E33

In order to describe the roots in our root system we consider the adjoint action of T on

basis elements Xγ of gγ. For example, with t = diag(t1, t2, t
−1
2 , t−1

1 ),

Ad(t)Xα =


t1 0 0 0

0 t2 0 0

0 0 t−1
2 0

0 0 0 t−1
1




0 1 0 0

0 0 0 0

0 0 0 −1

0 0 0 0




t1 0 0 0

0 t2 0 0

0 0 t−1
2 0

0 0 0 t−1
1

 = t1t
−1
2 Xα,

which gives the root α(t) = t1t
−1
2 . A routine calculation gives the following set of roots of

g:

Φ = {±α,±β,±(α + β),±(2α + β)},

where

α : T → F×

t 7→ t1t
−1
2

β : T → F×

t 7→ t22

α + β : T → F×

t 7→ t1t2

2α + β : T → F×

t 7→ t21

and the negative roots are the inverse of their positive counterparts. We call the one-

dimensional subspace gγ of g generated by Xγ the root subspace corresponding to γ ∈ Φ.

We write Φ = ΦS t ΦL where ΦS = {±α,±(α + β)} denotes the short roots and

ΦL = {±β,±(2α + β)} denotes the long roots. We see that Φ is of type C2 with base

∆ = {α, β}.

Let Y (T ) = Hom(F×, T ) denote the set of rational cocharacters of T . There is a natural

non-degenerate pairing 〈, 〉 : X(T ) × Y (T ) → Z given by evaluation: for δ ∈ X(T ) and

γ∨ ∈ Y (T ) the pairing 〈δ, γ∨〉 corresponds to the integer exponent

δ ◦ γ∨(x) = x〈δ,γ
∨〉 for all x ∈ F×.
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α−α

β

−β

α + β

−α− β

2α + β

−2α− β

Figure 5.1: Root System of Sp4(F )

Let sγ denote the reflection in the hyperplane perpendicular to the root γ ∈ Φ in the

space X(T )⊗Z R. Then there is a unique γ∨ ∈ Y (T ) such that

sγ(δ) = δ − 〈δ, γ∨〉γ for all δ ∈ Φ.

Moreover, γ∨ satisfies 〈γ, γ∨〉 = 2. The set Φ∨ = {γ∨ : γ ∈ Φ} is called the set of coroots

of g. Thus

Φ∨ = {±α∨,±β∨,±(α + β)∨,±(2α + β)∨},

where

α∨ : F× → T β∨ : F× → F

α∨(x) = diag(x, x−1, x, x−1) β∨(x) = diag(1, x, x−1, 1)

and

(α + β)∨ : F× → T (2α + β)∨ : F× → F

α∨(x) = diag(x, x, x−1, x−1) β∨(x) = diag(x, 1, 1, x−1).

5.3 Parahoric Subgroups

There are three G-conjugacy classes of self-dual lattice chains in V , namely:

Λ0 : . . . ⊃ oF e−2 ⊕ oF e−1 ⊕ oF e1 ⊕ oF e2 ⊃ pF e−2 ⊕ pF e1 ⊕ pF e1 ⊕ pF e2 ⊃ . . .
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Λ1 : . . . ⊃ oF e−2 ⊕ oF e−1 ⊕ oF e1 ⊕ pF e2 ⊃ oF e−2 ⊕ pF e1 ⊕ pF e1 ⊕ pF e2

⊃ pF e−2 ⊕ pF e−1 ⊕ pF e1 ⊕ p2
F e2 ⊃ . . .

Λ2 : . . . ⊃ oF e−2 ⊕ oF e−1 ⊕ pF e1 ⊕ pF e2 ⊃ pF e−2 ⊕ pF e1 ⊕ p2
F e1 ⊕ p2

F e2 ⊃ . . .

Let Ai be the hereditary oF -order corresponding to Λi with Jacobson radical Pi. The

stabilizers of these almost self-dual lattice chains A×i ∩G are maximal parahoric subgroups

of G. Each maximal parahoric Ki := A×i ∩ G has a filtration by normal compact open

subgroups Kn
i := Un(Ai) ∩ G. With respect to our chosen Witt basis these groups have

the following description:

K0 = Sp4(oF ) Kn
0 = (1 + Mat4(pnF )) ∩G;

K1 =


oF oF oF p−1

F

pF oF oF oF

pF oF oF oF

pF pF pF oF

 ∩G Kn
1 =


1 + p

dn2 e
F p

bn2 c
F p

bn2 c
F p

dn2 e−1

F

p
bn2 c+1

F 1 + p
dn2 e
F p

dn2 e
F p

bn2 c
F

p
bn2 c+1

F p
dn2 e
F 1 + p

dn2 e
F p

bn2 c
F

p
dn2 e+1

F p
bn2 c+1

F p
bn2 c+1

F 1 + p
dn2 e
F

 ∩G;

K2 =


oF oF p−1

F p−1
F

oF oF p−1
F p−1

F

pF pF oF oF

pF pF oF oF

 ∩G Kn
2 =


1 + pnF pnF pn−1

F pn−1
F

pnF 1 + pnF pn−1
F pn−1

F

pn+1
F pn+1

F 1 + pnF pnF

pn+1
F pn+1

F pnF 1 + pnF

 ∩G.

The pro-p-radical K1
i is the maximal normal pro-p-subgroup of Ki. The maximal para-

horics have reductive quotients G0 = K0/K
1
0 ' K2/K

1
2 = G2 ' Sp4(kF ) and K1/K

1
1 =

G1 ' Sp2(kF )× Sp2(kF ) = SL2(kF )× SL2(kF ).

Let S = {s0, s1, s2} be a set of fundamental reflections for the affine Weyl group W . We

choose the following representatives for si in W :

s0 =


$−1

1

1

−$

 , s1 =


1

−1

1

−1

 , s2 =


1

1

−1

1

 .
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The fundamental reflections si satisfy the braid relations:

s2
i = 1;

s0s2 = s2s0;

s0s1s0s1 = s1s0s1s0;

s1s2s1s2 = s2s1s2s1.

where 1 denotes the trivial word.

Let I =
⋂2
i=0 Ki denote the standard Iwahori subgroup of G. For S ′ ⊂ S let WS′ denote

the subgroup of W generated by S ′. The standard parahoric subgroups of G correspond

to proper subsets S ′ of S via the map

S ′ 7→ GS′ = INS′I, (♥)

where NS′ is any set of representatives of WS′ in G. In particular the maximal parahorics

Ki correspond to the sets Si := S\{si}. In this case we write Wi = WSi .

5.4 Characters of Filtration Subgroups

We now turn the the question of describing characters of the abelian quotients Kn
i /K

n+1
i .

For 1 ≤ m ≤ n ≤ 2m we have

Pm
i /P

n
i ' Um(Ai)/U

n(Ai)

β 7→ 1 + β

Remark 5.4.1. In this Chapter we use β for both a root in the root system Φ and for an

element of some power of the Jacobson radical Pn. We do not distinguish further since it

is clear from the context which meaning is implied.

We fix ψF an additive character of F with conductor pF . Set ψA = ψF ◦ tr a character of

A = EndF (V ) where tr denotes the trace map. For S a subset of A let

S∗ = {a ∈ A : ψA(aS) = 1}.
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This gives the identification (Pn
i ) ∗ = P1−n

i which in turns gives rise to the isomorphism

P−ni /P−mi '
(
Pm+1
i /Pn+1

i

)∧
.

Thus, if we impose 0 ≤ m ≤ n ≤ 2m + 1, then we have an isomorphism between cosets

β + P1−n
i and characters of the abelian quotient Un(Ai)/U

n+1(Ai):

P−ni /P1−n
i '

(
Un(Ai)/U

n+1(Ai)
)∧

β + P1−n
i 7→

(
ψ̃β : x 7→ ψA(β(x− 1)) for x ∈ Un(Ai)

)
.

Since G is a subgroup of G̃ we can consider the restriction map

Res :
(
Un(Ai)/U

n+1(Ai)
) ∧ → (

Kn
i /K

n+1
i

)∧
ψ̃β 7→ ψβ

which gives an induced map

P−ni /P1−n
i →

(
Kn
i /K

n+1
i

)∧
β 7→ ψβ.

The induced map β 7→ ψβ is a homomorphism of abelian groups since ψβ+β′ = Res ◦ψ̃β+β′ =

(Res ◦ψ̃β) · (Res ◦ψ̃β′) = ψβ ·ψβ′ . Thus, in order to calculate the fibres of Res, it is enough

to compute the kernel of Res. Once we do this, and show that it is surjective, we have the

following commutative diagram

P−n/
(
P1−n + Ker(Res)

) (
Un(Ai)/U

n+1(Ai)
)∧

(
Kn
i /K

n+1
i

)∧
β 7→ψ̃

∼ Res:ψ̃ 7→ψβ .

We now show that the map Res is surjective. Let χ be a character of Kn
i trivial on

Kn+1
i and set L = Un+1(Ai)K

n
i a subgroup of Un(Ai). Define a character χL of L by

χL(hg) := χ(g) for all h ∈ Un+1(Ai), g ∈ Kn
i . Note that this is well-defined since χ is

trivial on Un+1(Ai)∩Kn
i = Kn+1

i , and defines a character since Kn
i normalizes the trivial

character of Un+1(Ai). Using Mackey Restriction–Induction:

Res
Un(Ai)

Un+1(Ai)

(
Ind

Un(Ai)
K χL

)
=

⊕
Un+1(Ai)\Un(Ai)/L

Ind
Un+1(Ai)
gK∩Un+1(Ai)

Res
gK
gK∩Un+1(Ai)

gχL
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=
⊕

Un+1(Ai)\Un(Ai)/L

Ind
Un+1(Ai)

Un+1(Ai)
Res

gK
Un+1(Ai)

gχL

=
⊕

Un+1(Ai)\Un(Ai)/L

Res
gK
Un+1(Ai)

gχL

=
⊕

Un+1(Ai)\Un(Ai)/L

1Un+1(Ai)

since gK ∩ Un+1(Ai) = Un+1(Ai) and χL is trivial on Un+1(Ai). As Un(Ai)/U
n+1(Ai) is

abelian, Ind
Un(Ai)
L χL ↪→ Ind

Un(Ai)

Un+1(Ai)
1Un+1(Ai) is a sum of characters of Un(Ai) trivial on

Un+1(Ai). Using Frobenius reciprocity each of these restricts to χL. Thus we are able to

extend characters of Kn
i /K

n+1
i to characters of Un(Ai)/U

n+1(Ai).

In order to find Ker(Res) we need to find all β ∈ P−ni such that ψ̃β is the trivial character

of Kn
i . This is equivalent to finding conditions on β = (βij) such that tr(βx) ⊆ pF for

all 1 + x ∈ Kn
i since we fixed our additive character ψF to have conductor pF . When

calculating tr(βx) =
∑

l,k βlkxkl we reduce modulo pF to find that some βlkxkl already lie

inside pF . Since the containment must hold for all x, on the remaining βij we may pick

certain elements x ∈ P−n to find necessary conditions on β, and then check that these are

in fact sufficient.

Example 5.4.2. Consider K0 = Sp4(oF ). We take x ∈ Pn
0 such that 1 + x ∈ G and

β ∈ P−n0 . We calculate

tr(βx) =
4∑

l,k=1

βlkxkl mod pF .

Consider the summands β12x21 + β43x34, which corresponds to intersecting Kn
0 with the

root subgroup Uα of G. Choose

1 + x =


1 x12

1

1 x34

1

 ∈ K
n
0\Kn+1

0
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which forces x34 = −x12 ∈ pnF\pn+1
F since 1 + x ∈ G. Now

tr(βx) ≡ β21x12 + β43x34 mod pF

≡ x12(β21 − β43) mod pF

≡ 0 mod pF

implies that β21 − β43 ∈ p1−n
F i.e. β21 ≡ β43 mod p1−n

F . Carrying out this calculation for

all root subgroups and standard maximal parahorics we find the kernel of Res. This leads

to the following Proposition.

Proposition 5.4.3. Let β ∈ P−ni /P1−n
i correspond to the character ψ̃β of the abelian

group Un(Ai)/U
n+1(Ai). Let Res :

(
U(Ai)

n/Un+1(Ai)
)∧ → (

Kn
i /K

n+1
i

)∧
denote the re-

striction map on characters. The following table gives necessary and sufficient conditions

on β such that ψ̃β lies in the kernel of Res.

A0 A1 A2

n even n odd

β11 ≡ β44 mod p1−n
F β11 ≡ β44 mod p1−n

F β12 ≡ β34 mod p −nF β11 ≡ β44 mod p1−n
F

β22 ≡ β33 mod p1−n
F β22 ≡ β33 mod p1−n

F β13 ≡ −β24 mod p −nF β22 ≡ β33 mod p1−n
F

β12 ≡ β34 mod p1−n
F β14 ∈ p −nF β21 ≡ β43 mod p1−n

F β12 ≡ β34 mod p1−n
F

β21 ≡ β43 mod p1−n
F β23, β32 ∈ p1−n

F β31 ≡ −β42 mod p1−n
F β21 ≡ β43 mod p1−n

F

β13 ≡ −β24 mod p1−n
F β41 ∈ p2−n

F β13 ≡ −β24 mod p2−n
F

β31 ≡ −β42 mod p1−n
F β31 ≡ −β42 mod p −nF

β14, β23, β32, β41 ∈ p1−n
F β23, β41 ∈ p2−n

F

β14, β32 ∈ p −nF

Remark 5.4.4. Since we are working in residue characteristic 2, where 1 ≡ −1 ( mod pF ),

we do not need to have minus signs in the table above. However, since our calculations

do not depend on the characteristic, we retain them to allow for comparison to similar

results in arbitrary residue characteristic.
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Example 5.4.5. Let

β = $−n


0 1 0 1

0 0 1 0

1 0 0 1

0 −1 0 0

 , β′ = $−n


0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0

 ,

with 1 + x ∈ Kn
0 and x = $n(xij). By definition

ψ̃β(1 + x) = ψF ◦ tr(βx) = ψF ◦ tr




0 1 0 1

0 0 1 0

1 0 0 1

0 −1 0 0




x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44





= ψF ◦ tr




x21 + x41 x22 + x42 x23 + x43 x24 + x44

x31 x32 x33 x34

x11 + x41 x12 + x42 x13 + x43 x14 + x44

−x21 −x22 −x23 −x24




= ψF (x13 − x24 + x21 + x43 + x32 + x41).

Similarly, we have

ψ̃β′(1 + x) = ψF ◦ tr(β′x) = ψF ◦ tr




0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0




x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44





= ψF ◦ tr




x41 x42 x43 x44

x31 x32 x33 x34

0 0 0 0

0 0 0 0




= ψF (x32 + x41).

Thus ψ̃β 6= ψ̃β′ . However, by appealing to Proposition 5.4.3, we find that ψβ = ψβ′ .
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This now raises the following important question: is the stratum [Λ, n, n−1, β] with associ-

ated character ψβ fundamental? Recall that a stratum is fundamental if the characteristic

polynomial ϕβ(X) 6= X4. A quick calculation shows that

ϕβ(X) = X4 + 1, ϕβ′(X) = X4.

Thus the stratum [Λ0, n, n − 1, β] with character ψ̃β is fundamental whilst the stratum

[Λ0, n, n− 1, β′] with character ψ̃β′ is non-fundamental, and yet they determine the same

character of Kn
0 . In order to answer the above question, we turn to the Moy–Prasad

filtration [MP94, Section 3].

The phenomena exhibited above motivates the following definition.

Definition 5.4.6. Let A be a hereditary order with Jacobson radical P and let β, β′ ∈ P−n

for some n ∈ N. We say β′ is anti-upper triangular if β′ is of the form

β′ =


∗ ∗ ∗ ∗

∗ ∗ ∗ 0

∗ ∗ 0 0

∗ 0 0 0

 .

Moreover, β′ is obtained from β arbitrary by anti-upper triangularization if β′ is anti-upper

triangular and ψβ = ψβ′ . We call a stratum [Λ, n, n − 1, β] with β upper-anti triangular

skew.

5.5 Moy–Prasad Filtration

Given the Lie algebra g and a point x in the Bruhat–Tits building of G, there exist two

filtrations. One filtration is given by [MP94, Section 3], in which Moy and Prasad use the

filtration gx,r (for r ∈ R), and its dual g∗x,−r, to define characters of abelian quotients of

filtration subgroups of a parahoric subgroup of G associated to the point x. The second

filtration is given by [BS09, Section 9], in which the authors again use the filtration gx,r,

but instead interpret x as a self-dual lattice function. Here a self-dual lattice function is
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a self-dual lattice sequence in which the domain is R instead of Z, along with a necessary

continuity condition [BL02, Section 2].

In [Lem09, Theorem 1.8], the author showed that these two filtrations coincide (up to

normalization). Moreover, Lemaire proves that the filtration given by Broussous–Stevens

extends to include the case that F is dyadic. We can therefore move between the lattice

theoretic setting of Bushnell–Kutzko–Stevens and the filtration of the dual of the Lie al-

gebra g∗ given by Moy–Prasad. We can then answer the question of whether the stratum

given in Example 5.4.5 is fundamental by interpreting ψβ in the language of Moy–Prasad.

Let Λ be a self-dual lattice sequence in A andK be the stabilizer of Λ, a parahoric subgroup

of G. In the lattice theoretic setting, characters of the abelian quotients Kn/Kn+1 are

determined by an element β ∈ P−n/P1−n. In the Moy–Prasad setting, we turn to the

dual of the Lie algebra g. Let g∗ = Hom(g, F ) denote the dual of g, and x be the point in

the Bruhat–Tits building associated to Λ. Given the filtration gx,r for r ∈ R, there is an

associated filtration of the dual g∗, given by

g∗x,−r = {X ∈ g∗ | X(Y ) ∈ pF for all Y ∈ gx,r+},

where gx,r+ =
⋃
s>r gx,s. In this setting, characters of Kn/Kn+1 above correspond to

the coset X + g∗x,−n
e

+, where e = e(Λ) [MP94, 3.7-3.8]. The character χX associated to

X + g∗x,−n
e

+ is said to non-degenerate if the coset does not contain any nilpotent elements.

If the character ψβ is equivalent to a non-degenerate character χX then the stratum

[Λ, n, n − 1, β] containing ψβ is fundamental. Thus, given a non-fundamental stratum

[Λ, n, n−1, β], one can find an element X ∈ g∗x,−n
e

such that the coset X+g∗x,−n
e

+ contains

a nilpotent element. We therefore have the following definition.

Definition 5.5.1. Let Λ be a lattice sequence in A with stabilizer K and [Λ, n, n− 1, β]

be a stratum. Let ψβ be the character of Kn trivial on Kn+1 associated to [Λ, n, n− 1, β].

Let X be an element of the filtration of the dual Lie algebra g∗x,−n
e

so that the character

χX coincides with ψβ. We say that the stratum [Λ, n, n − 1, β] is G-fundamental if the

character χX is non-degenerate.
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Now we must be able to translate our choice of β ∈ P−n to an X ∈ g∗x,−n
e

so that ψβ = χX .

For g we have the weight space decomposition, which gives a decomposition of g into one-

dimensional subspaces associated to the root system Φ and the Cartan subalgebra g0. We

have a similar weight space decomposition for g∗, namely

g∗ = g∗0 ⊕
⊕
γ∈Φ

g∗γ

where g∗0 = Hom(g0, F ) and g∗γ = {X ∈ g∗ | Ad∗(t)X = γ(t)X for all t ∈ T} for Ad the

coadjoint action. Each g∗γ is a one-dimensional subspace of g∗ and is identified with the

dual of g−γ. Given X−γ the basis vector for g−γ defined previously, we denote by X∗γ the

unique vector in g∗γ such that X∗γ(X−γ) = 1. Thus any X ∈ g∗ can be uniquely written as

X =
2∑
i=1

aiX
∗
i +

∑
γ∈Φ

aγX
∗
γ,

where ai, aγ ∈ F and X∗1, X
∗
2 is the standard basis for g∗0.

Using [MP94, 4.2-4.3], if we can find a one-parameter subgroup λ : GL1(kF )→ K/K1 so

that

lim
t→0

Adλ(t)X = 0 (♠)

for all t ∈ T , then the coset X + g∗x,−n
e

+ contains a nilpotent element, and so the stratum

[Λ, n, n− 1, β] with character ψβ is not fundamental. Let λ(t) = diag(ta, tb, t−b, t−a) ∈ T .

Then by translating from X to a β so that χX = ψβ, we can find conditions on a, b ∈ Z so

that the one-parameter subgroup λ satisfies (♠). We note that if we wish to satisfy (♠)

then we always require ai = 0 for i = 1, 2.

Example 5.5.2. For example, considerX = a−αX
∗
α with a−α 6= 0 and all other coefficients

zero. After upper anti-triangularizing, the corresponding β is of the form

β =


0 a−α 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .
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Let λ(t) = diag(ta, tb, t−b, t−a) ∈ T . Then

λ(t)βλ−1(t) =


ta 0 0 0

0 tb 0 0

0 0 t−b 0

0 0 0 t−a




0 a−α 0 0

0 0 0 0

0 0 0 0

0 0 0 0




t−a 0 0 0

0 t−b 0 0

0 0 tb 0

0 0 0 ta



=


0 ta−ba−α 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

By translating back into the Moy–Prasad language, we have X = a−αX
∗
−α satisfies (♠) if

and only if ta−b tends to 0 as t tends to 0. This is true if and only if a > b.

Coefficient aγ 6= 0 Condition on λ(t)

aα b > a

aβ 0 > b

aα+β 0 > a+ b

a2α+β 0 > a

a−α a > b

a−β b > 0

a−(α+β) a+ b > 0

a−(2α+β) a > 0

Suppose now that Λ is a lattice chain of period e = e(Λ), so that K(Λ) is a standard

parahoric. Fix a skew stratum [Λ, n, n − 1, β] with ψβ of depth n
e
. Write n = ek − m,

with m ∈ {0, 1, . . . , e − 1}. For a fixed m, we have ψβ is a character of Kek−m triv-

ial on K1+ek−m with β ∈ am−ek \ a1+m−ek. Since ψβ on Kek−m depends only on the

coset of β in am−ek/a1+m−ek, we can assume β is a matrix whose non-zero coefficients are

contained in those where there is a jump in the filtration from Kek−m to K1+ek−m, or
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equivalently from g∗x,−n
e

to g∗x,−n
e

+. In this quotient we let Ξm denote the subset of Φ such

that g∗x,−n
e
∩g∗γ 6= g∗x,−n

e
+∩g∗γ for all γ ∈ Ξm. One readily sees that as m varies Φ =

⊔
m Ξm.

If ψβ = χX then we write X =
∑

γ∈Ξm
aγX

∗
γ and set Ξ(β) = {γ ∈ Ξm : aγX

∗
γ /∈ gx,−n

e
+}

so that we can replace X by
∑

γ∈Ξ(β) aγX
∗
γ without changing the character χX on Kek−m.

We consider all the possibilities for Ξ(β) for which there is a one-parameter subgroup λ

satisfying (♠) as per the table above. For example, we cannot have both aα and a−α non-

zero because if λ(t) = diag(ta, tb, t−b, t−a) satisfied (♠) then we would need both b > a

and a > b, a contradiction. This immediately implies that we can only have at most

four coefficients non-zero for any given m. Similarly, we see that we can not have all of

aα, aβ, a−(α+β) non-zero, since we have the conditions b > a, 0 > b and a+ b > 0 which is

absurd.

In each case considered for Ξ(β) above, we can find a stratum [Λ′, n′, n′ − 1, α] such that

β + a1+m−ek ⊆ a′−n′ and n′

e′
< n

e
= k − m

e
. This containment implies that the character ψβ

on Kek−m restricts to the trivial character of K ′n
′+1. Therefore, there exists a character

ψα of K ′n
′

trivial on K ′n
′+1 with depth n′

e′
. This means that given a character ψβ of a

prescribed depth, we can find another character ψα of a strictly smaller depth. The lattice

chain Λ′ which we move to need not be a standard parahoric. In fact, in most cases we

must move to a conjugate of a standard parahoric. This gives the following result, which

is a direct proof of [MP94, 6.3] in our case.

Theorem 5.5.3. Let Λ be a self-dual lattice chain of period e = e(Λ) and [Λ, n, n− 1, β]

be a non-fundamental skew stratum. Then there exist a self-dual lattice chain Λ′ of period

e′ = e(Λ′) and an integer n′ such that

n′

e′
<
n

e
and β + a1−n ⊆ a′−n′ .

We now give an example of such a calculation outlined above.

Example 5.5.4. Consider the chain of period 1 with Λ = Λ0 = oe−2 ⊕ oe−1 ⊕ oe1 ⊕ oe2.
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Then K = K0, m = 0 and Ξm = Ξ0 = Φ. Here

a0 =


o o o o

o o o o

o o o o

o o o o


and an = $nao for n ∈ Z. Since e(Λ) = 1, we need only consider the stratum [Λ, k, k−1, β]

with β ∈ a−k. Here ψβ has depth k, $kβ ∈ a0 and we identify a0/a1 with
∗ ∗ ∗ ∗

∗ ∗ ∗ 0

∗ ∗ 0 0

∗ 0 0 0

 .

Since all short roots (resp. long roots) are conjugate by the Weyl group and W normalizes

T by definition, by conjugating if necessary, we need only consider the cases X =
∑

γ aγX
∗
γ

with γ negative. Therefore, we may choose Ξ0 a subset of {−α,−β,−(α+β),−(2α+β)},

and we need only consider 8 possible cases for X =
∑

δ∈Ξ aδX
∗
δ . In what follows we write

L for a “long root” and S for a “short root”.

Remark 5.5.5. The lattice chain Λ′ which we move to need not be unique. In fact, in

all the cases above, we could also move to the lattice chain Λ′ associated to the standard

Iwahori with n′ = 4k − 1 and n′

e′
= k − 1

4
< k.
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Roots in Ξ X Λ′ n′

1S a−α oooo ⊃ opop 2k − 1

1L a−β oooo ⊃ oopp 2k − 1

1S + 1L a−α, a−β
oooo ⊃ ooop ⊃
oopp ⊃ oppp

4k − 1

2S a−α, a−(α+β)

oooo ⊃
ooop ⊃ oppp

3k − 1

2L a−β, a−(2α+β) oooo ⊃ oopp 2k − 1

2S + 1L a−α, a−(α+β), a−(2α+β)

oooo ⊃
ooop ⊃ oppp

3k − 1

1S + 2L a−(α+β), a−β, a−(2α+β) oooo ⊃ oopp 2k − 1

2S + 2L a−α, a−β, a−(α+β), a−(2α+β)

oooo ⊃ ooop ⊃
oopp ⊃ oppp

4k − 1

Theorem 5.5.6. Let π be a smooth irreducible representation of G of positive depth. Then

π contains some G-fundamental skew stratum [Λ, n, n− 1, β].

Proof. Let S denote the set of pairs (Λ, n) with Λ a lattice chain in A and n ∈ N such

that π contains the trivial character of Kn+1(Λ). This is non-empty by smoothness of π.

We choose (Λ, n) ∈ S with n
e(Λ)

minimal, which is possible since e(Λ) is bounded. Since π

contains the trivial character of Kn+1(Λ), it contains some character ψβ of Kn(Λ) trivial

on Kn+1(Λ) i.e. π contains the stratum [Λ, n, n − 1, β]. Suppose [Λ, n, n − 1, β] is not

fundamental. By Theorem 5.5.3 there exist a self-dual lattice chain Λ′ of period e′ and an

integer n′ with β + a1−n ⊆ a′−n′ and n′

e′
< n

e
. This means that ψβ restricts to the trivial

character of Kn′+1(Λ′), and so π contains the trivial character of Kn′+1(Λ′). Moreover,

n′ > 0 since π has positive depth. Therefore (Λ′, n′) ∈ S with n′

e′
< n

e
, contradicting the

minimality of n/e.
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5.6 Future Work

It was hoped that once we had verified that a smooth irreducible representation π of

G of positive-depth contains some G-fundamental stratum, we would then move on to

obtain intertwining results akin to [Ste01]. This relies on having a nice set of double coset

representatives, and since we have been working explicitly with the example of Sp4(F ),

we would also need explicit descriptions of such sets. In the work that follows, we give

an explicit description of the double coset spaces K\G/K for K a maximal parahoric

subgroup of G. This was intended to be the basis for obtaining results on the intertwining

of G-fundamental strata, but time constraints prohibited this.

5.6.1 The Geometric Representation

We now recall the relative theory of Coxeter groups which will be of use to us. We will

apply the following with W the affine Weyl group and S the set of fundamental reflections,

although makes sense in greater generality. For more information, see [Hum90, Chapter 5].

A Coxeter system is a pair (W,S) consisting of a group W and a subset S of generators

subject to relations of the form

(ss′)m(s,s′) = 1, for s, s′ ∈ S,

where m(s, s) = 1 and m(s, s′) = m(s′, s) ≥ 2 for s 6= s′. If there is no relation between

s and s′ in W then we set m(s, s′) = ∞. Any w ∈ W\{1} can we written in the form

w = s1s2 · · · sr for some si ∈ S, but by virtue of the braid relations above, this need not

be unique. If w has such a presentation with r minimal, then we say that the presentation

is reduced ; all reduced presentations of w have the same length r, which we call the length

l(w) of w. We interpret the trivial element 1 as having length zero.

Let V be a real vector space with basis {αs : s ∈ S}. Define a symmetric bilinear form Υ

on V by

Υ(αs, αs′) := −cos

(
π

m(s, s′)

)
,
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which, in the case that m(s, s′) =∞, we interpret as Υ(αs, αs′) = −1. For each s ∈ S, we

define the reflection σs : V → V by

σs(v) := v − 2Υ(αs, v)αs for all v ∈ V .

The reflection σs sends αs to −αs and fixes the hyperplane Hs = {v ∈ V : Υ(αs, v) = 0}.

The symmetric bilinear form Υ is preserved by the action of σs i.e. for all v, v′ ∈ V

Υ(σs(v), σs(v
′)) = Υ(v − 2Υ(αs, v)αs, v

′ − 2Υ(αs, v
′)αs)

= Υ(v, v′)− 2Υ(αs, v
′)Υ(v, αs)− 2Υ(αs, v)Υ(αs, v

′)

+ 4Υ(αs, v)Υ(αs, v
′)Υ(αs, αs)

= Υ(v, v′)

since Υ is symmetric and Υ(αs, αs) = 1. One would hope that s 7→ σs extends to a

homomorphism from W to the subgroup of GL(V) generated by the reflections σs. This

turns out to be true and is summarised in the following Proposition.

Proposition 5.6.1. There is a unique homomorphism σ : W → GL(V) which sends s ∈ S

to σs ∈ GL(V). Moreover, σ(W ) preserves the bilinear form Υ on V.

We call σ the geometric representation of W .

Now let ΦW = {σ(w)(αs) : w ∈ W, s ∈ S} be the root system of W . We can write any

root α ∈ ΦW (uniquely) as

α =
∑
s∈S

λsαs,

with λs ∈ R all of the same sign. We say that α is positive, and write α > 0, if λs ≥ 0

for all s. We have the analogous definition for α being negative. The following theorem

highlights the interplay between the geometric representation, positive/negative roots and

the length function.

Theorem 5.6.2. [Hum90, Chapter 5.4] Let w ∈ W and s ∈ S. Let l : W → N denote the

length function. Then l(ws) > l(w) if and only if σ(w)(αs) > 0. Moreover, l(ws) < l(w)

if and only if σ(w)(αs) < 0.



134 Michael Arnold

5.6.2 Distinguished Double Coset Representatives

We now turn to the question of finding a set of representatives for the double coset space

Ki\G/Ki with particular properties, which by (♥) in section 5.3 is equivalent to finding

a set of representatives for the double coset space Wi\W/Wi. For S ′, S ′′ ⊂ S, let

S′D = {w ∈ W : l(s′w) > l(w) for all s′ ∈ S ′},

DS′′ = {w ∈ W : l(ws′′) > l(w) for all s′′ ∈ S ′′},

denote the unique sets of coset representatives of minimal length for the right coset space

WS′\W and left coset space W/WS′′ respectively. We call S′DS′′ a set of distinguished

(double coset) representatives for WS′\W/WS′′ if

W =
⊔

d∈S′DS′′ ′′
WS′dWS′′

and each d ∈ S′DS′′ has minimal length in its double coset [Mor93, Section 3]. We say that

a set S′DS′′ of double coset representatives for GS′\G/GS′′ is distinguished if the projection

S′DS′′ ⊂ NG(T ) of S′DS′′ to W is distinguished. Distinguished coset representatives satisfy

l(s′ds′′) = l(s′) + l(d) + l(s′′)

for all s′ ∈ S ′, s′′ ∈ S ′′.

We now construct a set of distinguished double coset representatives for the spaceWi\W/Wi,

i = 0, 1, 2. While the method we use can be generalised to any symplectic group, it is not

feasible for larger groups for reasons which will become evident.

Theorem 5.6.3. Let S = {s0, s1, s2} be a set of fundamental reflections in G. Let Si :=

S\{si} and Wi := WSi denote the subgroup of the affine Weyl group W generated by

reflections in Si. Let

– DCRS0 = {1, s0, s0s1s0, s0A
r, s0s1s0B

s, s0s1s0B
tAu : r, s, t, u ∈ N and t odd }

where A = s1s2s1s0 and B = s2s1s0;

– DCRS1 = {1, s1, s1C
r, s1A

−s, s1A
−ts0s1, A

us1, A
vs1s2s1, s1A

−wCx,

Ays1C
z : r, s, t, u, v, w, x, y, z ∈ N} where C = s0s2s1;
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– DCRS2 = {1, s2, s2s1s2, s2D
r, s2s1s2E

s, s2s1s2E
tDu : r, s, t, u ∈ N and t odd }

where D = s1s0s1s2 and E = s0s1s2.

Then DCRSi is the set siD̄si of distinguished double coset representatives for Wi\W/Wi

for each i.

Proof. The proof can be split into two parts. The first is to show that the conjec-

tured set of representatives have minimal length in their double cosets. This shows that

DCRSi ⊂ SiDSi . The second is an inductive argument to show that DCRSi exhausts all

distinguished representatives, which forces equality above.

For the first part, since distinguished representatives have minimal length in their cosets,

we need to show that our conjectured list consists of distinguished elements. By definition,

we have that d ∈ SiDSi if and only if d ∈ SiD and d ∈ DSi . These sets of distinguished right

and left cosets representatives are in bijection by the anti-automorphism w 7→ w−1. This

means that d is a distinguished left coset representative if and only if d−1 is a distinguished

right coset representative. Thus d is a distinguished double coset representative if and only

if both d and d−1 are distinguished right coset representatives.

Remark 5.6.4. If w is a distinguished word in the double coset Wi\W/Wi then the

number of si appearing in the presentation for any element of that coset is determined.

In order to motivate the inductive nature of our exhaustion argument we have the following

result.

Lemma 5.6.5. Let i = 0, 1, 2 and Wi, Si be as above. Let w ∈ W be a distinguished word

with n + 1 occurrences of si appearing in its reduced presentation. Then there exists a

distinguished word d with n occurrences of si in a reduced presentation and wi ∈ Wi such

that w = dwisi.

Proof. Suppose w ∈ W is distinguished with n + 1 occurrences of si in its reduced pre-

sentation. Write a reduced presentation

w = usivsi
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with v ∈ Wi. The word usi is reduced and has n occurrences of si in its reduced presen-

tation. This means we can write

usi = xdy

for some x, y ∈ Wi and d distinguished with n occurrences of si. Then

l(x−1usi) = l(dy) = l(xdy)− l(x) = l(usi)− l(x)

implies

l(x−1w) ≤ l(x−1usi) + l(vsi) = l(usi) + l(vsi)− l(x) = l(w)− l(x).

Since w is distinguished, we conclude that l(x) = 0 and so x = 1. Thus

w = usivsi = d(yv)si = dwisi

with wi = yv ∈ Wi as required.

We now proceed to show that DCRSi is contained in siD̄si.

Lemma 5.6.6. Let DCRSi be as in Theorem 5.6.3. Then every element of DCRSi as an

element of W is distinguished. Moreover, the expressions given for the elements of DCRSi

are reduced.

Proof. With respect to the ordered basis {αs0 , αs1 , αs2} of V we have

σs0 =


−1

√
2 0

0 1 0

0 0 1

 , σs1 =


1 0 0
√

2 −1
√

2

0 0 1

 , σs2 =


1 0 0

0 1 0

0
√

2 −1

 .

For each d ∈ DCRSi we compute σ(d)(αs) and σ(d−1)(αs) for s ∈ Si. In all cases, the

resulting vectors are positive i.e. all coefficients are nonnegative. Theorem 5.6.2 implies

that l(ds) > l(d) and l(d−1s) > l(d−1), so every element is distinguished.

To show each element d is reduced we compute l(d) by building it up as a product of si

(from left to right) and verifying (using Theorem 5.6.2) that the length increases at each

step. This is done by induction and a direct calculation. We note that the cases i = 0, 2

are dual to each other by swapping s0 with s2.
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Example 5.6.7. We give an example of the calculations needed in the Lemma above for

the case i = 0. Consider the element s0A
n in the double coset space W0\W/W0, where

A = s1s2s1s0 and n ≥ 1. Then

σ(s0A
n) = σ(s0)σ(A)n =


−1

√
2 0

0 1 0

0 0 1



−2n+ 1 n

√
2 0

−2n
√

2 2n+ 1 0

−2n n
√

2 1



=


−2n− 1 (n+ 1)

√
2 0

−2n
√

2 2n+ 1 0

−2n n
√

2 1

 .

Now

σ(s0A
n)(αs1) =


−2n− 1 (n+ 1)

√
2 0

−2n
√

2 2n+ 1 0

−2n n
√

2 1




0

1

0

 =


(n+ 1)

√
2

2n+ 1

n
√

2

 ,

and

σ(s0A
n)(αs2) =


−2n− 1 (n+ 1)

√
2 0

−2n
√

2 2n+ 1 0

−2n n
√

2 1




0

0

1

 =


0

0

1

 .

This shows that l(s0A
ns1) > l(s0A

n) and l(s0A
ns2) > l(s0A

n) by Theorem 5.6.2. Thus

s0A
n ∈ DS0 and, since (s0A

n)−1 = s0A
n, we also have (s0A

n)−1 ∈ DS0 so s0A
n ∈ S0D.

Similarly,

σ(s0s1s0B
n) = σ(s0s1s0)σ(B)n

=


−1 0 2

−
√

2 1
√

2

0 0 1



−n+ 1

2
(1 + (−1)n)

√
2

2
(1− (−1)n) n− 1

2
(1− (−1)n)

−n
√

2 1 n
√

2

−n− 1
2
(1− (−1)n)

√
2

2
(1− (−1)n) n+ 1− 1

2
(1− (−1)n)



=


−(n+ 1) + 1

2
(1− (−1)n)

√
2

2
(1− (−1)n) (n+ 2)− 1

2
(1− (−1)n)

−(n+ 1)
√

2 1 (n+ 1)
√

2

−(n+ 1)− 1
2
(1− (−1)n)

√
2

2
(1− (−1)n) (n+ 1)− 1

2
(1− (−1)n)

 .
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We see that since both σ(s0s1s0B
n)(αs1) and σ(s0s1s0B

n)(αs2) are positive, s0s1s0B
n is

positive.

It remains to show that each word is reduced. We inductively assume d = s0A
r is reduced,

with the base case s0 trivially satisfied.

σ(d) =


−2r − 1 (r + 1)

√
2 0

−2r
√

2 2r + 1 0

−2r r
√

2 1

 and σ(d)(αs1) =


(r + 1)

√
2

2r + 1

r
√

2


is positive so l(ds1) = l(d) + 1,

σ(ds1) =


1 −(r + 1)

√
2 2r + 2

√
2 −2r − 1 (2r + 1)

√
2

0 −r
√

2 2r + 1

 and σ(ds1)(αs2) =


2r + 2

(2r + 1)
√

2

2r + 1


is positive so l(ds1s2) = l(d) + 2,

σ(ds1s2) =


1 (r + 1)

√
2 0

√
2 2r + 1 −(2r + 1)

√
2

0 (r + 1)
√

2 −(2r + 1)

 and σ(ds1s2)(αs1) =


(r + 1)

√
2

2r + 1

(r + 1)
√

2


is positive so l(ds1s2s1) = l(d) + 3,

σ(ds1s2s1) =


2r + 3 −(r + 1)

√
2 0

(2r + 2)
√

2 −(2r + 1)
√

2 0

2r + 2 −(r + 1)
√

2 1

 and σ(ds1s2s1)(αs0) =


2r + 3

(2r + 2)
√

2

2r + 1


is positive so l(ds1s2s1s0) = l(dA) = l(d) + 4.

This shows that dA is reduced. Next consider d = s0s1s0B
s. The base case is s0s1s0 which

is certainly reduced. We inductively assume that d = s0s1s0B
s is reduced.

σ(d) =


−(s+ 1) + 1

2
(1− (−1)s)

√
2

2
(1− (−1)s) (s+ 2)− 1

2
(1− (−1)s)

−(s+ 1)
√

2 1 (s+ 1)
√

2

−(s+ 1)− 1
2
(1− (−1)s)

√
2

2
(1− (−1)s) (s+ 1)− 1

2
(1− (−1)s)
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and σ(d)(αs2) =


(s+ 2)− 1

2
(1− (−1)s)

(s+ 1)
√

2

(s+ 1)− 1
2

(1− (−1)s)

 is positive so l(ds2) = l(d) + 1,

σ(ds2) =


−(s+ 1)− 1

2
(1− (−1)s) (s+ 2)

√
2 −(s+ 2) + 1

2
(1− (−1)s)

−(s+ 1)
√

2 2s+ 3 −(s+ 1)
√

2

−s− 1
2
(1− (−1)s) (s+ 1)

√
2 −(s+ 1) + 1

2
(1− (−1)s)



and σ(ds2)(αs1) =


(s+ 2)

√
2

2s+ 2

(s+ 1)
√

2

 is positive so l(ds2s1) = l(d) + 2,

σ(ds2s1) =


(s+ 3)− 1

2
(1− (−1)s) −(s+ 2)

√
2 (s+ 2) + 1

2
(1− (−1)s)

(s+ 2)
√

2 −2s− 3 (s+ 2)
√

2

(s+ 1)− 1
2
(1− (−1)s) −(s+ 1)

√
2 (s+ 1) + 1

2
(1− (−1)s)



and σ(ds2s1)(αs0) =


(s+ 3)− 1

2
(1− (−1)s)

(s+ 2)
√

2

(s+ 1)− 1
2

(1− (−1)s)

 is positive so

l(ds1s2s0) = l(dB) = l(d) + 3.

Thus dB is reduced. We finally consider d = s0s1s0B
tAu with t odd. We have

σ(s0s1s0B
t) =


−(t+ 2)

√
2 t+ 1

−(t+ 1)
√

2 1 (t+ 1)
√

2

−(t+ 1)
√

2 t


is reduced by the previous case which provides the base case of an induction on u. Then

σ(d) =


−(t+ 2u+ 2) (u+ 1)

√
2 (t+ 1)

−(t+ 2u+ 1)
√

2 2u+ 1 (t+ 1)
√

2

−(t+ 2u+ 1) (u+ 1)
√

2 t

 and σ(d)(αs1) =


(u+ 1)

√
2

2u+ 1

(u+ 1)
√

2


is positive so l(ds1) = l(d) + 1,

σ(ds1) =


−t −(u+ 1)

√
2 (t+ 2u+ 3)

−t
√

2 −(2u+ 1) (t+ 2u+ 2)
√

2

−(t− 1) −(u+ 1)
√

2 (t+ 2u+ 2)

 and σ(ds1)(αs2) =


t+ 2u− 3

(t+ 2u+ 2)
√

2

t+ 2u+ 2
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is positive so l(ds1s2) = l(d) + 2,

σ(ds1s2) =


−t (t+ u+ 2)

√
2 −(t+ 2u+ 3)

−t
√

2 2t+ 2u+ 3 −(t+ 2u+ 2)
√

2

−(t− 1) (t+ u+ 1)
√

2 −(t+ 2u+ 3)

 and σ(ds1s2)(αs1) =


(t+ u+ 2)

√
2

2t+ 2u+ 3

(t+ u+ 1)
√

2


is positive so l(ds1s2s1) = l(d) + 3,

σ(ds1s2s1) =


t+ 2u+ 4 −(t+ u+ 2)

√
2 t+ 1

(t+ 2u+ 3)
√

2 −(2t+ 2u+ 3) (t+ 1)
√

2

t+ 2u+ 3 −(t+ u+ 1)
√

2 t

 and σ(ds1s2s1)(αs0) =


t+ 2u+ 4

(t+ 2u+ 3)
√

2

t+ 2u+ 3


is positive so l(ds1s2s1s0) = l(dA) = l(d) + 4.

It now remains to show that the sets DCRSi exhaust all distinguished double coset rep-

resentatives. Let (DCRSi)n denote the subset of DCRSi consisting of elements with n

lots of si occurring in its reduced presentation. Then DCRSi =
⊔
n≥0(DCRSi)n, with the

understanding that w ∈ DCRSi having no occurrences of si implies w = 1. The details

for the case i = 0 are given below.

Lemma 5.6.8. Let A = s1s2s1s0 and B = s2s1s0. Let DCRS0 be as in Theorem 5.6.3

and (DCRS0)n be as above. Assume that d ∈ W is distinguished for W0\W/W0 and has

n ∈ N ∪ {0} lots of s0 appearing in its presentation (with the understanding that n = 0

corresponds to the trivial word.) Then

d ∈
3⊔

n=0

(DCRS0)n =
{
1, s0, s0s1s0, s0A, s0s1s0B, s0A

2
}

if n < 4, and

d ∈ (DCRS0)n =
{
s0A

n−1, s0 s1 s0B
n−2, s0 s1 s0B

xAy : x+ y = n− 2 and x odd
}

if n ≥ 4.

Proof. We proceed by induction on n, with the base case (n = 0) trivial. The inductive

hypothesis and Lemma 5.6.5 tells us that any distinguished representative with n + 1

occurrences of s0 is of the form dw0s0 with d ∈ (DCRS0)n and w0 ∈ W0. There are only
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a finite number of possible elements of this form, which is bounded by | W0 | · | (DCRSi)n |.

The set W0 consists of 8 elements, namely

W0 = {1, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, s1s2s1s2}.

Using the braid relations, we see that the elements s1s2s1 and s2s1s2s1s2 represent the

same word, but have differing lengths. Since distinguished words have minimal length

in their double cosets, we choose elements of minimal length which represent a word. If

w0 ∈ W0 ends in s2 then (dw0s0)s2 = d(w0s2)s0 and w0s2 is shorter and ends in s1. On

the other hand, ds0 ends in s0s0 and so has reduced expression with fewer than n lots of

s0. Thus we need only consider ds1s0, ds2s1s0 = dB and ds1s2s1s0 = dA.

We write si, sj to indicate that we have considered the element sidw0s0sj for si, sj ∈ W0,

which we are permitted to do since we are in W0\W/W0. To ease notation we abbreviate

i := si.

Number of s0’s Distinguished Representatives

1 0

2 010, 0A

3 010B, 0A2

4 010B2, 010BA, 0A3

5 010B3, 010BA2, 010A4

6 010B4, 010BA3, 010B3A, 0A5

7 010B5, 010BA4, 010B3A2, 0A6

8 010B6, 010BA5, 010B3A3, 010B5A, 0A7

Table 5.1: Distinguished Reps of W0\W/W0 with up to 8 occurrences of s0.

We consider Table 5.1 as our base case in our induction. In what follows, we use “=”

to mean that two elements reside in the same double coset. We readily make use of the

following relations, which can be derived directly from the braid relations:

B2A = AB2; (◦)



142 Michael Arnold

A(10B) = (10B)A; (�)

A2 = 2A. (4)

Case 1: Let d = 0An−1:

(i) d10 = 0An−110 = 0An−21210101 = 0An−212010 = 0An−210B

�
= 010BAn−2 ∈ (DCRS0)n+1.

(ii) dB = 0An−1B = 0An−1210
4
= 202An−21210101 = 0An−212010

= 0An−210B
�
= 010BAn−2 ∈ (DCRS0)n+1.

(iii) dA = 0An−1A = 0An ∈ (DCRS0)n+1.

Case 2: Let d = 010Bn−2:

(i) d10 = 010Bn−210 = 010Bn−4210210101 = 010Bn−42102010 = 010Bn−421210

= 010Bn−4121202 = 010Bn−4A has fewer than n lots of 0 in its reduced expression.

(ii) dB = 010Bn−2B = 010Bn−1 ∈ (DCRS0)n+1.

(iii) If n is odd then dA = 010Bn−2A ∈ (DCRS0)n+1,

If n is even then dA = 010Bn−2A
◦
= 010ABn−2 = 10101210Bn−2

= 010Bn−1 ∈ (DCRS0)n+1.

Case 3: Let d = 010BxAy with x odd and x+ y = n− 2:

(i) If x = 1 then d10 = 010BAy10
�
= 0Ay10B10 = 0Ay10210101

= 0Ay102010 = 0Ay+1 has fewer than

n lots of 0 in its reduced expression,

If x > 1 then d10 = 010BxAy10 = 010BxAy−11210101

= 010BxAy−112010 = 010BxAy−110B

�
= 010Bx10BAy−1 = 010Bx−221021010BAy−1 =

010Bx−121020101BAy−1 has fewer than n lots of 0

in its reduced expression.

(ii) dB = 010BxAyB = 010BxAy−1AB = 010BxAy−1B2

= 010Bx+2Ay−1 ∈ (DCRS0)n+1.

(iii) dA = 010BxAyA = 010BxAy+1 ∈ (DCRS0)n+1
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Thus every distinguished element with n + 1 lots of s0 in its reduced expression lies in

(DCRS0)n+1.

Theorem 5.6.3 now follows immediately from Lemma 5.6.6 and Lemma 5.6.8 (and its

analogous statement for i = 1, 2).
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