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Abstract

Wheat is one of the three major crops in the world with a total demand expected to

exceed 850 million tons by 2050. One of the key challenges for wheat is to stabilise

the yield and quality in wheat production. The application of the internet of things

(IoT) in agriculture has enabled us to continuously monitor crop growth through

networked remote sensors and non-invasive imaging devices. Analysis of the output

of such systems with machine-learning algorithms and image processing techniques

can help to extract meaningful information to assisting crop management.

Counting wheat spikelets from infield images is considered one of the challenges

related to estimating yield traits of wheat crops. For this challenging problem, we

first propose a model for semantic segmentation, SpikeSEG, to isolate the spike

regions from noisy and redundant background. Segmentation results can then

be used to improve phenotypic counting approaches. In-field spikelet counting is

very challenging because of spikelet self-similarity, high volume in one image, and

severe occlusion. For this, we propose a density estimation approach related to

crowd counting, SpikeCount. Our proposed segmentation/counting methods are

based on deep learning architectures as those have the advantage of being able to

identify features automatically.

Annotation of images with the ground truth are required for machine learning ap-

proaches, but those are expensive in terms of time and resources. We use Transfer

Learning in both tasks, segmentation and counting. We also investigated the ef-
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fect of multi-task learning by using SpikeMulti and compared it with conventional

workflow of applying segmentation and the density estimation.

Our results indicate the segmentation is beneficial as focusing only on the regions of

interest improves counting accuracy in most scenarios. In particular, a combination

of Transfer Learning and Multi-task learning produced excellent results for the

counting task for most of the stages of wheat development.

Supervisors: Beatriz De La Iglesia and Michal Mackiewicz
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Chapter 1

Introduction

1.1 Motivation

As one of the world’s most important cereal crops, wheat is a staple for human

nutrition, for example, bread alone provides 20% of UK daily intake [112]. Wheat

is grown all over the world on arable land more than any other commercial crops

[29]. The increase of population, rapid urbanisation in many developing countries,

and fluctuating climate conditions indicate that the global wheat production is

expected to have a significant increase in the coming decades [154]. According to

the Food & Agriculture Organisation of the United Nations, the world’s demand

for cereals (for food and animal feed) is expected to reach a billion tonnes by 2050

[1]. Nevertheless, it is critical that this increase of crop production is achieved

in a sustainable and resilient way, for example, through deploying new and useful

genetic variation [99]. By combining the best genes and traits assembled for target

environments, we are likely to increase yield and yield stability to address the

approaching global food security challenge [13].

One effective way to breed resilient wheat varieties in fluctuating environmental

conditions, which can increase both yield and the sustainability of crop produc-

tion, is to screen key yield-related phenotypes including the reproductive stage

(i.e. flowering time), spikes per unit area, and spikelet number per spike. Based on
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the evaluation of these dynamic traits in the field, breeders can select lines based on

the yield components, characteristics and hence improve yield potential in finished

lines and varieties [133, 58, 85].

The set of protocols and methods which uses plant growth measurements and

architectures with a defined accuracy and precision from organs to canopies is

called plant phenotyping. Also, it examines how the plant traits are impacted

by the genotype and the environment interaction (G x E) [38]. Traditionally, the

above procedure was accomplished by specialists using visual inspection of crops

and then evaluating key traits based on their personal experience and expertise of

the crop, an approach that is labour-intensive, relatively subjective and prone to

errors [107, 42].

With rapid advances in remote sensing and Internet of Things (IoT) technologies in

recent years, it is technically feasible to collect huge amounts of image- and sensor-

based datasets in the field [45, 39]. Using unmanned aerial vehicles (UAVs) or fixed-

wing light air-crafts [33, 20, 114], climate sensors [126], ground-based phenotyping

vehicles [132, 30], and/or large in-field gantry systems [123, 127], much crop growth

and development data can be collected that contains key trait information.

New challenges are emerging from the above data collection approaches including:

(1) existing remote sensing systems cannot locate the right plant from hundreds

of plots, at the right time; (2) it is not possible to capture high-frequency data to

represent dynamic phenological traits in field conditions; (3) our ability to extract

meaningful phenotypic information from large sensor and image-based data remains

limited; (4) traditional computer vision (CV) and supervised machine learning

(ML) are not fit for the sound analysis of datasets because of huge variations in

quality and complexity of the in-field phenotyping datasets [14, 38, 119]. Hence,

many breeders and crop researchers are still employing the conventional methods

of recording, assessment, and selection of lines and traits [84, 60, 16].

The emerging artificial intelligence (AI) based robotic technologies [56, 94, 108]
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and distributed real-time crop phenotyping devices [53, 150] have the potential

to address the first two challenges as they are capable of acquiring continuous

visual representations of crops at key growth stages. Still, the latter two challenges

are more analytically oriented and hence require computational resolutions, for

example, to segment complicated backgrounds under changeable lighting conditions

[2, 98, 153]. CV and ML based phenotypic analysis are therefore becoming more

and more popular in recent years.

Most of the examples that utilised CV and ML to extract useful traits in plant

research [7, 44, 54, 10, 57, 78, 151, 89, 90, 95, 122] have relied on relatively high

quality images, when camera positions are fixed and lighting conditions are stable;

however, it is not possible to reproduce image data with similar quality in com-

plicated field conditions, where yield-related traits are assessed. Therefore, in this

research, we will explore how deep learning can be used to extract meaningful

traits such as detecting spikes and spikelets from infield wheat crop images that

are captured under different lighting conditions and at different growth stages and

growing seasons.

1.2 Aims and Objectives

In this work, we are going to focus on investigating how deep learning methods can

help to extract important key-yield-related phenotypes such as spikelets numbers

from uncontrolled infield wheat crop images that are different in lighting conditions

at different growth stages and growing seasons. Our objectives are as follows:

• To create and design the required (necessary) datasets for accomplishing the

aim of this work, including producing annotations suitable for ML algorithms.

• To investigate whether image pre-processing techniques such as spike seg-

mentation can be beneficial in the context of spikelet counting. To also in-
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vestigate other pre-processing techniques such as data augmentation that

show good results in image analysis problems.

• To develop deep learning object counting approaches, such as Convolutional

Neural Networks (CNN), that are suitable to tackle the problem of spikelet

counting in in-field images accurately.

• To investigate the benefits of Transfer Learning using other suitable image

sets that may enhance the algorithm performance.

1.3 Research Questions

Our research is trying to solve the problem of quantifying spikelet numbers from

wheat crop infield images which differ in sun exposure, environmental conditions,

growing stages and growing seasons. The amount of labelled data accessible to us is

limited. In this context, we want to adapt a CNN to solve this problem efficiently.

In relation to this we ask the following questions:

• Q1: Could eliminating the background from infield wheat crop images sim-

plify the problem of quantifying spikelet counts taking into account the high

density of overlapping spikelets and the real environment factors that can

add more distortion and complexity to the problem (see Chapter 4).

• Q2: Deep learning models are big data oriented [64, 62] so the more data,

the better they can learn. However, with the limited datasets available in the

plant phenomics community [121], we ask the following questions in relation

to Transfer Learning [83]:

– Q2.1: Can loading learnt parameters from models trained to solve dif-

ferent tasks on big dataset containing millions of objects benefit our

problem of quantifying traits from plants (different task, different data)?

(see Chapter 4)
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– Q2.2: Can loading learnt parameters from images of the same plants

captured under controlled lab environments be beneficial to solve the

same task on limited infield images (same task, different data)? (see

Chapter 5)

• Q3: Can Multi-task learning in the context of deep learning be beneficial to

our problem specifically and to plant phenomics generally? In other words,

can multitask learning tackle the problem of spike segmentation and spikelets

counting simultaneously and would this be better than solving those two tasks

in sequence? (see Chapter 6)

1.4 Publications

• Tahani Alkhudaydi, Daniel Reynolds, Simon Griffiths, Ji Zhou, and Beatriz

De La Iglesia. An exploration of deep-learning based phenotypic analysis to

detect spike regions in field conditions for UK bread wheat. Plant Phenomics,

2019:7368761, 2019

• Tahani Alkhudaydi, Ji Zhou, and Beatriz de la Iglesia. SpikeletFCN: Count-

ing Spikelets from Infield Wheat Crop Images Using Fully Convolutional

Networks. In International Conference on Artificial Intelligence and Soft

Computing, pages 3–13. Springer, 2019

• We aim to publish a journal paper about the work of Chapter 5, which is

about counting spikelets and the effect of transferring knowledge from images

of similar plants that are captured in controlled environment.

• We aim to publish a journal paper about the work of Chapter 6, which is

about the effect of multi-task learning on both learning tasks (spike segment-

ation and spikelet density estimation).
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1.5 Contributions

We have made the following contributions to the field of Plant phenomics using

deep learning:

1. We produced a high-quality high-resolution dataset that consists of three se-

quences : CQ_2015, CQ_2016, and CQ_2017. It represents three growing

seasons of four near isogenic lines (NILs) of bread wheat that were cloned

at John Innes Centre (JIC) [110, 109]. They were monitored by distrib-

uted CropQuant workstations [150] in real field environments and measured

manually during the key growth stages in wheat growing seasons from 2015 to

2017. Each sequence is composed of 30 images divided into four key growth

stages: booting, heading, flowering and grain filling. Each sequence has two

annotated labels : (1) the spike regions in each image have been labelled

and (2) each spikelet in each image was annotated by placing a dot in the

centre of it. This is presented in Chapter 3 and can be accessed through:

https://github.com/tanh86/SpikeProject.

2. We conducted a detailed study to show how CNNs [71] can be used success-

fully to segment and isolate regions of interest (ROI, i.e. spike regions) from

noisy backgrounds so that reliable phenotypic analysis could be achieved.

In our case the subsequent phenotypic analysis consists of extraction of the

spikelet numbers. We have evaluated the models generated for two sequences

(CQ_2016 and CQ_17) and for each growth stage. This is presented in

Chapter 4.

3. We also conducted a detailed study to show how CNNs [71] can be adap-

ted to perform spikelets density estimation in order to obtain the number

of spikelets in an image. We have tested the performance of SpikeCount on

three variations of CQ_2016 and CQ_2017: (1) images with full background

to measure how noisy background can minimise the model performance (2)

6

https://github.com/tanh86/SpikeProject


1.5. Contributions

images with the background fully removed to measure how isolating the back-

ground helps maximise the extraction of sound phenotyping traits such spike-

lets numbers (3) finally testing the model on the output of the segmentation

model previously implemented to measure the combined performance. This

is presented in Chapter 5.

4. We have conducted a detailed study to test the performance of heterogen-

eous supervised multi task learning model (SpikeMulti) using CNNs to tackle

both spike segmentation and spikelets density estimation. Naturally, we have

tested the model only on images with background and compare the eval-

uation with previous results when we follow the conventional pipeline (i.e

apply segmentation and the density estimation).This is presented in Chapter

6.

5. We conducted a detailed study to understand the power of Transfer Learning

in two ways:

a) We have employed the Transfer Learning approach using ImageNet im-

ages to aid spike segmentation and SpikeMulti [103, 62]. For this, the

parameters that were the result of training on a large number of objects

that vary in type and domain are used to improve the performance of the

learning model, as they may identify suitable features. This is presented

in Chapters 4 and 5.

b) We have used learnt features from wheat images [90] that are in the

same domain but captured in a more controlled setting. This allows

the convolutional architectures to use the high quality wheat images

captured without any noise to provide high quality low level features that

can be loaded into convolutional layers and in our case FCN. We have

loaded the The Annotated Crop Image Dataset (ACID) [90] parameters

into SpikeCount and this helped to improve the results of spikelet density

estimation and counting.
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6. We have also implemented a multitask algorithm which enables us to get

good results from original images with noisy backgrounds and improves on

the results of doing the segmentation and spikelet counting separately. This

is presented in Chapter 6.

1.6 Thesis Outline

The outline of thesis is as follows. Chapter 2 will discuss the related extended

motivation of the topic including the current challenges facing cereal crops and the

traditional methods that have been used to face these challenges. Additionally,

it will present an overall overview of deep learning and in particular convolutional

neural networks (CNN) and object counting techniques. It will explore examples of

the tasks that have been achieved in the literature, including by the plant phenomics

research community. It will provide a summary of multitask learning with some

examples of it used to tackle object counting. Chapter 3 will present the overall

proposed methodology for achieving this aim. Chapter 4 will present results from

the first step in our proposed approach, that is isolating regions of interest (ROI,

i.e. spike regions) by applying semantic segmentation. Chapter 5 will discuss the

second step in our proposed approach, i.e. counting spikelets in wheat images as

a form of yield quantification for wheat crops, and it will detail the experimental

setup and results. Chapter 6 will discuss SpikeMulti, a heterogeneous multi-task

fully convolutional model that is trained simultaneously to learn two tasks: (1)

pixel-wise classification for spike segmentation and (2) pixel-wise regression for

spikelet density estimation used to infer spikelets counts. Chapter 7 will draw

insights from the analysis of our results presented in the experimental chapters

and will also look at what is left to do in the future.
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Chapter 2

Related Work

In Chapter 1 we introduced the motivation and the aims of this work, that is,

to study how deep learning can be used to extract important key-yield-related

phenotypes such as spikelets numbers from uncontrolled infield wheat crop images

that are different in lighting conditions at different growth stages and growing

seasons.

The problem is at the intersection of multiple fields that we need to explore and

established before selecting the the best approach(es) to tackle it. Therefore, this

Chapter will explore the different fields that relate to our research.

In Section 2.1 we provide extended motivation of the topic including the current

challenges facing cereal crops, particularly wheat. We discuss current and tradi-

tional methods that have been used to face these challenges. We also refer to the

shortcomings of these traditional methods and show how the Internet of Things

(IoT) has provided some solutions to the flaws of traditional methods. Finally, we

list a number of examples of computer vision, machine learning and deep learning

used for plant phenotyping.

Section 2.3 establishes a comprehensive overview of deep learning and in particular

convolutional neural networks (CNN).

Section 2.4 provides an overview of object counting techniques, different kind of

supervisions used and differences between local and global feature extraction. We
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explore examples of the task has been achieved in the literature, including by the

plant phenotyping research community. We also summarise Multitask learning

with some examples of it used to tackle object counting.

2.1 Image Analysis in Plant Phenotyping

Wheat, as presented in the summary of the Wheat Review [111], is considered to

be among the top three crops with a total of 607 million tonnes in 2007 according

to FAO statistics (http://www.fao.org/faostat/). In addition, it is considered one

of the world’s most important cereal crops. Wheat is a staple for human nutrition

that provides 20% of UK daily intake [112] and is grown all over the world on

arable land more than any other commercial crop[29]. The extent of cultivation

and diversity is what makes wheat unique and very important in the world today.

Wheat has over 25,000 types and can survive in different conditions of temperatures

and environments around the globe. The dominant type of wheat, with over 95%,

is bread wheat [111]. The properties of dough made from wheat also contribute to

its popularity as it gives many processing choices such as breads, pasta, cakes, etc.

These properties are mainly associated with the gluten protein contained within

wheat which gives the dough its viscoelasticity, particularly to make leavened bread.

In addition, the binding properties of wheat give rise to a wide range of unleavened

products such as cakes, pasta and noodles [111].

In terms of health benefits, wheat provides starch, protein and minerals such as

Iron and Zinc that could give poor populations many of their essentials nutrients.

Shewry [111] says that one of the challenges for the future of wheat is the stability

and quality of crops. Climate change and, in particular factors such as temperature

and carbon dioxide increases, could potentially affect wheat crop development and

its yields. Moreover, lack of access to water, pests and pathogens are considered

other negative factors.
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Zhou et al. [154] argue that many factors such as population increases, acceleration

of growing more urban societies in many developing countries, and changeable

climate conditions indicate there will be substantial increase of production of the

global wheat in the future where the global demand for cereals is expected to reach

a billion tonnes by 2050 [1]. For all those reasons, it is vital to face the increase of

crop production through new robust and sustained approaches.

Plant phenotyping as defined by Fiorani et al. [38] as the set of methodologies

and protocols used to measure plant growth, architecture, and composition with

a certain accuracy and precision at different scales of organisation, from organs to

canopies. In addition, it studies how the genotype and the environment interact

(G x E) to impact plant traits.

Reynolds and Langridge [99] explain that there are three important factors to crop

improvement : (1) leveraging the knowledge of physiological research to design new

models that improve the plant processes and crop ideotypes, (2) evaluating com-

plex trait expressions using high throughput phenotyping technologies and applying

them realistically on a breeding scale in field environments, and (3) deploying new

and useful genetic variations. To address the imminent challenges of global food se-

curity we can combine the best genes and traits assembled for target environments,

which likely lead to increased yield and yield stability [13].

One effective way to breed robust wheat varieties in changeable environmental con-

ditions, which can increase both yield and the stability of crop production, is to

screen key yield-related phenotypes including the reproductive stage (i.e. flowering

time), spikes per unit area, and spikelet number per spike. For example, pask et al.

[85] discuss 20 measurements of wheat traits. Yield and yield components meas-

ure the production of grains which is the ultimate expression of all physiological

processes. Throughout the crop growth cycle, these processes have interacted with

the weather and environment and there is an urgent need to accurately measure

these traits to exhibit the relationship between physiological characteristics and

productivity. These trait measurements are spike (ear) number (SNO), grain num-
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ber (GNO), grains per spike (ear) and thousand grain weight. The measurements

can be done through crop sampling and in-field surveillance [85]. Based on the

evaluation of these dynamic traits in the field, breeders can select lines according

to their yield components and therefore improve yield potential in finished lines and

varieties [133, 58, 85]. The above procedure, conventionally, was achieved by spe-

cialists using visual inspection of crops and then assessing key traits based on their

personal experience and expertise of the crop, an approach that is labour-intensive,

relatively subjective and prone to errors [107, 42].

In recent years, the accelerated advancements in both Internet of Things (IoT)

and remote sensing have made it technically attainable to collect vast amounts

of image- and sensor-based datasets in the field [45, 39]. Many crop growth and

development data can be collected that contains key yield-related traits through

different types of remote sensing.

For example, low-altitude unmanned aerial vehicles (UAVs) are used to estimate

plot-level ground cover for cotton, sorghum and sugarcane to extract ground cover,

an important physiological traits [33]. Also, fixed-wing light air-crafts are used

to extract ground cover in sorghum, canopy temperature in sugarcane and three-

dimensional measures of crop lodging in wheat [20], and to develop prototype

crop information systems that are based on remote imaging sensor, e.g. Moder-

ate Resolution Imaging Spectroradiometer (MODIS) to monitor opium and cereal

crops [114]. Another example is climate sensors which involve collecting hetero-

geneous environmental information such as temperature, solar radiation, humidity,

pH, moisture and wind. Then, all collected information is merged to generate a

response for every scenario [126]. Ground-based phenotyping vehicles are equipped

with multiple sensors such as LiDAR, RGB camera, thermal infra-red camera and

imaging spectroradiometer to records crop data on multiple plots during crop life

cycle and give the opportunity to measure and extract traits several times [132, 30].

Finally, large in-field gantry systems such as LeasyScan [123] a novel 3D scanning

mechanism to monitor canopy traits related to water usage. Another example is
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Field Scanalyzer, a fully automated field phenotyping platform used to provide a

consistent observation and monitoring of crop growing and generate detailed in-

formation of canopy through crop life-cycle [127].

There are emerging challenges for the previously explained data collection meth-

ods : (1) current remote sensing systems limitation on locating accurately the right

plant from hundreds of plots, at the right time; (2) it is not possible to capture high-

frequency data (e.g. resolution of minutes to hours) to represent dynamic phenolo-

gical traits (e.g. booting and anther extrusion) in field conditions; (3) limitations in

extracting meaningful phenotypic information from large sensor- and image-based

data; (4) traditional computer vision (CV) and supervised machine learning (ML)

are not fit for the robust analysis of datasets because of huge variations in quality

and complexity of the in-field phenotyping datasets (e.g. high-dimensional multi-

spectral imagery)[14, 38, 119]. Therefore, many breeders and crop researchers are

still employing the conventional methods of recording, assessment, and selection of

lines and traits [84, 60, 16].

The rising artificial intelligence (AI)-based robotic technologies [56, 94, 108] and dis-

tributed real-time crop phenotyping devices [53, 150] have the potential to address

the first two challenges as they are capable of acquiring continuous visual repres-

entations of crops at key growth stages. Still, the latter two challenges are more

analytically oriented and thus require computational resolutions, for example, to

segment complicated backgrounds under changeable lighting conditions[2, 98, 153].

CV and ML based phenotypic analysis are therefore becoming more and more

popular in recent years.

There are many examples of using CV and ML to extract plant traits. Lemna-

Grid [7] utilises colour and intensity features to segment Arabidopsis leaves from

predefined background. PhenoPhyte [44] employs the OpenCV[54] library to semi-

automate object segmentation based on colour space and adaptive thresholding, so

that leaf phenotypes can be measured. MorphoLeaf[10], a plug-in of the Free-D

analysis software, performs morphological analysis of plants to study different plant
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architectures; BIVcolor[57] uses a one-class classification framework to determine

grapevine berry size using the MATLAB’s Image Processing Toolbox. Phenotiki

[78] combines off-the-shelf hardware components and easy-to-use Matlab-based ML

packages to segment and measure rosette-shaped plants.

Leaf-GP [151] combines Python-based image analysis libraries (e.g. Scikit-Image

[124] and OpenCV) and the Scikit-Learn[86] ML library to measure growth phen-

otypes of Arabidopsis and wheat based on combining colour, contrast, and mor-

phological features.

Root Estimator for Shovelomics Traits (REST) software [28] analyses root stocks

sampled using novel splitting methods which are then photographed under con-

trolled illumination. This was used to develop precise and high throughout software

which was evaluated on 33 diverse maize hybrids. Vasseur et al. [125] developed

ImageJ [93] macros to extract shape descriptor rosettes (from tray or individual

pot images) or to perform segmentation (from inflorescence images). This was

used in a predictive statistical model using R to predict plant dry mass and fruit

numbers. Image Harvest (IH) [59] is an open-source analysis framework which can

be used to carry out a parallel processing of images generated from multiple high-

throughput plant phenotyping platforms. It provides many selections to extract

traits from images. EasyPCC [46] is a tool provided to evaluate the plant canopy

coverage (PCC) from a large number of images with different field conditions using

pixel-based segmentation (decision trees). BioLeaf [74] is a free mobile application

that measures the loss of foliar in soybean leaves based on two techniques: Otsu

segmentation and Bezier curves. saRIA [80] is a GUI-based semi-automated root

image analysis tool that applies image segmentation using adaptive thresholding

and morphological filtering.

State-of-the-art deep learning (e.g. Convolutional Neural Network, CNN) has been

employed to carry out indoor phenotyping for wheat root and shoot images using

edge- and corner-based features[89]. A homogeneous multitask deep learning model

is developed to count and localise wheat spikes and spikelets from wheat crop
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images captured in a controlled environment inside a glasshouse [90]. Finally,

significant advances have been made in the deep learning approaches to automate

leaf object segmentation and phenotypic analysis[95, 122].

2.2 Internet of Things (IoT) in Plant Phenotyping

According to Madakam et al. [75] the best definition of IoT is : “An open and com-

prehensive network of intelligent objects that have the capacity to auto-organise,

share information, data and resources, reacting and acting in face of situations

and changes in the environment”. The advances of technologies such as hardware

improvements (the reduced size and power consumption), connectivity improve-

ments (wireless connections) and cloud computing have allowed to employ IoT into

building a network of devices that share data and information [81, 148]. There

are four layers presented on the proposed IoT agriculture platform [22, 105, 81]:

application, processing, transport and perception which can be related to the main

components of any IoT system: application, services, network and devices.

The perception layer consists of the physical devices in the platform and how they

interchange with each other and with the transport layers which collect data to

allow the communication of information. UAV devices, sensor nodes or devices de-

veloped for specific purposes using components like sensors and single-board com-

puters (SBC)—such as Arduino or Raspberry Pi [81] are used. Sensor nodes have

been used, for example, to detect and monitor leaf disease using integrated sensor

networks to measure moisture, temperature and humidity which are utilised in

various locations around the farm and controlled using one controller called Rasp-

berry PI (RPI) [120]. An example of interaction between the perception layer and

the service layer using the transport layer is SmartFarmNet [55]. SmartFarmNet

is an IoT-based platform that automatically collects environmental, soil, fertilisa-

tion, and irrigation data. Then, it automatically correlates these data to assess

the crop performance. It provides a virtual integration of any IoT device such as
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sensors, cameras, weather stations and it stores their generated data in the cloud

for analysis.

The transport layer relates to the network and transport abilities, such as network

and application protocols [22, 81]. A network protocol in any IoT system is there

to facilitate the communication between the perception layer and the processing

layer. The network protocols are divided according to data exchange into short-

range, cellular networks and long-range, taking into account the power consumption

and exchange rate. For example, a low-cost long-range protocol was presented for

automatic cloud-based irrigation [35].

The processing layer consists of data storage, visualisation and processing resources

which enable distributed storage and parallel data processing and lead to extract-

ing the required information quickly. That information can be fed into artificial

intelligence (AI) systems to detect patterns and correlate complex data [81].

The application layer provides the farmers with management information to em-

powers them to make well rounded decisions regarding crop management.

2.3 Deep Learning

For many years machine learning has helped to solve image recognition tasks. Su-

pervised and unsupervised learning are considered the main themes in machine

learning. In the supervised approach, iterative training is conducted using previ-

ously labelled data to learn a certain mapping from the samples features to either

discrete (classification) or continuous (regression) output. For example, when a

classifier is trained to detect a certain object in an image, a label must be associated

with the image to indicate whether it is the target object or not. Unlike supervised

learning, unsupervised approaches do not require data labelling. Clustering is the

main unsupervised task that groups the data points into clusters based on their

features, and in particular by using some concept of similarity. For example, Har-

alick et al. [48] have approached image segmentation as a clustering task such as
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applying k-means to cluster image pixels [49]. As a compromise, semi-supervised

learning has emerged where the learning process uses labelled and unlabelled data

to produce the mapping [19].

Traditionally, when approaching any image recognition task using machine learn-

ing, an image is transformed into handcrafted features and they are chosen based

on the expertise and knowledge of the researcher and to the real world problem

under consideration. Afterwards, the handcrafted features are manipulated using

supervised or unsupervised learning according to the task.

2.3.1 Shallow Vs Deep Neural Networks

The Shallow Neural Network is based on the principle of a Perceptron [101]. A

Perceptron is a linear function that maps a weighted sum of the inputs to either 1,

if the outcome is larger than or equal to a certain threshold θ or 0, otherwise (see

Equation 2.1 ):

y =


1 if

∑
iwixi ≥ θ;

0 otherwise.
(2.1)

Minsky et al. [79] explained the disadvantage for solving functions where their

inputs are not linearly separable such as XOR function. In other words, the per-

ception is only capable of solving input data that can be separated with a linear

decision boundary e.g AND operation. Thus, multi-layer perceptrons (MLP) have

emerged to solve this limitation by stacking intermediate layers of perceptions,

called hidden layers, between the input and output layers.

One of the MLP properties is the capability of representing any function with only

two hidden layers because of the fact that any function can be approximated by a

number of simple surfaces. To approximate each surface, a neuron can be added

to the second hidden layer. Therefore, the more complex the function, the more

surfaces are needed to approximate it and, as a consequence, the more neurons are
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added to the hidden layers. This causes the size of the MLP to grow exponentially

[128].

On the other hand, deep networks have the capacity to learn complex represent-

ation by adding more layers than adding neurons in each layer. Delalleau et al.

[31] compared the number of neurons used to represent a certain function in terms

of the size of the input vector n. They found that for a network with depth i

(number of layers), the overall number of neurons used is O(n). However, in two-

layer shallow networks, the number of neurons used is O((n − 1)i). Many works

have been reviewed in [128] that justify the popularity of deep nets over shallow

networks. Back-propagation (BP) [102] is widely used as an algorithm for learning

parameters in deep networks.

2.3.2 Convolutional Neural Nets (CNN)

Convolutional neural nets are fundamentally inspired by the visual vortex in hu-

mans. Any CNN model has three main layers: convolutional, non-linearity and

subsampling layers. The convolutional layer is based on the convolution operation.

This operation transforms any image into another image by multiplying it with a

kernel or a filter. Many different filters can be applied to extract different features.

The benefit we get from applying a convolution operation is detecting local features

that are invariant to translation transformation. Usually, the kernel or filter matrix

is predefined and fixed. However, in the convolutional layer, these filters are con-

sidered parameters and we train the CNN to learn them. This gives us a powerful

advantage because the model learns only the kernels that are relevant to the given

images and problem domain. Typically, the second layer is composed of the non-

linearity units which strengthen the convolution operation result by highlighting

the features that are useful for the prediction task. Rectified Linear Unit (ReLU)

[62] is used widely because it decreases the training time of deep nets compared to

other non-linearity functions (Figure 2.2). It is a threshold function (see Equation

2.2), which is an element-wise (x is a feature map element) thresholding operation
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Figure 2.1: A LeNet Architecture. LeNet [65] is the first CNN architecture, it has two groups of convolu-
tional layer and subsampling layer.

Figure 2.2: ReLU Performance [62]. The solid learning curve of CNN ImageNet classier that uses
ReLU,shows how the learning rate is faster than the same CNN model which uses other non-linearity
function.

that is applied to the outcome of the convolutional layer (resulted feature map) to

suppress negative values:

f(x) = max(0, x) (2.2)

where x is an element in the feature map.

The third essential layer is subsampling and its role is to sample some values from

a certain region or window of the input. The size of the window is predetermined

when setting up the model. There are two types of subsampling: max-pooling

which is to sample the maximum values and average-pooling which is to sample by

averaging the input values. The goal of subsampling is to ensure that the features

are invariant to any noise or transformation, also to down-size the feature map to

do less computation. To some extent this step mimics extracting local features

from the image which are more robust to object variations or noisy background.

In principle, any CNN would have these three layers with a certain size and num-

ber; then, typically, another three layers with a different size and number. The
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advantage of this interchangeable order is finding more robust features. To per-

form the classification or regression task, two important layers are connected at

the end the model: a fully-connected layer and output layer.

2.4 Object Counting

Object counting from images is a problem that emerges in many different scen-

arios, for example, monitoring crowds [92, 18, 143], performing wildlife census [6],

counting blood cells in images [47] and others. Sometimes, the problem is framed

in the context of counting objects in still images [5, 21, 6] whereas in other cases,

the problem involves counting moving objects in videos [40]. The latter has the ad-

ditional complication of not only detecting objects but also tracking them as they

move in the frame, for example pedestrian tracking [129, 130]. Supervised counting

methods include a number of main themes: counting by global regression, detec-

tion, density estimation, segmentation, and subitising. Unsupervised approaches

have been used for object counting but according to Lempitsky and Zisserman [66]

they tend to produce less accuracy. To reduce the burden of labelling objects semi-

supervised approaches [18] have also been proposed in which only some data is

labelled and unlabelled data or labelled data from other scenes is used to improve

the model.

2.4.1 Full vs Point-level Supervision

Often machine learning approaches to object counting are supervised approaches,

i.e. they require some labelling of the images so that there is some ground truth

about the number of objects. Labour intensive annotations such as bounding-box

and pixel-wise annotations are rarely used and do not mimic the way humans count

by pointing at objects [66]. Dotting annotation has been introduced and used vastly

in the object counting area [5, 6, 37, 66, 143]. There are two types of dot annotation

in the literature: single and crowdsourcing. The first type is done by a single
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Figure 2.3: Examples of single dot annotation [143] (left) and crowdsourcing dot annotation (right) [6]
The example on the right [6] shows a result of an image that were dot annotated by crowdsourcing where
multiple annotators put a dot on each object. Each annotator has a unique colour where the example on
the left [143] shows a single dot annotation.

annotator whereas the second (crowdsourcing) dot annotate the same data multiple

times. Arteta et al. [6] argue that there is a negative correlation between annotation

simplicity and model complexity, that is, the simpler the annotation the more

complex the model will be. Therefore, while it is true that dot annotation lowers

the burden of annotation, it requires more cues regarding the spatial information

of the objects [6, 143]. Crowdsourcing dot annotation can provide a solution to fill

this gap by exploiting the point patterns, which can provide spatial cues about the

objects and be used for any complex task such as counting [6].

2.4.2 Global vs Local Features Extraction

According to Seguí et al. [106] a counting system is a mapping from the image space

to a set of non-negative integers. This requires the definition of the image features

and also of a mapping function. Traditional approaches have relied on handcrafted

features. For example, features may relate directly to the objects being counted,

to the background or to groups of objects. There are two types of hand crafted

features in terms of object counting: global features [25, 61, 43] and local features

[37, 73, 104]. Global features are dependent on the values (pixels) of the entire

image [139] and are mostly shape and texture descriptors. However, they are
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occlusion and clutter sensitive [69]. Cho et al. [25] extracted three global features

among all images: length of edges of the crowd objects, the crowd objects density

and the background objects’ density. Kong et al. [61] used edge orientation and

blob size histograms, which were generated from edge detection and background

subtraction, to estimate crowd density. Giuffrida et el.[43] used an unsupervised

feature extractor to build global features to count leaves in rosette plants.

On the other hand, local features are dependent on the values of a certain neigh-

bourhood, a patch or region of the image [139]. Local features give the advantage

of recognising the object even if the scene is cluttered or occluded [69]. Fiaschi

et al. [37] employ random forest regression to map local features such as dense

features (features generated at pixel-level) to the density estimates. Ma et al.

[73] proposed a local texture feature mapping: gradient orientation co-occurrence

matrix(GOCM), where they argue that they are more discriminative and repres-

entative of the crowd patches than a co-occurrence matrix (GLCM). Ryan et al.

[104] argued that global features require an enormous training set because of the

variety in crowds. Therefore, they proposed using local features that are related to

individuals and small groups.

As for the mapping function, machine learning can deliver a number of different

approaches either in the form of multi-classifiers, if we have samples available for

all possible cardinalities or, more commonly, multivariate regression approaches, if

we want to map from the feature space to a set of (bounded) positive integers.

2.4.3 Object Counting Methods

2.4.3.1 Counting by detection

Training an object detector requires us to provide the system with sufficient labelled

and localised objects to represent the different appearances of the object. Once

object detection is achieved, counting is relatively trivial. However, detection could

be challenging particularly in overlapping objects causing occlusion, differences
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in scale, and also a lack of detectable background between distinct objects [6].

Detection of humans is often used in crowd counting [134, 68] but humans can

adopt many different postures which may make human body recognition more

challenging.

2.4.3.2 Counting by segmentation

Many works [17, 104, 40, 6, 95] have utilised segmentation in various ways. For

instance, Chan et al. [17] used foreground segmentation to segment the crowd into

homogeneous groups based on the crowd direction using dynamic texture segment-

ation. On a segment level, a number of features are extracted such as segment

area, perimeter, perimeter edge orientation and perimeter area ratio. Globally,

internal edge features were computed on the entire image and then masked by the

segmentation. Also, each image patch was classified in terms of crowd density using

grey-level co-occurrence matrix (GLCM) to extract texture features. After that,

using regression, the number of people in each group will be estimated based on

each segment’s features. On the other hand, Ryan et al.[104] followed the same

approach in [17]. They extracted the same features: area, perimeter, perimeter-

area ratio, edges, and edge angle histogram but after applying crowd segmentation.

Therefore, they utilise regression on only locally extracted features.

2.4.3.3 Counting by regression

When the only task required is to determine the total number of a certain object in

an image rather than detecting it, counting by regression may be easier due to the

difficulty of the detection problem. Also, it may be the only way if the image suffers

from severe object overlapping or if the resolution of the image is low. Counting by

regression often maps image global and/or local features to the object total number

from the whole scene or various extracted parts of the scene.
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For instance, as discussed in the counting by segmentation methods, Chan et al.

[17] utilised counting by regression as the final step to count the number of people

in each group based on each segment’s features extracted from each image patch.

Also, after applying crowd segmentation, Ryan et al. [104] applied counting by

regression based on the features extracted from each segments to estimate the

count [104].

Chen et al. [23] proposed a model that learns a functional mapping from low-level

features to multi-dimensional structured outputs to predict the count of pedestri-

ans. Those low-level features consist of three parts. First, segment-based features:

foreground area, total number of foreground perimeter pixels and the ratio of peri-

meter area; also, structural-based features such as edge pixels total number and

edge orientation histogram; lastly, local texture features such as Gray Level Co-

occurrence Matrix (GLCM).

2.4.3.4 Counting by density estimation

Unlike other counting regression methods that use global region features, learning

to count objects through density estimation regression [66] takes into account the

spatial information of objects. This, to some extent, would give localisation inform-

ation regarding the object occurrences in the image. Density estimation regression

learns mapping from local features into pixel level densities. This gives the advant-

age of integral density estimation over any image regions. In other words, it can

estimate the density of any region in the image. Lempitsky and Zisserman [66] used

dot annotations to infer density maps and utilised them as training ground truths

by applying a normalised 2D Gaussian kernel. Then, they designed a counting cost

function that minimises the distance between the target density map the inferred

ground truth one. Subsequently, Fiaschi et al. [37] used random forest regression,

which optimised the training process to predict the density map. Exploiting the

advantage of integral density estimation over any sub region of the image, a count-

ing system was presented that estimates object counts interactively [5]. Pham et
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al. [87] proposed a patch-based method to solve crowd density estimation explor-

ing structured learning using random decision forests. A fast density estimation

based visual object counting (DE-VOC) was presented which leveraged the map-

ping between images and their corresponding density maps in two different features

spaces [131]. Xu et al. [136] proposed that using more image features can lead to

more robust crowd density estimation models. Also, they utilised more efficient

random projection forests to reduce the dimensionality resulting from traditional

random forests.

2.4.3.5 Counting using deep learning algorithms

Convolutional Neural Networks (CNN), which are capable of learning their own

features, are beginning to show real promise in the area of object counting [6,

21, 143]. Seguí et al. [106] argue that it is possible to learn to count using CNN

focusing on the multiplicity of the object of interest, without annotating the objects

via detection or bounding boxes. They achieve this in their CNN by using a two

block structure, with the first block made up of two or more convolutional layers

which tries to capture and represent the concept they are counting and a second

block of fully connected layers that produces the counts.

Arteta et al.[6] used foreground segmentation to aid the learning of density es-

timation. They trained a segmentation map and a density map jointly to count

penguins. French et al. [40] used segmentation to count fish in a two stage pro-

cess:(1) foreground segmentation and (2) CNN edge detector to accurately segment

the severely occluded fish areas.

A recent work by Ren and Zeme [95] has used deep learning algorithms such as

Recurrent Neural Nets(RNNs) and CNN to employ visual attention to produce

instance segmentation while counting. They adopt visual attention that humans

use when counting. They locate and segment the object iteratively one by one and

keep track of them. They claim that this approach is more efficient in crowded
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scenes than the regression based model that utilises global features.

Chattopadhyay et al. [21] explore applying deep learning to count different types

of objects in everyday scenes, and propose to solve it using an approach based

on developmental psychology. Their method, subitising, is based on the ability

of humans, and even children, to map a perceptual sign to a numeric estimate.

They argue that everyday scenes differ from some of the scenes used in this area

of research because many different objects can appear, some with zero counts,

some with multiple counts. They solve the counting problem by dividing it into

subproblems on different cells in a non-overlapping grid and then adding the partial

counts. They also take care of context across cells to improve their count. However,

they require annotated scenes as input with object bounding boxes and they also

require category wise counts for each type of object.

Another important problem in object counting that emerges in crowd counting

problems is that small changes to the scene may make the learned models useless

for new data as models are often scene specific (e.g. [129, 143]). For example,

changes in lighting, resolution, distribution of crowds, and perspective can make

models poor in new scenes. It is important to develop models that can work across

different scenes as such models may have a much wider applicability. Scene specific

models may be more accurate, but need to be re-trained when applied to a new

scene and that may involve labelling the new scene, which if done manually may

make the approach costly and not scalable. There have been a number of attempts

to solve the problem of scale variation and perspective distortion [6, 143]. For

example, one proposed solution is to use a perspective map produced by selecting

random pedestrians and labelling them from head to toe [143] taking into account

that the average adult height is 175 cm. One pixel in the resulting map equals

to one meter of pixels in the original image at the same location. On the other

hand, Wang and Wang [129] propose an approach in which the generic model is

adapted to a specific scene by selecting examples from the scene that may help

with re-training.

26



2.4.3.6. Object Counting in plant phenotyping

2.4.3.6 Object Counting in plant phenotyping

Counting constituent parts of plants is an essential and important task to be tackled

in plant phenotyping. For example, TasselNet [72] was developed to count maize

tassels from infield maize crop images captured from 2010 and 2015 in various

fields in China. TasselNet performs counting by local regression using a deep

convolutional neural network-based approach. It was tested on 8 test sequences

achieving good results.

Another example of counting in plant phenotyping closer to our own application is

counting spikes and spikelets in wheat. Spikes and spikelets represent important

yield traits for wheat [67]. In this context, Pound et al. [90] developed a multi-task

deep learning model to count and localise wheat spikes and spikelets, achieving an

accuracy of 95.91% and 99.66% respectively using non-maximal suppression (NMS).

They tested the model on wheat crop images captured in a controlled environment

inside a glasshouse. Their problem is therefore similar to ours but simpler given

the reduced variation in the controlled laboratory environment as opposed to a real

field image.

Also, Madec et al. [76] investigated counting spikes from infield wheat crop images

captured by UAV platform using two CNN-based models. The first was Faster-R-

CNN [96], a CNN based object detection model. The second was an adaptation

of TasselNet [72] for this task, the CNN-based local regression model developed

to count maize tassels from infield images. They concluded that both models

achieved similar results when tested on images containing crops that have a similar

distribution of spikes as the images both models trained on. However, they found

that Faster-RCNN outperformed other models when tested on images containing

more mature crops.

Fernandez-Gallego et al. [36] developed an image processing pipeline to count and

localise wheat spikes (also known as ears) by segmentation. They tested their

pipeline on infield durum wheat crops with two growth stages and reported high
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success rate (over 90%) between algorithm count and manual (image based) counts.

Also, Hasan et al. [50] tackled the problem of counting spikes by using an R-CNN

object detector. They trained four versions of R-CNN on four different growth

stages of infield wheat images that vary in growth stage and variety. They again

reported good results with detection accuracy ranging from 88 to 94% across dif-

ferent sets of test images.

2.4.4 Multitask Learning (MTL)

Multitask Learning (MTL) is a branch of machine learning, where multiple related

targets are trained simultaneously to solve complex goals [15]. Caruana [15] argue

that when it comes to solving complex goals, relying on targets modularity and

solving each one independently can be pointless and ineffective. In the context of

object counting, Zhang et al. [143] developed a learning algorithm with multiple

learning objectives which are switchable. Their objectives are crowd density and

crowd counting and they can help each other to obtain better estimates. Another

example of multitask learning for counting is the method of Arteta et al. [6]

for counting penguins. They introduced a multitask convolutional Neural Net

architecture that primarily learns a segmentation mask to help the object density

map regression. More specifically, the model is trained jointly to learn three targets:

a segmentation map, a density map and a uncertainty map. The segmentation map

uses a pixel-wise binary classification approach with a hinge loss. The remaining

targets are regressed with a root-squared loss. Zhao et al. [149] proposed two

learning phases to solve the crossing line people counting problem. For instance, in

surveillance videos, they count the number of people across a line-of-interest (LOI).

First, they employed CNN to learn to predict two targets, the crowd density map

and crowd velocity. Then, they trained a CNN to learn a crowd counting map.

Sindagi et al. [116] proposed to train CNN jointly to learn crowd count classification

and density map estimation to tackle crowd counting, which they argued, lowered

the count error and improved the density maps of highly challenging datasets.
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2.5 Summary

In this Chapter, we have extended the motivation behind the main aim of this

thesis: employing deep learning to extract key-yield phenotypes such as spikelet

numbers from uncontrolled infield wheat crop images. We produced a detailed

explanation of the challenges that currently face cereal crop production such as

wheat crops. Also the limitations of conventional phenotyping methods have been

discussed. In addition, we explained the importance of the IoT and various data

collection mechanisms that help with some of the limitation of traditional phen-

otyping methods. However those generate new challenges of their own. We also

showed that most of the work employing CV and ML in plant phenotyping has been

done based on plant images that are captured in relatively controlled settings and

consistent lighting. Those do not resemble the complexity and variability of real

infield crops. In addition, IoT can collect massive dimensional data. We have given

a comprehensive review of deep learning and have shown that it can be successful

in extraction of meaningful information related to crop development.

In relation to object counting, we listed the major object counting methods used

in the literature with some examples for each one. We believe that the problem

of spikelet counting from infield wheat images is similar in many aspects to crowd

counting such as variability, self-similarity, varying backgrounds, severe occlusion,

and density. The problem of density is widely tackled using the methods of dens-

ity estimation which we discussed. In addition, we explained how the multitask

learning approach is used in the context of counting objects, and how it can be

beneficial in solving the problem in hand.

In the next Chapter, we are going to describe the overall proposed methods and

the motivation behind selecting them. Also, we are going to introduce the dataset

used to test and evaluate the selected methods.
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Chapter 3

Methods

Figure 3.1 shows the type of image we are going to analyse, together with a close up

of spikelets with their spikes. Our objective is to count the spikelets as accurately

as possible in such uncontrolled infield wheat crop images. For this, we employ

deep learning methods to extract spikelet numbers. In this Chapter we are going

to present the overall proposed methodology for achieving this aim.

Spikelets

Spikes

Figure 3.1: An example of wheat crop scene, spikes, and spikelets

There are five components to be introduced within our proposed methodology:

1. We start with a formal definition of our problem. We then determine which

object counting method is most suitable for our problem and the reason(s)

behind selecting this methods. We discuss how to model the problem using

the selected object counting method.
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2. We explain the workflow we follow along with with a description of learning

tasks used in this workflow.

3. We present a detailed description of the datasets we used for testing and eval-

uation. Also, we present the protocol for training and validation, explaining

how data preparation is carried out for training and validating our approach.

4. We discuss which deep learning networks are more suitable to accomplish the

learning tasks.

5. We give a general description of how we utilise Transfer Learning in the

different learning tasks.

6. In the final section, we describe the testing and evaluation of the proposed

methods detailing the quantitative metrics for each learning task.

3.1 Proposed Methodology

3.1.1 Problem Statement

In Chapter 2 we explored the different object counting methods. Counting by

segmentation and detection, which involve segmenting or detecting the objects

individually to be counted. This in the context of counting spikelets is unrealistic

due to the severe density of occlusion. Therefore, we model the problem in hand as a

crowd counting problem [117] which shares similar features such as severe occlusion,

high number of objects etc. Most crowd counting work has utilised initially global

regression methods. However, this relies on regressing the global count and ignores

the spatial information which could lead to more accurate counting. [117]. Density

estimation, which preserves the spatial information, has been leading to better

results in the context of crowd counting. It is a well-known technique that originally

learns a linear mapping from the image to a density map [66].
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(a) (b) (c)

Figure 3.2: An example of spikelets density generation where: (a) represents sub-image of a wheat crop,
(b) represents corresponding dot annotation and (c) the generated density map from the dot annotation

Next, we define the problem of spikelet counting mathematically. We model it as

a density estimation problem as follows. Given N input images I1, I2, ..., IN with

a size of H ×W ×D, in our cases representing infield wheat crop plots, for each

image, Ii, there is a corresponding dot map Pi that can be represented as a set

of 2D points Pi = {P1, ..., PSPCi}, where |Pi| is the number of spikelets in image

Ii. Each point is placed at the centre of each spikelet as shown in Fig 3.2(b). To

generate the ground truth map GTi (shown in Fig 3.2 (c)), a 2D Gaussian kernel

N (p;P, σ212×2) is applied to the dot map Pi which generates a density for each

pixel p of image Ii. Therefore, the size of GTi is the same as the input image:

GTi = {DP1 , ..., DPH×W } where DPj is the generated density for the jth pixel in

image Ii.

The effect of applying the Gaussian kernel is that it can reflect the crowding around

a spikelet by taking into account the information of the pixel’s neighbourhood when

updating its density value. In other words, the more spikelet occlusion in a certain

region, the higher the density values will be assigned to pixels in the region.

The total number of spikelets in a certain image Ii is the sum of all pixels densities

in density map: |Pi| = SPCi =
∑
p∈Ii

Dp.

3.1.2 The outline of proposed workflow

The complexity of the problem is enhanced by noisy background objects which

could be an obstacle to extracting spikelet numbers accurately. One important
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3.1.3. Fully convolutional network (FCN)

step before extracting plant growth traits from images is to isolate the ROI from

noisy and redundant background [70]. Figure 3.3 illustrates the overall proposed

workflow we are going to follow is composed of two learning tasks:

1. Apply foreground semantic segmentation using deep learning to isolate ROI,

in our case spike regions, which in themselves are important traits to extract;

we will refer to this model as (SpikeSEG).

2. Apply a deep learning algorithm to perform density estimation and extract

the number of spikelets from the segmented images (the output from step 1),

we will refer to this model as (SpikeCount).

1. Detecting Spike Regions using semantic segmentation 

1.1 Apply random sampling to extract 
patches from the original scene and 
corresponding mask.

1.2 Train SpikeSEG employing Fully 
Convolutional Net to learn non-linear 
transformation of spike regions 
segmentation.

SpikeSEG 

Spikelets Density Generation 

2.1 Apply random 
sampling to extract 
patches from the 
original or Optimal 
scene and 
corresponding dot 
annotation.

2.2 Apply gaussian 
smoothing filter 
(𝝈 = 2.5) to each dot (a) 
to generate the density 
of  each spikelet (b) 
which can be summed 
to one.

2.Estimating Spikelet Count using density estimation  

a

1.3 In testing phase: A Window, matching the 
sampled patch size, slides over the test 
image and SpikeSEG is applied to output a 
prediction map of spike segmentation

2.3 Train SpikeCount to 
perform spikelet density 
regression for each pixel.

2.4 To produce 
the spikelet count from a predicted 
density map, we simply perform 
integral  operation(summation) over 
the whole map. 

(a) (b)
SpikeCount 

Figure 3.3: The overall proposed workflow illustrates the first step, detecting spike regions using semantic
segmentation and the second step of estimating spikelet count using density estimation. It also details the
training, validation and testing strategy for developing SpikeSEG and SpikeCount models

3.1.3 Fully convolutional network (FCN)

An important part of our methodology is to determine which deep learning network

is most suitable for our learning tasks. We propose to employ a FCN [71] to tackle

both semantic spike segmentation task (SpikeSEG) and spikelet density estimation

(SpikeCount), because both tasks are fine grained and require pixel-level prediction.

Also FCN and varieties have widely been employed to tackle density estimation

[6, 145, 77, 11]. For those reasons, we decided to select FCN to tackle both tasks as
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this simplifies the experimental setup and enables us to use the same to investigate

multi-task learning (SpikeMulti) (Chapter 6). However, we will discuss other deep

learning models that can be used for segmentation in Chapter 7 as part of our

further work.

The novelty and advantage of applying FCN in this context is that it transforms

the non-spatial output produced by the deep classifier to a spatial one that is

required for both tasks. This is accomplished through transforming the fully con-

nected layers attached at the end of the deep classifier, so that image level predic-

tion can be produced. Fully convolutional layers can preserve the spatial inform-

ation of target objects and hence enable the pixel level prediction. This approach

provides a solution to localise and detect targeted objects based on manually la-

belled training datasets. However, the output of the FCN at this stage has lower

resolution than the original input image and yields a coarse output. To tackle this

down sampling problem, FCNs were proposed to reverse the effect of repetitive

sub-sampling through up-sampling [115]. The up-sampling method is based on

backwards convolution (also called deconvolution). Furthermore, a FCN provides

another enhancement by applying a concept called the skip technique. This takes

advantage of the hierarchy resulting from any convolutional neural network that

starts with local feature maps describing the finest information (i.e. edges, con-

trast, etc.) and ends with the coarsest information that describe the semantics of

the target objects (i.e. the more generic features of the region). A FCN combines

those levels to produce a more detailed output map. Those two enhancements can

lead, in the case of density estimation, into a more accurate density map and hence

accurate spikelet numbers.

3.1.4 Datasets

Next, it is important to present the datasets used in this research, how they were

collected, and what is the general protocol for evaluating different methods. Lastly,
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we explain in general the proposed methods to solve the problem and finally the

evaluation metrics for each method.

3.1.4.1 Wheat field experiments

To assess key yield-related traits for UK bread wheat, we have utilised four near

isogenic lines (NILs) of bread wheat in field experiments, representing genetic and

phenotypic variation with the similar genetic background called “Paragon”, an

elite UK spring wheat that is also used in the Biotechnology and Biological Sci-

ences Research Council’s (BBSRC) Designing Future Wheat (DFW) Programme.

The four NILs include Paragon wildtype (WT), Ppd (photoperiod insensitive) and

Reduced Height (Rht) genes (semi-dwarf) genotypes cloned at John Innes Centre

(JIC)[110, 109], which were monitored by distributed CQ workstations in real field

environments and measured manually during the key growth stages in wheat grow-

ing seasons from 2015 to 2017.

3.1.4.2 Image acquisition

The high-quality Red-Green-Blue (RGB) image series used in this study were col-

lected from 1.5-metre-wide (5-metre-long) wheat plots during a three-year field ex-

periment. To generate continuous vision representation of key growth stages of the

crop in the field, four CQ workstations were dedicated to conduct high-frequency

(one image per hour) and high-resolution (2592x1944 pixels) imaging in order to

acquire target yield-related traits expression. Each CQ workstation or terminal

consists of a single-board computer, climate sensors, a sensors integration circuit,

an imaging sensor, a local storage, network components, Debian operating system,

and custom-made Python software package for crop images and climate data collec-

tion [152]. Between May and July in three growing seasons (i.e. covering booting,

GS41 – GS49, to grain filling stages, GS71 – GS77), over 60 GB image datasets
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have been generated by CQ devices. For each growing season, 30 representative

images were selected for the deep-learning based phenotypic analysis.

In order to maintain similar contrast and clarity of wheat images in varied light-

ing conditions in the field, the latest versions of open-source picamera imaging

library[88] and Scikit-image[124] were employed to automate the adjustment of

white balance, exposure mode, shutter speed and calibration during the image ac-

quisition [152]. In-field image datasets were synchronised with centralised storage

at Norwich Research Park (NRP) using the Internet-of-Things based CropSight

system [97]. Figure 3.4 shows examples of the wheat plot images acquired by CQ

workstations from 2015 to 2017 (in columns), indicating that images selected for

the yield-related traits analyses were under varying in-field illumination conditions

and weather conditions, containing a range of background objects during the ex-

periments.

3.1.4.3 Wheat growth dataset for training, validation, and testing

Because images were collected from three consecutive years that cover four key

growth stages (Figure 3.4), we decided to use the 2015 sequence (Figure 3.6) to

train the models, because of the constant clarity and contrast of the image series.

Then, we use the 2016 sequence (Figure 3.7) to validate our learning model and

the final year, i.e. the 2017 sequence (Figure 3.8), to test the model. This training

strategy gives us a reasonably robust validation of the performance of our model as

the unseen sequence in 2017 can be utilised to test the generalisation of the model.

Figure 3.5 illustrates the distribution of selected images in each growth stage in each

growing season (30 images per year, 90 in total). Amongst these growth stages,

the flowering stage has the highest number (37 out of 90), followed by heading (22

images), grain filling stages (19 images), and booting (12 images). The reason for

this arrangement is that the flowering stage represents the phase when spikes are

fully emerging, whereas wheat spikes are normally partially hidden at booting and

heading stages (i.e. GS41-598). It is worth noting that the 2015 sequence does not
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Figure 3.4: Wheat growth image series in the field collected by CropQuant workstations, from 2015 growing
season to 2017 growing season, covering booting to grain filling growth stages

contain many booting images due to the short-term nature of wheat booting, which

normally finishes within 1-2 days. Hence, it is an interesting test case for us to train

a deep learning model that can segment spike regions collected in multiple years

during the process of ear emergence (e.g. spikes have partially emerged) under

challenging in-field lighting conditions. Figures 3.6, 3.7 and 3.8 show examples

of 2015, 2016 and 2017 sequences images with the corresponding labels, the spike

regions masks and spikelet density maps.
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3.1.5 Wheat growth dataset Labelling

Using the UEA Computer Vision - Image Labelling Tool [41], we have manually

labelled images with polygonal labels for the segmentation task and dot annotation

for density estimation task. The tool runs as a web-based application and is written

in Python 2.7. All images that need to be labelled are stored in a certain folder.

Then, the tool detects and load these images. The tool provides a number of

options to label the image. We selected the polygonal option to trace the spike

shape. Once the tracing is done, we then select the appropriate label and then

the corresponding coordinates of polygons are stored in matched encoding file for

each image. For the density estimation task, we adjusted the tool to make the dot

annotation option - which are represented by a circle- by reducing the size of the

circle. The centre coordinates of each circle, representing each spikelet, are stored

in the corresponding encoding file for each image.

Figure 3.5: The distribution of selected images in each growth stage between 2015 and 2017 growing season,
which are used for training, validation and testing when establishing the deep-learning architecture
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Booting
(GS41- 47)

Heading
(GS51- 59)

Flowering or 
anthesis

(GS61- 69)

Grain filling
(GS71- 77)

Original Density Map GTMasks GT

Figure 3.6: Wheat growth image series in the field collected by CropQuant workstations of the 2015
growing season, covering booting to grain filling growth stages and showing the corresponding spike regions
segmentation masks and density estimation maps
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Booting
(GS41- 47)

Heading
(GS51- 59)

Flowering or 
anthesis

(GS61- 69)

Grain filling
(GS71- 77)

Original Density Map GTMasks GT

Figure 3.7: Wheat growth image series in the field collected by CropQuant workstations of the 2016
growing season, covering booting to grain filling growth stages and showing the corresponding spike regions
segmentation masks and density estimation maps
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Booting
(GS43- 47)

Heading
(GS51- 59)

Flowering or 
anthesis

(GS61- 69)

Grain filling
(GS71- 77)

Original Density Map GTMasks GT

Figure 3.8: Wheat growth image series in the field collected by CropQuant workstations of the 2017
growing season, covering booting to grain filling growth stages and showing the corresponding spike regions
segmentation masks and density estimation maps
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3.1.5.1 The Annotated Crop Image Dataset (ACID)

The Annotated Crop Image Dataset (ACID)[90], which is publicly available has

520 images of wheat plants captured from 21 pots in a glasshouse with a resolution

of 1956×1530. The imaging is done by 12 MP cameras and all images have a black

background. The images show different spike arrangements and leaves and were

obtained in consistent lighting. Also, the images were dot annotated by placing a

dot in the centre of each spikelet. The total number of spikelets in all images is

48,000 and the average spikelet number per scene is 92.3 with a standard deviation

of 28.52.

Figure 3.9 shows examples of both CropQuant and ACID images which exemplify

their similarities and differences. For example all ACID images have a black back-

ground and consistent lighting whereas our images can contain a number of objects

in the background as well as parts of the sky, variations in lighting, wind condi-

tions, etc. Nevertheless, their dataset of dot annotated wheat images, which is

publicly available, may be of use for our own models as the images represent the

same physical entity as we are studying and may be used within Transfer Learning.

(a) (b)

Figure 3.9: Example of images from (a) ACID dataset and (b) CropQuant dataset
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3.1.5.2 The protocol for training and validation

We randomly sampled sub-images from the original images for training and testing.

Figure 3.3 explains a high-level workflow that we followed consisting of two steps:

1. Detecting Spike Regions using semantic segmentation where first we apply

random sampling to extract patches from the original scene and correspond-

ing mask. Then, we train SpikeSEG employing Fully Convolutional Net to

learn non-linear transformation of spike regions segmentation. In testing

phase: A Window, matching the sampled patch size, slides over the test

image and SpikeSEG is applied to output a prediction map of spike segment-

ation.

2. Estimating Spikelet Count using density estimation where first, as in the pre-

vious step, we apply random sampling to extract patches from the original or

Optimal scene and corresponding dot annotation. Second, we apply Gaussian

smoothing filter (σ = 2.5) to each dot to generate the density of each spikelet

which can be summed to one. Then, we train SpikeCount to perform spikelet

density regression for each pixel. Finally, to produce the spikelet count from

a predicted density map, we simply perform integral operation(summation)

over the whole map.

3.1.6 Employing Transfer Learning

Moving to the fifth component of our proposed methodology which is utilising

a Transfer Learning technique to aid solving the problem of spikelets counting.

Transfer Learning can provide immense advantage in improving and enhancing

target task learning of any model. Traditionally, machine learning methods tend to

learn the required task from scratch relying only on the training data [83]. However,

when the training data is limited in quantity and quality, Transfer Learning can

be employed to transfer the knowledge form previously learned tasks to be used to
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aid learning the new target task [83]. We intend to use Transfer Learning in three

main ways:

3.1.6.1 Transferring knowledge of ImageNet

In this context we are proposing to initialise SpikeSEG with ImageNet weights or

parameters [103] and train it to segment the spike regions. ImageNet parameters

are “off-the-shelf” pre-trained parameters obtained from millions of examples in

thousands of object categories such as the ImageNet database [103] which will

provide a general library of features that can be used for the first layers of any

CNN model that could capture the low-level features of objects.

3.1.6.2 Transferring knowledge of ACID dataset

In the Subsection 3.1.4 we presented the fourth component of the proposed meth-

odology which is the datasets used to achieve the main objective of this work. We

propose to transfer the knowledge of Annotated Crop Image Dataset (ACID) [89] to

be utilised when counting spikelets because of the similarity of the domain between

the ACID and CropQuant dataset. Also, because the ACID dataset had spikelets

dot annotated which provide immense advantage in favour of our main research

objective. We will first train SpikeCount solely on the ACID dataset for learning

the task of spikelets density estimation. Then we intend to investigate the effect of

transferring the knowledge from the ACID dataset in two ways: (1) we will only

continue training SpikeCount on CQ_2015, (2) we will freeze the encoder blocks

gradually to investigate which part of the ACID features have positive impact on

generating the best outcome.

3.1.6.3 Multi-task Learning (MTL)

Multi-task Learning (MTL) is a branch of machine learning, where several relevant

targets are trained simultaneously to solve complex goals [15] where relying on
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target modularity and solving each one independently can be ineffective for some

problems. This approach can result in more accurate models for each learning

task by sharing useful information learnt from relevant tasks [147]. Additionally,

MTL is considered a branch of inductive Transfer Learning where the purpose is

to find a low-dimensional feature representation which is shared among different

targets [83]. As per the discussed workflow earlier, we propose two steps: (1)

1.1 Apply random sampling to extract patches 
from the original scene, corresponding mask 
and density map.

1.2 Train SpikeMulti employing heterogeneous 
multi-task fully convolutional net to learn 
non-linear transformation of spike regions 
segmentation and spikelet density estimation.

SpikeMulti 

1.3 In testing phase: A Window, matching the 
sampled patch size, slides over the test image 
and SpikeMulti is applied to output prediction 
map of spike segmentation and spikelet density 
estimation.

1.4 To produce the spikelet count from 
a predicted density map, we simply 
perform integral operation (summation) 
over the whole map. 

Figure 3.10: Illustration of multi-task learning developing SpikeMulti, a heterogeneous multi-task fully con-
volutional net to simultaneously train and test spike regions segmentation and spikelet density estimation.
It also details the training, validation and testing strategy for developing SpikeMulti model

apply segmentation to isolate the Spike regions (SpikeSEG). (2) Apply spikelets

density estimation on the product of the previous step to extract the number of

spikelets(SpikeCount). This is considered the conventional workflow that we will

implement. We will investigate its efficacy. We will also use MTL (SpikeMulti),

which is illustrated in Figure 3.10, to simultaneously allow FCN to be trained to

tackle both segmentation and density estimation and we will investigate the efficacy

of this approach compared to the conventional way.
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3.2 Testing and Evaluation

3.2.1 Testing

Similar to standard CNN approaches, a form of sliding window (tiling), as illus-

trated in Figure 3.3, is used to validate performance on the 2016 and then test on

the 2017 sequence. We scan the target wheat scene sequentially with a window of

a size equal to the subsampled patch size selected when training the model with

a fixed stride (step size) of s equal to the window size. For each scanned region,

the model is applied to predict for either spike segmentation or spikelet density

estimation (or both in the case of the MTL). Then, the predicted sub-map will

be copied in its appropriate location to create a prediction map. The window size

corresponds to the sub-image size that is chosen by the experimental setting.

The result of the workflow is a prediction map varies according to the learning task.

For example, the prediction output map of spike segmentation would be with a size

of w×h×cl, where w and h correspond to the original image’s width and height and

cl is the number of classes, two in this case while the prediction map of spikelets

density estimation would be with a size of w×h, where w and h correspond to the

original image’s width and height.

3.2.2 Evaluation

3.2.2.1 Spike Segmentation Evaluation

To verify the result of the segmentation, we report the following metrics that are

commonly used in semantic segmentation work [71, 62, 8]:

• Global Accuracy (GA) measures the total number of pixels that were pre-

dicted correctly over all classes divided by total number of pixels in the image.
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The GA can be calculated using:

GA =
∑
i tpi
np

(3.1)

where
∑
i tpi is the number of pixels that are predicted correctly for each class

i and np is the total number of pixels in a given image.

• Mean class Accuracy (MA) is the mean of spike and non-spike region accuracy.

The accuracy for each class can be calculated using:

ClassAccuracy =
∑
i nii
ti

(3.2)

where
∑
i nii is number of pixels that are predicted correctly to be of class i

and ti is the number of pixels of a certain class i.

• Mean Intersection over Union (MIoU) which is the mean of IoU of each class.

MIoU is considered the harshest metric among all because of its sensitivity

toward methods with a high false positive fp rate or false negative fn rate or

both:

IoU = tp
tp + fp + fn

(3.3)

where, fp, tp and fn denote respectively false positive, true positive, and false

negative predictions. This metric was also used in the VOC PASCAL chal-

lenge [34]. In our case, it penalises methods that are more inclined towards

predicting a spike-region pixel as background or vice versa. We reported the

spike region and background measures separately for two reasons: (1) it is

important to observe the model performance to recognise the spike region not

the background; (2) it is clear that the ratio of background pixels to the spike

region pixels is high, especially in early growth stages (i.e. booting and head-

ing) where fewer or no spikelets can be found at the image level, indicating

that some images can exhibit imbalanced class distribution. Consequently,

it is important to observe evaluation measurements for both classes in the

context of such class imbalances.
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3.2.2.2 Spikelets Counting Evaluation

From the mathematical modelling of spikelets density estimation explained in sub-

section 3.1.1, we concluded that the total number of spikelets in a certain image Ii

is the sum of all pixels densities in density map: |Pi| = SPCi =
∑
p∈Ii

Dp. Thus, for

simplicity we will refer to the total number of spikelets inferred from the ground

truth density map as SPCGTi and the total number of spikelets inferred from

prediction density map as SPCPRi . Object counting methods use two evaluation

metrics to measure the model performance when applied on testing images: Mean

Absolute Error (MAE) (Equation 3.4) and Mean Square Error (MSE) (Equation

3.5).

MAE = 1
N

N∑
i

∣∣∣(SPCGTi − SPCPRi )
∣∣∣ (3.4)

MSE =

√√√√ 1
N

N∑
i

(SPCGTi − SPCPRi ))2 (3.5)

The MAE metric only measures the difference between predicted and GT spikelet

number for each scene not taking into account the relationship between the dif-

ference and the GT. Therefore, we use the symmetric mean absolute percentage

error (SMAPE) to estimate the percentage error (difference) of predicted spikelets

number for a certain image and how that relates to the GT. In addition, using

percentage error metrics make the results more readable and clear.

SMAPE = 1
N

N∑
i

∣∣∣(SPCGTi − SPCPRi )
∣∣∣∣∣∣SPCGTi ∣∣∣+∣∣∣SPCPRi ∣∣∣ (3.6)

3.3 Summary

In this Chapter, we provided a formal definition of the problem of extracting key-

yield traits such as spikelet numbers from wheat crop images captured images

uncontrolled environments. First, we proposed to model the problem as crowd
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counting and since the majority of the work that has been done in this area em-

ploys density estimation we follow that lead. This is because if we look closer to

any wheat scene, we can see the similarity between these two problems (crowd

counting, spikelets counting). Therefore, we adapted density estimation to count

spikelets. Then, we introduce the workflow that consists of two steps: apply spike

segmentation and then apply spikelets density estimation to estimate their num-

bers. Both these steps require fine grained output that matches the input dimension

therefore for simplicity and because we want to investigate the MTL approach, we

propose to use a fully convolutional network (FCN) and explain its advantages,

particularly for spikelets density estimation. Then, we also describe MTL and its

potential to provide reasonable solutions compared to the two step conventional

workflow. We introduce the datasets we constructed to measure the efficacy of the

different approach. We have relied on images that are collected from three con-

secutive years (2015, 2016, and 2017) that cover four key growth stages (Booting,

Heading, Flowering and Grain filling). We also describe the ACID dataset and

its importance for this work. We describe what is Transfer Learning and how we

propose to use it to potentially improve the results of spike segmentation, spikelet

density estimation and MTL. Finally, we present the evaluation metrics we use to

measure the performance of the workflow proposed. The next Chapter (Chapter

4) will explain the experimentation setup of the first step in the workflow, spike

segmentation, and discuss the results of different experiments.
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Chapter 4

Spike Regions Segmentation

In Chapter 3, we outlined the overall proposed methodology to extract spikelet

numbers from infield wheat crop images that were captured in a uncontrolled en-

vironment. As we established in Chapter 2, the majority of plant phenotyping solu-

tions have been built on comparatively high-quality images and in more controlled

environments. On the other hand, captured images of infield crop in complicated

field conditions that are less controlled and are more challenging; hence, require

more robust systems to extract accurate yield-related traits. For this reason, the

first step in our proposed approach is to explore the idea of isolating ROI (i.e. spike

regions) from noisy background by applying semantic segmentation so that sound

phenotypic analysis could be carried out.

We propose to apply semantic segmentation using (SpikeSEG): a Fully Convolu-

tional Network [71] to segment spike regions from wheat growth images based on an-

notated image data collected by CropQuant (CQ) in-field phenotyping workstations

[152]. We employ the Transfer Learning approach by loading ImageNet[103, 62]

parameters to improve the performance of the learning model, through which suit-

able features can be identified. In addition, we investigated effects of two input

image sizes when training SpikeSEG on wheat images, as well as the model’s per-

formance at each key growth stage. To our knowledge, the SpikeSEG approach has

not been applied to classify spike regions in field conditions. The result of our Spike-
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4.1. Methods

SEG segmentation based on a three-year wheat growth image series is highly cor-

related with ground truth data that was manually labelled. Furthermore, through

the evaluation of outputs of each max pooling layer in the learning architecture,

novel vision-based features can be derived, and this is potentially important to

assist crop scientists to visually debug and select features that are relevant to the

feature selection procedure. We believe that the deep-learning approach presented

in this Chapter could have important impacts on the current methodological de-

velopment for measuring wheat spikes (i.e. spike regions on wheat growth images),

in particular under real field conditions. Also, the phenotypic analysis workflow

concluded during the exploration is likely to form an effective foundation to enable

automated phenotypic analysis of key yield-related traits such as spike regions, key

growth stages, and spikelets per unit area in the near future.

Section 4.1 summarise the datasets we used, the architecture of SpikeSEG, model

optimisation, experimental setup, and training procedure details. Section 4.2 de-

scribes the performance results of testing SpikeSEG, and the their interpretation

for each experimental setup. Also, we discuss results of testing SpikeSEG for each

growth stage. At the end of the section, we take a closer look to the feature maps of

the model by visualising its intermediate activation units and their interpretation.

Finally, Section 4.3 presents our conclusions from these experiments.

4.1 Methods

In this section, we are going to explain SpikeSEG architecture, the specification

of model training including the cost function, the training hyperparameters, and

the protocol of splitting the sequences into training, validation and testing sets. In

addition, we are going to explain in detail each experimental setup and its aim.
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4.1.1 SpikeSEG architecture

The learning architecture of the SpikeSEG model established for segmenting spike

regions is presented in Figure 4.1, which consists of four components:

• Very deep convolutional network: The first component of SpikeSEG is the

so-called very deep convolutional network (VGG 16-layer net, VGG16 [115]).

The segmentation-equipped VGG net (FCN-VGG16 or VGG16) has outper-

formed other classifiers such AlexNet51 and GoogLeNet [51] when it was se-

lected as the base for FCN. It is a CNN classifier that achieved the first and

second places in the ImageNet localisation and classification competition in

2014. Therefore, we have selected VGG16 as the base classifier for the task of

spike segmentation. It has 12 convolutional layers arranged in five increasing

convolutional depth blocks (Figure 4.1: (1) the first block, conv1, consists of

two convolutional layers with a depth (number of filters) of 64; (2) the second

block, conv2, consists of two convolutional layers with a depth of 128; (3) the

third block, conv3, consists of three convolutional layers with a depth of 256;

and, (4) the fourth and fifth blocks, conv4 and conv5 respectively, consist

of three convolutional layers with a depth of 512. After each convolutional

layer, there is a rectification non-linearity layer (ReLU) [26]. The filter size

selected for all convolutional layers is 3 × 3 with a stride of 1. The reason

for choosing such a small receptive field is that a non-linearity layer can be

followed directly to make the model more discriminative [115]. After each

block, a max-pool layer is added with a pooling size of 2× 2 with a stride of

2. There are three fully connected layers at the end of the classifier. The first

two fully connected layers, FC6 and FC7, have a depth (units) of 4,096. The

depth of the last connected layer is 1000, which corresponds to the number

of classes in the ImageNet competition [103]. The sixteenth (last) layer is

the softmax prediction layer, which comes after the last connected layer. It

is worth noting that the last connected layer is removed in our architecture
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4.1.1. SpikeSEG architecture

as our task requires prediction for two and not 1000 classes.

Figure 4.1: The SpikeSEG architecture established for segmenting wheat spike regions.

• Fully convolutional layers: The second component of FCN is transforming

the first two fully connected layers FC6 and FC7 in VGG16 to convolutions.

This setting will restore all the spike regions’ spatial information that might

be lost with the fully connected layers.

• Deconvolutional layers and feature fusion: Even though restoring the spikes’

spatial details can help with the segmentation task that involves predicting

dense output, the output from the fully convolutional layers is still coarse

due to the repeat application of convolutions and subsampling (max-pool),

which reduces the output size. In order to refine the coarse output and re-

tain the original resolution of the input, the model fuses the learned features

from three positions in VGG16 with the upsampling layers. Upsampling or

deconvolutional layers reverse the effect of the repetitive application of sub-

sampling and convolving by learning backward convolution. In order to apply

the fusion operation, three prediction layers were added: (1) after the last

fully convolution layer FC7, (2) after the fourth max-pool P4, and (3) after

the third max-pool P3. The reason for predicting at different positions is

to fuse lower level information obtained from the lower layers together with

higher level information obtained from the higher layers, which can further

refine the output. Next, the output of the first prediction layer is upsampled

by applying the first deconvolutional layer. Then, the first upsampled output
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4.1.2. Cost function

(FCN-32) is fused with the second prediction layer (Score P4) by applying

element-wise summation. It is worth noting that a cropping operation is ap-

plied to the upsampled output, so it matches the size of the second prediction

output. Then, the output would be upsampled using the second deconvolu-

tional layer (FCN-16) to be fused with the output of the last prediction layer

(Score P3). Lastly, a final deconvolutional operation is applied to the output

to be upsampled to the input size of the original image (FCN-8).

• Softmax layer: The last layer of SpikeSEG is a 2-class softmax[63] calculating

the probability of each pixel for each class.

4.1.2 Cost function

According to any common semantic segmentation task [71], for each pixel xij in an

image I with a size of h×w×d, a corresponding pixel label class tj from a probability

distribution 0, 1 is assigned. The predicted class of a certain pixel yij is the outcome

of the last softmax layer, which generates a probability distribution such that

0 ≤ yij ≤ 1. The learning task is to find a set of parameters (i.e. weights) θ that,

for a particular loss function l(yij(xij , θ)), will achieve the minimum distance of

the probability distribution between the target class tj and the predicted class yj .

The cost function used here is cross entropy, L, which calculates the negative log

likelihood of the predicted class yj :

L = −
m∑
j=1

tj log yj (4.1)

where m is the number of classes and in our case is 2, corresponding to spike region

versus background.
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4.1.3 Training hyperparameters

Hyperparameters need to be initialised before the training process starts. Then,

the training algorithm learns new parameters as part of the learning process [63].

The SpikeSEG training hyperparameters values used in our study are listed in

Table 4.1, including:

• Weight θ (parameters) /Bias initialisation: It is good practice when training

any deep learning model from scratch to initialise the weights with random

values and the bias with 0. There are many initialisation techniques that can

be used but we found He et al. [51] achieved the best results when training

from scratch. Their technique generates a mean centred normal distribution

with standard deviation σ equal to
√

2/nl where nl is the number of inputs

in a certain layer l.

• Dropout rate probability: This parameter serves as a regulariser to reduce

the model overfitting [118]. It determines how many units can be deactivated

randomly for every training iteration in a certain layer. In our model, we

added two dropout layers, with a value of 0.5 for p, which represents the

probability of keeping the unit activation or not. This is recommended when

using layers with large numbers of units [118] such as FC6 and FC7. There-

fore, the dropout layers are added after every fully convolutional layer FC6

and FC7.

• Intermediate non-linearity unit: This is an essential component in any CNN

that focuses on highlighting and emphasising the relevant features of the data

and the task. As a default, we have selected Rectified Linear Unit (ReLu)

for this parameter which is an element-wise thresholding operation that is

applied on the output of the convolutional layer (resulting feature map) to

suppress negative values: F(x)=max(0,x) where x is an element in the feature

map.
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4.1.3. Training hyperparameters

• Epochs: This refers to the number of training iteration, which was set to

125-150 according to the early stopping method.

• Optimisation algorithm: We have tried many optimising algorithms and mini-

batch stochastic gradient descent (SGD) was more suitable for the pixel clas-

sification problem we have. Hence, the weights are updated for every learning

iteration using mini-batch (SGD) with momentum: vt = γvt−1+η∇θJ(θ), θ =

θ−vt [91]. The initial learning rate was chosen as 0.001 with a decay of 0.0016

for every epoch. The momentum Y is the default 0.9 and the selected mini

batch is 20.

We have selected the initial learning rate by experimenting with lowest learn-

ing rate ( 1 × 10−5) and linearly increasing it until we reached the optima,

i.e. when we reached the lowest validation loss in conjunction with selecting

different values of learning decay.

Table 4.1: SpikeSEG Training Hyperparameters

Stage Hyperparameter Value

Initialisation Weights He et al. [51] (scratch)
ImageNet (transfer)

Bias 0

Dropout Rate p 0.5

Intermediate
Non Linearity

Unit
Relu

Epochs 125 – 150

Optimisation

(SGD)

Learning Rate 0.001
Momentum 0.9

Decay 0.0016
Mini Batch 20
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4.1.4 Training and validation of the architecture

We have selected the 2015 dataset for training SpikeSEG and the 2016 dataset as

the validation set to observe if there is overfitting of the model. However, because

of the high resolution of the images (2592 × 1944) , we randomly sampled 450 sub-

images with a size of 512 × 512, and 8999 sub-images with a size of 128 × 128 with

their corresponding manual labels. This is to evaluate which resolution will lead to

the best results. This approach is to reduce computational complexity, as dealing

with the original image size would be unmanageable in the training process. We

have utilised an early stopping technique when training the model. Early stopping

allows us to keep a record of the validation learning (e.g. cost and accuracy) for

each learning epoch. It is a simple and inexpensive way to regularise the model and

prevent overfitting as early as possible [63, 9]. We have selected the validation cost

as the metric to observe for early stopping. The maximum epochs for observing

the change in validation cost is 20 epochs. In other words, if the validation cost

has not been decreased for 20 epochs, the model training will be stopped and the

model weights resulting from the lowest validation cost are saved. We have found

that the model for all our experimental trails converge after training for 125 to 150

epochs.

In addition to train SpikeSEG from scratch, we wanted to investigate whether

the Transfer Learning approach [103] can produce improvements of the validation

accuracy. One of the advantages of using deep segmentation architectures that are

built on top of state-of-the-art classifiers is that we can apply Transfer Learning.

Transfer Learning can be described as using “off-the-shelf” pre-trained parameters

obtained from millions of examples in thousands of object categories such as the

ImageNet database [103]. These parameters represent a general library of features

that can be used for the first layers of any CNN model, since the first layers are

only capturing the low-level features of objects (corners, borders, etc.) It is then

possible to only fit the higher-level layers of the CNN that are more task and
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data oriented. Therefore, we can initialise the CNN model with the pre-trained

parameters and proceed with training the higher layers instead of initialising with

random values and training from scratch. The application of Transfer Learning is

extremely beneficial when there are limitations in the sample size and/or variation

of example datasets as those are essential to train any sound deep architecture.

Therefore, for our work, we have loaded the pre-trained weights from the ImageNet

challenge to the VGG16 and then trained the model with the same hyper-parameter

settings described previously.

4.2 Results

We evaluate the performance of SpikeSEG on both 2016 and 2017 datasets. The

evaluation is conducted to test the segmentation performance of SpikeSEG consid-

ering multiple experimental set-ups. For example, the use of pre-trained paramet-

ers when training the model (Transfer Learning) is compared with training from

scratch and the use of different sub-image sizes is also compared. Furthermore, we

compared the performance on each growth stage separately as this might discover

interesting interconnections between the monitored growth stages that have strong

correlation to the grain production. We reported the spike region and background

measures separately for two reasons: (1) it is important to observe the model per-

formance to recognise the spike region not the background; (2) it is clear that the

ratio of background pixels to the spike region pixels is high, especially in early

growth stages (i.e. booting and heading) where fewer or no spikelets can be found

at the image level, indicating that some images can exhibit imbalanced class dis-

tribution. Consequently, it is important to observe evaluation measurements for

both classes in the context of such class imbalances. We also discuss the results of

experimenting with different sub-image sizes.
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4.2.1 Transfer Learning

The results in Tables 4.2 and 4.3 report on the experiments comparing the Spike-

SEG model trained from scratch and with parameters learned from the reported

ImageNet classification51 task on the segmentation of the 2016 and 2017 datasets

respectively. Table 4.2 shows that MA and MIoU have been improved by 3.21%

and 4.19% respectively when using the pre-trained parameters in the 2016 set.

Particularly, the results of spike regions show an increase in both Spike Accuracy

and spike IoU of 5.62% and 6.77%.

Table 4.2: Quantitative results of segmentation performance for the 2016 dataset when training SpikeSEG
from scratch by initialising the weights using He et al. method [51] and by loading pre-trained ImageNet
parameters showing different evaluation metrics where GA refers to Global Accuracy, MA refers to Mean
Accuracy and MIoU refers to Mean Intersection over Union.

Initialisation GA MA Spike Accuracy MIoU Spike IoU

He et al. [51] 91.84% 82.90% 70.22% 73.43% 55.98%
ImageNet Parameters 93.34% 86.11% 75.85% 77.63% 62.75%
change as % 1.51% 3.21% 5.62% 4.19% 6.77%

The results in Table 4.3 illustrate that MA and MIoU have improved by 6.33%

and 6.83% in the 2017 set when using the pre-trained parameters. Notably, the

results of the spike region show an increase in both Spike Accuracy and spike IoU

of 12.57% and 11.66% respectively.

Table 4.3: Quantitative results of segmentation performance for the 2017 dataset when training SpikeSEG
from scratch by initialising the weights using He et al. method [51] and by loading pre-trained ImageNet
parameters showing different evaluation metrics where GA refers to Global Accuracy, MA refers to Mean
Accuracy and MIoU refers to Mean Intersection over Union.

Initialisation GA MA Spike Accuracy MIoU Spike IoU

He et al. [51] 90.46% 73.15% 48.15% 66.69% 43.69%
ImageNet Parameters 92.47% 79.48% 60.72% 73.52% 55.35%
change as % 2.01% 6.33% 12.57% 6.83% 11.66%

From the above results, it is clear that Transfer Learning has a positive effect on

improving performance for both validation and test datasets. To further verify this

finding, we present Precision-Recall curves in Figure 4.2 for each growth stage for

the test and validation datasets. The left most sub-figures show two graphs that

represent the Precision-Recall curves of the models trained from scratch, whereas

the right most graphs represent the curves after loading ImageNet parameters. The
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top two graphs refer to the 2016 validation dataset, whereas the bottom graphs

present results for the 2017 dataset. Although there are relatively subtle improve-

ment in early growth stages due to the limited sample size (green and red series

in graph), it is noticeable that the Transfer Learning produces a “lift” effect on

the Precision-Recall curves in both years. It is also evident that performance is

particularly improved for later growth stages (from flowering inwards, blue and

pink series in graph, when spikes were fully emerged). Given the positive effect

of Transfer Learning, we used this approach in more detailed analyses on different

sub-image sizes and growth stages.

Figure 4.3 shows the segmentation performance using MA and MIoU for the 2016

and 2017 image series, when training SpikeSEG by loading pre-trained ImageNet

parameters. The Y-axis represents the values of MA/MIoU (in percentage) and

X-axis represents the image ID arranged by its associated growth stage from 2016

to 2017, the smaller ID the earlier growth stage in the growing season (i.e. booting

or heading). Figure 4.3 A indicates that MA and MIoU are relatively similar in all

images, but there is a trend with growth stage as the earlier growth stages achieved

lower evaluation metrics scores and the later growth stages achieved higher metrics

scores. However, Figure 4.3 (b) does not show a similar trend in 2017, instead

both metrics scores are fluctuating in values across the monitored growth stages.

This may indicate that the images in the 2017 are more challenging, for example,

more unexpected objects in the field, less image clarity, and changeable lighting

conditions.

4.2.2 Different sub-image sizes

Tables 4.4 and 4.5 illustrate a comparison of two different sub-image resolutions,

128 × 128 and 512 × 512, for spike segmentation on the 2016 and 2017 datasets.

In both cases, for almost all measures, the larger sub-image sizes produce better

performance. For the 2016 set, the MIoU and Spike IoU have increased by 4.18%

and 7.63% respectively using the 512x512 sub-image size, whereas the MA and
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(a) (b) 

(c)   (d)

Figure 4.2: Precision-Recall curves showing the segmentation performance. Training from scratch 2016
series (a) and loading pre-trained ImageNet parameters series 2016 series (b) to report the segmentation
performance at different monitored growth stages. Training from scratch series (c) and loading pre-trained
ImageNet parameters (d) using series in 2017.
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(a)

(b)

Figure 4.3: Quantitative results (MA and MIoU) to assess segmentation performance from day 1 to day 30.
(a) The 2016 images trained by SpikeSEG using pre-trained ImageNet parameters. (b) The 2017 image
dataset trained by SpikeSEG through loading pre-trained ImageNet parameters.
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Spike Accuracy have improved by 6.14% and 13.68%. For the 2017 set, the MIoU

and Spike IoU have increased by 10.37% and 18.25% using the 512x512 sub-image

size, and the MA and Spike Accuracy have improved by 10.47% and 21.81%. As a

result, we can see that selecting a larger sub-image size is likely to lead to better

results based on the selected segmentation metrics.

Table 4.4: Quantitative Results of Segmentation performance for the 2016 dataset when training SpikeSEG
with two different sub-image size S (i.e. 128x128 and 512x512) showing different evaluation scores where
GA refers to Global Accuracy, MA refers to Mean Accuracy and MIoU refers to Mean Intersection over
Union.

S GA MA Spike Accuracy MIoU Spike IoU

128× 128 92.52% 79.98% 62.17% 73.44% 55.13%
512× 512 93.34% 86.11% 75.85% 77.63% 62.75%
change as % 0.83% 6.14% 13.68% 4.18% 7.63%

Table 4.5: Quantitative Results of Segmentation performance for the 2017 dataset when training SpikeSEG
with two different sub-image size S (i.e. 128x128 and 512x512) showing different evaluation metrics scores
where GA refers to Global Accuracy, MA refers to Mean Accuracy and MIoU refers to Mean Intersection
over Union.

S GA MA Spike Accuracy MIoU Spike IoU

128x128 89.86% 69.01% 38.91% 63.15% 37.09%
512x512 92.47% 79.48% 60.72% 73.52% 55.35%
change as % 2.61% 10.47% 21.81% 10.37% 18.25%

4.2.3 Phenotypic analysis of yield and growth traits

In Table 4.6, we report the spike segmentation result according to the growth stages

to further investigate SpikeSEG’s performance for each growth stage in 2016. Note

that the 2016 dataset does not contain early or middle booting and hence we

could only test late booting. Notably, the model performed very well in both

flowering and grain filling stages. For example, in the grain filling stage, the MA

and MIoU are 88.27% and 81.09%, respectively; whereas in the flowering stage,

the MA is 86.24% and the MIoU is 78.92%. In the heading stage, the model has

also achieved good results with the MA and MIoU equal to 79.21% and 65.91%.

However, SpikeSEG has not led to good results in booting, where the MA is 54.69%

and IoU is 49.75%. This is not surprising as not enough representative images for

this stage were available in the training data.
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Table 4.6: Quantitative results of segmentation performance of SpikeSEG for the 2016 dataset reported
for each growth stage where GA refers to Global Accuracy, MA refers to Mean Accuracy and MIoU refers
to Mean Intersection over Union.

Growth Stage GA MA Spike Accuracy MIoU Spike IoU

Booting (GS45-47) 96.90% 54.69% 11.88% 49.75% 2.59%
Heading (GS51-59) 92.94% 79.21% 63.17% 65.91% 39.22%
Flowering (GS61-69) 93.12% 86.24% 75.68% 78.92% 65.77%
Grain filling (GS71-73) 93.17% 88.27% 80.05% 81.09% 70.33%

Table 4.7: Quantitative results of segmentation performance of SpikeSEG for the 2017 dataset reported
for each growth stage where GA refers to Global Accuracy, MA refers to Mean Accuracy and MIoU refers
to Mean Intersection over Union.

Growth Stage GA MA Spike Accuracy MIoU Spike IoU

Booting (GS43-47) 98.84% 67.14% 35.01% 57.78% 16.72%
Heading (GS51-59) 94.02% 81.03% 64.61% 73.31% 53.03%
Flowering (GS61-69) 91.09% 80.87% 63.65% 74.48% 59.20%
Grain filling (GS71-73) 87.54% 75.62% 52.65% 68.07% 50.42%

In Table 4.7, we report the spike segmentation results based on the wheat growth

stages in 2017. The table shows that the model performed well in the flowering

stage with the MA equal to 80.87% and MIoU equal to 74.48%, which is likely

achieved due to more image data present in this stage in 2015. The heading stage

results and the grain filling stage are similar to the flowering stage. However, the

model performed less well on the booting stage, corresponding to the lack of data

for this stage in the training set. The results show that SpikeSEG performance in-

creases with the development of spikes and it performs better if more representative

training data can be included when developing the learning model.

It is worth noting that for both the 2016 and 2017 results, the GA values for the

booting stage are higher compared to the other stages, which is not the case for

any other evaluation metrics. This may be caused by the majority of the pixels

being background in early growth stages, as those are predicted correctly by the

GA metric, which focuses on predicting the sum of pixels regardless of the class.

It does, however, reinforce the need for more than one single evaluation metric to

assess the fitness of learning models as the GA value may not truly reflect the ability

of the model during the segmentation. Figures 4.4 and 4.5 illustrate visualisation

of the segmentation result for the 2016 and 2017 image series respectively.
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4.2.4 Visualisation of SpikeSEG Intermediate Activations

In order to understand and interpret more about the features that SpikeSEG is

utilising when testing wheat sub-images, we have visualised feature maps that

are output by each layer in the SpikeSEG in the first five blocks (conv1- conv5)

[142]. As illustrated in Figure 4.6, the sub-image chosen is from image ID 215

(see supplementary data), which scored the highest spike accuracy amongst all

images. To simplify the presentation, we only show a number of feature maps that

are output by three layers (i.e. Conv1 Block Maxpool, Conv3 Block Maxpool, and

Conv5 Block Maxpool), where regions that are coloured from bright yellow to green

indicate where SpikeSEG is activated, whereas the darker colour shows regions that

are being ignored by the SpikeSEG.

Each square represents a feature that was activated by some part of the image.

For example, we can observe that early layers of SpikeSEG (Conv1, max-pooling

output) are activated by the spikelets or part of spikelets (outlined in blue square

as an example). On the other hand, some features are activated by other objects in

the background such as leaves,trees, clouds and sky (outlined in red square as an

example). However, they show very low-level detail information, correlating with

the fact that early layers in CNNs capture the lower level of features such as edge

and corner-featured objects. The next feature maps (Conv3, max-pooling output)

show that the SpikeSEG is more focused on the shape and texture-based features,

which are considered higher level abstract features. The last feature maps (Conv5,

max-pooling output) shows that the SpikeSEG is only preserving the general size-

and texture-based features of spike regions as the low-level information has been lost

due to repetitive application of pooling operations. In addition, image comparison

with original images suggests that the SpikeSEG not only recognises spike regions,

but also captures other background objects such as sky, soil, and leaves throughout

these layers, which leads to segmentation results in Figures 4.4 and 4.5.
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Figure 4.4: Visualisation of the segmentation result for the 2016 image series. (A) Original image, (B)
Ground truth (GT), (C) The result of trained SpikeSEG from scratch, (D) The result of trained SpikeSEG
by loading pretrained ImageNet parameters (from top to bottom, images were selected to represent different
key growth stages)

4.3 Summary

In this Chapter, we have explored a method that combines deep learning and com-

puter vision to discriminate wheat spike regions on wheat growth images through
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Figure 4.5: Visualisation of the segmentation result for the 2017 image series. (A) Original image, (B)
Ground truth (GT), (C) The result of trained SpikeSEG from scratch, (D) The result of trained SpikeSEG
by loading ImageNet parameters. (from top to bottom, images were selected to represent different key
growth stages)

a pixel-based segmentation. This method was implemented using Python with a

TensorFlow backend, which provides the framework for us to establish the Spike-

SEG architecture. We can then move from the training phase to the final 2-class

prediction at the image level. Our goal was to obtain a classifier that can ana-

lyse wheat spike regions using the standard deep learning approach, with little

knowledge of wheat spike dimensional and spatial characteristics. We fulfilled this

requirement by establishing a SpikeSEG model to segment spike regions in wheat

growth image series acquired in three consecutive years, with varied weather con-

ditions. The spike regions in all images have been annotated at pixel level by
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Conv1 Block Maxpool Layer Output 

Conv3 Block Maxpool Layer Output 

Conv5  Block Maxpool Layer Output 

Figure 4.6: The selection of filters of three intermediate layers (Conv1, Conv3, and Conv5 block Maxpool
outputs) showing activated features that could be used for visually assessing SpikeSEG on wheat sub-
images. The squares outlined in blue are examples of features activated by spike/spikelets ROI where the
ones outlined in red are examples of features activated by background objects.

specialists. The model performance was verified on both validation (the 2016 im-

age set) and test (the 2017 image set) datasets. We have found that SpikeSEG

was relatively successful at detecting the spike regions in both 2016 (MA: 86.11%)

and 2017 (MA: 79.48%). In addition, SpikeSEG performed better when trained on

larger sub-images sizes. We then applied Transfer Learning to improve the per-

formance of our SpikeSEG model by loading parameters learned from ImageNet,
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4.3. Summary

and this has led to a positive impact on the segmentation results. The limitations

of our research can be summarised by three points: (1) the model had limited suc-

cess when identifying spike regions in booting and heading; this may be caused by

a lack of training data at the two stages; (2) the model encountered some unexpec-

ted background objects such as grass, and this has increased false positive rates;

again, we believe that more training data or data augmentation could resolve this

issue; (3) the model performed relatively poorly on the 2017 set due to challen-

ging lighting and weather conditions. We might be able to overcome some of these

image-based limitations by including more historic or artificial images in the train-

ing set as well as exploring other deep learning segmentation architectures such

as DeepLapV3+[24] and also some traditional CV and ML segmentation meth-

ods. We will also trial other learning tasks in a MTL environment to improve the

soundness of the solution.
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Chapter 5

Counting Spikelets using Density

Estimation

In Chapter 4, we have discussed the development of SpikeSEG model, a fully convo-

lutional network, used to tackle the task of spike segmentation from infield wheat

images. The aim of the spike segmentation task is to eliminate the background

objects and minimise the challenging task of estimating the number of spikelets.

In this Chapter, we focus on one specific task that can help wheat management

through monitoring systems: the task of counting spikelets in wheat images as a

form of yield quantification for wheat crops.

Object counting from images is a difficult problem that emerges in many different

scenarios, for example, monitoring crowds [92, 18, 143], performing wildlife census

[6], counting blood cells in images [47] and others. Sometimes, the problem is

framed in the context of counting objects in still images [5, 21, 6] whereas in other

cases, the problem involves counting moving objects in videos [40].

Counting objects can be achieved by a number of approaches including counting by

detection [134, 68], segmentation [95] and regression based methods such as global

regression [25, 61, 43], local regression [27] and density estimation [66]. The ap-

proach we propose in this Chapter involves the use of a density estimation method,

a well-known technique in the context of crowd counting [66], to count spikelets.
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5. Counting Spikelets using Density Estimation

The task of counting wheat spikelets from infield images (as opposed to images ob-

tained in some constrained lab environment) presents some real challenges because

of their self-similarity, high volume per image, and severe occlusion as well as the

challenges posed by lighting and other variations in the images captured.

Another challenge is that current methods for counting and related tasks in image

analysis are often based on image processing or machine-learning approaches that

require manual identification of features. This relies on expertise of the crop spe-

cialists and thus the feature engineering approach may differ from one problem to

another.

An alternative powerful approach which we employ to avoid the feature identific-

ation problem is to apply deep learning to automatically extract useful features.

Deep learning is based on learning data representations through the application of

multi-layered neural networks, so features do not need to be identified beforehand.

Also, it can lead to a high degree of accuracy in image classification tasks [64].

Therefore, our overall approach is as follows. We employ a fully convolutional

model (SpikeCount) to perform density estimation from dot annotated images.

We utilise additional labelled data for the density estimation by means of Transfer

Learning. In addition, we investigate training SpikeCount with and without prior

segmentation and compare the performance of each. Section 5.1 summarises the

datasets we used, the architecture of SpikeCount, model optimisation and training

procedure details. Section 5.2 summarises the early experimental results of this

work [4]. Section 5.3 presents the full experimental setups of this work. Section 5.4

describes the performance results of testing SpikeCount and the their interpretation

for each experimental setup. Also, we discuss results of testing SpikeCount for each

growth stage. Finally, Section 5.5 presents our conclusions from this experiments.
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Figure 5.1: SpikeCount Architecture established for wheat spikelets density estimation regression.

5.1 Methods

In this section, we are going to explain SpikeCount architecture, the specification

of model training including the cost function, the training hyperparameters, and

the protocol of splitting the sequences into training, validation and test sets.

5.1.1 SpikeCount Architecture

In our approach, we apply a fully convolutional network to tackle the problem of

spikelet counting. Fig. 5.1 represents our architecture. The last fully connected

layers attached in any CNN-based classifiers are converted to convolutions. This

ensures that the semantics of target objects are preserved which are essential for

tasks that require structural predictions (predictions for each pixel), for example

segmentation, because converting those layers to convolutions provide localisation

and shape information about target objects. The FCN model can be adapted

easily to tackle the issue of density estimation because (1) it is a task that also

requires a structural target (pixels densities) (2) density estimation can benefit from

recognising the semantics of target objects to be counted. Our model, SpikeCount,

is composed of a Very Deep Convolutional Network (VGG16) [115] (Fig. 5.1:

conv1-P5), formed by two fully convolutional (Fig. 5.1: FC6 and FC7) layers and

three upsampling layers. The filter size selected for all convolutional layers is 3 × 3

with a stride of 1 and the max-pool layers have a pooling size of 2 × 2 with a stride

of 2. We employ the concept of feature fusion by adding two skip connections (Fig.
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5.1.2. Spike Region Segmentation

5.1: after P3 and P4) to fuse the local features related to spikelets from lower layers

to other shape and semantic features related to the wheat crops from higher layers.

We added upsampling layers to ensure we recover the original image size affected

by the application of repetitive convolutions and subsampling which reduces the

input size.

5.1.2 Spike Region Segmentation

To investigate whether segmenting spike regions could enhance the spikelets count-

ing task, we first manually remove the background using ground truth masks. In

the next set of experiments, we use a CNN to tackle the segmentation automatic-

ally, according to our previous research, instead of a manual approach. We discuss

further the experimental setup in detail in the experimental setup subsection.

5.1.3 SpikeCount Training

5.1.3.1 Cost Function

We found that using a pixel-wise L2 loss function for model optimisation gave

the best results to regress the per pixel density (Equation 5.1) where Dp
GTi

is the

density ground truth and Dp
predicted is the predicted density for a certain pixel p in

image Ii.

L =
∑
p∈Ii

(Dp
GTi
−Dp

predicted)
2 (5.1)

5.1.3.2 Training hyperparameters

Hyperparameters need to be initialised before the training process starts. Then,

the training algorithm learns new parameters as part of the learning process [118].

Summary of the SpikeCount training hyperparameters values used in our study are

as following:
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5.1.3.2. Training hyperparameters

• Weight θ (parameters) /Bias initialisation: It is good practice when training

any deep learning model from scratch to initialise the weights with random

values and the bias with 0. There are many initialisation techniques that can

be used but we found He et al.’s [51] technique achieved the optimal results

when training from scratch. This technique generates a mean centred normal

distribution with standard deviation σ equal to
√

2/nl where nl is the number

of inputs in a certain layer l.

• Dropout rate probability: This parameter serves as a regulariser to reduce

the model overfitting [118]. It determines how many units can be deactivated

randomly for every training iteration in a certain layer. In our model, two

dropout layers, with a value of 0.5 for p, which represents the probability of

keeping the unit activation or not. This is recommended when using layers

with large numbers of units [118] such as FC6 and FC7. Therefore, the

dropout is implemented after every fully convolutional layer FC6 and FC7.

• Intermediate non-linearity unit: This is an essential component in any CNN

that focuses on highlighting and emphasising the relevant features of the data

and the task. As a default, we have selected Rectified Linear Unit (ReLu)

for this parameter which is an element-wise thresholding operation that is

applied on the output of the convolutional layer (resulting feature map) to

suppress negative values: F(x)=max(0,x) where x is an element in the feature

map.

• Epochs: This refers to the number of training iteration, and is different from

one experimental setup to another.

• Optimisation algorithm: The weights are updated for every learning itera-

tion using mini-batch RMSprop optimising algorithm [52], which we selected

because it worked better with the density estimation regression problem we

have, with a learning rate of 0.001. We have selected the initial learning rate

by experimenting with lowest learning rate ( 1×10−5) and linearly increasing
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it until we reached the optima, i.e. when we reach the lowest validation loss

for mini-batch of 20.

5.1.4 Training and validation of the architecture

We have selected the CQ_2015 sequence for training SpikeCount and the CQ_2016

sequence as the validation set to observe if there is overfitting of the model as

explained in Chapter 3. However, because of the high resolution of the images

(2592 × 1944), we randomly sampled 450 sub-images with a size of 512 × 512

with their corresponding manual labels. This approach is to reduce computational

complexity, as dealing with the original image size would be unmanageable in the

training process.

We have utilised an early stopping technique when training the model. Early stop-

ping allows us to keep a record of the validation learning (e.g. cost and accuracy)

for each learning epoch. It is a simple and inexpensive way to regularise the model

and prevent overfitting as early as possible [63, 9]. We have selected the validation

cost as the metric to observe for early stopping. The maximum epochs for ob-

serving the change in validation cost is 20 epochs. In other words, if the validation

cost has not been decreased for 20 epochs, the model training will be stopped and

the model weights resulting from the lowest validation cost are saved.

5.2 Spikelet Number Estimation - early work

In our early work [4], we had only 15 images available to us relating to the CQ_2016

dataset. We had a small number because of the limitations imposed by the task of

dot annotating, which is time consuming and could therefore only be accomplished

for a very reduced number of images initially. However, our early experimentation

produced very promising results with good error rates, much improved by using

both manual segmentation and Transfer Learning using ACID features. Therefore,
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5.2. Spikelet Number Estimation - early work

here we summarise the preliminary experiments we carried out and the results as

reported in [4].

The application of Transfer Learning with ACID features is very important as data

annotation required to extract ‘ground truth’ from images is expensive in terms of

time and resources. Therefore, if we can leverage Transfer Learning in the task of

density estimation [138, 90] to enable the use of already labelled images from other

context this would be very beneficial.

In terms of training, we first formed the training and validation set from the ACID

dataset according to the 80:20 split rule. This was performed in order to obtain

some parameters using those ACID images that related to a similar task and there-

fore implement Transfer Learning. Then, we randomly sampled sub-images with

a size of 512×512 for each set. After that, we manually selected 1241 sub-images

from the training set and 303 sub-images from the validation set that contained

spike regions. With those images we trained the model for 100 epochs for the

Transfer Learning experiments described below.

As we only had 15 annotated images from the CQ_2016 dataset for these set of

experiments, we decided to divide them into 3-folds for cross validation, with 5

images per fold. Then, we randomly subsampled 512×512 sub-images from each

fold individually.

Moving to the preliminary results, Table 5.1 shows the cross-validated performance

of the SpikeCount model for the different experimental set-ups. We show the

effect of eliminating the background and other interfering noise by applying manual

segmentation and we compare this with the values obtained without segmentation.

In both cases, we test whether loading pre-trained ACID parameters has improved

the SpikeCount performance for the task of counting spikelets. Table 5.1 shows

that applying segmentation before counting has decreased the spikelet counting

error to 82.2 and 102.00for MAE and MSE respectively when training SpikeCount

from scratch. This represents a reduction of 83.5 % and 81.2% respectively for
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5.3. Spikelet Number Estimation - full experimental set-up

MAE and MSE with respect to error measures without segmentation. In terms of

Transfer Learning, loading ACID pre-trained parameters has a positive impact on

the model performance by decreasing MAE and MSE to 53.00and 71.2 respectively

when segmentation is also applied. This represents a decrease of 35.5% and 30.2%

respectively when segmentation is applied with respect to the error from the scratch

model. When no segmentation is applied, the Transfer Learning reduces error

by 84.5% and 80.3% respectively for MAE and MSE. Hence, both segmentation

and Transfer Learning have a very significant effect on error rates. It is worth

noting that the pre-trained ACID parameters have minimised the gap between

the SpikeCount performance with and without segmentation. The difference in

missed spikelets when training from scratch is 415.8 for MAE and 441.5 for MSE.

On the other hand, the comparative difference when loading pre-trained ACID

parameters is 24.12 for MAE and 35.9 for MSE. Overall, the difference between

the best model (with segmentation and Transfer Learning) and the worst (the

scratch model without segmentation) is over 89% for MAE and over 86% for MSE.

Table 5.1: The Mean Absolute Error and Mean Squared Error of estimating the number of spikelets for
two experimental setups (displayed as columns): training SpikeCount from scratch and by loading ACID
dataset learned parameters and for pre-segmenting images (displayed in rows) on CQ_2016 images

Scratch ACID [90]

MAE MSE MAE MSE

With Segmentation 82.20 102.00 53.00 71.20
Without Segmentation 498.00 543.50 77.12 107.10

5.3 Spikelet Number Estimation - full experimental

set-up

In this section, we extend that work to a larger and more challenging set of im-

ages belonging to different growth stages which were acquired and dot annotated

as the project progressed. In order to help understand and evaluate the impact

of different CNN learning factors that can affect spikelets estimation, we have di-

vided the experimentation into different experimental setups. For all experimental
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5.3. Spikelet Number Estimation - full experimental set-up

setups, we test SpikeCount on three sets of CQ_2016 and CQ_2017: Original,

Optimal and Prediction as shown in Figures 3.7 and 3.8 for 2016 and 2017 image

sets respectively. The “Original set” contains images with a complete background,

that is, no background is removed, which turned out to be the hardest problem as

may be expected. The “Optimal set” refers to images with background removed

according to the segmentation ground truth; this scenario enables us to measure

the quality of spikelet counting when the background is eliminated completely so

we can measure the effect of reducing the complexity of the problem. However, it

would require quality segmentation annotations for each image, which may not be

available in a “live” crop monitoring scenario. Finally, the “Prediction set” refers

to the segmented images when using the prediction of the segmentation model pro-

posed in Chapter 4. This can give us an assessment of the model performance of

spikelets estimation relative to the segmentation quality of SpikeCount. It would

provide for a completely automated model which could be employed in crop mon-

itoring, but clearly overall quality will be affected by quality of the segmentation

model. On the other hand, the removal of the background even if not perfect would

reduce complexity in respect to the Original set. Testing on each set allows us to

measure the model performance on specific scenarios.

Our experiments are as follows:

• Experiment 1: Training SpikeCount from Scratch - with these set of

experiments we try to understand how well the architecture does when trained

from scratch in a conventional way. We initialise the model weights with He et

al.’s [51] technique as discussed in the SpikeCount Training subsection 5.1.3.

We use both the Original images and the segmented images and compare

performance.

• Experiment 2: Training SpikeCount by loading ACID learnt weights

The aim of this experiment is to investigate whether high quality labelled

wheat images (ACID images) that are similar to our images but captured
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5.3. Spikelet Number Estimation - full experimental set-up

in more controlled environment can aid the model learning and improve the

overall performance.

For the experiments reported in this Chapter, as in the previous experiment-

ation, we first formed the training and validation set from the ACID dataset

according to the 80:20 split rule. Then, we randomly sampled sub-images

with a size of 512×512 for each set. After that, we manually selected 1241

sub-images from the training set and 303 sub-images from the validation set

that contain spike regions. With those images we trained the model for 100

epochs for the Transfer Learning experiments. We then loaded parameters

learned from training the model on the ACID dataset, as described earlier,

and continued fine tuning the model using the CQ_2016 sequence Original

images. We repeated experiments for segmented images.

• Experiment 3: Investigating the importance of SpikeCount En-

coder’s Blocks when loading ACID learnt weights - The aim of this ex-

periments are to investigate which block(s) in SpikeCount encoder (VGG16)

has the most influence in improving the model performance. There are five

blocks in the encoder: conv1-conv5. In the previous experiment, we used

ACID weights to aid in the spikelet counting problem by transferring know-

ledge from wheat images captured under controlled environments to our un-

controlled environment (i.e infield wheat crops). We initialised the model

with the pre-trained ACID weights. In this experiment, not only do we ini-

tialise SpikeCount with ACID weights but we also freeze the model encoder’s

blocks gradually from conv1 to conv5 to investigate which ACID learnt fea-

tures have the upmost positive effect on predicting spikelets density estim-

ation and hence counting. Therefore, we will conduct this experiment as

follows after loading ACID weights:

1. Freeze (suspend training) the first block (conv1), and train the rest of

model on CQ_2015; validate on CQ_2016 and test on CQ_2017.
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2. Freeze (suspend training) the first and second blocks (conv1-2), and

train the rest of model on CQ_2015; validate on CQ_2016 and test on

CQ_2017.

3. Freeze (suspend training) the first three blocks (conv1-3), and train the

rest of model on CQ_2015 ; validate on CQ_2016 and test on CQ_2017.

4. Freeze (suspend training) the first four blocks (conv1-4), and train the

rest of model on CQ_2015; validate on CQ_2016 and test on CQ_2017.

5. Freeze (suspend training) the first five blocks (conv1-5), and train the

rest of model on CQ_2015; validate on CQ_2016 and test on CQ_2017.

• Experimental Setup 4: Investigate the importance of Augmenta-

tion - Augmentation is one of the techniques used to reduce over-fitting and

produce more generalised deep learning, particularly, when the data is limited

[113]. We have employed a mix of basic image manipulation data augmenta-

tion that relies on geometric transformations on the fly on both images and

density maps when training SpikeCount. Examples of data augmentation

used are as follows:

– Random vertical flipping.

– Random colour space modification to decrease or increase brightness of

a random value between 0.2 and 1.5.

– Random rotation with a random value range between -10 degrees and

10 degrees.

– Random translation by applying horizontal and vertical shift with a

random value range between -0.6 and 0.6.

– Random zoom augmentation with random value range between 50% and

150%.

We have repeated experiments 1 and 2 while employing augmentation.
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5.4 Results

After training SpikeCount on CQ_2015 and validating it on CQ_2016 for all ex-

perimental setups discussed in the last section, in this section we assess the per-

formance of the model for each experimental set using Original, Prediction and

Optimal for both CQ_2016 and CQ_2017. For this, we use a sliding-window ap-

proach which is discussed in Chapter 3. We will analyse the results of spikelet

counting in general and in terms of each growth stage as such breakdown may be

important from a biological point of view. To analyse the results for each sequence,

we need to take the average number of spikelets per growing season into context;

these are 2027.50 spikelets for CQ_2016 and 2758.00 spikelets for CQ_2017. We

also break down the counting results into background and spike regions for Original

and Prediction sets to have a closer look at how the presence of background affects

the model’s performance.

5.4.1 Experiments 1 and 2: comparing training from scratch

versus training with ACID learnt weights

We first evaluate the advantages of Transfer Learning using the additional images

in the ACID dataset (Experiment 2) by comparing that to training from scratch

(Experiment 1). Transferring knowledge from high quality labelled wheat images

(ACID images) that are similar to our images but captured in more controlled

environment can aid the model learning and improve the overall performance; the

additional annotated images can enhance our training set. Tables 5.2 and 5.3

present the results of testing SpikeCount on CQ_2016 and CQ_2017 respectively.

In both tables the results of training SpikeCount on CQ_2015 from scratch and

loading ACID learnt weights are compared.

Original set

Table 5.2 corresponding to the 2016 images shows that for the Original set, the
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5.4.1. Experiments 1 and 2: comparing training from scratch versus training with ACID
learnt weights

model performed better (results highlighted in bold) without the Transfer Learning.

When using Transfer Learning weights, the MSE increases by 30% with respect to

the values without Transfer Learning and the MAE increases by 26.43%. On the

other hand, SMAPE decreased in % value by 34 showing that for this particular

measure performance is better with Transfer Learning. Because

Table 5.2: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for two experimental setups (displayed as rows): training
SpikeCount from scratch and by loading ACID dataset learned parameters for the Original, pre-segmented
by ground truth (Optimal) and pre-segmented by model (predicted) images (displayed in columns) on
CQ_2016 images

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 2709.92 2566.43 89.43 1112.86 1015.39 33.58 1904.82 1789.72 64.46
Loading ACID Weights 3864.54 3488.43 55.43 354.57 299.44 10.44 1718.22 1590.85 47.99
Abs. Difference 1154.62 922.00 34.00 758.29 715.95 23.14 186.6 198.87 16.47
Improvement as % 29.99 26.43 - 68.14 70.51 - 9.80 11.11 -

Similar to CQ_2016 results, the CQ_2017 results in Table 5.3 illustrates that for

the Original set the model performed better when trained from scratch on measures

of MSE and MAE. The MSE decreased by 31.87% and the MAE decreased by

32.25% with respect to values with Transfer Learning. SMAPE, on the other

hand, decreased by 33.4% when using Transfer Learning showing an improvement

for this particular measure.

Table 5.3: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage Error
of estimating the number of spikelets for two experimental setups (displayed as rows): training SpikeCount
from scratch and by loading ACID dataset learned parameters for Original, pre-segmented by ground truth
(Optimal) and pre-segmented by model (predicted) images (displayed in columns) on CQ_2017 images

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 3747.92 3414.08 93.90 1877.36 1643.33 43.35 2738.24 2461.06 73.67
Loading ACID Weights 5501.65 5039.17 60.46 876.56 658.15 18.00 2252.97 1993.42 54.49
Abs. Difference 1753.73 1625.09 33.44 1000.8 985.18 25.35 485.27 467.64 19.18
Improvement as % 31.87 32.25 - 53.3 59.95 - 17.72 19.00 -

To better understand performance, Figures 5.2 and 5.3 break down the errors into

those calculated from the spike regions and those calculated from the background

regions. This is because the counts may be made of objects that were missed

or overestimated in the spike region, but also from objects that were counted in

the background region where the count should be zero. On aggregation those may
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counteract each other so we present them separately for all experimental setups. We

only do this for the Original and Prediction sets, since the Optimal set is supposed

to remove all the background. For the Original data, both for the MSE (left

graph) and MAE (right graph) the first column of the graphs (E1 corresponding

to Experiment 1) show that when training from scratch the majority of errors are

made on the spike (blue) region, though there are a few also in the background

(red) region. However, for Experiment 2 (E2, second column of the graphs) when we

apply Transfer Learning the majority of errors are attributable to the background

region. Hence, for Original data we can see that the ACID features which contain

a very constant background may have a negative impact which translates into

maximising the errors on the background regions for our own images with a more

complex background. That may explain why Transfer Learning has a negative effect

on the Original images for both MSE and MAE measures. The ACID images aid

with spike regions because they contain similar detail and features which explains

the decrease in SMAPE , but they detract when it comes to counting on the

background as they do not add anything for this, having a black background with

no objects. This effect is not repeated in the Prediction set where the ratio of errors

on the background and spikelet areas is more proportional in both experiments 1

and 2. Note that the Prediction set may have a reduced background area where the

segmentation algorithm has not produced particularly good segmentation results,

and that in itself would reduce background errors.

Figure 5.4 shows the correlation graphs of predicted spikelets number (within the

spikes region only) using SpikeCount against actual numbers for all experimenta-

tion setups for Original set where the first column represents 2016 growing season

and second column represents 2017 growing season. The first row represents the

first (E1) and the second (E2) experimental results correlation. The second row

represents the third (E3) experimental results correlation which will be discussed

later. The x-axis represents the actual number of spikelets while the y-axis rep-

resents the predicted spikelets number. It is evident from the first row for both
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CQ_2016 (left column) and CQ_2017 (right column) that initialising with ACID

parameters result in good correlation with noticeable under-counting. However, as

we stated above, for Original set and from the Figures 5.2 and 5.3, initialising ACID

weights has resulted in severe spikelets over-counting in the background regions.

Contrary to results for the Original set, for both the Optimal and Prediction sets

the performance improved markedly by using Transfer Learning.

Optimal set

For the Optimal set, according to Table 5.2 representing CQ_2016, the MSE,

and MAE have decreased by 68.14%, 70.51% respectively with respect to values

without Transfer Learning and there is also a decrease of 23.14% in SMAPE. Similar

reductions of 53.3% for MSE, 59.95% for MAE and 25.35% for SMAPE are seen

in Table 5.3 representing CQ_2017.

Figure 5.5 shows the correlation graphs of predicted spikelets number using Spike-

Count against actual numbers for all experimental setups for Optimal set, where

the first column represents 2016 growing season and second column represents 2017

growing season. The first row represents the first (E1) and the second (E2) experi-

mental results correlation. The second row represents the third (E3) experimental

results correlation. The third row represents the fourth (E4) experimental results

correlation where both will be discussed later. The x-axis represents the actual

number of spikelets while the y-axis represents the predicted spikelets number. It

is clear from the first row for both CQ_2016 (left column) and CQ_2017 (right

column) that initialising ACID weights has led to more correlated predicted spike-

lets numbers which show minimal under-counting.

Prediction set

For the Prediction set, according to Table 5.2 representing CQ_2016, the MSE and

MAE have decreased by 9.8% and 11.11% respectively in relation to values without

Transfer Learning, whereas SMAPE has reduced by 16.47%. For CQ_2017 in Table

5.3, the MSE, MAE and SMAPE have decreased by 17.72%, 19.00%, and 19.18%
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respectively. Those are more modest reductions than those seen in the Original or

Optimal set.

Figure 5.6 shows the correlation graphs of predicted spikelets number (within the

spikes region only) using SpikeCount against actual numbers for all experimentation

setups for Prediction set where the first column represents 2016 growing season

and second column represents 2017 growing season. The first row represents the

first (E1) and the second (E2) experimental results correlation. The second row

represents the third (E3) experimental results correlation. The third row represents

the fourth (E4) experimental results correlation. It is evident from the first row for

both CQ_2016 (left column) and CQ_2017 (right column) that initialising ACID

weights has led to a less alignment predicted spikelet numbers which indicates

under-counting.

Result comparison across all sets

Among the three scenarios, eliminating the background completely, as in the Op-

timal set, has resulted in the best performance for CQ_2016, only missing on

average 354.57 spikelets per image for MSE and 299.44 spikelets for MAE and with

a relative error of 10.44%. Eliminating the background with our model also pro-

duces some gains with respect to the Original images. For CQ_2017, eliminating

the background completely has also resulted in the best performance with only

missing on average of 876.6 per image for MSE and 658.2 for MAE and with a

relative percentage error of 18%. It is clear that focusing the counting on the ROI

is important to obtain more accurate counting results.

It is clear also that for both CQ_2016 and CQ_2017 removing the background

completely as it is the case with the Optimal set allows the features learned from

the ACID dataset through Transfer Learning to have the most marked impact.

There is also a positive impact on the Prediction set but not as marked.

Some detailed visual analysis, in this case for the ACID images, is shown in Fig.

5.7. By comparing the density maps generated from our models (column (b)) of
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Fig. 5.7 with the ‘ground truth’ density maps derived from the dot annotation

(column (c)) we can note that in some images, SpikeCount may be considered

as over-counting because it is able to detect spikelets that were miss-annotated

(missed) by accident in the dot annotation. For example, in Fig 5.7, SpikeCount

predicted spikelet number for the second and third images as 53.47 and 49.93 while

the ground truth for both images was 46.00 and 46.61. However, in these images,

spikes that appear to contain a single row of spikelets in the dot annotation are

recognised as having more spikelets by the SpikeCount model and this seems to

correlate to the images in column (a). We can assume that as the dot annotation

gets much more complex in the very crowded infield images, dot annotation may

also be more inaccurate, so some of our errors may reflect the inaccuracies of our

ground truth.

(a) (b) (c)

N=108.00 N=102.17

N=46.00 N=53.47

N=46.61 N=49.93

Figure 5.7: Visualisation of density maps resulting from testing for the Adapted SpikeCount on ACID
dataset, where (a) represents image patch, (b) represents ‘ground truth’ spikelet density map and count
obtained after dot annotation, and (c) represents the predicted spikelet density map and count.
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5.4.2 Experiment 3: investigating the importance of SpikeCount

encoder blocks

Next we investigate which ACID hierarchy features represented by the convolu-

tional blocks in the SpikeCount encoder (VGG16) have the most important impact

in estimating spikelets. This is done by gradually freezing the model encoder’s

block after loading ACID learnt weights. We then proceed with training and then

we conduct the evaluation.

When evaluating improvement we do this against our best results for our previous

experimental phase which are also reported in the Tables 5.2 and 5.3 to aid compar-

ison, that is, against the MSE and MAE obtained by training from scratch for the

Original set and the Transfer Learning results for all other measures and scenarios.

We aim to establish if the new results obtained by freezing specific layers for a par-

ticular set, represent an improvement over the previous result for that set. Tables

5.4 and 5.5 present the results for both CQ_2016 and CQ_2017 respectively.

Table 5.4: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage Error
of estimating the number of spikelets for the third experimental setup that investigates which feature
hierarchy has the most effect on improving the results when loading ACID dataset learned parameters
(displayed as rows) for Original, pre-segmented (Optimal) and pre-segmented (predicted) images (displayed
in columns) on CQ_2016 images where numbers in italic are selected as the best results

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Freezing Conv1 Block 2557.82 2344.70 86.10 315.96 270.29 8.87 1647.86 1531.27 44.65
Freezing Conv2 Block 3079.62 2916.16 89.16 1216.558 1121.781 38.435 2184.802 2063.195 69.733
Freezing Conv3 Block 2757.982 2607.525 92.835 1685.330 1552.151 57.214 2506.520 2375.151 86.856
Freezing Conv4 Block 2635.776 2504.633 93.198 1831.979 1688.807 65.815 2413.221 2285.898 95.545
Freezing Conv5 Block 2384.91 2257.61 96.895 1833.346 1694.937 66.604 2395.447 2269.008 92.399

Best from Exp 1/2 2709.92 2566.43 55.43 354.57 299.44 10.44 1718.22 1590.85 47.99
Absolute Diff. 324.31 308.82 30.67 38.61 29.15 1.57 70.36 59.58 3.34

Improvement as % 11.97 12.03 - 10.89 9.73 - 4.09 3.75 -

Original Set

For the Original set, Table 5.4 shows that freezing the whole encoder (conv1-5) has

decreased the MSE and MAE with respect to the previous experiments by 11.97 %

and 12.03% and gives the best results. However, this could be misleading for two

reasons explained below.
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Table 5.5: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage Er-
ror of estimating the number of spikelets for the third experimental setup that investigate which features
hierarchy has the most effect on improving the results when loading ACID dataset learned parameters (dis-
played as rows)for Original, pre-segmenting (Optimal) and pre-segmenting (predicted) images (displayed
in columns) on CQ_2017 images

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Freezing Conv1 Block 3585.91 3212.98 86.44 752.53 536.86 16.53 2181.83 1909.66 51.35
Freezing Conv2 Block 3900.76 3554.22 88.48 1887.90 1646.39 43.38 2778.57 2489.26 71.62
Freezing Conv3 Block 3921.84 3580.76 93.60 2579.92 2276.80 65.84 3273.70 2947.32 88.03
Freezing Conv4 Block 3799.74 3461.21 94.72 2686.52 2388.34 71.14 3352.33 3026.80 95.54
Freezing Conv5 Block 3406.37 3075.18 97.26 2740.11 2430.58 73.09 3271.69 2945.19 92.72

Best from Exp 1/2 3747.92 3414.08 60.46 876.56 658.15 18.00 2252.97 1993.42 54.49
Absolute Diff. 341.55 338.82 25.98 124.03 121.29 1.47 71.14 83.76 3.14

Improvement as % 9.11 9.92 - 14.15 18.43 - 3.15 4.20 -

We go back to Fig. 5.2 where we presented breakdown of errors from the spike and

background regions, and we focus on the Original set (top row) and columns E3.1

to E3.5. It is clear that suspending the training of the whole encoder (column E3.5

in the graph) has minimised the errors calculated for the background regions which

indicates that the model is not estimating spikelets in those background regions.

This may not be because of efficacy of the model but instead because the model was

not able to learn in reasonable manner due to freezing the model encoder (conv1-

5). Additionally, Fig. 5.2, Original set (top row), also shows that the spike region

errors (blue areas in the bars) have not improved but, on the contrary to background

region errors, they have increased the more we suspend blocks. Moreover, Figure

5.4, Original set-CQ_2016 (bottom left graph) presenting the correlation graphs,

clearly illustrates that all variants of freezing the model encoder except for the

first conv1 block (orange dots) have led to severe under-counting compared to the

ground truth (blue dots).

These two aspects indicate that freezing two or more encoder block(s) hinders the

model learning when training on images with full background such as the Original

set. This could be explained by the differences between images in the Original set

and the ACID set which is captured in a background free environment. Therefore,

we will ignore the results of E3.2/3/4/5 as not particularly valid. So in other words,

freezing only conv1 block has led to what we consider to be the most useful results

and decreased the MSE and MAE with respect to the previous experiments by 5.61
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% and 8.64% (Table 5.4) which is represented in italic)

Table 5.5 for the CQ_2017 images together with Figure 5.3, Original set(top row),

and Figure 5.4, Original set (bottom right graph) confirm the same results and

trends.

Optimal set

Table 5.4 shows that loading the ACID weights and suspending the training of the

top convolutional block (conv1) improved the results for Optimal and Prediction

sets of CQ_2016 sequence relatively to previous experiments (Table 5.2). For the

Optimal set, the MSE, MAE and SMAPE have decreased by 10.89%, 9.73% and

1.57%.

Table 5.5 illustrates similar results for CQ_2017. Loading the ACID weights and

suspending the training of the top convolutional block (conv1) improved the results

for the Optimal set in relation to previous experiments. We observe that MSE,

MAE and SMAPE have decreased by 14.15%, 18.43% and 1.47% for the Optimal

set.

It is clear from Figure 5.5 showing the correlation graphs, that for the Optimal set

CQ_2016 (leftmost graph in the second row) and Optimal set-CQ_2017 (rightmost

graph in the second row) the spikelet predictions resulting from freezing conv1

block after loading ACID parameters are the most alignment with the ground

truth counts.

For both Optimal (Fig. 5.5) and Prediction sets (Fig. 5.6), it is also clear that the

predicted counts deteriorate the more we freeze blocks.

Prediction set

The Prediction set follows from the Optimal set but with more modest improve-

ments. For CQ_2016 presented in Table 5.4, loading the ACID weights and sus-

pending the training of the top convolutional block (conv1) has resulted in de-

creases of 4.09%, 3.75% and 3.34 % for MSE, MAE and SMAPE respectively. For
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CQ_2017 (Table 5.5) MSE, MAE and SMAPE have decreased by 3.15%, 4.20%

and 3.14 %.

Also, from the correlation graphs in Figure 5.6 (second row) for both CQ_2016

and 2017, the spikelet predictions resulting from freezing conv1 block after load-

ing ACID parameters show noticeable under-counting. It is also clear that the

predicted counts deteriorate the more we freeze blocks.

Result comparison across all sets

As a summary for this experiment, it is clear that freezing the first block encoder

(conv1 block) can be beneficial in improving the result of estimating spikelets in the

Original, Optimal and Prediction. As the features at the top of the hierarchy layers

are general and independent from the target dataset, hence, preserving those by

not training the top layer can lead to better results. However, the layers (conv2-5)

have features that are more dependent on the datasets, so freezing these layers can

inhibit the learning process leading to worse results.

For both CQ_16/17 the error in the spike regions for both Original and Prediction

sets are increasing the more encoder blocks we suspend, which indicates that it is

important to train the convolutional layers (conv2-5) that are related to the target

dataset and only freeze lower layers such as Conv1 as those could be universal and

represent the shared low level features.

5.4.3 Experiment 4: Investigating the importance of data

augmentation

Lastly, we investigate how using augmentation could improve the task of spike-

let counting. We have applied a simple mix of basic image manipulations data

augmentations that rely on geometric transformations such as random rotation,

translation, vertical flipping and brightness when training SpikeCount. Table 5.6

summarise the quantitative results of segmentation performance for the 2016 and

2017 dataset when training SpikeSEG.

95



5.4.3. Experiment 4: Investigating the importance of data augmentation

Tables 5.7 and 5.8 present SpikeCount performance results of image augmentation

when applied to both Experiment 1 and Experiment 2 (i.e. training from scratch

and with Transfer Learning from ACID) in case with either approach data aug-

mentation could produce real improvements. We tested the models on Optimal

and Prediction sets since both gave promising results from previous experiments,

but we do not test on the Original images for these experiments as those were very

sub-optimal results. We compare against the best results from Experiment 2, since

both Optimal and predicted sets had the Transfer Learning producing the best

results.
Table 5.6: Quantitative Results of Segmentation performance for the 2016 and 2017 dataset when training
SpikeSEG showing different evaluation scores where GA refers to Global Accuracy, MA refers to Mean
Accuracy and MIoU refers to Mean Intersection over Union.

Dataset GA MA Spike Accuracy MIoU Spike IoU

2016 93.34% 86.11% 75.85% 77.63% 62.75%
2017 92.47% 79.48% 60.7% 73.52% 55.35%

Table 5.7: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for two experimental setups utilising augmentation (displayed
as rows): training SpikeCount from scratch and by loading ACID dataset learned parameters for Original,
ground truth segmented (Optimal) and model segmented (predicted) images (displayed in columns) on
CQ_2016 images

Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE

Training from scratch 2057.30 2333.99 30.27 2118.51 1877.35 38.08
Loading ACID Weights 459.75 587.77 11.70 1364.22 1209.75 34.24
Best from Exp 2 354.57 299.44 10.44 1718.22 1590.85 47.99
Absolute Diff. 105.18 288.33 1.3 354 381.1 13.75
Improvement as % 22.88 49.05 - 25.95 31.50 -

Table 5.8: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for two experimental setups utilising augmentation (displayed
as rows): training SpikeCount from scratch and by loading ACID dataset learned parameters for Original,
pre-segmenting (Optimal) and pre-segmenting (predicted) images (displayed in columns) on CQ_2017
images

Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE

Training from scratch 2207.85 2658.94 32.74 1577.40 1321.46 31.90
Loading ACID Weights 667.34 544.32 16.32 1657.65 1354.52 37.74

Best from Exp 2 876.56 658.15 18.00 2252.97 1993.42 54.49
Absolute Diff. 209.22 113.83 1.68 931.51 638.9 22.59
Improvement as % 31.35 20.91 - 70.59 47.17 -
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Optimal set

The CQ_2016 results in Table 5.7 show that it is still Transfer Learning from the

previous experiments that produces the best result for all measures in the Optimal

set. The data augmentation produces greater (worse) error metrics than Transfer

Learning alone with an increase in error metrics of 22.88% 49.05% and 1.3% for

MSE, MAE and SMAPE respectively.

Training from scratch with data augmentation produces some improvements over

training from scratch without using data augmentation (comparative data shown in

Table 5.2) but not sufficient to advance on the best results obtained with Transfer

Learning in Experiment 2.

On the other hand, the CQ_2017 results shown in Table 5.8 indicate a more pos-

itive evaluation. Data augmentation seems to have produced improved results in

the Optimal dataset in conjunction with Transfer Learning, reducing the error by

31.35%, 20.91% and 1.68% for MSE, MAE and SMAPE respectively in relation to

Transfer Learning alone.

The correlation graphs in Figure 5.5 (leftmost graph in the third row for 2016 and

rightmost graph for 2017) show that for the Optimal set, the spikelet predictions

resulting from using augmentation after loading ACID parameters (yellow dots)

show a good correlation with slight over-counting, while only using augmentation

(orange dots) while training from scratch leads to more over-counting.

Prediction set

According to Table 5.7, there is some improvement in adding data augmentation to

Transfer Learning for the Prediction set with respect to the results of Experiment 2,

with error decreasing by 25.95%, 31.50%, and 13.75% for MSE, MAE and SMAPE

respectively.

Again for CQ_2017, the results shown in Table 5.8 indicate that data augmentation

has improved the results, more significantly for 2017, in conjunction with training

from scratch for MSE by 70.59%, MAE by 47.17% and SMAPE by 22.59%.
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5.4.4. Phenotypic analysis Spikelets Estimation for Growth Stages

The correlation graphs for the Predication set in Figure 5.6 (leftmost graph in the

third row for 2016 and right most graph for 2017) show that the spikelet predic-

tions resulting from using augmentation after loading ACID parameters (yellow

dots) result in good correlation with slight under-counting while only utilise aug-

mentation (orange dots), leads to over-counting.

Result comparison across all sets

In summary for these experiments, data augmentation can provide some improve-

ments for the prediction set and in some cases also for the Optimal set, particularly

for the more challenging CQ_2017 images. We did not try data augmentation on

the Original set.

5.4.4 Phenotypic analysis Spikelets Estimation for Growth

Stages

In this section, we analyse spikelets estimation results from the perspective of wheat

growth stages across all experimental setups. This is important from a biological

perspective as growth stages may present very different images with varying num-

bers of spikelets. As mentioned in Chapter 3, the wheat images for CQ_2015,

CQ_2016 and CQ_2017 were sampled from four different growth stages: booting,

Heading, Flowering, and Grain filling. To analyse the results for each growth stage,

we need to take the average number of spikelets per growth stage and the number

of images into the context. It is worth noting that in regards to reporting the res-

ults of combined errors, although the figures presented may included Experiment 3

variation (E3.2-E3.5) for the reasons we highlighted in Subsection 5.4.2 we do not

discuss these results in this section. To recap, freezing two or more encoder blocks

has hindered the model’s ability to learn the task in hand.
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5.4.4.1. G40-49: Booting

(a) Late Booting: GS47 (b) Late Booting: GS49 (c) start of Heading: GS51 (d) start of Heading: GS57

Figure 5.8: The sequence of spike(ear) emergence at two growth stage Booting and Heading [82, 85]

5.4.4.1 G40-49: Booting

According to the Zadok’s growth decimal scale [141], there are ten major cereal

growth stages with each growth stage divided into ten sub-stages [85]. Booting

(G40-49) is the fifth growth stage on the Zadok’s growth decimal scale. It starts

after the stem elongation (G30-39). Booting growth stage starts with visibility of

flag leaf sheath (the uppermost leaf on the stem) which contains the spike (ear)

inside. So while the ear remains protected by the leaf sheath the stage is booting

[82]. Initially, a lower number of spikes may be visible but in late booting they

become more partially visible as shown in Figure 5.8.

There are only two wheat images in the booting growth stage in CQ_2016 with an

average of 298 spikelets between them as shown in Figure 5.9.

On the other hand CQ_2017 has five booting images. The last three images of the

sequence have an average of 259 spikelets between them as shown in Figure 5.10.
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5.4.4.1. G40-49: Booting

Figure 5.9: Booting growth stage images of CQ_2016

However, for this early growth stage there are no apparent spikes in the first two

images of CQ_2017. On inspection, the wheat scenes captured at this growth stage

are complex as they are overwhelmed with noisy background objects (i.e leaves)

similar in colour and texture to the not so many undeveloped and partially hidden

spikes. Therefore, this growth stage will be challenging particularly when testing

Original sets.

Table 5.9 for CQ_2016 and Table 5.10 for CQ_2017 report on the various ex-

perimental setups for three sets: Original, Optimal and Prediction. In addition,

Figures 5.11 and 5.12 provide the quantitative errors calculated in relation to es-

timated spikelets from the spike and background regions separately for the booting

growth stage in CQ_2016 and CQ_2017 respectively. Also, Figures 5.13 and 5.14

show visualisation of the spikelet density maps for the Booting stage of 2016/2017

image series.

Original Set

First, if we look at the overall results for the Original set, according to Tables 5.9 for

CQ_2016 freezing of the first convolutional block (E3.1) results in the best values

of MSE and MAE. On the other hand, from Table 5.10 for CQ_2017 training the
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5.4.4.1. G40-49: Booting

Figure 5.10: Booting growth stage images of CQ_2017

Table 5.9: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for four experimental setups (displayed as rows) of the Original,
pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images (displayed in
columns) on Booting growth stage of CQ_2016 sequence

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 673.17 662.24 99.80 195.98 187.88 45.42 555.07 543.19 98.55
Loading ACID Weights 1942.26 1925.73 99.67 179.06 177.64 45.37 741.20 719.47 97.13
Freezing Conv1 Block 588.37 576.78 99.92 136.81 135.71 31.18 817.59 794.43 97.09
Augmentation-Scratch - - - 70.68 69.13 15.67 964.15 936.96 95.10
Augmentation-ACID - - - 154.06 154.25 38.60 820.44 797.38 95.64

model from scratch (E1) results in the best values of MSE and MAE. Breaking the

errors into those on the background and spikelet areas, as Figures 5.11 and 5.12

show, we can see that for CQ_2016 there is no significant change in errors made in

spikelet areas (range between 303 to 307 for MSE and 294 to 297 for MAE) across all

experiments. This may be because all model variations find it challenging to detect

and count the very few spikelets present which leads to extreme under-counting.

However, when we measure MSE and MAE within background areas, we find the

measures change significantly from one experiment to another. For example, the

highest measured MSE and MAE are 1638.27 and 1631.23 for Transfer Learning

using ACID weights (E2) hence, Transfer Learning alone increases errors on the
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5.4.4.1. G40-49: Booting

Table 5.10: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for four experimental setups (displayed as rows) of the Original,
pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images (displayed in
columns) on Booting growth stage of CQ_2017 sequence

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 1165.53 1072.40 99.14 82.57 77.73 50.55 407.63 329.50 92.39
Loading ACID Weights 5944.61 5832.97 97.56 12.34 11.61 41.28 405.26 330.83 89.02
Freezing Conv1 Blocks 1459.11 1317.07 98.97 50.64 49.46 47.65 458.86 385.48 89.54
Augmentation-Scratch - - - 206.94 152.48 58.20 431.42 382.61 80.10
Augmentation-ACID - - - 119.88 87.30 51.88 386.92 327.46 81.26

222.31
(5.982646797,216.3235167)

376.00

176.0309.37
(0.45,308.93)

Original Optimal Prediction

GT density map

ACID (freeze C1) (E3.1) Scratch (Augmentation) (E4 A) Scratch  (E1)

Figure 5.13: Visualisation of the spikelets density maps for the Booting stage of 2016 image series. The
first row shows from left to right: (1) Original image, (2) Optimal image, (3) Prediction image while the
second row shows the best resulting density map with predicted spikelets number(top right). For Original
and Prediction images the counting is detailed as follows. Top is the total number and bottom is predicted
spikelet number within spike region and predicted spikelet number within background when SpikeCount is
tested on the corresponding image shown in the first row. The ground truth density map and number of
spikelets is presented rightmost.

background areas. On the other hand, suspending the training of the the first

encoder after SpikeCount is initialised with ACID weights results in improving the

model’s ability to ignore what may appear like spikelets in the background with

MSE and MAE of 280.63 and 279.03 respectively. That explains why freezing

the first encoder after initialising the model with ACID weights results in the best

outcome for the combined MSE (588.37) and MAE (576.76). The SMAPE measure

gives best value when loading ACID weights (E2).
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Original Optimal Prediction

GT density map
0.00

222.05
(2.04,220.01)

16.13878.75
(0.43,878.32)

Scratch (E1) ACID (E2) ACID (Augmentation) (E4 B)

Figure 5.14: Visualisation of the spikelets density maps for the Booting stage of 2017 image series. The
first row shows from left to right: (1) Original image, (2) Optimal image, (3) Prediction image while the
second row shows the best resulting density map with predicted spikelets number(top right). For Original
and Prediction images the counting is detailed as follows. Top is the total number and bottom is predicted
spikelet number within spike region and predicted spikelet number within background when SpikeCount is
tested on the corresponding image shown in the first row. The ground truth density map and number of
spikelets is presented rightmost.

The same patterns are repeated in CQ_2017, presented in Fig. 5.12 where E2,

which refers to Transfer Learning, yields the highest background errors with MSE

of 5808.9 and MAE of 5741.92, while it also yields the lowest spike region errors

with 135.72 for MSE and 91.05 for MAE. For the rest of experiments, the spike

region based errors are on the same range, showing little effect for the different

models tried.

In terms of combined error measures from Table 5.10, although initialising the

model with ACID weights has produced the best performance within the spike

region, training the model from scratch (E1) improved the overall performance with

combined errors of 1165.53 and 1072.40 for MSE and MAE subsequently because

of the reduced background errors. In terms of SMAPE, there is no significant

difference among all experiments. Nonetheless, Transfer Learning has lead to the

lowest relative percentage error of 97.56 due to the improvement in spike region

spikelet estimation.

Optimal Set

For the Optimal set, there is a very significant improvement of model performance
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5.4.4.1. G40-49: Booting

compared to Original and Prediction because of the full elimination of the noisy

background objects which make these images challenging. For CQ_2016 reported

in Table 5.9, it is clear that using augmentation has improved the performance

which led to the lowest error for MSE, MAE with a value of 70.68 and 69.13

respectively. In terms of SMAPE, it resulted to the lowest value of 15.67. In the

case of CQ_2017 reported in Table 5.10 Transfer Learning gives the best results,

followed by freezing the first block. This could be because with 5 scenes only for

this stage, additional data in the form of ACID images increases performance. For

CQ_2017 augmentation does not produce any improved results.

Prediction Set

Moving to the Prediction set for CQ_2016, overall it is training from scratch that

produces the best results for MSE and MAE according to Table 5.9 with values

of 555.07 and 543.19 respectively. A close look to the errors on the spike region

(blue area of the bars) on Figure 5.11 illustrates that errors on that area are very

similar for all experimental setups but may be slightly lower with augmentation.

On the other hand, there is a significant change in background errors (red part

of the bars) across all experiments. Training from scratch (E1) leads to the least

errors on background areas with 251.49 for MSE, and 249.32 for MAE.

For CQ_2017, Table 5.10 shows that augmentation with Transfer Learning pro-

duces the best results overall, with values of 386.92 for MSE and 327.46 for MAE.

For SMAPE, augmentation with training from scratch produces the best results

with a value of 80.10. Figure 5.12 shows reduced errors with in the spike area

when using data augmentation while training from scratch (123.64 for MSE and

85.15 for MAE) and also with Transfer Learning (155.99 for MSE and 102.73 for

MAE). However augmentation leads to higher background errors than training from

scratch. Lowest background errors are obtained while training from scratch with

values of 182.99 for MSE and 181.50 for MAE.

Result comparison across all sets

In summary, booting is a difficult stage to analyse because the background becomes
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5.4.4.2. G51-59: Heading

very prominent given the lack of spikelets in images. Therefore best results are ob-

tained when the background is removed completely (Optimal set) as that reduces

background errors. This is particularly the case with Transfer Learning as that

may help with spikelet identification given additional images from ACID. For the

Original set, it is loading ACID weights and freezing the first block for CQ_2016

and training from scratch CQ_2017 that give best results as that reduces back-

ground errors while maintaining spike errors constant. For the Prediction set it is

training from scratch for CQ_2016 or with augmentation and Transfer Learning in

CQ_2017 that gives the best results. Differences could be due to different number

of images available in each set.

5.4.4.2 G51-59: Heading

The Heading (ear emergence) is the sixth growth stage according to to the Zadok’s

growth decimal scale [141]. The Heading stage is considered a key development

stage [85] which begins when the ear starts to emerge gradually from the flag leaf

sheath until fully emerged [82]. Two key sub stages are important to recognise:

half Heading, which is when 50% of the spike has emerged (G55), and full Heading

when the full spike has fully emerged (G59). Figure 5.8 (c) and (d) showed two

examples of spike emergence in Heading stage.

There are seven wheat images in the Heading growth stage in CQ_2016 with an

average of 1464.40 spikelets as shown in Figure 3.7. For CQ_2017, there are also

seven Heading images, which show more crowded spikelet scenes averaging 2970.12

spikelets per image as shown in Figure 3.8.

The analysis of Heading growth stage for CQ_2016 and CQ_2017 is reported

in Table 5.11 and Table 5.12 respectively for three sets: Original, Optimal and

Prediction. In addition, Figures 5.15 and 5.16 provide the quantitative errors for

spike and background regions separately. Figures 5.17 and 5.18 show visualisation

of the spikelet density maps for the Heading stage of 2016/2017 image series.
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5.4.4.2. G51-59: Heading

Table 5.11: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for five experimental setups (displayed as rows) of the Original,
pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images (displayed in
columns) on Heading growth stage of CQ_2016 sequence

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 2212.95 2070.73 88.35 812.22 717.45 31.88 1718.51 1601.91 72.91
Loading ACID Weights 5135.41 4839.04 70.46 308.93 255.21 10.606 1912.97 1806.62 64.38
Freezing Conv1 Blocks 2270.61 2098.48 82.67 307.74 254.84 10.608 2040.50 1940.01 67.59
Augmentation-Scratch - - - 822.72 655.28 16.02 1670.28 1591.04 46.09
Augmentation-ACID - - - 302.57 214.11 6.70 1844.85 1736.82 53.98

Table 5.12: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for four experimental setups (displayed as rows) of the Original,
pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images (displayed in
columns) on Heading growth stage of CQ_2017 sequence

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 3788.10 3515.00 93.83 2061.41 1827.91 42.21 3024.86 2795.54 77.00
Loading ACID Weights 5757.32 5441.61 64.95 1245.19 1063.64 19.54 2785.21 2587.53 62.90
Freezing Conv1 Blocks 3791.42 3496.96 85.38 1256.00 1073.19 18.91 2850.84 2650.28 63.25
Augmentation-Scratch - - - 892.80 830.18 13.76 1718.77 1575.63 33.39
Augmentation-ACID - - - 686.52 551.94 8.84 2380.83 2208.17 49.61

Original Set

First, analysing the results for the Original set for CQ_2016, best performance for

MSE and MAE is obtained by training the model from scratch. For CQ_2017,

using ACID weights and freezing the first Block has led to best results. On the

other hand for both CQ_2016 and CQ_2017 the lowest SMAPE is 70.46 and 64.95

respectively obtained by E2, Transfer Learning, as that takes into account the

balance of errors in the background and spike areas. It is evident from Figures 5.15

and 5.16 that the second experimental setup, again for this stage as we saw with

booting, results in over counting within the background region producing 4536.83

(MSE) and 4391.20 (MAE) within this region in CQ_2016; 2505.73 (MSE) and

2375.62 MAE in CQ_2017. On the other hand, the same experimental set up

leads to the best performance when counting spikelets within the spike region with

an MSE of 598.58 and MAE of 447.84 in CQ_2016; 1285.90 (MSE) and 1120.06

(MAE) in CQ_2017. Again this is similar to what we saw in the booting stage.

Optimal Set

For the Optimal set, as shown in Tables 5.11 and 5.12, it is clear that utilising
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Original Optimal Prediction

GT density map
683.00

2205.27
(492.31,1712.96)

595.0879.77
(73.26,806.51)

Scratch E1 ACID (Augmentation)E4 B Scratch (Augmentation)E4 A

Figure 5.17: Visualisation of the spikelets density maps for the Heading stage of 2016 image series. The
first row shows from left to right: (1) Original image, (2) Optimal image, (3) Prediction image while the
second row shows the best resulting density map with predicted spikelets number(top right). For Original
and Prediction images the counting is detailed as follows. Top is the total number and bottom is predicted
spikelet number within spike region and predicted spikelet number within background when SpikeCount is
tested on the corresponding image shown in the first row. The ground truth density map and number of
spikelets is presented rightmost.

both augmentation and ACID Transfer Learning produces the best results in this

growth stage with MSE of 302.57 and MAE of 214.11 in CQ_2016; MSE of 686.52,

MAE of 551.94 in CQ_2017. In addition, it leads to the lowest SMAPE of 6.70%

in CQ_2016 and 8.84 in CQ_2017.

Prediction Set

For the Prediction set, overall it is augmentation used with training from scratch

that produces the best models in CQ_2016 and CQ_2017. In the majority of

experiments, according to Figures 5.11 and 5.12, the spike region errors are high.

In contrast, augmentation has lead to better performance of the model in spike areas

both in combination with training from scratch and Transfer Learning. Training

from scratch with augmentation leads to the lowest MSE and MAE within spike

regions for all experiments at 321.84 MSE and 291.45 MAE for CQ_2016; 823.94

MSE and 748.29 MAE for CQ_2017.
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5.4.4.3. G61-69: Flowering (anthesis)

Original Optimal Prediction

GT density map
702.00

1722.11
(309.61,1412.50)

562.23416.73
(6.57,410.16)

ACID (freeze C1) (E3.1) Scratch (Augmentation) (E4 A)ACID (Augmentation) (E4 B)

Figure 5.18: Visualisation of the spikelets density estimation maps for the Heading stage of 2017 image
series. The first row shows from left to right: (1) Original image, (2) Optimal image, (3) Prediction image
while the second row shows the best resulting density map with predicted spikelets number(top right. For
Original and Prediction images the counting is detailed as follows. Top is the total number and bottom
is predicted spikelet number within spike region and predicted spikelet number within background when
SpikeCount is tested on the corresponding image shown in the first row. The ground truth density map
and number of spikelets is presented rightmost.

Result comparison across all sets

In summary, for the Heading stage which has more spikelets to count in the images,

best results by far are obtained by removing the background (Optimal set) once

again. For the Original images, using Transfer Learning while freezing the first the

block (E3.1) gives good results for CQ_2017, however, training from scratch (E1)

gives good results for CQ_2016. For the Prediction set, data augmentation with

training from scratch is the best option.

5.4.4.3 G61-69: Flowering (anthesis)

The Flowering is the seventh growth stage according to to the Zadok’s growth

decimal scale [141]. The Flowering stage is considered an key development stage

[85] which begins after the Heading stage is complete and can be summarised

according to Pask et al. [85] as: "when the 50% of spikes have extruded at least

one anther and [...] mid-anthesis (mid Flowering) is recorded when 50% of spikes

have extruded 50% of their anthers".
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5.4.4.3. G61-69: Flowering (anthesis)

For this growth stage we have more representatives with 12 wheat images in

CQ_2016 with an average of 2244.28 spikelets as shown in Figure 3.7. For CQ_2017,

there are 13 Flowering images, which are more crowded, with spikelets counts av-

eraging 3371.07 per image as shown in Figure 3.8.

Results for CQ_2016 are presented in Table 5.13 and for CQ_2017 in Table 5.14.

Again we report each time for three sets: Original, Optimal and Prediction. Break-

down of errors for spikelet and background areas are presented in Figures 5.19 and

5.20. Figures 5.21 and 5.22 show visualisation of the spikelet density maps for the

Flowering stage of 2016/2017 image series.

Table 5.13: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for four experimental setups (displayed as rows) of the Original,
pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images (displayed in
columns) on Flowering growth stage of CQ_2016 sequence

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 2753.53 2709.59 88.20 1098.63 1050.07 30.20 1893.45 1846.88 57.43
Loading ACID Weights 3350.92 3066.16 47.06 406.91 357.91 8.11 1656.17 1546.81 38.85
Freezing Conv1 Blocks 2523.45 2416.61 85.05 365.72 329.91 7.36 1571.04 1466.18 34.20
Augmentation-Scratch - - - 2561.33 2520.12 36.06 1972.68 1826.60 28.79
Augmentation-ACID - - - 626.46 497.70 10.17 1266.11 1133.29 24.44

Table 5.14: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for four experimental setups (displayed as rows) of the Original,
pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images (displayed in
columns) on Flowering growth stage of CQ_2017 sequence

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 3971.32 3920.14 92.19 2061.11 2016.67 42.58 2960.75 2915.79 67.57
Loading ACID Weights 5128.09 4679.23 50.28 831.05 713.41 11.63 2319.48 2230.08 41.91
Freezing Conv1 Blocks 3723.46 3604.25 83.77 599.57 518.54 7.91 2140.10 2019.60 35.52
Augmentation-Scratch - - - 3250.78 3171.93 32.29 1769.35 1555.75 18.70
Augmentation-ACID - - - 704.47 613.08 8.76 1515.68 1306.21 21.08

Original Set

For the Original set and for CQ_2016 it is clear from Figure 5.19, similar to Booting

and Heading growth stage, that the second experimental setup, Transfer Learning,

has resulted in over counting within the background region. On the other hand,

for the spike region, the same experimental set up leads to the best performance

with an MSE of 845.19 and MAE of 690.54. In terms of combined error measures

from Table 5.13, we can see that for MSE the lowest errors resulted from freezing
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5.4.4.3. G61-69: Flowering (anthesis)

Conv1 block with value of 2523.45. For MAE, a value of 2416.61 is obtained while

freezing only Conv1 block. The best SMAPE value of 47.06 is obtained by loading

ACID weights as that lowers spike region errors and accurately counts spikelets

within this region. The background errors when freezing conv1 block gave MSE

value of 479.96 and MAE of 423.80 while the spike region MSE and MAE values

are 2043.49 and 1992.81 respectively which are the second lowest.

The same insights apply for the results of Flowering stage for CQ_2017. Freezing

only Conv1 as Table 5.14 shows results in combined MSE and MAE of 3723.46

and 3604.24 respectively. Also, Figure 5.20 shows the error breakdown of freezing

conv1 block with MSE and MAE of 744.43 and 654.91 for background; for spike

regions the MSE is 2979.03 and MAE is 2949.34.

Original Optimal Prediction

GT density map
2556.62

2278
(1744.28,533.76)

2105.10410.53
(114.63,295.90)

ACID (freeze C1) (E3.1) ACID (freeze C1) (E3.)1 Augmentation ACID ( C1) (E4 B)

Figure 5.21: Visualisation of the spikelets density maps for the Flowering stage of 2016 image series.
The first row shows from left to right: (1) Original image, (2) Optimal image, (3) Prediction set while the
second row shows the best resulted density map with predicted spikelets number(top right). For Original
and Prediction images the counting is detailed as follows. Top is the total number and bottom is predicted
spikelet number within spike region and predicted spikelet number within background when SpikeCount is
tested on the corresponding image shown in the first row. The ground truth density map and number of
spikelets is presented rightmost.

Optimal Set

For the Optimal set, as shown in Table 5.13 and Table 5.14 freezing Conv1 block
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5.4.4.3. G61-69: Flowering (anthesis)

Original Optimal Prediction

GT density map
2997.36

2834.24
(2447.02,387.22)

2299.50406.79
(87.88,318.91)

ACID (freeze C1) (E3.1) ACID (Augmentation) (E4 B)ACID (freeze C1) (E3.1)

Figure 5.22: Visualisation of the spikelets density maps for the Flowering stage of 2017 image series.
The first row shows from left to right: (1) Original image, (2) Optimal image, (3) Prediction set while the
second row shows the best resulted density map with predicted spikelets number (top right). For Original
and Prediction images the counting is detailed as follows. Top is the total number and bottom is predicted
spikelet number within spike region and predicted spikelet number within background when SpikeCount is
tested on the corresponding image shown in the first row. The ground truth density map and number of
spikelets is presented rightmost.

is the best overall performer for both years which has significantly improved the

model performance with MSE of 365.7 and MAE of 329.91 in 2016. In addition, it

led to the lowest SMAPE of 7.36 %. On the other hand, only initialising the model

with ACID weights has led to the second best performance. Similarly in 2017,

freezing Conv1 block has improved the model performance with MSE of 599.57

and MAE of 518.54, and SMAPE of 7.91%.

Prediction Set

Moving to the Prediction set, according to Table 5.13, the best performance overall

is obtained by using augmentation in combination with Transfer Learning using

ACID weights with values of 1266.11 and 1133.29 for MSE and MAE in 2016.

Also, with a relative error percentage of 24.44% for CQ_2016. In CQ_2017 that

also leads to the lowest values of MSE and MAE with values of 1515.68 and 1306.21

respectively. SMAPE is the best, however, when augmentation is used with training

from scratch.

Result comparison across all sets
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5.4.4.4. GS71-73: Grain filling

In summary, for the Flowering growth stage we have more images and high number

of spikelets to count. Again, removing the background altogether, as we do for the

Optimal set, results in the best errors. For the Optimal set it is using ACID images

in combination with freezing the first Block that results in the best performance in

both years. For the Original set, freezing only the first block gives good results. For

the Prediction set, it is augmentation with ACID weights that gives the best results.

So augmentation is helpful for both the Heading and the Flowering stage, but for

the Flowering stage the addition of ACID weights through Transfer Learning also

benefits the models. The results of Optimal set are better than the Prediction

set results combined results (Tables 5.13 and 5.14). However, when comparing to

the spike region results, we can see it shrink the gap between the two set results

(Figures 5.19 and 5.20).

5.4.4.4 GS71-73: Grain filling

The Grain filling is the eighth growth stage according to to the Zadok’s growth

decimal scale [141]. The Grain filling stage is considered a key development stage

[85] which begins after the Flowering stage is complete and is related to the devel-

opments of grains [82]. Our dataset for all sequences only contains sub stages from

G71 to G73 which are stages when most of Grains contain watery fluids [85]. There

are 9 wheat images in the Grain filling growth stage in CQ_2016 with an average

of 2560.75 spikelets as shown in Figure 3.7. For CQ_2017, there are 5 Grain filling

images with spikelets counts averaging 3454.62 as shown in Figure 3.8.

Results for this stage are reported in Table 5.15 for CQ_2016 and Table 5.16 for

CQ_2017 for three sets: Original, Optimal and Prediction. In addition, Figures

5.23 and 5.24 provide the quantitative errors from the spike and background regions

separately for each year. Also, Figures 5.25 and 5.26 show visualisation of the

spikelets density maps for the Grain filling stage of 2016/2017 image series.

Original Set
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5.4.4.4. GS71-73: Grain filling

Table 5.15: The Mean Squared Error, Mean Absolute Error, and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for four experimental setups (displayed as rows) of the Original,
pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images (displayed in
columns) on Grain filling growth stage of CQ_2016 sequence

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 3201.12 3184.25 89.60 1413.25 1384.76 36.79 2161.81 2136.58 59.69
Loading ACID Weights 3510.72 3348.25 45.06 341.95 282.95 5.64 1724.07 1675.39 36.52
Freezing Conv1 Blocks 2861.43 2833.19 87.08 276.80 232.72 4.56 1513.67 1463.90 29.09
Augmentation-Scratch - - - 2980.53 2972.47 36.86 2435.74 2376.68 31.57
Augmentation-ACID - - - 742.85 668.14 11.64 1082.97 993.38 18.32

Table 5.16: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets for four experimental setups (displayed as rows) of the Original,
pre-segmented by ground truth (Optimal) and pre-segmented by model (predicted) images (displayed in
columns) on Grain filling growth stage of CQ_2017 sequence

Original Optimal Prediction

MSE MAE SMAPE MSE MAE SMAPE MSE MAE SMAPE

Training From Scratch 4338.18 4298.70 93.22 2036.07 1979.84 39.74 2988.74 2942.03 66.16
Loading ACID Weights 4848.80 4617.84 43.56 802.25 593.29 9.07 2301.58 2208.93 40.87
Freezing Conv1 Blocks 3758.97 3694.02 82.35 502.07 321.02 4.49 2204.94 2111.12 37.69
Augmentation-Scratch - - - 3712.86 3685.36 35.04 1441.42 1295.32 15.93
Augmentation-ACID - - - 841.17 811.88 10.89 1511.23 1312.11 20.89.

First, for the Original set, best results for CQ_2016, according to Table 5.15, are

obtained by freezing Conv1 block with a MSE of 2861.43 and MAE of 2833.19. For

CQ_2017 best results are obtained also by freezing Conv1 block with a MSE of

3758.97 and MAE with a value of 3694.02. The SMAPE measure is best for Transfer

Learning (E2) with a value of 45.06 for CQ_2016 and 43.56 for CQ_2017.

Looking at the break down of errors in the corresponding Fig. 5.23 as before, it

is clear that E2 leads to very high errors on the background and low errors on

the spike area. Freezing Con1 Block background errors are 500.19 for MSE and

488.71 for MAE. The best overall SMAPE is obtained when using ACID weights,

E2, as that leads to a reduction in spike area errors. The same observations can be

made for CQ_2017 as reflected in Fig. 5.24 in terms of problems with E2 which

maximises background errors, freezing Conv1 has led to balanced results of both

background and spike regions errors. Again SMAPE is best for E2.

Optimal Set

The Optimal set is again the best performing, as shown in Table 5.15. Consistently

with other stages, freezing Conv1 Block has significantly improved the model per-
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5.4.4.4. GS71-73: Grain filling

123

Original Optimal Prediction

GT density map

2662.13
(2081.68,580.45)

2391.001065.58
(447.75,617.83)

2693.51

ACID (freeze C1) (E3.1) ACID (freeze C1) (E3.)1 Augmentation ACID ( C1) (E4 B)

Figure 5.25: Visualisation of the spikelets density maps for the Grain filling stage of 2016 image series.
The first row shows from left to right: (1) Original image, (2) Optimal image, (3) Prediction set while the
second row shows the best resulting density map with predicted spikelets number(top right). For Original
and Prediction images the counting is detailed as follows. Top is the total number and bottom is predicted
spikelet number within spike region and predicted spikelet number within background when SpikeCount is
tested on the corresponding image shown in the first row. The ground truth density map and number of
spikelets is presented rightmost.

formance with MSE of 276.80, MAE of 232.72 and SMAPE OF 4.56 for CQ_2016;

MSE of 502.07, MAE of 321.02 and SMAPE of 4.49 for CQ_2017 .

Prediction Set

For the Prediction set, best results are obtained by using augmentation while train-

ing with ACID weights in CQ_2016 and augmentation while training from scratch

in CQ_2017. Looking at the breakdown of errors in Figures 5.23 and 5.24 in the

majority of experiments, the spike area errors are high particularly for training

from scratch (E1). In contrast, for CQ_2016 augmentation and loading ACID

weights at the same time has led to significant improvements in the performance

of the model. For instance, the MSE and MAE within spike regions are 452.34 and

383.39 which are the lowest across all experiments. For CQ_2017, both combina-

tions of augmentation produce good results though they are slightly better when

training from scratch as that results in lower errors in the spike areas.
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5.4.4.5. Comparison across all growth stages

Original Optimal Prediction

GT density map
3749.44

123

5363
(4782.37,580.63)

3315.891400.73
(643.02,757.71)

ACID (freeze C1) (E3.1) ACID (freeze C1) (E3.1) Scratch (Augmentation) (E4 A)

Figure 5.26: Visualisation of the spikelets density maps for the Grain filling stage of 2017 image series.
The first row shows from left to right: (1) Original image, (2) Optimal image, (3) Prediction image while
the second row shows the best resulting density map with predicted spikelets number(top right). For
Original and Prediction images the counting is detailed as follows. Top is the total number and bottom
is predicted spikelet number within spike region and predicted spikelet number within background when
SpikeCount is tested on the corresponding image shown in the first row. The ground truth density map
and number of spikelets is presented rightmost.

Result comparison across all sets

In summary for the Grain filling stage, Optimal is as always best as it removes

background completely allowing the algorithm to concentrate on the spike area.

In this scenario, using ACID weights while freezing Conv1-Block gives best res-

ults. For the Original set, freezing conv1 block has led to the best results in terms

of combined errors, while errors on the spike area are given more prominence by

SMAPE, so for this particular metric loading ACID weights alone gives best per-

formance. For the Prediction set, it is some form of augmentation that gives best

results.

5.4.4.5 Comparison across all growth stages

Table 5.17 provides a comparison of which experimental setup of SpikeCount has

worked best for each quantitative metric across Original, Prediction and Optimal

sets for each growth stage for CQ_2016 and CQ_2017.

For 2016 growing season and Optimal set, freezing the conv1 block after loading
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5.4.4.5. Comparison across all growth stages
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5.4.4.5. Comparison across all growth stages

pretrained ACID parameters has resulted in the best results of both errors metrics

and relative error percentage for Flowering and Grain filling growth stage while

using augmentation after initialisation with ACID parameters has resulted in the

best outcome for Heading growth stage. For Booting growth stage only using

augmentation has lowered the errors metrics.

Observing Original set, for Booting, Flowering and Grain filling, freezing conv1

block has resulted in lowest background errors. When we combine both spike re-

gions and background errors while initialising the model with pretrained ACID

parameters it has minimised the spike regions errors and relative error percent-

age for all growth stages. Training from scratch has lowered the background and

combined errors for the Heading growth stage.

Moving to the Prediction set, training from scratch has minimised the background

errors for all growth stages and also minimised the combined results for only Boot-

ing growth stage. Employing augmentation has resulted in lowering spike regions

errors for all growth stages except Flowering and also lowering combined errors for

Heading and Grain filling stages. Also, it has lowered the relative error % percent-

age for all growth stages except Flowering. Utilising augmentation and transfer

ACID learnt features has minimised the spike regions error, combined error, and

relative error percentage for Flowering growth stage.

For 2017 growing season and Optimal set, freezing the conv1 block after loading

pretrained ACID parameters has resulted in the best results of both errors metrics

and relative error percentage for Flowering and Grain filling growth stage while

using augmentation after initialisation with ACID parameters has resulted in the

best outcome for Heading growth stage. Only initialising ACID parameters has

improved the results for Booting stage.

For the Original set, for Booting, Heading and Flowering, training from scratch has

resulted in the lowest background errors and also it has lowered booting combined

errors. Freezing conv1 block has lowered the Grain filling background errors and
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5.5. Summary

Heading, Flowering and Grain filling combined errors. Training by initialising the

model with pretrained ACID parameters has minimised the spike regions errors

and relative error percentage for all growth stages.

For the Prediction set, training from scratch has minimised the background er-

rors for all growth stages. Employing augmentation has resulted in lowering spike

regions errors for all growth stages except Flowering and also lowering combined

errors for Heading and Grain filling stages. Also, it has lowered the relative error%

percentage for all growth stages. Utilising augmentation and transfer ACID learnt

features has minimised the spike regions error for only Flowering and has lowered

combined error for booting and Flowering growth stages.

5.5 Summary

Counting spikelets from infield wheat crop images is a vital step in quantifying

yield traits which can help in monitoring wheat crop growth through automated

systems. This is a very challenging task given the variability, self-similarity, varying

backgrounds, severe occlusion, density, and changes in illumination etc. associated

with spikelets in real wheat images. In this Chapter, we introduced SpikeCount, a

fully convolutional network to count spikelets using a density estimation approach.

We have designed several experimental setups to evaluate the model performance

such as investigating the effect of transferring learnt features from wheat images

captured in controlled environment using Transfer Learning. In addition, we in-

vestigated which feature level has the most effect in improving the results. Finally,

we investigated the importance of augmentation. We have also conducted the

evaluation on three variation sets (Original (images with background), Optimal

(images with predefined segmentation) and Prediction (the output prediction from

the segmentation model discussed in Chapter 4))of two growing seasons 2016 and

2017.

From analysing the result, it is clear that isolating ROI, represented by evaluating
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5.5. Summary

on Optimal set, has led to the best results compared to Prediction and Original

for all experiments for both CQ_2016 and CQ_2017. The second best results

are noted when evaluating on Prediction set. Not removing the background as in

Original set has resulted in the worse results which indicate that isolating the ROI

(i.e spike regions) play an important role in solving this problem in this context.

In terms of the best factor for Optimal, freezing the conv1 block has resulted

in best results for CQ_2016 (and to some extent for CQ_2017) which indicate

that the transferred lower features from the ACID parameters have important

impact on helping to extract the same traits from images with the same domain

but captured in an uncontrolled environment. Also, utilising augmentation and

Transfer Learning has led to a close performance to the results of freezing conv1

block.

Moving to the results of Prediction set, it is clear that employing augmentation and

ACID Transfer Learning has a positive impact for spike regions but for background

errors, those are minimised by training from scratch for both growing seasons.

Freezing conv1 block has led to lowering combined and background errors for the

Original sets of both CQ_2016 and CQ_2017. However, from Figure 5.4, we

observed that freezing the model encoder with all its variations has led to severe

under-counting. This indicates that freezing the encoder block(s) hinders the model

learning when trained on images with full background. This could be due to differ-

ence between images in Original set and ACID which is captured in a background

free environment. In terms of spike region errors for both growing seasons, initial-

ising the model with ACID parameters has minimised them significantly.

Analysing the results based on growth stages of the Optimal set shows that for more

mature wheat images freezing the first block in SpikeCount after loading ACID

weights has led to the best performance for both 2016 and 2017 growing seasons.

Regarding Booting growth stage in CQ_2017, initialising the model with ACID

weights and continuing to train has improved the results of this stage. Finally,
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5.5. Summary

transferring ACID knowledge and augmentation has improve the Heading growth

stage results for both seasons and only employing augmentation has improved the

counting results of the Booting stage in CQ_2016.

All in all, it is evident that both eliminating the background and transferring

the knowledge learnt from the ACID datasets has a significant effect on counting

spikelets from infield uncontrolled images. Also, employing augmentation shows

advantage in specific scenarios. On the other hand, there is a need to improve the

results in relation to the Original set and this could be tackled through a super-

vised MTL approach. This would apply both segmentation and density estimation

simultaneously which will be discussed in the following Chapter (Chapter 6).
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Chapter 6

Heterogeneous Multitask Infield

Wheat Phenotyping

It is evident from the analysis of Chapter 5 results that isolating the ROI (i.e.

spike regions in our case) completely, as it is done using the optimal set of the

CropQuant (CQ) sequences, has produced the best results across all our experi-

mental variations. This indicates the importance of isolating an ROI in solving

the challenge of spikelet counting. This eliminates noisy background that could

interfere with achieving accurate spikelet counting, especially in infield settings. In

Chapter 5 we tested this principle in two ways:

1. The first was to provide a extreme case with no isolation of the spike region.

We tested SpikeCount directly on images without removing any background,

the Original set. We found that testing directly on the Original set lead to

the worst results, as may be expected due to the noisy background.

2. In the second case we used a conventional pipeline by using a model, a Spike-

SEG from Chapter 4, to produce a segmentation and isolate ROI. Then we

applied the second model, SpikeCount from Chapter 5, to the output from

the first model to extract the required traits (i.e. spikelets numbers in our

case). We evaluated this as the Prediction set. This approach has led to the

second best results.
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6. Heterogeneous Multitask Infield Wheat Phenotyping

To further improve performance for both tasks (spike segmentation and spikelet

numbers estimation), we now propose the concept of multitask learning.

Multi-task Learning (MTL) is a branch of machine learning, where multiple re-

lated targets are trained simultaneously to solve complex goals [15]. Caruana [15]

argues that when it comes to solving complex goals, relying on target modularity

and solving each one independently can be ineffective. Also, MTL can help de-

velop more accurate models for each task by leveraging useful information learnt

from related tasks [147]. Pan and Yang [83] has considered MTL as a branch of

inductive Transfer Learning where the goal is to learn a low-dimensional feature

representation which is shared among different targets.

According to Zhang and Yang [147] there are two factors that determine MTL

setting: first, tasks relatedness which explores how different tasks are related and,

second, tasks learning type such as supervised tasks, unsupervised tasks, active

tasks, reinforcement tasks and other learning task types. One popular task learning

type is multi-task supervised learning (MTSL), and that is what we are using in

this work.

There are three aspects of MTSL task relatedness: features, parameters and in-

stances [147]. We will focus on feature-based MTSL which determines how different

tasks share a feature representation from the Original feature set.

Feature-based MTSL can also be categorised further according to Zhang and Yang

[147] into: feature transformation, feature selection and deep learning approach.

Feature transformation MTL involves learning a linear or nonlinear transformation

from original features to the shared feature representation among the targets using

multi-layer feed-forward neural network. Feature selection MTL is concerned with

selecting the shared feature representation between different tasks from the original

feature representation. Deep learning MTL is similar to feature representation

using multi-layer feed-forward neural network but the shared feature representation

is learned using more complex models such as convolutional neural networks and
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6. Heterogeneous Multitask Infield Wheat Phenotyping

recurrent neural networks that may consist of hundreds of hidden units.

Yang et al. [137] has divided MTL into two categories: homogeneous and hetero-

geneous in terms of the type of target. A homogeneous MTL model consists of

similar targets (outputs) either discrete to solve classification problems or continu-

ous to solve regression problems. In contrast, a heterogeneous MTL model consists

of different types of output and can tackle both types, regression and classification,

at the same time. Furthermore, Zhang and Yang [146] have extended the differ-

ences between heterogeneous and homogeneous MTL to include the type of target

learning used, whether it is supervised/unsupervised learning and other types of

learning.

In the context of object counting, Zhang et al. [143] developed a homogeneous MTL

algorithm with multiple learning objectives which are switchable. Their objectives

are crowd density and crowd counting and they can help each other to obtain better

estimates. An example of heterogeneous object counting MTL is the method of

Arteta et al. [6] to count penguins. They introduced a multitask fully convolutional

Neural Net architecture that primarily learns a segmentation mask to help the

object density map regression. They then generate the labels for the three targets

from crowd-sourced dot-annotations. More specifically, the model is trained first to

learn to predict a segmentation map and then fine tuned to regress a density and

uncertainty map. Pound et al. [90] developed a homogeneous MTL deep learning

model to count and localise wheat spikes and spikelets, achieving an accuracy of

95.91% and 99.66% respectively using Non-Maximal Suppression (NMS). They

tested the model on The Annotated Crop Image Dataset (ACID) captured in a

controlled environment inside a glasshouse.

In this Chapter, we propose SpikeMulti, a heterogeneous multi-task fully convo-

lutional model that is trained simultaneously to learn two tasks: (1) pixel-wise

classification for spike segmentation and (2) pixel-wise regression for spikelet dens-

ity estimation used to infer spikelets counts. We hope this approach will contribute

to learning more generalised features that could help both tasks: segment spikes
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6.1. Methods

and count spikelets at the same time. We will study whether this approach could

improve spikelet counting for the Original set and whether the segmentation quality

can be improved for CQ_16/17. Section 6.1 summarises the datasets we used, the

multi-task architecture of SpikeMulti, the experimental setup, model optimisation

and training procedure details. Section 6.3 describes the performance results of

testing SpikeMulti and the their interpretation for each experimental setup. Also,

we discuss results of testing SpikeMulti for each growth stage. Finally, Section 6.4

presents our conclusions from these experiments.

6.1 Methods

In this section, first we lay out the definition of MTSL for SpikeMulti mathem-

atically. Then, we explain the SpikeMulti architecture, the specification of model

training including the cost function, the training hyperparameters, and the protocol

of splitting the sequences into training, validation and testing sets. In addition, we

explain in detail each experimental setup and its aim.

6.1.1 Multi-task supervised learning (MTSL)

We follow Zhang and Yang’s [147] definition of MTSL. For our SpikeMulti the m

supervised learning tasks are m = 2, so we have T = {T1, T2}. The first learning

task T1 represents spike segmentation which is a pixel level classification and is

associated with a training dataset D1 = {(Xj , y
1
j )}nj=1, where (Xj) is a wheat

image represented as {M × N} RGB pixels and y1
j is the segmentation label of

(Xj) which is a pixel wise encoding y1
j ∈ {0, 1} where 0 represents non-spike region

and 1 is a spike region.

The second learning task T2 represents spikelets density estimation pixel level re-

gression and is associated with a training dataset D2 = {(Xj , y
2
j )}nj=1, where (Xj)

is a wheat image represented as {M × N} RGB pixels and y2
j is the continuous
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6.1.2. SpikeMulti Architecture

density label of (Xj) which is a pixel wise real scalar which is generated from dot

annotation.

6.1.2 SpikeMulti Architecture

conv1 conv2 conv3 conv4 conv5P1 P4P3P2 P5 Upsample
(FCN-32) 

Upsample 
(FCN-16) 

Upsample
(FCN-8) 

Score 

Score 
P 4

Score
P 3

T1:2-class
Softmax

Prediction

conv6 conv7

conv: Convolutional layer 
P: Pooling layer
Score: Intermediate prediction layer  
     : Summation operation 
Upsample: Upsampling/deconvoulutional layer

T2:1-Spikelet
s Density 

Figure 6.1: SpikeMulti Architecture

Our SpikeMulti, Figure 6.1, uses the same architecture as the spike segmentation

and spikelet counting we used and explained in detail in Chapters 4 and 5. The

only addition is two output layers to represents both supervised learning tasks: the

pixel level softmax layer responsible for prediction of spike segmentation and pixel

level regression to predict a density estimation for each pixel.

6.1.2.1 Global Cost Function

In order to determine the global cost function to optimise any deep learning MTSL

L, we need to determine the partial cost functions Li for each learning task Ti.

In addition, we need to determine the weight loss coefficient λi for each learning

task to distinguish the importance of tasks when training. Therefore, The global

cost function is the weighted summation of all partial learning task cost functions

(Equation 6.1):

L =
∑

i∈{1,T}
λiLi (6.1)

In our case, we have two partial cost function:
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6.1.2.2. Training hyperparameters

• The cost function used for the first task (spike segmentation) is cross en-

tropy, LT1 (Equation 6.2), which calculates the negative log likelihood of the

predicted class predicted1
j :

LT1 = −
2∑
j=1

GT 1
j log (predicted1

j ) (6.2)

where j represents the class value corresponding to spike versus background

regions.

• The cost function used for SpikeCount optimisation, as discussed in Chapter

5, is pixel-wise L2 loss function to regress the per pixel density. Therefore,

the cost function for the second task LT2 is represented by Equation 6.3 where

Dp
GT 2 is the density ground truth and predicted2 is the predicted density for

a certain pixel p in image Xi.

LT2 =
∑
p∈Xi

(Dp
GT 2 −Dp

predicted2)2 (6.3)

Therefore, the global cost of training SpikeMulti is as following (Equation6.4):

L = λ1(−
2∑
j=1

GT 1
j log (predicted1

j )) + λ2(
∑
p∈Xi

(Dp
GT 2 −Dp

predicted2)2) (6.4)

6.1.2.2 Training hyperparameters

The hyperparameters need to be initialised before the training process starts. Then,

the training algorithm learns new parameters as part of the learning process [118].

A summary of the SpikeMulti training hyperparameters values used in our study

are as following:

• Weight θ (parameters) /Bias initialisation: It is good practice when training

any deep learning model from scratch to initialise the weights with random

values and the bias with 0. There are many initialisation techniques that can
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6.1.2.2. Training hyperparameters

be used but we found He et al.’s [51] technique achieved the optimal results

when training from scratch. This technique generates a mean centred normal

distribution with standard deviation σ equal to
√

2/nl where nl is the number

of inputs in a certain layer l.

• Dropout rate probability: This parameter serves as a regulariser to reduce

the model overfitting [118]. It determines how many units can be deactiv-

ated randomly for every training iteration in a certain layer. In our model,

two dropout layers are added, with a value of 0.5 for p, which represents

the probability of keeping the unit activation or not. This is recommended

when using layers with large numbers of units [118] such as FC6 and FC7.

Therefore, dropout layers are added after every fully convolutional layer FC6

and FC7.

• Intermediate non-linearity unit: This is an essential component in any CNN

that focuses on highlighting and emphasising the relevant features of the data

and the task. As a default, we have selected Rectified Linear Unit (ReLu)

for this parameter which is an element-wise thresholding operation that is

applied on the output of the convolutional layer (resulting feature map) to

suppress negative values: F(x)=max(0,x) where x is an element in the feature

map.

• Epochs: This refers to the number of training iteration, and is different from

one experimental setup to another.

• Optimisation algorithm: Since we have two different learning tasks to op-

timise simultaneously, we first utilised mini-batch stochastic gradient descent

(SGD) optimisation method and then utilised mini-batch RMSprop optim-

ising algorithm [52]. We have found that RMSprop optimising algorithm [52]

has resulted in lower validation loss with a learning rate of 0.003 and mini-

batch of 20 and the weight loss coefficients λ1 and λ1 of 1 because we aimed

for each learning task loss to contribute equally in optimising SpikeMulti.
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6.1.3. Training and validation of the architecture

6.1.3 Training and validation of the architecture

Consistently with previous experiments, we have selected the CQ_2015 sequence

for training SpikeCount and the CQ_2016 sequence as the validation set to observe

if there is overfitting of the model. Also, as before, because of the high resolution of

the images (2592 × 1944), we randomly sampled 450 sub-images with a size of 512

× 512 with their corresponding manual labels. This approach is to reduce computa-

tional complexity, as dealing with the Original image size would be unmanageable

in the training process.

We have utilised an early stopping technique when training the model. Early stop-

ping allows us to keep a record of the validation learning (e.g. cost and accuracy)

for each learning epoch. It is a simple and inexpensive way to regularise the model

and prevent overfitting as early as possible [63, 9]. We have selected the validation

cost as the metric to observe for early stopping. The maximum epochs for ob-

serving the change in validation cost is 20 epochs. In other words, if the validation

cost has not been decreased for 20 epochs, the model training will be stopped and

the model weights resulting from the lowest validation cost are saved.

6.2 Multitask Infield Wheat Experimental Setup

Our experiments are as follows:

• Experiment 1: Training SpikeMulti from Scratch - with these set of

experiments we try to understand how well the architecture does when trained

from scratch in a conventional way. We initialise the model weights with He et

al.’s [51] technique as discussed in the SpikeMulti Training subsection 6.1.2.2.

These model training ran for 35 epochs.

• Experiment 2: Training SpikeMulti by loading ImageNet learnt

weights - In addition to training SpikeMulti from scratch, we wanted to
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6.3. Results

investigate whether the Transfer Learning approach [103] can produce im-

provements of the validation accuracy. We loaded the pre-trained weights

from the ImageNet challenge to the VGG16 and then trained the model with

the same hyper-parameter settings described previously for 76 epochs.

6.3 Results

After training SpikeMulti on CQ_2015 and validating it on CQ_16 for both exper-

imental setups discussed in last section, in this section we assess the performance

of the model for both learning tasks: spike segmentation and spikelet counting. We

have tested the model on the Original set containing the wheat crop images with

background for both CQ_2016 and CQ_2017. We used a sliding-window approach

which is discussed in Chapter 3.

First, we analyse the results of spike segmentation in general and in terms of growth

stage breakdown for both experiments and compare it with the results of SpikeSEG

performance when trained solely for spike segmentation, as presented in Chapter

4.

Then, we analyse the results of spikelet counting in general and in terms of growth

stage breakdown for both experiments and compare it with the results of Spike-

Count performance when trained solely for spikelets density estimation and tested

on Original and Prediction sets, as presented in Chapter 5. We also report the

breakdown of counting results for background and spike regions to investigate

whether MTL have reduced the error metrics of background regions or not. We

apply the multitask learning to the Original set, but also presented for comparison

the results of the Prediction set since this uses a similar pipeline.
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6.3.1 Investigating the importance of Multitask Learning on

Spike Segmentation

Tables 6.1, 6.2, 6.3 and 6.4 summarise the performance of SpikeMulti results when

tested for the first task, spike segmentation, on the Original sets CQ_2016 and

CQ_2017 when trained from scratch and by loading ImageNet pre-trained weights.

In addition, the tables compare the results of SpikeSEG performance when trained

solely for spike segmentation in Chapter 4.

Tables 6.1, representing learning from scratch, and 6.2, representing Transfer Learn-

ing, show that training SpikeSEG solely has led to better segmentation across Mean

Accuracy, Spike Accuracy and Spike IOU, but not Global Accuracy and Mean IoU.

The improvement by using MTSL is of 2.39% (GA) and 0.07% (MIoU) when train-

ing from scratch and of 2.05% (GA) and 0.21% (MIoU) when loading ImageNet

weights. Also, it is clear that training SpikeMulti by loading ImageNet weights

have improved the results compared to training the model from scratch which is

an established finding of Chapter 4.

Table 6.1: Quantitative results of segmentation for the CQ_2016 dataset comparing the performance of
SpikeMulti model and SpikeSEG model when trained from scratch (by initialising both models the weights
using He et al. [51] method) showing different evaluation metrics

Initialisation GA MA Spike Accuracy MIoU Spike IoU

SpikeSEG-scratch 91.84% 82.90% 70.22% 73.43% 55.98%
SpikeMulti-scratch 94.23% 79.13% 59.78% 73.50% 53.18%

change as % 2.39% -3.78% -10.44% 0.07% -2.80%

Table 6.2: Quantitative results of segmentation for the CQ_2016 dataset comparing the performance of
SpikeMulti model and SpikeSEG model when loading pre-trained ImageNet parameters showing different
evaluation metrics

Initialisation GA MA Spike Accuracy MIoU Spike IoU

SpikeSEG-ImageNet 93.34% 86.11% 75.85% 77.63% 62.75%
SpikeMulti-ImageNet 95.39% 81.95% 64.73% 77.84% 60.64%

change as % 2.05% -4.16% -11.12% 0.21% -2.11%

For CQ_2017, Tables 6.3 and 6.4 shows that using MTSL has significantly led to

better segmentation across all metrics for both experimental setups. Particularly,

Transfer Learning with MTSL led to substantial increases of 4.01% for Global
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6.3.1. Investigating the importance of Multitask Learning on Spike Segmentation

Accuracy, 8.06% for Mean Accuracy, 15.10% for spike accuracy, 10.47% for Mean

IoU and 16.51% for Spike IoU.

Table 6.3: Quantitative results of segmentation for the CQ_2017 dataset comparing the performance of
SpikeMulti model and SpikeSEG model when trained from scratch (by initialising both models the weights
using He et al. [51] method) showing different evaluation metrics

Initialisation GA MA Spike Accuracy MIoU Spike IoU

SpikeSEG-scratch 90.46% 73.15% 48.15% 66.69% 43.69%
SpikeMulti-scratch 92.85% 73.62% 48.42% 68.47% 44.54%
change as % 2.39% 0.47% 0.27% 1.78% 0.85%

Table 6.4: Quantitative results of segmentation for the CQ_2017 dataset comparing the performance of
SpikeMulti model and SpikeSEG model when loading pre-trained ImageNet parameters showing different
evaluation metrics

Initialisation GA MA Spike Accuracy MIoU Spike IoU

SpikeSEG-ImageNet 92.47% 79.48% 60.72% 73.52% 55.35%
SpikeMulti-ImageNet 96.48% 87.54% 75.82% 83.99% 71.85%
change as % 4.01% 8.06% 15.10% 10.47% 16.51%

Table 6.5 illustrates the SpikeMulti spike segmentation performance breakdown

for each growth stage when using Transfer Learning for CQ_2016 and provides

comparisons with the results of SpikeSEG performance when trained solely for

spike segmentation from Chapter 4. It is evident that MTSL has improved the

performance for some metrics in early growth stages, in particular Booting and

Heading. Notably, in the Heading growth stage, the Mean IoU and Spike IoU has

increased significantly by 8.74% and 35.43% respectively. On the other hand, the

performance has decreased for late growth stages, particularly, Flowering with a

decrease of 17.17% for Spike accuracy and 10.27% for Spike IoU.

Table 6.5: Quantitative results comparing the segmentation performance of SpikeMulti-ImageNet and
SpikeSEG-ImageNet for the CQ_2016 dataset reported for each growth stage

Growth Stage Model GA MA Spike Accuracy MIoU Spike IoU

Booting(GS45-47) SpikeSEG 96.90% 54.69% 11.88% 49.75% 2.59%
SpikeMulti 99.38% 54.32% 8.79% 53.11% 6.84%

change as % 2.48% -0.37% -3.09% 3.37% 4.25%

Heading(GS51-59) SpikeSEG 92.94% 79.21% 63.17% 65.91% 39.22%
SpikeMulti 97.07% 79.64% 60.12% 74.65% 74.65%

change as % 4.13% 0.43% -3.05% 8.74% 35.43%

Flowering(GS61-69) SpikeSEG 93.12% 86.24% 75.68% 78.92% 65.77%
SpikeMulti 93.92% 78.85% 58.51% 74.46% 55.50%

change as % 0.80% -7.39% -17.17% -4.46% -10.27%

Grain filling (GS71-73 SpikeSEG 93.17% 88.27% 80.05% 81.09% 70.33%
SpikeMulti 95.16% 86.28% 73.60% 82.05% 69.54%

change as % 1.99% -1.99% -6.45% 0.96% -0.80%
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Moving to CQ_2017, Table 6.6 presents a similar comparison. MTSL has this time

improved the performance for some metrics in some growth stages. In particular,

in the Booting growth stage where the MA and Spike accuracy has increased sig-

nificantly by 16.98% and 33.38%. Also, the Mean IoU and Spike IoU has increased

significantly by 18.48% and 36.11% respectively. This indicates that using both

Transfer Learning and MTSL, which incorporates shared knowledge learnt from

the second learning task, has a positive impact on improving the spike segmenta-

tion for a challenging sequence such as CQ_2017.

Table 6.6: Quantitative results comparing the segmentation performance of SpikeMulti and SpikeSEG for
the CQ_2017 dataset reported for each growth stage

Growth Stage Model GA MA Spike Accuracy MIoU Spike IoU

Booting (GS45-47) SpikeSEG 98.84% 67.14% 35.01% 57.78% 16.72%
SpikeMulti 99.69% 84.12% 68.39% 76.26% 52.83%

change as % 0.85% 16.98% 33.38% 18.48% 36.11%

Heading (GS51-59) SpikeSEG 94.02% 81.03% 64.61% 73.31% 53.03%
SpikeMulti 97.20% 87.42% 75.76% 82.81% 68.59%

change as % 3.18% 6.39% 11.15% 9.50% 15.56%

Flowering (GS61-69) SpikeSEG 91.09% 80.87% 63.65% 74.48% 59.20%
SpikeMulti 96.12% 89.60% 80.10% 86.00% 76.43%

change as % 5.04% 8.74% 16.46% 11.52% 17.23%

Grain Filling (GS71-73) SpikeSEG 87.54% 75.62% 52.65% 68.07% 50.42%
SpikeMulti 93.17% 82.94% 66.67% 78.32% 64.44%

change as % 5.63% 7.32% 14.02% 10.25% 14.02%

From the above results, it is clear that employing ImageNet Transfer Learning

has a positive effect on improving performance for both CQ_2016 and CQ_2017

datasets. As in Chapter 4 to further verify this finding, we present Precision-

Recall curves in Figure 6.2 for each growth stage for the CQ_2016 and CQ_2017

datasets. The left most sub-figures show two graphs that represent the Precision-

Recall curves of the models trained from scratch, whereas the right most graphs

represent the curves after loading ImageNet parameters. The top two graphs refer

to the 2016 validation dataset, whereas the bottom graphs present results for the

2017 dataset. Although there is relatively little improvement in Booting stage, it

is noticeable that the SpikeMulti-Transfer Learning produces a “lift” effect on the

Precision-Recall curve and significant lift in Heading, Flowering and Grain filling

curves in CQ_2016. A significant lift on all curves for CQ_2017 (bottom right)

including Booting growth stage.
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CQ_2016 CQ_2017
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Figure 6.2: Precision-Recall curves showing the segmentation performance of SpikeMulti at different mon-
itored growth stages for CQ_2016 (first column) and CQ_2017 (second column) when training from scratch
(first row) and training transfer learning by loading pre-trained ImageNet parameters (second row).
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Compared to Figure 4.2 when using Transfer Learning with SpikeSEG in Chapter

4, SpikeMulti and Transfer Learning has lifted Booting, Heading and Grain filling

curves in CQ2016, but in particularly Heading and Grain filling curves. A signific-

ant lift to all growth stage curves is noted particularly in Booting in CQ_2017.

6.3.2 Investigating the importance of Multitask Learning on

Spikelet Counting

Now we turn our attention to Tables 6.7 and 6.8 summarising the performance

of SpikeMulti which was trained on two tasks simultaneously: spike segmentation

and spikelets numbers estimation. We only test the MTL model on Original set for

obvious reason; testing on the Prediction set is not required because it is segmented

using SpikeSEG presented in Chapter 4. The tables show, in the final two rows, the

results of testing SpikeMulti on the Original sets CQ_2016 and CQ_2017 in rela-

tion to the second task, i.e. spikelet count estimation. The first of those two rows

relates to the results of training the SpikeMulti from scratch; the second relates to

loading ImageNet pre-trained weights (Transfer Learning). In addition, we repro-

duce the comparable results from Chapter 5 for the Original and Prediction sets.

We compare the performance of SpikeMulti against the Original set to understand

how MTL performs for a hard problem. We also compare to the Prediction set be-

cause in this set the images were generated by applying SpikeSEG and then tested

via SpikeCount; therefore it follows the same pipe-line as the SpikeMulti and it will

show if there is any advantage in learning both task simultaneously.

For CQ_2016 dataset the results are shown in Table 6.7, and we can see that

loading pretrained ImageNet weights when looking at MTL has a positive impact

when comparing against training the SpikeMulti from scratch. The MSE, MAE

and SMAPE have improved by 52.97%, 56.73% and 57.59% respectively.

For the Original set, from Table 6.7, it is clear that MTL has improved signi-

ficantly the spikelet number estimation. For example, in terms of comparing
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Table 6.7: The Mean Square Error, Mean Absolute Error, and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets highlighting the effect of multitask learning and comparing to
previous experiments (displayed as rows) for Original and pre-segmenting (predicted) images (displayed in
columns) on CQ_2016

Original Prediction

MSE MAE SMAPE MSE MAE SMAPE

SpikeCount
Training From Scratch 2709.92 2566.43 89.43 1904.82 1789.72 64.46
Loading ACID Weights 3864.54 3488.43 55.43 1718.22 1590.85 47.99
Freezing Conv1 Block 2557.82 2344.70 86.10 1647.86 1531.27 44.65
Freezing Conv1-2 Blocks 3079.62 2916.16 89.16 2184.802 2063.195 69.733
Freezing Conv1-3 Blocks 2757.982 2607.525 92.835 2506.520 2375.151 86.856
Freezing Conv1-4 Blocks 2635.776 2504.633 93.198 2413.221 2285.898 95.545
Freezing Conv1-5 Blocks 2384.91 2257.61 96.895 2395.447 2269.008 92.399
Augmentation-Scratch - - - 2118.51 1877.35 38.08
Augmentation-ACID - - - 1364.22 1209.75 34.24

SpikeMulti
Training From scratch 1822.67 1729.59 67.37
Loading ImageNet Weights 857.20 748.34 28.57

SpikeMulti-scratch with the best approach of SpikeCount-Original, the MSE, MAE

and SMAPE have improved by 52.97%, 56.73% and11.94% respectively. In terms

of comparing SpikeMulti-ImageNet to the best approach of SpikeCount-Original,

the MSE, MAE and SMAPE have improved substantially by 66.49%, 68.08% and

26.86% respectively. As for comparing SpikeMulti-scratch to the Prediction set res-

ults for CQ_2016, there is no improvement when training SpikeMulti from scratch.

However, a significant improvement is clear when comparing to employing Transfer

Learning in the context of MTL with a decrease of 37.17%, 38.14%, and 21.23%

for MSE, MAE and SMAPE respectively.

Figures 6.3 and 6.4 present the breakdown of errors (in background and spike

regions) from employing MTL and other experimental setups discussed in Chapter 5

for Original and Prediction sets of CQ_16 and CQ_17. The new MTL experiments

as shown as columns E5.1 and E5.2 in the graphs. Looking at Figure 6.3, Original

set, we can see the impact of simultaneously training the model on both tasks

on reducing the background errors based both on training from scratch (E5.1)

and using Transfer Learning (E5.2). It is also worth noting that the approach

is able to maintaining low spike region errors. For example, employing MTL with

Transfer Learning (E5.2) has led to significant reduction of background based errors

with an MSE of 123.32 and MAE of 115.07. In terms of spike region errors, the
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6.3.2. Investigating the importance of Multitask Learning on Spikelet Counting

same experiments (E5.2) led to good results with a MSE of 733.88 and small

increase in MAE from E2, with a value of 633.28. Looking at the Prediction set,

background errors have been minimised when utilising MTL, but for spike region

errors a combination of data augmentation and Transfer Learning does slightly

better.

For CQ_2017 dataset reported in Table 6.8, we can see that loading pretrained Im-

ageNet weights (i.e. Transfer Learning) has a positive impact on results for MTL.

The MSE, MAE and SMAPE have improved by 56.91%, 61.54% and 62.19% re-

spectively with respect to training MTL from scratch. Then, we compare the best

performance metrics of SpikeMulti with all model variations for Original and Pre-

diction sets. For the Original set, it is clear that MTL has improved significantly the

spikelet estimation. For example, in terms of comparing SpikeMulti-scratch with

the best approach of SpikeCount-Original, the MSE, MAE and SMAPE have im-

proved by 26.05%, 25.60% and 19.92% respectively. Moreover, in terms of compar-

ing SpikeMulti-ImageNet to the best approach of SpikeCount-Original, the MSE,

MAE and SMAPE have significantly improved by 65.82%, 69.38% and 30.07% re-

spectively. As for comparing SpikeMulti-scratch to the Prediction set results of

CQ_2017, there is no improvement when training from scratch. However, a sig-

nificant improvement is clear when comparing SpikeMulti-ImageNet to the best

approach for SpikeCount-Prediction with a decrease of 28.69%, 34.32% and 1.51

for MSE, MAE and SMAPE respectively.

As we saw for CQ_2016, looking at Figure 6.4 which represents breakdown of er-

rors for CQ_2017, for the Original set we can see the impact of MLT on reducing

the background errors both when training from scratch and using Transfer Learn-

ing. The approach also maintains low spike region based errors. For example,

multitask learning with Transfer Learning (E5.2) has led to significant reduction in

background errors with an MSE of 116.96 and MAE of 109.26. For spike regions,

the same experiments (E5.2) led to a very slight increase in errors with MSE of

1108.77 and MAE of 874.57. Comparing to the Prediction set, it is evident that
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6.3.2. Investigating the importance of Multitask Learning on Spikelet Counting

both background and spike region errors have been minimised when utilising MTL.

Table 6.8: The Mean Absolute Error, Mean Square Error and Symmetric Mean Absolute Percentage Error
of estimating the number of spikelets highlighting the effect of utilising multitask learning and compared
to previous experiments (displayed as rows) for Original and pre-segmenting (predicted) images (displayed
in columns) on CQ_2017

Original Prediction

MSE MAE SMAPE MSE MAE SMAPE

SpikeCount
Training From Scratch 3747.92 3414.08 93.90 2738.24 2461.06 73.67
Loading ACID Weights 5501.65 5039.17 60.46 2252.97 1993.42 54.49
Freezing Conv1 Block 3585.91 3212.98 86.44 2181.83 1909.66 51.35
Freezing Conv1-2 Blocks 3900.76 3554.22 88.48 2778.57 2489.26 71.62
Freezing Conv1-3 Blocks 3921.84 3580.76 93.60 3273.70 2947.32 88.03
Freezing Conv1-4 Blocks 3799.74 3461.21 94.72 3352.33 3026.80 95.54
Freezing Conv1-5 Blocks 3406.37 3075.18 97.26 3271.69 2945.19 92.72
Augmentation-Scratch - - - 1577.40 1321.46 31.90
Augmentation-ACID - - - 1657.65 1354.52 37.74

SpikeMulti
Training From scratch 2844.81 2558.04 80.38 - - -
Loading ImageNet Weights 1225.72 983.83 30.39 - - -

After comparing the results of SpikeMulti on the Original set to the prediction

of SpikeCount on Original and Prediction sets, it is clear that SpikeMulti has

outperformed SpikeCount when tested on Original set and Prediction set for both

growing seasons in terms of combined errors when merging the background error

with spike region error. It has also minimised the background errors notably and

led to competitive spike regions errors.

Now, we want to briefly compare the SpikeMulti counting results to the prediction

of SpikeCount on the Optimal set as that represents the upper bound of efficacy

in predicting spikelet numbers. According to Chapter 5, it represents the best

results obtained, however, it relies on a perfect segmentation mask. On the other

hand, SpikeMulti can be realistically deployed in real time without requiring a

segmentation mask and can produce reasonable outcomes. For fairness, we will

only compare the results of spike region errors. For CQ_2016, the best results

for SpikeCount were an MSE, MAE and SMAPE of 315.961, 270.288 and 8.87%,

and those were obtained when freezing the first encoder, conv1, after loading the

ACID weights. The difference in errors is 417.92, 362.99 and 19.70 % with respect

to SpikeMulti measures. For CQ_2017, the best results for SpikeCount were an

MSE, MAE and SMAPE of 667.34, 544.32, 16.32% giving a difference of 441.43,
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6.3.2. Investigating the importance of Multitask Learning on Spikelet Counting

Figure 6.5: The correlation graphs showing predicted counts for SpikeMulti (orange) and the ground truth
(blue). For SpikeCount, we present the best experimental setup for Original (green), Optimal (red) and
Prediction (yellow) sets; the first graph represents 2016 growing season and second graph represents 2017
growing season

330.25, 14.07 from SpikeMulti measures. This shows that SpikeMulti has provided

comparable results to the best SpikeCount for the Optimal set, which indicates

a very good performance. Results are particularly competitive for CQ_2017 and

that may be due to the improvements on segmentation performance.

Table 6.9: The Mean Squared Error, Mean Absolute Error and Symmetric Mean Absolute Percentage Error
of estimating the number of spikelets comparing the best performance of testing SpikeCount on Optimal
set and the Spike region errors of testing SpikeMulti on Original set (displayed as rows) on CQ_2016 and
CQ_2017 images (displayed in columns)

CQ_2016 CQ_2017

MSE MAE SMAPE MSE MAE SMAPE

SpikCount-Optimal 315.96 270.29 8.87 667.34 544.32 16.32
SpikeMulti 733.88 633.28 28.57 1657.65 874.57 30.39

Absolute Diff. 417.92 362.99 19.70 441.43 330.25 14
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6.3.3. Phenotypic analysis Spikelets Estimation for Growth Stages

Figure 6.5 illustrates the correlation graphs for the various models, SpikeCount and

SpikeMulti, and the ground truth counts. It reports the best experimental setup

for Original, Optimal and Prediction sets. Each time counts refer only to the spike

region area. The first graph represents 2016 growing season and second graph

represents 2017 growing season. For CQ_2016, looking at the regression lines,

SpikeCount-Optimal counts (red) are very well correlated with the ground truth

(blue); the second best correlation comes from SpikeCount-Prediction (yellow) and

then from SpikeMulti (orange) counts. For CQ_2017, both SpikeMulti counts

(orange) and SpikeCount-Optimal (red) are well correlated. The SpikeCount-

Prediction (yellow) is showing slight over-counting but can be considered the best

correlation to the ground truth. Lastly, SpikeCount-Original (green) for both sea-

sons has the lowest correlation with the ground truth.

6.3.3 Phenotypic analysis Spikelets Estimation for Growth

Stages

In this section, we analyse spikelet estimation results from the perspective of wheat

growth stages after testing SpikeMulti and compare it to previous results produced

by experimental setups discussed in Chapter 5.

6.3.3.1 G45-47: Booting

First, we start the analysis by looking at the Booting growth stage and the results

of SpikeMulti spikelet for CQ_2016 (Table 6.10) and CQ_2017 (Table 6.11). Those

are reported for two sets: Original and Prediction. Table 6.10 shows SpikeMulti

performance evaluation when tested on Booting growth stage images in CQ_2016.

In addition, Figure 6.6 provides the quantitative errors from the spike and back-

ground regions separately.

Table 6.10 shows that MTL has resulted in the lowest errors across all experimental

setups for Original and Prediction sets. Particularly, using both MTL and Transfer
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6.3.3.1. G45-47: Booting

Table 6.10: Mean Squared Error, The Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets comparing four experimental setups (displayed as rows) and
two experimental setups of SpikeMulti of the Original, and pre-segmented by model (predicted) images
(displayed in columns) on Booting growth stage of CQ_2016 sequence

Original Prediction

MSE MAE SMAPE MSE MAE SMAPE

SpikeCount
Training From Scratch 673.17 662.24 99.80 555.07 543.19 98.55
Loading ACID Weights 1942.26 1925.73 99.67 741.20 719.47 97.13
Freezing Conv1 Block 588.37 576.78 99.92 817.59 794.43 97.09
Augmentation-Scratch - - - 964.15 936.96 95.10
Augmentation-ACID - - - 820.44 797.38 95.64

SpikeMulti
Training From scratch 530.29 519.02 99.49 - - -
Loading ImageNet Weights 325.29 313.73 95.33 - - -

Learning has the lowest MSE of 325.29 and MAE 313.37. Also, it produces the

lowest relative errors percentage (SMAPE) of 95.33% compared to the results of

Original set and a slight increase of 0.23% compared to using augmentation in the

Prediction set.

Figure 6.6 illustrates that MTL has resulted in the lowest background errors across

all experimental setups for Original and Prediction sets of the Booting growth stage.

Particularly, utilising both MTL and Transfer Learning (E5.2) has minimised the

background based errors significantly with an MSE of 23.12 and MAE of 22.49.

The experimental setup for MTL and Transfer Learning (E5.2) has also led to the

lowest spike region errors for Original set with MSE of 302.16 and MAE of 291.24

and slight increase of 4.2% for MSE and 3.83% for MAE when compared to spike

region errors resulting from only augmentation (E4.1) in the Prediction set.

For illustration purposes, Figure 6.7 shows comparisons of visualisation of the spike-

lets density and segmentation maps predicted using SpikeMulti and density map

predicted using SpikeCount and predicted segmentation map using SpikeSEG for

one example in Original set of the Booting stage of 2016 image series.

Table 6.11 shows SpikeMulti performance evaluation when tested on images in

Booting growth stage in the CQ_2017 sequence. Also, Figure 6.9 provides the

quantitative errors from the spike and background regions separately.
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6.3.3.1. G45-47: Booting

222.31
(5.982646797,216.3235167)

376.00 309.37
(0.45,308.93)

Original

GT density map

GT Segmentation map SpikeSEG - ImageNet

SpikeCount - ACID (freeze C1) (E3.1)
21.34

(4.25,17.09)

SpikeMulti - ImageNet (E5 B)

SpikeMulti - ImageNet (E5 B)

Figure 6.7: Visualisation of the spikelet segmentation and density maps for the Booting stage of 2016
image series. Left most is original image. The first column from top to bottom: (1) Ground Truth
(GT) segmentation (2) GT density map with corresponding spikelet number in the scene. Second column:
the best segmentation prediction of SpikeSEG (Top) and the best density map of SpikeCount (Bottom)
with numbers corresponding to total spikelet numbers predicted in scene (background/spike area). Third
column: the segmentation prediction (Top) and density map prediction (Bottom) of SpikeMulti with
predicted numbers as before.

Table 6.11: Mean Squared Error, The Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets comparing four experimental setups (displayed as rows) and
two experimental setups of SpikeMulti of the Original, and pre-segmented by model (predicted) images
(displayed in columns) on Booting growth stage of CQ_2017 sequence

Original Prediction

MSE MAE SMAPE MSE MAE SMAPE

SpikeCount
Training From Scratch 1165.53 1072.40 99.14 407.63 329.50 92.39
Loading ACID Weights 5944.61 5832.97 97.56 405.26 330.83 89.02
Freezing Conv1 Blocks 1459.11 1317.07 98.97 458.86 385.48 89.54
Augmentation-Scratch - - - 431.42 382.61 80.10
Augmentation-ACID - - - 386.92 327.46 81.26

SpikeMulti
Training From scratch 463.06 376.51 97.56 - - -
Loading ImageNet Weights 165.86 117.09 65.23 - - -

Table 6.11 shows that MTL has resulted in a significant decrease in errors across

all experimental setups for Original set of the Booting growth stage. Particularly,

utilising both MTL and Transfer Learning has the lowest MSE of 165.86 and MAE

117.09. Also, it produced the lowest relative error percentage (SMAPE) of 65.23%

when comparing to the results of Original and Prediction sets.
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6.3.3.2. G51-59:: Heading

Figure 6.9 illustrates that for CQ_2017, MTL has resulted in the lowest background

errors across all experimental setups for the Original set at the Booting growth

stage. As before, using both MTL and Transfer Learning (E5.2) has minimised the

background based errors significantly with an MSE of 36.45 and MAE of 32.35. It

has also led to the lowest spike region errors for the Original set with MSE of 129.41

and MAE of 84.75 and a slight increase of 4.45% for MSE and 1.9% for MAE when

compared to spike region errors obtained with augmentation in the Prediction set.

Figure 6.8 illustrates comparisons of visualisation of the spikelets density and seg-

mentation maps predicted using SpikeMulti and density map predicted using Spike-

Count and predicted segmentation map using SpikeSEG for one example in Original

set of the Booting stage of 2017 image series.

Original

0.00 878.75
(0.43,878.32)

GT Segmentation map SpikeSEG - ImageNet SpikeMulti - ImageNet (E5 B)

GT density map SpikeMulti - ImageNet (E5 B)SpikeCount - Scratch (E1)
15.22

(0.63,14.59)

Figure 6.8: Visualisation of the spikelet segmentation and density maps for the Booting stage of 2017
image series. Left most is original image. The first column from top to bottom: (1) Ground Truth
(GT) segmentation (2) GT density map with corresponding spikelet number in the scene. Second column:
the best segmentation prediction of SpikeSEG (Top) and the best density map of SpikeCount (Bottom)
with numbers corresponding to total spikelet numbers predicted in scene (background/spike area). Third
column: the segmentation prediction (Top) and density map prediction (Bottom) of SpikeMulti with
predicted numbers as before.

6.3.3.2 G51-59:: Heading

The analysis of Heading growth stage images with SpikeMulti for CQ_2016 and

CQ_2017 are reported in Table 6.12 and Table 6.13 respectively for two sets:
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6.3.3.2. G51-59:: Heading

Original and Prediction.

Table 6.12: Mean Squared Error, The Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets comparing four experimental setups (displayed as rows) and
two experimental setups of SpikeMulti of the Original, and pre-segmented by model (predicted) images
(displayed in columns) on Heading growth stage of CQ_2016 sequence

Original Prediction

MSE MAE SMAPE MSE MAE SMAPE

SpikeCount
Training From Scratch 2212.95 2070.73 88.35 1718.51 1601.91 72.91
Loading ACID Weights 5135.41 4839.04 70.46 1912.97 1806.62 64.38
Freezing Conv1 Blocks 2270.61 2098.48 82.67 2040.50 1940.01 67.59
Augmentation-Scratch - - - 1670.28 1591.04 46.09
Augmentation-ACID - - - 1844.85 1736.82 53.98

SpikeMulti
Training From scratch 1672.56 1559.61 83.79 - - -
Loading ImageNet Weights 920.16 834.49 38.58 - - -

Original

GT density map
683.00 879.77

(73.26,806.51)

GT Segmentation map SpikeSEG - ImageNet SpikeMulti - ImageNet (E5 B)

SpikeMulti - ImageNet (E5 B)SpikeCount Scratch E1
394.03

(298.78,95.25)

Figure 6.10: Visualisation of the spikelet segmentation and density maps for the Heading stage of 2016
image series. Left most is original image. The first column from top to bottom: (1) Ground Truth
(GT) segmentation (2) GT density map with corresponding spikelet number in the scene. Second column:
the best segmentation prediction of SpikeSEG (Top) and the best density map of SpikeCount (Bottom)
with numbers corresponding to total spikelet numbers predicted in scene (background/spike area). Third
column: the segmentation prediction (Top) and density map prediction (Bottom) of SpikeMulti with
predicted numbers as before.

Table 6.12 shows SpikeMulti performance evaluation when tested on images from

the Heading growth stage in CQ_2016 sequence. In addition, Figure 6.11 provides

the quantitative errors for the spike and background regions separately.
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Table 6.12 shows that MTL has resulted in the lowest errors across all experimental

setups for Original set of the Heading growth stage. Again, MTL and Transfer

Learning has the lowest MSE of 920.16 and MAE 834.49. Also, it produces the

lowest relative error percentage (SMAPE) of 38.58% compared to the results of

Original and Prediction sets.

Figure 6.10 illustrates visualisation of the spikelet density and segmentation maps

predicted using SpikeMulti and SpikeCount and also the predicted segmentation

map using SpikeSEG. These are given for one example Heading stage image in the

Original set for the 2016 image series.

Consistently with other experiments, Figure 6.11 illustrated that MTL has resulted

in the lowest background errors across all experimental setups for Original set of the

Heading growth stage. MTL and Transfer Learning has minimised the background

errors significantly with an MSE of 155.76 and MAE of 145.94. However, in terms

of spike region errors, this experimental set up (E5.2) led to an increase of 35.0%

for MSE and 21.7% for MAE when compared to utilising Transfer Learning from

ACID (E2) for Original set. Also, it led to an increase of 58.0% for MSE and 57.7%

for MAE when compared to spike region errors when using augmentation (E4) in

the Prediction set.

Table 6.13 shows SpikeCount performance evaluation in CQ_2017 sequence. Also,

Figure 6.13 provides the quantitative errors from the spike and background regions

separately. In addition, Figure 6.12 illustrates comparisons of visualisation of the

spikelets density and segmentation maps predicted using SpikeMulti and density

map predicted using SpikeCount and predicted segmentation map using SpikeSEG

for one example in Original set of the Heading stage of 2017 image series.

Again, Table 6.13 shows that for the Original set MTL has resulted in the lowest

errors across all experimental setups for the Heading growth stage. MLT and

Transfer Learning has the lowest MSE of 1849.83 and MAE of 1730.90 for the

Original set. Also, it produced the lowest relative error percentage (SMAPE)
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6.3.3.2. G51-59:: Heading

Table 6.13: Mean Squared Error, The Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets comparing four experimental setups (displayed as rows) and
two experimental setups of SpikeMulti of the Original, and pre-segmented by model (predicted) images
(displayed in columns) on Heading growth stage of CQ_2017 sequence

Original Prediction

MSE MAE SMAPE MSE MAE SMAPE

SpikeCount
Training From Scratch 3788.10 3515.00 93.83 3024.86 2795.54 77.00
Loading ACID Weights 5757.32 5441.61 64.95 2785.21 2587.53 62.90
Freezing Conv1 Blocks 3791.42 3496.96 85.38 2850.84 2650.28 63.25
Augmentation-Scratch - - - 1718.77 1575.63 33.39
Augmentation-ACID - - - 2380.83 2208.17 49.61

SpikeMulti
Training From scratch 3121.32 2887.84 84.93 - - -
Loading ImageNet Weights 1849.83 1730.90 42.72 - - -

Original

GT density map
702.00

1722.11
(309.61,1412.50)416.73
(6.57,410.16)

GT Segmentation map SpikeSEG - ImageNet SpikeMulti - ImageNet (E5 B)-

SpikeMulti - ImageNet (E5 B)SpikeCount - ACID (freeze C1) (E3.1)
404.63

(263.13,141.50)

Figure 6.12: Visualisation of the spikelet segmentation and density maps for the Heading stage of 2017
image series. Left most is original image. The first column from top to bottom: (1) Ground Truth
(GT) segmentation (2) GT density map with corresponding spikelet number in the scene. Second column:
the best segmentation prediction of SpikeSEG (Top) and the best density map of SpikeCount (Bottom)
with numbers corresponding to total spikelet numbers predicted in scene (background/spike area). Third
column: the segmentation prediction (Top) and density map prediction (Bottom) of SpikeMulti with
predicted numbers as before.

of 42.72%. However, it has increased the errors by 7.08% for MSE, 8.97% for

MAE and 9.33% for relative error percentage (SMAPE) when compared to using

augmentation (E4.1) for the Prediction set.

Figure 6.13 illustrates the same as before, MTL results in the lowest background

errors across all experimental setups when applied to the Original set and compared

to the Prediction sets in the Heading growth stage. MLT and Transfer Learning

(E5.2) has minimised the background based errors significantly with an MSE of
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6.3.3.3. G61-69: Flowering

150.61 and MAE of 149.15. However, for the spike region errors, it has led to

an increase of 24.32% for MSE and 29.19% for MAE when compared to utilising

Transfer Learning from ACID (E2) for the Original set. Also, it has led to an

increase of 51.51% for MSE and 52.69% for MAE when comparing to spike region

errors from augmentation in the Prediction set.

6.3.3.3 G61-69: Flowering

For the Flowering growth stage the results of SpikeMulti for spikelet estimation

for CQ_2016 (Table 6.14) and CQ_2017 (Table 6.15) are reported for two sets:

Original, and Prediction.

Table 6.14: Mean Squared Error, The Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets comparing four experimental setups (displayed as rows) and
two experimental setups of SpikeMulti of the Original, and pre-segmented by model (predicted) images
(displayed in columns) on Flowering growth stage of CQ_2016 sequence

Original Prediction

MSE MAE SMAPE MSE MAE SMAPE

SpikeCount
Training From Scratch 2753.53 2709.59 88.20 1893.45 1846.88 57.43
Loading ACID Weights 3350.92 3066.16 47.06 1656.17 1546.81 38.85
Freezing Conv1 Blocks 2523.45 2416.61 85.05 1571.04 1466.18 34.20
Augmentation-Scratch - - - 1972.68 1826.60 28.79
Augmentation-ACID - - - 1266.11 1133.29 24.44

SpikeMulti
Training From scratch 1861.11 1828.79 60.03 - - -
Loading ImageNet Weights 993.68 890.16 23.87 - - -

Table 6.14 shows SpikeMulti performance evaluation when tested on CQ_2016

sequence. In addition, Figure 6.15 provides the quantitative errors from the spike

and background regions.

Again consistently, Table 6.14 shows that MTL results in the lowest errors across

all experimental setups. MTL and Transfer Learning has the lowest MSE of 993.68

and MAE 890.16. Also, it produces the lowest relative errors percentage (SMAPE)

of 23.87% compared to the results of Original and Prediction set.

Figure 6.14 shows visualisation of the spikelets density and segmentation maps

predicted using SpikeMulti and SpikeCount and SpikeSEG for one example in the

Original set for the Flowering stage of 2016 image series.
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Original

2556.62

2278
(1744.28,533.76)

410.53
(114.63,295.90)

 

GT Segmentation map SpikeSEG - ImageNet SpikeMulti - ImageNet (E5 B)

GT density map SpikeMulti - ImageNet (E5 B)SpikeCount - ACID (freeze C1) (E3.1)
2556.62 1457.42

(1389.16,68.26)

Figure 6.14: Visualisation of the spikelet segmentation and density maps for the Flowering stage of
2016 image series. Left most is original image. The first column from top to bottom: (1) Ground Truth
(GT) segmentation (2) GT density map with corresponding spikelet number in the scene. Second column:
the best segmentation prediction of SpikeSEG (Top) and the best density map of SpikeCount (Bottom)
with numbers corresponding to total spikelet numbers predicted in scene (background/spike area). Third
column: the segmentation prediction (Top) and density map prediction (Bottom) of SpikeMulti with
predicted numbers as before.

Figure 6.15 illustrates that MTL results in the lowest background errors across all

experimental setups. MTL and Transfer Learning (E5.2) has minimised the back-

ground errors significantly with an MSE of 107.48 and MAE of 105.14. However,

in terms of spike region errors, it has led to an increase of 4.63% for MSE and

12.04% for MAE when compared to using Transfer Learning from ACID (E2) for

the Original set. Also, it has led to an increase of 29.20% for MSE and 30.46% for

MAE when compared to spike region errors from augmentation in the Prediction

set.

Table 6.15 shows SpikeMulti performance evaluation when tested on images within

the Flowering growth stage in CQ_2017 sequence. Also, Figure 6.17 provides the

quantitative errors from the spike and background regions separately.

Table 6.15 shows that MTL has given us the lowest errors across all experimental

setups for Original and Prediction sets of the Flowering growth stage. Particularly,
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6.3.3.3. G61-69: Flowering

Table 6.15: Mean Squared Error, The Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets comparing four experimental setups (displayed as rows) and
two experimental setups of SpikeMulti of the Original, and pre-segmented by model (predicted) images
(displayed in columns) on Flowering growth stage of CQ_2017 sequence

Original Prediction

MSE MAE SMAPE MSE MAE SMAPE

SpikeCount
Training From Scratch 3971.32 3920.14 92.19 2960.75 2915.79 67.57
Loading ACID Weights 5128.09 4679.23 50.28 2319.48 2230.08 41.91
Freezing Conv1 Blocks 3723.46 3604.25 83.77 2140.10 2019.60 35.52
Augmentation-Scratch - - - 1769.35 1555.75 18.70
Augmentation-ACID - - - 1515.68 1306.21 21.08

SpikeMulti
Training From scratch 3062.71 3019.54 73.68 - - -
Loading ImageNet Weights 963.53 807.21 13.73 - - -

Original

2997.36 406.79
(87.88,318.91)

GT Segmentation map SpikeSEG - ImageNet SpikeMulti - ImageNet (E5 B)

GT density map SpikeMulti - ImageNet (E5 B)SpikeCount - ACID (freeze C1) (E3.1)
3066.75

(2930.28,136.47)

Figure 6.16: Visualisation of the spikelet segmentation and density maps for the Flowering stage of
2017 image series. Left most is original image. The first column from top to bottom: (1) Ground Truth
(GT) segmentation (2) GT density map with corresponding spikelet number in the scene. Second column:
the best segmentation prediction of SpikeSEG (Top) and the best density map of SpikeCount (Bottom)
with numbers corresponding to total spikelet numbers predicted in scene (background/spike area). Third
column: the segmentation prediction (Top) and density map prediction (Bottom) of SpikeMulti with
predicted numbers as before.

utilising both MTL and Transfer Learning has the lowest MSE of 963.53 and MAE

807.21. Also, it produced the lowest relative errors percentage (SMAPE) of 13.73%

compared to the results of Original and Prediction set.

Figure 6.17 illustrates that MTL results in the lowest background errors across all

experimental setups when applied to the Original set and compared against the

Prediction set. MTL and Transfer Learning (E5.2) has minimised the background

based errors significantly with an MSE of 121.70 and MAE of 120.25. It also led to
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6.3.3.4. GS71-73: Grain filling

the lowest spike region errors when compared to Original and Prediction sets with

MSE of 841.82 and MAE of 686.96.

Figure 6.16 shows visualisation of the spikelets density and segmentation maps

predicted using SpikeMulti, SpikeCount and SpikeSEG for one example in the

Original set from the Flowering stage of 2017 image series.

6.3.3.4 GS71-73: Grain filling

Lastly, we look at the Grain filling growth stage. As before, we present results

of SpikeMulti spikelet estimation for CQ_2016 (Table 6.16) and CQ_2017 (Table

6.17) and report for two sets: Original and Prediction.

Table 6.16: Mean Squared Error, The Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets comparing four experimental setups (displayed as rows) and
two experimental setups of SpikeMulti of the Original, and pre-segmented by model (predicted) images
(displayed in columns) on Grain filling growth stage of CQ_2016 sequence

Original Prediction

MSE MAE SMAPE MSE MAE SMAPE

SpikeCount
Training From Scratch 3201.12 3184.25 89.60 2161.81 2136.58 59.69
Loading ACID Weights 3510.72 3348.25 45.06 1724.07 1675.39 36.52
Freezing Conv1 Blocks 2861.43 2833.19 87.08 1513.67 1463.90 29.09
Augmentation-Scratch - - - 2435.74 2376.68 31.57
Augmentation-ACID - - - 1082.97 993.38 18.32

SpikeMulti
Training From scratch 2015.90 1998.54 57.24 - - -
Loading ImageNet Weight 650.52 588.82 12.22 - - -

Table 6.16 shows SpikeCount performance evaluation when tested on images in

Grain filling growth stage in the CQ_2016 sequence. In addition, Figure 6.6

provides the quantitative errors from the spike and background regions separately.

Table 6.16 shows that MTL gives the lowest errors across all experimental setups

when applied to the Original set and compared against the Prediction set. MTL

and Transfer Learning has the lowest MSE of 650.52 and MAE 588.82. Also, it

produced the lowest relative errors percentage (SMAPE) of 12.22% compared to

the results of Original and Prediction sets.

Figure 6.18 illustrated that MTL gives the lowest background errors across all
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6.3.3.4. GS71-73: Grain filling

experimental setups. MTL and transfer (E5.2) has minimised the background

based errors significantly with an MSE of 127.66 and MAE of 124.86. It also led

to the lowest spike region errors for Original set with MSE of 522.86 and MAE of

463.96. However, it has led to an increase of 13.49% for MSE and 17.36% for MAE

when compared to spike region errors resulting from augmentation and Transfer

Learning using ACID (E4.2) when testing on the Prediction set.

Figure 6.19 shows visualisation of the spikelet density and segmentation maps pre-

dicted using SpikeMulti, SpikeCount and SpikeSEG for one example in Original

set from the Flowering stage of 2016 image series.

123

Original

2693.51 2056.83
(1959.93,96.90)

2556.62

GT Segmentation map SpikeSEG - ImageNet SpikeMulti - ImageNet (E5 B)

GT density map SpikeMulti - ImageNet (E5 B)SpikeCount - ACID (freeze C1) (E3.1)
1065.58

(447.75,617.83)

Figure 6.19: Visualisation of the spikelet segmentation and density maps for the Grain filling stage of
2016 image series. Left most is original image. The first column from top to bottom: (1) Ground Truth
(GT) segmentation (2) GT density map with corresponding spikelet number in the scene. Second column:
the best segmentation prediction of SpikeSEG (Top) and the best density map of SpikeCount (Bottom)
with numbers corresponding to total spikelet numbers predicted in scene (background/spike area). Third
column: the segmentation prediction (Top) and density map prediction (Bottom) of SpikeMulti with
predicted numbers as before.

Table 6.17 shows results for the CQ_2017 sequence. Also, Figure 6.20 provides the

quantitative errors calculated from the spike and background regions separately.

Table 6.17 shows, as before, that MTL has resulted in the lowest errors across all

experimental setups when applied to Original set and compared against Prediction
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6.3.3.4. GS71-73: Grain filling

Table 6.17: Mean Squared Error, The Mean Absolute Error and Symmetric Mean Absolute Percentage
Error of estimating the number of spikelets comparing four experimental setups (displayed as rows) and
two experimental setups of SpikeMulti of the Original, and pre-segmented by model (predicted) images
(displayed in columns) on Grain filling growth stage of CQ_2017 sequence

Original Prediction

MSE MAE SMAPE MSE MAE SMAPE

SpikeCount
Training From Scratch 4338.18 4298.70 93.22 2988.74 2942.03 66.16
Loading ACID Weights 4848.80 4617.84 43.56 2301.58 2208.93 40.87
Freezing Conv1 Blocks 3758.97 3694.02 82.35 2204.94 2111.12 37.69
Augmentation-Scratch - - - 1441.42 1295.32 15.93
Augmentation-ACID - - - 1511.23 1312.11 20.89.

SpikeMulti
Training From scratch 3117.98 3077.92 74.24 - - -
Loading ImageNet Weight 1316.68 1263.90 21.62 - - -

set. MTL and Transfer Learning (E5.2) has the lowest MSE of 1316.68 and MAE

of 1263.90. Also, it produces the lowest relative error percentage (SMAPE) of

21.62%. However, it has increased relative error percentage (SMAPE) by 5.69%

when compared to using augmentation (E4.1) for the Prediction set.

Figure 6.20 illustrates same results as for other growth stages. MTL results in

the lowest background errors across all experimental setups. MTL and Transfer

Learning (E5.2) has minimised the background errors significantly with an MSE of

102.34 and MAE of 101.74. However, in terms of spike region errors, it has led to

an increase of 30.59% for MSE and 44.04% for MAE when compared to utilising

Transfer Learning from ACID (E2) for Original set. Also, it has led to an increase

of 19.93% for MSE and 27.45% for MAE when compared to spike region errors

from augmentation in the Prediction set.

Figure 6.21 shows visualisation of the spikelet density and segmentation maps pre-

dicted using SpikeMulti, SpikeCount and SpikeSEG for one example in Original

set for the Flowering stage of the 2017 image series.

As an overall comparison, Table 6.18 summarise the best experiments done using

both SpikeMulti and SpikeCount for every quantitative metrics we used. Employing

MTL and ImageNet improved the results of background errors, combined errors and

relative error percentages across all growth stages for both CQ_2016 and CQ_2017.

For spike region errors, MTL and ImageNet also did best for the Booting stage in
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6.3.3.4. GS71-73: Grain filling

Original

3749.44 1400.73
(643.02,757.71)

GT Segmentation map SpikeSEG - ImageNet SpikeMulti - ImageNet (E5 B)

GT density map SpikeMulti - ImageNet (E5 B)SpikeCount - ACID (freeze C1) (E3.1)
3021.71

(2900.31,121.40)

Figure 6.21: Visualisation of the spikelet segmentation and density maps for the Grain Filling stage of
2017 image series. Left most is original image. The first column from top to bottom: (1) Ground Truth
(GT) segmentation (2) GT density map with corresponding spikelet number in the scene. Second column:
the best segmentation prediction of SpikeSEG (Top) and the best density map of SpikeCount (Bottom)
with numbers corresponding to total spikelet numbers predicted in scene (background/spike area). Third
column: the segmentation prediction (Top) and density map prediction (Bottom) of SpikeMulti with
predicted numbers as before.

Table 6.18: A comparison of best experimental setups for each quantitative metric across Original set for
each growth stage for CQ_2016 and CQ_2017

2016 2017

Growth stage Best Background Errors Best Spike Errors Best Combined Best relative error % Best Background Errors Best Spike Errors Best Combined Best relative error %

Booting E5 B E5 B E5 B E5 B E5 B E5 B E5 B E5 B
Heading E5 B E2 E5 B E5 B E5 B E2 E5 B E5 B
Flowering E5 B E2 E5 B E5 B E5 B E5 B E5 B E5 B
Grain filling E5 B E2 E5 B E5 B E5 B E2 E5 B E5 B

both years and in the Flowering stage in 2017. On the other hand Transfer Learning

with SpikeCount did better for spike errors in all but the Booting stage in 2016

and in the Heading and Grain Filling stage in 2017.
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6.4 Summary

In this Chapter, we presented a MTL approach to replace the conventional pipeline

of applying spike segmentation using SpikeSEG (validated in Chapter 4) and then

regressing the spikelet density map using SpikeCount and then inferring spike-

let number (validated in Chapter 5). We have trained SpikeMulti, a heterogeneous

multitask fully convolutional network, to perform two learning tasks simultaneously

(spike segmentation and spikelet density regression) optimising a global cost func-

tion which combines cost functions for each task. Then we tested the model on

Original set for CQ_2016 and CQ_2017 (with full background) and compared the

counting results with SpikeCount performance when tested on Original and Pre-

diction sets. In addition, we compared the segmentation results generated from

SpikeMulti to the ones generated from SpikeSEG.

Our findings show that MTL has generated the best combined errors compared

to the results of testing SpikeCount on Original and Prediction sets across all

growing seasons. This may be because the model is able to differentiate between

the background and spikelet regions. This is clear in the CQ_2016 results where,

even though there were no improvements in the segmentation results, the model

was still capable of identifying the background regions and ignoring them as we

saw in the graphs that break down errors into background and spike regions. It

is worth noting that segmentation results were improved when testing SpikeMulti

when compared to SpikeSEG for some of the growth stages. In CQ_2016, Booting,

Heading and Grain filling, Intersection over Union (IoU) metric(s) have increased

particularly for early growth stages. For CQ_2017, there are great improvements

across all metrics and growth stages. Therefore, it is evident that training spikelet

density regression along side segmentation has led to joint features that benefited

the segmentation results.

When we compare the results of testing SpikeMulti to SpikeCount on the Original

set, SpikeMulti has minimised the combined errors significantly with more than 75%
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decrease for both 2016 and 2017 datasets. For the results of testing SpikeCount on

the Prediction set, the decrease in combined errors is around 50%. In addition, we

noticed that MTL not only leads to a decrease in background errors but also has

competitive performance for the spike regions when compared to Prediction set of

CQ_2016 and CQ_2017. In addition, it is very clear that analysing the results

of background and spike region separately has helped us provide comprehensive

analysis particularly when evaluating SpikeMulti performance with SpikeCount

performance.

For the various growth stages, our summary Table 6.18 shows that SpikeMulti with

ImageNet Transfer Learning has led to the best results across most growing stages,

particularly for combined and background errors.

It is worth noting that even though SpikeMulti has robustly managed to reduce the

background errors compared to SpikeCount, SpikeCount still outperforms SpikeMulti

when tested on the Optimal set for both CQ_2016 and CQ_2017. This might be

due to SpikeMulti having led to little or no improvements in spike region errors.

This could perhaps be resolved if the ACID dataset was used with MTL in the con-

text of Transfer Learning to improve the counting of spikelets within spike regions.
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Chapter 7

Conclusions and further work

Through this project, we have employed fully convolutional model to perform com-

plex tasks (i.e spike segmentation and spikelets density estimation) to analyse a

particular yield related measurement, spikelet counting. For this, we used in-field

wheat crop images that were composed of three sequences CQ_2015, CQ_2016,

and CQ_2017 which represents three growing seasons. We had information on

growth stages from each image which enabled us to analyse the difficulty of the

estimation in each growth stage. In contrast with many machine learning based

indoor phenotypic analysis tasks with ideal lighting and image conditions [121],

our work is based on real-world agricultural and breeding situations, where strong

wind, heavy rainfall, irrigation and spraying activities can lead to unexpected qual-

ity issues.

In order to set up the experiments to achieve the main aim of this thesis, we

produced a high quality dataset consisting of three sets of sequences from con-

secutive years and manually labelled for both segmentation and density estima-

tion tasks, The dataset can be accessed through: ‘https://github.com/tanh86/

SpikeProject.

We started by following the workflow of applying segmentation to isolate spike

regions and then applying density estimation to extract spikelet number, as this

is considered the conventional approach in plant phenomics. In contrast, we also
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7.1. Discussion

investigated whether performing MTL for both tasks simultaneously could produce

better results.

Another area that we investigated is Transfer Learning. For this we looked at

whether employing weights learnt from enormously different data domains in the

form of the ImageNet dataset [62] to a different task could be beneficial to ex-

tract meaningful traits from wheat crop images. In addition, we investigated using

weights learnt from a relatively similar domain, in the form of the ACID dataset

trained to perform the same task, in order to improve the model performance.

In section 7.1, we draw insights from the analysis of our results presented in the

experimental Chapters (Chapters 4, 5, and 6) and connect to the research questions

we posed in Chapter 1. Section 7.2 will preview the open opportunities to further

develop the work in the future.

7.1 Discussion

In Chapter 1, we posed three main research questions around the aim of extracting

yield traits from wheat crops images captured in uncontrolled settings:

• Can eliminating background from infield wheat images simplify the problem

of spikelet counting, given the challenges from the similarity between the

background and ROI (spike regions), severe occlusion and high density of

spikelets?

• Can Transfer Learning aid in extracting key yield traits in wheat phenotyp-

ing when we transfer the knowledge from big dataset containing millions of

objects that are drastically different in kind and task from the target dataset?

Similarly, can Transfer Learning from more similar wheat images captured

indoors under controlled lab settings be beneficial to solve the same task?
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• Can MTL in a deep learning setting be beneficial to the problem in hand

as opposed to following the conventional workflow that is comprised of a

sequence of tasks?

In this section we evaluate how the results of our experiments have enabled us

answer those questions.

Overall, through our experiments, we have proved that the deep-learning approach

using fully convolutional networks (FCNs) is promising for both spike segmentation

and spikelet density estimation problems and the application of Transfer Learning

can produce better results for both learning tasks and across the monitored key

growth stages.

With respect to our first research question, eliminating background objects and

isolation ROI such as spike regions significantly improves extraction yield traits

such as spikelet number. Before moving to the impact of isolating the ROI on

counting spikelets, we reflect on the results of our spike segmentation proposal,

SpikeSEG from 4.

In terms of spike segmentation, our results show that the selection of a larger sub-

image sizes for the sliding window in our approach results in better segmentation

as it translates to higher classification performance. Our findings are in line with

the conclusion reached in the original FCN research [71], where the model trained

on original images converged faster than on randomly subsampled patches. In

our case, using the whole growth crop images with a size of (2592 × 1944) was

not possible, not only because of computational issues but also because there are

many regions without relevant phenotypic information. As a result, we had to use

a sub-image to improve the performance of the model as well as to reduce the

unnecessary computational complexity. However, SpikeSEG enabled us to select

varied sub-image sizes to test performance and computational efficiency during the

exploration and we observed that larger images were better. In addition, it is

noticeable that enlarging the perception of the model (i.e. selecting larger input
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size) was beneficial when learning surrounding objects as it can introduce variation

in spike regions such as objects that may appear in sub-images during training.

This approach has translated to better segmentation performance for our work.

As verified by experimental results, the model has achieved better outcomes in the

later growth stages such as Flowering and Grain Filling. The performance of the

SpikeSEG was poor in both Booting and Heading stages and also for spikes partially

covered by leaves (Figures 4.4 and 4.5). The main reason behind this, we believe,

is that the distribution of images for different growth stages was unbalanced within

our data, with limited booting images represented in the training data.

The unique shape of spikes may require more attention around the boundary. In

many cases, SpikeSEG was successful to some extent in recovering the spike bound-

ary details, which may be due to fusing the features from three locations in the

model (conv3-maxpool, conv4-maxpool, and first upsampling layer). The 2015

training dataset was balanced in terms of different weather conditions, from sunny

scenes (high exposure of illumination) to rainy and cloudy scenes. The segment-

ation of spike regions with high and normal lighting conditions was reasonable.

However, the model has captured some background objects that were not present

in the training dataset such as grass. For example, Figure 4.5 showed grass regions

(to the bottom left of the images) that were wrongly recognised as spike areas.

Based on our vision assessment using the method discussed in Chapter 4, this er-

ror might be caused by severe light exposure, similar colour- and pattern-based

features. Again, we believe that more training data could improve the models to

avoid such artefacts.

Moving back to the first question of elimination of background noise, we trained

and tested on three CropQuant (CQ) variations sets: Original, Optimal, and Pre-

diction. The Optimal set represents the ideal case where we used the ground truth

segmentation mask presented in Chapter 4 to eliminate the noisy background com-

pletely from the wheat crop scenes. The Original set represents the opposite case

where the model is trained and tested to count spikelets from the images with full
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background. Additionally, we implemented a conventional workflow where we apply

segmentation and then apply density estimation to predict the number of spikelets.

For this, we first extracted the regions predicted from SpikeSEG in Chapter 4 to

be spike areas and then tested the SpikeCount model. This case is presented as

the Prediction set.

It is clear from Chapter 5 that the best performance results from training and

testing SpikeCount on the Optimal set and this is true across all the experiments

comparing against the Prediction and Original for both CQ_2016 and CQ_2017.

For example, for the Optimal set in both CQ_2016 and CQ2017, the lowest errors

were achieved by SpikeCount when using Transfer Learning with the ACID dataset

and freezing the first block in the model (conv1 block). Since we have used the

ground truth mask to remove the background, we consider these results the baseline

for comparison to the other Original and Prediction sets, as those would be more

realistic and achievable for real time analysis of crop images.

As we discussed in Chapters 5 and 6, for in-depth analysis of performance, we have

broken down the counting errors based on those measured while counting within

the spike region and over-counting within the background region for Original and

Prediction sets.

After the Optimal set, performance was best on the Prediction set. For this set, per-

formance improved significantly when we used augmentation and Transfer Learning

for CQ_2016 and only augmentation for CQ_2017.

For the Original set, which was the most challenging as may be expected, we saw

that SpikeCount over-estimates spikelets in the background regions (Figures 5.2 and

5.3), resulting in the worst combined errors. Hence the noise in the background

hinders the model’s ability to ignore objects in these regions for counting purposes.

We conclude from this that isolating the ROI before extracting important inform-

ation related to plant development seems to lead to more accurate and robust

systems, and this may be the same for similar problems.
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With regards to the second research question, from our experiments, it is evident

that the application of Transfer Learning can produce better results for spike seg-

mentation and spikelets density estimation and across the monitored key growth

stages.

For the first learning task, spike segmentation, we tried Transfer Learning by load-

ing ImageNet parameters produced from a very large set of unrelated images, the

ImageNet dataset. This improved the performance of SpikeSEG model for 2016

(Table 4.2) and 2017 (Table 4.3) growing seasons. We postulate that for segmenta-

tion, the features obtained from ImageNet through those parameters, even though

the objects are dissimilar, still enable us to capture object boundaries accurately

resulting in better overall segmentation results.

For the second learning task, spikelets density estimation, we attempted to leverage

knowledge from images of wheat captured in a controlled environment. This was

done in order to improve extracting key traits from images of the same crop cap-

tured in an uncontrolled infield environment. As it was highlighted in Chapter 5,

the transferred features from the ACID dataset had a positive effects in general on

predicting accurate spikelet number. There are three cases in our experimentation

where transferring the knowledge from ACID features has led to best performance.

The first case is when initialising the model with ACID parameters has led to the

lowest spike region errors in the Original set. The second case is when the features

are loaded and then the first conv1 block is suspended. This led to best results in

the Optimal set where the background was fully removed. The third case is when

used on the Prediction set of the CQ_2016. For this dataset, both augmentation

and initialising the model with ACID features has led to best results in regards to

spike regions errors (Figure 5.2). The low level block in the VGG16 encoder is asso-

ciated with the general features such as corners, borders etc. of the objects, in our

study those are spikelets. This may explain why freezing this block along with full

segmentation has resulted in the best performance. It is clear that general features

of spikelets from the ACID dataset lead to robust spikelet identification particu-
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larly as ACID images were captured in noise free environments and with consistent

lighting which may help with the specific features of the spikelets in wheat. This

could imply that plant images captured in indoor environments could help provide

more robustness for traits extraction of similar plants captured in more noisy and

challenging settings. As a summary, Transfer Learning has a positive effect on both

segmentation and counting tasks and potentially could improve the efficacy of any

deep learning model in extracting useful key traits from infield uncontrolled crop

images. The only case where transfer learning had a negative effect is when we

initialised SpikeCount with the ACID weights and continue training the model on

the Original set. This is because the images in the Original set were full with the

background but they were not present with the same volume in the ACID data.

This led to a negative effect of spikelets over-estimating (Figures 5.2 and 5.3) in

the background regions.

In relation to the third research question, MTL has shown to be beneficial to our

problem. We know that the largest errors from our previous models resulted from

SpikeCount when testing on the Original set, where extreme over-counting was

present, particularly in background areas. SpikeMulti has significantly minimised

those errors for the Original set. For example, the errors were minimised by ap-

proximately 75% for CQ_2016 and CQ_2017 (Figures 6.3 and 6.4). Additionally,

it is important that we compare the effectiveness of the proposed conventional two

step workflow represented by the Prediction set, against the MLT results. We

know from Table 6.2 that the MTL model has not improved the segmentation

results for CQ_2016. However, looking at figure 6.3 it is clear, from the point

of background errors, that MTL has aided in learning joint features from the seg-

mentation task and those have helped with model density estimation as background

errors have been minimised compared to the ones measured from the Prediction Set.

Even though the Prediction set has lesser background regions than those predicted

from the SpikeMulti model given the latter’s poorer segmentation performance,

SpikeMulti was still able to ignore counting spikelets within the background re-
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gions. Hence the combined errors have improved and therefore the overall count

has improved by 50% for CQ_2016 and CQ_2017.

It is worth noting that learning joint features from density estimation has a positive

impact on improving spike segmentation for CQ_2017, particularly when combined

with initialising the MLT model with ImageNet parameters. Additionally, it is no-

ticeable (as reported in Chapter 6) that the Intersection over Union (IoU) metrics

have improved notably by 10.47% for MIoU and 16.51% for Spike IoU compared

to SpikeSEG segmentation results. This indicates that SpikeMulti has resolved the

issue of higher rates of false positive errors, when background region pixels are pre-

dicted as spike pixels, which was the downside of SpikeSEG. As a result, it has led

to the best performance in relation of background and combined errors. However,

for both sequences, it is evident that the ACID-transferred features employed in

our SpikeCount model have aided in best ROI (spike regions) counting for both

Original and Prediction sets.

It is important to note that SpikeCount when tested on the Optimal set significantly

outperformed SpikeMulti for both CQ_2016 and CQ_2017 even though SpikeMulti

has robustly managed to reduce the background error compared to SpikeCount.

This is likely to be because SpikeMulti has not led to any improvement in spike

regions errors. One possible way to resolve this and to make the comparison fairer

would be to use ACID knowledge which could improve the counting of spikelets

within spike regions. This, however, we leave as further research.

In general, MTL has improved the combined quantitative metrics of counting spike-

lets and also improved the segmentation which could have potential impact on other

applications on extracting important traits from plants.

We now review results for the growth stages for Optimal, Prediction and Original

sets. For the Optimal set, freezing the first block in SpikeCount after loading

ACID weights has led to the best performance for mature wheat images both in

2016 and 2017 growing seasons. This could be due to the similarity in terms of
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spike/spikelets maturity of the ACID dataset and the CropQuant Flowering and

Grain filling stages.

We knew that the earlier stages such as Booting and Heading would be harder

for counting due to very few developed spikelets in the images. Also there was

an additional problem of the unbalanced distribution of images for various growth

stages, with limited Booting images represented in the training data, in fact only

5 images, because of the short-term nature of wheat booting as noted in Chapter

3. Furthermore, we also only had 7 images for Heading. This could explain why

best results for Booting-CQ_2016 and Heading-CQ_2016-17 were achieved when

augmentation was use, as new augmented images may have reinforced the little

available training data. For the Booting stage in CQ_2017, Transfer Learning

using ACID weights was best.

For the Prediction set, both augmentation variations improved the counting res-

ults for all growth stages in both CQ_2016 and CQ_2017 except for Booting in

CQ_2016 which was improved using training from scratch.

For the Original set, best models were for most growth stages either either based

on simple Transfer Learning using ACID weights or then going on to freeze the

first block, conv1. Heading in 2016 and Booting in 2017 benefit from training from

scratch.

Lastly, MTL with ImageNet has led to the best combined counting results for

all growth stages for both CQ_2016 and CQ_2017. For spike errors only in the

Heading, Flowering-CQ_2016 and Grain Filling stages augmentation with both

variations within SpikeCount showed some advantage over MTL.

The most important limitation of our research is that even though the models

developed in this study have achieved good results in terms of the validation and

testing datasets, their generalisation ability will be challenged when we add new

unseen images. Thus, it is vital to asses the models’ performance and retrain

them on more balanced and diverse dataset. This leads us to the second limitation
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which is the difficulty of manual labelling. This was an obstacle when this research

was conducted as the laboriousness of the process limited the amount of data

available for training and testing. Although we managed to annotate the whole

dataset we used, manual annotation was extremely time and resource consuming.

Lastly, looking at the importance of augmentation in the field of deep learning

development, the study was limited in investigating the effect of using augmentation

on MTL performance which may have improved the results further.

7.2 Future Work

To improve the results, more images during Booting and Heading, when wheat

spikes are emerging, may help performance of CNN-based models. More import-

antly, images should be as representative as possible, e.g. including different light-

ing conditions, variety of background objects, and with different image quality. It

may be possible to further engage with Transfer Learning by augmenting our im-

age set with images of background objects (e.g. grass areas in different lighting

conditions) which could help with better segmentation.

Hence we suggest that, to address in-field phenotypic analysis challenges caused

by image quality (a common problem in real-world field experiments), we could

use more manually labelled datasets that contain sufficient noise information (e.g.

grass and unexpected objects) and ROIs under varied lighting conditions. When

possible, comparisons should be performed within similar crop growth stages as

those may be more realistic. Another potential solution is to introduce artificially

created images to mimic noise and unexpected objects and add them to the training

datasets. Another way to generate a more generalised and robust solution is to

introduce data augmentations based on deep learning [113] such as adversarial

training [135] and generative modelling (GAN) [12]. In earlier growth stages like

Booting where there are no spike/spikelet density in the images, another technique

that could be explored is counting by detection using Faster-RCNN [96]. Also,

182



7.2. Future Work

other architectures can be employed such as DeepLapV3+[24], SegNet[8] and Unet

[100] which can have potential impact in improving the segmentation results and

also can be adapted to perform density estimation.

MTL has shown potential and we could also try to include other main learning

tasks such as growth stages classification and auxiliary tasks such as global count

regression that could provide improved outcomes. Additionally, employing aug-

mentation such as geometrical transformation, noise injection and random erasing

methods [140, 32, 144] could improve MTL performance further.

Part of our future work will also be to deploy the models trained in this work to

be part of a more comprehensive plant phenomics system. It may also then be

possible to interact with other real-time environmental measurements that will be

correlated with key yield traits extracted from the models optimised by this work

and other models. Analysis of those measurements and yield traits can then help

farmers to better adapt their crops for resilience and to improve quality and would

be the ultimate aim to which we have contributed.

This work potentially shows the impact of using Transfer Learning to benefit infield

imaging in plant phenomics. Building high-level plant phenomics datasets including

those captured in controlled environment or not can be employed to extract traits

from other plant in different area. Also, the trained architectures can be fine-tuned

to solve similar problems such as spike segmentation and spikelets segmentation on

other infield datasets.
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