
 
 

An Investigation into the Drug Release 
Mechanisms of Polymeric Solid Dispersions 

 

 
 
 

Salman Mohammad Abdur Rahman 
School of Pharmacy 

June 2020 
 
 
 
 

Thesis submitted for the fulfilment of degree of Doctor of Philosophy at the  
University of East Anglia 

 
 
 
 
 
© This copy of the thesis has been supplied on the condition that anyone who consults it is understood to 
recognise that its copyright rests with the author and that use of any information derived therefrom must 
be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full 
attribution



 

i 

Acknowledgement 
 
 

First and foremost, I would like to thank Allah for giving me the perseverance and ability to help me through 

a challenging time of my life and enabling the completion of the PhD. 

 

I would like to graciously thank my primary supervisor Dr Sheng Qi and my secondary supervisor Professor 

Peter Belton for having given me their utmost supervision, encouragement, patience, and support 

throughout my PhD in the best and worst of times. I would also like to extend my gratitude to the numerous 

faculty members in the school of pharmacy, namely to Dr Laszlo Fabian for enriching my knowledge and 

capabilities in the field of computational pharmaceutics, to Dr Chris Morris for helping me have fun learning 

much of biochemistry, and to Professor Yaroslav Khimyak for keeping my sense of humour alive and 

challenging me to think more critically. I would also like to thank Dr Robert Whittaker from the school of 

mathematics, with whom I had many long and interesting discussions about the mathematical aspects of 

my project. I would also like to thank the school of computer sciences for giving me access to their high 

performance computing and graphics laboratory for performing simulations. 

 

I would like graciously thank my fellow PhD students in the drug delivery group: Jehad Nasereddin, Zuzana 

Hlaskova, Fahad Alqahtani, who helped me in the lab and the office in all capabilities, and especially to 

Sherif Hamdallah, Randa Zoqlam, and Chak Tam for taking the time to read my thesis out of their busy 

schedule. I would like to extend my gratitude to the postdoctoral staffs: Dr Muqdad Alhijjaj and Dr Janine 

Wilkinson who have provided additional mentoring and guidance in the lab. I would also like to thank the 

numerous visiting and project students who helped me throughout my PhD collecting and analysing parts of 

my data as part of their project. 

 

Lastly, I would like to thank my family, especially my mother, for keeping me motivated and supported me 

through the good and bad times of my PhD.  

  



 

ii 

Abstract 
 

Personalised polypills, which includes multiple drugs in a single pill tailored for individual patients, has 

gained a lot of research interests with the emergence of pharmaceutical 3D printing. A distinct feature of 

polypill is to be able to release each drug in a controlled manner. However, currently, there are limited tools 

to aid the design of such solid dosage forms with desired drug release kinetics. In this work, the drug release 

mechanisms of a wide range of solid dispersions formed using polymers and model drugs covering a wide 

range of physicochemical properties were investigated to generate a large dataset with an attempt to 

develop a simulation strategy for achieving a desired drug release profile.  

 

Building a dataset and using the dataset toward simulation building the data to be reproducible and reliable. 

The sources of errors throughout the manufacturing and the performance measurements of 3D printed 

example solid dosage forms were first investigated to assess the reproducibility and reliability of the 

experimental data generated to build the dataset. This was the focus of chapter 3. Thereafter, chapter 4 

systematically investigated the behaviour of a wide range of pure polymers to enable the prediction of the 

behaviour of polymer blends. The polymer behaviour studied include hydration, swelling, and erosion. 

Addition of the drug and investigating the effect on formulation behaviour was the focus of chapter 5. 

Chapter 6 used statistical approaches such as principal component analysis as a factor reduction technique 

and K-means clustering to classify the behaviour of the polymer-drug dispersions. These statistical 

approaches successfully demonstrated that correlating polymer behaviours and drug release profiles can be 

used to predict the selection of polymer(s) for a given drug to achieve a desired drug release profile. Further 

upscaling of the dataset is crucial to enhance analysis. 
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Chapter 1: Introduction 
Since the 1950s, there has been accumulative evidence indicating a substantial account of variability for 

drug response is genetically determined with age, nutrition, health status, environmental exposure, 

epigenetic factors, and concurrent therapy was proposed and formed the foundation of the modern 

practice of personalised therapy (1). Therefore, a new discipline arose from genetics, biochemistry, and 

pharmacology known as pharmacogenetics. The continuous development of this new field led to and guides 

the modern practice of personalized medicine. The aim of personalized medicine is simply to tailor drug 

therapy with the best response and safety margin to ensure the most effective clinical outcome for each 

patient (2). While much of the vision of personalized medicine can be attributed to advancement in 

genetics, the implementation of personalized medicine requires the advancements in the pharmaceutical 

materials science and processing to enable viable methods to cost-effectively produce small batch 

personalised medicine to meet each patient’s needs. Additive manufacturing methods such as fused 

deposition modelling 3D printing has demonstrated the potential as a manufacturing tool to enable such 

small batch production. The process is operated by using a 3D digital design to guide the layer-by-layer 

production of each single dosage form (3). However, for the pharmaceutical field, currently, there is no 

systematic formulation approach that can rapidly provide the design that can tailor the drug and the drug 

release pattern to the needs of each patient.  

 

This project initiated by examining the accuracy of the FDM 3D printing process. The research then moved 

the focus on to developing a prediction approach which allows the formulation scientists to rapidly develop 

suitable solid dispersion based formulation tailored for each patient’s clinical needs (i.e. a particular drug 

with a particular type of controlled release pattern).  

 

The Introduction chapter is divided into two main sections, Background and Main Scope of this project. The 

Background section provides relevant information on the scientific concepts related to the type of 

formulations (solid dispersions) and the processing methods (FDM 3D printing and hot melt extrusion) used 
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in this project. This information is used as a knowledge foundation of experimental Chapter 3.  The Main 

scope of this project section reviewed and discussed the fundamental knowledge on the behaviour of 

polymer behaviour and drug release kinetics from polymer-based solid dispersions. This information forms 

the foundation for the research development of Chapter 4, 5 and 6.     

1.1 Background  

1.1.1 Hot Melt Extrusion (HME) 
HME is the process wherein raw materials are heated and mixed by applying shear stress and forced to exit 

through a die under controlled conditions (4). Originally and still widely used by the plastic industry, HME 

was introduced to and has been rapidly adopted by pharmaceutical manufacturing. The most frequent 

application of HME in the pharmaceutical industry is as a manufacturing process to produce solid dispersion 

based products.  

1.1.1.1 Types of extruders & Extrusion process 

Screw extruders are one of the three types of extrusion machines. The other two types are ram and radial 

screen extruders (5). Screw extruders are the most importantly used in the pharmaceutical industry (6). 

Within the screw types, there are three classifications: Single-screw extruders (SSE) with a smooth barrel, 

twin-screw extruders (TSE) with corotating or counter-rotating with intermeshing screws, and multi-screw 

extruders (MSE) with a rotating or static shaft. SSE is the most widely used due to its mechanical simplicity. 

SSE consists of one rotating screw in a smooth barrel that yields in a good melt, stable pressure, and 

temperature in the barrel. It is also characterized by a long residence time which provides good mixing but 

is itself a disadvantage (7). Excessively long residence time can lead to degradation of the material due to 

the prolonged exposure to heat. TSE was introduced with having two agitator assemblies on two parallel 

shafts. The use of two screws allows different conditions along the zones of the extruder. The screws can be 

either co-rotating or counter-rotating and can be intermeshing or non-intermeshing (8). Intermeshing TSE is 

the most used as the design allows for self-cleaning which prevents raw materials from being in the barrel 

and overheating (6). Non-intermeshing is less used due to their design but capable of producing high torque 

which is used for processing of highly viscous material (9, 10). TSE has two advantages over SSE; the first 
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being reduced residence time typically between 5-10 mins and second being enhanced mixing due to the 

design of screws which employ a disruptive mixing and dispersive mixing (11). In disruptive mixing, the 

materials are blended evenly while, in dispersive mixing, the material is broken down into finer 

morphologies (6). Hence, the enhanced mixing. TSE is preferred over SSE especially for thermolabile drugs 

(9). In this work, TSE was used. Figure 1-1 shows SSE, TSE, and the different screw types. 

 
Figure 1-1: (a) SSE with one screw and one shaft and TSE two screws on two shafts. (b) the two types of twin screws for TSE. (c) top: 
intermeshing screws, middle: intermeshing counter-rotating, and bottom: non-intermeshing counter-rotating screws. Adapted from 
reference (6, 8). 

The various types of extruders have three common distinct zones of operation. The first is the feeding, the 

second is the transition, and the third is the metering zone (6, 10-12). The material is fed through the 

hopper which is the feeding section. The material is then transported to the transition zone where it is 

melted, compressed, and mixed. As the compression takes effect, the pressure is increased, and the 

material moves along the barrel until it reaches the metering zone in the form of homogeneous plastic melt 
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ready for extrusion. The metering zone reduces the non-uniformity by minimizing the thickness variation, 

ensuring laminar flow, and smooth exit through the die cavity (11). The typical HME is shown in Figure 1-2.  

 
Figure 1-2: HME schematic (6). 

1.1.1.2 Materials for HME 

The materials used for HME should possess the following characteristics. They must meet the same levels of 

purity and safety as materials used in traditional oral dosage, must be able to deform easily inside the 

extruder and solidify on exiting it, must be thermostable and maintain an acceptable physical and chemical 

stability during the HME process and afterwards during long-term storage, and lastly, the desired in vitro 

release and in vivo performance should be achieved by the product. The pharmaceutical materials used for 

HME are a combination of drug and functional excipients. The functional excipients are classified as matrix 

carriers, release modifying agents, plasticizers, antioxidants, and thermal lubricants (6, 10).  

• Active Pharmaceutical Ingredients (APIs) 

Some of the advantages are that HME is an anhydrous process which avoids degradation due to hydrolysis 

by aqueous media often added in the granulating media. The drug has to be thermally stable during the 

HME process and as such, pre-characterization of the drug chemical and physical properties is crucial. 

Crystalline drugs, characterized by their lattice structure, are thermodynamically more stable compared to 

their counterpart amorphous forms (6). However, poorly-soluble crystalline drugs have a much slower 

dissolution rate than the amorphous form of the drug. HME is often used with an attempt to form a 

molecular dispersion of the drug in the polymer matrices to improve the dissolution rate of the drug. The 
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state of the drug in HME such as fully dissolved (molecular dispersion), or fully undissolved (phase separated 

solid dispersion with crystalline drug), or a combination of both, can impact the performance (i.e. drug 

release rate) and the stability of the oral dosage form (13).  

• Carriers 

Carriers are used during HME as embedding component for the drug. These carriers are melt-capable and 

are classified into polymeric carriers containing polymers and non-polymeric carriers containing low melting 

point wax. The polymeric carriers can be hydrophilic polymers such as polyethylene oxide or hydrophobic 

carriers such as zein and ethyl cellulose (14, 15). Reports of non-polymeric carrier have included the use of 

sugars and acids (12, 16). The choice of carriers depends on drug-polymer miscibility, polymer stability, the 

desired release mechanism, and function of the final dosage form (6). 

• Plasticizers 

Plasticizers are low molecular weight compounds that can affect in one or more of the three ways. They can 

cause the carrier to be less rigid, lower the processing temperature which can avoid the degradation of 

thermolabile drug, and reduce the shear forces needed for extrusion (6, 10, 17). The plasticization 

phenomenon occurs because plasticizers increase the free volume between polymer chains which lead to 

lower melt viscosity so that less heat (lower HME operational temperature) and shear forces are required to 

make the polymer chains move in the direction of the flow (18). Additionally, plasticizers ease the fusion 

process (melting) of semi-crystalline polymers (19). Common plasticizers, approved by the FDA, in 

pharmaceutical dosages are enlisted in Table 1-1. The materials used in HME is discussed next. 

Table 1-1: Common plasticizers used in oral dosage (10). 

Type Examples 

Citrate esters triethyl citrate, tributyl citrate, acetyl, triethyl citrate, acetyl tributyl citrate 

Fatty acid esters butyl stearate, glycerol monostearate, stearyl alcohol 

Sebacate esters dibutyl sebacate 

Phthalate esters diethyl phthalate, dibutyl phthalate, dioctyl phosphate 

Glycol derivatives Polyethylene glycol, propylene glycol 

Vitamin E TPGS D-α-tocopheryl polyethylene glycol 1000 succinate 

Others triacetin, mineral oil, castor oil 
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1.1.2 Fused Deposition Modeling 3D printing (FDM 3DP) 
According to statistics, FDM has been the most common 3D technology used for prototyping accounting for 

36% in 2017, 46% in 2018 (20), 57% in 2019 (3), and most commonly used for pharmaceutical applications 

until 2018 (21). FDM 3DP is a type of the material extrusion 3DP process (22, 23) wherein, a heated nozzle is 

used (24). The feeding material, in the form of filaments, is fed via rollers into the nozzle. Filaments are then 

heated by heating elements into a molten state to allow for extrusion through the nozzle tip (25). The 

nozzle can move in the x, y-direction while the platform is movable in the z-directions to produce the final 

desired geometry layer by layer, which fuses as the printed filament cools (26, 27). Upon deposition, the 

material cools and solidifies onto a platform. The schematic illustration of FDM is shown in Figure 1-3. 

 
Figure 1-3: Schematic illustration of the FDM 3D printing technology. Adapted from reference (28). 

In terms of loading drug into the FDM filaments, currently in use, are two common methods of preparation: 

impregnation and hot melt extrusion (29, 30). For impregnation, the filament is immersed (soaked) in a 

solution of the drug for an extended duration, usually a minimum of 24 hours. This method was used by 

Goyanes et al (31) but the drug loading achieved in such cases is quite low, approximately 15% at most (32). 

The alternate method is by preparing the custom made drug loaded filament using hot melt extrusion which 

has better drug loading capacity than the impregnation and is discussed next (33). 
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1.1.2.1 Pharmaceutical applications of HME coupled with 3D printing  

A major advantage of HME is to form solid dispersions with suitable polymeric excipients that provide the 

solubility enhancement for poorly soluble drugs (34). The different mechanisms proposed in the literature 

on how solid dispersions can improve drug solubility are improving wettability, preventing recrystallization, 

and stabilizing amorphous formulations (35). The melt and mixing process during HME converts crystalline 

drugs to the amorphous form by dispersing it in a carrier and prevents drug recrystallization through the 

formation of non-covalent bonds between the drug and the carrier chain or through the steric hindrance 

phenomenon (10). Due to the drug dissolved in the hydrophilic carrier, dissolution in gastrointestinal fluids 

is enhanced compared to that of the native crystalline form of drugs. Review of HME made oral solid dosage 

form from 1990 to 2015 has been given by Major et al (36). 

 

As discussed previously, for FDM 3DP, the filaments can be created using HME (37, 38). All pharmaceutical 

filaments have to be custom made using HME as all of the commercially available filaments are not made of 

pharmaceutical grade materials (39). The use of HME is to create a filament that incorporates the drug in a 

polymer and extruded via the use of a modified die to match the circumferential dimensions of the FDM 

3DP nozzle. HME is capable of producing thermoplastic filaments that can withstand tensile and 

compression forces of the printing process (40, 41). Coupling HME with 3D printing has shown the 

advantage of producing tablets with high drug loading capacities as high as 40% of the oral dosage (6, 38). 

For research, higher drug loading has received attention due to the potential of increasing patient 

compliance (42). Increased patient compliance is one of the benefits, which has been demonstrated in 

clinical trials of polypills for cardiovascular disease with 81% adherence vs 46% adherence when taking the 

medications separately (43). A Polypill is the combination of two or more drugs in one pill designed to 

increase patient compliance. Figure 1-4 illustrates the overview of HME coupled with 3DP printing process. 
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Figure 1-4: Schematic of HME followed by 3DP as a single continuous process. The output can be FDM 3D printed tablets (right) or 
polypill (left). Adapted from reference (38). 

The oral solid dosage forms that have been printed using this approach reported in the literature are of four 

types. They are controlled release dosage forms (CRDFs), sustained release dosage forms (SRDFs), 

immediate release dosage forms (IRDFs), and polypills (37). CRDFs aim to control the plasma concentration 

of the drug after administration (44). SRDFs aim to maintain the rate of drug release over a sustained period 

(44). IRDFs aim to release the drug as fast as possible, generally with first order kinetics so that a fast 

therapeutics onset can be achieved (44).  

1.1.2.2 Commercialization Limitations 

FDM 3D printing is still a prototype machine and in its infancy stages in pharmaceutics. As such, it is 

expected that limitations and issues may exist. Such limitations and issues have been mentioned in 

literature (24, 25, 45-48). Alhijjaj et al reported the impacts of processing parameters on the 3D printed 

dosages by looking at the physical variations such as weight, dimensions, and individual stand width and 
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deduced correlations of one or more parameters to the physical variations using principal component 

analysis (48). In the case of oral solid dosage forms, the microstructure is an important key feature if 

polypills are to be made in the standard size of traditional tablets (24). This was shown by works of Goyanes 

et al wherein a polypill was printed. Since the polypill had two formulation filaments to be printed, it 

required precision of printer resolution at microscale to match the theoretical dimensions, which was not 

best achieved. This was evident by observing the high variations in the drug release profiles of 

approximately ±40% among some formulation replicates (49) but ±5% in others. This indicates the 

inconsistency in FDM 3DP currently in use. Weeren et al focused on quality of parts printed by FDM 

exported computationally as STL files by investigating deformities between designed specification and 

printed object, and categorized as surface and internal defects (50). Increasing print speed is challenging, as 

there is generally a trade off between feature resolution and print speed (51). The high temperatures 

required for printing has been recognized as a barrier limiting the materials available for FDM printing, as 

many materials degrade at higher temperatures (52). Okwuosa et al focused on 3DP at lower temperatures 

and using thermofillers to avoid degradation (53). 

 

There are also works citing economical issues that suggest 3D printing is still not feasible for mass 

production. Injection molding (another manufacturing method) is more cost effective per parts as 

production rates rise but 3D printing cost per part remains the constant (54). However, printing reduces 

time of production significantly but increases the number of steps to the final OSDF (21). There are great 

benefits to 3DP and additive manufacturing in general, which have already been discussed. Another casing 

point of a benefit possibly, is the manufacturing of orphan drugs which are very cost ineffective on mass 

production scale (55). Mazzanti et al has reviewed the challenges of using filaments and outlined specifically 

the problems of using natural polymers for FDM printers by diving them into two categories of processing 

and appearance problems while simultaneously providing possible solutions for each case, shown in Figure 

1-5 (56). 
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Figure 1-5: Natural fiber filament problems that may be encountered in FDM 3DP and the possible solutions (56). 

The melting through HME results in obtaining a solid molecular dispersion. The types and controlling factors 

of solid dispersions are an important factor, which is discussed next. 

1.1.3 Solid dispersions 
The term solid dispersion refers to the distribution of one or more drug in a carrier at solid state by melting 

(fusion), solvent, or melting solvent method to improve the solubility of poorly soluble drug (57). Sekiguchi 

et al were the first to report the melting (fusion) method in the early 1960s (58). Sekiguchi et al initially 

proposed that solid dispersion can only exist as a eutectic mixture in a microcrystalline state but Goldberg et 

al subsequently reported this to not necessarily exist in microcrystalline state but also in other molecular 

arrangements (58, 59). Based on the molecular arrangement, Chiou and Riegelman classified six different 

types of solid dispersion (60), shown in Table 1-2. The state of matrix or the drug is one of the three: 

crystalline, amorphous, or molecularly dispersed, shown in Figure 1-6. In this project, the main kind of solid 

dispersion is amorphous solid dispersions often referred to as glass solution in the original six classifications. 

In such systems, the drug and excipients are molecularly dispersed in one single phase. 
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Figure 1-6: The different states of drug molecule in the polymer (61). 

Due to observations of monotectic, peritectic structures, Vasconcelos et al proposed a different 

classification system based on carrier properties: the first generation consisting of crystalline polymer, 

second generation consisting of amorphous carriers, and third generation consisting of surfactant carriers 

(62). Vo et al modified this by adding a fourth generation of insoluble and swellable polymers (63). 

Furthermore, Meng et al classified binary solid dispersion into six categories based on the state of the API 

which is similar to the classification proposed by Chiou and Riegelman (64). All classification schemes are 

equally valid, and here the first of them, proposed by Chiou and Riegelman, will be discussed. Figure 1-7 

illustrates the different classification categories. Recently, multicomponent solid dispersion systems have 

been cited as an efficient drug delivery system to improve bioavailability and drug solubility (65, 66). In such 

systems, as the name suggests, different compartments contain different solid dispersion systems with the 

API and polymer being molecularly dispersed. 
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Table 1-2: Classification of the six solid dispersion types. For the states, C=crystalline, A=amorphous, and M=molecularly dispersed. 
Adapted from reference (57). 

Solid dispersion type Matrix state Drug state 
Number 

of phases 

I Eutectics C C 2 

II Amorphous precipitation  C A 2 

III Solid solutions  

 Continuous solid solution C M 1 

 Discontinuous solid solution C M 2 

 Substitutional Solid Solution C M 1 or 2 

 Interstitial Solid Solution C M 2 

IV Glass suspension A C 2 

V Complex formation  A A 2 

VI Glass solution A M 1 

 
 
 

 
Figure 1-7: Solid dispersion classification based on properties and number of categories in each in brackets (67). 

 

1.1.3.1 Eutectic Type 

Eutectic mixtures are made from rapid solidification of fused liquid of two components which show 

complete liquid miscibility and almost no solid-solid solubility (68). The phase diagram for the eutectic 

mixture is shown in Figure 1-8. Such systems are regarded as an intimately blended physical mixture of the 

two crystalline components (69, 70). 

Solid Dispersion Classification Basis

Physicochemical structures 
by Chiou and Riegelman in 

1971

(six categories) 

Carrier properties by 
Vasconcelos et al in 2007

(three categories)

Modified by Vo et al in 2013

(+1, totalling four categories) 

API state by Meng et al in 
2015

(six categories)
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Figure 1-8: Phase diagram of Eutectic mixtures of substance A and B. Adapted from reference (60). 

The liquid miscibility is attained in the liquid solution phase of both A and B. In the adjacent phase, either A 

or B exist as a solid while the other is liquid. Point E is known as the eutectic temperature where the mixture 

freezes or melts and lower than either of the constituents (71). As the temperature is decreased, both A and 

B become solid and crystallized particles. The crystals, with their increased surface area and reduced 

particle size increase the dissolution rates along with other factors. This increase drug solubility with very 

small crystallite sizes, solubilization effect of the carrier in a microenvironment surrounding the drug 

particle in initial stages of dissolution, absence of agglomeration between fine crystallites of API that hinder 

dissolution, excellent wettability and dispersibility of API in a water-soluble matrix, and crystallization in the 

metastable form which has higher solubility leading to faster dissolution (60). Use of eutectic mixture is to 

form solid dispersion of a crystalline API in a crystalline polymer to enhance the dissolution of the drug. 

Carrier may be either hydrophilic or hydrophobic. Law et al demonstrated increased dissolution of insoluble 

fenofibrate in a eutectic mixture of PEG 8000 (hydrophilic polymer) of ratio 25:75 (API:polymer), while 

Figueirêdo et al demonstrated increased dissolution for both insoluble benznidazole (an antichagasic API) in 

eutectic mixture with insoluble posaconazole (an antifungal hydrophobic API) or ratio 80:20 (API BNZ:API 

PCZ) (72, 73). 
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1.1.3.2 Amorphous precipitation 

In this state, the API precipitate out in amorphous form within the crystalline carrier. This is the main 

difference between the eutectic mixture and amorphous precipitation. The amorphous form has the highest 

energy of the pure form of API and produces faster dissolution compared to the crystalline form (60). 

Mullins et al showed that amorphous novobiocin has a tenfold higher solubility than its crystalline form 

(74). The principle of crystalline carrier is the same as a eutectic mixture. The crystalline carrier, being 

water-soluble, exhibit forming small particles, reducing aggregation, increased wettability, decreasing 

crystallinity, and transforming metastable polymorph (75). Crystalline carriers such as urea (76), organic 

acids (77), and sugars have been used (78).   

1.1.3.3 Solid solutions 

A solid solution is made of solid solute dissolved in a solid solvent and often called mixed crystal due to the 

crystals of two component being homogenously distributed as a one phase system (79). It was suggested 

that due to solid in a solid medium, the molecular size of the solid solute is at a minimum, and can have 

faster dissolution than eutectic mixtures (80). Solid solutions can be classified into two categories either 

based on the level of miscibility or the crystalline structure of the solid solution (81, 82). Based on 

miscibility, the categorization is either continuous or discontinuous and based on the crystal structure, the 

categorization is either substitutional or interstitial solid solutions. In continuous solid solution, the 

components are miscible across all proportions. It has been theorized that total lattice energy of the 

continuous solid solution at various compositions should be greater than that of either pure components 

because the strength of the bond between the two different components at the solid state should be 

greater than that between the same species of molecules (79). Such solid solution has not been reported in 

pharmaceutics but has been reported to be made in engineering for lithium batteries by Noh et al (83). In 

contrast, discontinuous solid solutions, there is limited solubility of the two components above the eutectic 

temperature. This is more possible in reality a one component is capable of dissolving the other component 

to a certain degree. As the temperature is lowered, the solubility decreases, and the solid solution exists in a 

narrower region. The phase diagrams for continuous and discontinuous solid solution shown in  Figure 1- 9. 
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Figure 1- 9: (Left) Continuous solid solution. (Right) Discontinuous solid solution (84). 

In terms of crystalline structure, one group is substitutional solid solutions. In substitutional solid solutions, 

the solvent molecule is substituted by solute molecules in the crystal lattice structure. The resultant can be 

a continuous or discontinuous solid solution. Such substitution is possible if the molecular sizes of the two 

components do not differ more than 15% according to Hume-Ruthery rule (82, 85). In contrast, in interstitial 

solid solutions, the solute molecule occupies the interstitial space between the solvent molecules in the 

crystal lattice. For interstitial solid solutions to form, three factors must be present. The first is the diameter 

of the solute molecule should be less than 59% of the solvent molecule diameter. The second is the volume 

of the solute molecule should be less than 20% of the solvent molecule. The third is the pattern in which the 

solute and solvent molecule is arranged should favour the formation of an interstitial solid solution (60). 

Figure 1-10 shows the difference in the lattice structure of the substitutional and interstitial solid solution.   

 
Figure 1-10: (Left) Substituitional solid solution  crystal lattice and (right) interstitial solid solution. Black circles=Solute molecule and 
white circle=solvent molecules (60).  
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1.1.3.4 Glass suspension and Glass solutions 

The concept of the formation of a glass solution as another potential modification of a dosage form which 

can increase drug dissolution by Chiou and Riegelman (60). The term ‘glass’ is used to describe a pure 

chemical or a mixture of chemicals in a glassy state. A glass solution is a homogenous system in which the 

glassy or vitreous form of the carrier solubilizes the drug molecule in its matrix (86). Glass suspension is a 

mixture wherein the precipitate is suspended in glass solvent. The glassy state is achieved by rapid 

quenching of the melt (87). This glassy state is characterized by transparency and brittleness below the Tg. It 

continuously softens upon heating and gives a broad melting point. Heating the glassy state of pure 

compounds can transform it into a crystalline state. Various physicochemical properties such as viscosity, 

refractive index, thermal conductivity, compressibility, etc. change within the glass transition region when a 

substance is heated or cooled (60). Simonelli et al were the first to demonstrate high dissolution rates for 

glass suspensions using PVP with saphathiazole (88). 

1.1.3.5 Complex formation 

Complex formations are modified particles that are a conjugate of the drug and carrier molecules forming a 

binary system. The complex formation is common. Sekiguchi et al found eleven cases of compound 

formations out of twelve-phase diagrams while Guillory et al found four compound formations out of nine 

phase diagrams investigated (89, 90). Furthermore, If the complex forms during the preparation method, it 

does not indicate they will re-form in the liquid phase and vice versa. The formation of the drug from the 

complex formed depends on stability, dissociation constant, solubility and intrinsic absorption rate of the 

complex (60). In one study by Benet et al, the dissolution rates increased by onefold for a complex of 

griseofulvin and polyethylene glycol 6000 (91).  

 

The physical state of the drug and the excipients are vitally important for impacting on the stability and drug 

release behaviour of the solid dispersions. Therefore, the phase behaviour of solid dispersions is discussed 

in the following section.  
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1.1.3.6 Phase behaviour of solid dispersions 

Despite the potentials of solid dispersions for improving the dissolution of the poorly soluble drug, the 

number of research articles for solid dispersion outweighs the number of commercial products of solid 

dispersion (92). The low number is due to physicochemical instability in the manufacturing process or during 

storage with the eventual effect of the solid dispersion exhibiting phase separation or recrystallization (93, 

94). Understanding the phase behaviour of a solid dispersion is critical for predicting the stability of the solid 

dispersion. The phase behaviour of a solid dispersion can be probed by a range of thermodynamic 

parameters such as glass transition temperature and molecular mobility. These all can be used to predict 

the storage stability of solid dispersions. Here the glass transition temperature is discussed in detail as it was 

used directly in this project to identify the physical state and the phase behaviour of the solid dispersions 

studied. It is also one of the most widely used parameters to predict stability and to help identify the 

appropriate storage conditions of amorphous dispersions (95, 96). 

• Theories of Glass transition 

Previously, it was stated that Tg is dependant on the thermodynamics (cooling/heating rate). This raised a 

hypothetical question about how much Tg can be slowed if the rates are slowed. Furthermore, Tg is effected 

by the crosslink density, by the molecular weight, copolymerization, crystallinity, chemical structure groups, 

tacticity, and by pressure (97). Therefore, three main theories of glass transitions were proposed to explain 

at a molecular level, which is outlined in Table 1-3. 

Table 1-3: Tg theory with advantages and disadvantages (97). 

Theory Advantage Disadvantage 

Free volume 

theory 

1. Time and temperature of viscoelastic 

events related to Tg.  

2. Coefficients of expansion above and below 

Tg related 

1. Actual molecular 

motions poorly defined 

Kinetic theory 

1. Shifts in Tg with time frame quantitively 

determined 

2. Heat capacities determined 

1. No Tg predicted at 

infinite time scales 

Thermodynamic 

theory 

1. Variation of Tg with molecular weight, 

diluent, and cross-link density predicted 

2. Predicts true second-order transition 

temperature 

1. True second-order 

transition temperature 

poorly defined 
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Free volume theory was introduced by Eyring et al primarily states free volume in the form of segmented 

voids as a vital part for the onset of molecular motion (98). Secondly, it relates the coefficient of expansion 

above and below the Tg, and third, it relates the viscoelastic motion to the variables of time and 

temperature.  

 

The kinetic theory defines Tg as the temperature at which the relaxation time for the segmental motions in 

the main polymer chain is of the same order of magnitude as the time scale of the experiment. The theory 

approaches the rate of equilibrium of the system accounting for the motion of the voids and molecules.  The 

kinetic theory also provides numerical information about the heat capacities below and above the Tg.  There 

are various models or method postulated pertaining to the kinetic theory such as Vol'kenshtein–Ptitsyn 

relaxation theory (99), Tool–Narayanaswamy–Moynihan method (100), Kovacs method (101), and Adam–

Gibbs theory (102). A comprehensive review of all these theories/models is given by Tropin et al (103). The 

thermodynamic theory introduces the notion of equilibrium and the requirement for true second-order 

transition, even at infinitely long scales which was proposed by Gibbs and DiMarzio (104).  It successfully 

predicts the variation of Tg with molecular weight, crosslink density, and diluent content (97). 

 

The free volume needed for calculations in these theories is found by subtracting the occupied volume from 

the total volume (105). The free volume numbers have different estimations due to different definitions of 

the occupied volume. Therefore, there are variations in the free volume number fraction. Table 1-4 outlines 

the various theories that estimate the free volume fraction. 

Table 1-4: Summary of free volume numbers from four models (97). 

Theory Free volume fraction Reference  
WLF 0.025 (106) 

Hirai and Eyring 0.08 (107) 

Miller 0.12 (108) 

Simha-Boyer 0.113 (109) 
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• Glass transition (Tg) 

The glass transition is a phenomenon that is observed when an amorphous material is supercooled rapidly 

(no nucleation or crystallization), the material forms a glass whereby the macroscopic dynamics either 

ceases or is infinitesimally slower than the characteristics measurement time. The temperature at which 

this occurs is the Tg (110). The same holds true when heating that the glassy material changes into a 

rubbery material indicating it is a reversible process. The transition is a kinetic process and the Tg is 

dependent upon the cooling rate for a given material (111). Faster cooling result in higher Tg and slower 

cooling result in lower Tg. Figure 1-11 shows the volume changes as a function of temperature. Generally, 

an amorphous polymer has a single Tg (112). Blends can exhibit one or two Tg depending on their miscibility 

or immiscibility, which is discussed later (113). Tg is a second-order phase transition, unlike melting, which is 

a first-order transition whereby latent heat is involved. At Tg, there are changes in derivative 

thermodynamic properties such as heat capacity, coefficient of thermal expansion, mechanical modulus, 

and dielectric constant. (114, 115). There are also other physical changes in entropy, rigidity and viscosity 

(111). As viscosity is one of the indicators, Tg has also been noted as the temperature, at which the shear 

viscosity is equal to 1013 Poise or 1012 Pa s (116). 

 
Figure 1-11: Volume of various states of materials as affected by temperature (117). 
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Based on the derivative thermodynamic property changes mentioned, there are different methods to 

characterize the Tg of a material. The first is volumetric methods operating based on volume changes using 

dilatometry and thermal mechanical analysis (118). The second is mechanical or dielectric methods 

operating based on changes in storage modulus or changes in dielectric loss constant using dynamic 

mechanical analysis and dielectric analysis (119). The third is a moisture sorption technique operating based 

on changes in moisture uptake which switches from adsorption to absorption (120). The fourth is 

thermodynamic analysis operating based on changes in specific heat capacity using a differential scanning 

calorimetry (121).  

• Glass transition for Blends 

Polymeric blends can have three instances of Tg depending on the miscibility (122). For miscible blends 

which are a single phase, a single Tg is observed which can be calculated using the Fox equation or Gordon-

Taylor equation, shown by equation 1-1 and 1-2 respectively. For immiscible blends, the original two 

individual Tg of the constituting materials is observed. Thermodynamically, there is always some degree of 

molecular mixing of one component in another component but this negligible, and therefore still taken as 

an immiscible blend. For partially miscible blends, there are two separate Tg but both are more shifted 

toward the Tg of the other polymer (97, 122, 123). The Tg behaviours are shown in Figure 1-12. Such shifted 

Tg was observed in the works of using epoxy and acrylate polymer in a ratio of 60/40%, weight-wise, where 

the Tg of pure epoxy was 120oC, which shifted down (inward towards acrylate) to 95oC, while the Tg of pure 

acrylate was -40oC which shifted up (also inward toward epoxy) to -10oC, indicating a partial blend (often 

referred as a semi-miscible blend) (124). 

Fox Equation 
1

𝑇𝑔
=

𝑊1

𝑇𝑔1
+

𝑊2

𝑇𝑔2
 (125) Equation 1-1 

Gordon-Taylor Equation 𝑇𝑔 =
𝑊1𝑇𝑔1 + 𝑘 ⋅ 𝑊2 ⋅ 𝑇𝑔2

𝑊1 + 𝑘 ⋅ 𝑊2
 (121) Equation 1-2 

where W1 is the weight fraction of homopolymer 1, W2 is the weight fraction of homopolymer 2, Tg1 

and Tg2 are the individual glass transition of polymer 1 and 2, and k is a fitting parameter.  
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Figure 1-12: Schematic plots of shifts expected in Tg for the three blend scenarios (123). 

It is seen that miscibility is an important factor that affects the Tg. In this work, the Tg was used to assess the 

polymer blends in chapter 4. Two cases of polymer blends were prepared: miscible and semi-miscible blend. 

1.2 Main scope of this project 

1.2.1 Polymer behaviour in aqueous media 

Polymer dissolution is wherein the polymer immersed in a solvent undergoes two transport processes, one 

being solvent diffusion and the other being chain disentanglement (126). Ueberreiter describes the process 

being initiated by the solvent as it pushes into the polymer. As the solvent pushes into the polymer, the 

polymer may or may not swell. In either case, the most outer layer of the polymer is disentangled and flows 

in the bulk of solvent direction (solution medium). As time passes and the solvent penetrates further, a 

quasi-stationary equilibrium is reached where the transport rate of polymer into the solvent is balanced by 

ingress rate of solution into the polymer (127). Ueberreiter also first summarized regions of a glassy 

swellable polymer based on layering composition shown in Figure 1-13. The infiltration layer, next to the 

pure polymer, is characterized by many intermolecular spaces through which molecules from the pure 
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polymer layer can penetrate, starting the diffusion process. The solid swollen layer has been described as a 

build up layer which is still in the glassy state. The gel layer contains the polymer material that is eroded but 

held in this state due to the rubbery state of this layer. The final layer before the pure solvent is a liquid 

layer which encapsulated the entire polymer system (127). 

 
Figure 1-13: Schematic of the surface layer of a polymer during dissolution. The chain disentanglement is in opposite direction to 
solvent diffusion. Adapted from reference (126). 

Factors affecting polymer dissolution can be polymer related or external. Polymer related factors are 

molecular weight (127), polydispersity (128), structure (129), composition (130), stereochemistry (131), and 

solvent and additives (132). External factors include agitation (133), temperature (128), and radiation (134).  

 

Regarding molecular weight, the dissolution rate decreases with increasing polymer weight in a nonlinear 

trend. It was observed that the dissolution rate was inversely related up to a critical molecular weight and 

thereafter, the dissolution rate plateaus. Below this critical molecular weight, dissolution occurred by stress 

cracking. Parsonage et al. concluded that the dissolution is controlled by chain disentanglement, which is a 

function of polymer molecular weight (135). Larger molecular weights yield higher levels of entanglement. 

Therefore, these molecular weights have a higher degree of swelling before dissolution occurs. 

 

In addition to the molecular weight of the polymer, the dissolution process can also be affected by chain 

chemistry, composition, and stereochemistry. A polymer dissolves either by exhibiting a thick swollen layer 

or by undergoing extensive cracking, depending on how fast the osmotic pressure stress that builds up in 

the polymer matrix is relieved. Therefore, the nature of the polymer’s differences in free volume, and 

segmental stiffness are responsible for behaviour variations from polymer to polymer. It was also found that 
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the dissolution behaviour is profoundly affected by the tacticity of the polymer (129). Gipstein et al 

observed variations of dissolution behaviour with stereochemistry in that the solubility rate of isotactic 

PMMA is much greater than that for the syndiotactic and heterotactic stereo forms (131). 

 

The type of penetrating solvent can also have a profound effect on polymer dissolution. Ouano and 

Carothers studied the dissolution of PMMA in several solvents and found that crack occurred quicker with 

the smaller, better solvents than bulky and poorer solvent (129). This was because of higher diffusion rates 

and swelling power of these solvent molecules. They concluded that if the internal pressure builds up faster 

than the glassy matrix can relax, through gradual swelling, a fracture can result. It was also pointed out that 

polymer morphology at the molecular level has a strong influence on the kinematics of dissolution. 

 

External parameters such as agitation and temperature as well as radiation exposure can influence the 

dissolution process. It was found that the rate of dissolution increases with the agitation and stirring 

frequency of the solvent due to a decrease of the thickness of the surface layer, and the dissolution rate 

approaches a limiting value if the pressure of the solvent against the surface of the polymer is increased at 

all temperatures (127). Drummond et al studied the effects of radiation with samples of P(MMA-co-MAH) 

with Methyl ethyl ketone, it was shown that the dissolution process is a function of radiation dose (134). 

 

It is noted that the underlying phenomenon of the polymer behaviour can be divided into three processes, 

which consists of the solvent diffusion(known as hydration), the expansion of polymeric network (known as 

swelling), and the polymer chain disentanglement into the solvent (known as erosion).  

1.2.1.1 Hydration 

Hydration refers to the penetration of the solvent into the matrix through the free volume in the material. 

The rate of penetration of liquid into a porous matrix is driven by the interplay between the capillary forces 

that promote fluid movement towards the interior and the viscous forces that oppose the liquid movement 

(136). It was noted that the process of sorption/desorption has been noted to be complex and non-linear 



 

24 

depending on the polymer morphology and chemistry. For example, two distinct hydration profiles were 

observed for the same polymer by Moy et al (137). The overall response of hydrated polymers is further 

influenced by factors such as water induced relaxation in the host polymer (138, 139). McBrierty et al 

summarized the factors that impact hydration of polymers (140). In summary, the behaviour of water is 

influenced by physical/spatial as well as chemical interactions. Chemical effects include hydrogen bonding 

to binding sites such as ion clusters, ester, amide, carboxyl and polar sites (141). A hierarchy of interactions 

has been proposed in order of decreasing energy. They are as such: ion-ion > water-ion > water-polar = 

polar-polar = water-water > water-hydrophobic (142).  

 

Experimentally, hydration was measured in this work by measuring mass changes. For mass changes to infer 

hydration, equation 1-3 has been used (143). In this equation, the moisture absorption is simple ratio-wise 

change equation which describes the absorption as an incremental increase in wet weight (polymer+water) 

as a ratio to the initial weight in terms of percentage. Other techniques such as NMR and Magnetic 

Resonance Imaging (MRI) has been used to measure hydration in the event of swelling and erosion 

occurring simultaneously. NMR has been used to obtain the diffusion coefficient of solvent and NMR 

imaging has been used to construct a time evolution of hydration (144, 145). Alternative to NMR imaging, 

once the diffusion coefficients are gathered, substituting into appropriate diffusion equations can produce a 

time evolution of hydration. The MRI does this by mapping 1H nuclei associated with mobile water (146).  

                        Hydration % = 
𝑀𝑡−𝑀0

𝑀0
× 100 Equation 1-3 

 

where M0 is the initial mass and Mt is the mass at sample time. In this work, hydration was measured for 

placebo polymers and formulation using the above equation in chapter 4 and 5.  

1.2.1.2 Swelling 

There have been multiple theories to describe swelling in polymers. The kinetics of swelling is a continuous 

process of transition from un-solvated glassy to a relaxed rubbery region. Fick's law of diffusion describes 

solute transport from polymeric matrices. In rubbery polymers, hydration is described by Fickian transport 
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and a concentration dependent diffusion coefficient. Fickian transport refers to the solute transport process 

in which the polymer relaxation time (tr) is much greater than the solvent diffusion time (147). In glassy 

polymers, the lagging reorientation of polymer molecules leads to anomalous effects if conducted near or 

below the Tg.  

 

According to the Bajpai classification, two basic categories arise (148). The first category is the Fickian or 

Case I transport which appears when the Tg of polymer is well below the ambient temperature. Here, the 

polymer chains are very mobile and the solvent penetrates easily. The hydration rate, Rhyd is slower than 

the polymer chain relaxation rate, Rrelax, (Rhyd << Rrelax), as shown by the first (top) scenario of Figure 1-14.  

 

The second category is non-Fickian diffusion, which occurs when the Tg of the polymer is above the ambient 

temperature. For non-Fickian diffusion, the polymer chains are less mobile than in Case I transport causing 

slower hydration into the polymer (149). Two subtypes arise in non-Fickian diffusion, depending on the 

hydration rates. They are Case II transport and anomalous transport. If the Rhyd is much faster than the 

Rrelax, Case II transport arises distinguishable by a sharp boundary between the hydrated and non-hydrated 

parts (Rhyd >> Rrelax). This is shown in the third (bottom) scenario in Figure 1-14. In this case, the drug 

molecules penetrate the swollen layer much more in the same amount of time compared to Case I 

transport. In contrast, anomalous transport arises when the hydration rate and relaxation rates are similar 

(Rhyd ≈ Rrelax) (143). This is shown in the second (middle) scenario in Figure 1-14. 
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Figure 1-14: Illustrations of swelling cases. The top is Case I transport, the middle is anomalous transport, and the bottom is Case II 
transport (143). 

Experimentally, swelling is measured by volume changes. Ratio-wise percentages volume changes are 

calculated using Equation 1-4 (150). In this work, the swelling was measured for placebo polymers and 

formulation using the equation in chapter 4 and 5. 

                     Swell % = 
𝑉𝑡−𝑉0

𝑉0
× 100     Equation 1-4 

where V0 is the initial volume and Vt is the volume at sample time. 
 

1.2.1.3 Erosion 

Erosion is defined as the loss of mass through the physical dissolution of a polymer. This can result either 

due to dissolution and diffusion of the polymeric chains or via chain scission, followed by dissolution and 

diffusion (151). The chain scission is also referred to as chemical degradation that occurs due to hydrolysis 

for biodegradable polymers (152, 153). This degradation is reflected by loss of molecular weight while 

erosion is reflected by mass loss (154). In the case of degradation, hydration must occur before hydrolysis 

can occur. Polymer erosion is a more complex process as it depends on many other processes besides 
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degradation, such as morphological changes and characteristics of the oligomers formed (155). The 

resultant oligomers and monomers are more soluble than the polymers. The dissolved products eventually 

diffuse away from the polymer system shown in Figure 1-15.  

 
Figure 1-15: The combination of processes leading to erosion (153). 

There are two macroscopic mechanisms via which erosion occurs: bulk erosion (homogeneous erosion) or 

surface erosion (heterogeneous erosion). In bulk erosion, the solvent hydrates (Rhyd) into the polymer faster 

than polymer scission (Rsci) causing the polymer to degrade at the same rate throughout the bulk of the 

system (Rhyd >> Rsci). Bulk eroding polymer retains the original geometry and size during most of the 

dissolution process but the chain scission occurs throughout the material. The molecular weight and the 

mechanical strength of the specimens decrease in time during the erosion process. The decrease in 

molecular weight occurs essentially from the beginning of the degradation process, whereas loss of mass is 

much delayed. The external dimensions of the polymer material remain essentially unchanged until the 

material disintegrates at a critical time point. (156). Conversely, if the polymer scission is faster than the 

hydration, then erosion only occurs at the areas closest to the surface (Rhyd << Rsci). Size and mass of the 

device decrease in time, whereas molecular weight and mechanical properties of the polymer device 

remain unchanged. In surface erosion, the rate of mass loss is proportional to the surface area (156, 157). In 

drug delivery, such polymeric systems are favourable due to the predictability of the erosion process which 
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can be related to the drug release directly (158). The two mechanisms of erosion along with the loss of 

mass, molecular weight, and strength are shown of the polymer system are shown in Figure 1-16. In this 

work, erosion was studied for the placebo polymers in chapters 4 and 5 which include Hypromellose acetate 

succinate (HPMCAS), Poly-ethylene oxide (PEO), Poly-vinyl alcohol (PVA), Poly-ε-caprolactone (PCL), Poly-

(vinylpyrrolidone-co-Vinyl Acetate (PVPVA), Soluplus, and xanthan gum. More details about these polymers 

are given in chapter 2. Some polymers such as PCL have been well studied to show surface erosion while 

others cannot be assigned one route exclusively (159, 160).  

 

Whether a polymer undergoes surface or bulk erosion cannot be unequivocally assigned. Erosion model has 

been prepared by Burkersroda et al using an erosion number (ε). Erosion number is an expression which is 

the ratio between diffusion time and chemical chain scission time. For ε >>1, surface erosion occurs while 

for ε << 1, bulk erosion occurs, and ε = 1, prediction cannot be made (161). A list of the driving factors of 

erosion was stated in the works of Burkersroda et al which are a multifactorial and complex dynamic 

interplay of degradation, swelling, dissolution, diffusion of oligomers and monomers, and even more factors 

for electrically erodible polymer or pH changes for pH-sensitive polymers (153, 155). Furthermore, the 

morphology of the polymer (crystalline vs amorphous) was shown to have different erosion rates (162). 

 

Experimentally, erosion has been measured by dry mass changes shown by Equation 1-5 (163). The 

difference between hydration and erosion in terms of the sampled weight used is that the hydration 

measures wet mass including the weight of the solvent and erosion uses dry mass which is the weight 

material only after drying.  

                           Erosion % = 
𝑀𝑡−𝑀0

𝑀0
× 100     Equation 1-5 

where M0 is the initial dry mass and Mt is the dry mass at sample time. Predicting polymer dissolution 

behaviour can be predicted from the measurement of the three factors described which is discussed next.  
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Figure 1-16: A) Surface erosion and (B) Bulk erosion. The strength, mass, and MW due to erosion in both cases are shown (156, 164). 

1.2.2 Drug release behaviour of solid dispersions 
Drug release is the process in which the drug is released from the polymeric matrix. Polymeric matrices 

release the drug in one of two ways: diffusion or erosion (151). In the case of diffusion-controlled release, 

the drug molecules translocate from the initial position in the matrix to the outer surface and onto the 

solvent through dissolution (165). The drug concentration gradient in the polymer matrix is the driving force 

for the molecules to diffuse into the surrounding medium. The highest concentration of the drug is in the 

non-hydrated dry regions of the matrix and the lowest is in the bulk of the solvent (166). The factors that 

impact the diffusion of a drug molecule is dependent upon the solubility of the drug in the polymer matrix, 

the concentration of drug in the matrix, and the diffusional pathlength. Many polymeric matrices have drug 

molecules on the surface of the matrix. Upon immersion into a solvent, the release of these drug molecules 

is controlled by the rate of diffusion of the drug into the surrounding environment. This can lead to “burst 

release” phenomenon (167). 

 

For erosion controlled release, the two types of erosion discussed earlier are possible to be exhibited. If 

water is confined to the surface of the matrix, as in the case of hydrophobic polymers, polymer hydration 

will occur only on the surface and drug will be released as the surface of the polymer matrix erodes. 
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Alternatively, if the water penetrates the polymer matrix faster than dissolution at the surface, then erosion 

will occur throughout the entire material and the drug will be released by bulk erosion (151). Based on the 

type of controlled release kinetics, three types of drug release model have been formulated. They are as 

follows (147):  

• Diffusion controlled models 

• Dissolution based models 

• Erosion based models 

Diffusions controlled models are derived from Fick’s I and II law of diffusion. To predict drug release profiles, 

the diffusion coefficient of the solute within the polymer matrix should be available, which could be 

measured by NMR and fluorescence correlation spectroscopy (168). Such models have many assumptions. 

They assume diffusion takes place only in one dimension, have a constant drug diffusion coefficient for the 

entire duration, have no matrix swelling or erosion of the bulk material, the drug is initially homogeneously 

distributed within the matrix, mass transfer resistance due to liquid unstirred boundary layers at the surface 

of the matrix is negligible compared to mass transfer resistance due to diffusion within the matrix, and drug 

dissolution is rapid and complete upon exposure to the solvent (147, 169, 170). Examples of diffusion 

models are the Higuchi model, Noyes-Whitney equation, Nernst–Brunner equation (165, 171). In this work, 

there are no polymeric matrix formulations that do not erode nor swell. In other words, all matrix 

formulations either swell or erode. For example, zein formulations used in this work do not erode but do 

swell significantly. As such, diffusion-controlled models only are not appropriate for describing release 

kinetics from zein formulations.  

 

The second type of model is dissolution based models. Narasimhan and Peppas developed a model for 

polymer dissolution based on the molecular mechanism (172). These models assume a constant drug and 

solvent diffusion coefficient and moving boundaries (147). Moving boundaries indicate volume changes. 

Such models have shown to successfully capture Fickian and Case II type behaviour in the works of 

Narasimhan and Peppas wherein release profile of cimetidine hydrochloride from PVA tablet and sodium 



 

31 

diclofenac from a PVA tablet were fitted to the experimental data and the equation (172). Examples of 

dissolution based model are the Narasimhan-Peppas model and the Gompertz model (172, 173). 

 

The third type of model is erosion based models. Such erosion based models are divided into two main 

groups based on the approach of erosion evolution. The first group is the diffusion-and-reaction model, 

which suggests the description of the erosion process as a combination of polymer diffusion and reaction. 

Majority of models in this group have been used to model bulk eroding process but there is also Monte 

Carlo technique that has been used for bulk eroding systems (174, 175). The second group is the cellular-

automata model, assumes the erosion process as a random event (169). Majority of the second group of 

models assume the matrix surface detachment is commonly the rate-controlling step, and therefore the 

models are applied for the surface-eroding system. The erosion models, in general, assume constant 

material erosion rate and constant surface detachment of drug. Examples of erosion based models are the 

Weibull model, Hopfenberg model, and Hixson-Crowell model (170, 171, 176). 

 

There are additional numerous empirical models that have been established may help explain the transport 

mechanism. Examples are Ritger-Peppas, Peppas-Sahlin, and Alfrey equations (147). However, these models 

do not provide additional insights into a more complex transport mechanism. Furthermore, these models 

may yield misinformation when there is a need for taking into account specific physicochemical processes 

(177). For example, Ritger-Peppas and Peppas-Sahlin equations have been applied to describe the release of 

sodium salicylate from HPMC tablets, indicating a non-Fickian drug release mechanism. The study also 

revealed that polymer erosion, swelling and dissolution were all involved in the release process and the 

authors suggested that the conclusion of a non-Fickian drug release mechanism, based on the diffusional 

exponent (n) of the Peppas models was misleading (178). One particular empirical model, being used 

frequently, is the Korsmeyer-Peppas model, shown by equation 1-6 (179, 180). Korsmeyer-Peppas has been 

successful in explaining 60% (or more in some cases) of the drug release profile of formulations that contain 

soluble and insoluble APIs and poorly soluble polymers. In such cases, significant swelling of the insoluble 
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polymer occurs after the partial dissolution of polymers and the drug, leading to the quick appearance of 

pores or even large cavities full of liquid through which the drug diffuses (169). Release from those systems 

was not well described by any other empirical models (181). Korsmeyer-Peppas has been successfully 

employed in cases wherein the rate of drug release follows neither the process of diffusion nor that of 

erosion (182). An exception to the application of this model is for mucoadhesive erodible formulations 

(183). Since Korsmeyer-Peppas is well suited to fit the drug release profile, this model was used for all the 

drug release profiles for all the formulations in chapter 3 and 5.  

                       
𝑀𝑡

𝑀∞
= 𝑘𝑡𝑛

 Equation 1-6 

where Mt is mass at time t, 𝑀∞ is the total drug mass at infinite time, k is the drug release constant, and n is 

the drug release index. These empirical models have been used generally for three major geometries 

(shown in Figure 1-17) as all geometries can be simplified to three underlying geometries: slabs, spheres, 

and cylinders (184). Within the matrix system, there exists monolithic solutions and monolithic dispersions. 

Monolithic dispersions are polymeric matrices where the drug concentration in the matrix is higher than 

drug solubility. All polymeric matrices in this work were monolithic dispersions and of cylindrical geometry. 

 
Figure 1-17: Diffusion controlled monolithic geometries. Cini is the initial concentration and Cs is the saturation concentration (184). 
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1.2.3 Predicting drug release profiles 
The aim of controlled release systems in the context of personalized medicine is to achieve a drug release 

profile that is tailored to the patient’s clinical needs. The aim of sustained release, extended release, and 

immediate release dosage has been explored extensively in pharmaceutics (44). The factors affecting drug 

release are the drug, the release medium, and the matrix material. Of the three factors, the drug and 

release medium is not alterable. The drug is required by the patient and the release medium in the body is 

fixed to be either in pH 1.2 or 6.8. This leaves only the matrix material alterable. Of the existing works 

undertaken for controlled release, there is a plethora of literature that focuses on chemical modifications 

(185-193), and physical modifications (194-197). Such works for chemical modifications have included 

manipulation of pH-sensitive interactions between polymers by Chen et al to enhance the drug release 

profile (185) and using different polymer MW by Maggie et al to achieve an altered drug release profile 

(190), while physical modification includes the creation of pores in the formulation by Ghasemi et al (197). 

In recent years with the advancement of technology, the mathematical modelling aspect has been 

witnessed more in pharmaceutics (161, 170, 198). The benefits of such mathematical modelling with 

regards to controlled release systems have been discussed. One of the advantages that mathematical 

models provide is that they yield quantitative information about the system. This characteristics information 

can be combined with statistics which can give rise to the classification of polymers and drug (199).  

 

An existing commercial software named GastroPlus® aims to be able to simulate a desired drug release 

profile of the formulated product based on the input information of the excipients used and geometry of 

the dosage form. The input information for this operation from the user consists of start and end times of 

the dissolution, the buffer media pH, the paddle speed, and dissolution media volume (200). The drug 

release profile is generated using one of the three options. The first of these is using the classical Nernst-

Brunner model (Equation 1-7) while the second and third options are using the Johnson model (200). 

Depending on the particle shape, either spherical or cylindrical, the appropriate Johnson-spherical (Equation 

1-8) or Johnson-cylindrical (Equation 1-9) model is used, respectively.  
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ⅆ𝑀𝑈

ⅆ𝑡
= − [

3𝐷𝛾

ℎ𝑟𝜌
(𝐶𝑠 −

𝑀𝐷

𝑉
)] 𝑀𝑈 Equation 1-7 

where 𝑀𝑈 is the amount of undissolved drug, 𝑀𝐷 is the amount of dissolved drug, 𝛾 is a unitless calibration 

constant, V is the volume of dissolution medium, ρ is the density of the drug, D is the diffusion coefficient, h 

is the diffusion layer thickness, and CS is the solubility at the particle’s surface. 

ⅆ𝑀𝑈𝑖

ⅆ𝑡
= − [

3𝐷𝛾

ℎ𝑖𝑟0𝑖𝜌
(𝐶𝑠 −

𝑀𝐷𝑡

𝑉
)] (𝑀𝑈0𝑖)

1/3
(𝑀𝑈𝑖)1∕3 Equation 1-8 

where 𝑀𝑈𝑖 is the amount undissolved drug of the ith particle, 𝑀𝑈𝑜 is the initial amount of undissolved drug, 

and 𝑟0 is the initial particle radius. 

ⅆ𝑀𝑈𝑖

ⅆ𝑡
= − [

𝐷𝛾

ℎ𝑖𝑟0𝑖𝜌
(𝐶𝑠 −

𝑀𝐷𝑡

𝑉
)] (𝑀𝑈0𝑖)

1/3
(𝑀𝑈𝑖)1∕3

(1 + 2𝑠)

𝑠
 Equation 1-9 

 
where s is the shape factor is (L/D) obtained by dividing L(length) by diameter (D). GastroPlus has been used 

for a wide variety of pharmacodynamic and pharmacokinetic modelling in humans and animals including the 

prediction of in Vitro drug release profiles for the development of extended release doxazosin tablets (201), 

correlating In Vitro profile with In Vivo absorption of efavirenz tablets to develop generic medications (202). 

1.2.4 Objectives of the research 

FDM 3DP is most commonly advocated for the development of polypills which can be personalized. The 

method of drug impregnation for drug loading into filament has shown low yielding. Therefore, HME 

coupled with FDM is an alternate method of filament preparation that allows great flexibility during 

manufacturing with drug loading, carrier polymer blending, and molecular dispersion of drug. HME, being in 

the pharmaceutical industry, has been well studied. However, no literature on sources of errors of HME-

FDM as a coupled process exists. Therefore, the first objective of this project (Chapter 3) is to probe the 

sources of errors during a pharmaceutical HME-FDM 3DP coupled process which can then be used to 

improve the precision when FDM 3DP is used for pharmaceutical applications.  

 

To achieve personalization, precision in drug release from oral dosage is inevitable. Developing a tool to 

guide the design of the dosage form that can deliver the desired drug release profile to suit each patient will 
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move the field closer to its intended clinical application. Therefore, understanding the formulation 

behaviour for polymers and drug is important at the macroscale. Understanding the macroscale behaviour 

in terms of hydration, swelling, and erosion of the polymer can help predict the drug release for a given 

class or type of drug in a pre-experiment scenario. Furthermore, the quantitative information deduced from 

applying the appropriate mathematical model to the appropriate geometry can be combined with statistics 

to create a classified dataset, which can be the beginnings of a database. This classification can aid in the 

creation of personalised dosage form that exhibits the desired release profile. Thus, the following specific 

objectives are the focus of Chapter 4-6: 

1. Investigate the predictability of pharmaceutical polymers and polymer blends behaviour (swelling, 

hydration, and erosion) in aqueous media.  

2. Investigate the effects of the key physicochemical properties of the drug on drug release and the 

significance of the role that the polymer plays in controlling the drug release.  

3. Build a classification approach to describe the characteristic drug release profiles of polymeric 

based dispersions.  

4. Use the information generated by the classification approach to build a dataset, with the attempt to 

enable the guided selection of the appropriate polymer to achieve a desired drug release profile for 

a given type of drug.  
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Chapter 2: Materials and Methods 

2.1 Introduction 
This chapter provides the specific characteristic information of the materials, the working principles, and 

general methodologies of the processing and characterisation techniques used throughout the project. The 

materials consist of polymers and drugs. The polymers used in this work were a copolymer of acrylic & 

methacrylic acid esters & quaternary ammonium groups (Eudragit RS), Xanthan gum, Polycaprolactone 

(PCL), Poly1-vinylpyrrolidone-co-Vinyl Acetate (PVPVA), Poly(vinyl caprolactam-polyvinyl acetate-

polyethylene glycol) graft copolymer (PCL-PVAc-PEG) also known as Soluplus, polyvinyl alcohol (PVA), 

polyethylene oxide (PEO), Hypromellose acetate succinate (HPMCAS), and purified zein. The model drugs 

used in this work were paracetamol, lidocaine, and ibuprofen. The reason for using these drugs was that the 

drugs exhibit different ionized charges at pH 1.2 and pH 6.8 as well as different levels of solubility. 

 

The samples in this work were prepared by hot melt extrusion and/or FDM 3D printing. Once the solid 

dispersion based filaments or dosages were prepared, characterization was performed to understand their 

physiochemical properties by using differential scanning calorimetry (DSC), thermogravimetric analysis 

(TGA), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Ultraviolet 

spectrometer (UV) was used to evaluate in vitro drug release performance. Finally, the statistical techniques 

used to analyse the data is also discussed in detail in this chapter.  

2.2 Materials 

2.2.1 Paracetamol (PCM) 

Paracetamol, also known as Acetaminophen, is an antipyretic, non-opioid analgesic, and non-steroidal anti-

inflammatory drug of Biopharmaceutics Classification System (BCS) class III. The IUPAC name of PCM is N-(4-

hydroxyphenyl)acetamide (203). PCM used in the thesis was brought from Sigma Aldrich (CAS Number: 103-

90-2) with a purity of ≥ 99% (204). The structure and the physical properties are summarised in Table 2-1. 



 

37 

2.2.2 Lidocaine (LID) 
Lidocaine, also known as lignocaine, is an amide-type local anaesthetic and Class 1b antiarrhythmic 

frequently used for its anaesthetic and antiarrhythmic benefits and in the treatment of chronic pain (205, 

206). It is of BCS class I. The IUPAC name of lidocaine is 2-(Diethylamino)-N-(2,6-dimethylphenyl)acetamide 

(207). LID was selected as a model drug due to the positive ionized state in the ranges below PH 7. LID used 

in the thesis was brought from Sigma Aldrich (Dorset, UK) (CAS Num: 137-58-6) with a purity of ≥ 98% (208). 

The structure and the physical properties of LID are presented in Table 2-1. 

2.2.3 Ibuprofen (IBU) 

Ibuprofen is an NSAID with anti-inflammatory, analgesic, and antipyretic properties commonly used to treat 

fever, pain arising from inflammation and post-surgery, and rheumatoid arthritis (209). It is of BCS class II. 

The IUPAC name for IBU is 2-(4-isobutylphenyl)propionic acid (210). IBU was selected as an opposing 

charged API to LID for the anionic charge it posses in the identical pH and its hydrophobic nature (211, 212). 

IBU, used in the thesis, was brought from Sigma Aldrich (Dorset, UK) (CAS Num: 15687-27-1) with a purity of 

≥ 98% (213). The structure and physical properties are enlisted in Table 2-1. 

Table 2-1: Physical properties of the three model drugs. 

Properties 
 

Paracetamol 
 

Lidocaine 
 

Ibuprofen 

Formula CH3CONHC6H4OH C14H22N2O C13H18O2 

Molecular Weight (g/mol) 151.16 (214) 234.34 (208) 206.28 (213) 

Solubility (g/L) 17.39 at 300C (215) 22 at 370C (216) 0.021 at 250C (210) 

pKa 9.38 (203) 8.01 (207) 5.3 (210) 

LogP 0.46 (203) 2.44 (207) 3.97 (210) 

Density (g/cm3) 1.31 (203) 1.01 (217) 1.08 (218) 

Glass Transition Temperature (°C) 21.4 (219) -60 (220) - 45 (221, 222) 
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2.2.4 Hypromellose acetate succinate (HPMCAS) 
HPMCAS is a pH-responsive cellulose derivative, in particular a cellulose ester, containing acetyl and 

succinoyl groups (223). Cellulose derivatives are generally categorized into three groups based on pH-

responsiveness and chemistry as pH responsiveness, hydrophilicity, and hydrophobicity shown in Figure 2-1. 

 

Figure 2-1: The classification of cellulose based polymers. HPMCAS is categorized as cellulose succinate encircled in red (224). 

The structure of HPMCAS is shown in Figure 2-2. HPMCAS possesses four types of substituents which are 

substituted on the hydroxyl groups: methoxy (12%−28%, w/w); hydroxypropyl (4%−23%, w/w); acetate (2% 

−16%, w/w); and succinate (4%−28%, w/w) (225) making it relatively hydrophobic. Due to the succinate 

groups, HPMCAS has a pKa of about 5 (226). Below pH 4, 10% of the polymer ionizes while at least 50% are 

ionized above pH 5. The pH-dependent solubility can be attributed to the ratio of succinate and acetyl 

groups. Hence, different grades of HPMCAS have different pH-dependent solubilities, which are summarized 

in Table 2-2. HPMCAS grades have Tg ranging from 120 °C to 135 °C (227). 

Table 2-2: The succinate and acetyl group ratios in different HPMCAS grades and their soluble pH (225, 228). 

HPMCAS grade Succinoyl (%) Acetyl (%) Dissolved pH 

L-grade 15 8 >5.5 

M-grade 11 9 >6.0 

H-grade 7 12 >6.5 

 
HPMCAS when partially ionized, minimizes the formation of large polymer aggregates which allows 

drug/polymer colloids to form. The hydrophobic regions of HPMCAS can interact with insoluble parts of 
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poorly water-soluble drug molecules, resulting in amorphous drug/polymer complex in solution while the 

hydrophilic regions can allow the structure to be stable in the aqueous solution (225). The negatively 

charged succinate groups keep these nanostructures stable, evading the large hydrophobic aggregates of 

the polymer and drug in solution. HPMCAS used in this work was purchased from Shin-Etsu Chemical Co Ltd. 

(Niigata, Japan) AS-LF grade with an average molecular weight (MW) of 18000g/mol and white fine powder 

appearance. By composition, methoxy is 22.3%, hydroxypropoxy is 6.7%, succinoyl is 18.1%, and acetyl is 

5.7%. The Tg of this grade is 121°C and the range of solubility of this HPMCAS is pH 5.5 to pH 8 (229).  

 
Figure 2-2: HPMCAS structure 

2.2.5 Zein 

Zein is a major storage protein of corn (230). It is a natural protein located in the endosperm of corn 

accounting for almost 50% of the total protein content of whole grain of corn (231). Zein is extracted by wet 

milling from corn gluten meal by solvent extraction using isopropanol (232). Zein is available as a yellow 

powder whose colour is due to the xanthophylls remaining bound with zein by hydrophobic interaction. 

Zein is classified as prolamin protein which has high proportions of one of the three constituents or 

combinations of them; proline and glutamine, all of which are aliphatic amino acid (233). Zein has high 

proportions of hydrophobic amino acids including 20% of leucine, 10% of proline and 10% of alanine (234, 

235). This is the cause of high surface hydrophobicity (236). Zein has been further grouped based on varying 
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molecular weights (237) and solubility in solutions of 0 to 95% isopropyl alcohol (233). The three major 

fractions/groups categorized are α-zein (19 and 22 kDa) accounting for 75–80% of total zein, β-zein (17–18 

kDa) accounting for 10-15% of total zein, and γ-zein (16 and 27 kDa) accounting for 5–10% of the total zein. 

With regards to pharmaceutical applications, zein has been used in tablets and caplets as it is a unique 

matrix former. Zein matrices do not erode (238) but undergo hydration and swelling and can potentially 

increase by more than 200% of the initial mass (14, 160). Such level of hydration can be compared to 

hydrophilic matrices (163) and is significantly greater than that of insoluble matrices (239). In addition to 

this, zein is an excellent candidate due to its natural origin, swelling and self-assembling properties. Purified 

zein used in this work was purchased from Acros (New Jersey, USA) (CAS #: 9010-66-6) with greater than 

91.0% protein content (240). The Tg of pure zein is reported to be approximately 150 °C (241).  

2.2.6 Poly (Ethylene Oxide) (PEO) 
PEO is a hydrophilic, linear polymer available in several molecular weights ranging from 100,000 to 

8,000,000. PEO is a synthetic polymer with the same chemical structure as PEG but higher molecular weight. 

The structure is shown in Figure 2-3. As unbranched linear macromolecules, the grades of PEO differ with 

the length of molecular chains. Polymers with molecular weight less than 100,000 are usually called PEGs 

while higher molecular weight polymers are classified as PEO (242).  

 

PEO can be completely dissolved in both cold and hot water but will precipitate out when the temperature 

of the solution is close to the boiling point of water, called cloud point. This cloud point is affected by the 

concentration, the molecular weight of PEO, the concentration of salts, and the pH (243). The dissolution 

rate of PEO is very slow. The dry powder is easy to be wetted by water, but it tends to form agglomeration 

and gel if it is not dispersed properly when dissolving into water. The Tg of PEO products ranges from -50oC 

to -57oC and molecular weight do not have a significant impact on the Tg (243) within the family of products 

 
Figure 2-3: PEO structure 
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PEO has been used for oral dosages taking advantage of the bioadhesive properties (244, 245) and as an 

osmotic pump tablet (246, 247). The adhesiveness arises due to the long linear chain structure that allows 

them to form a strong interpenetrating network with the mucus (248). Likewise, the osmotic pump 

potential arises due to the aqueous solubility and can be used to create high osmotic pressure (249). It is 

also used as a thickening agent swelling seven times the initial weight (250). PEO used in this work was 

purchased from Colorcon (Kent, UK) Polyox WSR 301 NF with MW of 4,000,000 (251). 

2.2.7 Poly-(Vinyl Alcohol) (PVA) 

PVA is a whitish, tasteless, odourless, non-toxic, biocompatible, thermostable, granular or powdered semi-

crystalline linear synthetic polymer (252, 253). The monomeric structure of PVA is shown in Figure 2-4. The 

physicochemical and mechanical attributes of PVA are governed by the number of hydroxyl groups present 

in the PVA (254). The period length of the saponification reaction determines the degree of hydrolysis of 

PVA. Based on the degree of hydrolysis and MW, different grades of PVA are available on the market having 

different characteristics including melting point, viscosity, pH, refractive index, and band gap (255). The 

effect of variation in vinyl acetate length and degree of hydrolysis under acidic or alkaline conditions results 

in various congeners of PVA having different flexibility, tensile strength, dispersing power, emulsification 

index, adhesiveness, and solubility (256).  

 
Figure 2-4: PVA structure 

PVA has been widely used in the field of 3D printed caplets (46, 257-259). PVA is also well known hydrogel 

materials and having good biocompatibility has many other applications such as used in contact lenses, 

implants, drug delivery systems, medical implants and also wound dressing (260). The PVA used in this work 

was gifted as a sample from Kuraray (Hattersheim, Germany) under the brand name Mowiflex C17 (purity 

>96%) supplied in the form of pellets. The average MW is 50000 g/mol and Tg of this sample is 60 °C. The 

indicated melt flow index is 14-20 g/10min (190 °C, 21.6kg) (261). 
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2.2.8 Poly (ε-caprolactone) (PCL) 
PCL is a polymer composed of hexanoate repeat units in the class of aliphatic polyesters (262). PCL is a 

hydrophobic, semi-crystalline polymer with up to 50% crystallinity (263, 264). The crystallinity and 

molecular weight dictate the physical, thermal, and mechanical properties, and the degradation of PCL 

(264). PCL structure is shown in Figure 2-5.  

 
Figure 2-5: PCL structure  

PCL has a wide range of applications. The good solubility of PCL, its low melting point and exceptional blend-

compatibility has made it a good candidate for research in the biomedical field (265). PCL is used in 

controlled drug delivery systems due to three factors: 1) due to its permeability ensuring uniform API 

distribution in the matrix producing a reliable sustained release of the API (266, 267); 2) due to its slow 

degradation via hydrolysis (268); 3) while undergoing biodegradation, there is a minimal generation of an 

acidic environment as compared to other polyesters such as PLA and polyglycolic acid (264). The PCL used in 

this work was purchased from Perstorp (Malmö, Sweden) brand graded as CAPA 6800 (CAS #: 24980-41-4) 

supplied in granular 3mm pellets. The average MW is 80,000 g/mol, water content of 0.35%, Tg is -61°C, and 

the melting temperature is 62°C (269). The degree of crystallinity of PCL has been reported to be 67% (270). 

2.2.9 Poly (vinylpyrrolidone-co-Vinyl Acetate) (PVPVA) 
PVPVA is a copolymer of vinylpyrrolidone and vinyl acetate in a ratio of 6:4 manufactured by polymerization 

in isopropanol. Since 40% is replaced with lipophilic vinyl acetate functional groups and therefore it is less 

hygroscopic than the homopolymer system (271). It is very soluble (>10%) in hydrophilic liquids and 

hydrophobic solvents (272). Commercial PVPVA is yellowish-white in colour with fine particle size (<100μm) 

and good flow properties (273). The structure of PVPVA is shown in Figure 2-6.  
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Figure 2-6: PVPVA structure.  

PVPVA has a wide range of usages. Usage in oral formulations includes enhancement in solubility and 

bioavailability of the drug poorly water-soluble drugs like indomethacin, tolbutamide, and nifedipine, (274). 

The PVPVA grade used in this work was Kollidon64 from BASF (Ludwigshafen, Germany). This grade of 

PVPVA has a Tg of 111 °C, Tm of 140 °C, pKa of -2.5, and solubility of greater than 300g/L (275, 276).  

2.2.10 Eudragit® RS 100 

Eudragit is the trade name for a common class of polyacrylates and polymethacrylates. Polymethacrylates 

are synthetic cationic and anionic polymers of dimethylaminoethyl methacrylates, methacrylic acid, and 

methacrylic acid esters in varying ratios (277). The commonly used Eudragit for the preparation of 

controlled release solid dispersions is Eudragit L, Eudragit RL, and Eudragit RS, Eudragit RLPO and Eudragit 

RSPO (272).  

 

Eudragit RS and RSPO are copolymers of ethyl acrylate, methyl methacrylate and low content of methacrylic 

acid ester with 5% of functional quaternary ammonium groups (272). The MW of this grade is also 32,000 

g/mol. Different subgrades of RS exist in different forms. RS100 is granules while RSPO is powder. This grade 

of Eudragit is insoluble (278). For all works in this thesis, Eudragit RS100 has been used purchased from 

Evonik (Essen, Germany) supplied as granules, with MW of ≈32000 g/mol and Tg of 64 °C (279). The 

structure of Eudragit RS100 is shown in Figure 2-7. 
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Figure 2-7: Eudragit RS structure. The R groups are from reference (277). 

2.2.11 Soluplus® 

Soluplus is a graft polymer consisting of polyvinyl caprolactam-polyvinyl acetate polyethylene glycol (PCL-

PVAc-PEG). It has been designed for preparing solid solutions of poorly water soluble API by HME due to low 

Tg of 70 °C and thermal stability at high temperatures (280). The average molecular weight of Soluplus 

ranges from 90,000 to 140,000 g/mol (281). Soluplus has an amphiphilic structure shown in Figure 2-8 with 

high aqueous solubility (≈50%). Commercial soluplus is a free flowing white-yellowish granule with a faint 

odour (280). Soluplus used in this work was purchased from BASF (Ludwigshafen, Germany) (CAS #: 402932-

23-4) with MW of ≈118,000 g/mol, Tg of 70 °C, and density of 1.082 g/cm³ (282). 

 
Figure 2-8: Soluplus structure. 

2.2.12 Xanthan Gum (XG) 
Xanthan gum is an extracellular anionic heteropolysaccharide produced by fermentation of carbohydrates 

(283). The primary structure of XG consists of repeating pentasaccharide units (284) shown in Figure 2-9. XG 

has many desirable properties making it of significant industrial interest. One of the characteristics is the 
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manipulation of the rheology of XG in water systems making it a widely used thickener and stabilizer. The 

stability is due to two components; primarily the ordered conformation of XG is believed to be responsible 

for the stability, and secondary is further stabilization by addition of salt. Cations in order Na+<K+<Ca+2, can 

promote intermolecular cross-linking and strengthening the gel network (285, 286). The resultant of this is 

XG exhibits pH independent stability which is unaffected over ranges of pH 1 to pH 13 (283, 287) and 

temperature stability up to 90 °C (288). The XG used in this work was purchased from CPKelco 

(Leatherhead, UK). The brand name is Xantural 180 (CAS #: 11138-66-2) supplied as a white fine powder 

with purity greater than 91% (289). The Tg of xanthan gum has been determined to be between -16.4 and -

23.3 °C (290). 

 
Figure 2-9: XG structure. From reference (291). 

2.2.13 Acrylonitrile butadiene styrene (ABS) 

ABS is a thermoplastic copolymer whose structures of the monomers are shown in Figure 2-10. The 

proportions of the monomers typically range from 15% to 35% acrylonitrile, 5% to 30% butadiene and 40% 

to 60% styrene (292). ABS used is in this work was purchased from MakerBot (Brooklyn, USA) as a 3DP 

filament consisting of ABS resin (CAS #: 9003-56-9) greater than 98% and styrene (CAS #: 100-42-5) less than 

0.1% (293) with Tg of 105°C and filament diameter of 1.75 mm (294). ABS was used in this study as a control 

printed object to the PVA torus printed which is the theme in chapter 3. 
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Figure 2-10: Chemical structures of ABS raw materials. 

2.3 Processing methods 

2.3.1 Hot Melt Extrusion (HME) 

The details of the working principle of HME have been discussed in Chapter 1 and therefore, only 

experimental set up is described here. The raw materials were fed in through the hopper. The hot melt 

extruder used in this work was twin screw that has co-and counter-rotating twin screw option (Thermo 

Scientific HAAKE MiniLab II) with a maximum of 5g of material limit at a given time and volume of 7cm3
 

(295). The extrusion temperature was 30 °C above the Tg or melting point. The screw speed was 100 rpm for 

all samples. All extrudates were tested in triplicates. HME technique was used to make pure polymer 

extrudates (studied in Chapter 4) and drug loaded polymeric dispersions (studied in Chapters 3 and 5).  

2.3.2 FDM 3D Printing (FDM 3DP) 
The FDM 3DP was used in this study to prepare solid dispersions in tori shape in Chapter 3 using PVA with 

paracetamol as a formulation (PVA-PCM), and ABS as another. Makerbot Replicator 2X desktop 3DP with 

dual extrusion (MakerBot Industries, LLC) was used with dosages designed in blender software, an open-

source 3D computer graphics software used for creating animation, visual effects, and 3D printed models, 

and finally imported for printing through Makerbot (Brooklyn, USA) ThingiVerse software preinstalled on 

Makerbot (296). The printing temperature for commercial ABS was as per manufacturer recommendation of 

220 °C, while for the PVA-PCM formulation was printed at 170oC, 185oC, 185oC, and 190oC. The platform 

temperature for ABS was 110 °C as per manufacturer recommendation, while 100 °C was used for PVA-PCM 

filaments. Each formulation was printed in triplicates.  
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2.4 Material characterisation methods 

2.4.1 Differential scanning calorimetry (DSC) 

DSC is one of the most common thermoanalysis techniques. DSC is a highly sensitive technique used to 

determine the thermotropic properties of excipients or actives. The primary function of DSC is to determine 

the energetics of phase transitions and conformational changes and subsequently quantifying based on the 

temperature dependence (297). This is achieved by measuring the heat flow difference into the sample and 

a reference as a function of temperature, while both are maintained at an identical temperature for the 

duration (298). Using this flow rate difference, it is possible to detect and characterize the melting 

temperature, the glass transition temperature, the recrystallization temperature, the degradation 

temperature, and the temperatures of polymorphic formations (299) as well as the degree of purity, the 

heat of fusion, heat of reactions, and kinetic determination of chemical reactions, such as curing (300, 301). 

There are two types of commercial DSC; one being powered compensation DSC and the other being heat-

flux DSC. The benefit is that both of these DSC cases require minute quantities of a sample between 0.1-10 

mg will suffice and operating temperatures range from -180 oC to 700 oC (298). In the heat-flux DSC, a single 

furnace contains both the sample and the reference pans as shown in Figure 2-11. The pans are put on a 

heated thermoelectric disk. Attached thermocouples at the bottom of the thermoelectric disk monitor the 

differential heat flow producing a change in thermocouple signal which is directly proportional to a change 

in temperature. The heat flow signal is measured as a function of thermal resistance shown by equation 2-1.  

                                                       
𝑑𝑄

𝑑𝑡
=

𝛥𝑇

𝑅
                                                   Equation 2-1 

Where dQ/dt is the heat flow, ΔT is the temperature difference between the sample and reference, and R is 

the thermal resistance of the heating disk. This heat flow (dQ/dt) can also be expressed in terms of specific 

heat capacity (Cp), which is defined as the energy supplied to increase the temperature of a material by one 

degree Kelvin, as shown by equation 2-2.  

                                                                  
𝑑𝑄

𝑑𝑡
= 𝐶𝑝 ⋅

𝑑𝑇

𝑑𝑡
+ 𝑓(𝑇, 𝑡)                                                          Equation 2-2 
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where dQ/dt is the heat flow, Cp is the sample specific heat capacity, dT/dt is the heating rate and f (T,t) is 

the kinetic event that is a function of time at an absolute temperature. The kinetic event can be events such 

as polymer relaxation, melting, and crystallization. With these two equations, it is possible to combine heat 

capacity combined with the kinetics of the sample. A resulting DSC thermogram is shown in Figure 2-13. 

 
Figure 2-11: Schematic of the furnace interior of a heat flux DSC (298). 

In a power compensated DSC, two separate heating elements are used: one for the sample and one for the 

reference. The sample and reference stay at the same temperature and any change in the temperature 

between the sample and the reference acts as a signal to “turn on” one of the heaters. When any chemical 

or physical changes such as reaction, phase change, or glass transition occur in the sample, there is a 

difference in temperature of the sample and reference. This leads to extra power to be directed to the cell 

at the lower temperature to heat it to keep the temperature of the sample and the reference cells as 

constant (ΔT = 0) throughout the experiment. In this way, the power and the temperatures of the sample 

and reference are measured accurately and continuously using Pt resistance sensors (shown in Figure 2-12). 

 
Figure 2-12: Schematics of power compensated DSC (298). 
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The DSC used in this work was A Q-2000 (TA Instruments, Newcastle, DE, USA), which is a heat flux DSC, to 

characterise the polymers powders/pellets, the APIs powder, and the formulation extrudates and 3D 

printed solid dispersions. All samples were weighed up to 3 mg and TA standard aluminium crimped pans 

were used. The standard procedure was to heat at rates of 10 °C/min in the range between -50 to 240 °C 

followed by cooling at 10 °C/min to the starting temperature and reheat at 10 °C/min for all samples. A 

constant nitrogen purge was applied at the 50 mL/min. Samples were tested in triplicate. 

 
Figure 2-13: DSC thermogram showing thermal kinetic events. The area under the curve can be calculated to give the enthalpy of the 
event (298). 

2.4.2 Thermogravimetric Analysis (TGA) 

TGA is a widely used technique for characterising a system by measuring changes in physicochemical 

properties at elevated temperatures either as a function of increasing temperature or time (302). Results 

from such analysis are used to determine the thermal and oxidation stability of materials. It also provides 

information about the components of a material, decomposition kinetics, moisture and volatile content of 

materials (303). Weight loss during analysis is usually an indication of decomposition, evaporation, 

reduction or desorption. On the other hand, weight gain indicates oxidation or absorption. The basic 

operation for TGA is a precision balance is used to weight the sample and placed in a furnace that is 

programmed for a linear rise of temperature with time (302). The resulting graph can have three features; a 

plateau implying constant weight, a curve implying the rate of weight loss, and an inflexion, at which the 
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weight change is minimum but not zero, implying the formation of an intermediate compound (302, 304). 

The TGA used in this study was TGA Q5000 (TA Instruments, Newcastle, USA) for evaluating the thermal 

stability of polymers, APIs, formulation, and physical mixtures. The standard procedure was to heat at rates 

of 10°C/min from 25 °C to 400 °C. All samples were done in triplicates. 

2.4.3 Fourier transform infrared (FTIR) 
FTIR has a wide range of applications from analysis of small molecules or molecular complexes to the 

analysis of cells or tissues (305). In the case of pharmaceutics, it is used for the former two cases. The IR 

region is beyond 700 nm (the ending of visible wavelength) and the classical IR region extends from 200 to 

4000 cm-1. Within this region, subdivisions have been made; Far infrared (400–10 cm−1), mid-infrared 

(4,000–400 cm−1), and near-infrared (13,000–4,000 cm−1) (306). The energies associated in this region are 

low enough to suffice molecules to vibrate but not to cause electron transitions. This leads to the basic 

operating principle of FTIR which is probing molecular vibrations. The IR band absorbed correspond with the 

vibration of certain functional groups (307). The FTIR measurement can be carried out in the modality of 

transmission or reflectance. An IR spectrum is obtained by determining what fraction of the incident IR is 

absorbed or reflected at a particular frequency. Therefore, IR spectroscopy can decipher the molecular 

structure as the spectra contain vibrations uniquely dependant on atomic masses, bond strengths, and 

intra-and intermolecular interactions (306).  

 

The hardware of FTIR consists of an interferometer and the schematic of a two beam Michelson 

interferometer is shown in Figure 2-14 which consists of a fixed and a moveable perpendicular mirror. 

Thereafter Fourier transformation is used to convert the interferogram to a spectrum via a computer 

program. When this is done in the absence of any sample, it results in the base spectrum and when done in 

the presence of a sample, it produces the sample spectrum (306).  
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Figure 2-14: Schematic of a Michelson interferometer (306). 

There are two modalities of FTIR operation which are transmittance and reflection. In transmission, the IR 

source illuminates the sample and the detector is placed behind the sample to acquire the fraction of light 

transmitted through the sample. In such cases, the sample must be at partly transparent. Transmission 

mode has been used to analyze thin samples such as films (308) or tissues (309) but it is not possible with 

thicker tablets. In contrast, for reflection, the detector is placed on the same side of the sample as the 

source to record the signal reflected by the sample. The two types of reflection measurement commonly 

used in the characterisation of pharmaceutical materials are attenuated total reflection (ATR) and diffuse 

reflection (DRIFTS) (306).  

 

In ATR, the sample is placed in optical contact against a special crystal, termed the ATR crystal, which is 

composed of a material with a high index of refraction. The IR beam is focused onto the bevelled edge of 

the ATR element by a set of mirrors which is reflected through the crystal, and then directed to the detector 

by another set of mirrors while in DRIFTS, the IR beam interacts with the sample and is scattered by 

interaction with the particles. A fraction of this beam is reflected by the sample and recorded by the 

detector. The two methods of measurements are shown in Figure 2-15.  
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Figure 2-15: a) ATR crystal schematic. b) DRIFTS measurement schematic. Adapted from (306, 310) 

In this study, FTIR was used to characterise the samples and to study the interactions between drug and 

polymers in the formulations for chapters 4 and 5. IFS 66/S spectrometer (Bruker Optics Ltd., Coventry, 

U.K.) equipped with a Golden Gate heated top plate attenuated total reflectance accessory (Specac Ltd., 

Orpington, U.K) was used to perform the IR spectroscopic studies. The spectrum reading was taken between 

4000 and 550 cm−1 with 2.0 cm−1 resolution and 32 scans. All samples were examined in triplicate. OPUS 

software version 7.8 was used to analyse ATR-FTIR spectra. 

2.4.4 Ultraviolet Spectrophotometry (UV-vis) 
UV-vis uses ultraviolet light which is ranges from 800 - 200 nm and is based on Beer-Lambert law (Equation 

2-3) which states that the absorbance of a solution is directly proportional to the concentration of the 

absorbing species in the solution and path length. Hence, if the path length is fixed, it can be used to 

determine the concentration from the absorbance in a solution.  

                 A= 𝜀ℓc Equation 2-3 

where A is absorbance, 𝜀 is molar absorption coefficient, ℓ is the optical path length, and c is the molar 

concentration. The principle of UV-vis is that molecule or ion will exhibit absorption in the visible or 

ultraviolet region when radiation causes an electronic transition within its structure. Thus, the absorption of 

light by a sample in the ultraviolet or visible region is accompanied by a change in the electronic state of the 

molecules in the sample. The energy supplied by the light will promote electrons from their ground state 

orbital to higher energy, excited state orbital or anti-bonding orbital (311). Since each electron in a molecule 

has a unique ground state energy, and because the discrete levels to which it may jump are also unique, any 

absorbed energy will correspond to a specific wavelength. The specific wavelength at which the absorption 
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occurred can be plotted spatially along with any absorption data at wavelengths over the UV region creating 

the UV absorption spectrum (312). The schematic of the UV procedure is shown in Figure 2-16. 

 
Figure 2-16: UV data capture process (313). 

In this study, UV-vis was used to evaluate the drug release concentrations of lidocaine, ibuprofen, and 

paracetamol formulations in chapters 5 and chapter 3 (paracetamol only) as a part of the in vitro studies. 

The UV-vis (PerkinElmer Lambda 35, Llantrisant, UK) was used with ranges from 190–1100 nm and the 

resulting spectrum was analysed on UV Winlab software (version 2.85.04) supplied by PerkinElmer (314).  

2.4.5 Drug Loading Efficiency 

The amount of drug loaded in the HME extrudates which consisted of paracetamol and PVA in Chapter 3, 

lidocaine within zein, HPMCAS, and PEO, ibuprofen within zein, HPMCAS, and PEO, and paracetamol within 

zein, HPMCAS, and PEO matrices in Chapter 5 were measured by dissolving the solid dispersion samples in a 

beaker containing 250 ml of buffer pH 1.2 and ethanol (organic solvent) and measuring the UV absorbance 

of the solution. A similar procedure was followed for measuring drug efficiency in pH 6.8 where the 

extrudates were dissolved in a beaker containing 250 ml of buffer pH 6.8 and ethanol. After complete 

dissolution, 5 ml samples were withdrawn and filtered using 0.45 μm pore size (Minisart NML single use 

syringe, Sartorius, UK). The filtered samples then scanned for their content of the API (lidocaine, ibuprofen, 
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and paracetamol) using a UV–VIS at the max peak wavelength (λmax) 220 nm, 264 nm, and 243 nm for 

lidocaine, ibuprofen, and paracetamol, respectively. The max peak wavelength of each drug was obtained 

by screening across the full spectrum of each sample. The loading efficiency was measured in triplicates. 

2.4.6 In vitro dissolution studies 

In vitro dissolution study is the core of and the final parameter to be measured that allows for the bridging 

of further data analysis and the culminating aspect (drug release) of all the previous steps carried out, which 

included all the preformulation work and formulation work. The dissolution test is carried out in a 

dissolution apparatus according to official pharmacopoeia for reasons of evaluating drug release 

quantitatively in terms of kinetic parameters from formulations (315). This is done for quality control and 

research and development to check if drug content uniformity is within acceptable limits (316). According to 

USP recommendations, there are four official USP apparatus; USP apparatus I (Basket), USP apparatus II 

(Paddle), USP apparatus III (Reciprocating Cylinder), and USP apparatus IV (Flow Through Cell) (317). 

 

In this study, USP apparatus II (Copley CIS 8000, Copley Scientific Ltd., Nottingham, U.K.) was used as shown 

in Figure 2-17. The experiments were performed at 37 °C ± 0.5 °C with a paddle speed rotation of 100 rpm 

in 900 ml of pH 1.2 and pH 6.8, under sink conditions, for all HME polymer placebo extrudates in chapter 4, 

HME formulation extrudates in chapter 5, and FDM 3D printed formulation in chapter 3. The justification of 

performing in sink conditions is that all dissolution models, which were discussed in section 1.2.3, are valid 

in sink conditions. The media was sampled at times of predetermined times and filtered through an 0.45 μm 

filter. The drug concentration was measured by UV-Vis spectroscopy at the sampled time intervals. The in 

vitro drug release studies were done in triplicates. 
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Figure 2-17: USP Apparatus II as described by USP standards (318). 

2.5 Advanced Statistical Methods 
In this section, the advanced statistical methods used in analysing the data will be discussed. These include 

classification schemes such as K-means, prediction schemes such as artificial neural network, and dimension 

reduction technique such as principal component analysis which are used in Chapter 6. The first of these 

methods to appear chronologically in Chapter 6 is K-means clustering which is discussed next. All analysis 

was performed on SPSS (statistical software package) from IBM version 25. 
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2.5.1 K-means Clustering 
K-means clustering is a common clustering technique. K-means clustering consists of four steps. The first 

step is termed ‘initialization’ wherein cluster points (k points) are randomly generated in the space, which 

are used as initial centroids. The second step is termed ‘classification’ wherein the distances from all the 

objects (data points) to all the centroids (cluster mean point) are calculated and each object is assigned to 

its closest centroid. The third step is termed ‘centroid calculation’ wherein new centroids are calculated 

using the mean value of the objects that belong to each cluster. This is iterated until the fourth step is 

reached, which is ‘convergence’ wherein no object migrations from one cluster to another is possible due to 

absolute minimization of distance calculation that has been achieved (319). Therefore, the algorithm has 

reached equilibrium and terminates with the output of clusters graphically generated. This process is 

summarized in Figure 2-18. 

 
Figure 2-18: Standard K-means algorithm (319). 

In this study, K-means clustering was performed on the dataset of polymer placebo behaviours and 

formulation drug release parameters in chapter 6 to obtain the centroid value of each cluster. The number 

of clusters was determined to be four clusters in the case of polymers and two or three clusters for 

formulations. The basis for the number of clusters is discussed more in chapter 6. 

2.5.2 Principal Component Analysis (PCA) 
PCA is a multivariate dimension reduction technique that is used to reduce complicated sets of data 

containing possibly correlated variables (320). PCA method of reduction is preferred because the systematic 

variation of a single variable is desired in scientific study. However, in sciences, researchers frequently 
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collect measurements on several variables simultaneously which are mostly exhibiting some degree of 

correlation. Therefore, it is inherent that PCA must reduce large datasets in an adaptive and insightful way 

and assumes that the phenomena of interest can be explained by the variances and covariances between 

the variables in the original dataset (321).  

 

Mathematically, PCA reduces the dimensionality by taking interrelated variables, x1, x2, …, xp, and finding 

combinations of these based upon variances to produce a transformed set of variables, z1, z2, …, zp, that are 

uncorrelated. The indices zi are called the principal components (PC) (321). The resultant graph is termed 

loading plot and an example of a PCA transformed loading plot is shown in Figure 2-19.  

 
Figure 2-19: Original data in cartesian coordinates on the left and the output on the right after PCA is performed. The transformed 
coordinates are in term of PC1 and PC2, which are the two axes (322). 

The number of PC that most efficiently explains the data is a key step and is achieved by a scree test or 

scree plot which involves eigenanalysis (323, 324). Eigen analysis forms from finding the eigenvectors and 

eigenvalues of the covariance matrix. In a scree plot, the x-axis is the number of eigenvalues determined. 

The eigenvalues are ordered from the strongest to weakest in terms of the effect on the dataset. The y-axis 

gives the magnitude of the eigenvalues from the covariance matrix diagonalization. Based on the scree plot, 

two methods exist in literature to choose the number of PC for analysis. The first is eigenvalue one criterion 

wherein the choice of the number of PC is based on the number of components with eigenvalues higher 
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than the value of 1 while the second is by the amount of variance explained wherein the chosen numbers of 

PC should explain 70 to 80% of data variance (325). An example scree plot is shown in Figure 2-20. 

 
Figure 2-20: Scree plot of 12 components. The red dashed line indicates the threshold for retention. Three of the components have 
eigenvalues greater than 1 and are therefore retained for analysis. This means the creation of loading plots, in this case, will be with 
three axes, PC1, PC2, and PC3. 

In this study, PCA was used to create loading plots of polymer behaviours (swelling, erosion, and hydration) 

and drug release profiles in order to observe trends of the behaviour. The number of principal components 

was chosen based on the number of components that had eigenvalue higher than 1. 

2.5.3 Artificial Neural Network (ANN) 
The research of neural network ANN has attracted great attention in recent years. ANN is a computational 

structure modelled loosely on biological processes (326). The concept of ANN originated from the study of 

mammal’s brain wherein researchers noticed that the brain consists of billions of interconnected neurons 

and can deal with computationally complex demanding tasks such as face recognition, body motion 

planning, and muscles locomotion control (327). From this concept, ANN aims to be able to emulate the 

learning ability of biological systems (328, 329). Therefore, it is important to emphasize that ANN relies on 

learning strategies. Figure 2-21 illustrates the similarities between ANN and the mammalian brain. 

 

The basics of ANN operations consists of three layers which in order of operations are an input layer, hidden 

layer, and an output layer very similar to the neuron of the mammalian brain (330). The input layer accepts 

signals from the outside world and redistributes these signals to all neurons in the hidden layer where the 

weights of the neurons represent the features in the input patterns. As a result, the output pattern of the 
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entire network is established by the output layer (331). The data flowing from input to the output layer 

requires transfer function, also known as activity functions, which determine the relationship between 

inputs and outputs of a node and a network (332). Thereafter, the learning process comes into effect. More 

than a hundred learning algorithms are available. The greatest advantage of ANN is that it consists of many 

nodes operating in parallel and can communicate with each other through connecting synapses yielding to 

the testing of numerous outcomes (333). Meanwhile, the disadvantage is that a large number of sample size 

is required to learn and validate. Only thereafter can prediction for untested data be considered as a correct 

and reliable output (334). 

 
Figure 2-21: a) A mammalian neuron. The black rectangle signifies the input layer while the blue signifies the output. 
The nodes and sheath are the hidden layer. (b) ANN computational structure Zm is the input, Wlm is the weighting of 
features, and fn(z) is the output. Adapted from reference (327) 

ANN has been used in diverse areas including in pharmaceutics (335). In pharmaceutics, ANN has been used 

to predict the effect of formulation and process variables (336), prediction of in vitro dissolution profiles 

(337), prediction of drug permeability (338), optimizing emulsion formulation (339), determination of 

factors controlling the particle size of nanoparticles (340), investigate the effects of process variables on 

derived properties of spray dried solid dispersions (341), and validation of pharmaceutical processes (342). 

In this study, ANN has been used to investigate the importance of factors relating to formulation dissolution 

profile to predict the drug release profile in chapter 6. 
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Chapter 3: Investigation into the origins of errors in drug 
release measurements of polymeric solid dispersions 
prepared by FDM 3D printing 

3.1 Introduction 
A key focus of this project is to first understand, then attempt to predict the drug release behaviour of 

polymeric based solid dispersions prepared by extrusion-based methods including hot melt extrusion (HME) 

and subsequent FDM 3D printing for the potential applications such as personalised medicine. It is 

important to first establish the reliability and reproducibility of the manufacturing process and the 

measurements of in vitro drug release data. In this chapter, the solid dispersions were prepared using a 

two-step coupled process of HME and FDM 3D printing. The experimental research was to account for 

errors that are generated in the due process. All errors from sample preparation to in vitro dissolution tests 

analysis, following the flowchart illustrated in Figure 3-1, were examined to gain insights into the origins of 

the errors that were observed in the final in vitro drug release data. For any scientific experiments, no 

physical quantity can be measured with perfect certainty thereby making errors unavoidable. This implies 

repeated measurements of a quantity will certainly yield varying values and a range within which the true 

value lies with a specified likelihood. The scientific study of measurement is known as metrology (343). Two 

fundamentals, accuracy and precision are explained in the following section. 

 
Figure 3-1: Mapping the error process pathway of drug release and optimization 
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3.1.1 Accuracy vs Precision 
Experimental error, itself, is measured by its accuracy and precision. Accuracy measures how close a 

measured value is to the true value. Since the true value for a physical quantity may be unknown, it is 

sometimes not possible to determine the accuracy of a measurement. Precision measures how closely two 

or more measurements agree with others. Precision is referred to as repeatability or reproducibility. A 

highly reproducible measurement tends to give values which are very close to each other (344). Figure 3-2 

illustrates the difference between precision and accuracy.  

 
Figure 3-2: The four outcomes of varying accuracy and precision 

3.1.2 Types of errors 
The true value is the value that is unique and expected from measurements in the absence of any errors (4). 

Three error types exist in measurement theory. They are systematic, random, and gross errors. Gross errors 

arise due to humans which can be eliminated by a careful recording of the data (343). Examples of gross 

errors include instrument reading before a steady state is reached or parallax error (perceived shift in an 

object's position as it is viewed from different angles) in reading a measurement. Systematic error is hard to 

detect but once detected, is correctable. Systematic error is either constant or proportional to the 

measurement. Systematic errors influence the accuracy of measurement (345). Examples of systematic 

error are imperfect instrument calibration.  

 

Random errors are two-sided errors as the variation in measurement occur unpredictably above or lower 

than the measured mean value or the true value (3). Random errors can be easily detected and can be 

reduced by repeating the measurement or by refining the measurement method. Random errors directly 



 

62 

affect the precision of a measurement. The smaller the random error, the more the precision (345, 346). 

Common sources of random errors are problems estimating a quantity that lies between the graduations on 

an instrument and the inability to read an instrument because the reading fluctuates while measuring.  

 

Figure 3-3 shows the Gaussian distribution of probability curves. The systematic and random errors are 

visualizable from this illustration. The systematic error is the difference between the true mean (theoretical 

value) and the experimental (EXP) measured mean. The systematic error can be either positive or negative 

relative to the true value but often cited as an absolute value (modulus). The random error can be 

calculated with many models but most commonly estimated by the standard deviation (347). 

 

In this chapter, the aim is to assess the errors of drug release measurement from the HME-FDM continuous 

process. The systematic and random errors for HME, 3DP, and UV will be investigated, ranked, and 

optimized to achieve more accurate and predictable drug release.  

 
Figure 3-3: Measurement concept of errors from probability curves. Adapted from reference (343). 

3.2 Materials 
PVA was obtained from Kuraray (Germany) under the trade name Mowiflex C17 as pellets. The melt flow 

index (MFI) is (190 oC, 21,6kg) [17g/10min], Tm ≈ 180 – 200 oC, and the Tg is 60 oC (261). The model drug 

chosen was paracetamol (PCM) bought from Sigma Aldrich (CAS Number: 103-90-2) with a purity of ≥ 99% 
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(204). ABS bought from Makerbot, is an amorphous thermoplastic polymer which is used for manufacturing 

multiple household products and is a commonly used in 3D printing has been used as a controlled polymer 

to PVA with (MFI) is (200 oC, 5kg) [5.5g/10min] and Tg of 105 oC (294, 348). Samples were prepared using 

different combination of polymer and drugs or polymer only placebo for the different stages of error study 

and is summarized in Table 3-1. 

Table 3-1: Materials used as per error study aspects summarized. 

Experiment stage Material 

Drug uniformity by HME PCM loaded PVA extrudates 

Printing reproducibility by FDM printing PVA and ABS torus 

Weight uniformity by FDM printing PVA and ABS torus 

In Vitro drug release quantification by UV Spec PCM loaded PVA extrudates 

 

3.3 Methods 

3.3.1 Hot melt extrusion (HME) 
A Thermofisher HAAKE Minilab II with twin co-rotating screws was used for the preparation of the filaments 

for measuring drug content homogeneity. During the preparation of samples, the screw speed was set to a 

standard 100 rpm. The processing temperature was 10–20 oC higher than the melting temperature (Tm) of 

the polymers. The samples were prepared in two separate batches: one with a residence time of five 

minutes and another with ten minutes. Four different extrusion temperatures for preparation of filament 

were used.  

3.3.1.1 Drug content uniformity of the HME extrudates  

Mowiflex (PVA) mixed with 10% PCM were fed into the extruder. Four filaments were made by HME at 

temperatures of 170oC, 180oC, 185oC, 190oC. Six pieces with a length of 1.5 cm were cut at 5 cm interval 

from each filament to produce six random samples per filament. The cut samples were weighed, and their 

dimensions measured via a digital caliper. All filaments per temperature were done in triplicates. The 

sample illustration is shown in Figure 3-4. 



 

64 

 
Figure 3-4: Schematic of filament sampling. Red dots indicate 1cm (not shown in triplicates) samples taken at 5cm interval indicated 
by the red rectangle across the filaments.  

The weight uniformity is presented as drug weight per polymer weight. Due to the filament flattening under 

gravity when exiting the die from HME, the geometry of the solidified filament is an elliptical cylinder shown 

in Figure 3-5. The volume of an elliptical cylinder is given by 𝑉 = 𝜋 × 𝑎 × 𝑏 × 𝐿, where a is the major radius, 

b is the minor radius, and L is the length, all in centimetres. 

 
Figure 3-5: Elliptical cylinder where a is the semi-major axis; b is the semi-minor axis, and L is the length 

3.3.2 FDM 3D Printing 
The FDM 3DP is the subsequent step after filament production through HME and was used to print oral 

dosage to investigate printing accuracy and precision of the printing process. MakerBot Replicator 2X 

consisting of dual extrusion print nozzles was used. It has a maximum print volume of 15 X 16 X 24.9 cm3, 

nozzle diameter of 1.75mm, and an exit tip diameter of 400 microns (349). The printer has three print 

settings from low to medium to high quality printing whereby the extrusion speed decreases with each 

higher print quality. The printed oral dosage was in the shape of a torus (plural: tori). A torus geometry has 

a mathematical advantage over other geometries in drug release studies. Other geometries as pyramid, 

cube, sphere, and slabs, all of which were considered in the preliminary phase as a validation of the work 

performed by Goyanes et al (350). First, the surface area (SA) to volume (V) ratio can be increased or 
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decreased in a manner that allows either surface area or volume to be constant while altering the other 

parameter. The surface area to volume ratio (calculated: SA/V) is an important indicator of the drug release 

with the torus exhibiting the faster dissolution rate of all (350, 351). Second, the drug release flux can be 

assumed in one direction outward (radially) in polar or spherical coordinates (352). Third, the torus is a 

cylinder wherein the boundaries are adjoined together, effectively postulating it as an infinite cylinder 

illustrated in Figure 3-6. Thus, the equations of a cylinder can be applied in a simpler form where any API 

diffusion at the ends can be neglected, in turn making computations less intensive and less time consuming. 

 
Figure 3-6: a) In polar coordinates, the diffusion occurs in one dimension in the radial direction (r) indicated by the blue arrows while 
is θ the angle at which the radial diffusion takes place. b) The starting cylinder if curved and joined end to end forms a torus which is 
effectively an infinite cylinder. 

3.3.2.1 Reproducibility of 3DP torus  

The reproducibility of the FDM 3DP was investigated by observing any difference in physical dimensions 

between the designed and printed specifications of the torus. The dimensions refer to the diameter and the 

annulus, which were measured using a digital caliper. Figure 3-7 shows these two parameters of the torus 

that was measured. The radius was obtained by halving the diameter values. Twenty tori were printed from 

two filaments of two polymers. Ten tori were prepared in each batch. One batch was using the commercial 

filament ABS while the other was using PVA via HME process. The PVA with PCM filament was prepared at 

HME processing temperature of 190 oC and residence time of five minutes. The printing temperatures for 

PVA formulation were 200 oC and 230 oC for ABS. The selected design specification was a torus diameter of 

14mm and an annulus of 2mm. For a torus, the annulus is equal to the width which is also equal to the 

height. For calculations of the volume of the torus and surface area, equations 3-1 and 3-2 can be used, 

respectively. The null hypothesis (H0) is that no volume difference will be observed.   

V (r,R) = 
1

4
𝜋2(𝑟 + 𝑅)(𝑅 − 𝑟)2 Equation 3-1 
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SA = 𝜋2(𝑅2 − 𝑟2) Equation 3-2 

 
Figure 3-7: Inner radius (r) and outer radius (R) for torus V and SA calculation. A is the annulus (the diameter of the ring) and is equal 
to the height (h). D is the diameter of the torus. 

3.3.2.2 Weight uniformity 

The FDM 3DP tori were weighed using analytical mass balance. It is expected samples of each batch are 

identical and as such, should, therefore, exhibit no weight difference, which is the H0. 

3.3.2.3 In vitro drug release studies 

In vitro drug release studies were carried out in dissolution testing apparatus (Caleva, Germany) using 

British Pharmacopeia (BP) apparatus 2 paddle method.  A paddle rotation speed of 100 rpm and 900 ml of 

Milli-Q deionized water were used with a temperature of 37°C±0.5°C. During dissolution, at predetermined 

time intervals, 5 mL samples were taken and replaced by 5 ml fresh water. The samples were collected 

through filtration membrane of 0.45μm pore size (minisart NML disposable syringes, UK) before UV 

measurements. The sampling times were every three minutes up till fifteen minutes, every thirty minutes 

thereafter, and every hour beyond three hours (3min, 6, 9, 12, 15, 30, 60, ..., 180, 240, …, End). All samples 

were tested using the above in vitro method three times. 

3.3.2.4 Calculation of cumulative error in drug release data 

For the cumulative error in drug release, three tori were prepared using PCM and PVA by using HME-FDM. 

The mean weights and volume of these tori were 0.130±0.041 g and a volume of 117.1±3.4 mm3. The aim 

for investigating cumulative errors in drug release is to be able to predict the variations that will result from 

using drug release models. The drug release model used is the Korsmeyer-Peppas equation which is used to 

analyze both Fickian and non-Fickian drug release from swelling and non-swelling polymeric delivery 

systems of cylindrical geometries, shown in equation 3-3. The aspect ratio (n) indicates the mechanism of 

release. 

D 
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Mt

M0
= 𝑘𝑡𝑛 

          0.45 < n = Fickian, 0.45 < n < 0.89 = Anomalous, n > 0.89 = Case II transport 

Equation 3-3 

 

where 
𝑀𝑡

𝑀0
 is the drug fraction, K is the release rate constant, and n is the aspect ratio. The term anomalous 

refers to non Fickian diffusion which is driven by micro-instabilities obstructing a laminar flow or laminar 

diffusion. The above equation has only one variable: time (t). The other two are constants that can be found 

from curve fitting. Since this equation parametrises the drug release profile, using partial differentials, the 

absolute error for the drug release profile can be estimated. The generic error of a function of n variables 

f(x,y..., i) using partial differentials is given by equation 3-4 (353). 

         Δf =
∂f

∂x
δx +

∂f

∂y
δy + ⋯ +

∂f

∂i
δi    Equation 3-4 

Where 𝛿𝑓 is absolute error in f, 
𝜕𝑓

𝜕𝑖
 = partial derivative of f with respect to i, and δi is error in i. This drug 

release absolute error is given by equation 3-5. The error in sampled drug mass (δMt) value is obtained 

experimentally from UV, thus UV errors (EUV) can substitute the right side expression of equation 3-5. This is 

discussed on the next page where the Beer-Lambert law is introduced. 

                         δMt = (M0kntn−1)δt = 𝐸𝑈𝑉  Equation 3-5 

In the above equation, δt (the time in error sampling) is negligible, especially for automatic dissolution 

machine. In equation 3-5, M0 is taken as a constant and thus error-free but in reality, is an averaged value. 

There are two approaches to obtaining the error in Mo. The first approach is to measure it directly using a 

UV-Vis spec. The second approach is to estimate it from the process steps involved. An error in initial drug 

mass (δM0) exists which arise from the processing steps involved (from HME to 3DP, then to UV). Therefore, 

predicting δMo requires an estimation of the error in each step. In section 3.3.1.1, the drug content 

uniformity is investigated. From this, the initial drug mass error in HME (δMHME) arises. For 3DP, there are 

two approaches to deducing δM0. Both of these approaches are investigated. The errors in 3DP arise in 

volume and weights. The error in volume (δV3DP) is estimated by equation 3-6 and drug mass error in 3DP 

(δM3DP) is directly from weighing after printing. This δM3DP is a direct approach to get δM0. In the case the 
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oral dosage is not weighed, the other approach involves δV3DP. Knowing the δV3DP and the density of the 

drug, δM3DP can be found using 𝑚 = 𝐷𝑉. For example, -20% δV3DP indicates δM3DP is also less by 20% since 

density is constant.  

 

The UV spectrometer relies on the Beer-Lambert law (equation 3-7) containing one variable concentration 

(c). The UV spectrometer error can be subdivided into three types: calibration curve errors, instrumental 

errors, and sampling errors. To deduce calibration curve errors, three calibration curves were prepared for 

PCM in deionized water. The resulting variation will quantify the errors due to calibration curves. To deduce 

instrumental error, the absorbance of one diluted sample was repeatedly obtained. Ten repeat readings 

were done. The sample concentration was 15μg/ml. To deduce sampling error, the absorbance of PCM 

released from ten tori samples were measured at using the mean calibration curve found in the 

investigation of calibration errors. Since the cumulative averaged concentration of the tori can fluctuate 

based on the number of samples, any variations in absorbance is due to sampling error. The cumulative 

averaged concentration converges to a number as the sample size grows larger. This convergence occurs 

because of the sensitivity of random difference in the concentration among each sample diminishes with a 

larger size. The time point chosen for sampling was 3 mins. The three errors combined will give the total 

error in absorbance (δA). The δA is given by equation 3-8. Rearranging equation 3-8, δc can be gathered. 

The error in drug mass from UV (δMUV) is deduced from the c using 𝛿m=δCV, with a volume of 900mL. As 

the experiment is under sink conditions, the volume of the solution can be taken as a constant without any 

errors. 

𝜕𝑉 =
𝜕𝑉

𝜕𝑟
𝛿𝑟 +

𝜕𝑉

𝜕𝑅
𝛿𝑅 =

𝜋2(3𝑟2 − 2𝑟𝑅 − 𝑅2)

4
𝛿𝑟 +

𝜋2(3𝑅2 − 2𝑟𝑅 − 𝑟2)

4
𝛿𝑅 Equation 3-6 

          A = εℓc Equation 3-7 

          δA = εℓδc Equation 3-8 

Where 𝛿𝑟 is the error in inner radius, 𝛿𝑅 is the error in outer radius measurements, ε is the molar 

absorption coefficient, ℓ is the path length, c is the concentration of the solution, 𝛿A is the absorbance 

absolute error and δc is the concentration error. Expressions of cumulative error can be formulated for drug 
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release which includes both Mt (error in sampled mass) as well as Mo (error in initial mass). Mt is indicative 

of UV error while M0 is indicative of HME-FDM production steps. The δMt, in terms of UV, is by combining 

equation 3-5 and equation 3-8 with 𝛿m=δCV, is given by equation 3-9. δM0 from 3DP is given by equation 3-

10. In case the oral dosage is not weighed after 3DP, δM0 is given by equation 3-11, where δM3DP is in terms 

of density and volume (DδV3DP). Lastly, combining equations 3-9 and 3-11, with non-constant M0, gives the 

drug release error in terms of the manufacturing processes, which given by equation 3-12, where the left 

side is δMt (left side of equation 3-9) and δMo (right side of equation 3-12) is the right side of equation 3-11. 

𝛅Mt ≡
𝑉𝛿𝐴1

𝜀ℓ
 Equation 3-9 

𝛅M0 = δM3DP Equation 3-10 

𝛅Mo ≡ 
𝑉𝛿𝐴2

𝜀ℓ
= (

𝜋2(3𝑟2−2𝑟𝑅−𝑅2)

4
𝛿𝑟 +

𝜋2(3𝑅2−2𝑟𝑅−𝑟2)

4
𝛿𝑅) 𝐷 Equation 3-11 

𝑉𝛿𝐴1

𝜀ℓ
= [

𝜋2(3𝑟2 − 2𝑟𝑅 − 𝑅2)

4
𝛿𝑟 +

𝜋2(3𝑅2 − 2𝑟𝑅 − 𝑟2)

4
𝛿𝑅] 𝐷 Equation 3-12 

where V is the volume which in this case is 900mL, A1 is the dissolution sampled absorbance, A2 is the initial 

sample absorbance, and D is the density. 

3.4 Results and discussion 

3.4.1 Characterization of samples 
The characterization of the formulations has been presented in the appendix. The DSC thermograms shown 

in Appendix Figure 1. The 10% drug loading showed a plasticizing effect of the PVA and in amorphous form.  

3.4.2 In vitro drug release studies 

In this section, the error in UV measurement was deduced. Three sources of error arise in measurement by 

using the UV spectrometer (δAUV) which consist of calibration error (δAc), equipment error (δAe), and 

sampling error (δAs). the first of these presented is the δAc. The average of three calibration curves for PCM 

are shown in Table 3-2. The total error was calculated using the following equation: 𝐸𝑇 = (𝐸𝑠
2 + 𝐸𝑟

2)1∕2 

where ET, ES, and Er are total error, systematic error, and random error respectively (354, 355). The 

standard deviation was used to represent the random error. The ES depends on comparing the 
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difference in measurement between the averaged experimental value and the true expected value. 

The true value cannot be determined as the 𝛆 (the molar absorption coefficient) in equation 3-7 is a 

value that is derived from the absorbance, concentration, and length (𝛆=A/ℓc) of which, concentration and 

absorbance, vary simultaneously. However, since the ES is constant and present in every process step, 

the source of error that affects in practice is the Er. Therefore, for δAc, the Er is 1.1x10-3, and thus the ET 

is 1.1x10-3. 

Table 3-2: The variations of calibration and the goodness of fit (R2) measuring the three curves in deionized water. y is the 
absorbance and x is the corresponding concentration obtained from best fits. 

Trials Equation R2 

Calibration Curve 1 y = 0.0617x 0.999 

Calibration Curve 2 y = 0.0596x 0.992 

Calibration Curve 3 y = 0.0604x 0.997 

Average y = 0.0606x 0.996 

Standard Deviation ± 0.0011 - 
 

The equipment error (δAe) was quantified by repeated measurement of absorbance of one of the diluted 

samples. The sample concentration was 15μg/ml and the mean measured absorbance was 0.95520 AU. 

Based on the ten repeated absorbance measurements, the Er of δAe was 1.37x10-4 absorbance units (AU), 

and ET of 1.37x10-4 AU. Figure 3-8 shows the absorbance frequency distribution for repeated measurement. 

 
Figure 3-8: UV absorbance distribution for 15μg/ml sample over ten repeated measurements. The dotted line is the measured mean. 
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The δAS (from sampling) was deduced from the UV absorbance of ten 3DP tori, which is shown in Figure 3-9. 

The δAS exhibited an Er was 0.12 AU equating to an ET of 0.12 AU.  

 
Figure 3-9: UV absorbance distribution of ten samples. The dotted line is the measured mean. 

The δAUV is a linear combination of calibration error (δAc), equipment error (δAe), and sampling error (δAs) 

(𝛿𝐴𝑈𝑉 = 𝛿𝐴𝐶 + 𝛿𝐴𝐼 + 𝛿𝐴𝑠). Figure 3-10 illustrates the contribution, percentwise. The total 𝛿𝐴𝑈𝑉 is 0.121 AU. 

Percentwise ranking shows 𝛿𝐴𝑆>𝛿𝐴𝑐>𝛿𝐴𝑒. Lowest contribution from 𝛿𝐴𝑒  is as expected due to 

instruments undergoing quality control testing for many aspects including accuracy and precision before 

being commercialized (356). The highest δAUV error from sampling was also expected. Two explanations can 

be proposed. First, sampling in UV is the last step in the pipeline of HME-FDM continuous process of oral 

dosage manufacture. This implies, that each of the ten samples has varying errors present; that have 

propagated from earlier manufacture steps. Second, the average sampling error of all the samples and 

sample size have an inversely correlated relationship (357). As the sample size increases, the sampling error 

is lower. A sample size of ten is still low with a high margin of error. Statistical approaches such as Monte 

Carlo simulations have been applied to reduce the sampling error (358, 359). Anderson demonstrated the 
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importance of small sample size affecting sampling error in MC simulations. Due to the small sample size, 

the goodness of fit (R2) was highly sensitive of any outliers compared to larger sample sizes with outliers. 

Smaller sample sizes led to sampling distributions of the likelihood ratio test statistic that were different 

from the corresponding theoretical chi-square distribution (360).  

 
Figure 3-10: A percentwise in terms of the that affects the UV spectrometer. Ae is equipment error replaced 

Furthermore, the convergence of random error with increasing sample size can be deduced from the central 

limit theorem (CLT) (358, 361). Figure 3-11 shows the convergence of δAs for the ten replicates. The 

variance in δAs, found from standard deviation (random error in δAs), for ten samples was scaled to 100,000 

samples. Beyond 100,000, the effect of sample size diminishes. According to CLT, the central value (mean) 

that will be attained when the sample size is large enough is 0.94 AU. The sample size at which this occurs 

was found out to be 99,995. On 99,995th sample, the random error in δAs is zero. 

 
Figure 3-11: Convergence of δAs. The solid curve represents the maximum and minimum absorbance (A±δA) at various sample sizes. 

The dotted-dashed line represents the mean absorbance that is reached at large sample sizes. The double line is the UV absorbance 
limit at 1AU. The scope of the graph has been cut to 1000 samples. Beyond this, the graph is asymptotic and the change is gradual. 
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3.4.3 HME Studies 

3.4.3.1 Measuring drug content uniformity of HME 

With a drug loading of 10%, the weight of the drug per weight of the polymer (mg/g) of the six filament 

samples for the four temperatures is shown in Table 3-3. At residence time of five minutes, the average 

drug homogeneity (column) does show a difference for inter-filament at different processing temperature 

but not significantly different in the case between 170oC and 180oC. The processing temperature of 190oC is 

significantly more homogenous than 170oC or 180oC. It was expected that the standard deviation of weight 

homogeneity for intra-filament would decrease with increasing processing temperature as the melt 

viscosity decreases above the melting of the drug. The Tm of PCM form I is 169oC (203). A decrease in melt 

viscosity allows a smoother flow of the material in the HME barrel. The variance decreased for identical 

processing temperatures of ten minutes of residence. The residence time characterizes the heat energy 

produced over a specific period during the material shear (362). Due to the increased holdup time in time in 

the HME barrel, more homogenous mixing of the API can occur. Li et al reported that the short residence 

time of materials in the extruder is not sufficient to achieve complete API dissolution in the matrix (363). 

However, numerous literature cites prolonged residence times as the cause of drug degradation, which 

suggests the effect of residence time may be parabolic on drug content (362-364). 

Table 3-3: Drug w/w of filament cut samples at the two residence times and various temperatures. 

 5 minutes of residence 10 minutes of residence 

 Temperature (oC) 

 170 180 185 190 170 180 185 190 

Intervals (cm) Drug weight per polymer weight (mg/g) 

5 90.88 59.90 73.44 92.12 73.81 96.14 105.64 96.90 

10 90.13 82.76 78.67 98.65 77.99 93.51 94.43 104.36 

15 116.29 117.20 106.55 103.07 77.46 105.19 85.65 92.24 

20 91.91 141.98 74.48 99.56 74.20 119.98 87.54 98.65 

25 86.18 118.26 53.75 104.86 96.19 122.92 117.49 77.65 

30 161.77 120.31 97.88 100.68 96.16 127.82 119.32 104.34 

Average ± SD: 
106.19 

±29.28 

106.74 

±29.79 

80.80 

±18.89 

99.82 

±4.41 

82.64 

±14.51 

110.93 

±10.30 

101.68 

±14.74 

95.69 

±9.98 

 

Censi et al have reviewed the factors that can be optimized for HME process (365). The focus here is to 

assess the errors in weight uniformity of the HME process. Therefore, it is important to discern the two 
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types of errors quantitatively in the HME. Since each processing temperature is a different population, the 

errors will also be different for each temperature. As an example, the measurement concept of weight 

uniformity for HME processing temperature at 170oC is shown in Figure 3-12. 

 
Figure 3-12: Measurement concept for HME weight uniformity at 170oC. Blue dashed line marks the true (target) value that is 

theoretically expected. The red dashed line is the EXP mean. The black dashed curve is the probability distribution curve. 

The two errors types for each temperature are presented in Figure 3-13. A trend in ET exists of improved 

drug concentration uniformity with increasing HME processing temperature and residence times. 

Extrapolating to where the ET = 0 by fitted to a quadratic equation, yields HME processing temperatures of 

161 oC or 191 oC for 5min residence time and no solution for 10 min residence time. The former 

temperature 161oC is below the Tm of PCM and therefore excluded. The latter temperature is suitable for 

HME. This processing temperature was performed but the error was not eliminated. Additionally, the onset 

of PCM degradation is 240 oC from TGA (366). The FDM printing temperature ranges about 20 to 50oC above 

the HME processing temperature (25). Mackay et al reported the minimum printing temperature required 

for amorphous polymers is Tg+78oC (367, 368). Therefore, an HME processing temperature of 191oC implies 

a print temperature range of 211oC or 241 oC, the higher range of which is sufficient to degrade PCM.  
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Figure 3-13: Error subtypes for HME processing temperature. The 5 or 10 in brackets beside temperature indicate the residence time. 
The trendline fitted to 5 minutes is shown on the bottom left while the trendline for 10 minutes is on the bottom right. 

3.4.4 FDM 3DP studies 

3.4.4.1 Reproducibility of FDM 3DP object dimension 

The comparison of twenty tori dimension is shown in Table 3-4. It was observed that a significant deviation 

for diameter exists from the theoretical (THRY) specification. The expected lower bound for diameter from 

THRY due to printer reproducibility error is 13.89mm (14.00-0.11 from column 1 and row 1 or table 3-3) but 

instead was lower for both polymers. Upper bound diameter from experimental (EXP) measurements also 

fails to attain the lower bound diameter of the THRY specification. This can signify issues for the printer in 

controlling the nozzle over the x-y plane. However, the annulus measurement (also x-y plane) was within 

the THRY specification.  

Table 3-4: Tori dimension comparison. THRY denotes design specification while EXP denotes experimental measurement. 

 
PVA ABS 

Diameter Annulus Height Diameter Annulus Height 

THRY (mm) 14.00 ± 0.11 2.00 ± 0.11 2.000 ± 0.003 14.00 ± 0.11 2.00 ± 0.11 2.000 ± 0.003 

EXP (mm) 13.65 ± 0.07 2.02 ± 0.04 1.99 ± 0.09 13.78 ± 0.09 2.02 ± 0.03 1.98 ± 0.04 
 

One possible explanation for this is shrinking of the sides of the printed layers. During solidification, cooling 

takes place due to the temperature gradient between the oral dosage and the surrounding. As stated in 

chapter 1, cooling occurs by conduction within the layers and by convection at the interfaces between air 
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and object. Ceteris paribus, convection of heat is faster than conduction (369). Due to the position of 3DP 

design, the air at the bottom near the platform and air at the top near the nozzle tip is hotter than the 

region between the two parts. Therefore, the lateral sides of the oral dosage are in contact with cooler air. 

The fastest rate of cooling happens in this direction and hence the fastest rate of solidification and 

accounting for fastest shrinkage. The bottom plate would be the subsequent slower rate of cooling due to 

the slightly lower temperature gradient. The surface layer is in closest proximity to the heated nozzle and is 

always subjected to the most recent deposited layer which is always hotter the layers beneath. Therefore, 

the solidification rate is the slowest in this direction. This phenomenon is shown in Figure 3-14. A 

temperature reading at any point in time during 3DP would show a ranking of Ta < Tb < Tn . 

 
Figure 3-14: Cooling gradient from the object (black torus shape) while successive layers are being deposited. The arrows represent 
outgoing convection. A greater thickness of the arrow represents higher heat flux. The lateral side will always shrink the fastest and 
prone to have the highest deviation. Red region shows the most heated area while the yellow region shows the cooler moderate 
region and the green region shows the lowest heated area. 

In the case of height, which operates in the z plane, the EXP error range (±0.09mm for PVA and ±0.04mm for 

ABS) was greater than the theoretical error range of ±0.01mm. This is most likely due to a ‘double printing 

effect’ that is observed on all the tori. This seems an unavoidable issue for the printing of torus geometry. 

For such geometries where the initial deposition conjoins with final deposition, the strands (printed 

filament) overlap after deposition on the same point of the platform causing an abrupt increase in height, 

which is usually reflected as a variance/error in the z plane. Figure 3-15 illustrates this issue for one of the 

ABS torus printed of the ten tori samples.  

Slowest heat loss 

Nozzle temperature (Tn) 

Air temperature (Ta) 
 

Fastest heat loss 

Build plate (Tb) 
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Figure 3-15: a) Ten ABS tori. b) A closeup of torus # 10 showing the double printing effect upon solidification. 

Overall, experimental results showed that the range of error was lower for the commercial filament ABS 

than PVA (expect for diameter). In chapter 1, the phases of FDM 3DP was divided into three aspects: 

feeding, deposition, and solidification. Any error due to the feeding phase can be eliminated as the oral 

dosage has successfully printed. Solidification accounted for the shrinkage. Therefore, since both polymer 

oral dosage exhibits constantly lower error ranges (indicating a systematic error), a contributing factor can 

be rheological properties during deposition. Wang et al states Melt Flow Index (MFI), crystallinity, and 

plasticization are important for successful 3DP (370). The MFI of PVA is 17g/10min at 190 oC and the MFI of 

ABS is 5.5 g/10min at 200 oC (261, 348). The PVA flows better at lower temperatures. Accounting for the 

external printer factor, Alhijjaj et al concluded the printing speed will have a greater contribution than 

printing temperature (48). However, the printing speed was identical for both polymers. Therefore, the 

printing temperature may be an issue. The printing temperatures of 200 oC for PVA and 230 oC for ABS 

indicate that PVA will flow better due to the MFI difference. This may be the cause of higher error range for 

PVA as the better flow can lead to uncontrolled smearing on the platform before the solidification occurs. 

However, this does not explain the higher error range for ABS (±0.09) than PVA (±0.07). This most likely is a 

random error as this is not constantly reproducible in other dimensions and relative minuscule compared to 

each other (±0.02).  



 

78 

The systematic and random error in terms of resolution (in x, y, and z plane) for ABS and PVA geometries by 

FDM 3DP are presented in Figure 3-17. As an example, the distribution curve for PVA torus diameter is 

shown in Figure 3-16. The diameter indicates the error in the x-y direction resolution of the 3DP. The 

systemic error for the diameter is 0.35mm (14.00mm –13.65mm). The random error is estimated by using 

the standard deviation found to be 0.072mm.  

 
Figure 3-16: Measurement concept for the diameter of PVA. The blue dashed line marks the true value expected from THRY 
specification. The red dashed line is the EXP mean. The black dashed curve is the probability distribution curve.  

It was observed in both cases, the ABS showed higher errors, which was unexpected. ABS is a commercial 

filament with uniform filament thickness and hence consistent feeding into the 3DP. Additionally, the 

rheological and thermal properties required for smoother deposition and solidification respectively for ABS 

is likely optimized. Moreover, it was surprising to observe that the random error in the height of printed 

ABS torus was reasonably similar to the systematic error of ABS height. Although this can make the 

reproducibility of the height a serious technical problem, it should be noted that this random error 

(0.09mm) is identical to the random error in printed PVA torus (0.09mm) and therefore consistent. Yet, the 

systematic error varied by six times (0.12mm/0.02mm) for the height of the two polymers. This is most 

likely due to the double printing effect prominently observed with ABS height but not in PVA height. 
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Figure 3-17: Error types categorized for 3DP resolution in x, y, and z directions. 

Using equation 3-1, the volume of tori can be calculated. The error in the radius for volume is given by 

equation 3-6. The total error found for the diameter of PVA and ABS, after dividing by 2 (𝑅 = 𝐷/2), is taken 

to be the error in major radius (δR). The minor radius (δr) is found by subtracting the annulus from the 

diameter and halving the value. The errors in the volume are discussed in section 3.4.5.1 Case I: δM0 from 

3DP tori volume measurements). 

3.4.4.2 Weight uniformity 

Figure 3-18 depicts the weight per volume distribution. The theoretical weight for the formulation was 

deduced by accounting 90% polymer weight and 10% PCM. The ABS theoretical weight was deduced by 

using theoretical volume with density. The density of ABS is 1.07g/cm3 (371), PVA is 1.25g/cm3 (261), and 

PCM is 1.31g/cm3 (203). It can be observed that weight uniformity is more precise and accurate for ABS. In 

contrast, PVA weight uniformity was relatively less accurate and highly imprecise, as expected. ABS being a 

commercial filament should have more homogenous distribution in the filament. Knowing the systematic 

error of printing resolution to be less than the true value, a lower volume than true volume was expected 

for both ABS and PVA, which was observed. As mentioned earlier, if the weight of the object is measured 

post-printing, the total error in weight for drug is directly from this measurement, which is the δM3DP. The 
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true M3DP of the torus is 0.015g (0.15g/10). The total experimental δM3DP of the ten tori is 0.0081g with a 

random error of 0.0078mg and a systematic error of 0.0025g.  

 
Figure 3-18: Weight vs volume distribution of the printed tori from the two polymers. 

Skewness is a measure of how much the data is nonsymmetric. For the application of any parametric tests 

to the data group, the skewness has to be within ±3; else the results are invalid (372). The PVA with PCM 

loaded filament was prepared at 190 oC via HME. The skewness for the drug weight uniformity (μg/mm3) at 

190 oC is 0.715 (from analyzing Table 3-3 190 oC in SPSS). The printing temperature was 200oC and the 

skewness of the PCM concentration at 200 oC for 3DP is 1.531. As the skewness for both was within ±3, any 

parametric test is valid. For successful printing, the weight of PCM should not significantly differ between 

HME and FDM. Statistically significant lower drug weight indicates drug degradation. Paired sample T-test (a 

parametric test) was used to compare the means of two dependent groups before and after an event was 

employed for the PCM weights (373). The event, in this case, is the printing. The PCM mean drug weight 

from HME process is 131.36 μg/mm3 and the PCM mean drug weight from 3DP process is 123.58 μg/mm3. 

The significance level of the paired T-test was 0.105 for the 95% confidence interval. This is greater than the 

significance level of 0.050 and hence Ho of no difference between the sample is statistically significant. In 

other words, the PCM concentration in the two samples was not altered before and after printing. 
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3.4.5 Cumulative error in drug release 
The left side of equation 3-11 is a measure of the drug mass release during dissolution obtained from the 

UV spectrometer. The δAUV is affected by δAc, δAI, and δAs. In the case of the cumulative error in drug 

release, two scenarios exist. First, the δM0 is derived from volume calculation in the 3DP process step. 

Second, the δM0 is calculated directly from the weight of the printed oral dosage.  

3.4.5.1 Case I: δM0 from 3DP tori volume measurements 

Equation 3-12 outlines the possible error from volume measurements. The drug release is expressed as a 

percentage. The % relative error for a function (f) is given by 
𝛿𝑓

𝑓
× 100 (353). The % relative error for drug 

release is given by rearranging in the form of equation 3-13. δA is the total δAUV excluding the systematic 

error which is 0.121 AU. The reason for excluding the systematic error is that the drug release profile does 

not include any systematic error. The systematic error that exists in the oral dosage, appear in both Mt and 

Mo. For example, an oral dosage can have systematically 50% of the mass compared to theoretical 

specification. This 50% is reflected equally in δMt. Thus, the % relative error is more accurate if the 

systematic error is excluded.  

𝛿 (
𝑀𝑡
𝑀0

)

𝑀𝑡
𝑀0

× 100 =  

𝑉𝛿𝐴
𝜀ℓ

[
𝜋2(9𝑟2 − 2𝑟𝑅 − 𝑅)

4 𝛿𝑟 +
𝜋2(3𝑅2 − 2𝑟𝑅 − 𝑟2)

4 𝛿𝑅] 𝐷

𝑉𝐴
𝜀ℓ

1
4 𝜋2(𝑟 + 𝑅)(𝑅 − 𝑟)2(𝐷)

 

 𝑋 100 Equation 3-13 

Where A1 is the sample absorbance. Since these parameters are constant for any absorbance and radius 

values of triplicate sample size, error bound for the oral dosage profile can be found. With the appropriate 

δr and δR of 0.36mm, and δA of 0.12 AU, the % relative error according to equation 3-13 is ±56%. This has 

been illustrated in Figure 3-19 for a drug release profile. The red curve shows the absolute error bounds. It 

is observed that random error from the experiment is within the absolute error bound. When the upper 

bound of the curve goes above fractional drug release of 100%, the increasing portion of the curve 

thereafter can be taken as a constant valued at 100%. This is because the fractional drug release more than 

100% does not have any physical interpretation.  
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3.4.5.2 Case II: δM0 from 3DP tori mass measurements 

If the oral dosage weight is measured, the δM3DP is directly from the weight measurements. The resulting 

left side of equation 3-10 is simply the δM3DP. Equation 3-14 shows the resulting relative percentage error 

form by dividing equation 3-9 by equation 3-10. 

𝛿 (
𝑀𝑡

𝑀0
)

𝑀𝑡

𝑀0

× 100 =  

𝑉𝛿𝐴
𝜀ℓ

𝛿𝑀3𝐷𝑃

𝑉𝐴
𝜀ℓ

𝑀3𝐷𝑃
 

 𝑋 100 
Equation 3-14 

 

The δM3DP for the ten tori was 7.8mg. This δM3DP is equated to be the δM0. δAUV is 0.12AU which equates to 

a δMt of 1.69mg. This produces a % relative error of ±22% shown in Figure 3-19. It is observed that many of 

the random error at sample time points are not within the error bound derived by this method. This 

indicates that the total error estimation from the mass measurement may underrepresent the experimental 

errors. This can be because of the number of variables used in calculating the relative error in the two cases. 

The estimation of absolute error from volume calculation (Equation 3-13) is less precise due to more error-

prone variable present in the calculation (3 in total: δA, δr, and δR) vs two in total (δA and δM3DP) for direct 

weight measurements. The less precision allows more variance of drug release, allowing for more 

experimental error and in this case encompasses the experimental random error. 

 
Figure 3-19: The absolute error in drug release attainable at each sample time point. The red solid curve represents absolute error 
from the volume calculations of 3DP oral dosage while the red dashed line represents absolute error from the mass calculations from 
3DP oral dosage. 
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3.4.6 Process Optimization 
Knowing the error from each of the processes, it is possible to minimize the cumulative error in drug 

release. For HME, the optimization of HME weight homogeneity is attainable through longer residence 

times. For 3DP, the printing temperature can have an effect which for the formulation was 200oC. For the 

UV spectrometer, creation of more calibration curves can reduce the random error. Bigger sample sizes also 

improve the error. Lower error in drug release leads to a better approximation of the parameters (k and n) 

on the right side in the Peppas equation (equation 3-3). Therefore, in vitro dissolution studies of a torus 

processed optimally with 10% PCM has been used to validate minimization of errors. In the previous 

section, drug release for the torus undergoing 5min residence time in the HME process was shown. From 

Figure 3-13, it was observed that higher HME processing temperature had more homogeneous drug 

distribution. A higher printing temperature of 210oC was used. Five calibration curves were utilized, and the 

experiment was replicated in quintuplicates. The cumulative error in drug release was found using equation 

3-12. δA was 0.11AU. δr and δR are both 0.31mm. Figure 3-20 shows the resultant drug release profile with 

a relative error of ±17%. As expected, the EXP error decreased and possible error bounds were narrower.  

 
Figure 3-20: drug release of PCM under optimized manufacture process condition. The red curve is the possible error bound for this 
drug release profile. 
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The parameters of Peppas equation can be estimated from the two bounds. It can be seen that the aspect 

ratio which indicates the underlying transport mechanism does not alter significantly that can indicate a 

different mechanism. An aspect ratio of 0.45 to 0.89 is anomalous transport. This is shown in Table 3-5. 

Table 3-5: Curve fitted parameters using Peppas model for drug release profile 
 

Release 
constant (k) 

Aspect 
Ratio 
(n) 

Lower estimate (Experimental) 9.39 0.56 

Averaged estimate (Experimental) 10.13 0.51 

Upper estimate (Experimental) 10.88 0.47 
 

3.5 Limitations 
Limitations exist that can hinder the use of such error cumulations to be generic for all drugs. The error in 

the drug release profile is essentially cumulative random error exhibited from all the manufacturing 

process. The random error will vary for different equipment and alterable process parameter. For example, 

a different hot melt extruder will have different δAe and varying the process parameter like screw speed will 

affect the weight homogeneity. The same reasoning holds for the 3DP and UV spectrometer. The systematic 

error will also be minimized by using newer improved equipment.  

 

The limitations to generalizing the drug release from the dosage also stem from the materials itself. A 

different drug or polymer will have a different melt viscosity. The drug loading will influence the drug 

release. A higher drug loading or a hydrophilic drug will likely exhibit faster dissolution rates. The choice of 

drug or polymer will alter the rheological and thermal properties of the formulation which will cause 

changes to the printing resolution and thereby the associated 3DP error (δM3DP and δV3DP). This in practice 

will be demonstrated by shrinking during solidification and in the deposition phase.  

 

Lastly, gross error and analytical errors are not emphasized in this chapter. This is because gross errors can 

be eliminated, and analytical errors cannot be quantified for every step of the process. Due to the fact, that 

all possible errors cannot be always quantified for an experiment, the concept of triplicate repeats exists as 

this gives the random probability of errors possible across all the analytical steps (374).  
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3.6 Conclusion 
In this chapter, the error for the manufacture of oral dosage via HME-FDM continuous process method was 

investigated. The systematic, random, and total error for each of the process was deduced. Based, on the 

random error from each manufacturing process, the cumulative error in the drug release profile was 

produced. This helps in ascertaining the highest margins of error possible for the given formulation in the 

current manufacture process pipeline. Thereafter, based on the findings, five tori under optimum 

processing condition were prepared. The drug release profile for these tori was compared wherein the 

random error of the quintuplicate was found to be lower compared to sub-optimum processing conditions. 

Unfortunately, although the error propagation concept can be generalized for any formulation, the error 

values obtained here cannot be applied to any generic formulation. Furthermore, the error values 

ascertained cannot be deduced in a pre-experiment case due to numerous limitations.  
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Chapter 4: Characterisation of the polymers and polymer 
blends behaviour in aqueous media 

4.1 Introduction 
Polymers are often used as the carriers in the solid dispersions based dosage forms manufactured using 

FDM 3D printing (368, 375). A limited number of pharmaceutical grade polymers can be directly printed 

using FDM and in most cases, additional excipients such as plasticizers or blending with other polymers are 

needed to achieve the thermoplasticity required for FDM printing (368, 376). Examples of such polymers 

include HPC (377), Eudragit EPO (378), PEO/PEG (47), PVA (379), PLA (380), and PCL (381).  In general, 

polymers used in pharmaceutical solid dispersions can be differentiated into hydrophobic and hydrophilic 

matrix formers. Examples of hydrophobic polymers include ethylcellulose (382), Eudragit (383), PLA (384), 

and PCL (268) while hydrophilic ones such as PEO (385), PEG (386), and PVA (387). Depending on the 

solubility of one polymer in the other, blends of polymers can be classified as miscible, semi-miscible and 

immiscible. Therefore, the resultant blend can be a single phase or a phase-separated system. This aspect is 

important in formulations as phase phenomenon governs the behaviour of the blend and their performance 

(such as physical stability and drug release pattern) when used as a drug delivery vehicle. 

 

In order to understand and subsequently predict the drug release behaviour of a polymeric based solid 

dispersion system, it is important to have a thorough understanding of the behaviour of the polymeric 

matrix in aqueous media in the first instance (388, 389). In this chapter, a systematic study of a group of 

commonly used pharmaceutical polymers for hot melt extrusion (HME) and FDM 3D printing was performed 

in order to parametrise the hydration, swelling and erosion behaviour of the polymers and polymer blends 

in aqueous environments. The kinetics of these three processes of each polymer in the aqueous media were 

measured. In addition, the behaviour of miscible and semi-miscible polymeric blends was studied. All 

experiments were carried out in pH 1.2 (gastric pH) and pH 6.8 PBS (intestine pH). These kinetics 

parameters along with other intrinsic characteristics of the polymer were used to form a dataset that was 

used by later chapters to categorise the polymers based on their behaviour in the aqueous media. 
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4.2 Materials and Methods 
The materials used in this chapter are HPMCAS LF, PCL CAPA 6800, PEO WSR N10 LEO, purified zein, 

Eudragit RS100, Xanthan Xantural 180, Soluplus, PVPVA Kollidion, Moweiflex PVA. The product details and 

their physicochemical properties are described in chapter 2. 

4.2.1 Preparation of Filaments 
Filaments were prepared using HME method. The standard procedure mentioned in section 1.1.2.1 and 

2.3.1 of preparing filaments was used. The feeding batch size was 7g in all cases. The extrusion 

temperatures for the polymers and their behaviors are listed in Figure 4-1. Xanthan gum extrudate was 

prepared by adding 10% MilliQ water and gently stirring the mixture for 10 to 15 mins. The addition of 

water is necessary to facilitate extrusion at a temperature of 70 oC. Zein extrudates were prepared by 

adding 10% MilliQ water to powdered zein and mixing in a ceramic mortar and pestle to facilitate HME with 

an extrusion temperature of 80 oC. The screw speed in all cases was 100 rpm. For the polymer blends, the 

default polymer mix ratio was 50/50% as per the weight of two polymers. The miscible blend was composed 

of HPMCAS/Soluplus while the semi-miscible blend was composed of HPMCAS/PEO. The filament extruded 

was cut into an equal length of 2cms.  

Table 4-1: Polymer extrudates at their temperatures with behaviors observed 

Polymer Extrusion temperature (oC) Polymer characteristics 

HPMCAS 160 Swell, hydrate, and erode in pH 6.8 

PCL 100 Insoluble/very low solubility 

PEO 120 Swell, hydrate, and erode in both pH 

Eudragit 160 Insoluble/ very low solubility 

Soluplus 110 Hydrate and erode in both pH 

PVPVA 160 Erode in both pH 

PVA 190 Hydrate and erode in both pH 

Xanthan gum 70 Swell, hydrate, and erode in both pH 

Zein 80 Hydrate and swell but non-eroding 

HPMCAS/Soluplus 
(miscible blend) 

150 Hydrate and erode in pH 6.8 

HPMCAS/PEO 
(Semi-miscible blend) 

150 Swell, hydrate, and erode in both pH 
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4.2.2 Measurement of Polymer behaviour 
Three polymer behaviours were studied in this chapter. They were hydration, erosion, and swelling in 

aqueous media which were parametrised. The parametrisation allowed comparison of the polymers in 

terms of the three behaviours. For polymer blends, these parametrised values of the individual polymer 

were used to emulate the behaviour of the blend, accounting for the 50% mass of individual polymers. 

During each sampling point, these three measurements were done.  

 

The hydration was measured by recording the wet weight of the polymer at the sampling time points by 

using an analytical balance. The increased wet weight measured compared to the initial dry weight which 

signifies the additional weight due to hydration (water intake) The normalised hydration is given by the left 

side of Equation 4-1. The right side of the equation is the Vangernaud model used for fitting to hydration 

curve (390). KH is the hydration constant. The hydration index (nH) is an indicator of the diffusion mechanism 

for the material. For cylindrical shapes, n<0.55 and corresponds to Fickian diffusion whereas 0.50<n<1.0 

indicates that diffusion is non-Fickian diffusion (391). 

                𝐻% =  
𝑤(𝑤𝑒𝑡)𝑡−𝑤(𝑑𝑟𝑦)0

𝑤(𝑑𝑟𝑦)0
 × 100 = 𝐾𝐻𝑡𝑛𝐻  Equation 4-1 

where Wt is weight at time t, W0 is weight at time 0 min, KH is hydration constant, and nH is hydration index.  

The swelling was measured by using a digital caliper. The volume was measured at the sampling times. The 

radius (from the diameter) and length of the filament were used to calculate the volume of the cylindrical 

filament shown in Figure 4-1. Equation 4-2 shows the volume calculation of cylindrical geometry. The left 

side of Equation 4-3 shows the swell ratio calculation while the right side is an empirical equation, used for 

parametrising the swelling curve. All readings were done in triplicates. 

                     𝑉 = 𝜋 × 𝑟2 × 𝑙  where  𝑟2 =
𝑑

2
 Equation 4-2 

                   𝑆% =
𝑉𝑡−𝑉0

𝑉0
× 100 = 𝐾𝑆𝑡𝑛𝑆  Equation 4-3 

 

where l is length, d is diameter, r is the radius, S% is the swell percentage, Vt is the volume at time t, V0 is the 

initial volume, Ks is a swelling constant and ns is swelling index. 
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Figure 4-1: The filament cross-section in 3D perspective. Length is denoted by (l) while the diameter is denoted by (d) 

The erosion was calculated by measuring the dry weight change of the polymers at every sampling time and 

comparing to the initial weight. This procedure is as follows. First, an equal number of filament samples 

were made to the number of sampling times. For example, sampling times of 5 mins, 10 mins, 15 mins and 

30 mins would mean four sampling times. As such, four filament samples can be made. Next, all four 

filament samples are put in one dissolution vessel. Thereafter, at a sampling point, one of the samples 

would be taken and dried before the weight was measured. This sample would then not be put back in the 

vessel. This meant there are only three samples left in this with three more sampling times. Eventually, all 

samples were measured by the end of the dissolution sampling times and all the dry weights were referring 

to the weight of the samples after complete drying at each time point. This differential weight is calculated 

using the left side of the Equation 4-4. There are reports that polymer erosion has been fitted to linear 

regression models (zero order) as well as exponential decay (first order) (392, 393). Gaillard et al 

investigated polymer erosion and concluded that first order fitting provided higher accuracy (394). 

Therefore, the first order model was used for fitting. This is illustrated by the right side of Equation 4-4. 

These measurements were done for samples in pH 1.2 and pH 6.8 in triplicates. 

                        𝐸% =
𝑤(𝑑𝑟𝑦)𝑡−𝑤(𝑑𝑟𝑦)0

𝑤(𝑑𝑟𝑦)0
×  100 = 𝑊(𝑑𝑟𝑦)0𝑒−𝐸𝐾𝑡 Equation 4-4 

where W(dry)t is the dry weight at sample time, W(dry)0 is the initial dry weight and EK is erosion constant. 

4.2.3 Characterization of polymer blends 
The pure polymers chosen were HPMCAS, PCL, PEO, Eudragit, Xanthan, Soluplus, PVA, PVPVA, and Zein. The 

blends were chosen to represent miscible and semi-miscible blends. HPMCAS/Soluplus was the miscible 

blend and HPMCAS/PEO was the semi-miscible blend. The miscibility of polymer blends was determined by 

the glass transition temperature (Tg) of the resulting mixture compared to the single polymers. The Tg was 
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gathered by using differential scanning calorimetry (DSC). The Tg of a miscible blend should exhibit a single 

Tg between the Tg’s of the component. The miscible blend in this work is HPMCAS/Soluplus. The Tg can be 

calculated by using the Flory-Fox equation, shown in equation 4-5 (125). A semi-miscible blend will show 

two separate Tg between the range of the individual components (122). The semi-miscible blend in this 

work is HPMCAS/PEO. Both miscible and semi-miscible polymer blends had a 50/50 weight ratio of the 

individual polymers. For semi-crystalline PEO, the recrystallization enthalpy was used to estimate the 

amount of crystalline PEO.  

1

𝑇𝑔
=

𝑊1

𝑇𝑔1
+

𝑊2

𝑇𝑔2
 Equation 4-5 

 

4.3 Results and Discussion 

4.3.1 Overview of polymer behaviour in aqueous media 
The summary of the kinetics of the behaviour of the polymers is given in Figure 4-2 for pH 1.2 and in Figure 

4-3 for pH 6.8 excluding the insoluble polymers that do not any physical changes in the media. It is observed 

that for all polymers plotted, there is a simultaneous activity of the three aspects except for zein which does 

not exhibit any erosion. Since the polymers, excluding zein and insoluble polymers, are eroding and 

hydrating simultaneously, it is not possible to identify the effect of hydration alone. However, it is possible 

to distinguish the mechanism of transport from the shape of the curve and the effect of erosion individually. 

Since some polymers swell and some erode without swelling from the beginning of the experiment, it is 

possible to categorize them as swellable or erodible polymers. The swellable polymers consist of PEO, 

Xanthan gum, zein, and soluplus for pH 1.2 and pH 6.8. Meanwhile, the erodible polymers consist of PVPVA, 

PVA in pH 1.2 and HPMCAS, PVPVA, and PVA in pH 6.8. PCL (not shown in Figure 4-2) is also an eroding 

polymer in both pH but the progression of erosion is longer than the experiment duration. PCL erosion time 

has been reported to be two to four years (395). Such polymers that erode without swelling have a negative 

ratio in terms of volume on the plots as the volume decreases compared to initial volume. As an example, 

this is observed with PVPVA and PVA. 
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Figure 4-2: Mass and volume changes with the time of polymers in pH 1.2. The polymers that do not show any changes are omitted (PCL, Eudragit, and HPMCAS). The axis for all graphs has been 

replaced with a generic (X-Xo)/Xo. For hydration, the generic (X-Xo)/Xo is (Mt-Mo)/Mo where the M has been stated in equation 4-1. For volume, the generic (X-Xo)/Xo is (Vt-Vo)/Vo where the V 

parameters have been stated equation 4-3. For erosion, the generic (X-Xo)/Xo is (Mt-Mo)/Mo where the M has been stated in equation 4-4. Erosion is plotted in reverse from a ratio of 1 eroding 

to a final ratio of 0. The sold lines/dashed line presented here are only connecting data points.  
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Figure 4-3: Mass and volume with time of polymers in pH 6.8. The polymers that do not show any changes are omitted 

(PCL and Eudragit). The axis for all graphs have been replaced with a generic (X-Xo)/Xo. For hydration, the generic (X-

Xo)/Xo is (Mt-Mo)/Mo where the M have been stated in equation 4-1. For volume, the generic (X-Xo)/Xo is (Vt-Vo)/Vo 

where the V parameters have been stated  equation 4-3. For erosion, the generic (X-Xo)/Xo is (Mt-Mo)/Mo where the M 

have been stated in equation 4-4. The sold lines/dashed line presented here are only connecting data points.  
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4.3.2 Hydration behaviour  
The first parameter measured was the differential wet weight signifying the hydration. The hydration ratio 

for all the polymers in pH 1.2 and pH 6.8 is presented in Figure 4-4. At both pH, there are two groups of 

polymers. The first group are hydratable polymers which exhibit net positive hydration. Net positive 

hydration is when there is an increase in the wet mass during the experiment. All hydratable polymers have 

been plotted up to the maximum hydration timepoint. After this point, erosion is more dominant in polymer 

behaviour. The second group are non-hydratable or minimally hydratable polymers. Polymers that maintain 

95% of the initial mass for the duration of the experiment are considered in the second group of non-

hydratable polymers. The first group of polymers include Xanthan gum, PEO, zein, and PVA (only pH 1.2). 

Two of the four polymers are superabsorbent polymers (SAPs). SAPs have three factors contributing to 

water absorption. They are the density of cross-linking, the affinity between polymer and solvent, osmotic 

pressure caused by polyelectrolyte counter ions. Xanthan gum, a hydrophilic polymer, has a high affinity to 

water (396). It is also stable over ranges of pH 1 to pH 11 (283). This indicates the properties it shares for 

water as super absorbent are also unchanged over the range of pH wherein it is stable. As such, it expands 

in water and other solvents. This generates a wider surface area upon which the polymeric chain molecules 

can interact with the solvent attracting more solvent molecules in close proximity. Furthermore, the 

conformation of xanthan gum is responsible for the stability which is due to the presence of salt. The cation 

(Na+, K+, or Ca2+) promote the intermolecular cross-linking strengthening the gel network (397, 398).  

 

PEO, a hydrophilic polymer, is a linear polymer but upon contact with water, rapidly hydrates due to its high 

solubility and forms a hydrogel which is seen in both pH. When PEO come into contact with water, forces of 

attraction (chiefly hydrogen bonding) start acting between polymer and water. Due to the high water-

affinity of the polymer, these forces are likely to be preferred over polymer-polymer interactions (190). The 

structure of PEO (-O-CH2 -CH2-) n OH is likely to hydrogen bond. It has also been reported that such gels have 

high osmotic activity (193). This, for a hydrophilic polymer, causes the crosslinked network to expand 
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outward as polymeric material tends to flow outward due to the high affinity for the solvent and solvent to 

penetrate to balance the pressure leading to greater hydration which is a property of SAPs. 

 

PVA is a water-soluble synthetic polymer but the physicochemical and mechanical attributes of PVA are 

dictated by the number of hydroxyl groups. PVA comes in varying hydrolysis percentages. With higher 

hydrolysis, there is an abundance of vinyl alcohol units, which are distributed within PVA, disrupting the 

crystalline phase of the PVA. This makes the polymer very hydrophilic and water-soluble with a high 

capacity for hydrogen bonding (399). In this case, with the 98-99% hydrolysis (261), the PVA chains disperse 

in a short time and tend to form hydrogen bonds with the solvent.  

 

For zein, it was reported that the hydration can be contributed to the charge. Bouman et al mention 

osmotic pressure is increased at pH 1.2 as there are more counter ions present due to positively charged 

zein coming from the predominant α helix zein with an isoelectric point of pI 6.8 (14). In addition, the 

expansion of the network structure was stated likely due to the de-amidation of the glutamine and 

asparagine amino acids of the zein (14). Although swelling was the result of this, for the volume to expand, 

it indicates the free space is filled up by the solvent.  
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Figure 4-4: Top) The hydration ratio all the nine polymers in pH 1.2. Bottom) The hydration ratio all the nine polymers in pH 6.8. The 
timescale for non-hydratable polymers have been shortened. 

The second group of polymers in Figure 4-4 include Eudragit, PCL, PVPVA, and HPMCAS which are non-

hydratable polymers or exhibit minimal hydration. Eudragit RS100 is a copolymer of ethyl acrylate, methyl 

methacrylate and low content of methacrylic acid ester with quaternary ammonium side groups. The 

ammonium groups are ionisable (277). This insolubility arises from the side groups. The side chain of 
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Eudragit RS consists of groups of R1:H, CH3, R2: CH3, C2H3, R3: CH3, R4: CH2CH2N(CH3)+ Cl- (277, 278) of which 

non-polar CH3 in major proportion are hydrophobic and impart low solubility even though Cl- is hydrophilic 

(400). The hydration observed for PCL can be due to the fact it is a hydrophobic semi-crystalline polymer. 

The degree of crystallinity hinders diffusion of solvent molecules. It is also noted that with the increase of 

molecular weight, the crystallinity decreases. HPMCAS lack of hydration could be due to the unionised state 

in the buffer. HPMCAS has four types of substituents on the hydroxyls. The first is methoxy with a mass 

content of 12−28%, second is hydroxypropyl with a mass content of 4−23%, third is acetate with a mass 

content of 2−16%, and fourth is succinate, with a mass content of 4−28% (225). This succinate group has a 

pKa of 5. This means HPMCAS is 10% ionised at most at pH ranges less than pH 4 and at least 50% ionised at 

pH values of about 5 and higher. Therefore, HPMCAS is insoluble and not significantly ionised at pH 1.2 with 

the presence of hydrophobic methoxy and acetate substituents. At pH 6.8, there is more solubility due to 

the higher ionisation, making HPMCAS a pH responsive polymer. 

 

Table 4-2 shows the fitting to Vangernaud model which is a semi-empirical model similar to the Korsmeyer-

Peppas model. For Xanthan gum and PEO, the hydration constant is higher than all the other polymers in 

both pH indicating a higher rate of solvent ingress. The explanation for this can be gathered from the 

hydration index. The hydration index indicates the mechanism of transport is Fickian diffusion, which is 

commonly referred to as Fickian or case I diffusion in literature. According to Singh, the shape of the 

hydration curve can yield about the mechanism of transport (401). However, an issue exists that the shape 

of the curve is not an unambiguous criterion for distinguishing Fickian II from Fickian I transport. In such 

cases, it is important to know whether the boundary moves. If the boundary moves (i.e. volume changes) 

and the gel remains rubbery throughout swelling or collapse after, the transport is called Fickian I. Since the 

boundary moves for zein, PEO, and Xanthan gum, they exhibit Fickian I transport. Additionally, the 

molecular relaxation may be either much faster than diffusion (T>Tg) or extremely slow (T<Tg) (401). The Tg 

of PEO (-57 oC) and Xanthan gum (-23 oC) are both below the dissolution temperature of 37oC which 

indicates faster molecular relaxation compared to diffusion. Hence the higher solvent ingress and the higher 
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hydration ratio. The Tg of zein (150 oC) is higher than dissolution temperature indicating very slow 

molecular relaxation. Hence the lower solvent penetration and the lower hydration ratio. 

Table 4-2: Vangernaud model fitted to hydratable polymers. 

pH 1.2 6.8 

Polymer kH nH R2 kH nH R2 

PVA 0.04 ± 0.01 0.61 ± 0.03 0.99 - - - 

Xanthan gum 1.31 ± 0.70 0.52 ± 0.01 0.98 2.51 ± 0.83 0.27 ± 0.04 0.99 

PEO 0.73 ± 0.12 0.18 ± 0.02 0.99 0.66 ± 0.12 0.23 ± 0.05 0.99 

Zein 0.03 ± 0.01 0.37 ± 0.09 0.95 0.02 ± 0.01 0.37 ± 0.02 0.97 

 

4.3.3 Swelling behaviour 
The anatomy of a swelling tablet is shown in the top left of Figure 4-5. The swelling front is the boundary 

between the glassy region (circle A) and the rubbery gel region (circle B) of the polymer marked as rA (179). 

The diffusion front indicates the boundary between the undissolved and dissolved polymer in the gel layer 

marked as rB. The erosion front is the most outer fringe of the tablet or polymer extrudate identifying the 

boundary between the matrix (circle C) and the dissolution medium marked as rC. This was observed for 

some polymers such as PEO while not observed for others such as Xanthan gum (shown at the bottom of 

Figure 4-5). In both cases, the erosion front was the limit of measurement for matrix edge. 

 
Figure 4-5: a) Schematic representation of diffusion, erosion and swelling fronts and different layers of swelling dosage (179). (b) PEO 
exhibiting swelling front and erosion front. (c) Xanthan gum without a clear swelling front. 



 

98 

The swelling ratios of the polymers are shown in Figure 4-6. It can be seen that the two highest swelling 

polymers are SAP. Zein also does swell but a lower ratio. There are distinctly two groups of polymers where 

swelling is observed and where swelling does not occur. The non-swelling polymers (PCL, HPMCAS, Eudragit, 

PVPVA, Soluplus and PVA) have a combination of insoluble and soluble polymers. For insoluble polymers, 

there is no hydration and hence no causation for swelling. For soluble polymers, if the hydration ratio of the 

solvent was faster then the molecular relaxation rate of the polymer, swelling was observed. Conversely, 

swelling was not observed if diffusion was slower than molecular relaxation.  

 

Furthermore, it is seen that the swelling ratios are not proportional to the hydration ratios for the same 

swellable polymer. In pH 1.2, Xanthan gum had a maximum hydrated ratio of ≈10X while the swelling ratio 

was ≈20X. PEO in pH 1.2 had a maximum hydrated ratio of ≈1.8X and swell ratio of ≈3.6X. The similar case 

for both polymers in pH 6.8. This behaviour is not seen with zein. In pH 1.2, zein at 30 minutes exhibited a 

hydrated ratio of 0.12X (12%) and a swollen ratio of 1.11X (11%); at 300 minutes (5 hours) exhibited a 

hydrated ratio of 1.36X (36%) and a swollen ratio of 1.34X (34%); at 1440 minutes (24 hours) exhibited a 

hydrated ratio of 1.49X (49%) with a swollen ratio of 1.48X (48%). 
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Figure 4-6: The swelling ratios of swellable polymers in pH 1.2 on top and pH 6.8 at the bottom. 

Using equation 4-3, the swelling constant and swelling index is shown in Table 4-3. The high KS values of 

PEO, Xanthan gum, and soluplus compared to zein indicate burst swelling kinetics. Zein shows no burst 

swelling consistent with the much lower value of 0.04. Higher KS gives a steeper gradient which gives faster 

release initially and such formulations are known to have a burst release (147). 
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Table 4-3: The swollen polymers fitted to the generalized model and their goodness of fit (R2). Ks is the swelling constant and n is the 
swelling index. 

 pH 1.2 pH 6.8 

Polymer Ks ns R2 Ks ns R2 

Xanthan gum 1.54 ± 0.13 0.74 ± 0.03 0.99 1.15 ± 0.27 0.68 ± 0.08 0.99 

PEO 0.46 ± 0.11 0.42 ± 0.10 0.99 0.43 ± 0.18 0.49 ± 0.07 0.99 

Zein 0.04 ± 0.01 0.37 ± 0.08 0.98 0.09 ± 0.01 0.18 ± 0.03 0.95 

Soluplus 0.51 ± 0.08 0.05 ± 0.01 0.98 0.31 ± 0.01 0.05 ± 0.01 0.91 

 

4.3.4 Erosion behaviour 

The erosion ratios of erodible polymers are presented below in Figure 4-7. It can be seen that other than 

PVPVA, the SAP have high erosion rates. However, very high erosion rates of PVPVA might be contributed to 

the unit composition of PVPVA. The unit composition is 6:4 of PVP:VA in PVPVA chain with the aim was of 

increased solubility (192). Without swelling, erosion is the only dominant process for PVPVA, which occurs 

rapidly. Furthermore, it can be argued that the zero order model might be a better fit for PVPVA. From 

chapter 1, zero order polymer mass loss is expected for surface erosion polymers.  

 

 The erosion rate found from equation 4-4 is presented in Table 4-4 suggests that the first order model is in 

good agreement with the data denoted by R2. Ranking the erosion ratios show a similar trend for both pH 

medium (PVPVA < Xanthan gum < PEO < Soluplus < PVA). The exception is with pH 6.8, where HPMCAS 

erodes and the descending erosion ratios are PVPVA < Xanthan gum < PEO < HPMCAS < Soluplus < PVA. 

Table 4-4: The erosion rates of erodible polymers in both pH fitted to exponential decay. 

Polymer 
pH 1.2 pH 6.8 

EK  R2 EK  R2 

PVPVA 19.15±0.10 0.99 17.34±0.12 0.97 

Xanthan Gum 2.77±0.03 0.99 3.07±0.09 0.94 

PEO 1.91±0.02 0.99 1.90±0.03 0.99 

PVA 0.66±0.02 0.98 0.83±0.02 0.98 

Soluplus 1.21±0.04 0.95 1.30±0.10 0.91 

HPMCAS - - 1.56±0.04 0.99 
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Figure 4-7: Top) The erosion ratio of eroding polymers in pH 1.2. Bottom) the erosion ratio of erodible polymers in pH 6.8 
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4.3.5 Characterization of blends 

The DSC thermogram of the miscible HPMCAS-Soluplus is shown in Figure 4-8. A single Tg is observed for the 

HPMCAS-Soluplus between the pure HPMCAS and pure soluplus at 95.81 oC, which agrees with a Tg of 96.75 

oC obtained from the Flory-Fox equation (equation 4-5) for a 50/50 blend, indicating a miscible blend (125). 

 

Figure 4-8: DSC thermogram of the HPMCAS (red), Soluplus (black), and HPMCAS-Soluplus 50/50 blend (blue). The Tg is shown on the 
thermogram, and with the corresponding polymer colours. 

In the case of HPMCAS-PEO, the PEO Tg has been reported to be -62 oC to -67 oC (402-405). This well-

established value of -62 oC will be taken as the Tg of PEO. Rather, the recrystallization and melting 

enthalpies are taken into account. The thermogram is shown in Figure 4-9. It can be seen that for pure PEO, 

the recrystallization enthalpy is 189.4 J/g. After accounting for the quantity of PEO in the blend, the 

enthalpy calculated is 88.83 J/g. The recrystallization enthalpy of the blend is 38.53 J/g which is about 2.3 

times lower than 88.8 J/g. This means 43% of PEO is crystalline after heating and 57% is amorphous in the 

blend.  
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Figure 4-9: DSC of HPMCAS (green dash), PEO (red line), and HPMCAS-PEO 50/50 blend (black line). The melting and recrystallization 

temperatures and the corresponding enthalpies are given (J/g) while the Tg for HPMCAS is given. 

4.3.6 Miscible and semi-miscible blend behaviour 

The hydration ratios of the miscible blend are shown in the top left of Figure 4-10. In pH 6.8, there is not 

positive hydration but rather, negative hydration (erosion) and as such, has been omitted. The blend 

appears to exhibit characteristics of both polymers. While HPMCAS is insoluble at pH 1.2 and soluplus 

hydrates to a maximum of 1.31X (31%) at 60 minutes, the blend hydrates to the same ratio of soluplus but 

at a delayed time of 420 minutes (7 hours). The duration of hydration is 7 folds slower compared to 

soluplus. It can be seen that if one is an insoluble polymer and the other is hydratable, the net effect is 

slower hydration. The hydration ratio of the semi-miscible blend has been shown in the top right of Figure 

4-10. In the case of the semi-miscible blend, the hydration time is faster than the pure PEO but a point to 

note is that that behaviour kinetics of the blends are different than the constituents when compared to 

miscible blend. For the fully miscible blend, the hydration profile is in between the two polymer profiles 

while for the semi-miscible blend, the hydration profile is outside the region of the two constituting polymer 

profiles. One reason for this could be due to the fact this is not a single phase system. Since the HPMCAS is 

10% ionised at this pH, this can increase the osmotic activity in the matrix thereby increasing the affinity of 

the solvent. The hydration parameters are presented in Table 4-5. Work done Mudassir et al on hydrogels 

shows that the mechanism changes with pH and polymer blend composition degree (406). The penetrant 
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transport from the matrix system is governed by diffusion, so determining the diffusion coefficient of the 

hydrogel is essential.  

 

The swelling ratio shown in the bottom left of Figure 4-10 shows the miscible blend swelling does occur at 

pH 1.2. The swelling profile of the miscible blend is also between the constituting polymers as opposed to 

the semi-miscible blend. The swelling constants for the miscible blend (Table 4-6) indicate that at pH 1.2, 

there is a significant decrease in the swelling ratio due to the addition of HPMCAS. The swelling mechanism 

is still hydration dominated but shows this faded about two-folds, explainable by the insoluble HPMCAS 

slowing hydration; not necessarily increasing diffusion. At pH 6.8, as soluplus swelling constant is lower with 

HPMCAS eroding, no swelling is observed compared to pH 1.2. In contrast, the semi-miscible blend swelling 

constant showed a smaller decrease from KS 0.46 to 0.31 at pH 1.2 due to retaining of more individual blend 

properties and some conversion of PEO to amorphous form. The value of index change is greater for the 

HPMCAS/PEO is 1.5X greater than PEO. This can account of some portion of two-fold slowdown by the 

addition of HPMCAS. However, the increased rate in hydration is due to some of the PEO becoming 

amorphous which is in agreement with roughly the amount of amorphous PEO. The erosion ratios for the 

miscible are shown in Figure 4-11. The erosion ratios exhibit first order mass loss in the cases of all blends in 

all medium. As before, the erosion ratios for the miscible blend is between the two constituent polymers. 

This is expected as both polymers aggregately contribute to faster erosion than either of the one polymer. 

An exception emerges for the semi-miscible blend eroding in pH 1.2. HPMCAS/PEO erosion is between the 

two constituent polymers while it was expected to be outside of the region of two polymers erosion profile. 

This can be intuitive as PEO is soluble while HPMCAS is not. It is expected that HPMCAS will slow down the 

erosion causing the profile to be between the two constituting polymers. This is due to the insoluble 

HPMCAS polymer slowing down erosion. However even in the blend, only the PEO composition erodes and 

thereafter, erosion is halted. The erosion ratios are shown in Table 4-7. 
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Figure 4-10: Top left) Hydration ratios of HPMCAS/Soluplus compared to pure polymers in pH 1.2. Top right) Hydration ratios of HPMCAS/PEO and pure polymer in pH 1.2. Bottom left) Swelling 
ratios of HPMCAS/Soluplus and pure polymer in pH 1.2. Bottom right) Swelling ratios of HPMCAS/PEO and pure polymer in pH 1.2. pH 6.8 exhibits negative hydration (erosion) for the blends and 
have been omitted here. The grey last data point for some polymers indicates the beginning of erosion. HPMCAS, being insoluble has data over longer duration but this has been omitted as it is 
constant at a ratio of zero. 
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Table 4-5: Hydration parameters fitted to the Vangernaud model in pH 1.2. (*) indicates the error here is omitted as it is too small. 

Polymer blend KH nH R2 

HPMCAS/Soluplus 50/50 0.01* 0.55 ± 0.07 0.99 

HPMCAS/PEO 50/50 0.39 ± 0.09 0.48 ± 0.04 0.98 

 
 

Table 4-6: swelling constant (Sk) and swelling mechanism for the blends in both pH. Cases of no swelling are denoted by -. 

 pH 1.2 pH 6.8 

Polymer KS nS R2 KS nS R2 

HPMCAS - - - - - - 

PEO 0.46 ± 0.11 0.42 ± 0.10 0.996 0.43 ± 0.18 0.49 ± 0.07 0.999 

Soluplus 0.51 ± 0.08 0.05 ± 0.01 0.983 0.31 ± 0.01 0.05 ± 0.01 0.812 

HPMCAS/Soluplus 0.09 ± 0.02 0.12 ± 0.03 0.947 - - - 

HPMCAS/PEO 0.31 ± 0.16 0.61 ± 0.08 0.956 - - - 

 
 

Table 4-7: The erosion constant of the polymers and blends in both pH and the goodness of fit 

Polymer EK  R2 

 pH 1.2 pH 6.8 pH 1.2 pH 6.8 

HPMCAS - 1.56 ± 0.34 0.97 0.99 

PEO 1.91 ± 0.92 1.90 ± 0.23 0.99 0.99 

Soluplus 1.21 ± 0.04 1.30 ± 0.10 0.95 0.91 

HPMCAS/Soluplus 0.44 ± 0.08 3.51 ± 1.91 0.95 0.99 

HPMCAS/PEO 2.95 ± 0.57 3.27 ± 1.81 0.97 0.96 
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Figure 4-11: The erosion ratios for miscible HPMCAS/soluplus 50/50 in pH 1.2 (red) and pH 6.8 (blue) and the polymers individually. 
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4.3.7 Towards predicting polymer blend behaviour in aqueous media 
One initial approach is to inspect if the prediction of polymer blend as an ideal solution yields accurate 

prediction. Prediction refers to applying the information deduced about the polymer to another blend in a 

pre-tested stage. Since the blends are 50/50% weight, the predicting profile would result from summing 

50% of the weight data at each time point. The resultant for hydration and swelling of HPMCAS/Soluplus is 

presented in Figure 4-12. It can be seen that hydration and swelling ratios in pH 1.2 has been overpredicted 

by the calculated profile. This is due to the fact pure soluplus hydrates and swells more than the blend. The 

effect of an insoluble blend has affected this behaviour by more than half for the 50% of the blend. It is 

interesting to note that curve fitting of the calculated profile yielded the transport mechanism to be 

borderline Fickian and anomalous with a nH of 0.55±0.03 while experimental data curve fitting yielded nH of 

0.55±0.07, indicating the transport mechanism was not mis-deduced. The calculated profile is based on a 

prediction case while the experimental curve fitting is based on the actual data. Meanwhile, the hydration 

constant was lower for the experimental data. In pH 6.8, the model was able to better predict the blend 

behaviour kinetics but still produced inaccurate results. In the case of semi-miscible HPMCAS/PEO blend 

(Figure 4-13), both ratios were underpredicted by the calculated profile. This is because of pure PEO, which 

hydrates and swells less than the blend. Moreover, the prediction was erroneous. The fitting of calculated 

profile yielded anomalous transport mechanism (nH=0.70±0.07) which is significantly different from the 

experimental profile which yielded Fickian transport (nH=0.48±0.04). In pH 6.8, the calculated profile over 

predicted the blend behaviour for hydration and swelling. This is because pure PEO hydrates while pure 

HPMCAS erodes slowly. Comparing identical sampling times, the hydration ratio of PEO is higher than the 

negative hydration ratio (effectively erosion ratio) of HPMCAS. For example, a sampling time point of 15 

minutes at pH 1.2, the PEO hydration ratio is 1.26 times while the HPMCAS hydration ratio is 0.86 times 

(Figure 4-4). The difference in PEO is 26% increase while the difference in HPMCAS is 14% decrease. The 

faster ratio increase due to PEO causes the cumulative ratio of calculated blend hydration ratio to be higher 

than the experimental ratio. Similar reasoning for swelling in pH 6.8 applies. 
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Figure 4-12: HPMCAS/Soluplus experimental vs calculated hydration and swelling ratios in pH 1.2 and 6.8 
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Figure 4-13: HPMCAS/PEO experimental vs calculated hydration and swelling ratios in pH 1.2 and 6.8
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Comparing the erosion ratios of both blends in pH 1.2 yields similarly inaccurate blend profile prediction as 

shown in Figure 4-14. The insolubility of HPMCAS in pH 1.2 slows erosion of the blend causing lower than 

observed values. However, the prediction was more accurate for pH 6.8 but still significantly different for 

many of the sampled time points. A trend seems to emerge when investigating the constituting polymers 

and their respective blends. The ideal polymer mixture seems to hold in certain circumstances. If the 

polymers both exhibit the same properties (i.e.: both swell or both erode), then the ideal polymer mixture 

scenario appears to be able to predict with better accuracy compared to when the properties of the 

polymers differ, shown in Table 4-8. When they differ, the application of ideal polymer mixture calculation is 

most likely to be invalid. For example, in pH 1.2, HPMCAS does not erode () while PEO erodes (✓) causing 

the resultant blend calculation to be invalid (). The calculations hold valid in pH 6.8; when HPMCAS erodes 

(✓) as well as PEO (✓) erode resulting in the blend to be accurately predicted (✓). Ideal solutions form from 

the random mixing of molecules with the same size and shape wherein the intermolecular forces between 

pairs of like segments and unlike segments are all equivalent (407). The molar volume of HPMCAS is 14,008 

cm3/mol (229, 408) while PEO is 3,571,429 cm3/mol (409), and soluplus is 109,225 cm3/mol (409). Since the 

molecule sizes are not the same, the agreement to ideal solution laws is surprising. 

Table 4-8: Blend and polymer kinetics. The () indicates no while the (✓) indicates yes for the category of the row. 

pH 1.2 Soluplus HPMCAS PEO HPMCAS/Soluplus HPMCAS/PEO 

Hydration (positive ratio) ✓  ✓   

Swell ✓  ✓   

Erosion (negative ratio) ✓  ✓   

pH 6.8 Soluplus HPMCAS PEO HPMCAS/Soluplus HPMCAS/PEO 

Hydration (positive ratio) ✓  ✓   

Swell ✓  ✓   

Erosion (negative ratio) ✓ ✓ ✓ ✓ ✓ 
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Figure 4-14: Experimental and calculated erosion ratios of HPMCAS/Soluplus and HPMCAS/PEO in pH 1.2 and pH 6.8
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For more accurate prediction than the ideal polymer mixture, other approaches can be applied. The critical 

aspect of blends is the miscibility of the constituents leading to the stability of the system. The stability 

of polymer mixtures can be predicted from knowledge of the solubility parameters and hydrogen-bonding 

tendencies of the components. However, these predictions are not always very accurate as the model is 

oversimplified. More sophisticated solution theories do not perform any better prediction (410). They 

contain parameters that can only be determined by analysis of particular mixtures, and it is not possible to 

characterize individual components a priori. Numerous attempts have been made to improve the predictive 

ability of the solubility parameter method. These generally proceed on the recognition that intermolecular 

forces can involve dispersion, dipole-dipole, dipole-induced dipole, or acid-base interactions. The most 

promising has been proposed by Hansen and often known as the Hansen solubility parameters which relies 

on contributions due to dispersion forces, polar forces, and hydrogen-bonding (410). 

 

Other approaches have dealt with determining the miscibility of polymer blends wherein the analysis is 

depended on the Random Phase Approximation (RPA) theory and the classical Flory–Huggins (F-H) theory 

(411). In the framework of the F-H theory, the interaction parameter (χ) is dependent on temperature, 

pressure, composition. The polymer kinetics will differ with different composition. The χ can give the energy 

difference of the molecules of the polymer and the solvent (412). The smaller the value of χ, the greater the 

rate at which the free energy of the solution decreases with the addition of solvent. Consequently, liquids 

with the smallest χ’s are usually the best solvents for a polymer. Negative values of χ often indicate strong 

polar attractions between polymer and solvent, thus increasing miscibility (413).  

4.3.8 Categorization summary 

In this section, a table was constructed enlisting the parameters measured for the polymer and blends. The 

table has been split into three tables. The first, Table 4-9 represents the solubility and swellability of the 

polymers. The second, Table 4-10, represents the time points at which the maximum hydration ratios (t 

Hmax) and maximum hydration ratios (t Smax) were attained. The third , Table 4-11, shows the hydration, 

swelling, and erosion parametrization of the polymer and blends done in this chapter. 
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Table 4-9: Polymer swelling and solubility in pH 1.2 and pH 6.8 given by yes (Y) or no (N). 

Polymer Soluble (Y/N) Swell (Y/N) 

 
pH 1.2 pH 6.8 pH 1.2 pH 6.8 

HPMCAS N N N N 

PEO Y Y Y Y 

Zein N Y Y Y 

Xanthan Gum Y Y Y Y 

PCL Y N N N 

Eudragit N N N N 

PVPVA Y N N N 

PVA Y N N N 

Soluplus Y Y Y Y 

HPMCAS/PEO (50/50) Y Y Y N 

HPMCAS/Soluplus (50/50) Y Y Y N 

 

Table 4-10: The peak hydration and swelling times of the polymer and blend in pH 1.2 and pH 6.8. 

Polymer t Hmax t Smax 

 
pH 1.2 pH 6.8 pH 1.2 pH 6.8 

HPMCAS - - - - 

PEO 60 60 60 60 

Zein 2880 2880 2880 2880 

Xanthan Gum 30 30 30 30 

PCL - - - - 

Eudragit - - - - 

PVPVA - - - - 

PVA 10 10 - - 

Soluplus 30 30 30 30 

HPMCAS/PEO (50/50) 45 - 45 - 

HPMCAS/Soluplus (50/50) 420 - 30 - 
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Table 4-11: Polymer kinetics dataset of hydration, swelling, and erosion in pH 1.2 and pH 6.8 

Polymer Hydration constant Transport mechanism Swell constant Swelling Index Erosion constant 

 pH 1.2 pH 6.8 pH 1.2 pH 6.8 pH 1.2 pH 6.8 pH 1.2 pH 6.8 pH 1.2 pH 6.8 

HPMCAS - - - - - - - - - 

1.56 

±0.34 

PEO 

0.73 

±0.12 

0.66 

±0.12 

0.18 

±0.02 

0.23 

±0.05 

0.46 

±0.11 

0.43 

±0.18 

0.42 

±0.10 

0.49 

±0.07 

1.91 

±0.92 

1.90 

±0.23 

Zein 

0.03 

±0.01 

0.02 

±0.01 

0.37 

±0.09 

0.37 

±0.02 

0.04 

±0.01 

0.09 

±0.01 

0.37 

±0.08 

0.18 

±0.03 - - 

Xanthan Gum 

1.31 

±0.70 

2.51± 

0.83 

0.52 

±0.01 

0.27 

±0.04 

1.54 

±0.13 

1.15 

±0.27 

0.74 

±0.03 

0.68 

±0.08 

2.77 

±0.03 

3.07 

±0.09 

PCL - - - - - - - - - - 

Eudragit - - - - - - - - - - 

PVPVA - - - - 

19.15 

± 3.23 - - - 

19.15 

±0.10 

17.34 

±0.12 

PVA 

0.04 

±0.01 - 

0.61 

±0.21 - 

0.66 

± - - - 

0.66 

±0.02 

0.83 

±0.02 

Soluplus - - - - 

0.51 

±0.08 

0.31 

±0.01 

0.05 

±0.01 

0.05 

±0.01 

1.21 

±0.04 

1.30 

±0.10 

HPMCAS/PEO (50/50) 

0.39 

±0.09 - 

0.48 

±0.04 - 

0.31 

±0.16 
- 

0.12 

±0.03 - 

2.95 

±0.57 

3.27 

±1.81 

HPMCAS/Soluplus (50/50) 

0.01 

 - 

0.55 

±0.07 - 

0.09 

±0.02 
- 

0.61 

±0.08 - 

0.44 

±0.08 

3.51 

±1.91 
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4.4 Limitations of the study 
In this chapter, only a fixed polymer ratio was investigated. Earlier studies confirm that polymer behaviour 

kinetics differ with differing polymer blend ratios. Since a generic set of rules could not be gathered by 

adding the individual constituting polymer behaviours, except where the polymer behaviour kinetics are 

identical, a database would need to include a certain number of ratios that may be used widely (thus saving 

from investigating every varying degree of composition) such as HPMCAS/soluplus 10/90, 20/80, 30/70, 

70/30, 50/50, 25,75, 75/25, 10/90, and other polymer combinations.  

 

Further, molecular level interactions are not investigated in this work but proposed such as the Hansen 

solubility parameter and Flory Huggins theory. Based on these theories, more differences observed among 

the blends may be more accurately described such as the hydrated or swelling ratios observed which differ 

from the calculated profile of the blends. It may also describe the inter-pH differences observed between 

pure polymers such as hydration ratio of 9 times for Xanthan gum in pH 1.2 vs a ratio of 6.5 times in pH 6.8.  

4.5 Conclusion 
In this chapter, the factors affecting the kinetics of the polymer behaviour were studied by investigating the 

hydration, swelling and erosion ratios in the two buffers of pH 1.2 and pH 6.8. The use of Vangernaud model 

was used to fit the hydration ratios while a power law empirical model was used for fitting the swelling 

ratios. Both were chosen over simple fits as they encompass the initial to plateau better shown by R2 values. 

The erosion ratios exhibited inverse first order and were fitted to first order decaying models.  

 

In addition, an identical approach was used for the blend. The blends in some cases exhibited complex 

multiphase profiles which were time dependant of the composite’s polymer properties such as maximum 

hydration time and/or maximum swell. At these maximum points, the dominant mechanism would change 

for the blend. The application of ideal polymer mixtures accounting for 50% weight of the constituting 

polymer to create the blend profiles yielded only reasonably good agreement when both effects were 

common in the constituting polymers such as both eroding. This has rendered the deduction of a generic 
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equation unattainable for blends which do not exhibit commonly shared behaviour in the media such as one 

constituent being a swelling polymer and the other a non-swelling polymer or likewise one hydrating 

polymer and the other a non-hydrating polymer. 

 

Lastly, a dataset, with the gathered data of polymers, was constructed to help in modelling the behaviour of 

the drug loaded formulation using the polymer/blend bringing one step closer to being able to achieve a 

desired drug release profile and choosing an appropriate formulation.  
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Chapter 5: Categorizing the effect of drug types on 
polymer behaviour 

5.1 Introduction 
In the previous chapter, the factors affecting the kinetics of the behaviour of pharmaceutical polymers 

(hydration, swelling and erosion) used in 3D printing were investigated. The cornerstone of polymer choice 

in oral dosages is to attain drug release in a desired pattern in order to achieve the optimal absorption and 

therapeutic outcome (414, 415). There have been several drugs reported being made solid dispersions using 

FDM 3D printing such as acetaminophen (49), indomethacin (368), warfarin (378), carvedilol (375), 

theophylline (47), puerarin (416), gentamicin sulfate (25), felodipine (52), haloperidol (417), ciprofloxacin 

hydrochloride (418), domperidone (377), prednisolone (419), dipyridamole (53). As reported widely in the 

solid dispersions research, the physicochemical properties of the drug and the polymer-drug interactions 

can have profound impacts on the properties of the formed solid dispersions (420, 421). Therefore, it is 

important to investigate systematically how different types of drugs can interact with polymers to influence 

the polymer behaviour and drug release. 

 

In this chapter, the drug release behaviour of the solid dispersions formed by three model polymers and 

three model drugs were carried out. The model drugs were chosen to present positively charged, negatively 

charged or neutral in pH 1.2 or 6.8. The data generated were used to build a dataset that was later used in 

building the classification approach to facilitate the choosing the appropriate polymer or combination of 

polymers for a given drug. 

5.2 Materials and methods 
The polymers used in this chapter were purified zein, Hypromellose acetate succinate (HPMCAS) AS-LF, and 

Poly-(Ethylene Oxide) (PEO) WSR N10 LEO and their physicochemical properties are described in section 

2.2.4 to 2.2.6 of chapter 2. The three drugs used were lidocaine, ibuprofen, and paracetamol and their 

physicochemical properties are described in section 2.2.1 to 2.2.3 of chapter 2.  
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5.2.1 Preparation of filaments 
The procedure mentioned in section 4.2.1 of preparing filament using HME technique was used. However, 

in this case, the addition of drug loadings of 10% and 30% by weight in two different batches were 

prepared. The extruded filament was then cut into 2cm pieces for in vitro studies.   

5.2.2 Measurement of factors 

The measured factors of the formulation were hydration, swelling, and erosion in pH 1.2 and pH 6.8. The 

methods of measurement were as per the outlined procedure of hydration, swelling, and erosion in section 

4.2.2 of chapter 4. An additional procedure was to measure the drug release of the formulations. The drug 

release was measured by UV spectroscopy at wavelengths of 220nm, 264nm, and 243nm for lidocaine, 

ibuprofen, and paracetamol respectively using the procedures described in section 2.4.4 of chapter 2. 

5.2.3 Choice of polymers and drugs 
The choice of polymers here was to investigate the difference between a polysaccharide (HPMCAS), a 

protein (zein) and superabsorbent polymer (PEO), in the presence of a positively charged, a negatively 

charged, and a neutral drug. Most molecules contain some specific functional groups likely to lose or gain 

proton(s) under specific circumstances. Each equilibrium between the protonated and deprotonated forms 

of the molecule can be described with a constant value called Ka. The log of this value is known as pKa The 

charge of the drug can be deduced from the species distribution diagram of the drug in the buffer (422). The 

species distribution diagram was calculated using Marvinsketch software (423). The pKa plugin calculates 

the pKa values of the molecule based on its partial charged species distribution. The reported pKa values for 

lidocaine, ibuprofen, and paracetamol is 7.8, 4.5, and 9.5 respectively (207, 210, 424). The percentages of 

charged species are shown in Table 5-1. The charged form (column 2) indicates the charge that is possessed 

by the percentage fraction in pH 1.2 (column 4) and pH 6.8 (column 6). For example, in pH 6.8, lidocaine is 

90.01% positively charged while ibuprofen is 98.89% negatively charged. It is hypothesized that lidocaine, 

which is ionic in both pH, is soluble and has a higher osmolarity than neutral drug and will cause higher 

hydration, swelling, and erosion in the formulation compared to placebo. Two sets of drug loading with 

each polymer were chosen for the studies: 10% and 30% drug loading. It is hypothesized that higher ionic 
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drug loading should cause higher and faster hydration, swelling, and erosion due to the fact higher quantity 

should amplify the osmolarity compared to the 10% drug loaded formulations. 

Table 5-1: The % of charged species of the drugs in the buffers. The charged form of the drug in the buffer is given by column 3. 

 pKa Charged form Neutral (%) Charged (%) Neutral (%) Charged (%) 

Drug   pH 1.2 pH 6.8 

Lidocaine 7.9 + 0 100 9.99 90.01 

Ibuprofen 4.4 - 99.98 0.02 1.11 98.89 

Paracetamol 9.5 - 100 0 99.78 1.22 
 

5.3 Results and Discussion 
The characterisation of the formulations are presented in the appendix. The presentation of results is 

divided into eight sections. Prior to all the sections, the results of polymer behaviours and drug release is 

presented for all the formulations. HPMCAS formulations results are presented in Figure 5-1 for 

HPMCAS/lidocaine, in Figure 5-2 for HPMCAS/ibuprofen, and in Figure 5-3 for HPMCAS/ paracetamol. Zein 

formulation results are presented in Figure 5-4 for zein/lidocaine, in Figure 5-5 for zein/ibuprofen, and in 

Figure 5-6 for zein/paracetamol. PEO formulations results are presented in Figure 5-7 for PEO/lidocaine, in 

Figure 5-8 for PEO/ibuprofen, and in Figure 5-9 for PEO/paracetamol. In each section, the effect on the 

individual polymer with regards to hydration, swelling, and erosion with the different drugs is presented. 

The first section (section 5.3.1) presents drug release cases. The first case, in no particular order, is drug 

release driven only by diffusion. In this case, the diffusion is due to hydration. The second case is the 

diffusion is accompanied by simultaneous swelling or erosion. In this case, there are two polymer behaviour 

exhibited. The third case is when all three of the behaviour occur. Thereafter, the individual polymer 

behaviour will be investigated to understand the different cases of drug release from formulation. Three 

cases of polymer behaviour arise for drug release. The second section (section 5.3.2) report effect of charge 

state on polymer hydration. The third section (section 5.3.3) presents the effect of drug loading on 

hydration. The fourth section (section 5.3.4) presents the effect of charge state on polymer swelling, while 

the fifth section (section 5.3.5) presents the effect of drug loading on swelling. The sixth section (section 

5.3.6) presents the effect of charge state on polymer erosion and the last section (section 5.3.7) summarizes 

the effect of charge state to overall polymer behaviour. 
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Figure 5-1: Drug release and HPMCAS behaviour for lidocaine formulations. The generic ratio ((X-Xo)/Xo) has been presented, which can be substituted by wet mass in the case of hydration, 
volume in the case of swelling, and dry mass in the case of erosion. the drug release is plotted on the secondary y-axis. Erosion is always plotted in inverse increasing from an initial ratio of 1. 
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Figure 5-2: Drug release and HPMCAS behaviour for ibuprofen formulations. The generic ratio ((X-Xo)/Xo) has been presented, which can be substituted by wet mass in the case of hydration, 
volume in the case of swelling, and dry mass in the case of erosion. the drug release is plotted on the secondary y-axis. Erosion is always plotted in inverse increasing from an initial ratio of 1.  
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Figure 5-3: Drug release and HPMCAS behaviour for paracetamol formulations. The generic ratio ((X-Xo)/Xo) has been presented, which can be substituted by wet mass in the case of hydration, 
volume in the case of swelling, and dry mass in the case of erosion. the drug release is plotted on the secondary y-axis. Erosion is always plotted in inverse increasing from an initial ratio of 1. 

0

20

40

60

80

100

120

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 200 400 600 800 1000 1200 1400 1600 1800

D
ru

g 
re

le
as

e 
(%

)

R
at

io
 (

(X
-X

o
)/

X
o

)

Time (min)

HPMCAS+Paracetamol 10% pH 1.2

Hydration Swelling Erosion Drug Release

-20

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300

D
ru

g 
re

le
as

e 
(%

)

R
at

io
 (

(X
-X

o
)/

X
o

)

Time (min)

HPMCAS+Paracetamol 30% pH 1.2

Hydration Swelling Erosion Drug Release

0

20

40

60

80

100

120

-1

-0.5

0

0.5

1

1.5

0 50 100 150 200 D
ru

g 
re

le
as

e 
(%

)

R
at

io
 (

(X
-X

o
)/

X
o

)

Time (min)

HPMCAS+Paracetamol 10% pH 6.8

Hydration Swelling Erosion Drug Release

0

10

20

30

40

50

60

-1

-0.5

0

0.5

1

1.5

0 20 40 60 80 100 D
ru

g 
re

le
as

e 
(%

)

R
at

io
 (

(X
-X

o
)/

X
o

)

Time (min)

HP+Paracetamol 30% pH 6.8

Hydration Swelling Erosion Drug Release



 

124 

 
Figure 5-4: Drug release and zein behaviour for lidocaine formulations. The generic ratio ((X-Xo)/Xo) has been presented, which can be substituted by wet mass in the case of hydration, volume in 
the case of swelling, and dry mass in the case of erosion. the drug release is plotted on the secondary y-axis. Erosion is always plotted in inverse increasing from an initial ratio of 1. 
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Figure 5-5: Drug release and zein behaviour for ibuprofen formulations. The generic ratio ((X-Xo)/Xo) has been presented, which can be substituted by wet mass in the case of hydration, volume 
in the case of swelling, and dry mass in the case of erosion. the drug release is plotted on the secondary y-axis. Erosion is always plotted in inverse increasing from an initial ratio of 1. 
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Figure 5-6: Drug release and zein behaviour for paracetamol formulations. The generic ratio ((X-Xo)/Xo) has been presented, which can be substituted by wet mass in the case of hydration, 
volume in the case of swelling, and dry mass in the case of erosion. the drug release is plotted on the secondary y-axis. Erosion is always plotted in inverse increasing from an initial ratio of 1. 
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Figure 5-7: Drug release and PEO behaviour for lidocaine formulations. The generic ratio ((X-Xo)/Xo) has been presented, which can be substituted by wet mass in the case of hydration, volume in 
the case of swelling, and dry mass in the case of erosion. the drug release is plotted on the secondary y-axis. Erosion is always plotted in inverse increasing from an initial ratio of 1. 
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Figure 5-8: Drug release and PEO behaviour for ibuprofen formulations. The generic ratio ((X-Xo)/Xo) has been presented, which can be substituted by wet mass in the case of hydration, volume 
in the case of swelling, and dry mass in the case of erosion. the drug release is plotted on the secondary y-axis. Erosion is always plotted in inverse increasing from an initial ratio of 1. 
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Figure 5-9: Drug release and PEO behaviour for paracetamol formulations. The generic ratio ((X-Xo)/Xo) has been presented, which can be substituted by wet mass in the case of hydration, 
volume in the case of swelling, and dry mass in the case of erosion. the drug release is plotted on the secondary y-axis. Erosion is always plotted in inverse increasing from an initial ratio of 1. 
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5.3.1 Effect of Ionisation state of the model drug on drug release of solid 
dispersions 
In this section, the drug release profile and polymer behaviour will be presented. As mentioned previously, 

three cases of polymer behaviour arise for drug release. The first case is drug release driven only by 

diffusion which is due to hydration. The second case is the diffusion is accompanied by simultaneous 

swelling or erosion and the third case is when all three of the behaviour occur. Additionally, the drug release 

constant (KD), release mechanism (n), and the t50 (drug release half-life) will be useful in comparing the 

formulations.  

5.3.1.1 Case I  

In case I, the drug release is driven only by diffusion which is due to hydration. The first case is seen with 

HPMCAS formulations in pH 1.2. HPMCAS, in pH 1.2, is insoluble. The addition of a hydrophilic drug 

increases the osmotic gradient. This drives the diffusion of the solvent into the matrix which becomes 

entrapped causing a density reduction in the matrix while allowing the hydrophilic drugs to dissolve into the 

solvent. At 30% lidocaine loading for HPMCAS, the quantity of lidocaine is sufficient to exhibit a disintegrant 

effect in the matrix. The duration of complete drug release was much shorter than 10% lidocaine loaded 

HPMCAS. Hydrophobic ibuprofen slowed the diffusion significantly. Additionally, HPMCAS, in pH 1.2, 

showed a low KD and a long (t50) duration compared to other formulations, shown in Table 5-2. Lidocaine t50 

was lower than paracetamol t50 as expected while Ibuprofen had a higher t50 which is expected for a 

hydrophobic drug. For both paracetamol and ibuprofen at lower drug loadings, the mechanism or release 

was Fickian diffusion (n<0.45) and becomes anomalous transport (<0.45n<0.89) at higher drug loading. As 

mentioned in chapter 1, Fickian diffusion occurs when the polymer relaxation time is much greater than the 

solvent diffusion time. At 10% drug loading, diffusion becomes the only mechanism and thus the t50 is slow, 

but at 30% loading, majority of the formulation composition is more hydrophilic, the diffusion rate becomes 

equal to the polymer relaxation and hence the increase of n values for all lidocaine and paracetamol 

formulations in pH 1.2. By comparing the drug release of lidocaine, which is charged, to ibuprofen, it can be 

noted that solubility is a more dominant factor of determining drug release than ionisation. 
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5.3.1.2 Case II 

In this case, the diffusion is accompanied by either swelling or erosion. In such cases, the density of the 

polymer at the matrix interface is quite low so that the polymer chains along with drug molecules dissolve 

into the solvent. In such cases, the higher the ratio of swelling or erosion, the lower the density of the 

matrix will become at the interface. This will drive the drug release to be greater compared to a less 

swelling or eroding polymer. This behaviour can be seen with all zein formulations, shown in Figure 5-4, 

Figure 5-5, and Figure 5-6. The parametrized values of fitting of zein formulations are shown in Table 5-2. 

Zein does not erode in either pH. Zein is positively charged in pH 1.2. Paracetamol and lidocaine release did 

not show any significant difference for t50, KD, or n. Zein exhibited an intermediate t50 between HPMCAS and 

PEO. Zein with 30% ibuprofen loading had release mechanism value of 0.99 indicates case II transport 

whereby the movement of molecules in the matrix is influenced by polymer relaxation and associated with 

state transition (glass-to-gel transition). As such the gelling layer of zein gradually becomes thicker and 

therefore the drug concentration gradient along the diffusional pathlength is decreased. The gradually 

decreased drug concentration gradient results in progressively slower drug release rates as evidenced by 

very low KD (0.04) for this formulation. Ibuprofen is neutral like paracetamol but showed significant 

difference reasoning that solubility is a factor, not ionisation. In pH 6.8, Zein is neutrally charged and 

exhibits longer t50 for lidocaine and paracetamol formulations. Bouman et al observed that charge 

difference between zein and indomethacin retarded the drug release and like charges accelerated the drug 

release (14). The charges for zein, lidocaine, and ibuprofen are shown in Figure 5-10. This still does not 

explain the reason for zein (neutral) and ibuprofen (negative) fast drug release times. One possible 

explanation for this might be that the hydrophobic drug diffuses through the hydrophobic zein matrix faster 

than the hydrophilic drug (425). This may indicate that intermolecular forces have a more dominant role 

compared to ionisation.  However, if ibuprofen is charged it is behaving as weak acid. This may lead to 

certain local regions where the pH is reduced. Once water is absorbed, the system becomes more 

heterogeneous and the behaviour could be highly complex. 
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Figure 5-10: Schematic overview of the charge of zein, lidocaine, and ibuprofen. The pH scale has only been shown until pH 8. Beyond 
this, any charge attainted was not part of the experimental pH. Paracetamol was omitted as it is neutral in all pH. The dashed line 
shows the two pH at which studies were performed. 

5.3.1.3 Case III 

The third case is wherein diffusion, swelling, and erosion occur simultaneously. This is observed for PEO 

formulations shown in Figure 5-7, Figure 5-8, and Figure 5-9. PEO exhibited the shortest t50 and high KD 

values as a superabsorbent polymer. However, in both pH, there was no significant difference among the 

drug release parameters. In the case of 30% ibuprofen loading in pH 1.2, case II transport was seen with a 

significantly prolonged t50 of 88 minutes (5.5X slower than other PEO formulation which is slowed 1.3X). In 

general, ibuprofen loadings retarded t50 due to the hydrophobic nature of the drug. This reaffirms the 

ionisation played a minor role for drug release. 
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Table 5-2: Drug release constant (KD) ± SD and the mechanism of release of the formulations in pH 1.2 and pH 6.8. t50 is 
the half release time that allows for comparison. 

 
pH 1.2 pH 6.8 

Formulation KD ± SD nd R2 t50 (min) KD ± SD nd R2 t50 (min) 

HPMCAS+Lidocaine 10% 5.93 ± 1.98 0.29 0.91 325 16.79 ± 6.91 0.39 0.95 26 

HPMCAS+Lidocaine 30% 1.46 ± 0.88 0.59 0.98 50 13.60 ± 0.38 0.23 0.98 20 

HPMCAS+Ibuprofen 10% - - - - 3.58 ± 1.41 0.75 0.99 36 

HPMCAS+Ibuprofen 30% 15.69 ± 14.43 0.46 0.84 14 2.93 ± 1.76 0.80 0.99 28 

HPMCAS+Paracetamol 10% 4.87 ± 1.54 0.37 0.93 539 11.28 ± 3.49 0.43 0.94 48 

HPMCAS+Paracetamol 30% 2.12 ± 1.15 0.64 0.92 88 14.83 ± 2.38 0.32 0.98 36 

Zein+lidocaine 10% 8.84 ± 2.04 0.33 0.97 220 2.91 ± 1.59 0.44 0.99 680 

Zein+lidocaine 30% 7.22 ± 3.31 0.35 0.96 120 4.26 ± 1.25 0.41 0.98 340 

Zein+Ibuprofen 10% 1.62 ± 0.47 0.51 0.98 120 1.98 ± 0.34 0.61 0.87 12 

Zein+Ibuprofen 30% 0.04 ± 0.29 0.99 0.98 120 1.99 ± 0.98 0.25 0.91 15 

Zein+Paracetamol 10% 6.78 ± 1.69 0.38 0.96 190 2.18 ± 1.93 0.39 0.98 760 

Zein+Paracetamol 30% 7.45 ± 1.56 0.34 0.95 120 4.12 ± 1.34 0.52 0.97 634 

PEO+lidocaine 10% 13.22 ± 8.38 0.46 0.93 10 4.22 ± 2.47 0.64 0.99 10 

PEO+lidocaine 30% 8.85 ± 4.43 0.58 0.91 13 2.56 ± 0.41 0.72 0.99 14 

PEO+Ibuprofen 10% 2.95 ± 1.21 0.24 0.94 16 3.51 ± 2.25 0.68 0.98 33 

PEO+Ibuprofen 30% 0.74 ± 0.45 0.99 0.91 84 3.44 ± 1.38 0.77 0.95 21 

PEO+Paracetamol 10% 9.48 ± 4.34 0.53 0.94 14 3.98 ± 2.08 0.68 0.98 18 

PEO+Paracetamol 30% 12.38 ± 3.23 0.58 0.97 14 3.49 ± 1.87 0.68 0.98 24 

 

5.3.2 Effect of ionisation state of the model drug on polymer hydration 
(positive weight change) 

A note about the word hydration used in this work needs to be mentioned. When measuring the wet weight 

of the extrudate, there is a simultaneous activity of water ingress and erosion is taking place. The hydration 

ratio of pure HPMCAS and HPMCAS formulation is presented in Figure 5-11. Hydration ratio is taken as a 

positive ratio. As such, hydration of HPMCAS formulation occurs only in pH 1.2. The hydration ratio was 

higher for lidocaine than the other two drugs. Lidocaine is a hydrophilic drug which is fully positively 

charged in pH 1.2. As the formulation is immersed in the solvent, the charged drug molecule in the matrix 

modifies the wettability of the formulation interface (426). In this case, the wettability is increased resulting 

in an increased solvent uptake. Ibuprofen and paracetamol, meanwhile, are neutral in this pH and does not 

increase osmolarity as does lidocaine.  
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Figure 5-11: HMPCAS hydration ratio and HPMCAS formulation hydration ratios in pH 1.2.  

However, although paracetamol is also neutral, there is a difference in the hydration ratio between 

ibuprofen and paracetamol loaded formulations. This greater solubility of paracetamol (21 mg/mL in pH 1.2) 

than ibuprofen (0.06 mg/mL in pH 1.2) results in higher hydration in pH 1.2 (427). Hence, in the case of an 

insoluble polymer (HPMCAS) which acts as a non-interacting carrier, the true effect of the drug can be 

investigated. The driving force for hydration is likely the solubility of the drug.  

 

The PEO loaded formulation hydration is shown in Figure 5-12. In the case of PEO, the effect of the ionised 

state of the drug is less obvious due to PEO being a super-absorbent polymer (SAP). Such SAP can retain a 

large percentage of solvent, relative to its weight, within their structure (143). Lidocaine loaded PEO had an 

initial high hydration ratio but plateaued earlier than the two other formulations. This may be because 

lidocaine was released earlier within the first ten minutes when the hydration ratio was higher. The drug 

release to hydration will be compared later on. At pH 6.8, the two hydrophilic drugs, of which lidocaine is 

90.01% positively charged and paracetamol is 99.78% neutral, did not show any significant variation of 

hydration ratio from the pure PEO itself. Ibuprofen, which was 98.89% negatively charged exhibited a 
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slowdown. Ionisation will increase the osmolarity and therefore the driving force for water ingress. This can 

explain the decrease the wettability of the surface of ibuprofen loaded formulations leading to less amount 

of solvent ingress.  

 

The zein formulation hydration ratios are shown in Figure 5-13. Lidocaine loaded zein formulations were 

observed to show a higher hydration ratio in both pH. A factor for this could be the electrostatic interaction 

between the drugs and the zein matrix. Bouman et al observed the drug release was faster when the carrier 

and drug were identically charged and release was slower when they were oppositely charged (14). The 

same reasoning could hold in the case of hydration. In pH 1.2, zein and lidocaine are positively charged 

while ibuprofen and paracetamol are neutral. This can explain the higher hydration ratio observed for zein 

and lidocaine. Lidocaine is positively charged and ibuprofen is negatively charged while paracetamol is 

neutral. This can explain the higher hydration ratio observed for zein and lidocaine (both +) and lower 

hydration ratio for zein and ibuprofen (+ and -). Figure 5-10 illustrated this, however, it is more likely that 

solubility is the explaining factor. 
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Figure 5-12: Top) PEO hydration ratio and PEO formulation ratios in pH 1.2. Bottom) PEO hydration ratio and PEO formulation 
hydration ratio in pH 6.8. 
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Figure 5-13: Top) zein hydration ratio and zein formulation ratios in pH 1.2. Bottom) Zein hydration ratio and zein formulation 
hydration ratios in pH 6.8. 
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5.3.3 Effect of drug loading on polymer hydration 
An interesting case arose with 30% lidocaine loaded HPMCAS. The tendency of lidocaine to dissolve is much 

greater than at 10% lidocaine loading that it causes erosion (negative hydration) for the insoluble HPMCAS 

polymeric matrix. Hydration ratio is taken when the wet formulation to dry formulation ratio is positive but 

this formulation was included in the hydration ratio as this is an exception. As the surface of the matrix 

erodes, this causes the solvent to percolate to the inner layers causing more wetting and erosion. In pH 1.2, 

the solvent limits ionisation of HPMCAS chain to 10% at most. Due to this, the dissolved chain remains in a 

compact folded state. As the chains are hydrophobic when unionised in a poor solvent, HPMCAS/lidocaine 

30% formulation collapses into globules. The addition of lidocaine in high quantities has made the drug act 

as a super disintegrant and although paracetamol loading of 30% with HPMCAS did not exhibit this 

behaviour, it is believed that higher loading of paracetamol will cause the same eroding behaviour of 

HPMCAS formulation to occur in pH 1.2 (428). The hydration ratios of HPMCAS formulation in pH 1.2 is 

shown in Figure 5-14.  

 
Figure 5-14: HPMCAS formulation hydration ratio in pH 1.2. Hydration ratios are not shown for pH 6.8 as no hydration but erosion 
takes place of the formulation. 
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The compared ratio of hydration at different drug loadings is shown in Figure 5-15. The hydrated ratio 

(plotted on the primary axis) was derived by dividing the maximum hydrated ratio at 30% by the maximum 

hydrated ratio at 10% (i.e. Formulation30%/Formulation10%). A value, greater than one would indicate higher 

hydration for the 30% formulation as the numerator is increasing faster than the denominator. A value 

between zero and one would indicate slower hydration for the 30% drug loaded formulation relative to the 

10% drug loaded formulation. A negative ratio indicates erosion. Erosion is not included in this plot. The 

only exception was the case of HPMCAS loaded with 30% lidocaine at pH 1.2. This was included for 

comparison as the 10% lidocaine loaded did not show any erosion but 30% lidocaine loaded HMCAS 

formulation did.  

 

The time ratio (secondary axis) indicates how fast the higher drug loading caused the formulation to reach 

the maximum hydrated ratio where the hydration ratio was compared on the primary axis. A value of one 

indicates the time taken was the same for both formulations while a value lower than one indicate a shorter 

time. Therefore, it can be seen that for the HPMCAS lidocaine formulation, the addition of higher drug 

loading caused erosion and the time taken to was faster at a ratio of 0.1 (a tenth of the time). For most 

formulations, the higher drug loading caused slower hydration. Zein loaded with ibuprofen had value just 

above one (1.08) but this can not be taken to be significant due to the variation overserved on the 

triplicates. The time ratio for most of them is the same which allows for a comparison of the hydration 

ratios at identical times ratio. Some formulations such as PEO with lidocaine and PEO with paracetamol in 

pH 1.2 and PEO with ibuprofen at pH 6.8 showed lower hydration but at a much shorter time. This seems to 

be an observation with PEO which is prone to absorbing high quantities of solvent but also undergoing 

erosion. Since the hydration ratio is lower but the time is shorter, it could be the rate of solvent ingress is 

faster due to the increased affinity of the matrix from higher drug loading causing most of the drug to be 

released faster, but also increasing erosion.  
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Figure 5-15: Formulation hydration ratio and time to reach hydration ratio comparison. A weight ratio above 1 indicates faster 
hydration while between 0 and 1 indicates slower hydration. Negative ratio is indicating erosion. The time ratio (secondary axis) 
indicates how fast the higher drug loading caused the formulation to reach the maximum hydrated ratio. The time ratio 
(H30%/H10%) is the time of maximum hydration ratio at 30% drug loading divided over maximum hydration ratio at 10% drug 
loading. A value of less than 1 indicates faster swelling for the 30% formulation. 

5.3.4 Effect of ionisation on polymer swelling 
The swelling ratios of zein formulations are shown in Figure 5-16. The addition of hydrophilic charged drug 

increased the swelling ratio in both pH. This is to be expected based on the hydration ratio that was 

observed. As more of the solvent ingresses, more of the polymer free volume is occupied causing the 

polymer to undergo relaxation. Ibuprofen caused less swelling due to the drug hydrophobicity. The addition 

of hydrophobic drugs to the zein matrix makes the combined system more hydrophobic. It has been known 

that upon contact with the solvent, five steps occur in sequence (165). First, the solvent diffuses into the 

matrix. Then, the solvent acts as a plasticizer, lowering the polymer glass transition temperature, Tg, causing 

the glass-rubber transition, the gel formation, and polymer swelling. At this point, the soluble drug dissolves 

and diffuses through the gel layer. If the drug is hydrophilic, it will accelerate the diffusion as the 

molecularly dispersed hydrophilic drug particles in the matrix enhance affinity for the solvent particles. If 

the drug is hydrophobic, the particles will decelerate the diffusion of solvent by acting as a repulsive the 

solvent particles. This is the most probable cause for a difference between the lidocaine and ibuprofen.  
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Figure 5-16: Top) Zein and zein formulation swelling ratios in pH 1.2. Bottom) Zein and zein formulation swelling ratios in pH 6.8 
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While, in pH 6.8, the swelling ratio for both drugs is lower than the pure PEO. Rowell and Banks describe 

that moisture control can be subcategorized as water repellents and dimensional stabilizers. While water 
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chemical modifications (429). The reason ibuprofen loading could lower the swelling ratio is that ibuprofen 

is negatively charged while the hydroxyl in PEO is also negatively charged leading repelling which cause less 

solvent uptake and in turn less swelling. Lidocaine is positively charged in this pH and the increase in 

positive charge while the reduction in OH-
 could lead to less solvent uptake and therefore less swelling too. 

The PEO formulation swelling ratio is shown in Figure 5-17. 

 

 
Figure 5-17: Top) PEO and PEO formulation swelling ratios in pH 1.2. Bottom) PEO and PEO formulation swelling ratios in pH 6.8 
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5.3.5 Effect of drug loading on polymer swelling 
It appears the swelling was reduced in pH 1.2 but not significantly as the ratio is close to one but in the 

range of 0.9 to 1 except for 30% lidocaine loaded PEO formulation. The swelling rate increased for this 

formulation as the value is close to 0.2 (value on the secondary axis for the dashed line), indicating swelling 

was five times faster with three times the drug load. The swelling rate increased for all PEO formulations in 

pH 1.2 with the highest increase being for lidocaine followed by ibuprofen and then paracetamol. The 

compared ratio of swelling at different drug loadings are shown in Figure 5-18. In pH 6.8, the swelling 

increased for both zein and PEO by the addition of higher quantities of hydrophobic ibuprofen. The swelling 

rate decreased for all formulations with the addition of higher drug loading as all values are less than 1. 

Moreover, it can be observed that the swelling rates exhibited the fastest increase for lidocaine 

formulations and slowest increase for paracetamol for both formulations. According to obstruction theories 

(430-432), which focus on sieve effect in the polymeric network, the addition of more hydrophobic drug 

particles should make the network more impenetrable elongating the path length for solvent molecules to 

defuse in and drug molecules to diffuse out. Conversely, the addition of more hydrophilic lidocaine should 

make the network more impenetrable but to a lesser degree than hydrophobic ibuprofen. The swelling 

profile fitted to the semiempirical power model is presented in Table 5-3.  

 
Figure 5-18: Swelling ratio comparison for swellable formulations. The time ratio (secondary axis) indicates how fast the higher drug 
loading caused the formulation to reach the maximum swelling ratio. A volume ratio above 1 indicates faster swelling while between 
0 and 1 indicates slower swelling.  
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Table 5-3: The swelling constant (KS), the swell index(n), and their goodness of fit (R2) for polymers and drug loadings in pH 1.2 and 

pH 6.8.  

 
pH 1.2 pH 6.8 

Formulation Ks ns R2 Ks ns R2 

Zein* 0.04 ± 0.01 0.37 ± 0.08 0.99 0.09 ± 0.01  0.18 ± 0.03 0.99 

PEO* 0.46 ± 0.11 0.42 ± 0.10 0.99 0.43 ± 0.18 0.49 ± 0.07 0.99 

Zein+lidocaine 10% 0.04 ± .001 0.48 ± 0.06 0.96 0.02 ± 0.01 0.52 ± 0.16 0.95 

Zein+lidocaine 30% 0.21 ± 0.04 0.38 ± 0.12 0.91 0.01 ± .008 0.68 ± 0.24 0.98 

PEO+lidocaine 10% 0.59 ± 0.08 0.37 ± 0.09 0.94 0.45 ± 0.14 0.55 ± 0.17 0.99 

PEO+lidocaine 30% 0.24 ± 0.06 0.31 ± 0.12 0.94 0.29 ± 0.16 0.52 ± 0.18 0.92 

Zein+Ibuprofen 10% 0.08 ± 0.01 0.34 ± 0.08 0.97 0.07 ± .006 0.23 ± 0.08 0.96 

Zein+Ibuprofen 30% 0.02 ± 0.01 0.26 ± 0.05 0.96 0.01 ± .008 0.49 ± 0.14 0.93 

PEO+Ibuprofen 10% 0.38 ± 0.08 0.23 ± 0.04 0.98 0.16 ± 0.08 0.35 ± 0.10 0.70 

PEO+Ibuprofen 30% 0.25 ± 0.04 0.37 ± 0.13 0.98 0.09 ± 0.02 0.53 ± 0.09 0.99 

Zein+Paracetamol 10% 0.06 ± 0.01 0.42 ± 0.08 0.97 0.05 ± .008 0.56 ± 0.16 0.99 

Zein+Paracetamol 30% 0.17 ± 0.02 0.54 ± 0.07 0.98 0.03 ± .009 0.61 ± 0.21 0.99 

PEO+Paracetamol 10% 0.43 ± 0.24 0.26 ± 0.03 0.96 0.13 ± 0.08 0.49 ± 0.14 0.95 

PEO+Paracetamol 30% 0.37 ± 0.16 0.28 ± 0.11 0.97 0.23 ± 0.10 0.54 ± 0.19 0.94 
 

5.3.6 Effect of ionisation state of the model drug on polymer erosion 

The erosion rates of the formulations fitted to exponential decay are presented in Table 5-4. There is a 

significant increase in erosion rates with the addition of drugs for all formulations except zein. Zein is a non-

eroding polymer. HPMCAS is insoluble in pH 1.2 while 30% lidocaine HPMCAS loading exhibited a 

disintegrating effect. The likely explanation for this is the quantity of the hydrophilic drug. Lidocaine is 

hydrophilic and upon contact with the solvent, the hydrostatic pressure in the formulation is increased 

(433). The pressure is increased either by water/solvent wicking into the plug or swelling phenomena. The 

latter effect is not observed. This wicking promotes de-aggregation of the plug particles (434). Since the 

majority of the constituent is the insoluble polymer, the plugs particles are all drug particles. As these 

particles are dissolved, microscopic channels are created through which percolation of the solvent occurs. 

The surface layer breaks at some point when a critical osmotic pressure builds up inside the matrix due to 

the accumulation of solvent (161). Such effect is not seen with paracetamol 30% HPMCAS loading but it is 

suspected that with higher paracetamol loading, this phenomenon will be observed.  

 

The type of bond within the polymer backbone mainly that determines the rate of hydrolysis, degradation, 

and subsequent erosion. In the case of PEO, the C-O-C backbone of PEO gives unmatched hydrophilicity 
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compared to carbon based backbone (435). The increase in erosion of PEO formulation relative to pure PEO 

is due to the addition of the lidocaine and the decrease is due to the addition of ibuprofen. Generally 

increasing net solubility gives rise to hydrophilicity and erosion. By the same token, PEO/ibuprofen loadings 

were observed to have lower erosion ratio than lidocaine as ibuprofen has two atoms available for 

hydrogen bonding. However, this does not fully explain for differences in solubilities between lidocaine and 

ibuprofen. Based on solubility theory, factors such as temperature, pressure, density and concentration of 

the solvent, intramolecular attractive forces, and polarity affect the solubility of the solute (drug) (436, 437). 

Furthermore, hydrate theory, and theories of dissociation and molecular association advance the study of 

the solubility of solvents. Since the dissolution of a particle of a solute in a liquid is due to (i) the attraction 

exercised by the molecules of the solvent (ii) the attraction exercised by the molecules of solute already in 

solution, the variance in erosion ratios between lidocaine and ibuprofen can reducibly be explained by this 

variance of attraction due to all the solubility factors mentioned above.  

 

In pH 6.8, the erosion ratio for PEO was lower than pH 1.2 but all PEO formulations exhibited a higher 

erosion rate. Kavangh et al showed that an increase in ionic strength of polymer to a decrease in matrix 

erosion rate (438) implying reverse is also true. The decrease in erosion rates as the ionic strength increased 

was attributed to the “salting out” of the polymer by the organic ions present in the dissolution media. 

However, PEO is a non-ionizable polymer and pH insensitive polymer (243). Additionally, Kofi also showed 

the model drugs used showed that despite HPMC being a non-ionic polymer, the medium ionic composition 

can influence its behaviour (438, 439). Similarly, HPMCAS (pH responsive) formulations exhibited erosion 

(higher erosion rate for HPMCAS-lidocaine 30%) in this pH. In the previous chapter, the pH responsiveness 

of HPMCAS has been discussed. HPMCAS polymer chains, which are ionised in pH 6.8, expands due to the 

repulsion between charges on the polymer chain allowing for the dissolution of the chain and subsequently 

undergoes erosion. In contrast, in pH 1.2, the solvent prevents ionisation of HPMCAS chain, the dissolved 

chain remains in a compact, folded state. Since the chains are hydrophobic when unionised in a poor 

solvent, they collapse into globules which were precisely observed for HPMCAS-lidocaine 30% in pH 1.2. 
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With regards to the ionisation of drugs, there was not a significant difference between HPMCAS-lidocaine 

(+) and HPMCAS-paracetamol (neutral). This reflects a similar result trend obtained by Rania et al where the 

dissolution behaviour of carvedilol was investigated. They found that although carvedilol was 100% ionised 

from pH 1.2 to 90% ionised at pH 6.8, the dissolution behaviour and erosion was unaffected and only 

changed when the ionic strength of the medium was altered by adding salts which varied the solubility from 

2398.6 μg/ml in pH 1.2 to 31.3 μg/ml in pH 6.8 (440). Thus, the erosion variance between ibuprofen and 

lidocaine/paracetamol can be explained by the difference in their solubilities in the medium; not by the 

ionisation which if true, would exhibit a difference in pH 1.2.  

Table 5-4: Erosion rates (EK ±SD) of polymers and formulations in pH 1.2 and pH 6.8. 

 pH 1.2 pH 6.8 

Formulation EK R2 EK R2 

HPMCAS  -  - 0.64 ± 0.23 0.98 

Zein  -   -   -   -  

PEO 0.79 ± 1.32 0.94  0.58 ± 0.12 0.98 

HPMCAS+Lidocaine 10%  -   -  2.24 ± 0.12 0.98 

HPMCAS+Lidocaine 30% 1.19 ± 0.23 0.91 4.91± 0.63 0.98 

Zein+lidocaine 10%  -   -   -   -  

Zein+lidocaine 30%  -   -   -   -  

PEO+lidocaine 10% 7.91 ± 1.09 0.95 8.11 ± 1.43 0.95 

PEO+lidocaine 30% 3.11 ± 0.87 0.85 5.05 ± 1.56 0.96 

HPMCAS+Ibuprofen 10%  -   -  1.63 ± 0.42 0.96 

HPMCAS+Ibuprofen 30%  -   -  0.86 ± 0.52 0.97 

Zein+Ibuprofen 10%  -   -   -   -  

Zein+Ibuprofen 30%  -   -   -   -  

PEO+Ibuprofen 10% 3.87 ± 1.34 0.94 5.89 ± 1.18 0.96 

PEO+Ibuprofen 30% 2.54 ± 1.23  0.93 4.72 ± 0.92 0.98 

HPMCAS+Paracetamol 10%  -   -  1.81 ± 0.83 0.97 

HPMCAS+Paracetamol 30%  -   -  3.82 ± 1.19 0.98 

Zein+Paracetamol 10%  -   -   -   -  

Zein+Paracetamol 30%  -   -   -   -  

PEO+Paracetamol 10% 5.33 ± 1.67 0.96 8.08 ± 1.07 0.98 

PEO+Paracetamol 30% 4.72 ± 0.84 0.98 7.03 ± 1.15 0.99 

 

5.3.7 Effect of ionisation on overall polymer behaviour 
In the preceding sections, the overall effects of the ionisation of the drugs on polymer behaviours were 

investigated. The dynamics of polymer behaviour and drug release is complex. The ionisation of the drug 
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affects the drug release of the matrix system compared to the placebo polymer. However, it is more likely 

that solubility plays a more dominant role than ionisation. The effect of ionisation on polymer behaviour 

compared to the placebo is summarized in Table 5-5. 

5.4 Conclusion 
In this chapter, four major parameters were investigated relating to the dissolution behaviour of the 

formulation in pH 1.2 and pH 6.8. They were hydration, swelling, erosion, and drug release. Three different 

carrier classes were investigated with three different drugs. The aim was to investigate whether the 

ionisation of drugs contributed to a difference in the four parameters. It was found that formulations 

showed differences in hydration ratio and a clear trend based on ionisation was not shown. Higher drug 

loading increased hydration ratios in some cases. However, the solubility of the drug had a more dominant 

role. For swelling, the SAPs have the highest swell as well as their formulations. The difference in this 

swelling behaviour can define a distinguishing criterion for different classes of carriers which is discussed 

more in detail in the next chapter. The swelling increased for ibuprofen as expected compared to lidocaine. 

The mechanism of swelling also changed with the drugs (indirectly loss of polymer). Higher loading of 

hydrophilic drugs caused more anomalous transport. With regards to erosion, solubility seems to be the 

driving factor for erosion rates with the pH be one of the factors that can alter solubilities of the 

formulation. It was also observed that very high quantities of hydrophilic drugs can act as a disintegrant.  

 

Variations in drug loadings cause a change of release mechanisms. Addition of higher hydrophobic drug 

quantities equates to more diffusion controlled release while the addition of hydrophilic drugs leads to 

more anomalous controlled release. The addition of some hydrophobic drugs to a formulation can give rise 

to case II transport. In terms of duration of release, SAPs are the fastest and proteins are the slowest. pH 

responsive formulations are very versatile in this regard. It was also confirmed that if the polymer and drug 

have identical charges, this accelerates drug release while if they have non-identical charges, this 

decelerates drug release. 
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Table 5-5: Polymer behaviour compared for ionised drug loadings. The arrows indicate if the factor is increasing or decreasing as a 
result. The = sign denotes change of the same magnitude. N/A is noted when the specific factor does not apply to the polymer. 

 pH 1.2 pH 6.8 

HPMCAS 

 Hydration Swelling Erosion Hydration Swelling Erosion 

Charge Ratio Time Ratio Time Ratio Time Ratio Time Ratio Time Ratio Time 

+   N/A N/A   N/A N/A N/A N/A   

-  = N/A N/A N/A N/A N/A N/A N/A N/A   

0  = N/A N/A N/A N/A N/A N/A N/A N/A   

Zein 

 Hydration Swelling Erosion Hydration Swelling Erosion 

Charge Ratio Time Ratio Time Ratio Time Ratio Time Ratio Time Ratio Time 

+ = = = = N/A N/A  = =  N/A N/A 

- = = = = N/A N/A  =   N/A N/A 

0 = = = = N/A N/A  =   N/A N/A 

PEO 

 Hydration Swelling Erosion Hydration Swelling Erosion 

Charge Ratio Time Ratio Time Ratio Time Ratio Time Ratio Time Ratio Time 

+   =     = =   = 

-  = =    =     = 

0 =  =     =    = 
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Chapter 6: Classification of drug release profiles 

6.1 Introduction 
In this chapter, the aim is to utilize statistical approaches to analyse the correlations between polymer 

behaviour and drug release kinetics with an attempt to use such knowledge to develop a prediction tool to 

aid the development of solid dispersion formulations. The polymer behaviours data gathered in chapter 4 

are classified using K-mean clustering while the drug release profiles gathered in chapter 5 are first reduced 

using principal component analysis (PCA) to create a reduced model of drug release profiles followed by K-

means clustering. This allows the creation of a classified library (shown in the top panel of Figure 6-1). 

Thereafter, the scenario of achieving a desired drug release profile is investigated where the drug and the 

drug release duration is known (shown in the bottom panel of Figure 6-1).  

 

Figure 6-1: Top) The integration of chapter 4 and chapter 5 data to classify the data. The dashed line indicates separation. Bottom) 
The logical pathway of investigation when the drug and drug release duration is provided for achieving a desired drug release profile. 
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6.2 Methods 

6.2.1 Clustering 

K-means clustering, being linear, is faster computational clustering method but and only reduces in speed 

for a much larger dataset and hence not a problem for the dataset being analysed here (441). Background 

to K-means clustering technique has been discussed in chapter 2. K-mean clustering was used on the 

polymer dataset for all the factors that were measured. The cluster distinguishing criteria was chosen based 

on the data. The cluster centres gave the value of the factor that is common characteristics of the cluster, 

which was also obtained from K-means clustering. Clustering was performed on SPSS software. 

6.2.2 Principal component analysis (PCA) 
PCA is a dimension reduction technique that was performed on all the drug release profiles (known as the 

full model) to create a reduced model. This type of PCA is known as functional PCA (442). Details of the PCA 

technique has been discussed in chapter 2. The creation of the reduced model is mathematically complex 

but in a simplified step is given below: 

1. All drug release profiles are passed as a data matrix 

2. The mean and variance of all the profiles are computed in the matrix 

3. Eigenvalue decomposition of the matrix is computed which gives eigenvalues and eigenvectors 

• The eigenvectors are the principal components (PC) 

4. The significance of the PC is observed (variation as a probability that is accounted by each PC) 

5. The PCs are plotted as profiles. These plotted PC profiles are termed as ‘reduced curves’ 

These reduced curves are important as it gives the underlying most distinct curves that account for most of 

the variation of all drug release profiles in the full model. Separate PCA was performed for drug release 

profiles for pH 1.2 and pH 6.8. The number of components for PCA was chosen based on eigenvalues that 

have a value greater than the value of 1.  

 

A different type of PCA, known as simplified PCA, was used to deduce any difference of any underlying 

behaviour that distinguishes all the drug release profiles (442). Simplified PCA gives the best possible 
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representation of a p-dimensional dataset in q dimensions (q<p) while being able to account for maximizing 

variance in q dimensions. Rotations of axis are used to find the best suited axis for q dimensions that 

minimize the distance to all data points thereby accounting for maximum variance among all the data 

points. In this case, Varimax rotation was used on the drug release profiles. Loading plots (mentioned in 

chapter 2 Figure 2-20) created from this PCA, on which further K-means clustering was performed to classify 

any groups of observations. 

6.2.3 Artificial neural network (ANN) 

ANN was used on the polymer and formulation dataset. Chapter 2 outlines the details of ANN in general. 

The input for ANN were all the factors measured and the output was chosen to be t50 (half drug release 

time) in the first scenario and t100 (complete drug release time) in the second scenario. ANN procedure 

resulted in the ranking of the importance of individual factors. This ranking is useful in understanding the 

effect of each factor in achieving the output (t50 and t100). This means that given this ranked list, the most 

important factor can be varied to have the highest variation of the output. Likewise, the second most 

important factor has the second most variation on the output. ANN was performed on SPSS software V25. 

6.3 Result and discussion 

6.3.1 Polymers classification 
Polymers behaviours were classified using K-means clustering for hydration, swelling, and erosion. As a 

reminder, the term hydration is used to describe weight gain and only positive weight gain of the polymer. 

The aspect on which these behaviours were classified was with respect to the half-life (t50) of the behaviour. 

Four cluster categories were chosen with each of them representing a different t50 interval. Cluster #1 

represents no t50 of hydration for polymers. Cluster #2 represents short t50 (low value) of hydration for 

polymers. Cluster #3 represents intermediate t50 of hydration for polymers and cluster #4 represents long 

t50 (high value) of hydration for polymers. The intervals of clusters are relative to the data available. Since 

the cluster intervals (high or low or intermediate) are relative to the data, the cluster boundary does not 

imply an absolute physical interpretation and subject to users’ choice of the number of subdivisions such as 

very low, low, high, and very high t50 etc. For example, the boundary between no t50 and low t50 for 
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hydration is a value of five minutes. Values greater than five minutes lie within the cluster#2 (no t50) 

whereas values less than five minutes lie within cluster#1 (low t50). The clusters are shown in Table 6-1 

through to Table 6-3 below. 

Table 6-1: Hydration t50 of polymers 

Case 
Clusters 

(pH 1.2)      

Clusters 

(pH 6.8)      

1:HPMCAS 1 1 

2:PEO 2 3 

3:Zein 4 4 

4:XG 2 2 

5:PCL 1 1 

6:Eudragit 1 1 

7:PVPVA 1 1 

8:PVA 2 2 

9:Soluplus 2 2 

10:HP/PEO 2 1 

11:HP/Sol 3 1 

 

Table 6-2: Swelling t50 of polymers 

Case 
Clusters 

(pH 1.2) 

Clusters 

(pH 6.8) 

1:HPMCAS 1 1 

2:PEO 3 3 

3:Zein 4 4 

4:XG 2 2 

5:PCL 1 1 

6:Eudragit 1 1 

7:PVPVA 1 1 

8:PVA 1 1 

9:Soluplus 2 2 

10:HP/PEO 2 1 

11:HP/Sol 2 1 

 

Table 6-3: Erosion t50 of polymers 

Case 
Clusters 

(pH 1.2) 

Clusters 

(pH 6.8) 

1:HPMCAS 1 2 

2:PEO 3 3 

3:Zein 1 1 

4:XG 3 3 

5:PCL 1 1 

6:Eudragit 1 1 

7:PVPVA 4 4 

8:PVA 2 2 

9:Soluplus 2 2 

10:HP/PEO 2 2 

11:HP/Sol 1 2 

The cumulative classified clusters of all polymer behaviours are presented in Table 6-4 for pH 1.2 and in 

Table 6-5 for pH 6.8. In both tables, the column denotes the clusters, and the cluster category denotes the 

characteristics of the cluster. The two tables represent the library of polymer behaviours in the two pH. 

Table 6-4: Clusters of all factors for pH 1.2. Polymers of the factors clustered are displayed in the cell unit. The cluster category row 
indicates the interpretation of each cluster for the preceding factor in the row. 

pH 1.2 Clusters 

Factor 1 2 3 4 

Hydration HPMCAS, PCL, Eudragit,  
PVA, Xanthan gum, Soluplus 

PEO, HP/PEO 
HP/Sol Zein 

Cluster category No hydration Low t50 Intermediate t50 high t50 

Swelling 
HPMCAS, PCL, Eudragit,  

PVPVA, PVA 
Soluplus, HP/Sol, HP/PEO  

Xanthan gum 
PEO Zein 

Cluster category No swelling Low t50 Intermediate t50 high t50 

Erosion 
HPMCAS, Zein, PCL, Eudragit, 

HP/Sol 
HP/PEO, Soluplus, PVA 

PEO 
Xanthan Gum 

PVPVA 

Cluster category No erosion High t50 Intermediate t50 Low t50 
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Table 6-5: Clusters of all factors for pH 6.8. Polymers of the factors clustered are displayed in the cell unit. The cluster category row 
indicates the interpretation of each cluster for the preceding factor. 

pH 6.8 Clusters 

Factor 1 2 3 4 

Hydration 
HPMCAS, PCL, Eudragit,  

PVPVA, PVA, HP/Sol, HP/PEO 
Xanthan gum, soluplus, 

PEO 
PVA Zein 

Cluster category No hydration Low t50 Intermediate t50 high t50 

Swelling 
HPMCAS, Zein, PCL, Eudragit, PVPVA,  

PVA, HP/PEO, HP/PEO 
Xanthan gum, Soluplus PEO Zein  

Cluster category No swelling Low t50 Intermediate t50 high t50 

Erosion Zein, PCL, Eudragit 
PVA, HPMCAS 

HP/PEO, HP/Sol, Soluplus 
PEO 

Xanthan Gum 
PVPVA 

Cluster category No erosion High t50 Intermediate t50 Low t50 

 

6.3.2 Drug release curves classification 
The drug release curves of all the formulations are shown in the top left and top right of Figure 6-2 for the 

two pH. Functional PCA performed on the full model in each pH yielded the most underlying curves that 

explain most of the variation. The number of components in PCA was chosen to be three as they explained 

most of the variance in observance. The bottom left of Figure 6-2 shows the reduced curves in pH 1.2. In pH 

1.2, Component #1 explained 88.1% of the variance, while component #2 explained 8.8% of the variance, 

and component #3 explained 1.8% of the variance for a cumulative of 98.7% of the total variation explained. 

The similarity of the rotated curves to a formulation is given by the coefficient of the rotated component 

matrix. Only the highest similarity of the generated curve to a formulation is stated here. The curve 

generated by component #1 is 93.5% similar to HPMCAS loaded with 10% lidocaine. The curve generated by 

component #2 is 93.7% similar to PEO loaded with 10% ibuprofen. The curve generated by component #3 is 

57.7% similar to HPMCAS loaded with 30% ibuprofen. The bottom right of Figure 6-2 shows the reduced 

curves for pH 6.8. In pH 6.8, Component #1 explained 55.7% of the variance, while component #2 explained 

39.4% of the variance, and component #3 explained 3.3% of the variance for a cumulative of 98.4% of the 

total variation explained. The curve generated by component #1 is 92.9% similar to PEO loaded with 10% 

lidocaine. The curve generated by component #2 is 95.2% similar to zein loaded with 10% lidocaine. The 

curve generated by component #3 is 26.7% similar to PEO loaded with 30% ibuprofen. It is observed that 

even with the number of PCA components chosen to be three, two components explain most of the 

variance sufficiently reasonably. The drugs which appear in both pH are lidocaine and ibuprofen. Looking at 
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the coefficient of the rotated component matrix shown in Table 6-6 for pH 1.2 and in Table 6-7 for pH 6.8, 

the coefficient (values) of paracetamol formulations are close to the lidocaine curves indicating most of the 

characteristics of the paracetamol formulation can be explained by the lidocaine formulations. Therefore, all 

the drug release profiles can be explained as a linear combination of ibuprofen and lidocaine, which also 

explains paracetamol, accounting for 98.7% and 98.4% of the variance in pH 1.2 and pH 6.8, respectively. 

 

Next, the polymers in terms of drug release can be classified by combining PCA and K-means clustering. The 

number of components was determined using the eigenvalue cut-off approach (eigenvalue >1) which led to 

two PCA components. In the loading plot that is constructed from the PCA, the components appear as 

component #1 and component #2, not what the components are. The interpretation of the component is 

subject to the user’s perception of the commonalities that might be shared by the data that lie highly 

correlated on that specific component axis. From loading plot, component #1 (x-axis) can be interpreted to 

be the drug release times and component #2 (y-axis) can be taken to be release amount. The loading plot 

(also known as component plot) of the formulations in pH 1.2 is shown in Figure 6-3. 

Table 6-6: Component matrix in pH 1.2 

Component Matrix in pH 1.2 

 

Component 

 

Component 

1 2 1 2 

HPLido10 0.902 -0.417 HPPara10 0.913 -0.383 

HPLido30 0.981 0.134 HPPara30 0.964 -0.254 

ZeinLido10 0.963 -0.217 ZeinPara10 0.999 -0.004 

ZeinLido30 0.986 -0.155 ZeinPara30 0.986 -0.156 

PEOLido10 0.900 0.406 PEOPara10 0.888 0.433 

PEOLido30 0.918 0.385 PEOPara30 0.928 0.357 

HPIbu10 0.977 -0.130 
   

HPIbu30 0.979 -0.131 
   

ZeinIbu10 0.960 -0.261 
   

ZeinIbu30 0.994 0.081 
   

PEOIbu10 0.943 0.066 
   

PEOIbu30 0.924 0.313 
   

 

 

 

Table 6-7: Component matrix in pH 6.8 

Component Matrix in pH 6.8 

 

Component  Component 

1 2  1 2 

HPLido10 0.953 -0.291 HPPara10 0.953 -0.291 

HPLido30 0.956 -0.283 HPPara30 0.890 -0.352 

ZeinLido10 0.798 0.569 ZeinPara10 0.806 0.568 

ZeinLido30 0.875 0.482 ZeinPara30 0.875 0.482 

PEOLido10 0.955 -0.248 PEOPara10 0.955 -0.248 

PEOLido30 0.966 0.004 PEOPara30 0.961 0.088 

HPIbu10 0.974 -0.168 
   

HPIbu30 0.988 0.044 
   

ZeinIbu10 0.955 0.263 
   

ZeinIbu30 0.969 0.205 
   

PEOIbu10 0.940 -0.304 
   

PEOIbu30 0.912 -0.303 
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Figure 6-2: Top left) Formulation curves in pH 1.2. Top right) Formulation curves in pH 6.8. Bottom left) PCA performed curve in pH 1.2. Bottom right) PCA performed curve in pH 6.8
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Figure 6-3: PCA rotated loading plot of formulations in pH 1.2. Greater values of PC 1 possibly represent longer release times of formulations and greater PC 2 values possibly represent higher 
amounts of drug released of the formulations. The rotation method chosen was Varimax rotation. K-means Clustering was done on the points. Clusters numbers are labelled below the cluster.

1 
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It can be observed that all the data in Figure 6-3 lie within the first quadrant of the graph where both x and y 

are positive. Neither release time nor release amount can be negative excluding the possibility of any data in 

any other quadrants. It can be observed that PEO based formulations have shorter drug release times and 

achieve a higher drug release in that time frame relative to other formulations. Therefore, PEO polymer can 

be clustered in terms of drug release in that region of the plot. HPMCAS and zein form the other cluster as 

zein is very slow in drug release times and release less amount in that time relative to PEO formulations. 

HPMCAS is insoluble and for all practical purposes, attain the same effect as zein for drug release. Two 

clusters represent were formed based on the distance to the nearest neighbour. Cluster #1 seem to contain 

PEO while cluster #2 contains zein and HPMCAS. 10% ibuprofen loaded with PEO seems to be an outlier and 

is within the region bounded by cluster #2, which in this case is miscategorized.  

 

In pH 6.8, a clear distinct clustering is harder for the polymers. One polymer to note is HPMCAS which is 

erodible in pH 6.8 has shifted towards PEO in the loading plot of pH 6.8, shown in Figure 6-4. Moreover, 

three clusters formed can be seen. HPMCAS can be grouped with PEO mostly. Cluster #2 contains both zein, 

HPMCAS, and PEO. Therefore, a general categorization of polymers may not be possible based on clusters 

directly. However, one modification that could be done is to calculate the number of polymer formulations 

that fall within each cluster. If the majority of polymer lies in a cluster, cluster #2 data can be attributed to 

that cluster. So, for zein formulations, four samples fall in cluster #1 and two samples fall in cluster #2. Based 

on this, cluster #1 contains 66% (4/6) of the zein samples. Therefore, the two zein formulations from cluster 

#2 can be taken to be part of cluster #1. Likewise, calculations for PEO and HPMCAS lead to all formulations 

of cluster #2 to be allocated to cluster #3. The clustered polymers in terms of PCA component interpretation 

from Figure 6-3 and Figure 6-4 is sorted in Table 6-8. 

Table 6-8: Polymer categorization from PCA components for drug release 

 Drug Release times Drug Release amount 

 Short Long Low High 

pH 1.2 PEO Zein, HPMCAS Zein, HPMCAS PEO 

pH 6.8 PEO, HPMCAS Zein Zein HPMCAS 
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Figure 6-4: PCA rotated loading plot of formulations in pH 6.8. Greater values of PC 1 possibly represent higher amounts of drug released of the formulations and greater PC 2 values possibly 
represent longer release times of formulations. The rotation method chosen was Varimax rotation. K-means Clustering was done on the points. Clusters numbers are labelled below the cluster.
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6.3.3 Relating polymer behaviour clusters to drug release clusters 
In sections 6.3.1, the classification of polymer behaviour kinetics which was based on hydration, swelling, 

and erosion was performed. These classification schemes have not been related to drug release. This is 

crucial as the aim is to be able to extrapolate a drug release profile based on the polymer behaviour 

kinetics. The pathway to relating is shown in Figure 6-5.  

 
Figure 6-5: Concept of associating polymer behaviour with drug release 

So far, the cluster centre information for hydration, swelling, and erosion was omitted but is now enlisted in 

Table 6-9 for this part of the analysis, which was obtained from K-mean clustering. These cluster centres 

give a single quantified value of the appropriate constants being measured (hydration, swelling, and 

erosion), which is an approximated value and a common characteristic of all the polymers in that cluster. 

The cluster centre of the drug release is based on the drug release time and drug release amount.  

Table 6-9: K-means cluster centres for factors from K-means clustering in pH 1.2 and pH 6.8.  

 Cluster #1 Cluster #2 Cluster #3 Cluster #4 

 No effect Low t50 Intermediate t50 High t50 

pH 1.2 

(Low               High) in minutes 

Hydration 0 24 210 728 

Swelling 0 17 25 728 

Erosion 0 30 45 86 

pH 6.8 

  (Low               High) in minutes 

Hydration 0 20 190 728 

Swelling 0 26 38 728 

Erosion 0 40 52 80 

Gather the cluster centers of polymer 
hydration, swelling, and erosion which was 
presented in Table 6-4 for pH 1.2 and in 
Table 6-5 for pH 6.8 

Link the hydration, swelling, and erosion 
cluster center with the corresponding 
polymer for drug release cluster center. 

Get cluster centers of 
drug release clusters 
which was presented in 
Table 6-6 
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Cross relating Table 6-8 and Table 6-9 in terms of cluster centre yields the main dataset library, shown in 

Table 6-10, which links the cluster centre of drug release and polymer behaviour. 

Table 6-10: Clusters relating polymer behaviour and drug release summarized. The basis of effect interpretation (low, high, etc.) is 
based on the cluster distinction as noted in Table 6-4 and Table 6-5. The effect interpretation of release time and amount from the 
clustering of the loading plot is introduced here. 

pH 1.2 

  Hydration t50 Swelling t50 Erosion t50 Release time (min) Release amount (%) 

Zein 728 728 0 2304 40 

Effect High High None Slow Low 

HPMCAS 0 0 0 2304 40 

Effect None None None Slow Low 

PEO 24 25 50 146 96 

Effect Low Intermediate Intermediate Fast High 

pH 6.8 

Zein 728 728 0 2649 39 

Effect High High None Slow Low 

HPMCAS 0 0 160 72 95 

Effect None None Intermediate Fast High 

PEO 20 38 52 72 95 

Effect Low Intermediate Intermediate Fast High 

 

With Table 6-10, it is possible to proceed to the different scenarios of achieving a desired drug release 

profile. Three possible scenarios can arise. In all the scenarios, it is first important to be able to find the 

closest resembling ‘reduced curve’ which is similar in the time scale and quantity. The ‘reduced curves’ are 

found in the bottom of Figure 6-2 for the two pH. Scenarios I is where the drug and the desired drug release 

profile (which is dictated by the polymer) exists in the library. Scenarios II is where the given drug does not 

exist but a drug from a similar class exist in the library the desired drug release profile does exist in the 

library. Scenarios III is where neither the drug nor desired drug release profile exists in the library.  

6.3.4 Scenario I  
In this scenario, the drug, and the drug release profile both exists in the library. As an example, the choice of 

drug is lidocaine and the chosen pH is pH 1.2. The chosen drug release profile is a fast drug release profile 

similar to the reduced curve by component #2 in the bottom left of Figure 6-2. The polymer this ‘reduced 

curve’ has is PEO. Therefore, the choice of polymer, in this case, would likely be PEO. Moreover, additional 

reconfirmation is obtained from Table 6-10, where the fast drug release is associated with PEO polymer for 
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pH 1.2. It could have been any other polymer that shares the commonality of fast release (if the data library 

of Table 6-10 had more polymers). Thus, for comparison, the experimental lidocaine loaded PEO 

formulation drug release profiles in pH 1.2 are given along with the predictor curve, which are shown in 

Figure 6-6. The predictor curve is a ‘reduced curve’ but the naming switches as it is used for prediction here. 

 
Figure 6-6: PEO-lidocaine experimental and predictor curve compared in pH 1.2 

6.3.5 Scenario II 
Scenarios II is where the drug does not exist in the library but the desired drug release profile does exist in 

the library. In this scenario, logic would be to predict with another drug release profile which would achieve 

the identical desired release profile. For this, the first step would be to locate if a substitute drug exists in 

the library. A well established classification system for drugs is the Biopharmaceutics Classification System 

(BCS) which consists of four classifications based on solubility and permeability (443, 444). In BCS, the drugs 

are grouped in four classes with class I being drugs possessing high solubility and high permeability, class II 

consisting of drugs possessing low solubility and high permeability, while class III consisting of drugs 

possessing high solubility and low permeability, and class IV consisting of drugs possessing low solubility and 

low permeability (445). The solubility and permeability in BCS refer to aqueous solubility and intestinal 

membrane permeability, respectively. Placement of the three drugs (paracetamol (446, 447), ibuprofen 
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(448, 449), and lidocaine(450)) and other drugs gathered from secondary sources (445) in the BCS are 

shown in Figure 6-7. 

 
Figure 6-7: Some drugs in the BCS system 

An example of scenario II, the chosen drug will be ranitidine, which does not exist in the dataset library in 

Table 6-10. However, a similar BCS class III drug, paracetamol, does exist in the dataset. The chosen 

duration of drug release is chosen to be a long duration and the chosen pH is pH 6.8. From Figure 6-2, the 

only ‘reduced curve’ which resembles the desired characteristics is that of component #2. That particular 

curve most resembles is that of zein loaded with 10% lidocaine with a resemblance is 95.2%. Even though 

from this, it can be deduced that the most likely polymer which should be used is zein, confirmation from 

Table 6-10 is desired. This indeed is zein from Table 6-10. Therefore, zein formulations with paracetamol 

can be used to predict the drug release of zein with ranitidine in pH 6.8. Bouman et al investigated zein 

loaded with 22.2% ranitidine in pH 6.8 (14). The drug release profile obtained from that work will be used 

for comparing the ‘reduced curve’, which is used as the predictor curve (term changed based on the 

perspective of usage criteria), for this work. This is shown in Figure 6-8. Interestingly, zein with 22.2% 

paracetamol loading in pH 6.8 was also obtained by Bouman et al (14). This is added for comparison of the 

two paracetamol formulation but not the main focus of Figure 6-8. Scenario III arises when the drug or drug 
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release profile does not exist in the dataset. In this case, the drug with a polymer that would exhibit similar 

drug release duration would need to be experimentally performed and added to the dataset. 

 
Figure 6-8: Paracetamol loaded zein formulation and predictor curve compared in pH 1.2 

6.3.6 ANN as a predictor refinement technique 
ANN can be used to rank order the importance of all the inputs in relation to the output. The ranking of the 

inputs will aid in understanding which factor(s) can be altered to achieve the most variation of this 

outcome, and thus achieving a refined more accurate desired outcome. ANN was used with the outcome 

being ‘drug release time’, shown in Figure 6-9. In this case, there was one hidden layer for performing 

internal neural network process but however cases of two or three hidden layers have also been performed 

(451). The outcome, in this case, is also a single factor but cases of two or more factors have been 

performed (452). Four inputs were provided but the ANN process always automatically adds a bias input. 

The variable ranking of this particular ANN process is shown in Figure 6-10. However, due to the number of 

data points, an issue of reproducible consistent results exist. It can be seen that as the ANN process is run, 

the ranking of the variables differs. Therefore, deducing which variable has the highest effect based on 

these few runs would be a false deduction. Nevertheless, this approach will produce accurate consistent 

ranking if the number of observations (data points) for each variable is sufficiently large.  
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Figure 6-9: ANN performed for the output of drug release time in pH 1.2 with four inputs. The bias is automatically added by ANN. 

 
 

 
Figure 6-10: Normalized ranking of input factors from ANN 

7

14

16

28

35

0 20 40

Molecular weight

Drug solubility

Drug content

Bias

Polymer proportion

Normalized Percentage 
importance (%)

9

11

22

27

31

0 10 20 30 40

drug solubility

Molecular weight

Drug content

Polymer proportion

Bias

Normalized percentage 
importance (%)

11

12

15

18

44

0 10 20 30 40 50

Molecular weight

Drug content

Drug solubility

Polymer proportion

Bias

Normalized Percentage 
importance (%)

Polymer 
Molecular 

weight 

Drug 
Solubility 

Drug 
content 

Polymer 
proportion 

 

  

  

  

  

Drug 
release 

time 

Bias 

Input layer Hidden layer Output layer 



 

165 

6.4 Limitations 
Several limitations exist in the approach used. First, as mentioned, the usage of clustering causes loss of 

individual attributes and only a cluster-wide common property exists for the cluster such as cluster common 

hydration constant, or cluster common drug release amount, etc. However, the hope of using clusters is 

that on large scale varying datasets, common properties can be found to categorize subsets of data. There 

were cases where cluster miscategorized dataset from PCA component reduction. Numerous classification 

techniques are being developed to improve categorization (453). Using clusters was the dominant 

technique in this chapter. This caused the introduction of errors in the form of miscategorization. The 

proposed method of reducing miscategorization is adding more dataset of with varying nature. This causes 

more clusters to be created, which can not only reduce errors but give emergence to explain the data more 

refined. Another limitation was the correlating polymer hydration, erosion, and swelling to the drug release 

based on clusters. It was not possible to directly relate these factors to drug release constant or drug 

release index as was shown in chapter 5. A sense of how the drug ionization affects polymer hydration, 

swelling, or erosion kinetics was summarized in comparison to the pure polymer kinetics. The degree of 

correlating aspects is less objective to deducing an analytical equation, which has a high degree of 

objectivity and strict restrictive underlying postulations. The limitation observed with the use of ANN is with 

the number of data points available and usually preferred by ANN. ANN is capable of learning and predicting 

indicators to a specific outcome but with a sufficiently large number of data points. 

6.5 Conclusion 
In this chapter, the method of K-mean clustering was used to classify the polymers in terms of polymer 

behaviour, which included hydration, swelling, and erosion. The interpretation of the classification arose 

from the data extremes, with one extreme being labelled high and other no observed effect.  

 

Functional PCA was applied to create a reduced model of the full model consisting of all the drug release 

profiles. This resulted in three curves that explained about 98% of the variances in both pH. Additionally, 

simplified PCA was performed on all drug release profiles to deduce any distinguishing characteristics of the 
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polymers and the drugs. Two principal components were chosen based on eigenvalues that had values 

higher than one, from which loading plots were created. The interpretation of the two principal 

components was taken to be drug release time and drug release amount. Further K-means clustering on the 

loading plots deduced clusters and their centres which yielded quantitative information about the polymer 

behaviour, such as common hydration or common swelling ratio, and drug release parameters, such as drug 

release times and drug release amount, in that cluster, which was correlated. Thereafter, the drug release 

profile was generated using the PCA ‘reduced curve’ acting as ‘predictor curve’. Several limitations were 

discussed which affect the possibility of error in the created drug release profile. In the next chapter, further 

improvements, and areas of investigation to the scope of work in this thesis will be discussed. 
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Chapter 7: Conclusion remarks and future outlook 
Controlled drug release systems (CDRS) deliver the drug locally or systemically at a predetermined rate for a 

specified duration (454, 455). 3D printing has shown promising potentials of being used to manufacture 

CDRS. Drug release from CDRS is often dependent on polymer properties. Therefore, a thorough 

understanding of the drug and polymer's properties and their interactions will facilitate the production of 

highly reproducible CDRS with the desirable drug release kinetics (456). This indicates two areas of research 

for improvement: reproducibility and predictability. This was the overarching theme of this work. The issue 

of reproducibility is related to the minimization of errors that arise during the manufacture and the 

measurement of the performance CDRS. The issue of predictability is related to polymer, drug and the 

formed solid dispersion properties and any pharmacokinetic models used to attain the drug release. The 

reproducibility of CDRS was investigated in chapter 3, and the predictability was investigated in chapters 4 

through to chapter 6. 

7.1 Reproducibility 
Error in the measurement of the drug release profile is unavoidable. In some publications, the error is 

reported to be as large as ±30% (31). Commercial software such as GastroPlus reports errors based on 

user’s chosen confidence intervals (CI) (200, 202). In this case, a range is defined such that the 

measurement is within the range (interval) with the specified probability (confidence). For example, a 95% 

CI indicates that 95% of the measurement from the true mean of the samples exist within that interval.  

 

The sources of error in the drug release profile of 3D printed solid dosage forms was investigated in chapter 

3. The sources of error arose from each of the manufacturing steps and the measurement of the drug 

release at termination. The manufacturing steps included using hot melt extrusion (HME) coupled with 3DP. 

The drug release profile was measured by using a dissolution machine and subsequently a UV spectrometer 

and parametrised by the Peppas equation. Since the Peppas equation relates to the initial drug mass and 

sampled time drug, estimation of errors in drug mass or inferred drug mass from the equipment were 

substituted in the Peppas equation. The source of error in initial drug mass came from HME and 3DP and 



 

168 

the source of error in sampled drug mass at a sampling timepoint came from the entire process of 

dissolution and sampling using the UV spectrometer. Two cases arose for the initial drug mass: one was the 

direct error estimation from weighted 3DP samples and the other was the estimation of error in drug mass 

from the volume of the 3DP sample in the absence of direct weighing. In the latter case, the drug mass was 

inferred using the drug mass uniformity from HME technique while verifying that the 3DP process step did 

not significantly alter the drug mass.  

 

While identifying the sources of error, it was also possible to identify the types of errors in each step. The 

types of error were systematic and random error. The systematic error indicates the accuracy of the 

equipment while random error reflects the precision of the equipment. Modifications to the procedure can 

help minimize the systematic error. Some of the modifications were discussed in the chapter such as 

optimizing the residence time of HME or optimum temperature to achieve the optimum melt flowability of 

the filament for 3DP. Further suggestion can include making the HME-FDM a continuous one step process. 

This can help reduce systematic error observed for die shrinkage from two dies (HME and 3DP stage) to one 

die (3DP stage). A schematic of this is presented in Figure 7-1.  

 
Figure 7-1: HME-3DP as a continuous process. The die through which filament exits the HME is also the beginning of the 3D printing 
process. Adapted from reference (457). 

Systematic errors for dissolution machine that are process related can include sample introduction and 

multiple point sampling. Samples introduction in the dissolution vessel can be tricky and may not be able to 
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be performed reproducibly. Samples can have a dissolution rate that is position dependant. For example, if 

the sample is off-centre, the dissolution rate is high due to shear forces. Alternative, if it is in the centre, 

coning may occur and the dissolution rate will be lower (458). Such behaviour can be observed in the tori 

that were used for triplicate studies, which is shown in Figure 7-2. Multiple sampling time points are also an 

issue. A study conducted by Zhang et al of BCS Class II drug formulations determined that multiple sample 

pulls from the dissolution vessel when compared to a single-pull resulted in different dissolution rates (459). 

This could be caused by the additional insertions and residence of the sampling probe in the vessel during 

multi-point sampling which subsequently causes disturbance of fluid hydrodynamics in the dissolution 

vessel (458). Hydrodynamic conditions are crucial to the drug release rate (460, 461). 

 
Figure 7-2: The individual sample in different positions during the dissolution after the sample was introduced. The individual drug 
release profile is shown before the mean is calculated. 

0

20

40

60

80

100

120

0 50 100 150 200

D
ru

g 
re

le
as

e 
(%

)

Time (min)

Samples individual replicates

Left pictured tablet Center pictured tablet Right pictured tablet



 

170 

Random errors that arise can be minimized with the technological advancement of equipment. More 

sophisticated HME, 3DP, UV that improve precision will reduce the random variation. Using the cumulative 

drug release equation, in terms of process error, obtained in chapter 3, the reduced error will lead to a 

more accurate and precise drug release error estimate which would be valid for any generic sample 

prepared using the HME-3DP coupled method. Table 7-1 summarises the two types of irreproducible 

behaviour, which are either manufacture or measurement related, observed in this thesis. 

Table 7-1: Summary of the types of irreproducibility and the proposed solution in each case. 

Irreproducibility Solutions 

Measurement 

• Calibration curves • Using multiple calibration curves (minimum three) 

• Number of samples • More than three samples if intra-sample variation is high 

• Sample position • More samples if inter-sample variation is high 

• Number of sampling pulls • Less multiple pulls recommended 

• 3D object drug content estimation 
• Estimate drug content from weighing samples compared 

to estimating from volume 

Machine 

• Sampling method • Automated sampling better than manual sampling 

• Manufacture process type 
• Continuous coupled process (HME+3DP) or (In Vitro+UV) 

reduces the irreproducibility 

• General improvement of machine  • Better precision of all readings across all machines 
 

Some areas can be further investigated for reproducibility of 3D printed samples. Currently, there is no data 

on an optimum temperature difference between the printing temperature and platform temperature. 

Further investigation of this which will cause an improvement of systematic error observed for the volume 

of 3DP sample fluctuating from the design specification. 

7.2 Predictability 
Predictability was the other key area of this work. Predictability can be divided into three parts. The first is 

being able to predict the behaviour of the carriers of the formulation, which are the polymers. Chapter 4 

investigated the hydration, swelling, and erosion of some common polymers used in 3D printing. The focus 

was to be able to predict the behaviour, using an ideal polymer mixture model, for a 50/50% w/w miscible 

and semi-miscible blend that was prepared from two of the individual polymers studied. It was found that 

ideal polymer mixture laws would only be able to predict a specific behaviour if the constituting polymers 
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exhibited the same characteristic behaviour in the solvent. For example, the erosion could be predicted for 

HPMCAS/PEO and HPMCAS/Soluplus blends since HPMCAS, Soluplus, and PEO erodes. Since PEO swells but 

HPMCAS does not swell, the swelling for HPMCAS/PEO blend could not be predicted.  

 

This approach highlighted the benefits and limitations. The benefit would be that if the ideal mixture laws 

are valid, then it would be valid for any proportion of the blend. The limitation was due to the 

parametrisation approach used wherein even if the blend behaviour could be predicted by the semi-

empirical model, the model does not yield any insights about the mechanisms of blend behaviour. Also, 

blend behaviour can only be predicted if the individual polymer behaviour is known. In cases where the 

approach of ideal polymer mixture laws is invalid, a different approach is required. An alternative approach 

such as using the solubility parameter could be used. However, an issue exists that there is no good theory 

that predicts the behaviour of polymer blends generally in the same way that there is no general theory of 

liquid mixtures so the hope of a unifying theory is unpropitious. 

 

The second part of attempting prediction is being able to predict polymer behaviour in the presence of 

drugs. Chapter 5 investigated polymer behaviours in the presence of selected drugs. The hypothesis was 

that ionisable drugs affected the polymer behaviour compared to non-ionised drugs. The effect of ionisation 

was summarized and, in some cases, significant differences were observed while in other cases, no 

significant differences were observed. Several limitations existed. It was assumed that drugs do not interact 

with a polymer to form any drug-polymer complex. Classification and clustering were used to deduce any 

trend that may exist between the drug release, types of drug, and polymer behaviour. The third part of 

predictability is to be able to use a mathematical equation that reliably parametrises the drug release. 

Based on the parametrisation, a model can be used to predict unexperimented drug release profile. 

Deducing better equations can better predict the drug release with more accuracy and precision but this 

was not the focus of this work. The Peppas-Korsmeyer equation was used in this work which explains the 

drug release reasonably well. All data gathered in chapters 4 and 5 were used to create a dataset.  
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Chapter 6 investigated any trend in drug release profiles and polymer behaviour based on the dataset 

created. This was achieved by using a classification based on clustering, and principal component analysis 

(PCA). The first step was the classification of polymer behaviour. PCA performed on the drug release profiles 

yielded the most distinct reduced curves amongst all formulation curves. This yielded a trend in the drug 

release profiles based on the quantity released in a given time. Once again, it was observed that drug 

release is dominated by polymers rather than drug types or drug ionisation. However, pH-sensitive HPMCAS 

did not follow a clear trend. K-mean clustering was further performed on the PCA drug release curves which 

deduced that HPMCAS formulations are loosely clustered to zein formulation in pH 1.2 but form a different 

cluster in pH 6.8. The reason for this is, in pH 1.2, HPMCAS is insoluble and shares drug release profile that 

resembles zein formulation, which is very slow to achieve half release or complete release of the drugs. In 

6.8, the HPMCAS formulation resemblance is less like zein and more to PEO formulation but still not close 

enough to be clustered together with PEO formulation. Although this was successful for the dataset used, a 

logical extension to this approach would be to be able to predict the desired release profile for any given 

drug. The bottleneck limitation of the approach occurred at this stage. To be able to predict drug release for 

any drug, the scale of the dataset has to be sufficiently large and contain a diversity of the drug types and 

the different polymers candidates, which is discussed next. 

7.3 Future works  
This section discusses some of the future research areas that can help build on the concepts. These include 

scaling, simulation, and their potential applications in the design of personalization. 

7.3.1 Scaling 
A problem that arises with a dataset that is less than optimum is that higher sensitivity to outliers or 

erroneous data points exists which lead to overfitting, poor generalization, large bias, and variance (462, 

463). Figure 7-3 attempts to summarize some issues associated with small datasets. 
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Figure 7-3: Problems encountered with small datasets for analysis. Type I error is the rejection of a true null hypothesis while a type 
II error is the acceptance of a false null hypothesis, which occurs in statistical hypothetical testing. 

Several methods exist to handle small datasets such as data augmentation, regularization, using confidence 

intervals, using simpler fitting models to the data, using ensemble approach among others (464). Yet, it has 

been suggested that the most efficient method is to increase the dataset size (463). With a large, general 

diverse dataset, additional refinement for the drug release prediction can become possible through deep 

machine learning (335, 462, 465). An example of deep learning is the artificial neural network (ANN), which 

has already been applied in chapter 6 and other works predicting drug release profiles (336). Furthermore, 

ANN is more efficient in learning and predicting any given outcome with scaling up the dataset. ANN is 

designed to be trained with existing data and predict for new additional untested data. This type of growth 

of data over time across sectors is known as consortium approach (464). 

7.3.2 Simulation 
Finally, the simulation will put the prediction into a meaningful application and speed up the process of 

dosage form development. A possible pipeline is shown in Figure 7-4. 

 
Figure 7-4: Possible milestones to achieving a personalised drug release profile 
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There are many levels of simulation with the smallest range dealing with angstrom (𝐴̇) to a larger range of 

meters. Angstrom level simulations are quantum level models (QM) and meter level simulations are 

multiscale models (MM). In principle, all systems can be simulated by QM but this is extremely time 

consuming and computationally complex, and thus is impractical. Therefore, depending on particle size, an 

appropriate level of simulation is chosen. Particles in matrices can be simulated using finite element method 

(FEM) (466). Such FEM simulation could have a visual animation of drug released from the matrix as well as 

the predicted drug release profile. Figure 7-5 illustrates a concept of this FEM for a torus geometry that was 

simulated as time progresses using Blender which is a simulation rendering software. 

   
 

 
Figure 7-5: Top) Animation of drug particle releasing from a torus using blender software. Three snapshots of the torus are shown at 
different times. The arrow shows the progression of time for the snapshots. Bottom) The accompanying generated drug release 
profile.  

7.3.3 Personalization 
A milestone of achieving desired release profile would be to achieve personalization of multiple drugs. 

Polypill was mentioned in chapter 1. In this work, the predictability of solid dispersions containing a single 

drug and a single polymer were investigated. Predictability of multiple drugs with one or more polymers 

Time Progression for animation 
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(polypill) is an area of future investigations with the wider application in personalised polypill development. 

Such a polypill can also be expected to achieve a more complex profile such as a periodic drug release 

profile (467). A periodic pulsive drug release profile is where there is a drug release for a certain duration 

followed by no drug release for a duration and followed by drug release for a duration again. This would 

require using different layers of polymers or compartmentalizing to control the drug release from the matrix 

at different times. Such a layered tablet has already been 3D printed (49). A polypill containing up to five 

compartments has also been printed (468). A concept of layered torus polypill containing two drugs to 

achieve a periodic drug release profile is shown in Figure 7-6. Simulation of polypills will present a different 

set of challenges such as highly accurate prediction of drug dissolution profile at a molecular level especially 

in the case where the drugs can have a drug-drug interaction. As more drugs are added in the polypill, it is 

expected that the controlled release duration will be longer, and therefore, more sophisticated computer 

power will be required which can run the simulations at a molecular lever for a longer duration. 

 
Figure 7-6: Concept of a torus polypill designed to have different release profiles. The drug release profile for drug 1 is an example of 
a periodic drug release profile. The dashed line indicates the continuation of the formulation not visible on the diagram plane. 
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Appendix 

DSC thermograms 

Paracetamol loaded PVA extrudates 

 
Appendix Figure 1: DSC thermogram of 10% PCM loaded PVA extrudate. The Tg of the mixture is 53.64 OC. 
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HPMCAS/Lidocaine formulation 

 
Appendix Figure 2: Lidocaine loaded HPMCAS formulations showing enthalpy of kinetic events 
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HPMCAS/Ibuprofen formulation 

 
Appendix Figure 3: Lidocaine loaded HPMCAS formulations showing enthalpy of kinetic events 
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PEO/Lidocaine formulation 

 
Appendix Figure 4: Lidocaine loaded PEO formulations showing enthalpy of kinetic events 
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PEO/Ibuprofen formulation 

 
Appendix Figure 5: Ibuprofen loaded PEO formulations showing enthalpy of kinetic events 
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Zein/Lidocaine formulation 

 
Appendix Figure 6: Lidocaine loaded Zein formulations showing enthalpy of kinetic events 
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Zein/Ibuprofen formulation 

 
Appendix Figure 7: Ibuprofen loaded Zein formulations showing enthalpy of kinetic events 
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FTIR spectra 

 
Appendix Figure 8: Ibuprofen loaded HPMCAS formulation 
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Appendix Figure 9: Lidocaine loaded HPMCAS formulation 
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Appendix Figure 10: Lidocaine loaded PEO formulation 
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Appendix Figure 11: Ibuprofen loaded PEO formulation 
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Appendix Figure 12: Lidocaine loaded Zein formulation 
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Appendix Figure 13: Ibuprofen loaded Zein formulation 
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