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What is the effect of stimulus complexity on attention to repeating and changing information 1 

in Autism? 2 

Abstract 3 

Slower habituation to repeating stimuli characterises Autism, but it is not known whether this 4 

is driven by difficulties with information processing or an attentional bias towards sameness. 5 

We conducted eye-tracking and presented looming geometrical shapes, clocks with moving 6 

arms and smiling faces, as two separate streams of stimuli (one repeating and one changing), 7 

to 7-15 years old children and adolescents (n=103) with Autism, ADHD or co-occurring 8 

Autism+ADHD, and neurotypical children (Study-1); and to neurotypical children (n=64) 9 

with varying levels of autistic traits (Study-2). Across both studies, autistic features were 10 

associated with longer looks to the repeating stimulus, and shorter looks to the changing 11 

stimulus, but only for more complex stimuli, indicating greater difficulty in processing 12 

complex or unpredictable information. 13 

 14 
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 17 

 18 

 19 

 20 
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What is the effect of stimulus complexity on attention to repeating and changing information 1 

in Autism? 2 

Autism Spectrum Disorder (hereafter referred to as autism) affects an estimated 1% of 3 

the population in the UK (Laurie and Border 2020) and is characterised by impairments in 4 

social communication and interaction and presence of repetitive and restricted behaviours 5 

(American Psychiatric Association 2013). Autistic individuals show atypical attention to the 6 

world, for example, in the form of reduced spontaneous attention to social information 7 

(Fletcher-Watson, Leekam, Benson, Frank, and Findlay 2009; Franchini, Glaser, Wood de 8 

Wilde, Gentaz, Eliez, and Schaer 2017), an intense focus on specific aspects of the world 9 

(American Psychiatric Association 2013), and a preference for repetition and sameness (Pierce, 10 

Conant, Hazin, Stoner, and Desmond 2011). However, the exact nature of attentional 11 

differences, and what processes or impairments underlie them, remains unclear. It has been 12 

suggested that early differences in the ability to habituate might contribute to some of the above 13 

attentional features (McDiarmid, Bernardos, and Rankin 2017; Ramaswami 2014).  14 

Habituation refers to a cognitive process by which attention to a repeating stimulus 15 

decreases over time (Groves and Thompson 1970; Schmid, Wilson, and Rankin 2014). 16 

Traditionally, habituation has been studied through preferential-looking paradigms in which 17 

look durations are measured to repeated presentations of a stimulus (Csibra, Hernik, Mascaro, 18 

Tatone, and Lengyel 2016). Look durations (i.e. durations of time that the participant orients 19 

their eyes to fixate upon a stimulus) in such paradigms measure the balance between a drive 20 

to look and a competing drive to look away (Schoner and Thelen 2006). Widely accepted 21 

models of habituation (Groves and Thompson 1970) suggest that look durations to a 22 

repeating stimulus increase until an internal representation has been formed that matches the 23 

stimulus (and thus, the stimulus has been ‘learnt’), after which, look durations decrease until 24 

they reach an asymptotic level. Look durations in these paradigms have been reliably linked 25 
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with information processing and learning, such that higher rates of decrease in look durations 1 

(or quicker habituation) are associated with better long term outcomes on standardized 2 

measures of intelligence (Colombo and Mitchell 2009); and individual differences in 3 

habituation during the first year of life predict later cognitive functioning, including in 4 

domains such as language, memory and spatial reasoning (McCall and Carriger 1993). Given 5 

these relationships with other cognitive functions, it is important to understand differences in 6 

habituation more fully as these differences may contribute to other cognitive features of 7 

autism. 8 

It is also theorized that the drive to look away from an already processed stimulus 9 

within such habituation paradigms represents a novelty bias; a pervasive information foraging 10 

tendency in all animals that serves an adaptive function of drawing attention away from what 11 

is known, towards what is novel, unknown and potentially informative (Schoner and Thelen 12 

2006; Cohen, McClure, and Yu 2007; Laucht, Becker, and Schmidt 2006). Indeed, from 13 

infancy onwards, a balance between exploitation (of the known) and exploration (of the 14 

unknown) is essential for optimal adaptation to the environment so that one is alert to 15 

pertinent new information but at the same time can focus on a given task (Cohen et al. 2007). 16 

If there is a bias towards exploitation or exploration, this could impact optimal foraging and, 17 

consequently, learning and adaptive functioning (Gliga, Smith, Likely, Charman, and 18 

Johnson 2018). 19 

There is evidence for reduced habituation in autistic individuals for both simple stimuli 20 

(e.g., tones and naturalistic sounds (Hudac et al. 2018; Guiraud et al. 2011) and more complex 21 

stimuli such as faces (Kleinhans, Richards, Greenson, Dawson, and Aylward 2016; Webb et 22 

al. 2010)). However, it is unclear whether atypical habituation in autism is driven by impaired 23 

information processing, leading to slower learning/acquisition of knowledge about the 24 

repeating stimulus, or an information foraging style that biases against novelty and change in 25 
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favour of sameness and predictability. Evidence that habituation deficits in autism are specific 1 

to certain stimuli (present for faces but not for houses) (Webb et al. 2010; Kleinhans et al. 2 

2016) implicates slower processing of a repeated stimulus rather than biases against novelty, 3 

because complex stimuli, such as dynamic, multimodal and social stimuli, are more difficult to 4 

process and would therefore challenge these basic learning processes more extensively.  On 5 

the other hand, there is evidence of an attentional bias away from novelty, and towards 6 

attending to previously explored information at the cost of attending to unknown information 7 

(Elison, Sasson, Turner-Brown, Dichter, and Bodfish 2012; Pellicano, Smith, Cristino, Hood, 8 

Briscoe, and Gilchrist 2011; Sasson, Turner-Brown, Holtzclaw, Lam, and Bodfish 2008). 9 

Currently, it remains unknown whether looking longer at a repeating stimulus reflects impaired 10 

learning of the stimulus or a preference for repetition. In the habituation literature, it is not 11 

possible to disentangle these competing accounts because only a single, repeating stimulus is 12 

usually presented and therefore an attentional bias towards repetition over novelty cannot be 13 

measured. Whether impaired learning or repetition preference underlies longer looking to a 14 

repeating stimulus has important implications for theoretical understanding of autism as well 15 

as clinical interventions. Early differences in attention impact the development of socio-16 

cognitive skills that lie at the core of autism (Keehn, Müller, and Townsend 2013).  If 17 

atypicalities in information processing underlie differences in attention, interventions targeting 18 

information processing generally could be effective in improving long-term outcomes. If on 19 

the other hand, profiles of novelty avoidance/repetition preference underlie differences in 20 

social attention, this might reflect differences in reward processing and/or arousal regulation 21 

(Jepma, Verdonschot, van Steenbergen, Rombouts, and Nieuwenhuis 2012; Frank, Doll, Oas-22 

Terpstra, and Moreno 2009); and interventions that target arousal and reward processing 23 

networks might be more appropriate.  24 
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To separate out these competing accounts we adapted an eye-tracking paradigm that 1 

was first published by Vivanti et al. (2018), in which two competing stimuli are presented 2 

simultaneously in the left and right parts of a screen, one of which remains constant while the 3 

other one changes. The advantage of this paradigm (instead of traditional paradigms that 4 

present only a repeating stimulus) is that one can capture competing drives to look at the 5 

repeating versus novel stimuli. In the first few trials, preference for either stimuli is likely to 6 

not be evident. However, over trials, habituation should occur to the repeating stimulus and 7 

preferential looking towards the changing stimulus should increase. The novelty bias, i.e., 8 

increased attention to the changing stimulus, thus becomes more prominent after successful 9 

learning or processing of the repeating stimulus (Fantz 1964). Using this paradigm, Vivanti et 10 

al. (2018) reported that autistic pre-schoolers required more trials than neurotypical controls 11 

to meet habituation criterion, thus exhibiting slower habituation. Using rates of change in 12 

total fixation durations per trial to the repeating and changing stimuli, they also reported that 13 

while the autistic children (similarly to neurotypical toddlers) showed reduced looking to the 14 

repeating information over successive trials, they also showed reduced looking to the 15 

changing stimulus over time, whereas neurotypical toddlers increased looking to the changing 16 

stimulus. The authors interpreted this to reflect a reduced bias to attend to novelty in autistic 17 

participants, rather than an effect of slower learning. However, one could argue that if autistic 18 

children were slower to process the repeating stimulus as evidenced by slower habituation, 19 

they would then also have been slower to show preference for the changing stimuli. 20 

Therefore, this effect (reduced looking to the changing stimulus) could be driven by slower 21 

habituation rather than reduced preference for novelty. Further work is needed therefore to 22 

fully characterise profiles of habituation and novelty biases in autism.  23 

One way to directly address the role of information processing is by manipulating 24 

stimulus complexity. Simpler stimuli elicit quicker habituation than complex stimuli 25 
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(Schoner and Thelen 2006). We reasoned that if autistic people tend to spend longer looking 1 

at a repeating stimulus because they are slower to habituate, more complex stimuli, which 2 

require more processing, should elicit a greater differential between repeating and changing 3 

stimuli. Conversely, if the findings are driven by information foraging differences in autistic 4 

individuals that bias them against attending to novel or changing information, this will be 5 

reflected in a significantly greater proportion of time looking towards the repeating stimulus 6 

than the changing stimulus and this effect will occur irrespective of the complexity of the 7 

stimulus. To investigate these alternative predictions, we adapted the task used by Vivanti et 8 

al. (2018), which comprised one stimulus condition with simple shapes that rotated and 9 

zoomed towards the participants. We added two conditions: one consisted of complex stimuli 10 

(clocks with moving arms); another used social (smiling faces) stimuli (as shown in Figure 11 

1). These manipulations allowed us to test whether differences in attention to repeating and 12 

changing stimuli were more pronounced for complex than simple stimuli and also allowed us 13 

to test whether these effects were more pronounced for social stimuli, given the large 14 

literature suggesting greater impairments in the social domain in the autistic population 15 

(Chita-Tegmark 2016; Dawson, Bernier, and Ring 2012). We reasoned that if social stimuli 16 

are one example of complex stimuli, the faces and clocks stimuli used in our adapted 17 

habituation paradigm should yield similar effects to one another, and larger effects than the 18 

simple shapes condition. If, however, autistic individuals show a unique difficulty with social 19 

stimuli, the effects would be specific to this condition, over and above those for the non-20 

social simple (shapes) and non-social complex (clocks) conditions. Faces and clocks were 21 

selected as social and non-social examples of more complex stimuli because they have a 22 

higher number of features to process, that hold informative value compared to the geometric 23 

shapes.  24 



9 
 

In addition, we developed a more sensitive measure to capture habituation. Vivanti et 1 

al. (2018) used a total fixation duration measure; however, in a two-stimulus habituation 2 

paradigm, this measure might also capture other processes apart from information processing, 3 

such as revisits to the repeating stimulus to ensure that it has not changed, or even a 4 

preference for repetition. We therefore chose to use the longest look duration per trial 5 

(comprised of one or more fixations within a stimulus) to each stimulus (repeating and 6 

changing). This is more likely to reflect looks made for the purpose of information processing 7 

and learning in a given trial (Colombo and Mitchell 2009). We summarised the pattern of 8 

change in look durations over trials by using a slope coefficient, with decreases in look 9 

durations reflected in a negative coefficient and increases in a positive coefficient. At the 10 

beginning of the task, we expected to observe equally long look durations to both the 11 

repeating and changing stimuli. If a person is habituating, then over time, the trial-by-trial 12 

longest look durations should decrease for the repeating stimuli and increase for the changing 13 

stimuli, since the latter hold novel information. If there is a bias for either the repeating or 14 

changing stimulus, this will emerge as an increase in look durations towards that stimulus 15 

over time. 16 

In neurotypical individuals, we predicted a rapid decrease in longest look durations to 17 

the repeating stimulus over time and an increase in longest look durations to the changing 18 

stimulus over time, reflecting rapid habituation and then an information foraging drive 19 

towards the novel stimulus. This would be reflected in a negative slope coefficient of look 20 

durations to the repeating stimulus and a positive slope coefficient to the changing stimulus. 21 

In autism, we predicted that if the tendency to spend longer looking at a repeating stimulus is 22 

driven by slower information processing (and therefore slower habituation), there will be a 23 

reduction in look durations over time to the repeating stimulus and an increase to the 24 

changing stimulus, but the slopes will be flatter than in neurotypical individuals, reflecting 25 
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slower change over time. This effect will be more pronounced in the conditions with higher 1 

stimulus complexity due to the greater difficulty processing these stimuli. Conversely, if 2 

driven by a bias against novelty towards sameness, the effect will not vary by stimulus 3 

complexity and will manifest in a significant positive slope to the repeating stimulus and a 4 

flat or negative slope to the changing stimulus, i.e. a reversal of the neurotypical effect. We 5 

also explored whether these atypical features of autism are specific to social stimuli or 6 

whether they also occur when presented with non-social stimuli that have a similar level of 7 

featural complexity. 8 

We used this task with two populations. In Study 1, we compared children with and 9 

without clinically diagnosed autism and we also compared autism with another 10 

neurodevelopmental disorder, attention deficit hyperactivity disorder (ADHD). In Study 2 we 11 

recruited a general population sample of children with varying levels of autistic traits. 12 

Study 1 13 

The aim of the first study was to determine whether differences in attention to 14 

repeating vs changing stimuli reflect slower processing of a repeated stimulus or atypical 15 

biases away from novelty in autistic children, by manipulating stimulus complexity. 16 

Therefore, in this study, we included children with a clinical diagnosis of Autism Spectrum 17 

Disorder and neurotypical children. In addition, we included a group of children with ADHD 18 

and a group of children with co-occurring Autism and ADHD. 19 

ADHD is highly co-occurrent with autism (with co-occurrence rates between 37-85%, 20 

Leitner 2014) but this is often not addressed in research. There is inconsistent evidence for 21 

atypical habituation in ADHD; with preliminary evidence for quicker habituation to rewards 22 

in those with ADHD (McDiarmid et al. 2017). ADHD is also tentatively associated with 23 

biases towards novelty-seeking and exploration (Gliga et al. 2018) and could therefore be 24 

linked with information foraging biases opposite to the ones associated with autism. Given 25 
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the high comorbidity between these conditions, investigating how these potentially opposing 1 

biases are manifest in those with comorbidity might illuminate shared mechanisms between 2 

autism and ADHD. Therefore, the aim of our first study was to determine how attention to 3 

repeating vs changing information is influenced by stimulus complexity and whether any 4 

unique attentional patterns are evident within different clinical groups with a diagnosis of 5 

autism, ADHD, or both. In many experimental studies on autism, despite the high levels of 6 

co-occurrence between autism and ADHD, co-existing ADHD is either ignored (not 7 

measured) or autistic participants are excluded from the studies if they meet criteria for 8 

ADHD.  This reduces the generalizability of results from those studies, as their samples are 9 

not representative of the general autistic population. Instead, careful characterization of 10 

ADHD symptoms in autistic participants provides an opportunity to test how presence of 11 

ADHD impacts profiles of attention and information processing in autism and in doing so, we 12 

are also able to include a more representative sample of autistic children and young people in 13 

the study. 14 

We predicted a profile of relatively greater attention to the repeating stimulus over the 15 

changing stimulus in children and adolescents with autism, as outlined in the general 16 

introduction above. For children with ADHD, our hypotheses were more tentative, given that 17 

such tasks have not been used with this population before. We expected them to show a bias 18 

towards novelty, to the extent that they will look more often at the changing stimulus (Sethi, 19 

Voon, Critchley, Cercignani, and Harrison 2018). We also expected, given profiles of 20 

hyperactivity and inattention (American Psychiatric Association 2013), that they might be 21 

slower to reduce their attention to repeating information due to inefficient processing and 22 

therefore, flatter slopes of change in attention towards both stimuli. Again, given lack of 23 

research in the area, we anticipated different possible effects for children with co-occurring 24 

autism and ADHD. Given evidence of opposing information foraging biases in autistic and 25 
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ADHD populations (towards novelty in ADHD and against novelty or towards sameness in 1 

autism), we anticipated that comorbid children might show neither, with the two opposing 2 

risks combating each other. Alternatively, the group with co-occurring autism and ADHD 3 

might be more similar to the autistic children, or to the ADHD children, reflecting that on 4 

these measures they share the profile of one of these populations. Finally, the comorbid group 5 

might be a separate nosologic entity and thus might show a completely distinct profile 6 

(Rommelse, Geurts, Franke, Buitelaar, and Hartman 2011) from the other children. We tested 7 

these predictions in a factorial design where ADHD and ASD were modelled as two between-8 

subjects’ factors. 9 

 10 

Methods 11 

Sample 12 

The present work is based on data collected for the [blind for peer review]. 103 13 

participants aged 7-15 years took part, including 30 neurotypical participants, 18 with 14 

Autism, 23 with ADHD and 32 with both Autism and ADHD (‘Autism+ADHD’). Participant 15 

demographic characteristics are presented in Table 1. 16 

Participants completed a battery of EEG and eye-tracking tasks, including the task 17 

presented here. Study procedures were approved by the UK National Research Ethics 18 

Committee (REC reference 17/EM/0193 and the Health Research Authority (HRA; IRAS 19 

research project ID 220158). Clinical participants were recruited through local support groups 20 

or were referred to the study by paediatricians, child and adolescent psychiatrists or mental 21 

health nurses in local Child and Adolescent Mental Health Services (CAMHS) or the special 22 

needs departments of local schools. Neurotypical participants were recruited from local 23 

schools and from a database of volunteers held by the [blind for peer review]. Participants in 24 

the clinical groups either already had a clinical diagnosis or were referred to the study by 25 
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clinicians because of suspected ADHD or autism. Consensus research diagnoses were made 1 

in consultation with two experienced child and adolescent psychiatrists [blind for peer 2 

review]. The measures used to inform research diagnoses were: Development and Well-3 

Being Assessment (DAWBA) (Goodman, Ford, Richards, Gatward, and Meltzer 2000), 4 

Social Communication Questionnaire (SCQ) (Rutter, Bailey, and Lord 2003), Conners’ 5 

Rating Scales (CRS-3) (Conners 2008), the Autism Diagnostic Observation Schedule, 2nd 6 

Edition (ADOS-2) (Lord et al. 2015) (completed by [blind for peer review] who have 7 

research accreditation for the tool) and the Wechsler Abbreviated Scales of Intelligence 8 

(WASI-II) (Wechsler 2011) to obtain a measure of verbal and non-verbal cognitive 9 

functioning for all participants. Parent and teacher data were available for the participants on 10 

the SCQ and CRS-3. Due to missing data on the teacher measure, in this study we report the 11 

parent CRS scores. In this study, we used parent-reported SCQ (Total score and social 12 

communication, social interaction and restricted and repetitive behaviours subscale scores) 13 

and CRS (Hyperactivity-Impulsivity and Inattention subscales) scores as indices of symptom 14 

severity of Autism and ADHD respectively. Further information about inclusion/exclusion 15 

criteria as well as allocation of participants into clinical groups is available in Supplementary 16 

Materials. 17 

Eye-Tracking Task 18 

We adapted the novelty versus repetition task from Vivanti et al. (2018). In this task, 19 

two streams of dynamic stimuli are presented adjacent to one another, one each in the left and 20 

right sides of the screen, on a computer screen. In one stream, a repeating stimulus is 21 

presented and in the other, a changing stimulus is presented. In the original task (Vivanti et 22 

al. 2018), the stimuli were dynamic shapes, rotating and looming towards the viewer. 23 

Stimulus duration was three seconds. We adapted these original stimuli but retained the 24 

timing and display parameters of the original study.  25 
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In addition, we added two conditions to enable us to measure the effects of social-ness 1 

and complexity of stimuli (see Figure 1). We added a social condition in which the stimuli 2 

consisted of movies of faces breaking into smiles taken from the UvA-NEMO Smile 3 

Database (Dibeklioğlu, Salah, and Gevers 2015). The videos are shot under controlled 4 

illumination conditions and are in RGB colour. We cropped the videos to size them similarly 5 

to the stimuli from other conditions. 6 

We also created a non-social condition in which we used animations of clocks with 7 

moving arms as stimuli. Clocks were sized similarly to the faces in the social condition. 8 

Clocks were of different colours (similar to non-social simple condition), and the arms moved 9 

from different starting points to different endpoints. The clocks were designed to be more 10 

complex than the shapes since there was more information within them to process. Clocks 11 

have multiple features that have informative value and the movement of internal features 12 

changes the meaning to be drawn from the stimulus, similar to facial features. Importantly, 13 

the faces and clocks differ primarily in their social status but are approximately equivalent in 14 

global and featural complexity (see Fig 1).  15 

In keeping with the original study (Vivanti et al. 2018), we chose to use dynamic stimuli for 16 

our other two conditions. This was primarily because, for the age range of our participants, 17 

static stimuli would have been too simple and possibly unengaging. Furthermore, dynamic 18 

stimuli are more naturalistic and therefore have greater ecological validity. In Vivanti et al’s 19 

(2018) study, nine trials were presented. We added two trials (to each condition) to ensure 20 

that there were sufficient trials to capture changes in looking patterns given the older age of 21 

our participants. Therefore, in Study 1, each condition comprised of eleven trials (3 seconds 22 

per trial), leading to three conditions that lasted 33 seconds each, and an entire task that lasted 23 

around 2-3 minutes in total, including calibration and drift correction between conditions. For 24 

each stimulus type, there were twelve stimuli created, one of which was used as the repeating 25 
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stimulus while the rest were used as changing stimuli, so that within the changing stimuli, no 1 

stimulus was presented more than once. Order of presentation of conditions and stimuli 2 

within conditions were both randomized. Further, we counterbalanced the visual hemifield in 3 

which the repeating stimulus was presented in each condition and between the two versions.  4 

Further information about task design is available in Supplementary Materials. 5 

[Figure 1 top] 6 

Procedure 7 

The task was delivered on Eyelink 1000 Plus after a 9-point gaze calibration was 8 

completed. Eye movements from both eyes were recorded without a chin-rest and children 9 

were seated approximately 60 cm from the screen. Eye movements were recorded at 500 Hz 10 

through a 25 mm lens, with an estimated accuracy of 0.25° to 0.5°. The task was presented on 11 

a 21.5’’ LCD screen with a refresh rate of 60 Hz, placed immediately behind the eye-tracker. 12 

This task lasted approximately 2 minutes, including calibration. It was a part of a 15-13 

minute eye-tracking battery and was presented mid-way through another eye-tracking task. 14 

Participants were asked to pay attention to what was happening on the screen but were given 15 

no other instructions.  16 

 17 

Analysis Plan 18 

We extracted two measures from the task. The first, number of fixations to the screen, 19 

was a measure of task engagement, compared between groups to ensure that analysis of other 20 

measures was not influenced by any between-subject differences in task engagement. The 21 

second measure of interest was the rate of change in look durations to the repeating and 22 

changing stimulus over time. Interest areas were drawn around stimuli to capture any 23 

fixations falling within the area of the stimuli. A ‘look duration’ was defined as cumulative 24 

duration of consecutive fixations in the same interest area in a trial without shifting to another 25 
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interest area. Therefore, for each trial, the longest look to the repeating and changing stimulus 1 

was extracted. We then computed the coefficients of the linear slope of the rate of change in 2 

these look durations to the repeating and changing stimulus in each condition (Non-Social 3 

Simple, Non-Social Complex, Social) separately. We expected a negative slope to the 4 

repeating stimulus across conditions, representing reduced looking to repeating information 5 

over time, and a positive slope to the changing stimulus, driven by longer looking to the 6 

changing information over time representing a novelty bias. 7 

In the main analyses, Autism and ADHD were modelled as two between-subject 8 

factors with two levels each, ‘Present’ and ‘Absent’. This allowed us to measure the effects 9 

of either condition separately through main effects of either factor. Modelling the factors in 10 

this way gave more power to the comparisons when comparing all participants with 11 

Autism/ADHD with those without. Effects specific to one of the four groups would emerge 12 

in this analysis through an interaction effect between the between-subject factors, and this 13 

would allow us to investigate whether a profile of attention was specific to the autism only 14 

group as compared to the rest.  15 

To analyse the engagement variable (number of fixations), we used repeated measures 16 

analyses of variance (ANOVA) with one within-subject factor: Condition with three levels 17 

(Non-Social Simple, Non-Social Complex, Social). In our analysis of this variable we 18 

focussed on checking individual differences in task engagement. We therefore only report 19 

main effects of Autism or ADHD or interactions between these and the within-subjects 20 

Condition factor. For our main analysis on the Rate of change in Look durations, we included 21 

a second within-subjects factor Stimulus with two levels (Repeating, Changing). 22 

For each dependent variable, we assessed common assumptions before testing 23 

hypotheses. Mahalanobis distances were used to identify multivariate outliers but none were 24 

identified. Based on evidence that repeated measures ANOVAs are robust to assumptions of 25 



17 
 

normality we carried out ANOVA with normal and non-normal dependent variables (Field 1 

2013). Mauchly’s tests of sphericity was evaluated and where violated, we report 2 

Greenhouse-Geisser adjusted degrees of freedom. Interactions and main effects were 3 

followed up with appropriate analysis to characterise the simple effects. 4 

Given differences between clinical groups on IQ, we used partial correlations to 5 

evaluate whether differences in IQ were associated with any effects of interest.  6 

 7 

Results 8 

Overall, the pattern of group differences reflected the group allocations, showing 9 

greater CRS scores in the ADHD and Autism+ADHD groups and greater SCQ scores in the 10 

Autism and Autism+ADHD groups. The clinical groups had lower IQ than the neurotypical 11 

group; however, this difference was statistically significant only between NT and Autism + 12 

ADHD group (see Table 1). 13 

[Insert Table 1 here] 14 

Number of fixations (control variable measuring task engagement) 15 

First, we analysed participants’ number of fixations to the screen to ensure that all 16 

participants were attentive to the task at all levels of Condition. The between-subjects factor 17 

of Autism interacted significantly with Condition: F (2, 198) = 3.03, p = .05, ƞ2
p = .03. 18 

However, follow up pairwise comparisons comparing groups (Autism-Present, Autism-19 

Absent) within each condition yielded no significant differences (all p>.1) (descriptive 20 

statistics provided in Supplementary Materials). Main effects of Autism and ADHD were not 21 

significant: Autism: F (1, 99) = .008, p = .93, ƞ2
p = .00; ADHD: F (1,99) = .009, p = .92, ƞ2

p = 22 

.00. 23 

 24 
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Rate of change in look durations  1 

We predicted that all participants would show reduced look durations over time to the 2 

repeating stimulus (indexed by a negative slope) and increased look durations over time to 3 

the changing stimulus (indexed by a positive slope). There was a main effect of Stimulus (F 4 

(1, 99) = 52.78, p = .000, ƞ2
p = .35). As predicted, this was driven by a significantly more 5 

positive slope for the changing stimulus (Mean ± S.E. = 40.04 ± 4.84) as compared to the 6 

repeating stimulus (Mean ± S.E. = -10.84 ± 3.68). There was also a main effect of Autism (F 7 

(1, 99) = 4.74, p = .032, ƞ2
p = .046). This was driven by those without Autism (neurotypical 8 

and ADHD-only: Mean ± S.E. = 20.03 ± 3.42) showing steeper slopes than those with 9 

Autism (Autism-only and Autism+ADHD: Mean ± S.E. = 9.17 ± 3.63). 10 

There was an interaction between Condition and Stimulus (F (1.87, 185.25) = 8.74, p 11 

< .001, ƞ2
p = .08) driven by a significant main effect of Stimulus for the Non-Social Simple 12 

(Mean difference Repeating vs Changing = -82.38 ± 11.16, p < .001) and Social (Mean 13 

difference = -53.74 ± 9.93, p < .001) conditions, which was non-significant in the Non-Social 14 

Complex condition (Mean difference= -16.51 ± 13.18, p= .213). This two-way interaction 15 

was moderated by a 4-way interaction between Condition*Stimulus*Autism*ADHD:  F 16 

(1.87, 185.25) = 3.82, p = .026, ƞ2
p = .037. We broke this interaction down by running two 17 

repeated-measures ANOVAs, separately within each level of Autism and within each level of 18 

ADHD. At each level of Autism (Absent, Present), the three-way 19 

Condition*Stimulus*ADHD interaction was not significant: Autism-Absent: F (2, 102) = 20 

1.49, p = .23, ƞ2
p = .028; Autism-Present: F (1.78, 85.55) = 2.39, p = .103, ƞ2

p = .047. The 21 

equivalent analysis at each level of the ADHD factor showed that the three-way 22 

Condition*Stimulus*Autism interaction was not significant at ‘ADHD-Present’: F (2, 106) = 23 

1.18, p = .308, ƞ2
p = .022; but, in the groups without ADHD (that is in the neurotypical (NT) 24 

and Autism-only groups), there was a three-way interaction of Condition*Stimulus*Autism 25 
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(F (2, 92) = 4.375, p = .015, ƞ2
p = .087). Follow-up comparisons were conducted to test the 1 

Condition*Stimulus interaction in each of these groups (NT, Autism-only). These analyses 2 

showed a significant main effect of Stimulus in Neurotypical children (p < .0001, ƞ2
p = .447), 3 

with shorter looks to repeating stimuli (Mean ± S.E. = -9.03 ± 5.5) and longer looks to 4 

changing stimuli (Mean ± S.E.= 46.49 ± 7.74) over time across conditions (see Figure 2a); 5 

the Condition*Stimulus interaction was not statistically significant in this group (F (2, 58) = 6 

.29, p = .75). On the other hand, the Condition*Stimulus interaction was significant in the 7 

Autism-only group (F (2, 34) = 5.50, p = .009, ƞ2
p = .24) with shorter look durations over 8 

time to the repeating stimulus and longer look durations over time to the changing stimulus in 9 

the Non-Social Simple (repeating vs changing Mean ± S.E.: -31.39 ± 7.03 vs 54.64 ± 16.48) 10 

and Social conditions (repeating vs changing Mean ± S.E.: -8.68 ± 9.53 vs 33.77 ± 12.52) but 11 

a numerical difference in the opposite direction in the Non-Social Complex condition which 12 

did not reach statistical significance (repeating vs changing Mean ± S.E.: 27.79 ± 23.96 vs -13 

19.88 ± 20.41) (as shown in Figure 2b).  14 

[Figure 2a top] 15 

 [Figure 2b top] 16 

 17 

Correlations with SCQ 18 

Bootstrapped bivariate correlations were computed between number of fixations to 19 

repeating and background stimuli (across conditions) and rate of change of attention to the 20 

repeating and changing stimuli in the non-social complex condition) and the SCQ subscales 21 

of social, communication and RRB symptoms. A greater reduction in look durations to the 22 

changing stimulus over time in the Non-Social Complex condition was associated with higher 23 

SCQ Social symptoms (r= -.198, p= .05, [-.365, -.032]) (See Figure 3), suggesting that those 24 

with higher symptom severity on this scale  showed a bias against attending to the changing 25 
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stimulus over time, in this condition. To evaluate the role of IQ, we computed partial 1 

correlations between SCQ Social symptoms and Rate of change of attention to the changing 2 

stimulus in the Non-Social Complex Condition, whilst controlling IQ. The correlation 3 

became nonsignificant (r = -.161, p = .112, [-.326, -.007]).  4 

Given the finding of flatter slopes for the rate of change in look durations overall in 5 

autistic individuals as compared to non-autistic individuals in our sample, we also ran a 6 

correlation between IQ and the average rate of change of look durations over time with data 7 

collapsed across conditions and stimuli. The correlation was not statistically significant (r = -8 

.111, p= .264, [-.282, .079]). 9 

[Figure 3 top] 10 

 11 

Summary and Discussion of Study 1 12 

In this study, we set out to identify whether differences in attention to repeating 13 

versus changing information in autism are present across stimulus contexts, suggesting a bias 14 

away from novelty towards repetition and predictability; or if they are dependent upon 15 

stimulus complexity, indicating slower information processing which is exacerbated when 16 

stimuli are complex. Further, we investigated whether this attention profile was specific to 17 

children with autism when compared with a group of children with ADHD. Finally, we also 18 

included a group of children with co-occurring autism and ADHD to investigate what profile 19 

of information foraging biases they show.  20 

Analysis of the rate of change in look durations to the repeating versus changing 21 

stimuli revealed that autistic participants (with or without ADHD) showed flatter slopes of 22 

change in look durations to repeating and changing stimuli across conditions of stimulus 23 

complexity, suggesting that they were slower to shift attention, possibly due to slower 24 

information processing. Further, autistic children (without co-occurring ADHD) showed a 25 
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neurotypical profile of reduced attention over time to the repeating stimulus and increased 1 

attention over time to the novel stimulus in the Non-Social Simple (shapes) and Social 2 

conditions. However, they did not show this effect in the Non-Social Complex (clocks) 3 

condition, in which they showed prolonged attention to the repeating over the changing 4 

stimulus. This is a reversal of the neurotypical effect and indicates that autistic children are 5 

not just defined by reduced habituation to a repeating stimulus but, when presented with 6 

visually complex stimuli, they show a bias towards repetition and away from novelty. This 7 

effect is more complex than we predicted as it suggests both slower information processing, 8 

reflected in flatter slopes to the repeating and changing stimuli (compared with neurotypical 9 

participants) with a preservation of the changing>repeating pattern to Social and Non-Social 10 

Simple stimuli, and a bias for repetition over novelty (reflected in a reversal of the 11 

changing>repeating effect) to Non-Social Complex stimuli. This is an important effect, which 12 

suggests that attentional biases in favour of exploring known over unknown information 13 

(Elison et al. 2012; Pellicano et al. 2011; Sasson et al. 2008) might partly be driven by a 14 

response to stimulus complexity such that greater complexity elicits this bias towards 15 

sameness and predictability, away from novelty (Hanley, McPhillips, Mulhern, and Riby 16 

2013; Kawa and Pisula 2010).  17 

Interestingly, although this effect of a bias towards repetition did not occur in the 18 

Social condition, the effect in the Non-Social Complex condition was associated with social 19 

impairments in our sample, such that those with more parent-reported social interaction 20 

difficulties showed an atypical bias away from the changing stimulus in the Non-Social 21 

Complex condition. It is interesting that the autistic sample showed a neurotypical profile in 22 

the Social condition, albeit with flatter slopes for look durations than the NT group. One 23 

possibility is that the social stimuli used here were not complex enough; further work is 24 

needed to determine whether more socially complex stimuli (for example multimodal stimuli 25 
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combining faces with speech) would also elicit the effect found here in the Non-Social 1 

Complex clocks condition. 2 

ADHD was not related to any predicted effects. Further, while autistic participants 3 

(with or without ADHD) showed flatter slopes of rate of change in attention to both stimuli 4 

overall, only those with autism without ADHD showed an additional bias against novelty 5 

when stimuli were particularly complex. This suggests that the co-occurring presence of 6 

ADHD benefited those with autism, protecting them from biases against novelty in the Non-7 

Social Simple and Social conditions, possibly through a compensatory effect of an opposing 8 

bias towards novelty, as suggested by Gliga et al. (2018), who reported that infants at 9 

elevated likelihood of both autism and ADHD did not show exploitative biases. However, in 10 

our study, given that ADHD was not a main effect in these analyses, we cannot call this an 11 

additive effect because we did not find evidence of opposing biases being nulled in the 12 

comorbid group. 13 

To summarize, Study 1 found that autistic participants (with and without ADHD) 14 

exhibited a slower rate of change in look durations over time as evidenced by flatter slopes, 15 

possibly due to slower processing of information. Autistic children (without ADHD) showed 16 

a profile of prolonged attention to repetition and reduced attention to the changing stimulus 17 

over time, but only in the Non-Social Complex condition. Biases against exploration of new 18 

information in complex conditions were associated with higher social impairments in our 19 

sample, across autistic and non-autistic participants. 20 

Study 2 21 

The aim of the second study was to determine whether the effect found in Study 1 22 

(wherein autistic participants’ attention to changing information is reduced only in contexts 23 

of higher stimulus complexity) extends into the general population in individuals with high 24 

autistic traits. The behavioural profile associated with autism has been found to be present 25 
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sub-clinically in those at increased familial risk of autism, termed the Broad Autism 1 

Phenotype (BAP), (Piven 2001; Robinson et al. 2011). Further, the autistic traits that 2 

comprise the BAP, such as reduced social skills and impaired social cognitive abilities, as 3 

well as restrictive and repetitive behaviours, have been found to extend into the general 4 

population, suggesting that they lie on a continuum between individuals meeting diagnostic 5 

criteria and those in the general population (Constantino and Todd 2003; Ronald et al. 2006; 6 

Ingersoll 2010; Sasson, Nowlin, and Pinkham 2013). Therefore, when teasing apart 7 

mechanisms underlying specific features, studying individuals on different sides of the 8 

diagnostic boundary may prove fruitful in enhancing our understanding of the autistic 9 

spectrum. 10 

We hypothesised that if higher autistic traits are associated with similar risks to 11 

information processing, children in our sample with higher autistic traits would orient their 12 

attention more towards the repeating stimulus stream over trials, and show reduced attention 13 

to the novel stimulus stream; but that this will be specific to conditions where the stimuli are 14 

more complex. 15 

Methods 16 

Participants 17 

Sixty-four children between the ages of 4 -12 years took part in this study (see Table 2 18 

for demographic and behavioural characteristics). Participants were recruited during a local 19 

science engagement event [blind for peer review]. Three children were reported to have a 20 

pre-existing diagnosis of autism, and one had a pre-existing diagnosis of ADHD. These 21 

children were not excluded from analysis as it was considered advantageous to include 22 

children on the extreme end of the autism continuum. One child used hearing aids but was 23 

not an outlier on any measure so they were included in the analyses. 24 
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Measures 1 

The British Picture Vocabulary Scale (BPVS3) (Dunn and Dunn 2009): age-adjusted 2 

standard scores (with a mean of 100 and standard deviation of 15) were used as a proxy for 3 

mental age. Autistic traits were measured using the Autism Spectrum Quotient- Child’s 4 

Version (AQ-Child) (Auyeung, Baron-Cohen, Wheelwright, and Allison 2008), a parent-5 

report questionnaire with high internal consistency (overall alpha= 0.97) and good test-retest 6 

reliability (r= 0.85). The AQ-Child has a range of scores from 0-150, with a cut-off score of 7 

76 showing high sensitivity and specificity for Autism. 8 

 9 

Procedure 10 

Ethical approval for the study was granted by the [blind for peer review]. The eye-11 

tracking task presented to participants was identical to the task described in Study 1 except 12 

that, due to time constraints within the SSW experimental set-up, and because the participant 13 

sample was recruited from a younger age range, nine trials were presented per condition 14 

(similar to the original study by Vivanti et al. (2018)). In the analysis reported here, 13 15 

participants’ data is from 2017, while 51 participants were tested in 2018. Participants 16 

received tokens upon completion of the experiment which they could use to spend on games 17 

and activities at the event. The equipment used and eye-tracking procedure was the same as 18 

that described in Study 1. 19 

 Analysis Plan 20 

We extracted the same two measures as Study 1: Engagement (measured by number 21 

of fixations to the screen in different conditions) and the rate of change of cumulative look 22 

durations to the repeating and changing stimuli over time in each Condition. The within-23 

subject factors (Stimulus, Condition) were the same as in Study 1.  24 
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Here we report the results from our main model testing our hypotheses with AQ score 1 

included as a linear predictor. Mahalanobis distances were used to identify multivariate 2 

outliers but none were identified. To account for potential effects of factors such as age and 3 

mental ability, we ran separate correlations with age and BPVS to assess whether these were 4 

related to scores on the AQ-Child and/or task effects of interest. 5 

Results 6 

[Insert Table 2 here] 7 

Engagement 8 

First, we analysed participants’ number of fixations to the screen at different levels of 9 

Condition (Non-Social Simple, Non-Social Complex, Social) to ensure participants were 10 

attentive throughout. AQ did not interact with Condition: Greenhouse-Geisser F (1.77, 11 

109.55) = .73, p = .47, ƞ2
p = .01. There was also no main effect of AQ scores: F (1, 62) = 12 

.213, p = .65, ƞ2
p = .00. 13 

Rate of change in look durations  14 

There was a main effect of Stimulus (F (1, 62) = 8.16, p = .006, ƞ2
p = .116); with the 15 

slope to the repeating stimuli being more negative (Mean ± S.E.= -.89 ± 6.59) than the slope 16 

to the changing stimuli (Mean ± S.E.= 54.13 ± 7.7). This was modulated by a 17 

Condition*Stimulus interaction (Greenhouse-Geisser F (1.8, 111.675) = 4.504, p = .013, ƞ2
p = 18 

.068). The main effect of Stimulus was present within each condition (See Figure 4a): Simple 19 

(Mean difference (Repeating vs Changing) = -64.13 ± 22.73, p = .006); Complex (Mean 20 

difference = -65.46 ± 27.99, p < .023); Social (Mean difference = -59.56 ± 13.74, p < .001). 21 

This interaction was further moderated by a 3-way interaction with AQ (F (1.8, 111.675) = 22 

4.96, p = .011, ƞ2
p = .074). As can be seen below in Figure 4b, in both the Non-Social 23 

Complex and Social conditions, the main effect of Stimulus reversed, such that in the Non-24 

Social Complex and Social conditions, those with higher AQ scores (i.e., higher levels of 25 
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autistic traits) showed longer look durations to the repeating stimuli over time and reduced 1 

look durations to the changing stimuli over time. Since we included three participants who 2 

met criteria for autism and one participant with ADHD in this sample, we also ran this model 3 

without those participants to ensure that the results are not an artefact of including clinical 4 

participants. Excluding these participants did not change the significance level of any 5 

analyses. The results from this analysis are provided in Supplementary Materials. 6 

Correlations between AQ and slope of attention to repeating and changing information 7 

We ran correlations between AQ scores and the slopes of attention to repeating and changing 8 

information in the Non-Social Complex and Social conditions. AQ scores correlated 9 

positively with the slope of change in longest look durations to the repeating stimulus in the 10 

Social condition (r = .257, p = .044, [.001, .502]) and negatively related to the slope to the 11 

changing stimulus in the Social condition (r = -.295, p = .02, [-.48, -.07]). Thus, higher 12 

autistic traits were related to prolonged attention to the repeating stimulus and reduced 13 

attention to the changing stimulus in the Social condition. 14 

[Figure 4a top] 15 

[Figure 4b top] 16 

 17 

We then assessed whether any demographic characteristics were related to AQ. Neither 18 

BPVS scores nor Age correlated significantly with AQ or with the rate of change in look 19 

durations to repeating or changing stimuli in either the Non-Social Complex or Social 20 

conditions (all p>.1, full correlation values provided in Supplementary Materials).  21 

 22 

Summary and Discussion of Study 2 23 

 We aimed to identify whether biases found in our clinical sample of autistic children 24 

against attending to changing information when stimuli were more complex are related to 25 
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autistic traits in a general population sample. Indeed, this is what we found. In the Non-Social 1 

Simple (shapes) condition, traits of AQ did not impact information foraging, all children 2 

showed the expected profile of reducing attention over time to the repeating stimulus and 3 

increasing attention over time to the changing stimulus. However, in the Social (faces) and 4 

Non-Social Complex (clocks) conditions, higher traits of AQ were related to reduced look 5 

durations to changing stimuli over time and increased look durations to repeating stimuli over 6 

time. The presence of this effect for both Social and Non-Social Complex stimuli suggests 7 

that, in this study, the two types of stimuli elicit equivalent effects on attention, suggesting 8 

that an atypical attentional style to social stimuli may at least partly be explained by the 9 

complexity of those stimuli. Our findings are in line with other studies that have investigated 10 

social abilities and attention in association with traits of autism (Ingersoll 2010; Sasson et al. 11 

2013) which have also found that higher sub-clinical traits are associated with similar profiles 12 

of social abilities as those seen in clinical diagnosis of autism.  13 

 14 

General Discussion 15 

In the present study, we aimed to disentangle whether differences in habituation or 16 

biases against novelty drive differences in attention to repeating vs changing information in 17 

autistic individuals. We investigated these questions by manipulating stimulus complexity 18 

and extracting a measure of information processing and learning, indexed through the longest 19 

look duration to each stimulus per trial, to assess how this changed over time to the repeating 20 

and changing stimuli. We found that across two independent samples of children, traits and 21 

clinical symptoms of autism were related with prolonged attention to repetition and reduced 22 

attention to novelty, but only in contexts of higher stimulus complexity (in Non-Social 23 

Complex condition in Study 1, and in both Social and Non-Social Complex conditions in 24 

Study 2). This suggests that there might be two processes at play: differences in habituation 25 
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due to difficulties processing more complex stimuli and a bias against novelty in favour of 1 

repetition which is elicited by complex stimuli (at least in this paradigm) in individuals with 2 

clinical symptoms or higher traits of autism. Our findings are partly in line with Vivanti et 3 

al.’s (2018) report of slower habituation and attentional biases against novelty; however, our 4 

findings extend this work by showing that these attention profiles seem to be partly driven by 5 

slower learning or processing of stimuli.  6 

Our findings suggest that differences in habituation to repeating stimuli emerge when 7 

stimuli are more complex. Importantly, we also found this effect to be specific to children 8 

with autism without comorbid ADHD. These are important factors that have previously not 9 

been considered in the literature. Studies on habituation mechanisms in autism have yielded 10 

heterogeneous findings, with some studies reporting differences in habituation to be only 11 

present when using social stimuli (such as faces) but not when using non-social stimuli 12 

(Kleinhans et al. 2016; Webb et al. 2010), and interpreting those effects to be related to 13 

difficulties in social information processing in autism. Our findings challenge this 14 

interpretation: using non-social stimuli with high level of featural complexity (clocks with 15 

moving parts) as well as social stimuli with similar featural complexity allowed us to test 16 

whether there is anything unique to processing of social stimuli when they are compared with 17 

complex non-social stimuli.  We found that autistic traits and symptoms are associated with 18 

atypical processing of complex information, not specifically social information. Our findings 19 

therefore suggest that this heterogeneity might be at least partly driven by stimulus 20 

complexity. Slower learning might be captured more fully in experimental paradigms that use 21 

more complex stimuli and thus differences in habituation findings in the literature might be 22 

partly explained by this. Further, studies in habituation in autism have sometimes found null 23 

effects and they usually do not take into consideration the presence of co-occurring 24 

difficulties and conditions. In our study, autistic children (with and without autism) showed 25 
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slower rates of change in look durations to both repeating and changing stimuli, irrespective 1 

of the type of stimulus. However, only autistic participants without ADHD showed prolonged 2 

attention to repetition reflecting a bias against novelty in contexts of higher stimulus 3 

complexity. Participants with autism with comorbid ADHD did not show this profile. This 4 

again implies that heterogeneous findings in the habituation literature in autism might be 5 

partly driven by lack of proper characterization of the co-occurring conditions in autistic 6 

participants. In our study, presence of ADHD appears to benefit autistic individuals by 7 

combating the biases against novelty that emerge when processing more complex stimuli.  8 

Previous research has also shown that autistic children demonstrate an attentional 9 

preference towards revisiting previously explored regions at the cost of exploring new 10 

information (Gliga et al. 2018; Elison et al. 2012; Pellicano et al. 2011). These studies have 11 

used paradigms very different to ours, with multiple static objects present on the screen at 12 

once, both social and non-social. While our study does not refute those findings, we do 13 

question whether presence of information foraging biases of exploitation over exploration 14 

characterize autistic individuals in all contexts. In future studies, it would be important to 15 

manipulate stimulus complexity to assess whether the attentional biases reported in autism 16 

might be partly driven by slower processing of stimuli.  17 

Given the cross-sectional nature of our study and the age groups we focused on 18 

(children and adolescents), we are limited in being able to shed light on specific mechanisms 19 

behind the differences observed in processing more complex stimuli and whether such 20 

differences are a consequence or a cause of autism. It has been suggested that habituation 21 

differences in autism might lead to an exaggerated perception of change, and that restricted 22 

and repetitive behaviors might be a resultant coping mechanism (Vivanti et al. 2018; Dawson 23 

and Lewy 1989). Contrary to this, we found that differences in attention to changing stimuli 24 

in the Non-Social Complex condition (in Study 1) were associated with more social 25 
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interaction impairments in children but were not related with restrictive, repetitive behaviours 1 

on the SCQ. Other studies have also found evidence for reduced habituation to complex 2 

stimuli to be linked with higher severity of social impairments (Webb et al. 2010; Kleinhans 3 

et al. 2009). This suggests that these differences in processing more complex stimuli are 4 

related to skills involved in social interaction, rather than RRBs. Social interaction is 5 

dependent on processing complex and ever-changing information in real time. Thus, 6 

development of social interaction differences might well be rooted in early differences in 7 

being able to process complex information. Further, Vivanti et al. (2018) found a similar bias 8 

against attending to changing information in preschoolers with autism, therefore these 9 

differences in attention and information processing might emerge quite early.  10 

Importantly, given that biases against novelty were found in relation with stimulus 11 

complexity regardless of the social-ness of the information, it appears that domain-general 12 

models of mechanisms in autism rather than domain-specific models, such as those that focus 13 

on social processing atypicalities as a core mechanism in autism, are likely to hold more 14 

value. For instance, there is evidence for atypical functioning of dorsal and ventral attentional 15 

networks that support orienting of attention to novel information in autistic individuals 16 

(Farrant and Uddin 2016; Keehn, Lincoln, Müller, and Townsend 2010; Gomot et al. 2006). 17 

Early differences in the ability to shift attention (Elsabbagh, Fernandes, Webb, Dawson, 18 

Charman, and Johnson 2013) alongside atypical regulation of arousal (Orekhova and 19 

Stroganova 2014; Klusek, Roberts, and Losh 2015) might contribute to the development of 20 

an attentional style that prefers repetition over novelty, particularly when information is 21 

dynamic and complex, such as in social situations. Further research, particularly using 22 

longitudinal designs from an early age, is crucial to identify the precise mechanisms that 23 

drive such differences in attention and information processing and how these link with 24 

development of autism-specific symptoms.  25 
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There were some differences between the findings from our two studies. In the 1 

clinical study, prolonged attention to repetition and biases against attending to novelty were 2 

present only in the Non-Social Complex condition. In comparison, in the second study, we 3 

found this effect in both the Non-Social Complex and Social Conditions. In comparison, 4 

Vivanti et al. (2018) found similar differences in a younger sample with stimuli from the 5 

Non-Social Simple condition (the only condition they used). Many factors could have led to 6 

these discrepant findings. Firstly, we did not match the stimuli between conditions. Like most 7 

developmental studies, this is a difficult task to accomplish while trying to retain the natural-8 

ness of stimuli. Rather, we manipulated complexity and social-ness of stimuli. Secondly, the 9 

children in Study 2 (Age range- 4-12 years, Mean Age: 101.8 months) were younger than 10 

Study 1 (Age range- 7-15 years, Mean Age: 129.6 months); both of whom were older than 11 

Vivanti et al (27)’s sample (Mean Age calculated for Autistic and neurotypical participants 12 

from their study: 46.78 months). Thirdly, Study 1 included clinical participants, children 13 

diagnosed with autism, while Study 2 included children with varying levels of traits of 14 

autism. Any of these factors could have led to the differences in our findings. Further 15 

research using big samples at different developmental time-points and including participants 16 

on either side of the diagnostic boundary is required to understand these subtle differences.  17 

There were some limitations of the current study. Sample sizes in both Study 1 and 18 

Study 2 were modest. Specifically, in Study 1, while we were able to recruit 50 autistic 19 

participants, only 18 of these could be characterized as Autism-only, while 32 participants 20 

met criteria for co-existing ADHD. This is in line with rates of co-occurrence of autism and 21 

ADHD and highlight that co-existing ADHD is the norm rather than the exception in autism 22 

(Leitner 2014).  However, careful characterization of the sample in this manner (not often 23 

done in autism research) removes sources of noise and thus improves statistical power. In 24 

Study 1, we also included children from another clinical group (ADHD) and found the results 25 
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to be specific to children with autism, which makes the finding more robust. The replication 1 

of the main effects in samples of children with clinically significant symptoms of autism and 2 

children with higher traits of autism further improves confidence in our findings. Regardless, 3 

our findings warrant replication in larger and more representative samples.  4 

Importantly, we found that differences in attention to changing information were 5 

related to context and the type of information being presented, and thus might be partly 6 

influenced by IQ. Our sample in Study 1 was unbalanced with regard to IQ, with clinical 7 

participants showing lower IQ than neurotypical participants. However, while IQ was partly 8 

associated with the main clinical effect, it did not explain completely the relationship between 9 

SCQ scores and differences in looking to changing stimuli in the Non-Social Complex 10 

condition (the partial correlation did not reach statistical significance but the correlation was 11 

still present and indicated an effect size of similar magnitude). Further, the autistic 12 

participants with co-occurring ADHD had lower IQ than those without; yet the pattern of 13 

differences was specific to autistic children without co-occurring ADHD. In Study 2, we did 14 

not find any relationship between BPVS scores and looking to more complex repeating or 15 

changing stimuli. Therefore, while IQ might contribute to these differences in processing 16 

more complex stimuli, from our data it appears that IQ does not fully explain these 17 

differences. Other studies in the literature have also found information foraging biases such 18 

as in our study not to be associated with IQ (Elison et al. 2012; Pellicano et al. 2011). 19 

Therefore, information foraging biases might be independent of IQ in these populations. 20 

Another possible limitation of this study is the nature of stimuli used, particularly in the non-21 

social complex condition. The clocks we used were not naturalistic and it is possible that 22 

given the prevalence of digital clocks these days, the effects we saw are driven partly by lack 23 

of familiarity with these stimuli. However, this is still important to further investigate since 24 

lack of familiarity might influence foraging differently in autistic individuals than non-25 
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autistic individuals. Importantly, clocks contain many small features each of which have 1 

symbolic meanings and they are typically processed by paying closer attention to these local 2 

features. On the other hand, faces are typically processed more globally (Gao, Flevaris, 3 

Robertson, and Bentin 2011). It is possible that the pattern of differences is related to this, 4 

given that there are differences in local versus global processing in autism (Koldewyn, Jiang, 5 

Weigelt, and Kanwisher 2013). However, if this were the case, those with autism would have 6 

shown better processing of the clocks instead of the other two conditions so we do not believe 7 

this to be the case. Future studies should use different types of complex non-social and social 8 

stimuli to investigate these effects further, using designs which balance social-ness and 9 

complexity for both social and non-social stimuli (for example, stimuli of varying levels of 10 

complexity in other modalities such as the auditory modality, static and dynamic social and 11 

non-social stimuli, unimodal and multimodal social and non-social stimuli, etc.). 12 

In conclusion, our research demonstrated that reduced attention to changing 13 

information might emerge only in conditions with higher stimulus complexity in autistic 14 

individuals and in typically developing children with high autistic traits (regardless of the 15 

stimuli being social or non-social). This is an important finding and future research should 16 

look at when such differences first emerge and how they develop over time in interaction 17 

with symptoms of autism. 18 
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Figure Caption Sheet 1 

Figure 1 2 

Figure 1. Examples of stimuli used. 3 

Figure 1 Legend: From left to right, examples of stimuli from Non-Social Simple Condition, Social 4 

Condition and Non-Social Complex Condition. 5 
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Figure 2a. The main effect of Stimulus in Neurotypical participants. 1 

Figure 2a Legend: Bars show the mean (±1 standard error) coefficient of the slope for the rate of 2 

change in look durations over trials (plotted on the y-axis). These data are split by stimulus type and 3 

condition. Asterisks denote statistical significance: *p<.05, **p<.01, ***p<.001. The interaction 4 

between Condition*Stimulus is non-significant but shown here for the purpose of visualization of 5 

differences from the Autism-only group shown in Figure 2b. 6 

 7 

 8 

Figure 2b. Condition*Stimulus Interaction in the Autism-Only Group 9 

Figure 2b Legend: Bars show the mean (±1 standard error) coefficient of the slope for the rate of 10 

change in look durations over trials (plotted on the y-axis). These data are split by stimulus type and 11 

condition. Asterisks denote statistical significance: *p<.05, **p<.01, ***p<.001 12 
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Figure 3. Relationship between SCQ-Social scores and Rate of change measure in Non-Social 1 

Complex condition 2 

Figure 3 Legend: Scatterplot of scores on Social Communication Questionnaire (SCQ) Reciprocal 3 

Social Interaction Subscale (plotted on the x-axis) with the coefficient of the slope for the rate of 4 

change in look durations over trials to the Non-Social Complex Changing Stimulus (plotted on the y-5 

axis) for participants with and without Autism (represented by orange and blue dots respectively. 6 

Dotted orange and blue lines represents the trend lines for the participants with and without Autism 7 

respectively. 8 
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Figure 4a. Interaction between Condition and Stimulus on rate of change in look durations 1 

Figure 4a Legend: Bars show the mean (±1 standard error) coefficient of the slope for the rate of 2 

change in look durations over trials (plotted on the y-axis). These data are split by stimulus type and 3 

condition. Asterisks denote statistical significance: *p<.05, **p<.01, ***p<.001 4 

 5 

Figure 4b. Interaction between Condition, Stimulus and AQ on rate of change in look durations 6 

Figure 4b Legend: Bars show the mean (±1 standard error) coefficient of the linear relationship 7 

between scores on the Autism Spectrum Quotient- Child Version (AQ-Child) and the rate of change 8 

in look durations over trials (plotted on the y-axis). These data are split by stimulus type and 9 

condition. 10 
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 1 

Table 1 2 

Sample characteristics for Study 1 3 

 Neurotypical 

(n=30) 

Autism 

(n=18) 

ADHD 

(n=23) 

Autism + 

ADHD 

(n=32) 

Group 

Comparisons (p-

value) 

Demographics      

Age 129.63 

(29.29) 

130.89 

(25.05) 

127.87 

(27.14) 

130.06 

(18.36) 

Ns (pw>.1)  

Gender M:F 17:13 11:7 15:8 24:8 Ns (pw>.1)  

WASI Full-scale IQ 116.2 (13.34) 104.61  

(15.64) 

108.61 

(11.67) 

102.06 

(19.29) 

pw= .006a 

 

SCQ      

Total 3.79 (3.71) 19.11 

(5.98) 

15.17 

(6.96) 

21.16 

(6.23) 

pw<.001b,c 

 

SCQ Social 1.25 (1.5) 7.56 

(3.34) 

4.91 

(3.26) 

7.68 (3.47) pw<.001b,c 

 

SCQ Comm 1.82 (1.49) 5.61 

(2.3) 

4.61 

(1.99) 

6.39 (2.33) pw<.001b,c 

 

SCQ RRB 0.5 (1.1) 4.56 

(2.2) 

4.04 

(2.51) 

5.42 (2.76) pw<.001b 

 

CPRS      

Global 

Index  

51.82 (13.45) 79.44 

(12.59) 

87.87 

(4.25) 

87.13 

(5.32) 

pw<.001b 
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Inattention  50.57 (9.75) 77 

(12.48) 

86.78 

(6.64) 

85.09 

(6.41) 

pw<.001b, d 

 

Hyperactivity  52.32 (12.93) 76.44 

(13.68) 

87.83 

(3.9) 

87.38 

(5.56) 

pw<.001b,e 

 

Data shown for all measures except Gender are mean with standard deviation in parentheses. 1 

Data for gender are n male:female. WASI: Wechsler Abbreviated Scale of Intelligence; 2 

CPRS: Conners Parent Rating Scale (values shown are mean T-scores); SCQ: Social 3 

Communication Questionnaire  4 

p-values in the table refer to the significance value of the main ANOVA, comparing the 4 5 

groups on respective demographic characteristics; multiple comparisons for these variables 6 

are Bonferroni-corrected. pw refers to the p value of Welch’s F test carried out where 7 

homogeneity of variances assumption was violated; for these variables, post-hoc comparisons 8 

are corrected using Games-Howell method. 9 

aNT>Autism+ADHD, bNT<Autism, ADHD, Autism+ADHD; cADHD< Autism+ADHD; 10 

dAutism<ADHD, eAutism< ADHD, Autism+ADHD 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 
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 1 

 2 

Table 2 3 

Demographic characteristics of the sample in Study 2 4 

Demographic Sample 

Sample Size 64 

Mean Age (in months) (SD) 101.797 (23.997) 

Gender (M:F) 34 M: 30 F 

Mean BPVS (Standard Score) (SD) 105.16 (11.785) 

Mean AQ (SD) (Range) 58.33 (18.12) (25-110) 

Data shown for all measures except Gender are mean with standard deviation in parentheses. 5 

Data for gender are n male:female. BPVS: British Picture Vocabulary Scale, 3rd Edition; AQ: 6 

Autism Spectrum Quotient- Child’s Version  7 

 8 
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 10 
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Supplementary Information 1 

 2 

Task Information 3 

We created two versions of the task: in one version of the task, the repeating stimulus in the 4 

social condition was male and in the other, it was female, in case stimuli of different genders 5 

elicited different attentional effects depending on the gender of the participant. For the non-6 

social conditions (Simple and Complex), each version of the task used a different stimulus as 7 

the repeating stimulus. Each participant did one version of the task, and we presented the 8 

version with the male repeating social stimulus to half the participants and the version with 9 

the female social repeating stimulus to the other half. Analyses on the main dependent task 10 

variables confirmed no significant differences between task versions and so we collapsed 11 

across the versions in all analyses.  12 

 13 

Study 1  14 

Sample Characteristics and Study Procedure 15 

Participants were included in the Autism group if they presented with clinically significant 16 

symptoms of autism on the ADOS-2 (ADOS comparison scores > 4), the DAWBA (meeting 17 

DSM-5 and ICD-10 criteria) (American Psychiatric Association 2013; World Health 18 

Organization 1993) and SCQ (raw score > 15) and a consensus clinical review of all available 19 

information applied to ensure diagnostic rigor (McEwen et al. 2016).  20 

Participants were included in the ADHD group if they presented with clinically significant 21 

symptoms of ADHD combined presentation on DAWBA (meeting DSM-5 criteria) 22 

(American Psychiatric Association 2013) and the CRS (T scores > 65) and a consensus 23 

clinical review of all available information. Importantly, where we did not have teacher CRS 24 

on a child and the child did not have a pre-existing diagnosis of ADHD, they were not 25 
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included in the study since presence of these symptoms across different settings is important 1 

for a diagnosis. 2 

Participants were included in the comorbid Autism + ADHD group if they met research 3 

diagnostic criteria for both autism and ADHD as defined above.  4 

Participants were excluded from the neurotypical group if any of these measures revealed 5 

clinically significant symptoms (as defined above), or significantly elevated risk (i.e., >75% 6 

probability) of presence of any DSM-5 or ICD-10 diagnoses as predicted by DAWBA, or 7 

there was family history of ADHD or autism. Children with ADHD were excluded if they 8 

were on non-stimulant medications or if their parents did not wish to remove them from 9 

stimulant medications for 24 hours before the study. 10 

Other exclusion criteria were neurological disorders including epilepsy and Tourette’s 11 

syndrome and non-fluent English in the child or parent. Other mental health conditions 12 

(anxiety, depression, obsessive-compulsive disorder, conduct disorder, oppositional defiant 13 

disorder etc.) and intellectual disability were not excluded. Another aim of this research 14 

study, not covered within this paper, was to investigate the role of IQ (intelligence quotient, 15 

as measured by WASI) in attention in Autism and ADHD. Therefore, participants were not 16 

excluded for having intellectual disability. None of the participants included in the present 17 

paper had IQ below 70, 3 participants had IQ below 80. 18 

After providing informed consent, parents completed DAWBA, SCQ and CRS-3 as well as 19 

demographic and medical information. Participants with ADHD who were taking stimulants 20 

were asked to withdraw from medication for at least 24 hours prior to the laboratory session. 21 

Participants completed the ADOS and WASI-II and those who met the inclusion criteria then 22 

completed the eye-tracking and EEG batteries. At the end of the study, participants were 23 

given a certificate and a £15 voucher. Parents’ travel expenses were reimbursed. 24 
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Number of fixations (control variable measuring task engagement) 1 

Follow-up pairwise comparisons were conducted to evaluate the interaction of 2 

Condition*Autism, to identify whether within Condition (Non-Social Simple, Non-Social 3 

Complex, Social), there were differences between groups with and without Autism in number 4 

of fixations to the screen. At each level of Condition, there were no significant differences 5 

between groups on this variable: 6 

Non-Social Simple Condition: Groups with Autism (Mean ± S.E. = 79.09 ± 2.71) 7 

demonstrated similar number of fixations to the screen as those without Autism (Mean ± S.E. 8 

= 81.52 ± 2.55); p= .52. 9 

Non-Social Complex Condition: Groups with Autism (Mean ± S.E. = 73.63 ± 3.11) 10 

demonstrated similar number of fixations to the screen as those without Autism (Mean ± S.E. 11 

= 76.64 ± 2.92); p= .48. 12 

Social Condition: Groups with Autism (Mean ± S.E. = 88.95 ± 2.86) demonstrated similar 13 

number of fixations to the screen as those without Autism (Mean ± S.E. = 82.66 ± 2.69); p= 14 

.11. 15 

 16 
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 18 

 19 

 20 
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Study 2 1 

Results on the main dependent variable- Rate of change in look durations (after 2 

excluding children with Autism or ADHD from the sample) 3 

There was a main effect of Stimulus (F (1, 58) = 7.41, p = .009, ƞ2
p = .113); with the 4 

slope to the repeating stimuli being more negative (Mean ± S.E.= -.89 ± 6.59) than the slope 5 

to the changing stimuli (Mean ± S.E.= 54.13 ± 7.7). This was modulated by a 6 

Condition*Stimulus interaction (Greenhouse-Geisser F (1.78, 103.336) = 5.389, p = .008, ƞ2
p 7 

= .085). The main effect of Stimulus was present within each condition: Simple (Mean 8 

difference (Repeating vs Changing) = -66.206 ± 23.87, p = .007); Complex (Mean difference 9 

= -67.34 ± 29.81, p < .028); Social (Mean difference = -58.73 ± 14.296, p < .001) (See Fig. 10 

5a). This interaction was further moderated by a 3-way interaction with AQ (F (1.78, 11 

103.336) = 5.945, p = .005, ƞ2
p = .093). As can be seen below in Figure 5b, in both the Non-12 

Social Complex and Social conditions, the main effect of Stimulus reversed, such that in the 13 

Non-Social Complex and Social conditions, those with higher AQ scores (i.e., higher levels 14 

of autistic traits) showed longer look durations to the repeating stimuli over time and reduced 15 

look durations to the changing stimuli over time. 16 

 17 
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 1 

Figure 5a. Interaction between Condition and Stimulus on rate of change in look durations 2 

Figure 5a Legend: Bars show the mean (±1 standard error) coefficient of the slope for the rate of 3 

change in look durations over trials (plotted on the y-axis). These data are split by stimulus type and 4 

condition. Asterisks denote statistical significance: *p<.05, **p<.01, ***p<.001 5 
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 1 

Figure 5b. Interaction between Condition, Stimulus and AQ on rate of change in look durations 2 

Figure 5b Legend: Bars show the mean (±1 standard error) coefficient of the linear relationship 3 

between scores on the Autism Spectrum Quotient- Child Version (AQ-Child) and the rate of change 4 

in look durations over trials (plotted on the y-axis). These data are split by stimulus type and 5 

condition. 6 
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Bias-corrected and accelerated bootstrapped correlations of BPVS and Age with AQ and Rate 1 

of change in look durations to repeating and changing stimuli in Non-SocialComplex and 2 

Social Conditions 3 

 AQ-Child Rate of Change in Look Durations over Trials 

Non-Social 

Complex 

Repeating 

Stimulus 

Non-Social 

Complex 

Changing 

Stimulus 

Social 

Repeating 

Stimulus 

Social 

Changing 

Stimulus 

BPVS 

standard 

score 

r = -.02, p = 

.88, [-.28, 

.25] 

r = -.08, p = 

.55, [-.37, 

.24] 

r = .16, p = 

.21, [-.08, 

.38] 

r = -.02, p = 

.87, [-.2, .15] 

r = -.02, p = 

.89, [-.26, 

.23] 

Age (in 

months) 

r = -.12, p = 

.35, [-.39, 

.19] 

r = -.09, p = 

.51, [-.31, .2] 

r = .01, p = 

.94, [-.25, 

.26] 

r = .08, p = 

.53, [-.18, 

.34] 

r = -.1, p = 

.44, [-.36, 

.18] 

BPVS: British Picture Vocabulary Scale, Third Edition, Standardized scores; AQ-Child: 4 

Autism-Spectrum Quotient- Child’s Version; []= Bootstrapped and bias-corrected 95% 5 

confidence intervals around the Pearson’s correlation r.  6 
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