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Abstract 

The intestinal epithelial cell (IEC) barrier represents a key interface between host immune cells 

and commensal microbes. Communication between these compartments is crucial to 

maintenance of gut homeostasis by protecting against pathogens, maintaining a balance of 

commensal microbes and preventing overactivation of inflammation. A mechanistic 

understanding of how these compartments communicate with and respond to each other is 

crucial for developing preventative measures and treatments for complex gut dysbiosis, such as 

observed in inflammatory bowel disease (IBD). In this thesis I sought to study interactions 

between the health-promoting bacterial genus Bifidobacterium, the intestinal epithelium and 

the immune system to gain understanding about this complex system. To do this, I 

complemented experimental approaches with computational methods such as molecular 

interaction networks, to investigate inter- and intra-cellular molecular regulation at a systems 

level.  

 

Using transcriptomics data from small intestinal organoid models enriched for specific epithelial 

cell types, I showed that Paneth cells and goblet cells exhibit shared and unique transcriptional 

and post-transcriptional regulation. Meanwhile, I highlighted a possible connection between IBD 

and IECs at the regulatory level. Further extending the study of IBD, I investigated the effect of 

IBD-relevant cytokines on IECs, shedding light on the causes of non-response to anti-cytokine 

treatments and presenting a potential new candidate for therapeutic targeting. Additionally, 

given the role of bifidobacteria in promoting gut health, myself and colleagues sought to define 

the impact of bifidobacteria on IECs of different aged mice and to study their interaction with 

macrophages at a molecular level. 

 

Overall, this multidisciplinary work has increased mechanistic understanding of the interplay 

between IECs, immune cells and commensal microbes, while demonstrating the use of networks 

for such studies. This should ultimately lead to a better understanding of gut homeostasis and 

drive development of targeted approaches for prevention and treatment of gut dysbiosis related 

disorders. 
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 Chapter 1: General introduction 

 

1.1  Introduction 
 

Specialised epithelial cells lining the surface of the mammalian gastrointestinal tract form the 

primary interface between the body’s internal tissues and the luminal content. Importantly, 

these cells work in cohort with the local immune cells and the gut microbiome to maintain 

homeostasis within the gut. Indeed, effective communication between these compartments is 

critical to health. In this thesis I complimented experimental methods with network biology 

methods to study the interactions between intestinal epithelial cells (IECs), commensal bacteria 

Bifidobacterium and immune cells (macrophages) and mediators (cytokines), to gain 

mechanistic understanding of interplay between them. 

 

The intestinal epithelium is a single layer of epithelial cells consisting of multiple distinct cell 

types. Balance within the gut is maintained, in part, by dynamic functioning of IECs in response 

to diverse signals from the luminal content and the immune system. Disruption to this balance 

can result in increased susceptibility to microbial infections and is implicated in a number of 

autoimmune and inflammatory conditions, such as inflammatory bowel disease (IBD). IBD is 

defined as chronic gut inflammation due to an inappropriate immune response to the gut 

microbiome in genetically susceptible hosts (Fakhoury et al., 2014).  

 

The gut microbiota is a complex composition of pathogenic and commensal bacteria, fungi and 

viruses which have co-evolved with the innate and adaptive immune systems of their host. 

Recognition of commensal gut microbes by IECs can play a role in balancing immune activation 

against tolerance, by altering mucus and antimicrobial peptide production, stem cell 

proliferation and increasing epithelial integrity (Kim et al., 2010). Meanwhile, immune cells such 

as phagocytes can detect exogenous bacteria and signal their activity to other immune cells and 

IECs, activating a response to defend against infection. Furthermore, commensal bacteria can 

interact directly with immune cells to dampen pro-inflammatory immune responses - for 

example the interaction between Bifidobacterium longum 35624 and dendritic cells results in 

repression of local T helper cell (Th)17 responses (Schiavi et al., 2016). Such interactions can 

occur in a healthy gut through recognition of luminal bacterial by intraepithelial lymphocytes, 
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lumen-sampling dendritic cells or through Payer’s patches (see General Introduction section 

1.3). Moreover, bacterial-immune cell interactions occur in large numbers when epithelial 

barrier functions are disrupted, for example in IBD, whereby lumen content is able to cross the 

epithelium into the lamina propria below. This creates a complex network of communication 

between IECs, immune populations and the gut microbiome which serves to maintain gut 

homeostasis and health (Figure 1.1). 

 

 

Figure 1.1. Project summary: crosstalk between the intestinal epithelium, immune cells and 
bifidobacteria. Each arrow represents a results chapter in this thesis. 

 

Lack of fundamental understanding of the interplay between IECs, the immune system and gut 

microbes is a major barrier to progress in understanding and curing human diseases. To progress 

towards this comprehension of complex gut dysbiosis, it is important to study these interactions. 

Due to increasing appreciation of the role of beneficial commensal bacteria in immune system 

and IEC cross-talks, I have focused on the health-promoting genus Bifidobacterium. Accordingly, 

there are five overarching aims to this thesis: 

1. Develop workflows and processes to analyse intracellular regulation in a cell type-

specific manner to gain biological insights. 

2. Apply these workflows to increase our understanding of how cytokines alter the 

regulation of epithelial cells. 

3. Apply these workflows to increase our understanding of how Bifidobacterium alters the 

regulation of epithelial cells using bulk transcriptomics data. 

4. Apply these workflows to increase our understanding of how Bifidobacterium alters the 

regulation of epithelial cells using cell type-specific transcriptomics data. 

5. Study the interactions of Bifidobacterium with immune cell populations. 
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In this introductory chapter I explore background theory and literature relating to the structure 

and function of the epithelial lining and the impact of immune and microbiome signalling on 

regulation of IECs. I will introduce IBD (a clinical implication of epithelial and immune disruption 

in the gut) and discuss the gut commensal Bifidobacterium. Furthermore, I will cover ex vivo and 

in silico methods to study cellular function and regulation which have been used in this thesis.  

 

1.2  Intestinal epithelium 
 

The intestinal wall consists of four primary layers: the mucosa which contains epithelial cells 

(IECs), the lamina propria and smooth muscle (adjacent to the gut lumen), the submucosa which 

contains loose connective tissue and blood vessels, the muscularis which contains smooth 

muscle and neurons and the enveloping connective tissue of the serosa. As IECs form the 

interface between host tissues and the luminal environment, they are essential for absorption 

of water and nutrients and to provide a physical and biochemical barrier to protect the human 

body from foreign particles and microbial infections (Okumura and Takeda, 2017; Peterson and 

Artis, 2014). To increase the surface area for absorption, the intestinal epithelium is arranged in 

fold-like invaginations (Figure 1.2). In the small intestine, finger-like protrusions termed villi are 

surrounded by invaginations called the crypts of Lieberkühn, which were discovered and 

published by Jonathan Nathanael Lieberkühn in 1745 (Clevers, 2013; Lieberkühn, 1744). The 

colonic epithelium does not contain villous projections but has tubular pits termed crypts, which 

increase in depth towards the rectum. To carry out their diverse functions, IECs recognise and 

respond to a variety of signals, including those from immunological mediators and gut microbes. 

 

 

Figure 1.2. Cross section of the small intestinal and colonic epithelium (human and mouse). 
Major epithelial cell types shown. 
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Proliferative stem cells residing at the base of the intestinal crypts gradually differentiate as they 

migrate upwards away from the crypts. During the transit amplifying stage, cells undergo 4-5 

rapid divisions whilst differentiating into their final cell types (Marshman et al., 2002). At the 

end of their life, mature differentiated IECs undergo apoptosis and are shed into the lumen. 

Through this process the intestinal epithelium undergoes a constant cycle of regeneration, with 

cell renewal on average every four to seven days (Clevers, 2013; van der Flier and Clevers, 2009; 

Zachos et al., 2016). 

 

1.2.1 Intestinal epithelial cells 

In addition to stem cells, there are six major recognised differentiated cell types of the intestinal 

epithelium; enterocytes, goblet cells, enteroendocrine cells, Paneth cells, 

microfold/membranous (M) cells and tuft cells (van der Flier and Clevers, 2009). All of the above 

cell types can be found in the small intestines and the colon, apart from Paneth cells which are 

typically only observed in the small intestine. Despite this similarity, functional and structural 

differences are observed between cell populations from different segments of the intestinal 

tract. 

 

1.2.1.1 Stem cells 

The primary role of stem cells in the gut is to facilitate the regeneration of the epithelial cells. 

Two distinct models exist to describe multipotent stem cells in the intestinal epithelium. Whilst 

there is consensus that the crypt contains four to six stem cells, the exact identity of the stem 

cells has been debated (Barker et al., 2008). The “+4 position” model describes stem cells in the 

+4 position of the crypt with Paneth cells occupying the first three positions at the base of the 

crypt (Potten et al., 1974). The “stem cell zone” model describes small undifferentiated cycling 

cells called crypt base columnar cells at the base of the crypts interspersed with Paneth cells 

(Cheng and Leblond, 1974). These fast cycling cells are marked by their high expression of 

Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), as also seen in stomach and 

hair follicle stem cells (Barker et al., 2007, 2010; Jaks et al., 2008; Muñoz et al., 2012). Despite 

reports of molecular markers for the quiescent +4 stem cell population (Montgomery et al., 

2011; Powell et al., 2012; Sangiorgi and Capecchi, 2008; Takeda et al., 2011), subsequent studies 

have not observed cell type-specific expression of these markers (van der Flier et al., 2009; Wong 

et al., 2012). However, evidence still exists for this population of cells, which have been shown 

to be insensitive to injury and to increase their stem cell activity upon damage to potentially 
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replenish LGR5+ cells (Montgomery et al., 2011; Tian et al., 2011). Clearly, further research is 

required to reconcile these two postulated populations of stem cells. 

 

Throughout this thesis, any unspecified reference to stem cells of the intestinal epithelium will 

refer to the LGR5+ population. This population is currently deemed the primary population and 

is key to the generation of small intestinal and colonic organoids. 

 

1.2.1.2 Enterocytes and colonocytes 

The most populous cells of the intestinal epithelium are enterocytes of the small intestine and 

colonocytes of the colon (Ohno, 2016). With a lifespan of five to seven days (Zachos et al., 2016), 

their primary roles are to apically absorb nutrients for basal export and to maintain 

water/electrolyte homeostasis. These cells have a characteristic microvilli brush border to 

increase their surface area. 

 

1.2.1.3 Goblet cells 

Belonging to the secretory lineage of IECs, goblet cells make up 5-15% of the small intestinal 

epithelium and up to 50% of the colonic epithelium (Kim and Ho, 2010; Noah et al., 2011). 

Intestinal goblet cells play a key role in barrier protection through the secretion of mucus, anti-

microbial proteins, chemokines and cytokines. However, mucin glycoprotein mucin (MUC) 2 is 

their primary secretion (Knoop and Newberry, 2018). These proteins have heavily glycosylated 

central tandem repeat domains flanked by the C-terminal cysteine knot domain and domains of 

von Willebrand factor. MUC2 is termed a gel-forming mucin because dimerisation and 

oligomerisation of these domains results in the viscoelastic properties of mucus (Godl et al., 

2002; Kim and Ho, 2010). The mucus layer is further described in section 1.2.3.2. 

 

1.2.1.4 Paneth cells 

First identified by Austrian physician Joseph Paneth in the 1880s (Paneth, 1887), Paneth cells 

are secretory cells of the small intestine that reside amongst the stem cells at the base of crypts. 

Unlike other cells of the gut epithelium, Paneth cells are very long lived (>30 days) and do not 

migrate up the villi (Bjerknes and Cheng, 2006; Zachos et al., 2016). Paneth cells act as a major 

effector of the mucosal immune system through the release of a diverse repertoire of products. 

These products primarily consist of antimicrobial peptides such as defensins and lysozyme, but 

also include pro-inflammatory mediators and signal transduction proteins. For more information 
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about antimicrobial peptides see section 1.2.3.3. Furthermore they secrete factors required for 

stem cell maintenance including Wnt family member 3 (Wnt3), the Notch delta-like ligand (DII4), 

and epidermal growth factor (EGF) (Wittkopf et al., 2014). Given the nature of these secreted 

products, it follows that Paneth cells play a key role in host defence against pathogens, 

modulating endogenous bacterial communities, immune regulation and intercellular 

communication. In addition, other unique specialised features of Paneth cells, such as their 

longevity, suggest further important functional roles are played by this population of cells. 

 

1.2.1.5 Enteroendocrine cells 

Making up 1% of the epithelium, enteroendocrine cells (EECs) are secretory cells which release 

peptide hormones, such as secretin and gastrin, in response to luminal nutrients. In addition, 

they are able to sense microbial metabolites and release cytokines in response (Worthington et 

al., 2018). Multiple subsets of EECs exist, which release specific cohorts of hormones (Haber et 

al., 2017). In addition, a recent study has identified diversity in function of EECs between villi 

and crypt locations based on bone morphogenetic protein (BMP) signalling gradient (Beumer et 

al., 2018). 

 

1.2.1.6 Tuft cells  

Despite occurring throughout the epithelium, tuft cells represent only 0.5% of the gut epithelial 

cells, depending on location in the gut (Banerjee et al., 2018). Tuft cells, named after their apical 

microvilli, are marked by doublecortin-like kinase 1 (DCLK1) (Gerbe et al., 2009). In the small 

intestine, tuft cells are believed to play a role in type 2 immunity against eukaryotic infections 

via chemosensory mechanisms. Colonic tuft cells have been poorly studied, but initial evidence 

suggests they may have different specification and function (Banerjee et al., 2018). 

 

1.2.1.7 Microfold cells 

Unlike the other aforementioned cell types, these cell are present only in follicle associated 

epithelium, where they make up 5-10% of cells (Nicoletti, 2000; Ohno, 2016). The primary role 

of M cells is to deliver microbial antigens to gut associated lymphoid tissue for efficient mucosal 

and systemic immune responses (Ohno, 2016). 
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1.2.2 Differentiation of intestinal epithelial cells 

Intestinal epithelial cells arise from the LGR5+ stem cells of their associated crypt through a 

process of differentiation and migration. The favoured model of epithelial differentiation 

describes neutral competition between dividing stem cells which results in epithelial crypts 

drifting to clonality within a period of 1–6 months. Consequently, all cells of a crypt and its 

associated villus flanks originate clonally from one stem cell (Snippert et al., 2010).  

 

Differentiation of epithelial stem cells is driven primarily by Notch, Wnt and BMP signalling 

pathways (Noah et al., 2011; Worthington et al., 2018). Primarily mediated by hairy and 

enhancer of split-1 (Hes1), Notch signalling drives differentiation of absorptive lineages such as 

enterocytes (Figure 1.3). Conversely, atonal homolog 1 (Atoh1/Math1) inhibits Notch signalling 

through Hes1 to drive secretory lineage differentiation. The Wnt/-catenin signalling pathway, 

which plays a role in maintenance of stemness, has also been shown to interact with Notch 

signalling and is therefore implicated in the secretory/absorptive lineage decision. BMP 

signalling has been shown to limit epithelial expansion through inhibiting self-renewal of stem 

cells (Qi et al., 2017). Following the secretory lineage decision, Growth factor independent 1 

(Gfi1) is required for goblet cell and Paneth cell differentiation, while Neurog3 determines EEC 

differentiation (Figure 1.3). In addition, further lineage specific factors have been described for 

IECs, as shown in Figure 1.3. 

 

 

Figure 1.3. Intestinal epithelial cell differentiation. Image reproduced from Worthington et al. 
(2018) with permission of the rights holder, Springer Nature. 

 

https://www.sciencedirect.com/topics/immunology-and-microbiology/clonal-variation
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1.2.3 Epithelial barrier functions 

The primary function of the epithelial layer is to provide a barrier between the gut lumen and 

the lamina propria to protect the host against microbes, toxins and other immunogenic 

molecules. This barrier consists of a number of components including the physical barrier of the 

IECs, the mucus layer and antimicrobial peptides. M-cells and intraepithelial immune cells are 

also implicated in barrier function, but are described in sections 1.2.1.7 and 1.3. 

 

1.2.3.1 Physical barrier function 

By forming a coherent monolayer of cells, connected by junctional complexes, IECs protect 

against harmful bacteria, antigens and toxins while permitting passage of nutrients and immune 

sensing functions (Vancamelbeke and Vermeire, 2017). Junctional complexes which join cells 

together include (apical) tight junctions, (central) adherens junctions and (basal) desmosomes 

(Groschwitz and Hogan, 2009; Williams et al., 2015). Disruption of the epithelial barrier can 

occur via dysregulation of junctional complexes or through excessive or dysregulated cellular 

shedding – a process of apoptotic extrusion of intestinal epithelial cells at the tip of the villi. 

Altered IEC physical barrier function is associated with a number of intestinal and extra-

intestinal diseases such as IBD, coeliac disease and type I diabetes (Groschwitz and Hogan, 2009) 

and can be regulated by gut bacteria (Yu et al., 2012b). 

 

1.2.3.2 Mucus layer 

A further layer of defence in the gut is the mucus layer lining the epithelial cells – thin and loose 

in the small intestine while thick and dense in the colon. This layer consists of gel-forming 

glycoproteins called mucins which are secreted by goblet cells (see section 1.2.1.3). In the small 

and large intestines, MUC2 is the major constituent of mucus (Schroeder, 2019). The recognised 

functions of the intestinal mucus layer include: facilitating uptake of dietary molecules, a 

physical barrier for opportunistic pathogens in the outer layer of the colonic mucus, a site of 

long-term bacterial colonisation and a carbon and energy source for intestinal microbiota (Sicard 

et al., 2017; Vancamelbeke and Vermeire, 2017). Similarly to the cellular physical barrier, a 

reduction in mucus thickness and function has been observed in a number of health conditions 

including IBD (Johansson et al., 2014; Swidsinski et al., 2007) and is affected by gut microbes and 

their metabolites, including pathogens and commensals (Caballero-Franco et al., 2007; 

Sperandio et al., 2013; Wrzosek et al., 2013).  
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1.2.3.3 Antimicrobial peptides 

Antimicrobial peptides (AMPs) are host defence peptides that play a major role in the innate 

immune protection of the intestines by protecting against pathogens and shaping the 

composition of the microbiome (Muniz et al., 2012). AMPs act primarily through direct 

antimicrobial activity, but are also capable of neutralising bacterial exotoxins, acting as 

chemoattractants for immune cells and modulating differentiation and maturation of immune 

cells (Grigat et al., 2007; Lehrer et al., 2009; Mahlapuu et al., 2016; Rodríguez-García et al., 2009; 

Yang et al., 1999). Within the gut, AMPs are primarily secreted by Paneth cells (see section 

1.2.1.4) but are also secreted by other IECs such as enterocytes and by some immune cell 

populations such as neutrophils (Bevins and Salzman, 2011; Muniz et al., 2012). Three primary 

classes of AMP exist: defensins, cathelicidins and C-type lectins. Defensins are small cationic 

peptides which act primarily through disrupting bacteria cell walls or membranes. In human 

guts, there exists six α-defensins, expressed by neutrophils (human neutrophil peptides, HNPs 

1–4) and Paneth cells (human α-defensins, HD-5 and HD-6). In mice α-defensins are known as 

cryptdins, of which there are 19, expressed primarily by Paneth cells (Muniz et al., 2012). 

Furthermore, there are numerous β-defensins expressed by different types of intestinal 

epithelial cells in both humans and mice. Similarly to defensins, cathelicidins are small cationic 

peptides with broad antibacterial activity. Only one cathelicidin has been identified in humans 

and mice: LL-37 and CRAMP respectively. C-type lectins, which consist of a carbohydrate 

recognition domain and an N-terminal signal peptide, exert antimicrobial activity against Gram-

positive bacterial through binding to peptidoglycan. In humans, regenerating islet-derived 

protein 3 alpha (RegIII) is the primary C-type lectin. The mouse ortholog of this gene is 

regenerating islet-derived protein 3 gamma (RegIIIγ), and both are constituently expressed in 

the intestinal epithelium but can be further induced by toll-like receptor (TLR) signalling (which 

is further described in section 1.2.4.1) (Cash et al., 2006). In addition to these classes, additional 

important AMPs are expressed in the intestine. For example, lysozyme C (lysozyme, LYZ1) is a 

glycoside hydrolase which cleaves peptidoglycan in Gram-positive bacterial cell wall. It is 

secreted by Paneth cells and in mice also by macrophages. Secretory phospholipase A2 (sPLA2) 

is a further Paneth cell expressed AMP, which affects microbial cell integrity by degrading 

bacterial phospholipids (Muniz et al., 2012). 
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1.2.4 Regulation of the epithelium 

To carry out their diverse functions, IECs work in cohort to recognise and respond to a variety of 

signals, including those from immunological mediators, gut microbes and their metabolites. This 

plasticity in structure and function of the intestinal epithelium can result in increased protection 

against pathogens, tolerance of commensal bacteria and appropriate water and nutrient intake. 

However, dysregulation of this system or subversion by pathogens, can also lead to chronic 

inflammation, cancer and microbial invasion. 

 

1.2.4.1 Microbiome 

Pathogenic and commensal microbes play a role in the regulation of IECs through nucleic acids, 

small molecules, metabolites and proteins (Guven-Maiorov et al., 2017). Pattern recognition 

receptors (PRRs) on the surface and endosomal membranes of epithelial cells are the primary 

mechanism through which microbes are detected. PRRs can recognise microbe-associated 

molecular patterns (MAMPs), including lipopolysaccharides, DNA and flagellin, and 

subsequently initiate protective inflammatory cascades (Coleman and Haller, 2017). As a result 

of activation, PRRs induce a number of responses including phagocytosis, inflammation and 

maturation of antigen-presenting cells (Hato and Dagher, 2015). 

 

There are four main families of PRRs: toll-like receptors (TLRs), nucleotide oligomerization 

domain-like receptors (NLRs), C-type lectin receptors (CLRs) and retinoic acid inducible gene I-

like receptors (RLR) (Gourbeyre et al., 2015). TLRs are a diverse class of membrane protein 

receptors which can activate mitogen-activated protein kinase (MAPK) and canonical nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-κB) signalling cascades following 

binding of ligands and recruitment of adaptor proteins (Wells et al., 2011). Expression of TLRs 

increase under inflammatory conditions, indicating they play a key role in gut immune 

responses. One study showed that activation of TLR4 in human IEC cell lines (HT-29 and T84) 

enhanced production of pro-inflammatory cytokines by co-cultured peripheral blood 

mononuclear cells (PBMCs). In the same study it was found that apical IEC TLR9 activation 

resulted in a regulatory T helper cell 1 (Th1) effector immune response, indicating both pro- and 

anti-inflammatory roles for TLR signalling (de Kivit et al., 2011). Another class of plasma 

membrane receptors are CLRs which recognise carbohydrate structures in a calcium-dependent 

manner, playing a role in innate and adaptive immunity (Chiffoleau, 2018). On the other hand, 

NLRs are cytoplasmic receptors. The best studied NLRs are NOD1 and NOD2 which recognise a 
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diverse range of MAMPs and host damage molecular patterns. One example of NLR signalling is 

the activation of Paneth cell cytoplasmic NOD2 by bacterial muramyl dipeptide resulting in 

defensin production through NF-κB signalling (Voss et al., 2006). RLRs are a family of cytoplasmic 

RNA helicases that recognise double stranded viral RNAs (Wells et al., 2011). 

 

In addition to PRRs, bacteria can interact with host IECs directly via protein-protein interactions 

(PPIs) within or on the outside membrane of the host cells (Doxey and McConkey, 2013). 

Pathogens have been shown to use eukaryotic-like domains to mimic host proteins to hijack 

host processes for enhanced invasive abilities. One such example is the Salmonella protease, 

YhjJ, which interacts with the human selective autophagy receptor Microtubule-associated 

proteins 1A/1B light chain 3B (MAP1LC3B/LC3) resulting in cleavage of autophagy proteins and 

reduced intracellular clearance (Sudhakar et al., 2019). Commensal bacteria are also likely to 

exhibit molecular mimicry, but would be predominantly constrained to interact with the 

external surfaces of host cells. Direct interactions between commensal bacteria (and their 

metabolites) with IECs are less well studied, but could uncover mechanisms useful for 

developing new strategies to prevent and treat diseases. One study found that host-microbe 

interactions could be heavily driven by microbial metabolites (specifically N-acyl amides) which 

bind to host G-protein-coupled receptors (GPCRs) (Cohen et al., 2017). In addition to being 

common therapeutic targets for small-molecule treatments, GPCRs have been implicated in 

various diseases which also exhibit gut microbial changes e.g. inflammatory bowel disease and 

diabetes - highlighting the importance of studying these host-microbe interactions.  

 

1.2.4.2 Immune system 

As well as responding to microbial factors, IECs also respond to signals from adjacent immune 

cells. Immune cells of the gut are covered in more detail in the following section (1.3). The 

mediating factors are primarily cytokines: small secreted proteins which act in a paracrine 

fashion to induce wide ranging effects on their targets, including IECs. During inflammation, IECs 

are able to respond to secreted cytokines following binding to receptor proteins on their apical 

or basal membranes. For example, interleukin (IL)-2 can promote proliferation or apoptosis of 

IECs in a concentration dependent manner (Mishra et al., 2012) and IL-22 can induce expression 

of Paneth cell antimicrobial peptide regenerating islet-derived protein 3 gamma (RegIIIγ) and 

initiate mucosal wound healing (Kinnebrew et al., 2012; Pickert et al., 2009). Further immune-

IEC interactions are outlined in Figure 1.4. For example, IL-22 produced by innate lymphoid cell 
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(ILC) 2 is capable of inducing mucin production via STAT3 and increasing tight junction proteins, 

while IL-10 secreted by macrophages can induce epithelial repair (Soderholm and Pedicord, 

2019). Further experiments have shown that, in addition to paracrine signalling, hetero-cellular 

communication exists between immune cells and IECs, for example, due to the formation of 

adjoining gap-junction channels (Al-Ghadban et al., 2016). However, Al-Ghadban et al. (2016) 

showed that gap-junction communication between macrophages and IECs results primarily in 

activation of macrophages rather than affecting IECs. Macrophage activation in turn causes 

release of inflammatory cytokines, which affect IECs through paracrine signalling. Together, 

these evidences highlight the complex and varied communications which occur between IECs 

and immune cells. Furthermore, these interactions are additionally influenced by signals such as 

microbial recognition, adding a level of complexity to the system. The interaction between 

immune cells and IECs is relevant to the pathogenesis of IBD - for more information about 

cytokines in IBD see Section 1.4.2. 
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Figure 1.4. Regulation of intestinal epithelial cells (IECs) by immune cells.  Communication is 
primarily driven by cytokines released by immune cells of the lamina propria. TJPs - tight junction 
proteins; FGF2 - fibroblast growth factor 2; IL - interleukin; TSLP - thymic stromal lymphopoietin; 
TGF-β – transforming growth factor beta; ILC - innate lymphoid cell; Th - T helper cell; DC - 
dendritic cell; APC - antigen presenting cell. Image reproduced from Soderholm et al. (2019) 
with permission of the rights holder, John Wiley and Sons. 

 

1.3 Immune cells of the gut 
 

In addition to immune functions of the epithelial layer, the gut immune system consists of 

phagocytes and lymphocytes. Phagocytes, including macrophages, neutrophils and dendritic 

cells, are cells of the innate immune system which primarily act through phagocytosis to engulf 

bacteria and other foreign particles, kill them and then present antigens to other immune cells. 

On the other hand, lymphocytes, which include T cells, B cells and natural killer cells, function 

primarily as part of an adaptive immune response following activation by foreign antigens.  

 

The gut-associated lymphoid tissue contains approximately 70% of the body’s immune cells 

(Heel et al., 1997). It has a complex organisation which can be divided into effector sites or 

organised tissues (Heel et al., 1997). Effector sites include intraepithelial lymphocytes within the 
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epithelium and immune cells within the lamina propria (Mowat, 2003). Organised tissues 

include Peyer’s patches and mesenteric lymph nodes. Peyer’s patches, found only in the small 

intestine, are lymphoid aggregates consisting of B cells and T cells separated from the lumen by 

epithelial cells known as follicle-associated epithelium. Differing from the standard epithelium, 

the follicle-associated epithelium also contains M cells (Section 1.2.1.7) and is infiltrated with B 

cells, T cells, macrophages and dendritic cells. Smaller individual lymphoid follicles also line the 

small intestine and colon (Brandtzaeg, 2017). In addition, other immune cells such as dendritic 

cells, macrophages and T cells are present in the lamina propria (Macdonald and Monteleone, 

2005). Here I focus specifically on T cells, whose secreted cytokines are studied in Chapter 3 in 

the context of inflammatory bowel disease, and on macrophages, which are studied in Chapter 

6 due to their key role in balancing immune activation and tolerance in response to gut 

microbes. 

 

1.3.1 Intestinal T cells 

As discussed in Section 1.2.4.2, cytokines are the primary mediators of communication from 

immune cells to IECs. Several different populations of immune cells secrete cytokines, including 

macrophages, B cells and T cells (Xue and Falcon, 2019). In particular, cytokines secreted by T 

helper (Th) cells have been implicated in the pathogenesis of chronic gut inflammatory diseases 

such as IBD. The effect of T cell secreted cytokines on colonic IECs is studied in Chapter 3 in the 

context of IBD. 

 

T cells are lymphocyte cells which play a major role in controlling intestinal homeostasis through 

sophisticated mechanisms balancing immune activation and tolerance. All T cells originate from 

haemopoietic stem cells within the bone marrow which migrate to the thymus, differentiate 

into specialised T cell types, undergo priming by antigens in peripheral lymphoid organs and 

finally migrate to gut tissues. Two major subsets of T cells can be classified based on T cell 

receptor (TCR) and coreceptor expression. ‘Type a’ conventional mucosal T cells express TCRαβ 

and TCR coreceptors CD4 or CD8αβ. ‘Type b’ non-conventional mucosal T cells express either 

TCRαβ or TCRγδ and usually coreceptor CD8αα. Non-conventional T cells are not primed within 

peripheral lymphoid tissues but migrate to the gut directly from the thymus. Within the gut 

conventional T cells reside primarily in the lamina propria whereas non-conventional T cells 

reside primarily in the epithelium as intraepithelial lymphoid cells (Ma et al., 2019; van Wijk and 

Cheroutre, 2010). Within the epithelium, non-conventional T cells are able to react to strong 
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stimulation in a cytolytic manner, but have limited pathogen specificity and are finely tuned to 

avoid uncontrolled immune reactions (van Wijk and Cheroutre, 2010). Further, evidence 

suggests that non-conventional T cells play a role in regulating epithelial turnover and repair 

(Komano et al., 1995) 

 

Conventional T cells can be further classified based on expression of CD8 or CD4 on their surface. 

CD8+ T cells, also known as cytotoxic T cells, primarily act to destroy infected cells and tumour 

cells through cytotoxin secretions such as perforin. While also primed by antigen presenting 

cells, CD4+ T cells, act primarily to organise the immune response through secreting cytokines. 

CD4+ T cells include regulatory T cells and helper T cells (Th cells). Th cells secrete a variety of 

pro- and anti-inflammatory cytokines which assist an immune response through influencing 

maturation of B cells and activation of cytotoxic T cells and macrophages. For example, Th1 cells 

secrete interferon-gamma (IFN𝛾) which acts against intracellular bacteria, viruses and cancer. 

On the other hand, Th9 cells secrete interleukin-9 (IL-9) which can defend against helminths. Th 

cells and their secreted cytokines which are implicated in IBD are discussed in section 1.4.2. On 

the other hand, regulatory T cells act to inhibit Th cells through direct contact or by releasing 

anti-inflammatory cytokines such as IL-10 (Xue and Falcon, 2019). 

 

1.3.2 Intestinal macrophages 

In the lamina propria of a healthy gut, macrophages are the most abundant white blood cells 

(Mowat and Agace, 2014). In addition to phagocytosis, macrophages can produce mediators 

which drive epithelial cell regeneration and T cell differentiation as well as secreting anti-

inflammatory cytokines. Interestingly, it has been found that most intestinal macrophages do 

not produce pro-inflammatory cytokines upon exposure to bacteria or their products, likely for 

the purpose of preventing inflammation in the mucosa (Bain et al., 2013; Smythies et al., 2005). 

It is currently believed that this is not driven by downregulation of bacterial recognition 

receptors (such as TLRs), but rather by blocking the downstream signals from these receptors 

within the macrophages. This blocking occurs by downregulation of signalling molecules such as 

cluster of differentiation 14 (CD14) and Myeloid differentiation primary response 88 (MyD88) 

(Bain and Mowat, 2014; Smith et al., 2011; Wang et al., 2019b). The underlying cause of this 

downregulation is unconfirmed, but might be related to high anti-inflammatory interleukin (IL)-

10 production by macrophages themselves. Other potential mechanisms include the release of 

transforming growth factor-β (TGF-β) by stromal cells, which has been shown to block NF-κB (a 
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central mediator of inflammatory processes) in response to TLR2, 4 and 5 activation in 

macrophages (Naiki et al., 2005; Smith et al., 2011; Smythies et al., 2010). 

 

NF-κB is a small family of inducible nuclear transcription factors which play a key role in almost 

all mammalian cells. In addition to inflammatory processes, NF-κB is a central mediator of stress 

response and cell proliferation. In intestinal macrophages, NF-κB is important for regulation of 

inflammatory response following activation of cell surface pattern recognition receptors and 

cytokine receptors such TLRs (Dorrington and Fraser, 2019; Neurath et al., 1998). NF-κB is of 

particular importance as it overactivated in IBD patients resulting in increased pro-inflammatory 

cytokine production (Atreya et al., 2008; Schreiber et al., 1998). 

 

1.4 Inflammatory bowel disease 
 

Dysfunction of gut epithelial cell and immune cell functions, for example disruption of epithelial 

integrity, can predispose to microbial infections, food allergy and a number of gut diseases 

including IBD (König et al., 2016). IBD is a multi-systemic inflammatory disorder primarily 

characterised by chronic inflammation of the gastrointestinal tract, including dysfunction of the 

epithelial and immune cells (Levine et al., 2018). Chronic intestinal inflammation causes 

debilitating symptoms, such as abdominal pain and diarrhoea, and severe complications, such 

as cancer and intestinal failure (Mozdiak et al., 2015; Seyedian et al., 2019). The two major forms 

of IBD are Crohn’s disease (CD) and ulcerative colitis (UC). In CD, inflammation can affect the 

entire bowel wall in any part of the small and/or large intestine. In UC, inflammation is contained 

to the epithelial lining (mucosa) of the large intestine. While described as idiopathic, IBD is 

believed to be caused by an inappropriate immune response to commensal bacteria in 

genetically susceptible hosts (Fakhoury et al., 2014). For example, it has been shown that altered 

mucus production and epithelial barrier dysfunction can result in increased translocation of 

toxins and microbes, which in turn causes a pro-inflammatory immune response and increased 

susceptibility to infection (Fakhoury et al., 2014). This disease has a global and accelerating 

incidence, particularly in industrialised communities. In Europe alone, approximately 2.5-3 

million people are affected (Burisch et al., 2013; Ng et al., 2018). 
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1.4.1 The intestinal epithelium in IBD 

Although the aetiology of IBD is incompletely understood, the intestinal epithelium is 

increasingly regarded as a central player (Okamoto and Watanabe, 2016). In IBD, dysregulated 

epithelial processes, including microbial sensing, autophagy, and the unfolded protein response 

are mechanistically implicated in impaired barrier function and IBD aetiology (Kaser et al., 2008; 

Wehkamp et al., 2005). In turn, chronic inflammation in the gut, as observed in IBD, can result 

from an impaired barrier function which leads to greater translocation of luminal content 

through the epithelial layer, resulting in an overactivation of lamina propria immune responses.  

 

Current understanding implicates specific IEC types in the dysregulation of homeostasis in IBD 

(Adolph et al., 2013). Whilst primary IECs all originate from Leucine-rich repeat-containing G-

protein coupled receptor 5 (Lgr5)+ stem cells, differentiation results in differences in gene 

expression and signalling and regulatory wiring (Crosnier et al., 2006; Vanuytsel et al., 2013). 

These differences can result in altered phenotypic functions, responses to stress and 

susceptibilities to specific dysregulations. Specifically, dysfunctional Paneth cells with reduced 

secretion of anti-microbial peptides have been shown to contribute to the pathogenesis of CD 

(Liu et al., 2016). In contrast to CD, UC is not linked to reduced antimicrobial peptides (Fahlgren 

et al., 2003; Nuding et al., 2007; Wehkamp et al., 2003). However, where the mucus layer is of 

normal or thicker width in CD, it is thinner and more variable in UC (McCormick et al., 1990; 

Pullan et al., 1994). Furthermore, a reduction in goblet cell numbers and defective goblet cell 

function has been associated with UC (Gersemann et al., 2009; Kim and Ho, 2010). Moreover, 

genome-wide association studies and mechanistic studies have identified genes closely related 

to intestinal epithelial cell function which predispose patients to IBD (Franke et al., 2010; Rioux 

et al., 2007). For example, Cadwell et al. found that one Crohn’s disease risk allele, autophagy 

related protein 16-1 (ATG16L1), results in Paneth cell granule abnormalities and, in mice, results 

in increased expression of lipid metabolism genes relating to intestinal injury response (Cadwell 

et al., 2008). Thus, uncovering patterns and mechanisms at a cell type-specific level is crucial to 

uncover the role of the intestinal epithelium in IBD. 

 

1.4.2 Cytokines in IBD 

In addition to its aforementioned roles, the intestinal epithelium can secrete cytokines and 

chemokines for recruitment and activation of immune cells (Allaire et al., 2018). Furthermore, 

epithelial function can be directly regulated by mucosal immune activity, and cytokines 
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produced by tissue resident lymphocytes, particularly T cells and innate lymphoid cells, 

profoundly impact epithelial phenotype (Dahan et al., 2007). Studies have shown that mucosal 

healing of the epithelium is dependent on cytokines produced by the intestinal epithelial cells 

(IECs) and by local immune populations (Figure 1.5) (Neurath, 2014). Furthermore, cytokines 

such as TNFα, interleukin (IL)-22 and IL-9, which are excessively produced in IBD, have been 

shown to drive epithelial-specific pathological processes, including endoplasmic reticulum (ER) 

stress, apoptosis and impaired barrier function, triggering colitis in preclinical models (Garrett 

et al., 2007; Gerlach et al., 2014). 

 

Figure 1.5. Pro- and anti-inflammatory cytokines are exposed to intestinal epithelial cells 
during chronic intestinal inflammation in inflammatory bowel disease. Green boxes show 
beneficial effects of cytokines, red boxes highlight pathogenic effects of cytokines and blue 
boxes indicate pro-tumour effects of cytokines. DC - dendritic cell; IFN - interferon; IL - 
interleukin; ILC - innate lymphoid cell; Th cell - T helper cell; TNF - tumour necrosis factor. Image 
reproduced from Neurath (2014) with permission of the rights holder, Springer Nature.  
 

It is believed that CD4+ T helper cells (Th cells) (introduced in Section 1.3.1) play a major role in 

initiation of IBD (Imam et al., 2018). T helper cells are lymphoid cells of the adaptive immune 

system which are able to activate B cells, cytotoxic T cells and macrophages via surface 

molecules and release of cytokines. They are activated themselves by recognising an antigen 
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and a co-stimulatory molecule on an antigen-presenting cell (Alberts et al., 2002). Not only are 

these cells enriched in inflamed tissue from IBD patients, depleting and blocking actions of CD4+ 

Th cells has been effective in treating UC and CD (Emmrich et al., 1991; Stronkhorst et al., 1997; 

Imam et al., 2018). Five major populations of Th cells have been described in the context of IBD 

(Imam et al., 2018). A representative cytokine(s) from each category are described below:  

- Th1 cells which secrete interferon-gamma (IFN𝛾) and tumour necrosis factor-alpha 

(TNF) 

- Th2 cells which secrete IL-4, IL-5 and IL-13 

- Th9 cells which secrete IL-9 

- Th17 cells which secrete IL-17A and IL-23 

- Th22 cells which secrete IL-22 

 

TNF is one of the pro-inflammatory cytokines implicated in IBD. Secreted primarily by 

macrophages in response to IL-1 and bacterial products, TNF is involved in a number of 

biological processes including lipid metabolism, cell proliferation and apoptosis (Adegbola et al., 

2018). IBD patients have been shown to secrete large amounts of TNF from adipocytes, CD14+ 

macrophages, T cells and fibroblasts (Atreya et al., 2011; Kamada et al., 2008). In IBD, high levels 

of TNF affect a number of different cells including IECs. For example, TNF can induce IEC 

damage via myosin light chain kinase (MLCK) and cause Paneth cell death by necrosis (Günther 

et al., 2011; Neurath, 2014; Su et al., 2013). 

 

Similarly to TNF, IFN𝛾 is an IBD-implicated, pro-inflammatory cytokine which affects barrier 

properties and self-renewal of the intestinal epithelium (Nava et al., 2010). IFN𝛾 is secreted by 

a number of cell types including T cells (most notably Th1 cells) and natural killer cells (NK cells) 

(Imam et al., 2018; Tau and Rothman, 1999). A number of studies have demonstrated a role for 

IFN𝛾 in IBD. For example, in CD it has been shown that Th1 cells, which primarily secrete IFN𝛾, 

accumulate in the intestinal tract. Ito et al. showed that IFN𝛾 deficient mice do not develop 

dextran sulphate sodium induced (DSS-induced) colitis and a meta-analysis of CD and UC 

genome-wide association scans by Jostins et al. identified IFN𝛾 receptor gene IFNGR2 within CD 

risk loci (Ito et al., 2006; Jostins et al., 2012). However, the role of IFN𝛾 remains controversial 

due to contrasting studies. For example, one study showed that IFN𝛾 deficient mice are more 

susceptible to DSS-induced colitis and another described neither a protective or detrimental 
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effect of IFN𝛾 in a 2,4,6-trinitrobenzene sulfonic acid induced (TNBS) model of colitis (Jin et al., 

2012; Muzaki et al., 2016). 

 

IL-13 is classically described as Th2 cell cytokine which affects macrophages, epithelial cells, 

smooth muscle cells and neurons (Biancheri et al., 2014). IL-13 has been implicated in UC, where 

it is secreted by innate lymphoid cells and invariant natural killer T cells (Fuss and Strober, 2008). 

However, while some studies have reported greater IL-13 in UC patients compared to CD 

patients, others have reported the opposite or no difference at all (Biancheri et al., 2014; Fuss 

et al., 2004; Vainer et al., 2000). Similarly, the pro-inflammatory role of IL-13 is controversial. 

Heller et al. reported an increase in apoptosis and impaired tight junctions in IEC’s treated with 

IL-13, whereas Wilson et al. report that in the absence of IL-13 decoy receptor, IL-13R2, IL-13 

supresses pro-inflammatory Th1 and Th17 responses (Heller et al., 2005; Wilson et al., 2011). 

 

Traditionally, IBD was described in the context of the Th1/Th2 paradigm. Here Th cells are 

classified into two primary subsets based on their secreted cytokines: Th1 which broadly 

induced cell mediated immunity, or Th2 which broadly induces humeral immunity. Furthermore, 

the paradigm was used to classify an inflammatory response as primarily Th1 or Th2 mediated 

– given that the cell subpopulations reciprocally inhibit each other (Fuss, 2008; Kiely, 1998). In 

IBD, this paradigm is used to describe mucosal inflammation of the gut in CD as an excessive Th1 

response and in UC an excessive Th2 response (Fuss, 2008). However, more recently the 

discovery of other IBD-relevant CD4+ Th cells such as Th17 cells has drawn focus away from this 

polarising paradigm. Th17 cells secrete cytokines IL-17A (also known as IL-17) and/or IL-17F 

which have been shown to alter the production of inflammatory chemokines and cytokines by 

target cells and affect the epithelial cell barrier (Imam et al., 2018). Similarly to other pro-

inflammatory cytokines, IL-17A has been found to be increased in the mucosa and serum of IBD 

patients (Fujino et al., 2003). However, there is also evidence that blocking IL-17A can result in 

IBD deterioration (Smith et al., 2019) and that IL-17A can dampen the production of IFN𝛾 

(O’Connor et al., 2009). 

 

In both CD and UD, endoscopic Mayo scores have been positively correlated with IL-9 production 

(Gerlach et al., 2014) and higher levels of serum and systemic IL-9 have been associated with 

worse symptoms and prognosis (Defendenti et al., 2015). However, IL-9 is secreted by different 

immune populations including Th9, Th17 and Treg cells. Studies have found that IL-9 produced 
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by Th17 is classically pro-inflammatory in a model of experimental autoimmune 

encephalomyelitis, whereas IL-9 secreted from Treg cells can mediate graft tolerance (Lu et al., 

2006; Nowak et al., 2009). This suggests that context may play a role in the effect of IL-9. 

Along with ILCs and neutrophils and dendritic cells, Th22 cells produce the IL-22 cytokine. While 

primarily seen as an anti-inflammatory cytokine, IL-22 has been shown to have pro-

inflammatory roles in some contexts (Eken et al., 2014; Neurath, 2014). Anti-inflammatory roles 

include protecting against DSS or TNBS-induced colitis, increasing epithelial cell proliferation, 

wound healing and IEC production of antimicrobial peptides. A reduction in Th22 cells has been 

recorded for UC but not CD (Neurath, 2014). 

 

In conclusion, there are many diverse cytokines produced by different CD4+ Th cells and other 

immune populations. The cellular targets of these cytokines are also varied, including other 

immune populations, IECs and muscle cells. What is clear is that considerable interplay exists 

between different cytokine-producing populations and that cytokine-mediated effects are 

highly contextual. However, little is known about how qualitatively different arms of host 

immunity differentially regulate epithelial function in IBD. Understanding these interactions has 

been hindered by inaccessibility of the human gastrointestinal tract and limitations of available 

experimental tools, including immortalised epithelial cell lines and primary cells.  

 

1.4.3 IBD treatment strategy 

Classification of IBD, as with other immune mediated inflammatory diseases, is typically based 

on descriptive clinical parameters, which are poor predictors of patient trajectories and are 

unhelpful as tools for treatment stratification. As such, most patients are treated with a step-up 

therapy approach whereby frontline therapies are given in a stepwise manner until suitable 

remission is achieved. Although the guidelines vary slightly between CD and UC, treatment often 

begins with corticosteroids or aminosalicylate drugs followed by immunomodulators such as 

thiopurines, then biologics including anti-cytokine and anti-integrin drugs. Finally for UC, a Janus 

Kinase (JAK) inhibitor (tofacitinib) can be used to block cytokine signalling (Lamb et al., 2019; 

Wang et al., 2019a). If all lifestyle changes and pharmacological treatments fail, patients may be 

recommended surgery to remove affected intestinal tissue. Such a procedure can eliminate UC 

but is usually only a temporary solution for CD as the disease often reoccurs in nearby tissue. 
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However, due to the heterogeneity of IBD, no single approach works for all, and adaptation of 

treatment approaches to each individual based on their disease will likely result in better clinical 

outcomes, reduced side effects and reduced healthcare costs. A number of molecular 

biomarkers exist currently to help diagnose and stratify patients. Examples of these include C-

reactive protein (CRP), erythrocyte sedimentation rate (ESR), albumin and platelet count; but 

their use is limited by poor sensitivity and specificity. Additionally, faecal calprotectin, which 

indicates the level of neutrophil-driven inflammation in the gut, is often used as a proxy for 

intestinal inflammation and to help the clinician differentiate between irritable bowel syndrome 

(IBS) and IBD (Wang et al., 2019a). However, raised calprotectin levels may also indicate 

intestinal inflammation secondary to other causes. Therefore, better biomarkers to diagnose 

and stratify patients based on disease severity, risk of relapse and treatment responses, are 

required to achieve an individualised treatment approach. In the future, it is hoped that an 

improved molecular understanding of inflammation biology will yield novel classification 

systems underpinned by the underlying immunopathology of the different diseases.  

 

1.4.4 IBD biologic treatments 

Despite remaining questions regarding the actions of cytokines in IBD, a number of cytokine-

targeting biologic treatments have been developed to dampen the generalised inflammatory 

response in UC and CD. As described above, these treatments are often employed only when 

other treatment options have failed. 

 

The most widely targeted cytokine is TNF, with four biologics (infliximab, adalimumab, 

certolizumab and golimumab) and a number of biosimilars currently approved for use in CD and 

UC (Rawla et al., 2018). Despite demonstrable improvements in patient quality of life and 

disease burden, up to 30% of patients with IBD do not respond to this treatment, and up to 46% 

lose response over time (Roda et al., 2016). Neither the mechanism of action of anti-TNF 

treatments nor the reasons for non-response are fully understood. However, it is known that 

the effects of these anti-TNF drugs cannot be attributed solely to neutralisation of TNF, as 

other anti-TNF drugs such as Etanercept, which is used primarily for rheumatoid arthritis, are 

not effective in IBD, and can even worsen the disease (Koelink et al., 2019; Korzenik et al., 2019). 

The only other approved biologic targeting interleukins is ustekinumab, an antagonist of IL-12 

and IL-23 for the treatment of CD (Rawla et al., 2018). Clinical trials for IL-17A blockade 

treatment (bimekizumab) were terminated early due to adverse side effects and no clear 
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evidence of efficacy, despite success treating psoriasis (EU Clinical Trials Register, 2019). 

Similarly, for UC, anti-IL-13 antibodies (anrukinzumab and tralokinumab) have been trialled with 

little therapeutic benefit (Danese et al., 2015; Reinisch et al., 2015) 

 

A greater understanding of cytokines in IBD, including the interplay between IECs, immune cells 

and cytokines, is required for development of more effective treatment and preventative 

strategies.  

 

1.5  Bifidobacteria 
 

In 1899 Henry Tissier was the first to describe the bacterial group Lactobacillus bifidus, which 

was re-classified after the 1960’s as the genus Bifidobacterium (Tissier, 1899, 1900). Through 

observation of their predominance within the gut of breast-fed infants he conceived their use 

as probiotics, promoting oral administration as a therapeutic for infant diarrhoea. Since 1899 

the genus has been well documented as a health-promoting commensal and is now one of the 

most heavily used probiotic taxa, alongside Lactobacilli (O’Neill et al., 2017; O’Toole et al., 2017). 

  

As a genus of the Actinobacteria phyla, Bifidobacterium are saccharolytic and anaerobic Gram 

positive bacteria which are non-sporulating, non-gas producing and non-motile (Bottacini et al., 

2014). At present 80 (sub)species have been classified, together occupying a range of ecological 

niches including sewage, water kefir, insect guts and the gastro-intestinal tracts and oral cavities 

of various mammals (Turroni et al., 2011, 2019). Some of these bifidobacterial species are 

considered pioneer species of the human gut acquired shortly after birth from ingestion of 

breast milk (Lewis and Mills, 2017). In particular, Bifidobacterium infantis, Bifidobacterium 

longum, Bifidobacterium breve and Bifidobacterium bifidum are the primary bifidobacterial 

species present within infant gastro-intestinal tracts, with increasing diversification of the genus 

seen with age (Di Gioia et al., 2014). Notably, the proportion of bifidobacteria observed within 

the human gut also varies across the life course (Figure 1.6). It is widely accepted that newly 

born infants host the highest proportions, with cited figures between 45 and 95% for breast fed 

babies (Arboleya et al., 2016; Bezirtzoglou et al., 2011; Fallani et al., 2010). Whilst still an 

important member of the microbiota, the proportion of bifidobacteria reduces gradually into 

adulthood where they remain relatively stable at around 3 to 10% until old age when they 

decrease further (Arboleya et al., 2016).  
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Figure 1.6. Relative abundance of gut bifidobacteria during the human life cycle. 
Environmental factors and conditions associated with low bifidobacterial counts are shown 
below. Figure reproduced from Arboleya et al. (2016) under the Creative Commons BY licence. 

 

1.5.1 Health benefits of bifidobacteria 

Many studies have identified an association with decreased bifidobacterial levels and reduced 

diversity of gut bifidobacterial species with increased disease symptoms (O’Callaghan and van 

Sinderen, 2016; O’Neill et al., 2017; Tojo et al., 2014). For example, a higher proportion of gut 

B. longum has been observed in healthy children compared to children with allergic disease 

(Akay et al., 2014; Ouwehand et al., 2001) and larger populations of bifidobacterial species have 

been observed in healthy children compared to those with active and non-active coeliac disease 

(Collado et al., 2008). It has also been observed in adults, that lower levels of gut Bifidobacterium 

and Lactobacillus are associated with diseases such as functional constipation and Irritable 

Bowel Syndrome (IBS) and ulcerative colitis (Khalif et al., 2005; Kim et al., 2015b; Macfarlane et 

al., 2004; Parkes et al., 2012). Additionally, the levels of mucosal Bifidobacterium have been 

negatively associated with the number of days patients with IBS experienced pain or discomfort 

(Parkes et al., 2012).  
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Furthermore, supplementation of the resident microbiota with additional bifidobacteria 

appears to have a variety of positive outcomes. This has been shown in healthy patients, for 

example supplementation with Bifidobacterium animalis DN-173 010 decreased transmit time 

in healthy women, suggesting an association between the bacteria and gut motility (Marteau et 

al., 2002). Furthermore, there have been benefits of using bifidobacteria in intervention studies 

for gastro-intestinal disorders such as IBS, ulcerative colitis and lactose intolerance; although 

many of these studies are carried out using combinations of probiotics and a food starter, so it 

is hard to definitively attribute the effects to increases in bifidobacteria (Furrie et al., 2005; He 

et al., 2008; O’Mahony et al., 2005). More mechanistic studies have indicated that different 

bifidobacterial species are capable of modulating immune function, thus contributing to 

immune maturation, gut homeostasis, pathogen protection and anti-tumour immunity (Hart et 

al., 2004; Silva et al., 2004; Sivan et al., 2015). 

 

Despite this significant body of evidence, the exact factors which modulate these protective 

effects are only beginning to be elucidated, with progress heavily hampered by the complexity 

(microbe genomics, impact of diet, host responses etc.) and inaccessibility of the gastro-

intestinal ecosystem (O’Neill et al., 2017; Russell et al., 2011). 

 

1.5.2 The effect of bifidobacteria on intestinal epithelial cells 

IECs are a primary site of interaction between bifidobacteria and their host, thus, play a 

significant role in mediating the host response and beneficial effects of bifidobacteria. A number 

of in vivo and in vitro studies have evidenced the ability for bifidobacterial strains to module the 

function of IECs through a variety of molecular mechanisms including metabolites, 

proteinaceous pili and exopolysaccharides (EPS) (Castro-Bravo et al., 2019; Fanning et al., 2012a; 

Lee et al., 2018; O’Connell Motherway et al., 2019). These findings are explored below and 

summarised in Figure 1.7 - categorised based on the observed host functional changes. 
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Figure 1.7. Summary of the different ways in which Bifidobacterial strains have been shown 
to affect the intestinal epithelial layer. A. Increasing barrier function through junctional 
complexes (Din et al., 2020; Hsieh et al., 2015; Srutkova et al., 2015; Yan et al., 2019; Yang et al., 
2017). B. Preventing epithelial cell shedding of enterocytes at the villus tips (Hughes et al., 2017) 
C. Increasing numbers of goblet cells and production and expulsion of mucins (Becker et al., 
2013; Engevik et al., 2019; Mangin et al., 2018; Schroeder et al., 2018) D. Different experiments 
have shown Increases and decreases in Paneth cell numbers and production of antimicrobial 
peptides (Lee et al., 2018; Natividad et al., 2013; Pinto-Sánchez et al., 2017; Underwood et al., 
2012). E. Increasing numbers of stem cells and stem cell proliferation (Lee et al., 2018) F. 
Reduced cell death through increasing autophagy and blocking proteasomes (Inaba et al., 2016; 
Lin et al., 2014). Referenced evidences are from small intestinal cells, colonic cells and cell lines. 
AMP – antimicrobial peptide. 
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1.5.2.1 Epithelial physical barrier function 

A primary function of IECs is the maintenance of an effective physical barrier between the gut 

lumen and the lamina propria, as described in section 1.2.3.1. Decreased expression of 

junctional complexes and a correlated increase in gut permeability is observed in mice treated 

with dextran sulphate sodium (DSS) – a commonly studied mouse colitis model. Studies have 

shown that specific strains of Bifidobacterium can protect against epithelial damage associated 

with DSS treatment (Figure 1.7A). For example, Bifidobacterium longum CCM 7952 promoted 

epithelial barrier function thorough preventing DSS-induced transcriptional decreases in tight 

junction associated genes Occludin and Zonulin-1 (Srutkova et al., 2015). Similarly, in separate 

experiments, B. longum subsp. longum YS108R and Bifidobacterium bifidum ATCC 29521 were 

shown to maintain the expression of tight junction associated genes Claudin-1, Claudin-3 and 

Zonula occludens-1 and mucin gene Muc2 following DSS-treatment (Din et al., 2020; Yan et al., 

2019). A study of transepithelial electrical resistance in IEC18 cells showed that Bifidobacterium 

infantis, Bifidobacterium youth, B. longum and B. bifidum strains had only a modest effect on 

cellular permeability, likely abated by decreased expression of innate immune receptors Toll-

like receptor (TLR) 2 and/or TLR4 (Yang et al., 2017). Further study of transepithelial electrical 

resistance in Caco-2 cell lines showed that Bifidobacterium species prevent intestinal epithelial 

barrier disruption induced by TNF-α, via metabolites such as acetate (Hsieh et al., 2015). Barrier 

function has also been studied in the context of epithelial cell shedding, where it was found that 

Bifidobacterium breve UCC2003 reduced small intestinal cell shedding in mice in an EPS-

dependent manner (Figure 1.7B) (Hughes et al., 2017). Here, they observed that MyD88, a 

downstream effector molecule of TLR signalling, was required to modulate the protective effect. 

 

1.5.2.2 Mucus layer 

A further layer of defence in the gut is the mucus layer lining the epithelial cells, as described in 

section 1.2.3.2. Several papers have evidenced a role for Bifidobacteria in fortifying and 

protecting the intestinal mucus layer through alterations of goblet cell function (Figure 1.7C). 

For example, Becker et al. found that heat inactivated B. breve could increase mucin Muc1 

expression, but not Muc2 expression in cell line LS174T (Becker et al., 2013). Further, 

Bifidobacterium dentium secreted acetate was able to increase MUC2 levels in T84 cells, while 

secreted γ-aminobutyric acid (GABA) stimulated mucin expulsion via an increase in autophagy 

(Engevik et al., 2019). This work also investigated B. dentium monoassociated mice compared 

to germ free mice, finding that live bifidobacteria, unlike heat-killed bifidobacteria, increase 
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colonic expression of goblet cell markers Krüppel-like factor 4 (Klf4), Trefoil factor 3 (Tff3), 

Resistin-like molecule β (Relm-β), Mucin-2 (Muc2), and several glycosyltransferases (Engevik et 

al., 2019). Similarly, in a rat model it was found that viable Bifidobacterium pseudolongum 

patronus increased colonic mucus layer thickness (Mangin et al., 2018), and in a mouse model 

B. longum NCC 2705 was able to ameliorate mucus growth defects but not repair penetrability, 

following damage from a western style diet (Schroeder et al., 2018). 

 

Together these experiments highlight the complexity of mucus homeostasis; being dependent 

on constitution and thickness of mucus as well as goblet cell numbers, and goblet cell production 

and expulsion of mucins. Further, Bifidobacteria has strain specific effects on mucus, mediated 

by different factors associated with heat-killed and viable bacteria. 

 

1.5.2.3 Antimicrobial peptides 

As described in section 1.2.3.3, antimicrobial peptides (AMPs) are host defence peptides that 

play a major role in the innate immune protection of the intestines. A link has been found 

between bifidobacteria and the alteration of AMP production in the gut, however evidence is 

inconsistent between different AMPs, different experimental models and different bacterial 

strains (Figure 1.7D). Underwood et al. (2012) found that breast-fed premature rats and those 

fed with formula supplemented with B. bifidum showed reduced expression of the Paneth cell 

antimicrobials sPla2 and Lyz1 compared to those fed with milk formula only. Similarly, Pinto-

Sánchez et al. (2017) found that oral administration of B. infantis Natren Life Start super strain 

(NLS-SS) resulted in reduced Paneth cell and macrophage counts as well as decreased HD-5 in 

duodenal biopsies from celiac patients. On the other hand, Natividad et al. (2013) noted that 

mono-colonisation with B. breve NCC2950, but not with E. coli, upregulated RegIIIγ expression 

compared to germ free mice (in a MyD88 and Ticam1 dependent manner). Further, Lee et al. 

(2018) have shown that lactate derived from Bifidobacterium and Lactobacillus spp. increases 

the expansion of stem cells, Paneth cells and goblet cells in the small intestines of mice (and in 

organoids derived from mice), while increasing expression of Lyz1 and Regenerating islet-

derived protein 3 beta (RegIIIβ) and RegIIIγ. Interestingly, it has been shown that human 

residential Bifidobacteria are tolerant to lysozyme, suggesting that increased AMP production 

by IECs is not likely an immune response specifically against bifidobacteria (Dan et al., 2018; 

Sakurai et al., 2017).  
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Despite conflicting evidence and a lack of identified mediating factors, previous findings support 

further investigation of the impact of bifidobacteria on AMP production by IECs. 

 

1.5.2.4 Stem cells and cell death 

Finally, bifidobacteria has been shown to affect the intestinal epithelial layer through promoting 

cell expansion and preventing cell death (Figure 1.7E). For example, pilin subunit TadE, of B. 

breve UCC2003 was shown to increase colonic epithelial cell proliferation in monoassociated 

mice compared to germ free mice (O’Connell Motherway et al., 2019). Further, lactate derived 

from Bifidobacterium and Lactobacillus spp. was shown to signal through G-protein-coupled 

receptor Gpr81 to elicit mouse intestinal stem cell proliferation, especially in new born mice 

(Lee et al., 2018). This effect required Wnt/β-catenin signals of Paneth cells and intestinal 

stromal cells and protected against gut injury from combined radiation and chemotherapy 

treatment. 

 

Additionally, it has been found that small organic molecules of B. breve prevent oxidant-induced 

IEC death through autophagy related genes (Atg5 and 7) and blockade of proteasomes (Figure 

1.7F) (Inaba et al., 2016). Lin et al. (2014) also showed that bifidobacteria could activate 

autophagy in the IEC18 cell line.  

 

1.5.3 The effect of bifidobacteria on gut immune cells 

Clinical trials, in vivo experiments and in vitro experiments have indicated that bifidobacteria 

have immunomodulatory effects on their host (Ruiz et al., 2017). In addition to impacting 

intestinal epithelial cell functions, it has been shown that bifidobacteria can interact with 

immune cells to alter innate and adaptive immune processes (O’Neill et al., 2017; Ruiz et al., 

2017). However, studies to date suggest that this interaction is complex and heavily context-

dependent, with bifidobacteria exerting both pro- and anti-inflammatory effects. These effects 

have been studied in both phagocytes and lymphocytes, but here l focus only on macrophages 

as they are studied in Chapter 6 (O’Neill et al., 2017).  

 

1.5.3.1 The effect of bifidobacteria on macrophages 

A number of previous experiments have shown that different Bifidobacterium strains can affect 

macrophage function. He et al. (2002) showed that many strains of heat inactivated 

bifidobacteria, but particularly those associated with adult colonisation, can induce IL-12 and 
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Tumour necrosis factor  (TNF) production from murine macrophage-like cell line, J774.1. They 

also demonstrated that most tested strains could induce anti-inflammatory cytokine IL-10 

production. Using a different macrophage cell line, RAW 264.7, Lee et al. (2012) found that 

sonicated Bifidobacterium adolescentis SPM0308 and Bifidobacterium longum SPM1207, as well 

as their cell-free supernatant, activated production of TNF and nitric oxide (required for 

cytotoxic activity of macrophages). Interestingly, the observed effects were reduced compared 

to stimulating the macrophage cell line with lipopolysaccharide (LPS) alone. A similar 

observation was noted by Okada et al. (2009) who found that B. breve and B. longum and B. 

adolescentis caused a reduced activation of IL-12p40, IL-1 and TNF expression levels (in a 

strain specific manner) compared to LPS alone in RAW 264.7 cells. Further, they identified that 

all three strains may act through reducing LPS-induced phosphorylation of NF-κB inhibitor IκB-

α, and increasing expression of NF-κB inhibitors, suppressor of cytokine signalling (SOCS) 1 and 

3. Finally, to increase the relevance of the macrophages used, Mokrozub et al. (2015) cultivated 

macrophages from the peritoneal cavity of mice. They found that two different B. adolescentis 

strains could induce accumulation of reactive oxygen compounds and nitric oxide in 

macrophages, but neither significantly influenced production of IL-12 or interferon-γ (IFNγ). 

 

Taken together, these studies show that bifidobacteria (in a strain specific manner) are capable 

of activating macrophages, albeit at a lesser magnitude than LPS. However, the molecular 

mechanisms of this interaction remain unclear. 

 

1.5.4 Bifidobacterium breve UCC2003 

To date, many of the in vivo studies of the role of Bifidobacterium in modulating immune cell 

and IEC function have focused on acute or chronic gut inflammation, often following pre-

colonisation of the gut with Bifidobacterium strains (Din et al., 2020; Hsieh et al., 2015; Pinto-

Sánchez et al., 2017; Schroeder et al., 2018; Srutkova et al., 2015; Yan et al., 2019). These studies 

suggest that initial priming by bifidobacteria during normal ‘healthy’ conditions may modulate 

subsequent protective responses. However, these studies were mostly performed in adult mice 

rather than during early developmental stages, where Bifidobacterium effects are expected to 

be most pronounced and long term. Indeed, where tested, the effect of bifidobacteria was more 

marked in new born mice than in adult mice (Lee et al., 2018). 
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Bifidobacterial species which are particularly abundant human infant intestines include B. 

longum, B. breve, and B. bifidum (Arboleya et al., 2016; Makino, 2018). Moreover, these species 

have the strongest evidence for IEC and gut barrier modulation. One such strain is B. breve 

UCC2003 which was originally isolated from a nursling stool (O’Connell Motherway et al., 2011). 

Various experiments have shown that B. breve UCC2003 plays an important role in host-

commensal interactions through immune cell and IEC modulation as well as defence against 

pathogen infection. In addition to reducing epithelial cell shedding and increasing epithelial 

proliferation (as discussed previously; (Hughes et al., 2017; O’Connell Motherway et al., 2019)), 

B. breve UCC2003 has been shown to evade adaptive B cell host response, to protect mice 

against colonisation by gut pathogen Citrobacter rodentium, to protect Caenorhabditis elegans 

against Salmonella infection and to modulate gut microbiota through exopolysaccharide cross-

feeding (Christiaen et al., 2014; Fanning et al., 2012b, 2012a; Püngel et al., 2020).  

 

Whilst B. breve UCC2003 is a relevant bifidobacterial strain to study due to its observed health-

benefits and presence in infant guts, it has further advantages which make it a practical model 

for developing methods and/or studying the effect of bifidobacteria in specific conditions. 

Specifically, B. breve UCC2003 has been shown to be highly efficient at colonising the murine 

gastrointestinal tract (small intestine, caecum and colon), and to stably persist at high levels for 

at least seven weeks (Cronin et al., 2008; O’Connell Motherway et al., 2011). Moreover, a Tn5 

insertion library of nearly 20,000 transposon insertion mutants of B. breve UCC2003 has been 

developed using a random mutagenesis system, representing the first genome-wide random 

mutagenesis approach for bifidobacteria (Ruiz et al., 2013). Together with the fully sequenced 

genome, these factors make B. breve UCC2003 a particularly useful strain with which to study 

bifidobacterial-host interactions. 

 

1.6  Organoids 
 

In the past, a lack of in vitro systems to propagate cell lines of intestinal epithelium has hindered 

the study of mechanistic details relating to IEC function in healthy and diseased states (Chopra 

et al., 2010). However, advancements in understanding LGR5+ stem cells and their regulating 

pathways has led to the development of an in vitro culture system to grow three-dimensional 

(3D) intestinal epithelial organoids (Sato et al., 2009). Such systems have revolutionised the 



Chapter 1: General introduction 

 

 

 

53 

 

study of IECs in development and disease and their interactions with immune, microbial and 

environmental signals (Fatehullah et al., 2016).  

 

3D intestinal organoids, containing all the major cell types of the epithelium, are grown from 

LGR5+ stem cells – in isolation or as part of intestinal crypts. The stem cells/crypts are seeded 

onto a collagen- and laminin- rich matrix (Matrigel) and exposed to R-spondin, epidermal growth 

factor (EGF), Noggin and in the case of colonic organoids, Wnt (Sato and Clevers, 2013). R-

spondin binds to LGR5 and acts as a Wnt signalling agonist to support crypt proliferation and 

EGF is additionally required for intestinal epithelial stemness. Noggin increases the number of 

crypts through blocking bone morphogenetic protein (BMP) signalling. In the presence of this 

minimal, essential stem cell maintenance factor cocktail, stem cells proliferate into a single layer 

of epithelial cells, forming a sealed round structure with crypt and villus architecture (Figure 

1.8). The lumen of these 3D organoids represents the gut lumen, with basolateral cell surfaces 

facing outwards (Sato and Clevers, 2013; Sato et al., 2009). When replated each week, organoid 

cultures can be maintained for at least 1.5 years (Sato et al., 2009). 

 

 

Figure 1.8. Small intestinal organoids. A: Mouse small intestinal organoids at day five of growth. 
Image generated by Isabelle Hautefort (Earlham Institute). B: Small intestinal organoid cross-
section.  

 
These long-term organoid cultures closely mimic in vivo conditions, and remain genetically and 

phenotypically stable over time, allowing great opportunity for experimental application (Bar-

Ephraim et al., 2019). For example, intestinal organoids have been used to study epithelial 

receptors and cell function (Sodhi et al., 2012), to evaluate the effect of gene knock outs and 

mutations (Jones et al., 2019) and to study the interaction of the intestinal epithelium with 

bacteria and immune cells (Biton et al., 2018; Wilson et al., 2015; Zhang et al., 2014). In addition, 

intestinal organoids have been generated using patient-derived biopsies for patient- and 
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disease-specific models. One example is the use of primary intestinal organoids from cystic 

fibrosis patients to measure function of the cystic fibrosis transmembrane conductance 

regulator (CTFR) protein (Dekkers et al., 2013; de Poel et al., 2020). This model is currently used 

to test the efficacy of different treatments on cystic fibrosis patients, allowing access to drugs 

based on personalised medicine (Berkers et al., 2019). 

 

Current limitations with the intestinal organoid model include cost, difficulties including non-

epithelial cells in the design and loss of inflammatory phenotype when generated from inflamed 

tissue biopsies (Almeqdadi et al., 2019; Arnauts et al., 2019). In addition, exposing 3D organoids 

to apical-only signals (such as bacteria) is challenging due to the closed and difficult-to-access 

lumen environment. In response to these limitations, a number of organoid modifications and 

adaptations have been developed. To improve access to the apical side of the epithelium and 

decrease accumulation of dead cells, mucus and bacterial by-products, monolayer (2D) 

organoids cultures have been generated (Kozuka et al., 2017; Liu and Chen, 2018; Moon et al., 

2014). These systems have been shown to form correctly polarised layers of epithelium with 

effective barrier functions, but are technically more challenging (Altay et al., 2019). Combined 

with micro-fluidics systems such as the HuMiX device, organoid monolayers can be co-cultured 

with microbes and basal immune populations to generate representative in vitro systems (Shah 

et al., 2016). More recently, a system has been developed to reverse the polarity of intestinal 

organoids (Co et al., 2019). 

 

Furthermore, methods have been identified to increase the proportion and fidelity of secretory 

lineages in 3D organoids (Yin et al., 2014). Following an initial growth period using standard 

growth factors, the addition of a Notch inhibiting -secretase inhibitor, DAPT, and a Wnt 

inducing small molecule CHIR99021 causes small intestinal organoids to develop with a greater 

quantity of Paneth cells. Instead, by replacing CHIR99021 with Wnt inhibitor IWP-2, 

differentiation is skewed towards goblet cells and, to a lesser extent, enteroendocrine cells. 

Subsequent studies have shown that these drug treatments generate organoids which represent 

the in vivo condition (Luu et al., 2018; Mead et al., 2018). In particular, Mead et al. used 

transcriptomics, proteomics, cytometric and morphological characterisation to show that DAPT 

and CHIR99021 enrichment generates Paneth cells with greater fidelity and functional similarity 

to in vivo Paneth cells compared to conventional organoid Paneth cells (Mead et al., 2018). 

Furthermore, work from my group has shown that enteroids enriched for Paneth cells and 



Chapter 1: General introduction 

 

 

 

55 

 

goblet cells recapitulate in vivo characteristics on the proteomics level (Jones et al., 2019; Luu 

et al., 2018). Moreover, in Jones et al. (2019), myself and colleagues showed that Paneth cell 

enriched enteroids contain greater Paneth cell marker gene expression than conventional 

enteroids. Furthermore, we showed that cell type enriched organoids are a useful tool for the 

investigation of health and disease related processes in specific intestinal cell types. Specifically, 

we generated Paneth cell enriched enteroids with epithelial-specific autophagy impairment.  

Using proteomics and transcriptomics data analysis, we identified several autophagy dependent 

cellular processes while mechanistically linking autophagy impairment to Paneth cell 

dysfunction, both of which are commonly observed in IBD (Jones et al., 2019). Therefore, whilst 

organoid enrichment methods do not present single cell type resolution, they provide useful 

tools to study Paneth cell and goblet cell populations in the context of the other major epithelial 

cell types (Mead and Karp, 2019). 

 

Colleagues and I have employed organoid systems in Chapters 2 and 3 of this thesis to provide 

a controlled human IEC culture system and to enable detailed study of Paneth cell and goblet 

cell regulation. 

 

1.7  Networks 
 

In biology, networks are used to describe complex relationships between molecules, organisms, 

microorganisms, metabolic reactions, genetic interactions and many other entities. The study of 

networks in biology can be used for many purposes including to visualise systems, to trace signal 

flow, to understand functional relationships between entities and to study dynamics of systems 

(Han, 2008).  

 

Molecular networks are a type of network used to capture direct interactions and/or functional 

associations between molecules (including genes, proteins and RNA) to better understand 

cellular mechanisms. In the graph representations of these networks, the entities (nodes) of the 

network represent the molecules and the connections between nodes (edges) represent a 

physical or functional interaction. These networks are vital for many aspects of cellular function 

including metabolism and transcriptional regulation. There are a number of features which 

these networks can have, for example they can be directed or undirected; indicating whether 

edges have a direction of interaction, and they can be signed, for example an inhibition or an 
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activation (Figure 1.9). Furthermore, these networks can exist in layered structures where 

different ‘versions’ of the networks represent different molecular levels e.g. RNA and protein, 

or instead different nodes can represent different types of molecule just within one network. 

The change in structure of networks over time and space is termed network dynamics (Han, 

2008; Winterbach et al., 2013). 

 

 

Figure 1.9. Graph diagram of a directed network. 

 

Molecular interaction networks can be reconstructed using experimental or computational 

methods (Papin et al., 2005; Siahpirani and Roy, 2017). Experimental techniques include 

targeted and high-throughput methods to determine interacting molecules. Yeast-two-hybrid 

methods and tandem affinity purification are the primary technologies used to measure protein-

protein interactions (PPIs) at scale (Brückner et al., 2009), whereas chromatin 

immunoprecipitation methods, ChIP-chip and ChIP-seq, are used to study interactions between 

DNA and proteins (histone and transcription factors, TFs) (Furey, 2012). Furthermore, 

interactions between microRNAs (miRNAs) and messenger RNAs (mRNA) and between long non 

coding RNAs (lncRNA) and miRNAs have been identified using HITS-CLIP methods (Chi et al., 

2009). Experimentally determined molecular interactions are often stored in databases, which 

may be focused on a particular interaction type (e.g. TF – target interactions stored in TRRUST 

(Han et al., 2018)), a particular molecule, biological pathway or set of pathways (e.g. SignaLink2 

(Fazekas et al., 2013)) or on a particular model organism (e.g. SignaFish (Csályi et al., 2016)). 

These databases are primarily second party, where multiple distinct experimental results are 

collected together, or third party, where multiple second party databases are combined. An 

example of a second party database is miRNA-lncRNA interaction collection LncBase 

(Paraskevopoulou et al., 2016), while molecular prior knowledge collection OmniPath and 

Source node

Edge (directed)

Target node
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transcription factor-target interaction collection DoRothEA are examples of third party 

databases (Garcia-Alonso et al., 2019; Türei et al., 2016). 

 

The primary issue with all of these experimental data sources is that experimental methods and 

studies can be biased and do not uncover every possible interaction, leading to incomplete 

datasets (Kumar Bajpai et al., 2020). To avoid these issues, many different network inference 

algorithms have been developed that predict molecular interactions based on diverse data such 

as expression information, structural profiles and sequence homology (Chai et al., 2014; Chan 

et al., 2017; Huang et al., 2016; Siahpirani and Roy, 2017). However, network inference methods 

also have limitations due to under sampling and poor generalisation. They are often specific to 

one state and vary greatly based on the inference method and input datasets used. 

Furthermore, computationally predicted interactions often have little overlap with 

experimentally derived networks, which has led to development of ensemble learning 

approaches and the integration of computational and experimentally derived knowledge (Castro 

et al., 2019). 

 

For the work outlined in this thesis, I have focused primarily on the interpretation and analysis 

of context-specific experimental data using experimentally determined molecular interactions. 

Such an approach permits the contextualisation of known molecular interactions in which we 

have greater confidence of existence, but I acknowledge probable incompleteness and a degree 

of experimental bias. 

 

1.7.1 Regulatory networks 

Regulatory networks are molecular networks detailing regulatory interactions within a system. 

Most frequently used are transcriptional regulatory networks which comprise interactions 

between TFs and their target genes (TGs). These networks are often presented as gene 

regulatory networks where both TFs and their target genes are represented as genes and the 

connections between them describe an indirect regulatory interaction (Winterbach et al., 2013). 

In addition to TF-TG interactions, regulatory networks may contain additional transcriptional 

and post-transcriptional regulatory interactions including: TF-lncRNA, TF-miRNA, miRNA-mRNA 

and lncRNA-miRNA interactions. MiRNAs and lncRNAs, together with TFs perform critical 

regulatory functions in maintaining intestinal homeostasis. Dysregulation of these functions has 

been associated with various gut pathologies (Chapman and Pekow, 2015; Mirza et al., 2015). 

For example a miRNA upregulated in the colon mucosa of CD patients, miR-106b, was found to 
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reduce expression of ATG16L1, causing a reduction in autophagy (Lu et al., 2014; Zhai et al., 

2013). This in turn leads can lead to increased epithelial penetrance of CD-associated bacteria, 

indicating its role in CD pathogenesis. The study of regulatory interactions using networks can 

help to unravel the mechanisms through which these molecules act, which can in turn aid the 

study of disease and associated drug treatments. Regulatory actions of TFs and non-coding RNAs 

are described in the following sections. 

 

1.7.1.1 Transcription factors 

The best-studied eukaryotic gene regulatory mechanism is the control of gene expression by 

TFs. Here, TF proteins bind to cis-regulatory elements on the DNA via their DNA-binding region 

to promote or block RNA polymerase recruitment; depending on whether the TFs are acting as 

activators or repressors, respectively. Specifically, TFs can act to acetylate or deacetylate histone 

proteins, or to block or scaffold the binding of RNA polymerase to the DNA. Often these actions 

are carried out by TFs in cohort with coactivators and/or corepressors which are recruited to the 

TF-DNA complex (Figure 1.10). Cis-regulatory elements, termed enhancers, promoters or 

silencers, are usually present upstream of the regulated gene initiation site, but can also be 

found downstream, within gene introns or at a distance to the gene itself. The combined actions 

of multiple TFs, coactivators and corepressors at multiple cis-regulatory regions ultimately 

defines the transcription level of the gene in question (Campbell and Reece, 2008). 

 

 

Figure 1.10. Transcriptional and post transcriptional regulation. 
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At any one time, only 10-50% of the genes of a typical human cell are expressed (Campbell and 

Reece, 2008; Marinov et al., 2014). This variation in expression allows the cells to alter their 

function in response to internal and external signals. TFs and histone modifying enzymes play 

an indispensable role in this process. As such, it has been shown that mutations in TF binding 

motifs of cis-regulatory elements are implicated in many diseases, including IBD (John et al., 

2011; Landa et al., 2013; Pals et al., 2004). 

 

1.7.1.2 Non-coding RNAs 

In addition to regulation of expression, a number of post-transcriptional mechanisms exist to 

fine-tune levels of mRNAs. One example is miRNAs; ~22 nucleotide non-coding RNAs which post-

transcriptionally regulate mRNA targets (Bartel, 2018). To date there are over 2,600 mature 

human miRNAs described in miRbase (version 22) – the primary archive of miRNA sequences 

and annotations (Kozomara et al., 2019). Canonical miRNAs are processed from stem-loop 

regions of longer RNAs called pri-miRNAs through the Drosha/Dicer pathway. Here, a 

heterotrimeric complex called microprocessor, containing a Drosha endonuclease and DGCR8 

proteins, cleaves the pri-miRNA into pre-miRNAs (Nguyen et al., 2015). Once exported from the 

nucleus, pre-miRNAs are cleaved into 22 nucleotide duplexes by Dicer and then loaded (one or 

both strands) into the RNA-induced silencing complex (Bartel, 2018). The miRNAs are then 

guided to 3ʹUTRs (untranslated regions) of mRNAs where they bind to complementary (or 

nearly complimentary) sequences. The mRNA is subsequently degraded or translationally 

repressed (Chapman and Pekow, 2015). In the last decade many studies have shown that 

miRNA-associated regulation is associated with cell function in healthy and disease conditions 

(Ardekani and Naeini, 2010; Cao et al., 2017; Drury et al., 2017). 

 

As well as miRNAs, the transcribed non-coding genome consists of thousands of other RNAs 

defined purely by their length: >200 nucleotides. These RNAs, termed lncRNAs, are detected 

across many cellular- and tissue-specific contexts, however their significance in cellular 

regulation is contentious. Evidence exists for a functional role of some lncRNAs, while many 

appear not to harbour any regulatory sequences or properties (Goff and Rinn, 2015; Long et al., 

2017). Among those with identified regulatory functions, there are diverse mechanisms through 

which they can exert their effects. They can regulate gene expression through recruiting protein 

complexes to DNA or through inhibiting the binding of TFs to DNA. They can act as miRNA 

sponges, blocking the binding actions of miRNAs (Jalali et al., 2013; Paraskevopoulou and 
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Hatzigeorgiou, 2016) and they can interfere with post-transcriptional processing of mRNA, for 

example through binding to splicing factors and blocking alternative splicing (Bhat et al., 2016).  

 

1.7.2 Signalling networks 

Cells can receive and process signals from their environment, from surrounding cells and from 

different regions within themselves. External signals are primarily received through interactions 

with receptor proteins on the cell surface. In turn these receptors undergo a conformational 

change, initiating signal transduction through a chain of cellular events leading to a molecular 

response of the system to the initial trigger. Most often this signalling cascade involves the 

changes in the activity of effector enzymes which in turn regulate the function of other proteins 

through post-translational events. In the case of internal receptor binding, for example in steroid 

hormone systems, the ligand-receptor complex often acts more directly on gene levels by acting 

as a modulator of transcription (Buchanan et al., 2010). These signalling pathways are high 

complex systems of interacting molecules which can also form larger networks of interacting 

pathways. Therefore, signalling pathways are well represented through network approaches, 

which provide a clear data storage, visualisation and analysis method. Given the nature of 

signalling pathways, they are often represented by a type of protein-protein interaction 

network, where links are directed according to the flow of molecular signals (Winterbach et al., 

2013). 

 

1.7.3 Host-microbe protein-protein interactions 

In addition to the aforementioned interaction types, networks can be used to study interactions 

between a host cell and a microbe. Such interactions can occur via various molecules ranging 

from proteins and metabolites to lipopolysaccharide (LPS). For example, for bifidobacteria, 

identified molecular effectors include, but are not limited to: 

- Type IVb tight adherence (Tad) pili, which has been shown to promote colonic epithelial 

proliferation (O’Connell Motherway et al., 2011, 2019) 

- The EPS capsule which can, for example, repress local Th17 responses and reduce pro-

inflammatory cytokine production (Fanning et al., 2012b) 

- The serine protease inhibitor (serpin) protein which inhibits pancreatic elastase and 

neutrophil elastase, potentially protecting the host against overactivation of 

neutrophils, and in turn the bacteria against phagocytosis (Ivanov et al., 2006) 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/serine-protease-inhibitors
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Protein-protein interactions between host and microbe represent one of the major types of 

communication. Here proteins physically interact, often resulting in activation or inhibition of 

the host downstream signalling pathways. Such interactions are often divided into two major 

types: domain-domain interactions and domain-motif interactions. Domains are independent 

folding subunits of proteins with stable and distinct tertiary structures. Domains are not protein-

specific, often occurring in many proteins of many different species. Moreover, a single protein 

can contain multiple different domains. Domains usually have specific functional roles, such as 

calcium-binding, and can be readily identified from nucleotide or amino-acid sequences 

(Bagowski et al., 2010). Domain-domain interactions occur when a domain of one protein 

physically interacts with a domain of another protein, resulting in one protein exerting its effect 

on the other. Experimentally, domain-domain interactions are primarily inferred using high-

resolution three-dimensional structures (Raghavachari et al., 2008). Moreover, many domain-

domain interactions have been predicted computationally using diverse feature sets and 

methods – such as sequence co-evolution, phylogenetic profiling, probabilistic frameworks and 

machine learning approaches (Yellaboina et al., 2011). Databases such as DOMINE exist to 

collate known and predicted domain-domain interactions (Raghavachari et al., 2008; Yellaboina 

et al., 2011). 

 

Domain-motif interactions, on the other hand, involve the binding of protein domains to protein 

motifs, resulting in the domain-containing protein exerting its effect on the motif-containing 

protein. These interactions are mediated by 3-10 amino acid sequences called short linear motifs 

(SLiMs) which play a major role in cellular processes, such as signal transduction, through 

transient interactions with protein domains (Akiva et al., 2012; Brito and Pinney, 2017). These 

motifs occur in intrinsically disordered regions of proteins or in exposed flexible loops within 

folded domains making them accessible for binding to domains. Like domains, many protein 

motifs and domain-motif interactions have been previously identified by diverse small-scale 

experiments and by computational predictions (Gibson et al., 2015). Once identified, motifs can 

be typified by their sequence making them identifiable within other genomes using 

computational methods. Furthermore, databases of curated domain-motif interactions, such as 

the Eukaryotic Linear Motif (ELM) database, enable prediction of interactions between proteins 

of interest based on previously identified domain-motif interactions (Dinkel et al., 2016; 

Korcsmaros et al., 2013; Puntervoll et al., 2003). In the Chapter 5, I have applied such an 
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approach to build a bacterial-macrophage protein interaction network for prediction of possible 

bifidobacterial effector proteins which can affect macrophage activation. 

 

1.7.4 Network contextualisation using ‘omics data 

As discussed above, network contextualisation is one method to reconstruct biological networks 

based on the integration of context specific ‘omics data with experimentally determined 

molecular interactions (often called a priori interactions or prior knowledge network) (Dugourd 

and Saez-Rodriguez, 2019). The specific methods used in this approach vary depending on the 

available data and the biological question of interest: ranging from simple data overlaps to 

ensembles of mathematically complex models. Comprehensive networks of intra and inter-

cellular interactions can be reconstructed using multi-omics datasets consisting of 

transcriptomic, phosphoproteomic and metabolomic information from the same biological 

context (Dugourd et al., 2020). However, the availability of such datasets is usually limited; due 

to cost and accessibility, transcriptomics is often the only obtainable ‘omics data. Therefore, the 

following tools and methods (and the research of this thesis), will cover only transcriptomics 

data approaches. 

 

Given that the activities of signalling pathways only partially correlate with levels of gene 

expression (Vogel and Marcotte, 2012), transcriptional level data is best used in studies of 

transcriptional regulation. For example, superimposing a priori regulatory interactions with 

differentially expressed genes of interest can identify possible regulators. Subsequently, 

regulators can be filtered for relevance using different approaches, such as:  

• Identification of master or hub regulators based on the number of target genes. 

• Hypergeometric significance tests to identify regulators whose targeted genes exhibit 

significantly large levels of differential expression, such as that implemented in the 

Cytoscape CHAT tool (Muetze et al., 2016). 

• The VIPER approach which uses analytic rank-based enrichment analysis to compute 

changes in transcription of specific regulons (groups of similarly regulated genes) when 

projected on a rank-sorted gene expression signature. In addition, this approach 

integrates a metric based on the correlation of expression between a regulator and its 

target gene and measures of pleiotropy (Alvarez et al., 2016).  
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On the other hand, methods have been developed to predict activity of signalling pathways 

based on gene expression data, without directly inferring protein activity from gene expression. 

For example, PROGENy, developed by Schubert et al. uses a footprint based approach to predict 

pathway activity based on pathway responsive genes, which are obtained using a large 

compendium of perturbation experiments (Schubert et al., 2018). However, this approach is 

limited and biased by the perturbation datasets used, and may not accurately reflect specific 

contexts such as poorly studied tissue types.  

 
Finally, causal networks can be generated by combining signalling pathway and regulatory 

interactions. Such networks can explain the flow of signal from a cellular perturbation, such as 

the recognition of a signalling molecule at the cell surface, through signalling pathways to 

transcription factors which regulate the expression of genes affected by the perturbation. Such 

networks can be reconstructed by identifying possible PPI paths (using a prior knowledge 

network) connecting an initial perturbation (e.g. a receptor) to transcription factors identified 

using approaches such as those previously discussed. Advancements to this method can utilise 

causal reasoning and/or diffusion algorithms to identify most likely signalling paths. For 

example, a recently published workflow by Liu et al. (2019) called CARNIVAL, can reconstruct 

causal networks with or without an upstream perturbation using VIPER and PROGENy combined 

with an integer linear programming optimization problem. Here the most optimal PPI paths are 

identified using interaction direction and sign alongside perturbation, pathway and TF 

constraints. 

 

1.7.5 Network applications 

The ultimate aim of a systems biologist is to understand a whole system using a unified 

framework – and networks are a key tool to achieve this. In addition to functioning as a data 

storage and visualisation method, analysis of molecular interaction networks can aid the 

understanding of cellular processes and functional organisation, can be used to predict key 

regulators and novel drug targets and can aid in annotating molecular functions (Miryala et al., 

2018). Methods to analyse and interpret networks include topological approaches and 

functional enrichment. Topological approaches, which study the arrangement and structure of 

networks, can be used to both describe properties of a biological network and as a predictive 

tool (Winterbach et al., 2013). For example, centrality is a group of graph metrics which score 

nodes based on their importance in the network. The simplest is degree centrality, which states 
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that nodes with high degree (many connecting edges) are more important than those with low 

degree. Alternatively, betweenness centrality calculates the fraction of shortest paths passing 

through a node when every pair of nodes is connected. A higher betweenness centrality metric 

indicates that a node is more important for information flow in the network. Alternatively, 

molecular networks can be studied in terms of their modularity. For example, clustering 

approaches can be used to identify groups of nodes, termed modules or clusters, which are 

more densely connected than the rest of the network. In molecular interaction networks, 

identified modules often represent biological pathways or functions, aiding functional 

interpretation and prediction of key molecules within the network. Unfortunately, module 

detection is a complex problem. Whilst multiple different algorithms have been developed, 

results between them are not always comparable and selecting the ideal algorithm for a 

particular problem is especially challenging (Tripathi et al., 2016). Where module detection is 

carried out in this thesis, I have used the seed-based clustering tool Molecular Complex 

Detection (MCODE) which was designed specifically for protein interaction networks to detect 

protein complexes and functional modules (Bader and Hogue, 2003; Kaalia and Rajapakse, 

2019). 

 

Overall, a number of different network approaches have been used throughout this thesis to 

reconstruct, visualise, analyse and interpret biological data, each selected based on the data 

type and research question.  
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1.8 Primary research aims 
 

The four primary research aims of this thesis are as follows: 

1. Develop workflows and processes to analyse intracellular regulation in a cell type-

specific manner to gain biological insights. 

2. Apply these workflows to increase our understanding of how cytokines alter the 

regulation of epithelial cells. 

3. Apply these workflows to increase our understanding of how Bifidobacterium alters the 

regulation of epithelial cells using bulk transcriptomics data. 

4. Apply these workflows to increase our understanding of how Bifidobacterium alters the 

regulation of epithelial cells using cell type-specific transcriptomics data. 

5. Study the interactions of Bifidobacterium with immune cell populations. 

 

1.9 Structure of the thesis 
 

This thesis is organised into 7 chapters: 

 

Chapter 1 – An introductory chapter presenting the research background and summary of the 

aims of the thesis. 

 

Chapter 2 – Presents an interdisciplinary workflow developed by myself and colleagues to study 

the regulatory landscape of small intestinal epithelial cells. The workflow is applied to 

investigate the effect of small molecule treatments on skewing differentiation of small intestinal 

organoids (enteroids) and to predict key regulators of Paneth cells and goblet cells. 

 

Chapter 3 – Here, I study the effect of cytokines responsible for canonical mucosal immune 

responses on colonic organoids using causal networks. Further, myself and collaborators 

evaluated cytokine regulated transcription activity in biopsies from IBD patients. 

 

Chapter 4 – Twinned with Chapter 5, this chapter contains the first of two distinct studies 

focusing on the impact of bifidobacteria on small intestinal epithelial cells. This chapter 

specifically focuses on the mouse neonatal epithelium and does not contain cell type-specific 

data. 
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Chapter 5 – Twinned with Chapter 4, this chapter contains the second of two distinct studies 

focusing on the impact of bifidobacteria on small intestinal epithelial cells. This chapter extends 

the previous work by focusing on stem cells and Paneth cells in SPF and GF mice who have 

recently weaned from their mother’s breast milk. 

 

Chapter 6 – This chapter describes a study of the impact of Bifidobacterium on macrophage 

activation, focusing primarily on inter-cellular interactions with the aim to identify the effector 

molecule/s of bifidobacteria. 

 

Chapter 7 – This is the final chapter discussing future perspectives, impact and conclusions of 

the thesis. 
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 Chapter 2: The regulatory landscape of small 
intestinal epithelial cells 

 

2.1 Introduction 
 

Gut barrier integrity is critically important for intestinal homeostasis and efficient nutrient 

absorption (Zhang et al., 2015). Disruption of the epithelial barrier along with dysregulated 

immune responses are some of the underlying reasons behind the development of 

inflammatory gut conditions such inflammatory bowel disease (IBD) (Mokry et al., 2014). 

Therefore, a greater understanding of the functions of intestinal cells and their role in regulatory 

signalling will further our understanding of gut dysbioses, including IBD aetiology.  

 

Whilst primary IECs all originate from Leucine-rich repeat-containing G-protein coupled receptor 

5 (Lgr5)+ stem cells, differentiation results in differences in gene expression, signalling and 

regulatory wiring (Crosnier et al., 2006; Vanuytsel et al., 2013). These differences can result in 

altered phenotypic functions, responses to stress and susceptibilities to specific dysregulations. 

Thus, uncovering patterns and mechanisms at a cell type-specific level is crucial to uncover the 

role of the intestinal epithelium in homeostasis and disease. However, previously, many disease-

focused studies have used biopsy samples to produce -omics read-outs from intestinal epithelial 

cells (IECs) (Balfe et al., 2018; Mirza et al., 2015). Due to the cellular heterogeneity of the 

biopsies, these readouts represent a combination of different cell types (including semi-

differentiated cells), which can result in obscuration of signals when cell types are not acing in 

cohort. 

 

On the other hand, recent studies have employed single cell transcriptomics sequencing of 

tissue samples to characterise the proportion and signatures of different epithelial cell types in 

the intestines of healthy and IBD patients (Haber et al., 2017; Parikh et al., 2019; Smillie et al., 

2019). However, to provide deeper insights into the role of specific cell populations (such as 

Paneth cells and goblet cells) in IBD, in vitro models are required for in-depth testing and 

manipulation. Such models can be used to study specific mechanisms of action, host-microbe 

interactions, intercellular communication, patient specific therapeutic responses and to develop 

new diagnostic approaches. Due to ease of manipulation, observation and analysis, organoid 

models, including small intestinal models (enteroids), are increasingly used in the IBD field 
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(Aberle et al., 2018; Lindeboom et al., 2018; Noben et al., 2017). Therefore, the development of 

experimental and computational methods to improve the utility of organoids for detailed 

scientific investigation are highly valued, despite the growth of single cell technologies. For 

example, small molecule treatments have been developed that skew the differentiation of 

enteroids towards Paneth cell or goblet cell lineages, improving representation of these cells 

within the enteroid cell population (as described in the General Introduction section 1.6) (Farin 

et al., 2012; Yin et al., 2014). 

 

Nevertheless, the effect of Paneth cell and goblet cell enrichment of enteroids on key regulatory 

landscapes has not been extensively characterised and few computational methods have been 

applied to study cell type-specific regulation in an organoid model (Mead et al., 2018; Qin et al., 

2020). In this chapter, I use transcriptomics data combined with network methods to 

characterise the effect of small-molecule skewing on enteroids and to test the ability of this kind 

of approach for studying cell type-specific regulatory landscapes using organoids. Moreover, 

myself and colleagues developed an interdisciplinary workflow to investigate the regulatory 

landscape of Paneth cells and goblet cells (including transcriptional and post-transcriptional 

regulation) by comparing cell type enriched enteroids to control enteroids. The future utility of 

this approach was evidenced by predicting key regulators of Paneth cells and goblet cells and by 

exploring the relevance of the generated regulatory networks to the study of inflammatory 

bowel disease (IBD). 

 

The study design and analysis workflow are described in Figure 2.1. Specifically, we used small 

intestinal crypts from healthy adult mice to grow three different types of enteroid cultures: 

conventionally differentiated, Paneth cell enriched and goblet cell enriched (based on the 

protocols in Yin et al. (2014)). RNA sequencing was carried out on each type of enteroid to 

quantify messenger RNA (mRNA), microRNA (miRNA) and long non-coding RNA (lncRNA) 

signatures. Differentially expressed genes (DEGs) were determined by comparing the cell type 

enriched enteroids to the conventionally differentiated organoids – generating a list of genes 

significantly more or less expressed as a result of Paneth cell enrichment, and a similar list as a 

result of goblet cell enrichment. I used published molecular interaction datasets to reconstruct 

regulatory interaction networks (one for each cell type) which link these DEGs by possible 

regulatory connections. Specifically, the nodes of the interaction networks represent the DEGs 

and the edges represent regulatory connections (molecular interactions) between the nodes 

inferred from databases of transcriptional and post-transcriptional interactions. Subsequently, I 
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carried out a number of different analyses on the networks. I clustered the networks to identify 

highly connected nodes which specific functions. I incorporated known Paneth cell and goblet 

cell marker genes to predict master regulators of Paneth cell and goblet cell differentiation 

and/or maintenance. Furthermore, I highlighted varying downstream actions of shared 

regulators between the cell types. This phenomenon, called regulatory rewiring, highlights the 

importance of changes in regulatory connections in the function and differentiation of specific 

cell types. Finally, I identified and analysed Crohn’s disease (CD) and ulcerative colitis (UC) 

associated genes within the networks. Taken together, we show that cell type enriched 

enteroids combined with the presented network biology workflow have potential for application 

to the study of epithelial dysfunction and mechanisms of action of multifactorial diseases such 

as IBD in specific intestinal cell types. 
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Figure 2.1. Schematic overview of study design and analysis workflow in Chapter 2. PCeE/GCeE 
network - Paneth cell enriched enteroid / goblet cell enriched enteroid network; TF - 
transcription factor; lncRNA - long non-coding RNA; miRNA - microRNA; mRNA - messenger RNA; 
UC - ulcerative colitis; CD - Crohn’s disease. Figure reproduced from Treveil et al. (2020) under 
the Creative Commons BY licence. 

 

The contents of this chapter are primarily based on (verbatim) the peer-reviewed article 

published in Molecular Omics that I am first author (Treveil et al., 2020). The published article is 

reproduced in Appendix 6. 
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2.2 Aims 
 

The aims for this project were as follows:  

• Develop a multidisciplinary pipeline to study cell type-specific regulatory landscapes 

using enteroids and RNA sequencing. 

• Assess the value of cell type enriched organoids for studying cell type-specific regulatory 

landscapes. 

• Characterise the effect of Paneth cell and goblet cell enrichment of enteroids on key 

regulatory landscapes. 

• Predict key regulators of Paneth cells and goblet cells. 

• Investigate relevance of generated networks to the study of inflammatory bowel 

disease (IBD). 
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2.3 Methods 
 

All organoid work and RNA extraction was carried out by Zoe Matthews (UEA, Norwich Medical 

School), Emily Jones and Isabelle Hautefort (from our group). Next-generation sequencing and 

library construction was delivered via the BBSRC National Capability in Genomics and Single Cell 

(BB/CCG1720/1) at the Earlham Institute by the Genomics Pipelines Group. Initial data 

processing to obtain differentially expressed transcripts and collation of molecular interaction 

resources was carried out by Tomasz Wrzesinski (Haerty group, Earlham Institute, EI) and 

Padhmanand Sudhakar from our group. All other computational analysis and interpretation was 

carried out by myself, including network reconstruction, marker gene analysis and functional 

enrichment. 

 

2.3.1 Small intestinal organoid growth 

C57BL/6J mice of both sexes were used for enteroid generation as described previously (Jones 

et al., 2019; Sato and Clevers, 2013; Sato et al., 2009), from three separate animals for each 

condition. Briefly, 5mm pieces of small intestine were washed in Ethylenediaminetetraacetic 

acid (EDTA) and shaken in phosphate buffered saline (PBS) until five fractions had been 

generated. Crypt suspensions from the fractions were passed through a 70μm filter to remove 

any villus fragments, centrifuged at 300 ×g for 5 minutes before pellets were resuspended in 

200μl phenol-red free Matrigel (Corning), seeded in 24-well plates and incubated at 37°C for 20 

minutes to allow Matrigel to polymerise. Enteroid media containing Epidermal growth factor 

(EGF), Noggin and R-spondin (ENR media) was then overlaid. On days two, five and seven post-

crypt isolation, additional factors were added to the ENR media to enrich specific cell types by 

chemically inducing differentiation: 3μM glycogen synthase kinase 3β (GSK3β) inhibitor 

CHIR99021 (Tocris) and 10μM Notch inhibitor DAPT (Tocris) [Paneth cells]; 2μM Wnt pathway 

inhibitor IWP-2 (Tocris) and 10μM DAPT [goblet and enteroendocrine cells] (Yin et al., 2014). On 

day eight post-crypt isolation, enteroids were fixed with 4% paraformaldehyde (PFA; Sigma-

Aldrich), permeabilized with 0.1% Triton X-100 (Sigma-Aldrich) and incubated in blocking buffer 

containing 10% goat serum (Sigma-Aldrich). Immunostaining was performed overnight using 

primary antibodies for E-cadherin (BD Transduction Laboratories), Mucin-2 (Muc2) (Santa Cruz) 

and lysozyme (Lyz1) (Dako), followed by Alexa Fluor-488 and -594 conjugated secondary 

antibodies (ThermoFisher Scientific). DNA was stained with 4ʹ,6-diamidino-2-phenylindole 
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(DAPI) (Molecular Probes). Images were acquired using a fluorescence microscope 

(Axioimager.M2) and analysed using ImageJ/FIJI V1.51. 

 

2.3.2 RNA sequencing 

RNA was extracted from enteroids on day eight post crypt-isolation using miRCURY RNA 

Isolation Tissue Kit (Exiqon, 300115). Stranded RNA Libraries were constructed using the 

NEXTflex™ Rapid Directional RNA-Seq Kit (PerkinElmer, 5138-07) using the polyA pull down 

beads from Illumina TruSeq RNA v2 library construction kit (Illumina, RS-122-2001). Small RNA 

libraries were made using the TruSeq Small RNA Library Prep Kits (Illumina, 15004197). Stranded 

RNA was sequenced on the Illumina HiSeq2000 instrument to obtain 100 base paired-end reads. 

Small RNA was sequenced on the Illumina HiSeq2500 instrument to obtain 50 base paired-end 

reads. 

 

2.3.3 Differentially expressed transcripts 

The quality of stranded reads was assessed by FastQC software (v0.11.4) (Andrews, 2010). Reads 

were aligned using HISAT (v2.0.5) (Kim et al., 2015a) and a reference-based de novo 

transcriptome assembly was carried out for each biological repeat and merged together using 

StringTie (v1.3.2). Coding potential of each novel transcript was determined with CPC (v0.9.2) 

and CPAT (v1.2.2) (Kong et al., 2007; Wang et al., 2013b). From the novel transcripts, only non-

coding transcripts (as predicted by both tools) were included in final GTF file. Gene and 

transcript abundances were estimated with Kallisto (v0.43.0) (Bray et al., 2016). Sleuth (v0.28.1) 

R library was used to perform differential gene expression, comparing Paneth cell enriched 

enteroids (PCeEs) to conventionally differentiated enteroids (CDEs), and goblet cell enriched 

enteroids (GCeEs) to CDEs (Pimentel et al., 2017).  

 

The small RNA reads were analysed using the sRNAbench tool within the sRNAtoolbox suite 

(Rueda et al., 2015). Trimmed and length filtered reads were mapped to mature miRBase 

miRNAs (v21) (Kozomara and Griffiths-Jones, 2014) in addition to the annotated version of the 

mouse genome (mm10). Normalised read-counts from the corresponding cell type enriched 

enteroids were compared against the CDEs to identify differentially expressed miRNAs in a pair-

wise manner using edgeR (Robinson et al., 2010). 
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mRNAs, lncRNAs and miRNAs with an absolute log2 fold change 1 and q value ≤0.05 were 

considered to be differentially expressed. Differentially expressed genes were grouped by their 

presence in the PCeE dataset, the GCeE dataset or in both. Each group of differentially expressed 

genes was tested for functional enrichment (hypergeometric model, q value ≤0.1) based on 

Reactome and KEGG annotations using the ReactomePA R package (Fabregat et al., 2018a; 

Kanehisa et al., 2017; Ogata et al., 1999; Yu and He, 2016) following conversion from mouse to 

human identifiers using Inparanoid (v8) (O’Brien et al., 2005; Sonnhammer and Östlund, 2015). 

 

2.3.4 Enrichment of marker genes 

Cell type-specific signature genes were obtained from the droplet-based and the plate-based 

data of a mouse single cell sequencing survey (Haber et al., 2017). Gene symbols were converted 

to Ensembl gene IDs using bioDBnet db2db (Mudunuri et al., 2009).  

 

Hypergeometric distribution testing was carried out using a bespoke R script to measure 

enrichment of cell type-specific marker genes in the differentially upregulated gene sets. To 

standardise the universal dataset, only markers which are present in the output of the Wald test 

(genes with variance greater than zero among samples) were used. All genes present in the 

output of the Wald test were used as the background. Similarly, to enable fair comparisons, only 

differentially expressed protein coding genes and documented lncRNAs were used from the DEG 

lists, as was surveyed in the cell type-specific marker paper. Bonferroni correction was applied 

and significance scores were calculated using -log10(adjusted p value) (Bland and Altman, 1995). 

 

2.3.5 Reconstruction of regulatory networks  

A priori mice regulatory networks containing directed regulatory layers were retrieved from 

multiple databases as described in Table 2.1. Only miRNA-mRNA and lncRNA-miRNA interactions 

determined using HITS-CLIP (Chi et al., 2009) experiments were considered. Bedtools (Quinlan 

and Hall, 2010) was used for the custom analyses to look for overlaps between coordinates. All 

the nodes in the collected interactions were represented by their Ensembl gene IDs for 

standardization. 

 

To generate PCeE and GCeE regulatory networks, interactions in this collated universal network 

were filtered using the transcriptomics data (Figure 2.1). The assumption was made that if both 

nodes of a particular interaction were expressed (transcripts per million > 0 in at least one 
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replicate) in the RNAseq data, the interaction is possible. Furthermore, to filter for the 

interactions of prime interest, only nodes which were differentially expressed (PCeE vs CDE, 

GCeE vs CDE) and their associated interactors were included in the regulatory networks. 

 

Interaction 
type 

Source(s) # Unique 
interactions 

Quality control criteria 

TF-TG (TFs 
regulating 

target genes) 

TRRUST v2 (Han 
et al., 2015, 

2018) 
GTRD (Yevshin 

et al., 2017) 
ORegAnno v3.0 

(Lesurf et al., 
2016) 

1066383 • ChIP-Seq peaks should not overlap any gene 
annotation; if peak on + strand, only the first 
gene downstream to the gene or if peak on 
- strand, only first gene upstream to the 
peak is considered.  

• Genes attributed to the transcription factor 
which lie within a 10kb window on either 
side of the ChIP-seq peak (ORegAnno) or 
meta-cluster (in the case of GTRD). 

TF-lncRNA (TFs 
regulating 
lncRNAs) 

GTRD 159055 • ChIP-Seq peaks should not overlap any gene 
annotation; if peak on + strand, only the first 
gene downstream to the gene or if peak on 
- strand, only first gene upstream to the 
peak is considered. 

• Genes attributed to the transcription factor 
which lie within a 10kb window on either 
side of the meta-cluster. 

• Only if the first annotation feature within a 
10kb genomic window downstream to the 
ChIP-seq peak / meta-cluster was 
designated as an intergenic lncRNA, a 
regulatory interaction between the TF and 
the lncRNA was assigned - to avoid assigning 
false regulatory interactions due to the high 
number of instances where the lncRNAs 
overlap with protein-coding genes. 

miRNA-mRNA 
(miRNAs 

regulating 
mRNAs) 

TarBase v7.0 
(Vlachos et al., 

2015) 

141892 • Only HITS-CLIP based experimental 
evidence considered. 

• Co-expression based inferences not 
considered. 

TF-miRNA (TFs 
regulating 
miRNAs) 

TransmiR v1.2 
(Wang et al., 

2010) 
 TRRUST v2 

GTRD 

9204 • ChIP-Seq peaks should not overlap any gene 
annotation; if peak on + strand, only the first 
gene downstream to the gene or if peak on 
- strand, only first gene upstream to the 
peak is considered.  

• Co-expression based inferences not 
considered 

lncRNA – 
miRNA (lncRNAs 

regulating 
miRNAs) 

lncBase2 
(Paraskevopoul
ou et al., 2016) 

6637 • Only HITS-CLIP based experimental 
evidence considered. 

• Co-expression based inferences not 
considered. 

Table 2.1. A summary of the physical interactions compiled to generate the universal network. 
Table reproduced from Treveil et al. (2020) under the Creative Commons BY licence. The 10kb 
window was chosen based on (MacIsaac et al., 2010). 
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Clusters of highly interconnected regions within the PCeE and GCeE regulatory networks were 

identified using the MCODE plugin within Cytoscape with default parameters (Bader and Hogue, 

2003; Shannon et al., 2003). The nodes of each cluster were tested for functional enrichment 

(hypergeometric model, q value ≤ 0.05) based on Reactome annotations using the ReactomePA 

R package (Fabregat et al., 2018a; Kanehisa et al., 2017; Ogata et al., 1999; Yu and He, 2016) 

following conversion from mouse to human identifiers using Inparanoid (v8) (O’Brien et al., 

2005; Sonnhammer and Östlund, 2015). Cases where the number of nodes associated with a 

pathway <5 were considered not significant regardless of the q value. The top 5 significant 

Reactome pathways associated with each cluster were visualised using a heatplot generated in 

R. More than 5 pathways were visualised where multiple Reactome pathways had equal q 

values. 

 

2.3.6 Paneth cell and goblet cell regulator prediction  

To identify potential master regulators of the Paneth cell and the goblet cell types, the upstream 

regulators of cell type-specific markers (from (Haber et al., 2017)) were investigated. To do this, 

all markers were mapped to the relevant networks then subnetworks were extracted consisting 

of markers and their regulators. 

 

2.3.7 Regulatory rewiring analysis 

To calculate rewiring scores for regulators, sub-networks were extracted (from the PCeE and 

GCeE regulatory networks) containing just the regulator of interest and its downstream targets. 

For each regulator of interest, the subnetworks from the PCeE and GCeE networks were 

compared using the Cytoscape app DyNet (Goenawan et al., 2016; Shannon et al., 2003). The 

degree corrected Dn score was extracted for each regulator and used to quantify rewiring of the 

regulator’s downstream targets between the PCeE and GCeE regulatory networks. Functional 

analysis was carried out on the targets of the top five most rewired regulators. For each 

regulator, the targets were classified based on whether they are present in only the PCeE 

network, only the GCeE network or in both networks. Each group of targets was tested for 

functional enrichment (hypergeometric model, q value ≤ 0.1) based on Reactome and KEGG 

annotations using the ReactomePA and ClusterProfiler R packages (Fabregat et al., 2018a; 

Kanehisa et al., 2017; Ogata et al., 1999; Yu and He, 2016) following conversion from mouse to 

human identifiers using Inparanoid (v8) (O’Brien et al., 2005; Sonnhammer and Östlund, 2015).  



Chapter 2: The regulatory landscape of small intestinal epithelial cells 

 

 

 

77 

 

 

2.3.8 Evaluating disease relevance 

Genes associated with UC and CD based on single nucleotide polymorphisms were obtained 

from two studies (Farh et al., 2015; Jostins et al., 2012). Additionally, the top 100 differentially 

expressed genes were obtained from goblet cell analysis of inflamed UC vs healthy human 

colonic tissue from (Smillie et al., 2019). Genes were converted to Mouse Ensembl identifiers 

using Inparanoid (v8) and bioDBnet db2db (Mudunuri et al., 2009; O’Brien et al., 2005; 

Sonnhammer and Östlund, 2015). Additionally, to enable hypergeometric significant testing 

with the universal network as the background, only UC and CD genes present in the universal 

network are included in the analyses. eQTL datasets for CD were retrieved from (Di Narzo et al., 

2016) while the list of targets related to drug-interactions was downloaded from (Cotto et al., 

2018). 

 

2.3.9 Quantification and statistical analysis 

Statistical parameters including the exact value of n and statistical significance are reported in 

the Figures and Figure Legends. n represents the number of enteroid biological replicates 

generated. Where relevant, data is judged to be statistically significant when Bonferroni 

adjusted p value ≤ 0.01. Genes with absolute log2 fold change of ≥ 1 and q value ≤ 0.05 were 

considered to be differentially expressed. Based on principal component analysis of transcript 

expression, one biological replicate from the Paneth cell enriched enteroids was identified as an 

outlier and removed (Figure 2.2). Where stated, the hypergeometric distribution model was 

used to calculate significance using R. 
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Figure 2.2. Principle component analysis of transcript expression of enteroids. Paneth cell 
enriched enteroid outlier to the left side of PC1 was removed from downstream analysis. Plot 
courtesy of Tomasz Wrzesinski (EI). Figure reproduced from Treveil et al. (2020) under the 
Creative Commons BY licence. 

 

2.3.10 Data and software availability 

Small and stranded RNA-seq data has been deposited in the European Nucleotide Archive (ENA) 

with accession numbers PRJEB32354 and PRJEB32366 respectively. Scripts to analyse the 

differentially expressed genes are available on GitHub: 

https://github.com/korcsmarosgroup/organoid_regulatory_networks. 

 

  

https://github.com/korcsmarosgroup/organoid_regulatory_networks
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2.4 Results 
 

2.4.1 Enteroids enriched for target cell type signatures 

Zoe Matthews (UEA, Norwich Medical School) generated 3D self-organising enteroid cultures in 

vitro from murine small intestinal crypts (Figure 2.3) (Sato and Clevers, 2013; Sato et al., 2009, 

2011). In addition to conventionally differentiated enteroids (CDEs), she generated enteroids 

enriched for Paneth cells and goblet cells using well-established and published protocols, 

presented in detail in the Methods (Sato and Clevers, 2013; Yin et al., 2014).  

 

Figure 2.3. Small intestinal 3D organoid culture. A. Culture of isolated mouse small intestinal 
epithelial crypts in Matrigel matrix and ENR media (conventionally differentiated) for 7 days. 
Isolated crypts form 3D cysts which bud after 2 days of culture to form crypt- and villus-like 
domains. Paneth cells are clearly visible by light microscopy (Black arrows). Mucus and shedding 
cells accumulate in the central lumen of organoids (*). n = 3. B. cell type-specific enrichment 
illustrated by immunofluorescence labelling of cultured mouse 3D enteroids, conventionally 
differentiated (left) and enriched for either Paneth cells or goblet cells (right). Lysozyme granules 
characteristic of Paneth cells are indicated with a green arrow. Goblet cells were identified using 
a specific anti-Muc2 mucin antibody (pink). Images provided by Zoe Matthews, Emily Jones and 
Isabelle Hautefort. Figure reproduced from Treveil et al. (2020) under the Creative Commons BY 
licence. 
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Bulk transcriptomics data was obtained from each set of enteroids to determine genes with 

differential expression resulting from enteroid skewing protocols. Differentially expressed genes 

were obtained by comparing the RNA expression levels (including protein coding genes, lncRNAs 

and miRNAs) of enteroids enriched for Paneth cells or goblet cells to those of CDEs. 4,135 genes 

were differentially expressed (absolute log2 fold change ≥ 1 and q value ≤ 0.05) in the PCeE 

dataset, and 2,889 were differentially expressed in the GCeE dataset (Figure 2.4A-C, File S2.1). 

The larger number of differentially expressed genes (DEGs) in the PCeE data could be attributed 

to the highly specialised nature of Paneth cells (Clevers and Bevins, 2013; Stappenbeck and 

McGovern, 2017). The majority of the DEGs were annotated as protein coding: 79% in the PCeE 

dataset and 84% in the GCeE dataset. In addition, we identified lncRNAs (PCeE, 11%; GCeE, 9%) 

and miRNAs (PCeE, 4%; GCeE, 2%) among the DEGs (Figure 2.4B). I identified some DEGs that 

were in both the PCeE and the GCeE datasets, exhibiting the same direction of change compared 

to the CDE data. In total, 1,363 genes were found upregulated in both the PCeE and the GCeE 

data, while 442 genes were found downregulated in both datasets (Figure 2.4C). This result 

highlights considerable overlap between the results of skewing enteroids towards Paneth cells 

and goblet cells and can be explained by the shared differentiation history and secretory 

function of both Paneth cells and goblet cells. 

 
I employed pathway analysis to study functional associations of the DEGs (Figure 2.4D). The 

PCeE-specific DEGs were associated with a number of metabolic pathways, including 

Metabolism of vitamins and cofactors, Pyruvate metabolism and Citric Acid (TCA) cycle and 

Cholesterol biosynthesis. On the other hand, GCeE-specific DEGs were associated with the cell 

cycle through pathways such as Cell Cycle Checkpoints, DNA replication and G1/S transition. 

Pathways associated with the shared DEGs included Transmission across Chemical Synapses, 

Integration of energy metabolism and a number of pathways linked to hormones. As hormone 

functions are characteristic of enteroendocrine cells, this analysis suggests that enteroendocrine 

cells are enriched in both the PCeEs and the GCeEs. 
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Figure 2.4. Differentially expressed genes in Paneth cell enriched enteroids (PCeEs) and goblet 
cell enriched enteroids (GCeEs) (compared to conventionally differentiated enteroids).  A: 
Volcano plots showing log2 fold change and adjusted p value for each gene following differential 
expression analysis of PCeEs (left) and GCeEs (right). Horizontal and vertical lines indicate the 
differential expression criteria cut offs (q value ≤ 0.05 and absolute log2 fold change ≥ 1). B: 
Number of differentially expressed genes (DEGs). miRNA - microRNA; lncRNA - long non-coding 
RNA; Genes annotated as ‘other’ include pseudogenes and antisense genes. C: Venn diagrams 
indicating the number of DEGs (passing the cut off criteria). D: Top 10 Reactome pathways of 
the 50 most significant DEGs (by q value). E: Enrichment of cell type-specific marker genes in the 
DEG lists. Higher significance scores indicate greater enrichment. Number of markers in DEG list 
out of the total number of markers shown below significance score. Figure reproduced from 
Treveil et al. (2020) under the Creative Commons BY licence. 
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To validate the cell types present in the enteroids, I investigated the expression of five previously 

reported major cell type-specific markers across the enteroids using transcript abundances and 

RNA differential expression results (Figure 2.5). The control enteroids and the cell type enriched 

enteroids expressed all five investigated markers: Lgr5 (stem cells), Chromogranin A (ChgA) 

(enteroendocrine cells), Muc2 (goblet cells), Lyz1 (Paneth cells) and Villin 1 (Vil1) (epithelial 

cells). We observed an upregulation of Muc2, Lyz1 and ChgA and a downregulation of Lgr5 in 

PCeEs and GCeEs compared to the control enteroids, confirming the more pronounced 

differentiated status of the enteroids. In addition, a number of Paneth cell specific antimicrobial 

peptide genes were differentially expressed in the PCeE dataset, including Angiogenin 4 (Ang4), 

Regenerating islet-derived protein 3 gamma (RegIIIγ), Phospholipase A2 group IIA (Pla2g2a) and 

Defensin alpha 2 (Defa2) (Table S2.1). Some of these genes were also differentially expressed in 

the GCeE dataset but with smaller log fold change values, e.g. Lyz1 and Ang4. Conversely, a 

number of goblet cell mucin related genes (including Muc2 and trefoil factor 3 (Tff3)) were 

differentially expressed in both datasets although all genes exhibited a smaller increase in the 

PCeEs (Table S2.1). Therefore, using primary cell type-specific markers, antimicrobial peptide 

genes and mucin-related genes, I show that the enteroids contain all major cell types, and that 

Paneth cell are most upregulated in the PCeEs, while goblet cells are most upregulated in the 

GCeEs. We also note that both differentiation methods resulted in increases of other secretory 

cell types as well.  

 

Figure 2.5. Transcript abundances and differential expression of five major cell type markers. 
A: Mean transcript abundances in the conventionally/normally differentiated, goblet cell 
enriched and Paneth cell enriched enteroids. TPM - transcripts per million. B: Log2 fold change 
in the goblet cell enriched enteroid vs conventional enteroid analysis and the Paneth cell 
enriched enteroid vs conventional enteroid analysis. Data only presented where the differential 
expression criteria passed (q value ≤ 0.05 and absolute log2 fold change ≥ 1). Figure reproduced 
from Treveil et al. (2020) under the Creative Commons BY licence. 
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To further investigate secretory cell type-specific signatures of the enteroids, I measured 

enrichment of IEC lineages in the upregulated DEG lists using additional marker genes of Paneth 

cells, goblet cells, enteroendocrine cells, tuft cells and enterocytes. These marker genes were 

obtained from a single cell study of mouse small intestinal epithelium by (Haber et al., 2017). All 

tests were significantly enriched for secretory cell types (hypergeometric model, q value ≤ 0.05), 

with greater enrichment of Paneth cell markers in the PCeE DEG list and goblet markers in the 

GCeE DEG list (Figure 2.4E, Table S2.2). This confirms that both enteroid enrichment protocols 

were successful in increasing the proportion of their target cell type, but also increased 

proportions of other secretory lineages, albeit to a lesser extent. This observation confirms 

previous studies that these enteroid differentiation protocols result in enteroendocrine 

enrichment in addition to Paneth cell and goblet cell enrichment (Luu et al., 2018; Yin et al., 

2014). 

 

In conclusion, we have used image-based validation, pathway analysis and marker gene 

investigation to show successful enrichment of target cell types in the PCeE’s and GCeE’s. I also 

highlighted an additional increase in other secretory lineages, particularly enteroendocrine cells, 

as a result of both enrichment protocols.  

 

2.4.2 Regulatory networks are altered by enteroid differentiation 

skewing 

To gain an understanding of the regulatory changes occurring when enteroid development is 

skewed, we applied a network biology approach to identify regulator-target relationships within 

the DEG lists. First, Tomasz Wrzesinski and Padhmanand Sudhakar generated a large network of 

non-specific molecular interactions known to occur in mice, by collating lists of published data 

(described in the methods Table 2.1). The resulting network (termed the universal network) 

consisted of 1,383,897 unique regulatory interactions connecting 23,801 molecular entities. All 

interactions within the network represent one of the following types of regulation, where every 

node is a DEG: TF-TG, TF-lncRNA, TF-miRNA, miRNA-mRNA or lncRNA-miRNA. TF-TGs and TF-

lncRNAs make up the majority of the network at 77% and 11% of all interactions, respectively. 

Due to its non-specific nature, this universal network contains many interactions not relevant 

for the current biological context. In order to get a clearer and valid picture of regulatory 

interactions occurring in our enteroids, I used the universal network to annotate the PCeE DEGs 

and GCeE DEGs with regulatory connections. Combining these connections, I generated specific 
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regulatory networks for PCeEs and GCeEs, where every node is a DEG and every interaction has 

been observed in mice previously.  

 
In total, the PCeE network, generated using differential expression data from the PCeEs 

compared to the CDEs, contained 37,062 interactions connecting 208 unique regulators with 

3,023 unique targets (Figure 2.6A). The GCeE network, generated using differential expression 

data from the GCeEs compared to the CDEs, contained 19,171 interactions connecting 124 

unique regulators with 2,095 unique targets (Figure 2.6A). 15.7% of all interactions (8,856 out 

of 56,234) were shared between the PCeE and GCeE networks, however the interacting 

molecular entities in these interactions (termed nodes) did not all exhibit the same direction of 

differential expression between the networks (comparing PCeE or the GCeE data to the CDE 

data). In each of the enriched enteroid regulatory networks, a particular gene was represented 

(as a node in the network) only once, but may have been involved in multiple different 

interactions. In different interactions, a single node could act either as a regulator or as a target 

and in different molecular forms, for example, as a lncRNA in one interaction and as a target 

gene in another. 

 

To further investigate the makeup of these networks, I employed cluster analysis to identify 

highly interconnected regions (possible regulatory modules) in the PCeE and GCeE regulatory 

networks. Using the MCODE software (Bader and Hogue, 2003), I identified five distinct clusters 

in the PCeE network and seven distinct clusters in the GCeE network. A total of 1314 nodes are 

present in the PCeE network clusters and 698 in the GCeE network clusters. Functional analysis 

identified Reactome pathways (Fabregat et al., 2018a) associated with each of the modules. 

Significant pathways (q val ≤ 0.05) were identified only for the highest ranked three modules 

from each network, with a total of 12 pathways shared between the PCeE and GCeE associated 

clusters (out of 32 associated with the PCeE clusters and 42 with the GCeE clusters) (Figure 2.6B-

D). Of particular note, the first cluster of the GCeE network has associations with the 

endosomal/vacuolar pathway and antigen presentation, the second cluster is associated with 

the cell cycle. Of the PCeE clusters, the first cluster is associated with a range of functions 

including nuclear receptor transcription pathway, regulation of lipid metabolism and 

senescence. The second is associated with response to metal ions and endosomal/vacuolar 

pathway and the third with G alpha (i) signalling events. 
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In conclusion, I have generated regulatory interaction networks, including transcriptional and 

post-transcriptional interactions, which illustrate the effect of skewing enteroid differentiation 

towards Paneth cell and goblet cell lineages. 

 

 

Figure 2.6. Summary and cluster analysis of regulatory network for Paneth cell enriched 
enteroid (PCeE) and goblet cell enriched enteroid (GCeE) datasets. A: Summary of number of 

nodes and interactions in the whole PCeE (left) and GCeE (right) networks. Total number of each 

regulator type shown in red, number of each target type shown in blue. In the targets pie-chart, 

mRNAs also represent protein coding genes and proteins, miRNAs also represent miRNAs genes 

and lncRNAs also represent lncRNA genes. Size of circles represents log10(total unique 

regulators/targets). Bar chart represents the distribution of interaction types in the networks 

(log10 scale). B: Heatplot of Reactome pathways significantly associated (q val ≤ 0.05) with each 
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cluster of the PCeE (orange) and GCeE (purple) networks. Only the top 5 pathways shown for 

each group (or more where equal q values). Only the top 3 clusters had significantly associated 

pathways. Clusters labelled with rank and cell type and colours match the colour of the cluster 

shown in C and D. C, D: Visualisation of the PCeE and GCeE regulatory networks with their 

associated clusters. The cluster rank and score is given next to each cluster. Black nodes in the 

whole networks represent nodes which were not found in any cluster, whereas coloured nodes 

represent the cluster which they are part of. TF - transcription factor; miRNA - microRNA; lncRNA 

- long non-coding RNA. Figure reproduced from Treveil et al. (2020) under the Creative 

Commons BY licence. 

2.4.3 Paneth cells and goblet cells have shared and unique regulators  

Through pathway and marker analysis I predicted that our PCeE and GCeE datasets (i.e. DEG 

lists), and consequently our regulatory networks, contain signatures from the cell type of 

interest as well as additional noise from other secretory lineages. To focus specifically on the 

cell type-specific elements of the networks, I used previously identified cell type-specific 

markers to extract predicted Paneth cell and goblet cell regulators from our PCeE and GCeE 

networks (Haber et al., 2017). As cell type-specific markers represent genes performing 

functions specific to a particular cell type, I expect that the regulators of these marker genes will 

have an important role in determining the function of said cell type. To identify these regulators, 

I extracted from the PCeE and GCeE networks, all relevant cell type-specific markers and their 

direct regulators. These new networks were termed the Paneth cell subnetwork and goblet cell 

subnetwork respectively. The Paneth cell subnetwork contained 33 markers specific for Paneth 

cells with 62 possible regulators. The goblet cell subnetwork contained 150 markers with 63 

possible regulators (Figure 2.7). Observing the ratio of regulators and markers, the Paneth cell 

subnetwork had, on average, 1.88 regulators for each marker. On the other hand, the goblet cell 

subnetwork exhibited only 0.42 regulators for each marker. The quantity of markers identified 

in each subnetwork (33 in the Paneth network and 150 in the goblet network) correlates with 

the number of marker genes identified by Haber et al. (Haber et al., 2017). However, far fewer 

regulators were identified in the goblet cell subnetwork per marker than for the Paneth cell 

subnetwork. Whilst the underlying reason for this discrepancy is unknown, it could potentially 

be evidence of the complex regulatory environment required to integrate and respond to the 

arsenal of signals recognised by Paneth cells in comparison to goblet cells (Stappenbeck and 

McGovern, 2017). 
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Figure 2.7. Regulator-marker subnetworks for Paneth cell and goblet cell datasets. A, B: Paneth 

cell (A) and goblet cell (B) subnetworks. Nodes represent genes, transcription factors or RNAs 

and edges represent directed physical regulatory connections. Regulators are shown in red and 

pink. Cell type-specific markers are shown in blue. C: Summary of the number of nodes present 

in both the subnetworks. Paneth cell data above and goblet cell data below. Total number of 

each regulator type shown in red, number of each target type shown in blue. Regulators have 

been categorised based on their membership in the two subnetworks - shared regulators are 

present in both networks. In the targets pie-chart, mRNAs also represent protein coding genes. 

Size of circles represents log10 (total unique regulators/targets). TF - transcription factor; miRNA 

- microRNA; lncRNA - long non-coding RNA. Figure reproduced from Treveil et al. (2020) under 

the Creative Commons BY licence. 

 

Of the 95 marker regulators, we identified approximately one-third (30/95) as present in both 

subnetworks (Figure 2.7C). Given that the markers are different between the cell types, a 

regulator shared between the Paneth cell and goblet cell subnetworks must show an altered 

pattern of regulatory targeting in the two cell types. This phenomenon, referred to as regulatory 

rewiring, often results in functional differences of shared regulators in different environments 

(Han et al., 2017) - for example, in this case, between the Paneth cells and goblet cells. 

 

Further investigation of the distinct regulator-marker interactions highlighted a gradient of 

regulator specificity. We generated matrices to visualise the markers controlled by each 

regulator in the goblet cell (Figure 5A) and the Paneth cell (Figure 5B,C) subnetworks. Each 
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coloured square indicates that a marker (shown on the y-axis) is regulated by the corresponding 

regulator (shown on the x-axis). Squares are coloured blue if the associated regulator is shared 

between the Paneth cell and goblet cell subnetworks and orange if they are specific to one 

subnetwork. A collection of regulators (both subnetwork specific and shared) appear to regulate 

large proportions of the markers. For example, Protein C-ets-1 (ETS1), Glucocorticoid receptor 

(NR3C1) and Vitamin D receptor (VDR) regulate >50% of the markers in both the Paneth cell and 

the goblet cell subnetworks. Specific to the Paneth cell subnetwork, CCAAT enhancer-binding 

protein alpha (CEBPA), Jun proto-oncogene AP-1 transcription factor subunit (JUN), Nuclear 

receptor subfamily 1 group D member 1 (NR1D1) and Retinoid X receptor alpha (RXRA) regulate 

>50% of the markers. Specific to the goblet cell subnetwork, Growth factor independent 1B 

transcriptional repressor (GFIB1) and MYC proto-oncogene (MYC) regulate >50% of the markers. 

These regulators represent potential master regulators of differentiation or maintenance of the 

given cell types in the enriched enteroids. Referring back to the highly-interconnected clusters 

identified in the PCeE and GCeE networks (Figure 3C-D), we find these predicted master 

regulators in different clusters. In the PCeE network, CEPBA, NR1D1, NR3C1 and RXRA are in 

cluster 1, VDR is in cluster 2, JUN is in cluster 3 and ETS1 is unclustered. In the GCeE network, 

ETS1 and MYC are in cluster 1, NR3C1 and VDR are in cluster 2 and GFI1B is in cluster 3. This 

suggests a wide range of central functions are carried out by this group of regulators, with 

possible divergence of roles between the Paneth cell and the goblet cell. In contrast to the 

predicted master regulators, regulators such as MAF BZIP transcription factor K (MAFK) in the 

Paneth cell subnetwork and SAM pointed domain containing ETS transcription factor (SPDEF) in 

the goblet cell subnetwork regulate only one marker. These regulators likely have more 

functionally specific roles.  

 

Together, these results highlight potential regulators which likely play key roles in specification 

and maintenance of Paneth and goblet cells and their functions in cell type enriched enteroids. 
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Figure 2.8. Matrices of interactions between markers and their regulators in the Paneth cell 
and goblet cell subnetworks. Regulators on y-axis, markers (regulator targets) on x-axis. Orange 

boxes indicate the interaction of a regulator and a marker where the regulator is only found in 

one of the two subnetworks. Blue boxes signify that the regulator is found in both the Paneth 
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cell and the goblet cell subnetworks. A: All goblet cell markers (Haber et al., 2017) and their 

regulators in the goblet cell subnetwork. B: All Paneth cell markers (Haber et al., 2017) and their 

regulators in the Paneth cell subnetwork. C: Sub-section of A showing the markers (and their 

regulators) which have the most regulatory connections. Figure reproduced from Treveil et al. 

(2020) under the Creative Commons BY licence. 

 

2.4.4 Regulators are rewired between Paneth cells and goblet cells 

Cell type-specific markers, which carry out cell type-specific functions, are inherently different 

between the Paneth cell and goblet cell subnetworks (mutually exclusive). Therefore, the 

regulators observed in both Paneth cell and goblet cell subnetworks (shared regulators) are 

expected to target different marker genes. To do this, the regulators must have different 

regulatory connections in the different cell types, a phenomenon termed ‘rewiring’ (Park and 

Wang, 2018). I extended the analysis to the original regulatory networks (PCeE and GCeE 

networks) to investigate whether any of the 30 identified shared regulators are rewired between 

the whole PCeE and the GCeE networks, and thus are highly likely to have different functions in 

the two types of enriched enteroids as well as between Paneth and goblet cells. To quantify 

rewiring of each of these regulators, I observed their targets in the PCeE and GCeE networks 

using the Cytoscape application, DyNet (Goenawan et al., 2016). DyNet assigns each regulator a 

rewiring score depending on how different their targets are between the two regulatory 

networks (Table S2.3). Using these rewiring scores, I identified the five most rewired regulators 

(of 30) as ETS variant transcription factor 4 (ETV4), let-7e-5p, miR-151-3p, MYB proto-oncogene 

(MYB) and RAR related orphan receptor A (RORA). Functional enrichment analysis was carried 

out on the targets of these regulators to test whether the targets specific to the PCeE and GCeE 

networks have different functions (hypergeometric model, q value ≤ 0.1) (File S2.2). Across all 

five regulators the general trend indicated that targets specific to the PCeE network are 

associated with metabolism; targets specific to the GCeE network are associated with cell cycle 

and DNA repair. As pathway analysis carried out on the enteroid DEGs identified the same 

phenomenon (Figure 2.4D), this suggests that the rewired regulators could be key drivers of 

transcriptional changes during the skewing of enteroid differentiation towards Paneth cell or 

goblet cell lineages. In addition, given that the strongest signal of enriched enteroids represents 

their enriched cell type, I predict that these functions are key features of Paneth cells and goblet 

cells in the enteroids, and that the rewired regulators are important drivers of cell type-specific 

functions.  

 



Chapter 2: The regulatory landscape of small intestinal epithelial cells 

 

 

 

91 

 

Looking at the regulators in more detail, the GCeE specific targets of miR-151-3p, for example, 

are significantly enriched in functions relating to antigen presentation, cell junction 

organisation, Notch signalling and the calnexin/calreticulin cycle. None of these functions are 

enriched in the shared or PCeE targets. Of particular interest is the calnexin/calreticulin cycle, 

which is known to play an important role in ensuring proteins in the endoplasmic reticulum are 

correctly folded and assembled (Leach and Williams, 2003). Dysfunction of protein folding and 

the presence of endoplasmic reticulum stress are both associated with IBD (Kaser and Blumberg, 

2009; Kaser et al., 2008, 2011). Therefore, we predict that miR-151-3p plays a role in the 

secretory pathway of goblet cells and could be an interesting target for IBD research. In addition, 

different functional profiles were also observed for the targets of RORA in the PCeE and GCeE 

regulatory networks: targets present in both networks are significantly associated with mitosis, 

whereas those specific to the PCeE network are associated with metabolism, protein 

localisation, nuclear receptor transcription pathway, circadian clock and hypoxia induced 

signalling. GCeE specific targets of RORA are connected to Notch signalling, cell cycle and 

signalling by Rho GTPases (associated with cell migration, adhesion and membrane trafficking) 

and interferon.  

 

Altogether these observations show that some of the regulators of both Paneth cell and goblet 

cell marker genes have different targets (with different associated functions) between the PCeE 

and the GCeE networks. This suggests that regulatory rewiring occurs between Paneth cell and 

goblet cell types.  

 
 

2.4.5 Regulatory networks are relevant to study IBD 

To investigate the function and relevance of the predicted master regulators in IBD, I carried out 

three analyses:  

1) a literature search to check what is known about the identified master regulators. 

2) an enrichment analysis to evaluate the disease relevant genes in the PCeE and GCeE 

networks and among the targets of the predicted master regulators (with help from 

Padhmanand Sudhakar) 

3) a comparative analysis with human biopsy based single cell dataset to confirm the 

relevance of the PCeE and GCeE networks. 

 



Chapter 2: The regulatory landscape of small intestinal epithelial cells 

 

 

 

92 

 

The literature search was carried out using the three groups of predicted master regulators: 

those specific to the Paneth cell markers (CEBPA, JUN, NR1D1, RXRA), those specific to the goblet 

cell markers (GFI1B, MYC) and those which appear to regulate many of the markers of both cell 

types (ETS1, NR3C1, VDR). We identified five genes (ETS1, NR1D1, RXRA, NR3C1, VDR) with 

associations to inflammation, autophagy and/or inflammatory bowel disease (IBD), as shown in 

Table 2.2. These genes correspond to 71% (5/7) of the Paneth cell associated master regulators 

and 60% (3/5) of the goblet cell associated master regulators. Interestingly, four of these genes 

(all apart from ETS1), encode nuclear hormone receptors.  
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Putative master 
regulator 

Autophagy / inflammation / IBD associations References 

NR1D1 (Nuclear 
receptor 

subfamily 1 group 
D member 1) 

Modulates autophagy and lysosome biogenesis 
in macrophages leading to antimycobacterial 

effects 

(Chandra et al., 2015) 

SNP rs12946510 which has associations to IBD, 
acts as a cis-eQTL for NR1D1 

(Mirza et al., 2015)  

NR3C1 
(Glucocorticoid 

receptor) 

Associations with cellular proliferation and anti-
inflammatory responses 

(Oakley and Cidlowski, 2013) 

Exogenous glucocorticoids are heavily used as 
anti-inflammatory therapy for IBD 

(Prantera and Marconi, 
2013; Rutgeerts, 1998) 

ATG16L1, an autophagy related gene, was 
downregulated in patients who do not respond 

to glucocorticoid treatment 

(De Iudicibus et al., 2011; 
Dubois-Camacho et al., 

2017) 

Transcriptionally regulates NFKβ1, a SNP 
affected gene in ulcerative colitis 

(Dinkel et al., 2016; 
Yemelyanov et al., 2007) 

VDR (Vitamin D 
receptor) 

Regulates autophagy in Paneth cells through 
ATG16L1 – dysfunction of autophagy in Paneth 

cells has been linked to Crohn’s disease 

 (Bakke et al., 2018; Wu et 
al., 2015) 

Induces antimicrobial gene expression in other 
cell lines 

(Gombart et al., 2005; Wang 
et al., 2004) 

Specific polymorphisms in the VDR genes have 
been connected to increased susceptibility to 

IBD 

(Pei et al., 2011)  

A study looking at colonic biopsies of IBD 
patients observed reduced VDR expression 

compared to healthy biopsies 

(Abreu et al., 2004)  

Interacts with five SNP affected UC genes (Bovolenta et al., 2012; 
Lesurf et al., 2016) 

RXRA (Retinoid X 
receptor alpha) 

Heterodimerizes with VDR (see above) (Bettoun et al., 2003) 

ETS1 (Protein C-
ets-1) 

Important role in the development of 
hematopoietic cells and Th1 inflammatory 

responses 

(Grenningloh et al., 2005; 
Mouly et al., 2010) 

Angiogenic factors in the VEGF-Ets-1 cascades 
are upregulated in UC and downregulated in CD 

(Konno et al., 2004)  

IBD susceptibility gene (Li et al., 2018)  

Table 2.2. Literature associations relating to autophagy, inflammation and IBD for putative master 

regulators. Table reproduced from Treveil et al. (2020) under the Creative Commons BY licence. 
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Given the possible relationship between the identified master regulators and IBD, I tested the 

potential of the PCeE and GCeE regulatory networks to study the pathomechanisms of CD or UC. 

I checked for the presence of known CD or UC associated genes in the networks, using data from 

two studies of single nucleotide polymorphisms (SNPs) (Farh et al., 2015; Jostins et al., 2012) 

and one study of CD expression quantitative trait loci (eQTLs) (Di Narzo et al., 2016). Using 

hypergeometric significance tests, I found that the PCeE network was significantly enriched in 

all tested lists: genes with UC associated SNPs (13/47, p < 0.005), genes with CD associated SNPs 

(22/97, p < 0.005) and genes with CD associated eQTLs (290/1607, p < 0.0001) (Table S2.4, Table 

S2.5). On the other hand, we found that the GCeE network was significantly enriched in genes 

with UC associated SNPs (10/47, p < 0.005) but regarding CD, the genes with SNP associations 

were not significantly enriched (12/97, p = 0.11) and the genes with eQTL associations were 

enriched with a larger p value (p < 0.05) (Table S2.4, Table S2.5). 

 

Next, I investigated whether any of the genes with UC or CD associated SNPs act as regulators 

in the PCeE and GCeE networks. Of the genes with CD associated SNPs, one acts as a regulator 

in each network. Similarly, two different genes with UC associated SNPs act as regulators in the 

networks. A summary of these genes and their regulated targets is given in Figure 2.9. 

Specifically, regarding CD associated genes, in the PCeE network, the gene D-box binding PAR 

BZIP transcription factor (Dbp) regulates BIK, which encodes the BCL2 interacting killer, a pro-

apoptotic, death promoting protein. In the GCeE network, Notch receptor 2 (NOTCH2) regulates 

Notch receptor 3 (Notch3) and Hairy and enhancer of split-1 (Hes1). Specifically, regarding UC 

associated genes, in the PCeE network, Hepatocyte Nuclear Factor 4 Alpha (HNF4A) regulates 

994 genes/RNAs including nine Paneth cell markers and one other gene with UC associated SNPs 

(TNF superfamily member 15, Tnfsf15). 

• CD244 molecule, Cd244a 

• Fibroblast growth factor receptor like, Fgfrl1 

• Colipase, Clps 

• Hyaluronan binding protein 2, Habp2 

• Heat shock protein family B member 8, Hspb8 

• Pancreatic lipase related protein 1/2, Pnliprp1/2 

• Defensin beta 1, Defb1 

• Myomixer myoblast fusion factor, Mymx  
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Additionally, a gene with UC associated SNPs, Nuclear receptor subfamily 5 group A member 2 

(Nr5a2), was found in both the PCeE and GCeE networks regulating 389 and 276 genes/RNAs 

respectively. In the PCeE network Nr5a2 targets include 6 Paneth cell markers (Cd244a, COPI 

coat complex subunit zeta 2 (Copz2), Pnliprp1/2, Syntrophin beta 1 (Sntb1), Mymx). Ultimately, 

the large number of targets of these regulatory UC associated genes suggests they have wide 

ranging effects on the regulatory network of Paneth and goblet cells. To further establish the 

relevance of the inferred PCeE and GCeE networks, Padhmanand Sudhakar also found an over-

representation of drug target associated genes in both the PCeE and GCeE networks 

(2683/16223 and 1918/16223 respectively, p < 0.0001), highlighting their potential for the study 

of therapeutic implications. 

 

Figure 2.9. Crohn’s disease and ulcerative colitis associated SNP genes and their targets within 
the PCeE and GCeE networks. CD - Crohn’s disease; UC - ulcerative colitis; PCeE - Paneth cell 
enriched enteroid; GCeE - goblet cell enriched enteroid network; PC - Paneth cell.  

 

To investigate the link between predicted master regulators and IBD, I observed whether the 

genes with UC and CD associated SNPs are regulated by the predicted master regulators in the 

PCeE and GCeE networks (Table S2.6). Given that Paneth cell dysregulation is classically 

associated with CD and goblet cell dysregulation/depletion with UC (Cader and Kaser, 2013), I 

focused this analysis only on these pairings, examining CD genes amongst targets of Paneth cell 

predicted master regulators, and UC genes amongst targets of goblet cell predicted master 
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regulators. In the PCeE network, I found 21 (of 22) of the CD genes were regulated by at least 

one of the seven Paneth cell predicted master regulators, while the targets of these master 

regulators were significantly enriched with CD genes in the PCeE network (p < 0.001). Similarly, 

I observed that all 10 UC genes in the GCeE network were regulated by at least one of the five 

goblet cell predicted master regulators, while the targets of these master regulators were 

significantly enriched with UC genes (p < 0.005). 

 

To confirm the relevance of these predicted master regulators in a human system, a similar 

analysis was carried out using goblet cell differentially expressed genes from a recent single cell 

study of human inflamed UC colon biopsies (Smillie et al., 2019). Using the top 100 differentially 

expressed genes, following conversion to mouse Ensembl identifiers, 20 were found to be 

targeted by the predicted goblet cell master regulators in the GCeE network. This represents a 

significant enrichment amongst all master regulator targets (p < 0.005) (Table S2.6). 

 

Ultimately, by integrating functional annotations obtained through literature searches, we show 

that the Paneth cell and goblet cell regulatory networks contain genes with direct and indirect 

associations with IBD. Furthermore, we find that the PCeE and GCeE networks and the targets 

of predicted master regulators are enriched with IBD associated genes - this finding is 

corroborated using human single cell data from UC colon biopsies. Consequently, these 

networks and the workflow to reconstruct and analyse them have great potential for the study 

of IBD pathomechanisms in specific intestinal cell types.  

 

  



Chapter 2: The regulatory landscape of small intestinal epithelial cells 

 

 

 

97 

 

2.5 Discussion 
 

By comparing the transcriptional signature of small and stranded RNAs in the CDEs to the cell 

type enriched enteroids, we identified genes with altered expression due to enteroid 

enrichment. I hypothesise that the larger quantity of DEGs observed in the Paneth cell enriched 

data represents the more diverse selection of environmental signals integrated by Paneth cells 

and the lesser role of the goblet cell in the small intestine, given that they are primarily located 

in the colon (Clevers and Bevins, 2013; Stappenbeck and McGovern, 2017). Functional 

overrepresentation analysis on the top 50 DEGs identified metabolic pathways associated with 

the PCeE-specific DEGs and cell cycle pathways associated with the GCeE-specific DEGs. The 

addition of further functional analysis methods such as Gene Set Enrichment Analysis and 

network-aware functional analysis, could enable the study of all identified DEGs and their 

direction of change, contributing further biological insight (Castresana-Aguirre and 

Sonnhammer, 2020; Subramanian et al., 2005). 

 

Using cell type marker genes from a single cell sequencing paper (Haber et al., 2017), I showed 

that enriching enteroids for Paneth cells and goblet cells results in an increase in transcriptomics 

signatures from Paneth cells and goblet cells, respectively. The observation of additional 

enrichment of other secretory cell types, particularly enteroendocrine cells, likely reflects the 

shared differentiation pathways of these cells. In the future, the generation and application of 

cell signature lists from multiple different studies could reduce bias associated with using only 

one dataset (Haber et al., 2017). Such biases could have arisen, for example, from the age and 

gut microbiome of the mice and from the experimental and computational methods. In future 

analysis, evaluation of changes occurring in other cell types (e.g. enterocytes) as a result of 

differentiation skewing could further evidence cell type specificity of the altered differentiation 

protocols. Single cell sequencing of enteroids could be used for such an investigation, allowing 

comparison of gene expression of enterocytes from Paneth cell or goblet cell enriched enteroids 

to those from CDEs. 

 

The enrichment of enteroendocrine cell signatures correlates with previous investigations of cell 

type enriched enteroids at both the transcriptomic and proteomic levels (Jones et al., 2019; Luu 

et al., 2018; Mead et al., 2018; Yin et al., 2014) and is important to consider when using these 

organoid models. Regardless, as enteroids contain a mixed population of cell types by nature 
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and because intercellular communication is key to a functioning epithelium (Sato et al., 2011; 

Thorne et al., 2018), the increased proportion of non-targeted secretory lineages should not be 

an issue for the application of these models to research. In fact, the enrichment of specific cell 

types is beneficial for enteroid-based research to increase the signal originating from a specific 

population of cells and to provide a larger population of cells of interest for downstream single 

cell analysis of enteroids, which is particularly beneficial when studying rare populations such as 

Paneth cells. The comparison of ‘omics data from a cell type enriched enteroid to a CDE enables 

generation of cell type signatures with more specificity than can be obtained otherwise (e.g. 

from whole tissue biopsy samples) - except through single cell sequencing. It is possible to carry 

out single cell sequencing on enteroids, however this comes at a greater financial cost and 

provides lower coverage which can be problematic for rare cell types and lowly expressed RNAs 

(Brazovskaja et al., 2019; Jung and Jung, 2016). Organoid models are particularly valuable given 

the lack of in vitro models for long-term culture of non-self-renewing small intestinal epithelial 

cells (Chopra et al., 2010; Lukovac and Roeselers, 2015). A number of previous studies have 

shown that these cell type enriched enteroid models, which offer a simplified and manipulatable 

version of the intestinal environment, are useful for the investigation of health and disease 

related processes (Jones et al., 2019; Luu et al., 2018; Mead and Karp, 2019). Furthermore, Mead 

et al. recently showed that within cell type enriched enteroids, transcriptomic changes are well 

correlated to in vivo gene expression (Mead et al., 2018), supporting their use for in vitro studies. 

Through this presented work, I showed that cell type enriched organoids can be used to study 

cell type-specific regulation by comparing enriched to control organoids – although the 

specificity of the signature is not as great as would be achieved using a single cell sequencing 

approach. 

 

Using an a priori universal network of non-specific molecular interactions, I annotated the DEGs 

with transcriptional and post-transcriptional regulatory connections. MiRNAs and lncRNAs were 

included in these networks as they have been shown to perform critical regulatory and 

mediatory functions in maintaining intestinal homeostasis (Chapman and Pekow, 2015; Farh et 

al., 2015; Mirza et al., 2015). For example, lncRNAs have been found to be differentially 

expressed in IBD and often co-localised with IBD-associated single nucleotide polymorphisms 

(Mirza et al., 2015). At least three separate studies have previously captured RNA profiles of 

healthy and/or diseased intestinal cell types; capturing mRNA, miRNA and lncRNA signatures 

(Haber et al., 2017; Mirza et al., 2015; Peck et al., 2017). However, we believe this is the first 
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comprehensive analysis of miRNAs, lncRNAs and TFs in conjunction with the genes and proteins 

they regulate which has been performed on a systems-level in a standardized manner. 

Unfortunately, only small proportions of the generated PCeE and the GCeE networks contained 

miRNA and lncRNA interactions, due to lack of published interaction information, particularly 

from murine studies. The addition of further ‘omics data-types to the described approach could 

generate a more holistic view of cellular molecular mechanisms, including the ability to observe 

post-translational regulation. These networks will not contain every possible regulatory 

interaction within the cell type of interest but will contain interactions which are likely relevant 

to cell type-specific functions. For example, whilst regulators do not necessarily show strong co-

expression with their targets, where co-expression exists, there is a greater chance that the 

association is functionally interesting. Therefore, we can use these networks to represent and 

analyse current biological knowledge as well as to generate hypotheses and guide further 

research. The a priori universal network approach to collating networks (regulatory or 

otherwise) has been used for a wide variety of research aims, such as the identification of genes 

functioning in a variety of diseases (Huang et al., 2018; Novarino et al., 2014), the prioritisation 

of therapeutic targets (Wachi et al., 2005) and for a more general understanding of gene 

regulation in biological systems (Kubisch et al., 2013; Yu et al., 2003). The application of prior 

knowledge avoids the need for reverse engineering / inference of regulatory network 

connections, which is time consuming, computationally expensive and requires large quantities 

of high quality data (Vijesh et al., 2013).  

 

To investigate the substructure and functional associations of the generated PCeE and GCeE 

regulatory networks I applied a clustering approach. The identified clusters represent collections 

of highly interconnected nodes, which likely form regulatory modules. Functional analysis 

confirmed distinct functional associations between the clusters as well as between the 

networks. The observation that less than half of the network nodes exist in clusters is consistent 

with the view that regulatory networks are hierarchical and scale free with most genes exhibiting 

low pleiotropy (Barabási and Oltvai, 2004; Wagner and Zhang, 2011). 

 
Given the observed additional increase in secretory lineages based on the DEGs of the enriched 

organoids, I chose to use cell type-specific markers to extract interactions specific to Paneth cells 

and goblet cells from the generated regulatory networks. This enables further enrichment of 

Paneth cell and goblet cell signatures and reduction in noise in the networks due to the presence 

of other cell types in the enteroids. Using this approach, I identified possible regulators of cell 
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type-specific functions in Paneth cells and goblet cells. Some of these regulators were predicted 

to be important in both cell types but exhibited differential targeting patterns between the PCeE 

and the GCeE networks, indicating rewiring of regulators between the cell types. Functional 

analysis of the targets of the most rewired regulators (ETV4, let-7e-5p, miR-151-3p, MYB and 

RORA) highlights an overrepresentation of metabolism associated targets in the PCeE network 

and cell cycle associated targets in the GCeE network. A similar result was observed when 

functional analysis was carried out on genes with significantly different expression levels 

between the cell type enriched enteroids and the CDEs (Figure 2.4B). This suggests that 

transcriptional changes during the skewing of enteroid differentiation could be driven by 

rewired regulators and that these functions are key features of Paneth cells and goblet cells in 

the enteroids. The latter is supported by current understanding that Paneth cells rely on high 

levels of protein and lipid biosynthesis for secretory functions (Cadwell et al., 2008) and play an 

important role in metabolically supporting stem cells (Rodríguez-Colman et al., 2017). 

Additionally, as terminally-differentiated cells do not undergo cell division, this result suggests 

that enteroid goblet cell signatures are derived from a large population of semi-differentiated 

goblet-like cells, a phenomenon previously observed in tissue sample based studies (Paulus et 

al., 1993; Smillie et al., 2019). This analysis highlights apparent redundancy and/or cooperation 

of regulators which control similar cell type-specific functions and shows the potential 

importance of regulatory rewiring in the evolution of cell type-specific pathways and functions, 

something which has been shown previously to occur (Davis and Rebay, 2017; Mendoza-Parra 

et al., 2016).  

 

As an extension of the cell type-specific marker analysis, I identified putative cell type master 

regulators which control at least 50% of the cell type-specific markers in the PCeE and GCeE 

regulatory networks. Literature investigation highlighted that many of these regulators, 

particularly those associated with Paneth cells, have connections to autophagy, inflammation 

and IBD (Table 2.2). It is known that Paneth and goblet cell immune-associated secretory 

functions, which play a major role in gut homeostasis, are highly dependent on the cellular 

process autophagy (Cadwell et al., 2008; Jones et al., 2019; Patel et al., 2013; Stappenbeck, 

2010). For example, it has recently been shown that the release of lysozyme from Paneth cells 

requires a form of autophagy called secretory autophagy, in which LC3+ vesicles containing 

lysozyme are routed to the apical surface of the cell for secretion (Bel et al., 2017). This secretory 

autophagy was shown to be disrupted in mice harbouring a Crohn’s disease risk allele in the 

ATG16L1 gene, thus providing a link between secretion, inflammation, autophagy and IBD. In 
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addition, dysfunction of secretion and autophagy in Paneth cells and goblet cells has been 

associated with IBD through mechanisms such as reduced intracellular bacterial killing, 

increased endoplasmic reticulum stress and impaired secretion of mucus from goblet cells 

(Cadwell et al., 2009; Gersemann et al., 2009; Kaser and Blumberg, 2009; Patel et al., 2013). 

Furthermore, many IBD susceptibility genes are associated with autophagy function, further 

highlighting the link between autophagy, secretion and IBD (Lassen and Xavier, 2017). 

Ultimately, the literature associations with the predicted cell type-specific master regulators, 

particularly those relating to the Paneth cell, highlight the importance of autophagy, secretion 

and inflammation in Paneth cell and goblet cell function and suggest that dysregulation of key 

cell master regulators could lead to IBD.  

 

To further investigate the IBD link, I identified Crohn’s disease (CD) and ulcerative colitis (UC) 

genes in the PCeE and GCeE networks. I found that CD associated genes are more strongly 

associated with the PCeE network than the GCeE network. Given that Paneth cell dysfunction is 

classically associated with CD, this finding highlights the relevance of the generated networks to 

the in vivo situation. In the PCeE network one SNP associated CD gene, Dbp, acts as a regulator. 

Dbp, encoding the D site binding protein, regulates Bik, which encodes the BCL2 interacting 

killer, a pro-apoptotic, death promoting protein. Interestingly, rate of apoptosis has been 

implicated in IBD disease mechanisms (Nunes et al., 2014) and has been associated with IBD 

drug response (Aghdaei et al., 2018). Therefore, this finding highlights a possible regulatory 

connection between CD susceptibility genes and IBD pathology on a Paneth cell specific level. In 

the GCeE network, the SNP associated CD gene NOTCH2 acts as a regulator for Notch3 and Hes1. 

It has been previously demonstrated that this pathway can block glucocorticoid resistance in T-

cell acute lymphoblastic leukaemia via NR3C1 (predicted master regulator) (Real et al., 2009). 

This is relevant to IBD given that glucocorticoids are a common treatment for IBD patients 

(Prantera and Marconi, 2013). Additionally, the repression of HATH1 by HES1 via Notch 

signalling has been previously associated with goblet cell depletion in humans (Zheng et al., 

2011).  

 

Furthermore, we identified a significant enrichment of UC associated genes in both the PCeE 

and GCeE networks. The majority of UC associated genes identified in the networks (9/14) were 

present in both, suggesting that genetic susceptibilities of UC do not have a Paneth cell or goblet 

cell specific effect. Two of the identified UC associated genes act as regulators in the networks 

(Nr5a2 and Hnf4a), targeting hundreds of genes and thus suggesting a broad ranging effect on 
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the networks. Building on the identified literature associations of predicted master regulators, 

we found that the targets of Paneth cell master regulators are enriched with CD associated 

genes, and the targets of the goblet cell master regulators are enriched with UC associated 

genes. This finding was further illustrated using UC associated goblet cell genes from a human 

biopsy study (Smillie et al., 2019), highlighting the relevance of these findings in a human system. 

Ultimately, the observation of IBD susceptibility genes in the regulatory networks of these 

enteroids highlights possible application of this model system to the study disease regulation in 

specific intestinal cell types, through understanding specific mechanistic pathways. In addition, 

combined with patient genetic profiles, this approach could help to understand patient specific 

drug responses and identify new targets for drug actions. 

 

2.6 Future research directions 
 

We have shown how network biology techniques can be successfully applied to generate 

interaction networks representing the change in regulatory environments between two sets of 

enteroids, evidencing the value of organoids for cell type-specific studies. The described 

workflow could be applied to a variety of ‘omics datasets and enteroid conditions. For example, 

to test the response of enteroids to external stimuli, such as bacteria, and on enteroids grown 

from human-derived biopsies, enabling patient-specific experiments. The application of further 

‘omics data-types to the described approach could generate a more holistic view of cellular 

molecular mechanisms, including the ability to observe post-translational regulation. In this 

study, we integrated miRNA and lncRNA expression datasets, in addition to mRNA data. 

However, only small proportions of the generated PCeE and the GCeE networks contained 

miRNA and lncRNA interactions, due to lack of published interaction information, particularly 

from murine studies. Both the application of human enteroid data and the future publication of 

high-throughput interaction studies involving miRNAs and lncRNAs will improve the ability to 

study such interactions. Instead, regulatory connections could be predicted using computational 

approaches, rather than relying on a priori resources. For example, one approach can draw 

insight about lncRNA-protein interactions using lncRNA–miRNA interactions and miRNA–protein 

interactions (Zhou et al., 2019). Another approach uses multilayer convolutional neural 

networks to predict miRNA interactions based on experimentally validated interactions (Zheng 

et al., 2020). 
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Extension of our workflow to single cell sequencing of cell type enriched enteroid cells would 

provide increased cell type-specificity. This could enable generation of cell type-specific 

regulatory networks (without noise from other secretory cell types) and, if applied without 

gating (e.g. 10x Genomics droplet-based systems (Zheng et al., 2017)), could prove or disprove 

that goblet cell signatures in enriched enteroids are derived from a large population of semi-

differentiated goblet-like cells. Gating-based single cell sequencing has already been carried out 

by Mead et al. on Paneth cells from enriched enteroids, but network analysis was not applied to 

contextualise this data (Mead et al., 2018). Droplet-based single cell sequencing could add 

further understanding of the cell populations within enriched and conventional enteroids, but 

would require a large number of organoids to mitigate cellular complexity and batch 

heterogeneity and a powerful, reproducible and accurate computational pipeline to analyse the 

data (Chen et al., 2019). 

 

Further work using knock-out mice or organoids could attempt to validate the importance of 

predicted master regulators in Paneth cells and goblet cells. However, this poses significant 

challenges due to their wide expression and broad function range. If the master regulators are 

controlling differentiation as opposed to cell function maintenance, evaluating lineage arrest or 

delay could be carried out using a gene knockout or knock down. However, the effects of 

pleiotropy will significantly hamper the results and such a study would require significant follow-

up studies. On the other hand, if key regulators were predicted by applying the presented 

computational workflow to condition-specific organoids compared to control organoids (e.g. 

drug treated organoids vs non-treated organoids), the validation would be much simpler. 

 
Given the functional associations, I predict that one of the most rewired regulators identified in 

this study, miR-151-3p, plays a role in the secretory pathway of goblet cells. This could be further 

investigated using knockout or knock down studies in enteroids. It’s relevance in IBD could be 

studied using enteroids generated from IBD patient biopsies. Furthermore, investigation of 

other IBD-related predictions could be carried out using enteroids. For example, enteroids 

containing a knockout or known down of one of the UC associated genes acting as regulators in 

the networks (Nr5a2 and Hnf4a), could be used to evaluate the phenotypic effect on Paneth 

cells and goblet cells – for example using ‘omics data and/or microscopy approaches. 

Alternatively, mice containing an epithelial knockout of the investigated gene could be studied 

for their susceptibility to intestinal colitis. Moreover, enteroids can be grown from IBD patient 

biopsies of patients harbouring the UC associated gene variant and Paneth cell or goblet cell 
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phenotypes could be observed compared to wildtype enteroids – alternatively biopsies 

themselves could be investigated. Similar studies could be carried out using the predicted 

Paneth cell and goblet master regulators. Such investigations would contribute mechanistic 

understanding of connections between Paneth cell and goblet cell function and IBD phenotypes. 

 

In conclusion, we developed an integrative systems biology workflow to compare regulatory 

landscapes between enteroids from different conditions, incorporating information on 

transcriptional and post-transcriptional regulation. We applied the workflow to compare Paneth 

cell and goblet cell enriched enteroids to CDEs and predicted Paneth cell and goblet cell specific 

regulators, which could provide potential targets for further study of IBD mechanisms. 

Application of this workflow to patient derived organoids, genetic knockout and/or microbially 

challenged enteroids, alongside appropriate validation and single cell sequencing if available, 

will aid discovery of key regulators and signalling pathways of healthy and disease associated 

intestinal cell types.  
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 Chapter 3: The effect of cytokines on the colonic 

epithelium 

 

3.1 Introduction 
 

Interactions between the immune system and the intestinal epithelium play an important role 

in the pathogenesis of chronic immune mediated inflammatory diseases, including 

inflammatory bowel disease (IBD). In IBD, debilitating symptoms and complications including 

abscesses and cancer, are associated with aberrant cytokine production and resulting intestinal 

epithelial damage. Despite the advent of biological therapies targeting key pathogenic 

cytokines, like tumour necrosis alpha (TNF), fewer than 40% of IBD patients achieve complete 

disease control and mucosal healing (Cholapranee et al., 2017). Furthermore, classification of 

IBD and patient stratification is typically based on descriptive clinical parameters, which are poor 

predictors of patient trajectories. Therefore, new molecular insights are needed to understand 

the role of cytokines and intestinal epithelial cells (IECs) in IBD. In turn this knowledge should 

inform new treatment strategies and may aid stratification of patients for best use of existing 

treatment options. 

 

This chapter describes an interdisciplinary and collaborative project which investigates the 

impact of cytokines on IECs using transcriptomics data. Using this data, we studied the signalling 

and regulatory responses of IECs to cytokines and compared cytokine-induced transcriptional 

signatures to patient biopsy transcriptional signatures, identifying a novel molecular 

classification of IBD. The data sources and analyses for this project are outlined in Figure 3.1. 

Specifically, we generated transcriptomics data from healthy colonic organoids (colonoids) 

which were treated which five IBD-relevant cytokines representing different T helper (Th) cell 

responses: interferon-gamma (IFN𝛾) and TNF (Th1), interleukin (IL)-9 (Th9), IL-13 (Th2) and IL-

17A (Th17). Differentially expressed genes were obtained by comparing each cytokine-treated 

colonoid to an untreated control colonoid dataset. This data was used in two main ways. First it 

was compared to transcriptional signatures of IBD patient colon biopsies, finding that IBD 

patient cohorts exhibit a gradient of cytokine-induced transcriptional changes which is 

significantly correlated with subsequent patient response to anti-cytokine treatments – 

providing a new method to stratify patients. Second, the colonoid data was used to generate 
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causal networks (termed cytokine-responsive networks) modelling the signal flow from 

recognition of a cytokine at the outer membrane of IECs through intracellular signalling 

pathways to the resulting transcriptional changes observed in the colonoids. This analysis also 

integrated molecular interactions from the databases OmniPath (protein-protein interactions, 

PPIs) and DoRothEA (transcription factor – target gene interactions, TF-TGs) and colon 

expression data from the Human Protein Atlas (Garcia-Alonso et al., 2019; Türei et al., 2016; 

Uhlén et al., 2015). Investigation and analysis of these networks revealed previously 

unrecognised levels of shared and distinct regulation by different cytokines. Further, I identified 

downstream regulatory bottlenecks, including Protein C-ets-1 (ETS1), in cytokine-responsive 

networks. Using IBD-patient transcriptomics data we demonstrated that expression of ETS1 in 

diseased colonic tissue is significantly associated with response to anti-cytokine treatments, 

thus providing a novel molecular biomarker and a potential therapeutic target. 
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Figure 3.1. Schematic overview of the primary data sources and analyses carried out in Chapter 
3. Initial analysis of colonoid transcriptomics data is covered in Results section 3.4.1 (Cytokines 
effect epithelial gene expression). Cytokine transcriptional signatures in IBD biopsies is covered 
in Results section 3.4.2 (Cytokine transcriptional signatures are enriched in IBD patient biopsies). 
Network reconstruction is in section 3.4.3 (Reconstructing cytokine causal networks in human 
colonoids). Network regulators and signalling is in Results section 3.4.4 (Cytokine-responsive 
signalling pathways converge at key transcription factors) and finally network regulators in IBD 
is in section 3.4.5 (ETS1 is a major regulator of the cytokine signalling in intestinal inflammation). 

 

My role in this project was generation and analysis of cytokine-responsive networks, overlap of 

IBD signatures with cytokine profiles and the generation of text and figures to accompany this 

work. The following chapter has a greater focus on these aspects of the project. Organoid work, 

RNA sequencing, initial transcriptomics data processing and all other bioinformatics work was 

carried out by collaborators from Nick Powell’s research group in Kings College London. The 

contents of this chapter are primarily based on an article which is currently (September 2020) 

in review for publication (Pavlidis et al., 2020).  
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3.2 Aims 
 

The aims of this project were as follows:  

• Define the transcriptional effect of IBD-linked cytokines TNF, IFN𝛾, IL-9, IL-13 and IL-

17A on colonic organoids from healthy human donors. 

• Compare cytokine transcriptional signatures to transcriptional signatures from IBD 

colonic biopsies. 

• Generate and investigate causal networks linking cytokines to their transcriptional 

effect, to identify similarities and differences between epithelial responses to different 

cytokines. 

 

  



Chapter 3: The effect of cytokines on the colonic epithelium 

 

 

 

109 

 

3.3 Methods 
 

The following work was carried out in collaboration with clinical researcher Polychronis Pavlidis 

and other members of Nick Powell’s research group at Kings College London (KCL). Generation 

and pre-processing of organoid data was carried out by them, as was the work comparing 

cytokine transcriptional programmes to a large collection of IBD patient biopsy data. I carried 

out the pilot analysis to identify cytokine transcriptional signatures in IBD patient biopsies using 

a small microarray dataset. Furthermore, all other work to reconstruct and investigate the causal 

networks was carried out by myself. 

 

3.3.1 Transcriptomics data from cytokine-treated organoids 

3.3.1.1 Colonoid culture 

Isolation of human colonic crypts and subsequent establishment of human colonoids was 

performed as previously described previously by Fujii et al. (Fujii et al., 2015). During the last 

24h of differentiation, human colonoids were treated with human recombinant IL-17A 

(50ng/mL), TNFα (10ng/mL), IFNγ (20ng/mL), IL-13(10 ng/mL) or IL-9 (10ng/mL). 

 

3.3.1.2 Next generation sequencing and analysis 

Harvested colonoids were put in Qiazol and then RNA was extracted with the RNAeasy kit 

(Qiagen) as per manufacturer’s guidelines. cDNA was created using the Revertaid cDNA 

synthesis kit (ThermoFisher). Sequencing libraries were generated using NEBNext® UltraTM RNA 

Library Prep Kit for Illumina® (NEB, USA) following manufacturer’s recommendations. The 

clustering of the index-coded samples was performed on a cBot Cluster Generation System using 

HiSeq PE Cluster Kit cBot-HS (Illumina) according to the manufacturer’s instructions. After 

cluster generation, the paired end libraries were sequenced on an Illumina HiSeq platform. 

 

Fastq files were preprocessed with in-house Perl scripts to carry out adapter and quality 

trimming. Read pairs were aligned to the human genome (GRCh37/hg19) using TopHat2 

(v2.0.12) (Kim et al., 2013). HTSeq (v0.6.1) was used to count the read pairs mapped uniquely 

and concordantly to each gene (Anders et al., 2015). The raw count matrix was screened for 

genes with low expression levels across all samples (i.e. average count less than 3), and then 

normalized (Anders et al., 2015). Differentially expressed genes (DEGs) were identified through 

a varying intercepts hierarchical modelling approach (Gelman et al., 2014) implemented in R (R, 
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2018) and Stan (Carpenter et al., 2017). Gene counts were modelled as a negative binomial 

variable dependent on cytokine treatment as well as covariates accounting for repeated 

measurements from the same donor and additional sample similarities detected by PCA and 

hierarchical clustering. The quality of the estimated statistical model was assessed through 

posterior predictive simulations that compare replicated datasets to the actual data. The output 

p-values were corrected for multiple testing with the Benjamini-Hochberg method (Benjamini 

et al., 2001). Any gene with adjusted p value ≤ 0.1 was considered differentially expressed – no 

log fold change cut off was applied. Initial pathway analysis of DEG lists was performed with 

Ingenuity Pathway Analysis (IPA, Qiagen) (Krämer et al., 2014). 

 

3.3.2 Cytokine transcriptional signatures in IBD patient biopsies 

In the pilot work, I observed cytokine signatures in colonic CD (cCD, n=19) and UC (n=24) biopsies 

using microarray mucosal expression profiles from IBD patients prior to infliximab treatment 

from the Gene Expression Omnibus (accession GSE16879, n=6 controls) (Arijs et al., 2009). The 

microarray expression data was processed to obtain differentially expressed genes in cCD or in 

UC compared to healthy controls using GEO2R (Barrett et al., 2013). The differential expression 

analysis was carried out using patients as replicates. All genes with adjusted p value ≤ 0.01 were 

differentially expressed. The direction of fold change was not considered. Functional 

overrepresentation analysis and visualisation was carried out as described in section 3.3.4. 

 

For the primary analysis, transcriptomics data and accompanying metadata was obtained from 

large clinical trials UNIFI, UNITI and PROgECT for active UC (n=702) and active cCD (n=126) 

patients prior to biologic treatment (Feagan et al., 2016; Sands et al., 2019; Telesco et al., 2018). 

Data was analysed per patient.  

 

3.3.3 Reconstructing cytokine causal networks in human colonoids 

The transcriptomics data from cytokine-exposed colonoids was used to generate cytokine causal 

networks through bespoke Python scripts. The networks consist of five separate node types and 

three separate interaction types, as shown in Figure 3.2. 
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Figure 3.2. Schematic of node and interaction types included in the cytokine causal networks. 

 

3.3.3.1 Cytokine-receptor interactions 

Cytokine-receptor interactions were constructed using manually curated information on 

published cytokine receptors, as given in Table 3.1. To better represent the known biology of IL-

13 signalling, connections between IL-13RA1 and IL-2RG or IL-4R were not included. Whilst these 

proteins do form complexes together, the downstream signalling from IL-2RG and IL-4R is not 

initiated by IL-13 binding (Hershey, 2003; Minton, 2008). 

 

Cytokine 
symbol 

Cytokine 
Uniprot ID 

Receptor symbol Receptor Uniprot ID 

IFNγ P01579 IFNGR1, IFNGR2 P15260, P38484 

IL-22 Q9GZX6 IL-22RA1, IL-22RA2, 
IL-10RB 

Q8N6P7, Q969J5, 
Q08334 

IL-17A Q16552 IL-17RA, IL-17RB, IL-17RC, IL-
17RD, IL-17RE 

Q96F46, Q9NRM6, Q8NAC3, 
Q8NFM7, Q8NFR9 

TNFα P01375 TNFRSF1A, TNFRSF1B P19438, P20333 

IL-13 P35225 IL-13RA1, IL-13RA2 P78552, Q14627 

Table 3.1. All possible cytokine – receptor interactions for the causal networks, based on 
literature curation.  

 

Transcription 
factor – target 

gene 
interactions

Protein-
protein 

interactions

Cytokine-
receptor 

interactions

Signalling 
protein

Cytokine

Receptor

Signalling 
protein

Transcription 
factor

Differentially 
expressed genes 

Cell membrane

Ex
tr

a
ce

llu
la

r
In

tr
a

ce
llu

la
r



Chapter 3: The effect of cytokines on the colonic epithelium 

 

 

 

112 

 

3.3.3.2 Protein–protein interactions 

The signalling parts of the networks connect cytokine receptors to transcription factors through 

the shortest possible paths of protein-protein interactions (PPIs). Signalling connections 

between the proteins were obtained from the OmniPath database (v0.7.111) (Türei et al., 2016). 

OmniPath is a literature curated collection of human and rodent signalling pathways from a 

number of different sources, such as SignaLink, Signor and the Autophagy Regulatory Network 

(Fazekas et al., 2013; Korcsmáros et al., 2010; Licata et al., 2020; Perfetto et al., 2016; Türei et 

al., 2015). All paths consist of three or less intermediary signalling mediators making a total of 

six or less steps between the cytokine and the differentially expressed genes. All proteins of the 

signalling level, including the cytokine receptors, are expressed in the transcriptomics data for 

the relevant cytokine (FPKM > 0 in ≥ 2 replicates) and in the colon dataset from the Human 

Protein Atlas (v18.1) (Uhlén et al., 2015). The Human Protein Atlas contains a Tissue Atlas of 

expression profiles of human genes based on deep sequencing of RNA and antibody-based 

protein profiling using immunohistochemistry. 

 

3.3.3.3 Transcription factor–target gene interactions 

The transcriptional regulation level of the causal networks was generated by identifying and 

filtering transcription factors known to regulate the genes which were differentially expressed 

upon cytokine treatment of colonoids (adjusted p ≤ 0.01). These transcription factor–target 

gene interactions were obtained from the published database DoRothEA v2 (Garcia-Alonso, 

2018). This is a collection of signed transcription factor (TF) - target gene (TF-TG) interactions 

inferred from literature curated resources, ChiP-seq peaks, TF binding site motifs and from gene 

expression data. Interactions of confidence level A-D were used, which includes interactions 

from all sources except those derived only from computational predictions – as they have the 

lowest confidence level. 

 

Nodes of the TF-TG interactions (TFs and DEGs) were filtered to remove any not expressed in 

the colon dataset from the Human Protein Atlas (Uhlén et al. 2015). In addition, to reduce the 

size of the network and to focus on the most important regulatory interactions, transcription 

factors were filtered using two further criteria. Firstly, only transcription factors exhibiting 

differential expression were included. Secondly, we applied an internal tool written by Matthew 

Madgwick (EI, QIB, Korcsmaros group; unpublished data) based on the Cytoscape app CHAT 

(Muetze et al., 2016). Here TFs were filtered for their influence in the network using the 
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transcriptomics data adjusted p values and the degree of the nodes. Specifically, the tool 

inputted the DoRothEA TF-TG network filtered for expressed nodes, alongside the list of all 

DEGs. Then, a hypergeometric significance test was carried out on any node with degree > 5 to 

determine if the proportion of connected nodes which are differentially expressed is higher than 

in the whole network. Any differentially expressed TF with adjusted p value ≤ 0.1 following 

Benjamini-Hochberg correction were deemed significant and used to filter the causal networks 

for the most influential TFs. ID conversion was carried out using Uniprot Swissprot to Ensembl 

id (GRCh38.p12) conversion, downloaded from Biomart on 11/4/19 (Smedley et al., 2015). 

 

3.3.4 Functional analysis and visualisation 

Functional enrichment of gene lists was carried out against Reactome pathways using the R 

package ReactomePA (Yu and He, 2016). Pathways reported when at least three genes of 

interested were identified in the pathway and when q value ≤ 0.1. 

 

All networks were visualised using Cytoscape (v3.7.1) (Shannon et al., 2003). Chord diagrams 

and circus plots were generated using custom Python and R scripts and the R library circlize 

(v0.4.6) (Gu et al., 2014). Venn diagrams were generated using the python package venn (v0.1.3).  
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3.4 Results 
 

3.4.1 Cytokines effect epithelial gene expression 

To measure the impact of cytokines on epithelial cells, human colonic organoids (colonoids) 

were treated with IBD-linked cytokines IL-9, IL-13, IL-17A, IFNγ and TNFα (as a pro-inflammatory 

control). Transcriptomics data was generated from each colonoid set and compared to an 

untreated control to obtain differentially expressed genes (DEGs) (determined by adjusted p 

value ≤ 0.1). In total 3,431 genes were differentially expressed upon treatment with the 

cytokines, some distinct and some shared between the different cytokines (Figure 3.3A). IL-13 

had the greatest and most distinct impact on colonoid expression with fewer than a third of IL-

13 induced DEGs shared with other cytokines. On the other hand, IL-9-treated colonoids were 

excluded from the analysis due to having a negligible impact on the colonoids (only 8 

differentially expressed genes). Relatively few genes were affected by IL-17A expression, with 

>75% additionally targeted by other cytokines, suggesting redundancy in IL-17A control of 

epithelial function.  

 

Figure 3.3. Differentially expressed genes upon cytokine treatment of colonoids. A. Overlap of 
differentially expressed genes across canonical cytokine transcriptional programmes. B. 
Regulation of key immunological and metabolic pathways by canonical cytokines in human 
colonoids. All differentially expressed genes determined as adjusted p ≤ 0.01. Part A generated 
by myself. Part B generated by Polychronis Pavlidis (KCL) using Ingenuity Pathway Analysis 
software (Krämer et al., 2014).  
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Functional analysis of differentially expressed genes identified a number of cytokine-, immune- 

and inflammation-associated pathways affected by cytokine treatment (Figure 3.3B). 

Specifically, we found a similar pattern of pathway activation among IFNγ and TNFα while IL-13 

appears to regulate these pathways in the opposite direction. 

 

3.4.2 Cytokine transcriptional signatures are enriched in IBD patient 

biopsies 

 

Having defined the transcriptional programmes of canonical cytokines in colonoids, we explored 

whether these signatures were enriched in diseased tissue of patients with IBD. To address this, 

we carried out two separate analyses. The pilot analysis, carried out by myself, compared 

cytokine-induced DEGs (cytokine programmes) to DEGs from colonic CD (cCD, n=19) and UC 

(n=24) biopsies using a publicly available microarray expression dataset (GSE16879, n=6 normal 

controls) (Arijs et al., 2009). Following this analysis, a further analysis was carried out using a 

much larger dataset with per-patient metadata available. This primary analysis, carried out by 

members of Nick Powell’s research group (KCL), used transcriptomics data from colonic biopsies 

of active cCD (n=126) and UC (n=702) patients prior to biologic treatment with anti-cytokine 

drugs. This data was obtained from large clinical trials UNIFI, UNITI and PROgECT, and analysed 

per-patient (Feagan et al., 2016; Sands et al., 2019; Telesco et al., 2018). 

 

For the pilot analysis, all DEGs previously observed using cytokine-treated colonoids were 

categorised based on the combination of cytokines which were shown to affect them. For 

example, the IL-13,IL-17A programme category contained genes which were differentially 

expressed upon colonoid treatment with IL-13 and IL-17A, but not IFNγ or TNFα. Between 24% 

and 50% of the genes in each cytokine programme category were also DEGs in the cCD and/or 

the UC biopsies (compared to healthy control) from the publicly available microarray dataset 

(Figure 3.4A, Table 3.1). In addition, I observed that all cytokine programme categories were 

activated at a similar level in the cCD and UC biopsies, with a large proportion shared between 

the two IBDs. For example, comparing the cytokine-specific programme categories (DEGs 

affected by only one cytokine) in cCD to those in UC, I found that roughly half of the genes were 

shared between cCD and UC (Figure 3.4). These results indicate a similar pattern of canonical 

cytokine programme activation between the IBDs. 

 



Chapter 3: The effect of cytokines on the colonic epithelium 

 

 

 

116 

 

 

Figure 3.4. Overlap between cytokine programme categories and cCD and UC biopsy DEGs 
(from GSE16879). A. Cytokine programmes categories (e.g. IL-13, IL-17A) contain colonoid DEGs 
categorised by the combination of cytokines which affect them (q value ≤ 0.1). Width of bars on 
the circos plots represent the quantity of DEGs in the programme category. Width of horizontal 
lines joining the circus plots represent the proportion of the cytokine programme of cCD and UC 
which is shared between the two IBDs – only shown for the cytokine-specific programme 
categories. B. Cytokine-specific programme categories present in the cCD and UC biopsy data. 
Numbers represent the total number of differentially expressed genes (DEGs), size of circles 
proportional to log10(number of DEGs). Top three Reactome pathways shown where significant 
(q value ≤ 0.1) and where at least three DEGs are in the pathway. Similar pathways merged. 
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Next, I used pathway overrepresentation analysis to investigate the cytokine-specific 

programmes which were distinct and shared between cCD and UC (Figure 3.4B). I found that 

DEGs shared between colonoids, cCD biopsies and UC biopsies were associated with 

glucuronidation and MAPK activation (for IL-13), PD-1 and interferon signalling (for IFN𝛾) and 

chemokine and G-protein coupled receptors (for IL-17A). DEGs shared between colonoids and 

UC biopsies (but not cCD biopsies) were associated with fatty acid metabolism (for IL-13), RAS 

GTPases (for IFN𝛾) and extra-cellular matrix interactions (for TNFα). However, there were too 

few cCD-specific DEGs to determine functional associations. 

 

Following the interesting results of the pilot study, members of Nick Powell’s group (KCL), 

carried out a different analysis of cytokine programmes to identify patient-specific patterns of 

cytokine programmes, using a large (>1000) IBD patient dataset of diseased tissue expression 

data (with associated clinical metadata). Here they employed gene set variation analysis to test 

enrichment of the top 50 upregulated colonic organoid DEGs (top cytokine programmes for each 

treated cytokine) in the tissue expression data. Note that the top cytokine programmes were 

not categorised as in the pilot study. They identified significant enrichment of IFNγ and IL-17A 

top cytokine programmes in cCD patient biopsies compared with healthy control subjects. In 

active UC, they saw significant enrichment of IFNγ, IL-13, IL-17A and TNF top cytokine 

programmes. Furthermore, using unsupervised hierarchical clustering they demonstrated a 

gradient of enrichment of top cytokine programmes, where some patients had simultaneous 

activation of all programmes, whereas others had minimal enrichment across all of the datasets 

investigated (Figure 3.5). This observation was consistent across multiple independent cohorts 

of cCD and UC patients. Interestingly, they observed weak correlations between the biopsy 

cytokine enrichment score (sum of all top cytokine enrichment scores) and clinical features, 

including total Mayo score, C-reactive protein, faecal calprotectin or disease duration. 
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Figure 3.5. Gradient of top cytokine programme activation in IBD. Each column represents a 
single patient. The sum of all four scores per subject is also depicted as the total enrichment 
score (TES). Columns have been clustered by Euclidean distance (method: average, tree 
ordering: original, figure generated with ClustVis). Data from cohorts: UNITI (n=126), UNIFI 
(n=550), PROgECT (n=152). The top cytokine transcriptional programme is the top 50 
upregulated colonic organoid DEGs for each cytokine-treated colonoid dataset. Figure 
generated by Polychronis Pavlidis (KCL). 

 

In addition, my collaborators used further biopsy transcriptomics data to investigate whether 

simultaneous activation of multiple cytokine response pathways in individual cCD patients could 

explain resistance to biological therapies, where individual cytokines are selectively targeted. 

Here, they found that stratification of the cohorts according to cytokine enrichment score (in 

biopsies sampled at baseline), predicted their subsequent response to either anti-TNFα 

treatment, infliximab, or to anti-IL-12p40 treatment, ustekinumab. Patients with high total 

enrichment scores were very unlikely to respond to treatment, whereas patients with low total 

enrichment scores were highly unlikely to respond. A similar observation was found for active 

UC patients, although the predictive power was less differentiating than in cCD. 

 

Taken together, our analyses show that diseased colonic tissues of IBD patients are enriched 

with cytokine transcriptional programmes - with some similarities and differences observed 

between cCD and UC. Further, our data highlights that gradients of cytokine programmes in IBD 

patients provides a previously unrecognised molecular classification of IBD, which can be 

harnessed to predict response to anti-cytokine therapy.  

 

3.4.3 Reconstructing cytokine causal networks in human colonoids 

Next, I used network biology to further explore the impact of cytokine cues on colonic epithelial 

cells using the colonoid transcriptomics data. Given that we found that non-response to anti-

cytokine treatments targeting a single cytokine is associated with the simultaneous activation 

of multiple cytokine transcriptional programmes, we aimed to identify shared and distinct wiring 

connections in epithelial cells as a result of cytokine cues. Here, I generated causal networks for 
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each cytokine, predicting molecular signal flow from the recognition of a cytokine at the IEC 

surface, through intra-cellular signalling pathways to the observed changes in DEGs (genes 

differentially expressed in cytokine-treated colonoids compared to untreated colonoids) (Figure 

3.6A). These networks integrated observed transcriptional changes in the cytokine-treated 

organoids with using a priori knowledge of PPIs and TF-TG interactions available in published 

databases of experimentally-verified molecular interactions. These networks provide a systems-

level, mechanistic understanding of cytokine-mediated regulation of epithelial function (Figure 

3.6B). 

 

 

Figure 3.6. Reconstructing causal networks of signalling and regulatory molecular interactions 
connecting cytokines to observed differentially expressed genes within the colonic organoids. 
A. Workflow of causal network reconstruction for each cytokine. See Methods section 3.3.3 for 
more detail. B. Generated causal networks. One directed network for each cytokine tested. 
Colours represent the levels/type of interactions of the networks. Arrows represent direction of 
signal transduction. Although some nodes are present in multiple levels of the network, they are 
only displayed once in first occurring level (nearest to the cytokine). All differentially expressed 
genes determined as adjusted p value ≤ 0.01. TF - transcription factor; DEG - differentially 
expressed gene. 
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A number of filtering criteria were applied to select only the most likely signalling or regulatory 

paths (see Methods section 3.3.3). Due to these criteria and to reliance on published molecular 

interactions, some DEGs had no identified upstream paths to their associated cytokine, and 

were thus excluded (Table 3.2). Differences in network sizes represent variation in total number 

of DEGs and the variation in number of direct pathways identified between the cytokine and the 

DEGs (Figure 3.6B). For example, the IL-17A network is smaller, in part because fewer DEGs were 

observed upon organoid treatment, but also because very few DEG targeting TFs were identified 

which are also differentially expressed (one of the filtering criteria applied). This shows that IL-

17A has a lesser effect on the transcriptomic landscape of organoids than the other cytokines, 

including at the TF level. On the other hand, IL-13 treatment of organoids resulted in the largest 

observed number of DEGs, many of which are not targeted by any of the other cytokines (Figure 

3.7). Correspondingly, the IL-13 network contains the largest number of nodes and edges with 

1413 and 5344 respectively. Only 27.8% of these nodes are also present in one or more of the 

other cytokine networks. 

 

Cytokine 
# DEGs (p 
adj ≤ 0.01) 

# DEGs in 
network 

% of all DEGs in 
network 

IL-13 1952 1371 70.24 

IFN𝛾 1441 1032 71.62 

TNFα 766 452 59.01 

IL-17A 279 17 6.09 

Table 3.2. Number of differentially expressed genes upon cytokine treatment of colonoids and 
in the resulting causal networks. DEG = differentially expressed gene. 
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Figure 3.7. Chord diagram visualisation of differentially expressed genes (DEGs) targeted by 
each cytokine in the causal networks, with functional associations. The cytokines are given in 
the upper part of the figure. The targeted DEGs are given in the lower part of the figure. The 
length of the lower bars and the width of the connecting lines represents the number of DEGs. 
The colours represent which networks each DEG/cytokine is in. The boxes show the top three 
enriched Reactome pathways associated with each group of DEGs. Reactome pathways only 
shown if total DEG group size is 3 or more and where adjusted p value ≤ 0.1 (Fabregat et al., 
2018a). Where pathways are very similar, they have been reported together. 

 

Next, I carried out functional overrepresentation analysis on the DEGs targeted by each 

collection of cytokines in the causal networks. Only five categories of DEGs were significantly 

associated to any Reactome pathways, with results shown in Figure 3.7. The identified pathways 

were mostly associated with cytokine signalling, for example DEGs targeted solely by IFN𝛾 and 

those targeted by IFN𝛾 and IL-13 were associated most strongly with interferon signalling. DEGs 

targeted by IFN𝛾 and TNF were associated with interleukin signalling, indicating overlap 

between effects of different types of cytokines. Additionally, TNF-specific DEGs were 

associated with extracellular matrix organisation and cell surface interactions. DEGs shared 

between by IFN𝛾, IL-13 and TNF were also associated with cell surface interactions, suggesting 

a role for the extracellular matrix in the response of epithelial cells to cytokines. 
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3.4.4 Cytokine-responsive signalling pathways converge at key 

transcription factors  

Next, I sought to compare the nodes (proteins, TFs and DEGs) and interactions (node 

interactions) of the causal networks to identify shared and unique features of IEC responses to 

different cytokines. Comparing the nodes of each network, 20.4% of all network nodes (total 

499) were shared between at least two of the cytokine causal networks (Figure 3.8A). This is 

comparable to the proportion of DEGs shared by two or more cytokines (23.2%, Figure 3.3A). 

Only five nodes (<0.3%) are present in all of the networks (Figure 3.8A). However, none of these 

nodes have a strong link to IBD:  

• Potassium voltage-gated channel subfamily H member 2 (KCNH2) - present as a DEG in 

every network. 

• Plasminogen activator urokinase (PLAU) - present as a DEG in every network. 

• Plexin D1 (PLXND1) - present as a DEG in every network. 

• E2F Transcription Factor 2 (E2F2) - present as a DEG in every network, except the IL-17A 

network where E2F2 acts only as a TF. 

• Mitogen-activated protein kinase 14 (MAPK14) - not differentially expressed in any 

cytokine treatment but present as a signalling protein in every network. 
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Figure 3.8. Overlap of nodes and edges in the four cytokine causal networks. A: Venn diagram 
showing overlap of nodes in the networks (not to scale). B: Circus plot of all network nodes, 
where each ring represents one level of the causal networks, with cytokines in the middle and 
the differentially expressed genes at the edge. The coloured bands represent the proportion of 
all nodes in the level which belong to a specific category. The categories, identified by colour, 
are defined by which causal networks the given node is present in. C. Venn diagram showing 
overlap of edges (interactions) in the networks (not to scale) with network visualisations of all 
edges shared between two or more of the networks. Where relevant, the transcription factor 
responsible for the majority of the shared interactions is given at the right side of the network 
images. 

After categorising nodes by their network layer (signalling proteins, TFs and DEGs), the 

proportion of nodes shared with more than one cytokine network is fairly consistent (Figure 

3.8B). This is could be due to an overlap of epithelial signalling and regulatory pathways initiated 

by different cytokines. Furthermore, I investigated the edges (interactions) shared between the 
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cytokine causal networks (Figure 3.8C). I found that the majority of interactions shared between 

networks are involving seven different transcription factors and their DEG targets: 

• Protein C-ets-1 (ETS1) 

• Interferon regulatory factor 1 (IRF1) 

• CCAAT enhancer binding protein alpha (CEBPA) 

• MYC associated zinc finger protein (MAZ) 

• FOS proto-oncogene (FOS) 

• E2F transcription factor 1 (E2F1) 

• E2F transcription factor 2 (E2F2) 

 

In particular, TF ETS1 plays the largest role, with interactions shared between the IL-13, TNFα 

and IFN𝛾 causal networks. Most of these TFs (6/7) were found in the IFN𝛾 network, suggesting 

that IFN𝛾 shares regulatory mechanisms with many other cytokines. Taken together these 

networks highlight that the cytokines have shared and unique effects on signalling within the 

colonic organoids and that TFs could play a key role in the intersection between different 

cytokine-induced signal flows. 

 

To further investigate the importance of TFs cytokine causal networks, I visualised the TFs 

targeted by each cytokine (Figure 3.9A). I found that the majority of transcription factors are 

specific to a cytokine, while 12 TFs are targeted by more than one cytokine (present as a TF in 

more than one network). Specifically, these 12 shared TFs constitute 21%, 37.5%, and 42% of all 

TFs affected by IL-13, IFN𝛾, or TNFα, respectively, indicating a substantial overlap among the 

downstream regulators of these cytokines. Meanwhile the IL-17A causal network only contains 

2 TFs which are both also targeted by IFN𝛾. 
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Figure 3.9. Transcription factors (TFs) shared between multiple cytokine causal networks. A. 
Network visualisation of TFs targeted by multiple cytokines (shared TFs). Cytokines are larger 
square nodes, transcription factors are smaller circular nodes. B. ETS1, FOS and CEBPA TFs 
regulate the majority of DEGs in the IL-13, IFN𝛾 and TNFα cytokine causal networks. 

 

I investigated DEGs regulated by the shared TFs in each network to understand which TFs could 

interfere with the transcriptional program of another cytokine. I found that the majority of DEGs 

in each network were regulated by at least one shared TF (IL-13, 81.8%; IFN𝛾, 93.8%; TNFα, 

99.5%; IL-17A, 100%), indicating that signals from one cytokine could have a significant impact 

on another cytokine’s transcriptional programme, through shared TFs. Moreover, I quantified 

the network DEGs targeted by each of the shared TFs separately, and found that three of the 12 

shared TFs (ETS1, CEBPA, FOS) regulated the majority of all the DEGs in colonoids (Figure 3.9B). 
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This signifies a particularly important role for these three TFs in the regulation of multiple 

concurrent cytokine responses in IECs. 

 

Given the likely importance of shared TFs, I explored whether they are activated through the 

same pathways in the different causal networks. I found that cytokine receptors do not act 

through shared signalling pathways, but instead have (mostly) unique signal transduction paths 

which converge on the key shared TFs. As an example, Figure 3.10 depicts the signalling 

pathways which lead to ETS1, IRF8 and IRF1. Furthermore, many of the predicted signalling 

proteins connecting cytokines to their targeted genes are not differentially expressed (Figure 

3.6B). This suggests that signals are propagated through the networks by post-translational 

modifications, such as phosphorylation of JAK/STAT proteins.  

 

Figure 3.10. Signalling pathways linking cytokines to shared transcription factors. From causal 
networks. Node and edge colour indicate which cytokine causal networks the node/edge is 
present in. A: IL-13, TNFα and IFN𝛾 signalling pathways to ETS1. B: IL-13 and IFN𝛾 signalling 
pathways to IRF8 and IRF1. 

 

Taken together, these findings show that cytokines have independent signalling mechanisms 

which affect cytokine-specific TFs as well as converge on key shared TFs. The shared TFs, 

particularly ETS1, FOS and CEBPA, affect large proportions of the cytokine transcriptional 
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programmes, and could partly explain non-response to single cytokine-targeting therapies in 

patients with high activation of multiple cytokine programmes. 

 

3.4.5 ETS1 is a major regulator of the cytokine signalling in intestinal 

inflammation 

Finally, Polychronis Pavlidis (KCL) tested the functional relevance of the 12 shared TFs by 

exploring their expression in the colon of patients with and without IBD. Using principal 

component analysis, he showed that IBD patients with active colonic inflammation are 

completely differentiated from control patients based on the expression of these shared TFs. 

Unsupervised hierarchical clustering based on expression levels demonstrated that these TFs 

tended to cluster with the cytokines TNFα, IFNγ, IL-17A, and their receptors. Furthermore, using 

expression of ETS1, FOS and CEBPA in a multivariate logistic regression model to predict 

response to anti-TNF treatment (infliximab) in IBD, identified ETS1 as the single predictive TF. 

Specifically, he found that non-responders had higher expression of ETS1 prior to 

commencement of infliximab, with an area under the curve predicting response of 0.82, 95%CI 

(0.69, 0.96), p=0.0003. 

 

These observations further evidence that activation of multiple concurrent cytokine 

transcriptional programmes drives resistance to therapy, whilst further highlighting ETS1 as a 

potential therapeutic target in IBD and as a biomarker the stratify patient response to 

treatment.  



Chapter 3: The effect of cytokines on the colonic epithelium 

 

 

 

128 

 

3.5 Discussion 
 

To our knowledge this is the first study describing the transcriptomic landscape of the immune-

epithelial interactome in the gut. By treating healthy colonoids with canonical cytokines we 

identified shared and distinct patterns of regulated gene expression in the epithelium. 

Combining cytokine-mediated transcriptional data with network biology methods and diseased 

tissue transcriptomics data, we identified a novel molecular classification of IBD based on 

gradients of cytokine transcriptional programmes and predicted the TF ETS1 as a potential 

biomarker and therapeutic target in intestinal inflammation. 

 

The large epithelial response to IL-13 in comparison to other tested cytokines is unexplained but 

indicates the importance of IL-13-epithelium interactions. Conversely, IL-9 showed almost no 

impact on the colonoids, suggesting that IL-9 does not significantly affect epithelial cells at the 

given concentration, or that it requires co-stimulatory molecules or alternatively, that it acts 

only on specific cell types whose signature is masked by whole colonoid sequencing (Gerlach et 

al., 2014). 

 

Pathway analysis revealed many inflammatory pathways associated with the cytokine-induced 

DEGs, which is expected as a cellular response to cytokines. IFN𝛾 and TNFα show similar patterns 

of pathway activation/inactivation indicating significant overlap in colonic epithelial response to 

these cytokines. Given only 12% of the DEGs upon IFN𝛾 or TNFα treatment are shared between 

the two conditions, the observed pathway overlap suggests synergism between the cytokines. 

This synergism has been previously described in the context of epithelial cell proliferation and 

apoptosis (Nava et al., 2010). Many pathways affected by IL-13 are activated/inactivated in the 

opposite direction to the other cytokines, suggesting an anti-inflammatory role of IL-13 on 

epithelial cells. However, it has been shown previously that IL-13 exposure of HT-29/B6 colonic 

epithelial cells results in increased apoptosis and reduced transepithelial resistance, suggesting 

that IL-13 plays both pro- and anti-inflammatory roles (Heller et al., 2005). 

 

When mapping cytokine transcriptional programmes identified in the colonoids to pilot colonic 

biopsy transcriptomics data from a small number of IBD patients, I found a highly conserved 

pattern of expression in patients with UC and cCD. This indicates that the immune landscape of 

colonic inflammation of both these diseases, at least at a transcriptional level, is very similar. It 
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also shows that no particular cytokine profile characterises UC or cCD, challenging the Th1/Th2 

depiction of IBD (Fuss, 2008; Imam et al., 2018). However, thorough investigation of the 

cytokine-specific programme categories identified in the biopsy datasets highlighted a 

functional difference between UC and cCD. Specifically, I found that IL-13-responsive genes 

associated with fatty acid metabolism were present in the UC dataset but not the cCD dataset, 

suggesting a role of IL-13 in fatty acid metabolism in UC. Both UC and cCD have been previously 

connected to fatty acids and levels of fatty acids have been shown to regulate cytokine levels 

(Heimerl et al., 2006; Scoville et al., 2018), but as far as I am aware, no publication has yet linked 

IL-13 signalling to downstream altered fatty acid metabolism in UC or cCD. On the other hand, 

a direct link between TNFα and the extra-cellular matrix in UC has been previously published 

(Wang, 2007). Further investigation into the other functional associations in connection with 

their targeted cytokine could reveal mechanistic differences between UC and cCD. It should be 

noted however, that in this small biopsy dataset most of the cCD-associated genes were also 

present in the UC dataset, and very few were specific to cCD. Therefore, application of further 

biopsy datasets would strengthen this functional analysis. 

 

Additional investigation of cytokine transcriptional programmes was carried out using 

independent cohorts making up the biggest dataset of IBD tissue ever analysed (>1000 samples). 

This analysis further challenges the outdated T-cell lineage identity paradigms in IBD patient 

classification, by demonstrating that IBD patients can be stratified based on combined 

enrichment of cytokine-induced transcriptional programmes. This finding corroborates recent 

understanding that IBD involves ‘polyfunctional’ T-cell responses, in which individual T-cells co-

produce different cytokines, such as TNFα and IL-17A (Langrish et al., 2005; Tang and Iwakura, 

2012). Importantly, this finding might explain the success or failure of some of commonly used 

anti-cytokine therapies which blockade a single cytokine and thus would be unlikely to 

antagonize multiple concurrent pathways. Moreover, this novel classification system using 

cytokine transcriptional programmes could be harnessed as a precision medicine tool to stratify 

patients according to their likelihood of responding to anti-cytokine therapies. Those patients 

with high cytokine enrichment scores could be offered alternative therapies such as accelerated 

surgery or dual administration of biologics targeting different cytokines. Indeed, clinical trials 

evaluating blockade of TNFα and IL-23 simultaneously have already begun (NCT03662542). 
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Causal networks were constructed to further explore the effect of cytokines on epithelial cells 

at a systems-level. These networks represent the most likely pathways of action but will not 

include every possible molecular link and may contain false positive interactions. Moreover, the 

network reconstruction method employed here does not correct for bias due to common hubs 

and assumes that pathways are linear and short, which is often not true. Hubs are present in a 

priori protein-protein interaction resources due to study bias based on research interest and on 

bias of experimental techniques (Schaefer et al., 2015). Correction of hub bias can occur during 

network investigation, for example by using the Contextual Hub Analysis Tool (CHAT) tool to 

identify important hubs using ‘omics data rather than only by degree (Muetze et al., 2016). 

Alternatively, hub bias can be mitigated during network reconstruction through the use of heat 

diffusion algorithms such as HotNet2 and TieDIE (Leiserson et al., 2015; Paull et al., 2013; Vandin 

et al., 2012). A diffusion algorithm approach could also improve on the presented method by 

avoiding the assumption that signalling pathways are short and linear. 

 

In addition to possible missing interactions in the a priori interaction sources, network nodes, 

particularly TFs, were heavily filtered to prioritise those of most importance. Such a filtering 

method may bias the networks by including only TFs which are themselves transcriptionally 

regulated while excluding those regulated by posttranslational modifications and protein–

protein interactions (Tootle and Rebay, 2005). Moreover, protein activation levels cannot be 

directly inferred from expression levels. A number of tools have been developed which could 

improve the presented method by applying a different TF filtering method. For example, 

algorithms such as VIPER could be used to infer TF activity based on regulon expression and 

pleiotropy (Alvarez et al., 2016). 

 

We observed that most signalling proteins in the networks were not differentially expressed, 

indicating that signal transduction occurs via post-translational modifications. This also implies 

a possible lack of negative feedback loop in the system, resulting in cytokine pathways being 

prone to overactivation. Such loops are often seen in stress response signalling, whereby 

pathway protein members are downregulated as a result of the signalling flow (Hua et al., 2009). 

As activation levels of proteins cannot be directly inferred from expression levels, the addition 

of proteomics data to the study could uncover important post-translational regulation and 

improve the prediction of signalling pathways. However, overall, the size and overlap of causal 

networks is well correlated with the DEGs, indicating that biological signals have been retained.  
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Comparison of the cytokine causal networks highlighted previously unrecognised levels of 

shared and distinct characteristics, demonstrating redundancy and complementarity in 

cytokine-epithelial interactions. Specifically, I identified a collection of seven TFs which drive the 

majority of interactions shared between multiple networks, forming potential molecular 

bottlenecks of cytokine signalling. Literature searches reveal that all of these TFs have 

documented associations with immunomodulation, with many of them known to regulate 

and/or be regulated by cytokines. For example, IRF1 has a documented role in response to 

cytokine signalling, particularly IFN signalling, leading to immunomodulation (Honda and 

Taniguchi, 2006; Kröger et al., 2002). A recent study found that IL-13 can act through IRF1 to 

induce apoptosis of neonatal Th1 cells (Miller et al., 2019). E2F1 and E2F2 are regulators of cell 

cycle and have been shown to act in feedback loops with cytokines and drive T cell proliferation 

(DeRyckere and DeGregori, 2005; Ertosun et al., 2016; Zhang et al., 2018). MAZ, which is highly 

expressed in UC and colon cancer, has been shown to be a critical driver of inflammation through 

Signal transducer and activator of transcription 3 (STAT3) signalling (Triner et al., 2018). 

 

Furthermore, three of these TFs were shown to regulate more than 50% of the cytokine-induced 

programme for each affecting cytokine, indicating their centrality and importance in cytokine 

responses. ETS1 (targeted by IL-13, TNFα and IFN𝛾) has a known role in cytokine and chemokine 

gene regulation in addition to other functions such as stem cell development and proliferation 

of lymphoid cells (Dittmer, 2003; Russell and Garrett-Sinha, 2010). Studies have shown that ETS1 

is linked to the regulation of Jak-Stat signalling, one of the foremost pathways downstream of 

cytokine receptors (Murray, 2007). ETS1 has also been identified as a susceptibility gene for IBD 

and is known to affect development of T-cells (Li et al., 2018). In addition, Ets1 knockout mice 

show decreased expression of cytokines including IL-13, TNFα and IFN𝛾 in T cells, indicating a 

role in positive feedback loops of cytokine expression (Grenningloh et al., 2005; Russell and 

Garrett-Sinha, 2010). Interestingly, IL-17A showed increased expression in a similar experiment, 

suggesting a different mechanism of signalling - possibly explaining the lack of ETS1 in the IL-17A 

causal network (Moisan et al., 2007). Furthermore, both CEBPA and FOS have documented links 

to immunomodulation. For example, CEBPA is in involved with cellular differentiation and 

response to inflammatory insult and a genetic region involving the Cebpa gene was identified as 

susceptibility locus for early onset IBD (Imielinski et al., 2009; Lekstrom-Himes and 

Xanthopoulos, 1998). FOS has been shown to regulate degranulation and cytokine production 

in mast cells (Lee et al., 2004). 
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Our novel analytical workflow allowed us to discover potential molecular bottlenecks 

downstream of the canonical cytokines’ engagement with their relevant receptor. Ultimately, 

the strong literature links between the identified TF bottlenecks and cytokines evidences the 

biological relevance of the generated causal networks and highlights their potential for 

identifying key drivers of cytokine mediated inflammation. 

 

Finally, the importance of ETS1 in regulating immune-epithelial interactions was evidenced 

through validation against whole tissue transcriptomics data from IBD patient colonic biopsies. 

Specifically, Polychronis Pavlidis (KCL) found that a higher expression of ETS1 was significantly 

associated with subsequent non-response to anti-TNFα drug infliximab. Additionally, he found 

that those patients with high ETS1 expression also had high IFNγ expression, which further 

evidences why anti-cytokine treatments targeting single cytokines may not be effective in some 

patients. Importantly, this finding offers a novel patient stratification method whereby ETS1 

expression within whole biopsies samples could be used to predict patient response to 

infliximab. In turn, this could allow clinicians to personalise treatment options, offering different 

or more advanced treatments to those predicted not to respond. Further, these findings 

propose that a novel therapeutic approach targeting ETS1 could potentially block downstream 

effects of multiple cytokines concurrently, and thus be beneficial for patients with high 

enrichment of multiple cytokine programmes. However, significant challenges and unknowns 

would need to be addressed to use ETS1 as a therapeutic target, including possible off target 

effects and subcellular location difficulties. 

 

3.6 Future research directions 
 

Through the generation of causal networks, I made a number of predictions regarding key TFs, 

post-translational modifications and cytokine-specific functional associations to IBD. For 

translation of these predictions to actionable results, further research and investigation is 

required. For example, targeted knock out or inhibition studies could be used to validate the 

importance of the key TFs in cytokine signalling. If found to result in few off-target effects, these 

TFs, especially ETS1, could serve as therapeutic targets for inhibiting cytokine-driven immune 

response in IBD – although this could be challenging due to its intracellular location. 

Furthermore, validation of the specific cytokine-function associations predicted in UC and CD 
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could enhance mechanistic understanding of these diseases, potentially leading to disease-

specific approaches to cytokine inhibiting treatments. 

 

For future work, the causal network reconstruction methodology should be improved. The 

addition of further molecular interaction resources and/or changes in DEG and interaction 

filtering criteria would likely result in more realistic causal networks. For example, the 

application of more advanced modelling tools to predict causal networks, such CARNIVAL, or 

diffusion methods such as TieDIE,  could provide more detailed networks with a reduced bias 

towards hub proteins (Liu et al., 2019; Paull et al., 2013). Moreover, different approaches to TF 

filtering, such as using the VIPER algorithm, would reduce the bias due to including only 

differentially expressed TFs (Alvarez et al., 2016). However, one further challenge is to 

determine which methods lead to the most realistic models, which would require significant 

experimental validation. Nevertheless, one would expect major findings, such as the importance 

of ETS1, to be replicated using similar approaches. 

 

Finally, the work described could be extended to study cytokine effects in a cell type-specific 

manner or in different tissue types. Such experiments could utilise different organoid models, 

single cell sequencing and/or cell sorting technologies to obtain -omics data from different tissue 

and cell types. Such an approach may link known alterations in Paneth cells and goblet cells in 

IBD with cytokine aberrations, and lead to more targeted therapeutic approaches. For example, 

in Chapter 2 I predicted that ETS1 is also an important TF in Paneth and goblet cell function. As 

Paneth cells are known to be disrupted in CD, It would be interesting to investigate possible links 

between ETS1, Paneth cells, cytokine responses and CD (Liu et al., 2016; Treveil et al., 2020). 

However, phosphoproteomic studies should also be carried out to confirm activation levels of 

ETS1. 

 

In conclusion, we investigated the transcriptomic landscape of the immune-epithelial 

interactome, finding previously unrecognised levels of shared and distinct transcriptional 

regulation of epithelial function by different cytokines. The complex and multifaceted nature of 

downstream signalling and regulation from cytokines ques illustrates why many questions 

remain unanswered regarding the action of cytokines in IBD. Nevertheless, we feel that our 

primary findings are of significant translational importance and pave the way for personalized 

medicine approaches in IBD. 
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 Chapter 4: The effect of bifidobacteria on the small 
intestinal epithelium 

 

4.1 Introduction 
 

The Bifidobacterium genus are health-promoting commensal bacteria found in the human 

gastrointestinal tract. As described in the General Introduction (section 1.5), bifidobacteria are 

primary colonizers and dominant members of the early life gut microbiota, and consequently 

play a critical role in immune maturation and programming (Figure 1.6) (Arboleya et al., 2016; 

Ruiz et al., 2017; Stewart et al., 2018). IECs are a primary site of interaction between 

bifidobacteria and their host, thus, play a significant role in mediating the host response and 

beneficial effects of bifidobacteria. Therefore, a greater understanding of the effect of 

bifidobacteria on IECs will build knowledge of the mechanisms through which bifidobacteria 

exerts their beneficial effects. In turn, this knowledge can aid development of prevention and 

treatment options for gut and systemic inflammatory diseases. To date, a number of studies 

have investigated the effect of different bifidobacteria strains on IECs (see General Introduction 

section 1.5.2), however these works were mostly performed on adult mice in the context of 

acute or chronic gut inflammation and often focused on specific IEC functions such as mucus 

production and barrier function (Hsieh et al. 2015; Srutkova et al. 2015; Pinto-Sánchez et al. 

2017; Schroeder et al. 2018; Yan et al. 2019; Din et al. 2020). However, very little work has 

focused on the role of Bifidobacterium on IECs in early life or in healthy conditions. Such studies 

could uncover the importance of bifidobacteria in gut development within babies and for 

maintenance of a healthy gut – in the absence of inflammation. Furthermore, most studies to 

date have focused only on specific functions of the epithelium, potentially overlooking other 

important effects of bifidobacteria. 

 

Therefore, we aimed to explore how Bifidobacterium can modulate IEC homeostasis within the 

early life developmental window using healthy specific pathogen free (SPF, conventionalised) 2-

week-old mice, as shown in in Figure 4.1. We compared this response to 10-12-week-old adult 

mice to uncover the influence of age in bifidobacterial effects (data not shown). Specifically, we 

investigated the effects of human infant associated strain Bifidobacterium breve UCC2003 which 

has been shown previously to have health beneficial effects (as described in General 

introduction section 1.5.4). Selective culturing and 16S rRNA microbiota profiling were used to 
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confirm the presence of B. breve within the mice gastrointestinal tracts and to quantify other 

microbiota alterations. Following isolation of IECs, we employed global transcriptomics analysis 

to compare bifidobacteria-treated mice to control mice – without limiting scope to specific IEC 

functions. We found that B. breve administration extensively alters the murine neonatal IEC 

transcriptome (∼4,000 significantly upregulated genes), but has no significant effect on the 

transcriptomics of adult mice IECs (data not shown). Combining functional overrepresentation 

analysis with protein-protein interaction network reconstruction and clustering approaches, we 

identified a number of IEC functions affected in the neonatal mice, particularly epithelial barrier 

function, cell differentiation and proliferation. Furthermore, using cell type marker genes we 

identified an overrepresentation of stem cell marker genes among the differentially expressed 

genes (DEGs), indicating that bifidobacteria can cause an increase in the regenerative potential 

of the epithelial layer in neonatal mice. Regulatory network reconstruction was used to predict 

key regulators of the differentially expressed stem cell marker genes through which B. breve 

UCC2003 may be acting. Together these findings evidence the significant role of Bifidobacterium 

in early life modulation and development of IEC function. 

 

Figure 4.1. Schematic overview of neonatal bulk epithelium study design and analysis 
workflow. Figure adapted from Kiu et al. (2020) under the Creative Commons BY licence. 

 



Chapter 4: The effect of bifidobacteria on the small intestinal epithelium 

 

 

 

136 

 

Carried out in collaboration with Lindsay Hall’s research group (Quadram Institute Bioscience, 

QIB), my primary role in this project was the reconstruction and analysis of networks and cell 

type marker genes, while also supporting and training Raymond Kiu (QIB) in bioinformatics 

techniques for data processing and differential expression analysis. This study is subsequently 

termed the “neonatal bulk epithelium” study to differentiate it from the study described in 

Chapter 5. This chapter is based on (verbatim) the peer-reviewed article published in iScience in 

which I am second author (Kiu et al., 2020). The published article is reproduced in Appendix 6. 

 

4.2 Aims 
 

The aims for this project were as follows: 

• Evaluate the global transcriptional response to B. breve UCC2003 in small intestinal IECs 

from young mice 

• Predict which IEC types, if any, are particularly affected by B. breve UCC2003  
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4.3 Methods 
 

All experimental work and the sequencing data analysis were carried out by Lukas Harnisch 

during his PhD project and Raymond Kiu (QIB). I have advised Raymond Kiu in RNA sequencing 

data processing and trained and supported him to carry out the signalling network analysis in 

section 4.3.6. I performed all the analysis and interpretation described thereafter. Further 

details of the experimental methods are described in Kiu et al. (2020). 

 

4.3.1 Mouse work 

All animal experiments and related protocols were performed in accordance with the Animals 

(Scientific Procedures) Act 1986 (ASPA). C57BL6/J female mice were housed within UEA Disease 

Modelling Unit. Two weeks old SPF mice (n=10) and 10-12 weeks old SPF mice (n=10) were fed 

autoclaved chow diet ad libitum.  

 

4.3.2 Bacterial culturing, inoculum preparation, mouse challenge with B. 

breve UCC2003 and CFU enumeration 

B. breve UCC2003 (also known as NCIMB 8807) was streaked from frozen glycerol stocks onto 

autoclaved Reinforced Clostridial Agar (RCA) plates (Oxoid, UK) and incubated in an anaerobic 

chamber (miniMACS, Don Whitley Scientific) at 37°C for 48 h prior to picking single colonies for 

inoculation in prewarmed liquid sterilised Reinforced Clostridial Medium (RCM) (Oxoid, UK). For 

preparation of mice gavage inocula, RCM strain pre-cultures were sub-cultured into De Man, 

Rogosa and Sharpe (MRS) medium (Oxoid, UK), incubated, centrifuged, washed and diluted in 

Phosphate Buffered Saline (PBS) (De Man et al., 1960). Bacterial concentration of inoculum was 

enumerated by plating serial dilutions in sterile PBS on RCA plates and enumerating colonies 

following two-day incubation to calculate CFU/ml. Mice received 50l oral gavages with 

bacterial inoculations of 108 CFU/ml or control samples of sterile PBS every 24 h for 3 

consecutive days. Colonisation was confirmed by serial dilution and plating of fresh faeces on 

RCA supplemented with 50 mg/L mupirocin, and counting of colonies following 2-day 

incubation. Gut microbiota profiling was carried out by 16S rRNA amplicon sequencing of caecal 

samples on day 4 using the FastDNA Spin Kit for Soil (MP Biomedicals) the Illumina MiSeq 

platform and the QIIME analysis (Caporaso et al., 2010) software as described in Kiu et al. (2020). 
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4.3.3 Tissue harvesting and processing 

On day 4 post oral gavage, the mice were humanely culled and 10cm sections of small intestine 

were immediately harvested and dissected into 0.5cm2 pieces and IECs were isolated using 

adapted Weisser method (Hughes et al., 2017) as described in Kiu et al. (2020). 

 

4.3.4 RNA extraction, preparation and sequencing 

RNA was extracted from IEC isolations using QIAshredder spin columns (QIAGEN) followed by 

centrifugation. Follow-through was added to RLT lysis buffer and 70% ethanol and mixed by 

pipetting. Samples were then loaded to a RNeasy spin column until all of sample had gone 

through the filter. Buffer RW1 was added to column and centrifuged to remove carbohydrates, 

proteins and fatty acids. Flow through was discarded and filter placed in a new collection tube 

with wash buffer RPE and spun again, followed by discarding of flow through. Additional wash 

buffer RPE was pipetted into column and centrifuged again. Columns were transferred to a RNA 

low-bind Eppendorf tube with RNase free water and incubated for 1 min at room temperature. 

Sample was centrifuged and flow through containing RNA stored at −80°C prior to processing. 

Isolated RNA was processed by poly-A selection and/or Ribo-depletion. Purified RNA was 

quantified, and quality controlled using RNA 6000 Nano kit on a 2100 Bioanalyser (Agilent). Only 

samples with RNA Integrity Number (RIN) values above 8 were sequenced. RNA sequencing was 

performed at the Wellcome Trust Sanger Institute (Hinxton, UK) on paired-end 75 bp inserts on 

an Illumina HiSeq 2000 platform. All samples were sequenced using non-stranded, paired-end 

protocol. 

  

4.3.5 Sequence pre-processing and differential expression analysis 

Quality of sequencing reads was assessed using FastQC (v0.11.8). and fastp (v0.20.0) with 

options -q 10 (phred quality < 10 was discarded). rRNA sequences were removed using 

SortMeRNA (v2.1) based on SILVA rRNA database (Chen et al., 2018; Kopylova et al., 2012; Quast 

et al., 2013). Transcript mapping and quantification were performed using Kallisto (v0.44.0) 

(Bray et al., 2016). Briefly, Mus musculus (C57BL/6 mouse) cDNA sequences (GRCm38.release-

98_k31) were retrieved from Ensembl database and built into an index database with Kallisto 

utility index at default parameter that was used for following transcript mapping and abundance 

quantification via Kallisto utility quant at 100 bootstrap replicates (Zerbino et al., 2018). 

Differential gene expression analysis was performed using R library Sleuth (v0.30.0) (Pimentel 

et al., 2017). Gene transcripts were mapped to individual genes using Ensembl BioMart database 
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with Sleuth function sleuth_prep with option gene mode = TRUE (Kinsella et al., 2011). 

Genes with an absolute log2(fold change) > 1 and q value < 0.05 were considered to be 

differentially expressed (or, significantly regulated). 

 

4.3.6 Signalling network reconstruction and analysis 

A signalling network of all upregulated DEGs and their first neighbours was built using all 

available biological signalling databases in the Cytoscape (v3.7.2) OmniPath app (v1, Mus 

musculus) (Türei et al., 2016). Modules of highly connected genes within the signalling network 

were identified using the MCODE plug-in within Cytoscape (Bader and Hogue, 2003). The nodes 

of each individual module were tested for functional enrichment based on both Reactome and 

PANTHER annotations using PANTHER Classification System as described in section 4.3.8 (Croft 

et al., 2011; Mi et al., 2019; Thomas et al., 2003). 

 

4.3.7 Cell type signature analysis 

Cell type signature gene sets for murine intestinal epithelial cells were obtained from Haber et 

al. (Haber et al., 2017). From this dataset, both droplet and plate-based results were used. Gene 

symbols were converted to Ensembl IDs using db2db (Mudunuri et al., 2009). Hypergeometric 

significance calculations were applied to test the presence of cell type-specific signatures in the 

list of differentially expressed genes using all expressed genes as the statistical background 

(normalised counts ≥ 1 in ≥ 1 sample). Bonferroni multiple correction was applied and any 

adjusted p < 0.05 was deemed significant. Genes with normalised counts ≥ 1 in ≥ 1 sample per 

condition (B. breve UCC2003 treated or control) were used to identify cell type signature genes 

expressed per condition. Where calculated, adjusted p values ≤ 0.05 were considered significant. 

 

Differentially expressed stem cell signature genes were contextualised using regulatory 

networks. Mouse directed transcription factor - target gene (TF-TG) interactions were obtained 

from DoRothEA (Garcia-Alonso et al., 2019) using confidence levels A-D (all except predicted 

interactions) via the OmniPath Cytoscape app (Shannon et al., 2003; Türei et al., 2016). After 

filtering for nodes which are expressed in the dataset (normalised counts ≥ 1 in ≥ 1 sample). TFs 

were further filtered for relevance in the network using a Python script written by Matthew 

Madgwick (EI, QIB, Korcsmaros group; unpublished data) based on the Cytoscape app CHAT 

(Muetze et al., 2016). This tool inputted the DoRothEA TF-TG network filtered for expressed 

nodes, alongside the list of all DEGs. Then, a hypergeometric significance test was carried out 
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on any node with degree > 5 to determine if the proportion of connected nodes which are 

differentially expressed is higher than in the whole network. Any TF with adjusted p value ≤ 0.05 

following Benjamini-Hochberg correction were deemed significant and used to filter the stem 

cell signature gene subnetwork. Network visualisation was carried out in Cytoscape (Shannon et 

al., 2003; Su et al., 2014). 

 

4.3.8 Functional analysis 

Functional overrepresentation analysis was carried out using the Panther web tool (Thomas et 

al., 2003, 2006). Gene lists were tested against Panther Gene Ontology-Slim Biological pathways 

and against Reactome pathways (Fabregat et al., 2018a) with default settings. All pathways with 

q value ≤ 0.05 are considered significantly overrepresented. When testing the functional 

associations of all stem cell DEGs and their regulators (total 64 genes), all nodes in the unfiltered 

DoRothEA network are used as a background for the statistical test. 
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4.4 Results 
 

4.4.1 B. breve impacts the neonatal intestinal epithelial transcriptome 

To examine the effects of bifidobacteria on host IECs, neonatal (two weeks old) and young adult 

(10-12 weeks old) mice were gavaged with B. breve UCC2003 for three consecutive days (n=5 

per group) prior to whole IEC RNA sequencing. Culture and 16S rRNA microbiota profiling 

approaches were used to confirm colonisation and determine the impact of B. breve UCC2003 

on the wider microbiota. Raymond Kiu and Shabhonam Caim demonstrated that while 

increasing the proportion of B. breve UCC2003 itself, colonisation of neonatal mice with this 

bacteria had minimal impact on overall microbiota profiles - although very low relative 

abundance (<2%) microbiota members Streptococcus, Ruminococcus, Prevotella and 

Coprococcus were significantly reduced in the B. breve UCC2003 group (Kiu et al., 2020).  

 

Whole transcriptome analysis of small intestinal IECs identified a significant impact of B. breve 

UCC2003 on neonatal intestinal epithelium, while no change was observed in young adult mice, 

based on differentially expressed genes (DEGs). This suggests B. breve UCC2003 modulation of 

IECs is strongest within the early life window under homeostatic conditions. In the neonatal 

group, a total of 3,996 DEGs were significantly upregulated, while 465 genes were significantly 

downregulated in B. breve UCC2003 supplemented animals when compared to 

controls (absolute log2(fold change) > 1 and adjusted p < 0.05). 

 

As B. breve strains have been previously shown to modulate tight junction and other barrier-

related proteins, Raymond Kiu investigated DEGs associated with intestinal epithelial barrier 

development and intestinal structural organisation. He observed a number of upregulated genes 

associated with tight junctions, adherens junctions and gap junctions (Figure S4.1). 

Furthermore, a number of genes involved in mucus layer generation were also upregulated 

(Figure S4.1). Surprisingly, anti-microbial peptide genes, including defensins were not 

differentially expressed. Functional overrepresentation analysis identified a variety of enriched 

functions including DNA repair, cell cycle, transcription and chromatin organisation (Table S4.1). 

Together these results suggest B. breve UCC2003 induces extensive transcriptional changes in 

neonatal IECs, including genes relating to enhanced epithelial barrier development. 
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4.4.2 B. breve modulates neonatal cell maturation processes 

To delve further into the data, Raymond Kiu and myself constructed a signalling network based 

on upregulated DEGs (n=3,996) with the aim of identifying signalling pathways potentially 

modulated by bifidobacteria in IECs (Figure 4.2A). To do this, we used a prior knowledge protein-

protein interaction (PPI) network to determine possible PPI connections between the 

(translated) DEGs and their direct protein interactors (protein first-neighbours). Identifying 

connections between (translated) genes permits grouping of genes into clusters which work 

closely together and are therefore likely to have similar functions. Similarly, the first neighbour 

approach can aid the annotation of functional associations through identifying additional 

biologically relevant proteins (Módos et al., 2017). 
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Figure 4.2. Signalling network analysis, IEC subtyping and key regulator analysis. A. Cluster 
analysis of signalling network for significantly upregulated genes (n=3,996). Representative 
enriched pathways (Reactome) and GO terms (Biological Process) identified in each individual 
cluster were listed alongside. B. Heat plot showing percentage of cell type signature genes in 
DEG and expressed genes (both control and UCC2003 groups). All expressed genes are well 
represented in IEC cell type signature genes. C. Cell type analysis on IEC DEGs using known cell-
specific signature genes. Stem cells were statistically overrepresented in DEGs. * p < 0.05. D. Key 
regulators of stem cell DEGs. Figure reproduced from Kiu et al. (2020) under the Creative 
Commons BY licence. 

 



Chapter 4: The effect of bifidobacteria on the small intestinal epithelium 

 

 

 

144 

 

Overall, 1,491 DEGs were successfully mapped (37.3%) to a signalling network that comprised 

8,180 genes. Four individual clusters of highly connected genes were detected, with functional 

assignment and pathway analysis implemented on these clusters (Figure 4.2A, Table S4.2). All 

gene clusters were associated with cell differentiation and maturation, with cluster 1 (68 genes) 

linked specifically with DNA replication and transcription, cluster 2 (26 genes) with cell growth 

and immunity (including toll like receptor 2, TLR2 cascades), cluster 3 (11 genes) with cell 

replication, and cluster 4 (72 genes) related to cell cycle and cell division. Whilst only 

representing a third of the upregulated DEGs, this analysis highlights the importance of cell 

maturation processes as a response to B. breve. 

 

4.4.3 Neonatal affected genes are enriched with epithelial stem cell 

markers 

IECs include several absorptive and secretory cell types, namely enterocytes, Paneth cells, goblet 

cells, enteroendocrine cells, tuft cells and stem cells. Each of these cells perform different 

functions in the gut (as described in General Introduction section 1.2.1) and could be 

differentially affected by bacterial signals. Therefore, I investigated whether B. breve UCC2003 

had a cell type-specific effect on the intestinal epithelium, using known cell type-specific gene 

markers (Haber et al., 2017). 

 

First, I validated the presence of all IEC types in our study data by identifying cell type markers 

within the genes expressed in the transcriptomics data of the control and UCC2003 groups 

(Figure 4.2B, C). I found that all the cell type markers were well represented in both datasets 

(between 84% and 99% markers) and that there was little difference between the control and 

UCC2003 groups. Next, I investigated whether any genes differentially expressed after B. 

breve UCC2003 supplementation were cell type markers. This analysis revealed that stem cell 

marker genes were significantly enriched (30%; P < 0.05) among the six IEC types after B. breve 

UCC2003 supplementation (Table S4.3). Signatures of other cell types were also present but not 

significantly over-represented: Tuft cells (22%), enteroendocrine cells (18%), goblet cells (15%), 

Paneth cells (15%) and enterocytes (13%). These data indicated that intestinal epithelial stem 

cells, cells primarily involved in cell differentiation, were the primary cell type whose numbers 

and transcriptomic programme were regulated by B. breve UCC2003. 
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Further investigation of this stem cell signature revealed that of the 37 differentially expressed 

marker genes, 35 are upregulated in the presence of B. breve UCC2003 (96%) – whereas only 

54% of the enterocyte markers were upregulated (37/68). This indicates an increase in the 

quantity of stem cells or semi-differentiated cells in the epithelium, consistent with the 

overrepresentation of cell cycle and DNA replication associated genes observed in the whole 

differential expression dataset. Functional analysis of the 37 stem cell signature genes revealed 

only one overrepresented process - Regulation of Frizzled by ubiquitination (p val < 0.05), which 

is a subprocess of WNT signalling. WNT signalling is important in maintaining the 

undifferentiated state of stem cells (Nusse, 2008). 

 

Moreover, I employed a network approach to predict key transcription factor (TF) regulators of 

these 37 genes, through which B. breve UCC2003 could be acting. Using the TF-target gene 

database, DoRothEA, we identified expressed TFs known to regulate the stem cell signature 

genes (Garcia-Alonso et al., 2019). Five genes had no known and expressed regulator thus were 

excluded. Hypergeometric significance testing was used to identify which of these TFs were 

most influential based on out-degree (the number of genes regulated by the TF) and the 

transcriptomics data (see Methods for detail, section 4.3.7). This analysis identified 32 TF 

regulators, some which target up to 30 of the stem cell signature genes (Figure 4.2D). Of the 

regulators, 12 are differentially expressed in the IEC dataset (all upregulated): Fos, Gabpa, Rcor1, 

Arid2, Tead1, Mybl2, Mef2a, Ahr, Pgr, Kmt2a, Ncoa2 and Tcf12. Functional analysis of the 32 

regulators and their 32 targeted stem cell signature genes together revealed overrepresented 

pathways involved with WNT signalling, histone methylation for self-renewal and proliferation 

of hematopoietic stem cells, nuclear receptor (incl. oestrogen) signalling, signal transduction 

and gene expression (Table S4.4). These data provide evidence that B. breve UCC2003 directly 

affects key transcriptomic programmes which regulate specific signalling processes, particularly 

within stem cells. 
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4.5 Discussion 
 

Bifidobacteria are predominant in the guts of healthy human infants during a critical stage of 

immune development and programming, where microbe-host interactions impact health in the 

short and longer term (Arboleya et al., 2016; Isolauri, 2012). As such, studies have shown that 

bifidobacteria play a key role in modulating and priming specific immune populations and 

protecting against immune linked diseases (O’Neill et al., 2017). However as far as I am aware, 

no study has yet investigated the age-specific effects of bifidobacteria. We showed that B. breve 

had a large impact on the IEC transcriptome of neonatal mice, but no significant impact on the 

transcriptome of young adult mice (data not shown). The striking differences in DEGs between 

these two life points indicate that, in a healthy gut, B. breve modulation of IECs is limited to the 

early life window. 

 

Given the limited change in the gut microbiota of bifidobacteria-exposed mice compared to 

control SPF mice, we assume that the observed IEC expression changes were driven by 

bifidobacterial surface molecules, metabolites or secreted products. The interactions of these 

molecules and IECs (directly or indirectly) resulted in a large-scale upregulation of IEC genes and 

impacted many processes previously associated with bifidobacteria (Engevik et al., 2019; 

Ewaschuk et al., 2008; Srutkova et al., 2015). For example, we revealed that expressions of key 

genes associated with formation of epithelial barrier components were up-regulated, including 

major cell junction protein-encoding genes (75%; 42/56 genes). One such group was integrins, 

which facilitate cell-cell and cell-extracellular matrix adhesion that is pivotal for cell migration 

and cell differentiation (Harburger and Calderwood, 2009). Integrins also play an important role 

in downstream intracellular signalling that controls cell differentiation, proliferation, and cell 

survival, including the Raf-MEK-ERK signalling pathway (we also observed enrichment of genes 

involved in this pathway) (Chernyavsky et al., 2005; Li et al., 2016). Tight junction proteins were 

also found to be upregulated, indicating that bifidobacteria is capable of increasing barrier 

function in a healthy condition, in addition to previous evidence which showed that 

bifidobacteria can prevent barrier function decline due to damaging agents or disease (Din et 

al., 2020; Srutkova et al., 2015; Yan et al., 2019). Dysfunctional epithelial barrier function may 

lead to a ‘‘leaky’’ gut, which is characteristic of numerous intestinal disorders including 

inflammatory bowel diseases (Krug et al., 2014). Notably, previous work has suggested early life 

microbiota disruptions (via antibiotic usage) and reductions in Bifidobacterium are correlated 
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with increased risk and/or symptoms of ulcerative colitis and Crohn’s disease (Duranti et al., 

2016; Favier et al., 1997; Giaffer et al., 1991; Kronman et al., 2012), although the opposite has 

also been reported (Wang et al., 2014). Furthermore, several clinical studies have indicated that 

supplementation with certain Bifidobacterium strains positively modulate gastrointestinal 

symptoms of patients, which is corrected with reductions of inflammatory markers in colonic 

IEC-containing biopsies; however, B. breve UCC2003 has not been used clinically in this patient 

setting (Furrie et al., 2005; Steed et al., 2010). Further clinical studies would be required to probe 

these findings in detail to determine their importance during healthy infant development.  

 

Furthermore, in line with previous evidence, we found that B. breve UCC2003 upregulated 

mucin producing genes, which play a crucial role in intestinal protection via formation of a 

physical barrier between the gut lumen and IECs (Caballero-Franco et al., 2007; Engevik et al., 

2019; Mangin et al., 2018). Deficiencies in mucins have been linked with experimental colitis and 

increased inflammation in patients with inflammatory bowel disease, further evidencing a link 

between bifidobacteria and inflammatory diseases (Shirazi et al., 2000; Van der Sluis et al., 

2006). On the other hand, despite some literature evidence that bifidobacteria can impact the 

expression or secretion of anti-microbial peptides, we did not observe any significant changes 

in these genes (Lee et al., 2018; Natividad et al., 2013; Underwood et al., 2012). 

 

Although we observed a substantial IEC transcriptional response induced by bifidobacteria, we 

cannot rule out the possibility that these changes would occur upon introduction of any new 

microbiota member. However, the similarity between observed transcriptional responses and 

previous literature evidence, alongside the lack of a generalised immune response in our 

bifidobacteria-exposed mice, indicates that our results represent bifidobacteria–specific effects 

on IECs. Further work would be required to extrapolate the observed results to humans and to 

test whether bifidobacteria-induced changes are transient or have long-term effects on IECs and 

immune maturation. 

 

Using a priori information on protein-protein interactions, we were able to identify proteins 

which can theoretically interact with more than 1/3rd of the (translated) upregulated genes. This 

approach permitted generation of a PPI network, in which connections between DEGs and their 

first neighbours indicate similarity and cooperation in biological functions. In turn, this 

permitted clustering of genes/proteins into four distinct highly inter-connected groups. 

Functional analysis revealed that all four clusters were associated with cell maturation and cell 
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differentiation, suggesting that neonatal B. breve exposure positively modulates IEC cell 

differentiation, growth, and maturation. Similar findings have been previously reported in 

colonic epithelial cells of bifidobacteria-monoassociated mice (O’Connell Motherway et al., 

2019). Further, Lee et al. (2018) observed that Bifidobacterium-derived lactate supports IEC 

differentiation through Paneth cell and stromal cell Wnt3 secretions – highlighting the possibility 

of indirect effects of bifidobacteria based on communication between IECs.  

 

Among the cluster associated functions, we also identified the TLR2 pathway. This may link to 

previous work indicating that the B. breve UCC2003 EPS signals via TLR2 to induce MyD88 

signalling cascades to protect IECs during intestinal inflammation (Hughes et al., 2017). B. breve 

M-16V was also shown to interact with TLR2 to up-regulate ubiquitin-editing enzyme A20 

expression that correlated with increased tolerance to a TLR4 cascade in porcine IECs, further 

supporting the involvement of B. breve in programming key host immunoregulation receptors 

(Tomosada et al., 2013). In the future, the use of additional a priori PPI resources could help to 

annotate a larger proportion of the DEGs, for identification of further clusters.  

 

Different cell types of the small intestinal epithelia have different functions, such as mucin 

production by goblet cells and AMP production by Paneth cells. Our findings in this experiment, 

as well as other published works, indicate that bifidobacteria can affect these cell type-specific 

functions. While we did not obtain cell type-specific data from this experiment, I predicted which 

cell types were most affected by B. breve UCC2003 in neonatal IECs by observing which DEGs 

also occur in a published collection of IEC marker genes (Haber et al., 2017). This analysis 

revealed stem cells as the IEC type most affected by B. breve, with absorptive enterocytes least 

affected despite being most accessible to bacteria in the gut. It could be hypothesised that B. 

breve or their secreted metabolites may reach the crypts of the small intestinal epithelium. 

Previous evidence based on in situ hybridization histology in vivo suggests that B. breve can 

reach small intestinal crypts, while it is also possible that inter-cellular communication can 

transmit signals to the bottom of the intestinal crypts, such as the communication observed 

between stromal cells, Paneth cells and stem cells following lactate administration (Hughes et 

al., 2017; Lee et al., 2018). Specifically, I found that 37 (of 122) stem cell marker genes were 

differentially expressed upon exposure to bifidobacteria. This represented a significant overlap 

(adjusted p ≤ 0.05, hypergeometric significance test). All but two of the 37 were upregulated in 

the presence of B. breve UCC2003, indicating an activating effect resulting in increased 
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pluripotency of stem cells, increased quantity of stem cells, and/or an increased quantity of 

semi-differentiated cells. This finding also corroborates with the overrepresentation of cell cycle 

associated genes amongst the DEGs. Further, using a priori regulatory interactions, I predicted 

32 TFs associated with these differentially expressed stem cell marker genes - providing possible 

targets for future investigation of the mechanisms underlying these responses. While they have 

not been previously associated with bifidobacteria, many of the TFs are involved in cell 

proliferation, differentiation, survival and cell cycle. For example, FOS Proto-Oncogene, AP-1 

transcription factor subunit (FOS), MYB proto-oncogene like 2 (MYBL2) and Aryl hydrocarbon 

receptor (AHR) (Barhoover et al., 2010; Brown et al., 1998; Musa et al., 2017). Further a number 

of the TFs are associated with histone and chromatin remodelling, such as AT-rich interaction 

domain 2 (ARID2) and Lysine methyltransferase 2A (KMT2A), indicating a role for B. breve in 

epigenetic modification (Duan et al., 2016; Huang et al., 2017). Functional analysis of the 

differentially expressed stem cell marker genes and their regulators suggests that B. breve 

increases pluripotency of stem cells and/or semi-differentiated epithelial cells through WNT 

signalling and nuclear hormone signalling (Jeong and Mangelsdorf, 2009). Substantiating this 

finding, WNT signals of Paneth cells and stromal cells have been previously implicated in 

mediating bifidobacteria effects on stem cell proliferation (Lee et al., 2018). 

 

4.6 Future research directions 
 

In conclusion, we have shown that B. breve UCC2003 plays a central role in orchestrating global 

neonatal IEC gene responses in a distinct manner as shown in our murine model, modulating 

genes involved in epithelial barrier development, and driving universal transcriptomic alteration 

that facilitates cell replication, differentiation, and growth, particularly within the stem cell 

compartment. Further work is required to investigate the cell type-specific effects of 

bifidobacteria, in particular to validate their impact on stem cells. In Chapter 5, myself and 

colleagues employ florescence activated cell sorting (FACS) to isolate stem cells and Paneth cells 

from IECs. Moreover, single-cell sequencing of IECs could be used to further investigate cell type-

specific effects. Additionally, further work could investigate the impact of bifidobacteria on the 

colonic epithelium, the age at which bifidobacteria ceases to significantly impact IECs, or 

determine host and bacterial metabolome and proteome after B. breve exposure to investigate 

specific underlying molecular mechanisms of interaction (Guo et al., 2015).  
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 Chapter 5: The effect of Bifidobacteria on small 
intestinal stem cells and Paneth cells 

 

5.1 Introduction 
 

In Chapter 4, we found that B. breve UCC2003 extensively regulates the transcriptome of the 

healthy neonatal small intestinal epithelium. Furthermore, our analysis indicated a larger effect 

on stem cells than other IEC types, evidencing a cell type-specific action of B. breve. To further 

investigate the effect of bifidobacteria at a cell type-specific level, we carried out a second study, 

presented in Chapter 5 of this thesis, focusing specifically on stem cells and Paneth cells of the 

small intestine. Here, stem cells were chosen due to the findings outlined within Chapter 4, while 

Paneth cells were selected to confirm that B. breve UCC2003 does not affect antimicrobial 

peptide (AMP) release as seen in Chapter 4, despite contention within the literature (see 

General Introduction section 1.5.2.3). Furthermore, we extended this investigation to germ free 

(GF) mice in addition to specific pathogen free (SPF) mice, to evaluate the effect of bifidobacteria 

as the initial colonisers of the gut. The mice investigated were four weeks old (two weeks older 

than in the neonatal bulk epithelium study), and thus will have recently weaned from their 

mother’s breast milk. The reason for this was to enable the study of GF mice and to investigate 

the effect of bifidobacteria on young yet mature epithelial cells. The study design and analysis 

workflow for this study, termed the “juvenile cell type-specific” study, is outlined in Figure 5.1. 

 

This study was carried out by myself and others members of Tamas Korcsmaros’s research group 

(Earlham Institute, EI, QIB), with support from the UEA Disease Modelling Unit, the QIB germfree 

mice facility and the Genomics Pipelines Group at the EI. A single gavage of Bifidobacterium 

breve UCC2003 was administered to juvenile GF and SPF mice (Figure 5.1). Subsequently, small 

intestinal Paneth cells, stem cells and two intermediary cell populations were isolated by 

Fluorescence-activated cell sorting (FACS) before low-input RNA sequencing. Contrasting the 

first study, we observed only very modest changes in the transcriptional profile of the intestinal 

epithelial cells upon exposure to bifidobacteria, despite evidence of successful colonisation of 

GF mice based on selective culturing. However, correlation analyses, including co-expression 

network analysis and gene set enrichment analysis, identified a number of cellular functions 

marginally affected by bifidobacteria, including those identified in the previous study: cell cycle, 

autophagy, apoptosis and cell-cell junctions. Further analysis was carried out to evaluate the 
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FACS protocol used in this study. My roles were: experimental design and planning, bacterial 

work and most of the data processing/analysis. 

 

Figure 5.1. Schematic overview of juvenile cell type-specific study design and analysis 
workflow. GF - germ free; SPF - specific pathogen free/conventionalised; FACS - fluorescence-
activated cell sorting. Figure adapted from Kiu et al. (2020) under the Creative Commons BY 
licence. 

 

5.2 Aims 
 

The aims for this project were as follows: 

• Evaluate the global transcriptional response to B. breve UCC2003 in specific small 

intestinal IEC types (using fluorescence-activated cell sorting (FACS) and low cell input 

RNA sequencing) 

• Investigate differences in the effect of B. breve UCC2003 between mono-associated and 

conventionalised mice 
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5.3 Methods 
 

Due to the complexity of the methods and the number of people involved, the following 

experimental work was managed by Isabelle Hautefort (from our group). Mouse work including 

gavage was carried out by Arlaine Brion and Andrew Goldson (QIB). All bacterial work was 

carried out by myself. Tissue harvesting and processing were carried out by Andrew Goldson as 

well as Martina Poletti (from our group). FACS was carried out by Amanda Demeter and Elena 

Rodriguez from our group with support from Iain Macaulay (EI). RNA extraction, preparation 

and sequencing were carried out by Amanda Demeter, Ashleigh Lister (EI), Elena Rodriguez and 

Earlham Institute Genomic Pipelines. Processing of raw sequencing reads was carried out by 

myself with help from Matthew Madgwick from our group. All other computational analysis and 

interpretation was carried out by myself. 

 

5.3.1 Mouse work 

All animal experiments and related protocols were performed in accordance with the Animals 

(Scientific Procedures) Act 1986 (ASPA). C57BL6/J female mice were housed within UEA Disease 

Modelling Unit. 10 germ free (GF) and 10 conventionalised (SPF) mice of four weeks old (n=5 for 

each condition; GF+UCC2003, GF control, SPF+UCC2003, SPF control) were kept in sterile 

individually ventilated cages receiving sterile food and sterile water ad libitum.  

 

5.3.2 Bacterial culturing, inoculum preparation, mouse challenge with B. 

breve UCC2003 and CFU enumeration 

B. breve UCC2003 (also known as NCIMB 8807) was streaked from frozen glycerol stocks onto 

autoclaved Reinforced Clostridial Agar (RCA) plates and incubated in an anaerobic chamber at 

37°C for 48h prior to picking single colonies for inoculation in prewarmed sterilised MRS 

medium. All media and agar were supplemented with 50mg/L cysteine. 

 

Only two mice for each group were challenged with B. breve UCC2003 or phosphate buffered 

saline (PBS) control at a time as tissue samples and cell isolation and sorting were greatly time-

consuming. The complete series of B. breve UCC2003/PBS challenge was therefore staggered 

over a period of five weeks. To standardise gavage inoculums over that experiment period, B. 

breve UCC2003 inoculum batch was freeze-dried in 500 µl aliquots with PBS + 10% skimmed milk 
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(lyoprotectant) (MODULYO D freeze drier) and stored at -70°C. On day of gavage, cultures were 

resuspended in sterile PBS at 109 CFU/ml. Mice received a single 100µl oral gavage of B. 

breve UCC2003 in PBS + 10% milk (approximately 108 cells/mouse) or PBS+ 10% milk (control). 

Inoculum viability/consistency was controlled by plating 10-fold serial dilutions made in sterile 

PBS on RCA plates, incubation at 37°C in anaerobiosis for 48h, and colony counting to calculate 

CFU/ml. Contamination of inoculum was checked by plating serial dilutions on Brain Heart 

Infusion (BHI) agar plates in aerobic incubation for 24-48h. Pre-gavage and 24h post-gavage 

colonisation levels of bifidobacteria were checked through serial dilutions and plating of fresh 

faeces and caecal content on RCA and De Man Rogosa and Sharpe (MRS) agar (De Man et al., 

1960) supplemented with 50 mg/L cysteine, in addition to BHI plates for aerobic 

microorganisms. Colonies were counted following 24-48h incubation. At the end of the 

experiments, caecum content was collected for serial dilution plating on RCA and MRS agar 

supplemented with 50 mg/L cysteine. The remaining content was immediately snap-frozen for 

future metagenomics and 16S rRNA profiling. 

 

5.3.3 Tissue harvesting and processing 

Seventy-two hours post oral gavage, animals were humanely culled and 10cm-long segment of 

flushed ileal tissues were harvested, longitudinally opened and cut into 5-8mm long pieces. 

Following the removal of fat, mesenteric tissue, mucus and debris, fragments were washed up 

to 6 times in Dulbecco's phosphate buffered saline (DPBS) without Mg2+ and Ca2+. For isolation 

of crypt epithelial cells, the fragments underwent incubation at room temperature in gentle 

dissociation reagent (StemCell Technologies, 07174) to remove large villi debris. For single cell 

isolation, the crypt fraction was spun down and the pellet was resuspended in a solution 

containing 1ml TryPLE Express Enzyme (Fisher Scientific, 12605036) and 120µL DNAse I (Roche, 

04536282001). The samples were placed in a water-bath at 37°C for 1-2 minutes. The pellet was 

resuspended in cold Dulbecco's Modified Eagle Medium and run through a 40µm cell strainer to 

remove large cell clumps. The cells were then counted in a haemocytometer, to calculate the 

appropriate number to be used for the antibody staining procedure. 

 

5.3.4 Flow cytometry 

The following protocol was optimised from Yilmaz et al. (Yilmaz et al., 2012). In that study, the 

authors sorted stem cells from Lgr5-EGFP-IRES-creERT2 knock-in reporter mice, allowing 

isolation by flow cytometry of Leucine-rich repeat-containing G-protein coupled receptor 5 
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(Lgr5) – Enhanced green fluorescence protein (EGFP)high cells which also have low Cluster of 

differentiation 24 (CD24 / CD24a) marker fluorescence. In our study we used a similar protocol 

but employed wildtype mice and measured surface Lgr5 marker fluorescence, targeting the 

presence of LGR5 protein instead of its gene expression. Furthermore, in addition to sorting 

stem cells and Paneth cells based on the Yilmaz protocol, we sorted intermediate cells with high 

fluorescence of both LGR5 and CD24a (TAhigh) or low fluorescence of both (TAlow). 

 

Ileal stem cells, Paneth cells and two populations of intermediate cells were labelled with a pre-

optimised antibody panel and sorted in batches of 50 cells (4 replicates for each cell population 

and for each mouse) for RNA sequencing. For antibody labelling, samples were centrifuged and 

resuspended in FACS Buffer with the antibody cocktails. Antibody panel given in Table 5.1. 

Samples were incubated for 15 minutes, washed twice and resuspended in FACS Buffer with 7-

Aminoactinomycin D (7AAD) viability stain (Biolegend, 420403).  

 

Antibodies Fluorescent colour Cell 
population 

Manufacturer 

αCD45, αCD31, αTer-119 Phycoerythrin (PE) Immune 
cells 

Biolegend (103105, 
102507, 116207) 

αCD326 (Epithelial cell adhesion 
molecule, EpCAM) 

VioBlue Epithelial 
cells 

Miltenyi (130-102-421) 

αCD24 Fluorescein 
isothiocyanate (FITC) 

Paneth cells Miltenyi (130-102-731) 

αLgr5 APC-Vio770 Stem cells Miltenyi (130-111-392) 

Table 5.1. Antibody panel for sorting Paneth, stem and transit amplifying cells.Using FACS 
Melody machine. Based on Yilmaz et al. (2012). 

FACS was carried out on the BD Bioscience FACSMelodyTM Cell Sorter (Becton, Dickinson 

Company) following optimisation of gating using fluorescence minus one control. 

Representative gating strategy is shown in Figure S5.1. Live single cells with high granularity 

were selected using forward scatter, side scatter and 7AAD signals. In addition to the cells sorted 

based on the Yilmaz et al. panel, we also sorted intermediary populations with high LGR5 high 

CD24 (termed transit amplifying high cells) and low LGR5 low CD24 (termed transit amplifying 

low cells) (von Furstenberg et al., 2011; Gracz et al., 2010; King et al., 2012; Yilmaz et al., 2012). 

Later I assessed cell identities using the transcriptomics data as described in section 5.3.7. To 

conclude, four cell populations were sorted which were labelled as follows: Paneth cells (high 

CD24, low LGR5), Stem cells (low CD24, high LGR5), transit amplifying (TA) high cells (high CD24, 

high LGR5) and TA low cells (low CD24, low LGR5). 
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5.3.5 RNA extraction, preparation and sequencing 

The RNA from specific sorted cell types was extracted and amplified using a SMART-seq 2 

method for low input samples, based on a protocol adapted from Picelli et al. (2013). Bead 

cleaning was carried out using a Biomek NXP robot (Beckman Coulter) with Angecourt AMPure 

Beads (Beckman Coulter). Samples were quality checked using an Aglient Bioanalyser 2100, a 

LabChip GX Touch™ (PerkinElmer). Next, libraries were prepared using a NEXTERA XT Library 

preparation protocol. All samples were pooled and quality checks were performed using the 

Qubit and the Bioanalyzer following 0.8X Ampure bead clean-up. Illumina Sequencing was 

carried out by the Genomics Pipelines Group at the Earlham Institute on 1 lane of an Illumina 

NovaSeq 6000 S2 flow cell with 100PE reads.  

 

5.3.6 Transcriptomics data processing 

Sequencing reads from the flow sorted cells were trimmed using Trimmomatic (v0.38) (Bolger 

et al., 2014) using Standard NEXTERA adapters plus SmartSeq2 adapters on paired end mode 

with all other settings as default. 

 

Read and sequencing quality was checked using FastQC (v0.11.7), MultiQC (v1.5) and custom R 

scripts (Andrews, 2010; Ewels et al., 2016). Trimmomatic (v0.38) was used to trim adapters 

(Nextera and Smartseq2 adapters) and remove low-quality reads. Sequence length, sequence 

quality and number of reads was used to check for outlier samples (Figure 5.2A). Following an 

initial round of data analysis, two samples were removed due to aberrant normalised counts 

distribution (Figure 5.3). 
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Figure 5.2. Read and alignment quality control plots. A: Density plot of number of reads across 
all samples after trimming step. B. Density plot of percentage of reads uniquely mapped to the 
genome across all samples. 
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Figure 5.3. Normalised gene counts quality control plots. A: Density of gene abundance across 
each biological condition. B. Density of gene abundance across each replicate of the 
bifidobacteria treated germ free mice condition. BGF3_TAhigh_1 and BGF3_TAhigh_4 samples 
removed due to overrepresentation of genes with very low counts. GF - control germ free; SPF 
- control specific pathogen free; BGF - bifidobacteria treated germ free; BSPF - bifidobacteria 
treated specific pathogen free; PC - Paneth cell; SC - stem cell; TAhigh - transit amplifying high 
cell; TAlow - transit amplifying low cell. 
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Alignment and quantification was carried out using a traditional alignment approach instead of 

using a pseudo-aligner, for increased accuracy and gene abundance in addition to gained 

information regarding non-coding regions of the genome (Du et al., 2020). Specifically, reads 

were aligned to the Ensembl Mus musculus primary assembly (GRCm38.98) using STAR (v2.6.0c) 

(Dobin et al., 2013; Zerbino et al., 2018). The pipelining tool Snakemake (Köster and Rahmann, 

2012) and the SLURM workflow manager (Yoo et al., 2003) were used to run these tools on the 

Earlham Institute High Performance Cluster.  

 

Processing of aligned reads was carried out using the R package Seurat (v3.0) (Butler et al., 2018; 

Stuart et al., 2019). Normalisation of counts was performed using standard log-normalisation 

and z-score transformation, followed by removal of any samples with >15% mitochondrial reads. 

Cell cycle genes were not regressed out of the data due to well mixing of the S and G2M cell 

cycle scores among the samples based on Uniform Manifold Approximation and Projection 

(UMAP) visualisations. Each sequenced plate was treated as a separate dataset. A feature 

selection stage was used on every plate dataset to find the top 2000 highly variable genes using 

variance stabilising transformation. Then each plate dataset was integrated using Seurat's 

standard integration method to remove batch effects associated with sequencing by finding 

'anchors' between the plate datasets. This produced an integrated expression matrix for each 

cell within dataset that enabled them to be analysed together. Visualisation of integrated 

normalised data was carried out using dimensionality reduction methods principal component 

analysis (PCA) and UMAP using R (Becht et al., 2018; McInnes et al., 2018).  

 

Normalised counts data was plotted in R to determine the cut offs for expressed genes. The cut 

off for a gene to be expressed in a sample was determined as mean scaled normalised counts ≥ 

0.02 (Figure 5.4A). The cut off for a gene to be expressed in a condition or cell type was 

determined as scaled normalised counts ≥ 0.02 in ≥ 3 samples per condition (Figure 5.4B, C), 

based on density plots. The 50 top variant genes across SPF and GF samples were identified and 

visualised using R. 
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Figure 5.4. Gene abundance density plots for determining expression cut offs. A: Density of 
mean gene abundance (scaled normalised counts) across each biological condition. B. Density 
plot of number of samples of each biological condition where gene is expressed (scaled 
normalised counts ≥ 0.02). Legend as in A. C. Density plot of number of samples of each cell type 
where gene is expressed (normalised count ≥ 0.02). Vertical lines indicate expression cut offs. 
GF - control germ free, SPF - control specific pathogen free, BGF - bifidobacteria treated germ 
free; BSPF - bifidobacteria treated specific pathogen free; PC - Paneth cell; SC - stem cell; TAhigh 
- transit amplifying high cell; TAlow - transit amplifying low cell. 

 

5.3.7 Computationally assessing cell identities 

MAST (v3.11) was used to identify differentially expressed genes (cluster biomarkers) relating 

to each cell type based on a priori labels (Finak et al., 2015). Here the gene expression of samples 

of the tested cell type were compared with expression of all the other samples. All genes with 
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adjusted p value ≤ 0.05 and average log2(fold change) ≥ 0.25 were considered significant. These 

markers were compared to marker gene sets for murine intestinal epithelial cells from Haber et 

al. (Haber et al., 2017) using hypergeometric significance calculations with all genes expressed 

in at least one sample (mean scaled normalised counts ≥ 0.02) as the statistical background. 

From Haber et al., both droplet and plate-based results were used and gene symbols were 

converted to Ensembl IDs using db2db (Mudunuri et al., 2009). Further, the same analysis was 

carried out using intestinal epithelial cell signature genes from Zhao et al. (Zhao et al., 2020). 

Adjusted p values ≤ 0.05 (Bonferroni multiple correction) were considered significant. Data was 

plotted in R using gplots. 

 

5.3.8 Differential expression analysis 

Differential expression was carried out using MAST (v3.11) (Finak et al., 2015). Differentially 

expressed genes were determined by comparing Bifidobacterium – exposed mice to control 

mice in each condition (cell type + mouse type). Any genes with absolute log2(fold change) ≥ 1 

and adjusted p value ≤ 0.05 were considered differentially expressed. 

 

5.3.9 Weighted gene co-expression network analysis 

Weighted-gene co-expression network analysis (WGCNA) was carried out using the automatic 

one-step method of the WGCNA R package (Langfelder and Horvath, 2008). The top 25% genes 

based on variance of normalised counts were pre-selected before being passed into the R 

package ComBat to remove batch effects due to the sequencing plate. Network topology 

analysis was carried out and scale-free fit and mean connectivity were plot against soft-

thresholding powers between 1 and 20. Subsequently, the soft threshold was selected as the 

lowest power for which the scale-free topology fit index curve flattens out upon reaching a high 

value. Hierarchical clustering was used to identify and remove outlier samples. Signed networks 

were reconstructed in one block using default parameters. Module - trait associations, module 

membership and gene significant analyses were carried out using default parameters. Modules 

with p value ≤ 0.05 with respect to trait associations were considered significant. Functional 

analysis of modules was carried out against Gene Ontology Biological processes (GO:BP) and 

Reactome Pathways as described in section 5.3.10 using all genes expressed in at least one 

sample (mean scaled normalised counts ≥ 0.02) as the statistical background. 
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5.3.10  Functional analysis  

Functional overrepresentation analysis and gene set enrichment analysis (GSEA) were carried 

out against Reactome and GO:BPs using R packages ReactomePA and ClusterProfiler respectively 

(Subramanian et al., 2005; Yu and He, 2016; Yu et al., 2012a). Where necessary, analysis was 

carried out following conversion to ENTREZ IDs using the R package org.Mm.eg.db. All expressed 

genes were used as the statistical background and redundant GO:BP pathways were removed 

using the simplify command. Any functions/pathways with q value ≤ 0.1 were deemed 

significantly enriched.  
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5.4 Results 
 

5.4.1 B. breve has a modest impact on juvenile intestinal epithelial 

transcriptome 

To determine the impact of bifidobacteria on Paneth cells and stem cells of the small intestine, 

we gavaged juvenile (4-week-old) SPF and GF mice with B. breve UCC2003. The correct 

monocolonisation of GF mice by B. breve was shown by the plating of caecal content, which 

showed high population levels across all repeated experiments (~5x109 CFU/mL/g) post-gavage 

(Figure S5.2A). Conversely, B. breve UCC2003 numbers in SPF mice faecal samples pre- and post-

gavage (24h) were not significantly different, indicating that i) bifidobacteria were already 

present in the complex SPF microbiota and that ii) B. breve either transits through the gut and 

is rapidly undetectable, or has replaced (at least partially) the normal resident bifidobacteria 

population (Figure 5.1B). Of note, B. breve UCC2003 could colonise the gastrointestinal tract of 

GF mice at significantly higher levels than the levels at which resident bifidobacteria were in SPF 

mice before/after gavage, illustrating the highly controlled balance of abundance and functions 

between all components of a healthy gut complex microbiota. 

 

Following FACS sorting and low input RNA sequencing of Paneth cells and stem cells, I carried 

out visualisation of the transcriptomics data using a non-linear dimensionality reduction 

approach called uniform manifold approximation and projection (UMAP) (Becht et al., 2018; 

McInnes et al., 2018). The results demonstrated a difference in transcriptomic profiles based on 

cell type: with a continuous pattern of variation across the cell types, in line with knowledge of 

crypt differentiation (Figure 5.5A) (Lueschow and McElroy, 2020). However, no distinct 

separation was observed between bifidobacteria-exposed and control samples or between GF 

and SPF samples (Figure 5.5B, Figure S5.3). This indicated that, based on all genes in the genome, 

there was no observable effect of B. breve UCC2003 on any of the four cell populations tested. 

The same finding was replicated using other dimensionality-reduction visualisation methods 

(Figure S5.4). 
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Figure 5.5. UMAP plots of normalised counts data. A. Data coloured by cell type. PC - Paneth 
cell; SC - stem cell; TAhigh - transit amplifying high; TAlow - transit amplifying low. B. Data 
coloured by condition: bifidobacteria-treated of control. 

 

Next, the top variant genes across SPF and GF samples were identified and visualised (Figure 

5.6, Figure S5.5). Based on hierarchical clustering of the top 50 variant genes, I confirmed that 

samples do not separate based on presence of bifidobacteria but instead based on cell type. 

More than 1/3rd of the variant genes among the SPF and GF samples were encoding 

antimicrobial proteins, in particular Paneth cell-associated defensins. Other variant genes were 

associated with epithelial cell types such as enterocytes (apolipoprotein A-I, Apoa-1 and 

gastrotropin, Fabp6) and goblet cells (trefoil factor 3, Tff3 and zymogen granule protein 16, 

Zg16) (Haber et al., 2017). Visual analysis indicated idiosyncrasies within the cell populations. 

For example, a subpopulation of SPF TAhigh cells expressed higher levels of enterocyte-

associated genes and a subpopulation of SPF TAlow cells expressed higher levels of goblet-

associated genes. Furthermore, a few mitochondrial associated genes are among the top variant 

genes (e.g. cytochrome b, Cytb and NADH dehydrogenase 1, Nd1). This could be evidence of 

apoptotic or lysing cells caused by experimental procedures, or a genuine biological signal 

relating to cell type-specific expression levels. 
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Figure 5.6. Gene expression heatplot of top 50 variant genes among all specific pathogen free 
samples. Samples and genes are clustered. Bif - bifidobacteria-treated samples; Ctrl - control 
samples. 

 

5.4.2 Intestinal stem cells express cell surface protein CD24a  

To further investigate and validate the identity of the flow-sorted cells, I determined 

differentially expressed genes (also known as cluster biomarkers) for each cell population. I 

compared these genes to two different published collections of IEC marker genes obtained 

through extensive single cell sequencing of mouse small intestinal epithelia (Haber et al., 2017; 

Zhao et al., 2020) using hypergeometric significance test (see Methods section 5.3.7). Using this 

approach, I found that the Paneth cell samples, which were sorted based on of LGR5lowCD24ahigh 

marker fluorescence (see Methods section 5.3.4), were significantly similar to Paneth cells from 

the two single cell studies. In addition, they were significantly similar to other closely related 

secretory lineages and immature enterocytes (Figure 5.7). TAlow cells, which were sorted based 

on having of LGR5lowCD24alow marker fluorescence, were most similar to enterocytes. 

Unexpectedly, stem cells, sorted based on of LGR5highCD24alow marker fluorescence, were also 
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found to be significantly associated with enterocyte markers, but not with expected stem cell 

markers. Conversely, the TAhigh cells, which had both of LGR5highCD24ahigh marker fluorescence, 

were significantly overlapping with stem cell markers, in addition to transit amplifying cells, tuft 

cells and enteroendocrine cells. Furthermore, the levels of Lgr5 expression across the different 

samples does not match the expectation based on the markers used for the FACS. Where we 

would expect to see high expression in the samples labelled stem and the samples labelled 

TAhigh, instead it is the Paneth cell and TAhigh samples which have high Lgr5 expression (Figure 

S5.6). For clarity, the remainder of this chapter continues to use the preassigned cell type labels, 

despite this uncovered uncertainty regarding their identify. 

 

 

Figure 5.7. Differentially expressed genes for each cell population compared to intestinal 
epithelial cell marker gene sets. White asterisks indicate statistically significant overlaps 
(adjusted p value ≤ 0.05, hypergeometric significant test, Bonferroni multiple correction) A. 
Marker gene set from Haber et al. (2017). B. Marker gene set from Zhao et al. (2020). DEGs - 
differentially expressed genes; TAhigh - transit amplifying high; TAlow - transit amplifying low. 
enteroendo - enteroendocrine; EMP - enterocyte mature proximal; EMD - enterocyte mature 
distal; EPL - enterocyte progenitor late; EPE - enterocyte progenitor early; EP - enterocyte 
progenitor; EID - enterocyte immature distal; EIP - enterocyte immature proximal; TA, TAG1, 
TAG2 - transit-amplifying progenitors. 
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5.4.3 Correlation analyses reveal multiple cellular functions marginally 

affected by B. breve in juvenile intestinal epithelial cells 

Next, I carried out differential expression analysis to specifically compare B. breve exposed mice 

to control mice for each cell type/mouse type. Contrasting the neonatal bulk epithelium study, 

no genes were identified as differentially expressed upon bifidobacteria exposure in any of the 

conditions (absolute Log2FC ≥ 1, adjusted p value ≤ 0.05). Further, I employed a gene set 

enrichment analysis (GSEA) to investigate functional associations relating to modest changes in 

expression of genes based on Reactome and Gene Ontology Biological Process (GO:BP) 

annotations (Ashburner et al., 2000; Fabregat et al., 2018b; Subramanian et al., 2005; 

The Gene Ontology Consortium, 2017). This analysis employs a rank-based approach using the 

log2 fold change of all tested genes (see Method section 5.3.10). A large number and range of 

pathways and functions were found significantly enriched (q value ≤ 0.1) (File S5.1). The 

functional results were similar between the different mouse and cell types, indicating a common 

response to the bifidobacteria. Based on GO:BP annotations, this response includes an innate 

and humeral immune response, ribosome biogenesis and protein and lipid localisation 

(summarised in Table 5.2). Interestingly, cell-cell adhesion was identified in the SPF stem cells, 

reflecting previous evidence of bifidobacteria effect on epithelial barrier function. Furthermore, 

Reactome results included the following pathways and functional groups (File S5.1): 

- Cell cycle, translation and metabolism 

- Immune functions such as defensins, cytokines and neutrophils 

- Apoptosis and autophagy 

- Cell-cell junctions and membrane trafficking 
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Mouse type Cell type Functions summary (GO:BP) 

GF Paneth 
ribosome biogenesis; membrane disruption in other organism; 

innate immune response 

GF Stem 
anion transport; humoral immune response; organic hydroxy 

compound metabolic process 

GF TAhigh 
ribosome biogenesis; membrane disruption in other organism; 

antibacterial humoral response; lipid localisation 

GF TAlow 

mitochondrion organization; ATP metabolic process; membrane 
disruption in other organism; protein localisation; humoral 

immune response; mitotic nuclear division 

SPF Paneth 
ribosome biogenesis; innate immune response; membrane 

disruption in other organism; protein localisation 

SPF Stem 
ribosome biogenesis; anion transport; cell-cell adhesion; 

inflammatory response; protein localisation 

SPF TAhigh 
monocarboxylic acid metabolic process; membrane disruption in 

other organism; mucosal immune response 

SPF TAlow ribosome biogenesis; inflammatory response 

Table 5.2. Summary of overrepresented Gene Ontology biological processes. Data based on 
gene set enrichment analysis comparing bifidobacteria-exposed to control mice in each mouse 
type and cell type. q value ≤ 0.1. GO:BP - Gene Ontology biological process; GF - germ 
free/monocolonised mouse; SPF - specific pathogen free/conventionalised mouse; TAhigh - 
transit amplifying high cell; TAlow - transit amplifying low cell. For full dataset see File S5.1. 

Weighted gene co-expression network analysis (WGCNA) is a systems biology method to identify 

patterns of correlation within genes based on expression data (Zhang and Horvath, 2005; 

Langfelder and Horvath, 2008). I applied WGCNA to predict clusters of significantly co-expressed 

genes whose expression is correlated to the presence or absence of bifidobacteria (see Methods 

section 5.3.9). This analysis was carried out on each condition (mouse type + cell type) separately 

to permit identification of condition-specific features. However, only two conditions contained 

gene clusters which were significantly associated with presence of bifidobacteria (adjusted p 

value ≤ 0.05) – GF Paneth cells and SPF stem cells. The GF Paneth cell data contained 12 separate 

modules which were significantly associated with presence of bifidobacteria, totalling 3891 

genes (Figure 5.8A). A functional overrepresentation analysis (using GO:BP) was carried out on 

all the module genes together as a separate analysis yet it did not provide significant results. A 

number of enriched functions were identified including mitotic nuclear division, chromatin 

organisation, autophagic mechanisms and membrane permeability (Figure 5.8B). On the other 

hand, the SPF stem cell data contained only one significant module of 51 genes, which was 
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functionally related to plasma membrane bounded cell projection assembly and ruffle 

organisation. 

 

 

Figure 5.8. WGCNA results of germ free/monocolonised mice Paneth cell expression data (top 
25% variant genes). A. WGCNA cluster dendrogram highlighting modules which are significantly 
associated (adjusted p ≤ 0.05) with the presence of bifidobacteria - making up a total of 3891 
genes. B. Gene ontology biological processes overrepresented among the 3891 significant 
module genes (q value ≤ 0.01). 
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Finally, I investigated the possibility that bifidobacteria could be affecting the direction of stem 

cell differentiation by observing expression levels of key differentiation-related transcription 

factors (TFs) (as described in General Introduction section 1.2.2). For this analysis I focused on 

stem cells and secretory lineages, thus excluding the TAlow cells. Based on the SPF samples, I 

observed that Paneth cell and TAhigh cell samples expressed the highest stem cell-associated 

TFs: Achaete-scute family BHLH transcription factor 2 (Ascl2),Transcription factor 4 (Tcf4), Jun 

proto-oncogene AP-1 transcription factor subunit (Jun) (Figure 5.9A) (van der Flier et al., 2009; 

Sancho et al., 2009; Schuijers et al., 2015). This finding concurs with previous finding that the 

samples sorted as TAhigh cells are likely to be stem cells, whereas the cells sorted as stem cells 

are not. Further, I observed that SRY-box transcription factor 9 (Sox9), a TF associated with 

differentiation of Paneth cells (Bastide et al., 2007), was also highly expressed in the TAhigh cells 

in addition to Paneth cells. However, literature suggests that Sox9 is also expressed in stem cells 

(Bastide et al., 2007; Haber et al., 2017; Jo et al., 2014). Other genes investigated were: 

• Enterocyte-associated TF gene, Hairy and enhancer of split-1 (Hes1) (Worthington et al., 

2018) 

• Secretory lineage TF genes, Atonal homolog 1 (Atoh1) and CBFA2/RUNX1 partner 

transcriptional co-repressor 2 (Cbfa2t2) 

• Paneth and goblet TF gene, Growth factor independent 1 (Gfi1) 

• Goblet cell TF gene, Krüppel-like factor 4 (Klf4) 

• Tuft cell TF gene, POU class 2 homeobox 3 (Pou2f3) 

• M cell TF gene, Spi-B transcription factor (Spib) 

• Enteroendocrine TF gene, Neurogenin 3 (Neurog3) (Amann et al., 2005; Worthington et 

al., 2018). 

 However, none of the observed TF genes were differentially expressed between the 

bifidobacteria treated and control samples, in the SPF mice or GF mice, indicating that 

bifidobacteria does not affect cellular differentiation in this context (Figure 5.9, Figure S5.7). 

 

Taken together, these findings indicate a number of cellular functions which may be affected by 

bifidobacteria in Paneth cells and stem cells. However, the lack of DEGs between bifidobacteria 

treated and control samples indicates that any effect is very small.  

 



Chapter 5: The effect of Bifidobacteria on small intestinal stem cells and Paneth cells 

 

 

 

170 

 

 

Figure 5.9. Expression of key transcription factors in intestinal epithelial cell differentiation 
across specific pathogen free mice samples. Mean scaled expression for each SPF cell type. PC 
- Paneth cell; SC - stem cell, TAhigh - transit amplifying high cells. 
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5.5 Discussion 
 

In 1900, Bifidobacterium was first identified as a health promoting bacterial genus (Tissier, 1899, 

1900). However, despite plentiful research into bifidobacteria and their beneficial effects, much 

remains unknown about their mechanisms of action. Furthermore, many studies have focused 

on the interplay between bifidobacteria, the immune system and disease, while interactions 

with IECs (the gut’s frontline physical barrier) have been largely understudied (O’Neill et al., 

2017). As previous studies have mostly targeted specific pathways and functions using in vitro 

or diseased conditions, we aimed to investigate the global transcriptomics effect of B. breve 

UCC2003 on healthy mouse small intestinal epithelial cells in vivo (Boesten et al., 2011; Hsieh et 

al., 2015; Yang et al., 2017). In Chapter 4, myself and colleagues observed that B. breve had a 

global impact on the IEC transcriptome. Based on these results and previous literature evidence, 

we investigated the effect of B. breve UCC2003 on stem cells and Paneth cells of the murine 

small intestine (Lee et al., 2018). Here, we studied both SPF and GF mice to determine if 

bifidobacteria plays a different role - given that the microbiota is key to development and 

priming the gut and its associated immune system (Jiao et al., 2020). Due to technical challenges 

relating to GF mice, it was necessary to study four-week-old mice. While these mice are 

considered juvenile, they were recently weaned onto solid food, whereas the two-week-old 

mice from the neonatal study were still nursing. One possible explanation for the lack of 

transcriptional differences in the juvenile mice exposed to bifidobacteria compared to the 

neonatal mice, would be that B. breve is only modulatory during this very early life period. 

Additionally, it is also possible that the reduced gavage protocol and increased time between 

gavage and sample collection could have affected the observed impact of bifidobacteria. 

However, through plating we confirmed that the GF mice were successfully colonised with 

bifidobacteria on the day of sample collection, suggesting that the gavage protocol was 

sufficient in these mice. Additional metagenomic or 16s RNA sequencing of the caecal or faecal 

contents (samples collected but not analysed) would be required to confirm whether B. breve 

successfully colonised the SPF mice at 72 hours, or whether their effect was transient. Two 

further possible explanations for the lack of a strong response to bifidobacteria in the juvenile 

mice is that the cell populations investigated are not the affected cells or that the cell isolation 

and FACS protocol perturbed gene expression. However previous literature evidence suggests 

that these scenarios are unlikely (Lee et al., 2018; Richardson et al., 2015).  
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Data visualisation and analysis of top variant genes confirmed that, at the whole transcriptome 

level, the samples separated primarily by cell population. This confirmed that the FACS protocol 

successfully selected four different cell populations and highlighted the continuous nature of 

cellular differentiation within the intestinal crypts. The top variant genes were primarily Paneth 

cell associated genes, further supporting success of the FACS. However, a number of enterocyte 

and goblet cell associated genes were among the top variant genes, indicating that the FACS 

markers employed are not fully selective for the populations of interest and further highlighting 

the continuous nature of differentiation in the epithelium, where many semi-differentiated cells 

express multiple different cell type markers simultaneously. The addition of further marker 

proteins to the FACS protocol could potentially exclude progenitor cells destined for other cell 

populations. Although, adding FACS markers rapidly increases the complexity of the sort 

protocol and requires extensive testing procedures. Alternatively, microfluidic or droplet based 

single cell sequencing, such as Chromium from 10X Genomics, could be used to sequence all 

cells of the intestinal crypts, avoiding issues with cell sorting. The disadvantages of this type of 

approach include cost, sequencing depth and the large number of input cells required, which 

can be particularly challenging when the primary research focus is on small cell populations such 

as stem cells (See et al., 2018). 

 

The FACS protocol employed in this study for sorting cells was optimised from Yilmaz et al. 

(Yilmaz et al., 2012). Here the authors sorted stem cells from Lgr5-EGFP-IRES-creERT2 knock-in 

reporter mice, allowing isolation by flow cytometry of Lgr5–EGFPhigh cells which also have low 

CD24a marker fluorescence. In our study we used a similar protocol but employed wildtype mice 

and measured surface LGR5 marker fluorescence, targeting the presence of LGR5 protein 

instead of its gene expression. Furthermore, in addition to sorting stem cells and Paneth cells 

based on the Yilmaz protocol, we sorted intermediate cells with high fluorescence of both LGR5 

and CD24a (TAhigh) or low fluorescence of both (TAlow) (see Methods section 5.3.4, Table 5.1). 

 

Using IEC marker genes obtained from two independent mouse single cell studies, I found that 

all sorted cells were significantly similar to at least one IEC cell type based on global expression 

levels. This confirmed success in sorting live IECs. However, the cells sorted using the Yilmaz 

method of LGR5highCD24alow were most similar to enterocytes, rather than stem cells as expected 

(Yilmaz et al., 2012). The reason for this discrepancy is currently unknown and thus requires 

further investigation. It is possible that this result is in part due to differences between Lgr5-
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EGFP reporter expression which is used in the Yilmaz protocol, and LGR5 cell surface marker 

fluorescence which was applied here - especially as these cells do not appear to be expressing 

high levels of Lgr5 based on our transcriptomics results. Potentially we extracted cells which 

retained LGR5 surface proteins after the cells had stopped expressing Lgr5. Given that all the 

cells sorted were obtained from intestinal crypts, this cell population are likely to be semi-

differentiated/transit amplifying enterocytes. In fact, enterocyte precursors are among the most 

abundant semi-differentiated cells within the crypt (Bankaitis et al., 2018), and it has been 

shown that enterocyte precursors can dedifferentiate to regain stemness upon loss of LGR5+ 

stem cells (Jones and Dempsey, 2016; Tetteh et al., 2016). However, this justification does not 

explain why we did not obtain cells with high LGR5 and low CD24a fluorescence which were also 

expressing high Lgr5. Based on the FACS gating plots (Figure S5.1E), following extraction of cells 

with low CD24a and high epithelial cell adhesion molecule (EpCAM), no population was excluded 

which had higher LGR5 fluorescence, suggesting this population did not exist in our samples. 

However, this could be due to the rarity of these cells within in crypt. 

 

On the other hand, the TAhigh cells sorted based on LGR5highCD24ahigh were significantly similar 

to stem cells, suggesting that intestinal stem cells express high Cd24a. CD24a, also known as 

signal transducer 24, is a small glycosylated cell surface protein expressed in many different cell 

types (Liu et al., 1992; Stutte et al., 2008). It has been shown to act as a costimulatory molecule 

for T-cells and dendritic cells, but its function in the intestines is currently not known. Previous 

work has shown that intestinal stem cells express Cd24a and can be sorted based on presence 

of CD24a cell surface markers (King et al., 2012). However other experiments have shown that 

LGR5+ stem cells have very low or no CD24 marker expression, whereas other ‘reserve’ stem 

cell populations in the 4+ position of the crypts have more CD24a (Gracz et al., 2010, 2013). 

Investigation of CD24a levels by von Furstenberg et al. (2011) found that the epithelial crypt 

population with present but low CD24a contained the most actively cycling cells. Authors carried 

out further investigation of the CD24alow population confirming that the cells have an intestinal 

stem cell or Paneth cell phenotype, however they did not carry out further characterisation of 

the CD24ahigh population. Wang et al. (2013) used a larger panel of markers to find that 

CD44+CD24lowCD166+ cells express many stem cell associated genes, whereas 

CD44+CD24highCD166+ express secretory cell marker genes. Yilmaz et al. (2012) also used low 

CD24a to sort stem cells from mouse small intestinal crypts, but extensive validation of stem cell 

identity was not carried out in this experiment. Taken together, literature evidence suggests 
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that low CD24a should identify intestinal stem cells, but questions remain regarding exactly 

which populations are sorted by which marker quantities. As far as we are aware, no previous 

work has described a cell population with high LGR5 and high CD24a, as we identified here. 

Therefore, more research is required to determine the cell identities sorted here and to evaluate 

the marker panel more thoroughly. Potentially the expression of CD24a is dependent on outside 

factors such as the age or strain of mouse or, given its role in immune activation, expression 

could depend on the gut microbiota. Alternatively, different populations of stem cells may 

express different levels of CD24a within one intestinal crypt, as suggested by Gracz et al. (2010, 

2013). Based on this theory, the TAhigh cells we isolated in this experiment could be ‘reserve’ 

4+ stem cells, although we found they also expressed high levels of Lgr5. An alternative 

explanation is that the TAhigh cells are not fully differentiated Paneth cells that can revert to a 

stem cell phenotype, or early transit amplifying cells that have not completely reprogramed 

their gene expression profile and retain markers of stem cells (Buczacki et al., 2013; Roth et al., 

2012). In comparison, the Paneth cells which we sorted based on the Yilmaz method of 

LGR5lowCD24ahigh were found to be significantly similar to Paneth cells and the TAlow cells 

(LGR5lowCD24alow) were similar to enterocytes, confirming the success sorting these populations. 

In the future, in situ hybridisation and electron microscopy approaches should be used to 

confirm the cell identities and their localisation within the crypt. Moreover, different cell marker 

panels could be employed to isolate intestinal stem cells. 

 

Whilst no genes were differentially expressed between the bifidobacteria treated mice and the 

control mice, correlation-based analyses revealed some significant differences in functional 

profiles. Many of the identified functions (such as cell-cell junctions and cell cycle) agree with 

published research and/or the findings of our neonatal study (Din et al., 2020; Yan et al., 2019). 

However, the lack of differentially expressed genes indicated that these findings are minor in 

magnitude and further experiments would be required to confirm their validity. 

 

WGCNA analysis identified a collection of 3891 genes whose expression was correlated with 

presence of bifidobacteria in the GF Paneth cells, and whose associated functions closely 

compared to the findings of the previous neonatal study (Chapter 4). However, removal of batch 

effects for the WGCNA analysis was carried out following selection of features based on 

variance. Given that batch normalisation alters variance of data and that low variance samples 

can aid batch normalisation, this method may have slightly altered the results. In future, batch 
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normalisation should be carried out before feature selection. Amongst the results, I discovered 

cell projection assembly-associated genes correlating to bifidobacteria presence in the SPF stem 

cell data. Whilst it has been reported that bifidobacteria can inhibit membrane ruffles in gliadin-

treated Caco-2 cells, further investigation revealed that the relevant genes were marginally 

upregulated in the bifidobacteria-exposed mice of our experiment (Lindfors et al., 2008). It is 

possible that another microbiota member is responsible for this signal, or it could be a false 

positive result due to overinterpretation of minor variation in the data. Regardless, this 

uncertainty combined with the lack of results in the other datasets suggests that any potential 

transcriptional change of four-week-old IECs due to bifidobacteria exposure is minimal in 

homeostatic conditions. However, it would be interesting to repeat such studies in disease 

model mice where the effect of bifidobacteria might be greater, or instead with a longer 

exposure to bifidobacteria. 

 

5.6 Future research directions 
 
In conclusion, we have shown that B. breve UCC2003 plays a central role in orchestrating global 

neonatal IEC gene responses. However, our experiment in juvenile mice demonstrates how 

much remains unknown about the effect of B. breve UCC2003 on IECs. Further study is required 

to determine whether the contrasting results from this study were due to the age of the mice, 

the reduced gavage schedule, the cell types investigated, or whether a real biological signal was 

masked by expression changes induced by the cell isolation and sorting protocol.  

 

Additionally, further work should investigate the age at which B. breve ceases to significantly 

impact IECs in a healthy condition, as well as the length of time during which bifidobacteria can 

exert its effects following gavage. However, such experiments are challenging as they require a 

large quantity of mice with many distinct experimental conditions. In part, these challenges 

could be avoided by employing alternative experimental models such as 3D organoids – 

microinjected, grown with inverted polarity or cultured as 2D monolayers (Bartfeld, 2016; Co et 

al., 2019; Sato and Clevers, 2013). While these models can provide a simpler and higher 

throughput approach, they are further removed from physiological accuracy. For example, they 

cannot fully account for the epithelial-immune system interactions or the impact of mouse age 

or microbiota. Furthermore, strict anaerobiosis cannot be applied to the apical side of the 

organoid IECs without requiring highly complex microfluidics systems, such as HuMiX, which 

require extensive optimisation for this type of experiment (Shah et al., 2016). On the other hand, 
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organoid models could be valuable for testing a basic response of IECs to bifidobacteria, to 

identify affected cell types, to investigate strain specificity and to explore the mechanisms of 

interaction. For example, the use of mutants and transcriptionally active strains as positive 

controls, in tandem with metabolomic and proteomic approaches, is required to advance our 

understanding on the key host pathways and bifidobacterial molecules governing development 

and maturation of the intestinal barrier during the early life window. In the future, based on 

results from organoid research, more targeted mouse experiments could be carried out, 

followed by clinical studies to explore the application of findings to human health. Ultimately, 

understanding how specific microbiota members modulate host responses in pre-clinical 

models may help the design and development of next-stage targeted microbiota therapies in 

humans. 
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 Chapter 6: Interactions between bifidobacteria and 
macrophages 

 

6.1 Introduction 

 

Clinical trials, in vivo experiments and in vitro experiments have indicated that bifidobacteria 

have immunomodulatory effects on their host (Ruiz et al. 2017). Indeed, a number of previous 

experiments have shown that different Bifidobacterium strains can affect macrophage function 

(He et al. 2002; Lee et al. 2012; Мokrozub et al. 2015). For example, Okada et al. (2009) showed 

that exposure of RAW264.7 macrophage-like cells to Bifidobacterium and lipopolysaccharide 

(LPS) significantly reduced proinflammatory cytokine production compared to with LPS alone. 

Macrophages are the most abundant white blood cells in the lamina propria of a healthy gut, 

playing a key role in bacterial recognition and phagocytosis as well as impacting epithelial cell 

regeneration, T cell differentiation and secreting anti-inflammatory cytokines. Moreover, 

macrophages are important for maintaining a balance between tolerance to commensal 

bacteria and attack against foreign antigens (Wang et al., 2019b). Dysregulation of this balance 

can contribute to gut pathologies such as inflammatory bowel disease, where the immune 

system is known to be over-activated by commensal bacteria in the gut (Zhang et al., 2017). 

Therefore, the effect of commensal bacteria on macrophages is important for elucidation of the 

anti-inflammatory mechanisms of probiotics. Whilst the effect of bifidobacteria strains on 

macrophages has been studied, many questions remain regarding the context-specific effect 

and the precise molecular mechanisms of interaction between macrophages and bifidobacteria 

(He et al., 2002; Lee et al., 2012; Mokrozub et al., 2015; Okada et al., 2009). Such information 

will help to uncover how the host immune system interacts with bifidobacteria to support the 

balance of inflammation in the gut, whilst also recognising aberrant bifidobacteria which have 

breached the cell epithelium. This knowledge may also lead to novel treatment methods to 

rebalance an aberrant intestinal immune response. 

 

Bifidobacterium breve UCC2003 is a strain of bifidobacteria isolated from the stool of a breast 

fed infant which has been shown to confer health benefits, including protecting the murine host 

against bacterial infections and improving gut barrier function in neonatal mice (Fanning et al., 

2012b, 2012a; Kiu et al., 2020) (Chapter 4). Some of the mechanistic factors driving the impact 
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of B. breve UCC2003 have been identified, including the type IVb tight adherence pili which can 

promote colonic epithelial proliferation, and the exopolysaccharide (EPS) capsule which can 

repress local T helper cell (Th)17 responses and reduce pro-inflammatory cytokine release 

(Fanning et al., 2012a; Hughes et al., 2017; O’Connell Motherway et al., 2011; Püngel et al., 

2020). However, much remains unknown about the effect of B. breve on different cell types and 

the specific B. breve genes and molecules required for crosstalk with the host. 

 

This final results chapter presents a collaborative project, carried out with members of Lindsay 

Hall’s research group (Quadram Institute Bioscience, QIB), studying the interaction of B. breve 

UCC2003 and macrophages to gain a more thorough understanding of their role in human 

health. Here we have used macrophage nuclear factor (NF)-κB activation as a proxy for 

macrophage activation, as NF-κB is important for regulation of inflammatory response following 

activation of cell surface pattern recognition receptors (as described in General Introduction 

section 1.3.2). The experiments and data analyses covered in Chapter 6 are outlined in Figure 

6.1. Specifically, using a mutant library of B. breve UCC2003 and a macrophage-like cell line (THP-

1 cell) containing a NF-κB reporter, Ian O’Neill (QIB, APC microbiome Ireland, APC) identified 

mutant strains with significantly greater or reduced NF-κB activating ability. Further 

experimentation carried out by Sree Gowrinadh Javvadi (QIB) identified the effector molecule/s 

as secreted proteins (or protein-containing), while mass spectrometry and whole genome 

sequencing were employed to further characterise the molecule/s. Meanwhile, I applied a 

computational pipeline to predict possible protein-protein interactions (PPIs) between secreted 

bifidobacterial proteins and macrophage cell surface proteins based on domain-motif 

interactions. Unfortunately, no computational PPI predictions were made which correlated with 

experimental results. In fact, the experimental results, combined with further computational 

analysis indicate that the molecular interaction likely occurs via bifidobacterial secreted 

lipoproteins which often interact with host cells via their lipid moieties. 
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Figure 6.1. Schematic overview of the experiments and analyses carried out in Chapter 6.  

 

6.2 Aims 
 

The aims of this project were as follows: 

• Identify B. breve UCC2003 mutants which have a significantly greater or lesser effect on 

macrophage NF-κB activation compared to the wild-type strain. 

• Identify the effector molecules responsible using a combined experimental and 

computational approach. 
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6.3 Methods 
 

All experimental work was carried out by Ian O’Neill and Sree Gowrinadh Javvadi of Lindsay 

Hall’s research group in QIB. Liquid chromatography-mass spectrometry (LC-MS) was processed 

by the University of Bristol proteomics facility. Processing and analysis of whole genome 

sequencing data was carried out by Ian O’Neill (QIB, APC). All subsequent computational analysis 

and interpretation was carried out by myself.  

 

6.3.1 NF-κB activation screen 

The effect of B. breve UCC2003 on NF-κB activation in macrophages was assessed using a THP-

1-blue NF-κB cell reporter line (Invivogen, UK) (Zuliani-Alvarez et al., 2017). Cell were revived in 

growth medium RPMI 1640 with 2mM L-glutamine, 25mM HEPES (Merck), 10% heat-inactivated 

foetal bovine serum (Gibco), 100μg/ml Normocin (Invivogen), and Pen-Strep (100U/ml-

100μg/ml) (Gibco). The Quanti-blue assay was conducted as per manufacturer instructions 

(Invivogen). In brief, once 70% confluence was reached, Blasticidin (Invivogen) treated THP1-

Blue NF-κB cells were transferred from cell culture flasks and seeded at 1x105 per well in a 96-

well tissue culture plate. THP-1 cells were then treated with live bifidobacteria cells or with 

secreted proteome samples, as described below. 

 

 Briefly, B. breve UCC2003 mutants (n=2592) from a Tn5 insertion library were grown overnight 

in 96-well plates before 10μl of each bacterial culture was added to 96-well plates containing 

THP-1 cells (Ruiz et al., 2013). 24-hour incubations were carried out before NF-κB activity was 

determined by colorimetric assay. Phosphate buffered saline was used as a negative control. 

Mutants which induced or inhibited NF-κB levels more than twice the standard deviation away 

from the plate average for the wild-type (WT) B. breve UCC2003 were selected for additional 

incubation experiments in six-well plates to verify the phenotype. Subsequently, selected 

mutants were subjected to inverse PCR analysis to identify the genomic location of the mini-Tn5 

insertion site. Whole genome sequencing was used to confirm the mutation site in the top 

selected B. breve UCC2003 mutants. 

 

Following isolation of total proteome (Methods section 6.3.2) THP-1 cells were stimulated with 

5μl (3.6mg/mL) total proteome of WT and mutants and incubated for 18 hours in a humidified 

incubator at 37o C with 5% CO2. LPS provided by manufacturer was used as a positive control. 
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NF-κB activity was determined by colorimetric assay as per manufacturer’s instructions. 

Different molecular weight fragments of total proteome were subsequently tested for NF-κB 

activation using the same protocol. 

 

6.3.2 Isolation of total proteome 

To test the effect of B. breve secreted proteins on NF-κB activation, THP-1 cells were incubated 

with extracellular proteome extracted from the WT and top mutant B. breve strains. In brief, the 

top selected mutants (20, 24 and 48) and WT B. breve UC20003 were cultured in De Man, Rogosa 

and Sharpe (MRS) medium up to saturation (De Man et al., 1960). Cultures were centrifuged 

and the supernatants were passed through a 0.22μm pore filter (Millipore) before precipitation 

with 10% v/v trichloroacetic acid (Sigma-Aldrich) at 4 °C for 3 h and harvesting by centrifugation. 

The precipitate was washed twice with ice-cold acetone and dried in a centrifugal vacuum 

concentrator (Vacufuge 5301, Eppendorf). Protein pellets were solubilized in ammonium 

bicarbonate buffer pH 8.5 (AmBic) and protein concentrations were determined using Protein 

assay kit (Invitrogen, UK) as per manufacturer instructions and stored for further purifications 

and in-vitro assays at -200C (Vazquez-Gutierrez et al., 2017). Different molecular weight fractions 

of the proteome were obtained using cut off columns and preparative high-performance liquid 

chromatography (HPLC) and tested for NF-κB activity on THP-1 cells as described previously. 

 

6.3.3 Liquid chromatography–mass spectrometry 

Each sample was separated by SDS-PAGE prior to in-gel tryptic digestion using a DigestPro 

automated digestion unit (Intavis Ltd.). The resulting peptides were fractionated using an 

Ultimate 3000 nano-LC system in line with an Orbitrap Fusion Tribrid mass spectrometer 

(Thermo Scientific). All spectra were acquired from the mass spectrometer by Xcalibur 2.1 

software (Thermo Scientific) operated in data-dependent acquisition mode. FTMS1 spectra 

were collected at a resolution of 120 000 over a scan range (m/z) of 350-1550, with an automatic 

gain control (AGC) target of 400 000 and a max injection time of 100ms. Precursors were filtered 

according to charge state (to include charge states 2-7), with monoisotopic peak determination 

set to peptide and using an intensity range from 5E3 to 1E20. Previously interrogated precursors 

were excluded using a dynamic window (40s +/-10ppm). The MS2 precursors were isolated with 

a quadrupole mass filter set to a width of 1.6m/z. ITMS2 spectra were collected with an AGC 

target of 5000, max injection time of 50ms and HCD collision energy of 35%. 

 



Chapter 6: Interactions between bifidobacteria and macrophages 

 

 

 

182 

 

The raw data files were processed and quantified using Proteome Discoverer software v2.1 

(Thermo Scientific) and searched against the UniProt Bifidobacterium breve database 

(downloaded March 2020; 1827 sequences), the Uniprot Bos taurus database (downloaded June 

2019; 46309 sequences), the Uniprot Saccharomyces cerevisiae database (downloaded January 

2019; 6645 sequences) and an in-house common contaminants database using the SEQUEST 

algorithm. Peptide precursor mass tolerance was set at 10ppm, and MS/MS tolerance was set 

at 0.6Da. Search criteria included ‘oxidation of methionine’ (+15.995Da), ‘acetylation of the 

protein N-terminus’(+42.011Da) and ‘methionine loss plus acetylation of the protein N-

terminus’ (-89.03Da) as variable modifications and ‘carbamidomethylation of cysteine’ 

(+57.021Da) as a fixed modification. Searches were performed with full tryptic digestion and a 

maximum of 2 missed cleavages were allowed. The reverse database search option was enabled 

and all data was filtered to satisfy q value ≤ 0.05. 

 

6.3.4 Host – microbe interaction predictions 

The following analysis workflow, as described in Figure 6.2, was based on pipelines initially 

developed in our research group (Korcsmaros et al., 2013; Sudhakar et al., 2019) and recently 

modified by Leila Gul. 

 



Chapter 6: Interactions between bifidobacteria and macrophages 

 

 

 

183 

 

 

Figure 6.2. Summary of bifidobacteria-macrophage interaction prediction pipeline. Human 
and bacterial proteome data, including protein size, was obtained from UniProt (UniProt 
Consortium, 2019). Macrophage expressed proteins were determined using data from single cell 
experiment (Smillie et al., 2019) and THP-1 cell line expression experiment (Mullokandov et al., 
2012) (ENA accession PRJNA163281). MatrixDB, ComPPI, Human protein atlas and Locate 
databases used to identify macrophage membrane proteins (Launay et al., 2015; Sprenger et al., 
2008; Thul et al., 2017; Veres et al., 2015). InterProScan was used to identify bacterial protein 
motifs and ELM for human protein motifs and domain-motif interactions (Jones et al., 2014). 
Finally, IUPred and Phobius were used to filter human motifs in external disordered regions (Käll 
et al., 2007; Mészáros et al., 2018). PPIs - protein-protein interactions. 

 

6.3.4.1 Filtering human and bacterial proteins 

6.3.4.1.1 Bifidobacterial proteins 

All B. breve UCC2003 protein sequences and their corresponding mass were downloaded from 

UniProt accession UP000000297 (based on genome assembly ASM22013v1, November 2019, 

1826 sequences) (UniProt Consortium, 2019). R scripting was used to filter the protein sequence 

FASTA file for only proteins with mass 25-95 kDa – based on the results from testing different 

molecular weight fractions of the proteome on THP-1 cells (Methods section 6.3.2). 1218 

bifidobacterial proteins were taken forward for subsequent analysis. 

 

6.3.4.1.2 Human macrophage proteins 

All human protein sequences were downloaded from UniProt accession UP000005640 

(November 2019, 75004 sequences) (UniProt Consortium, 2019). Human proteins were filtered 

for those expressed in macrophages using two different datasets; a transcriptomics dataset from 

a human THP-1 monocyte cell line (Mullokandov et al., 2012) and a single cell RNA-sequencing 

(scRNA-seq) dataset from colon mucosal macrophages (Smillie et al., 2019). All proteins 
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expressed in both datasets were used to filter predicted host-microbe interactions to obtain 

only those involving a human protein expressed in macrophages. 

 

THP-1 monocyte expression data was obtained from the European Nucleotide Archive project 

named mRNA profiling of THP1 cell line, with accession PRJNA163281, using REST URLs (Harrison 

et al., 2019; Mullokandov et al., 2012). Single end FASTA files were downloaded in triplicate from 

Illumina HiSeq 2000 sequencing. The data was processed to obtain gene counts data using the 

Snakemake pipelining tool (Köster and Rahmann, 2012). This pipeline applied Trimgalore (v 

0.5.0) to trim adapters from the sequences and Kallisto (v 0.44.0) to quantify gene abundance 

based on protein coding sequences downloaded from Gencode (GRCh38.p13) (Bray et al., 2016; 

Frankish et al., 2019; Krueger, 2019). Trimgalore parameters were: quality=20 and length=50. 

Kallisto parameters were: bootstrap=100, mean fragment length=100 and standard 

distribution=20. Custom R scripts employing the packages Tximport and ggplot2 were used to 

process Kallisto output into counts tables and to plot the density (Soneson et al., 2015; 

Wickham, 2016). Based on the gene abundance density plot, genes with expression ≥ 2 in all 

samples are considered expressed. In total 11,586 gene were expressed above this cut off. 

 

Figure 6.3. Density plot of gene abundance across samples in project PRJNA163281. Cut off for 
expression indicated as vertical line. 
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Chromium 10X single cell expression data from colon mucosal macrophages (healthy 

individuals) was obtained from Smillie et al. (2019) via the Broad Institute Single Cell Portal 

(accession SCP259). Average expression across all identified macrophage cells was converted to 

transcripts per million (TPM) from transcripts per 10,000. The data was processed and plotted 

using custom R scripts. To determine a gene as expressed, the cut off of TPM ≥ 2 was chosen 

based on this density plot (Figure 6.4) and the THP-1 density plot (Figure 6.3). In total 10,681 

genes were expressed above this cut off, of which 9,286 were also expressed in the THP-1 data 

and thus taken forwards for the subsequent analysis. 

 

Figure 6.4. Density plot of average gene abundance across macrophage cells in Smillie et al. 
(2019). Cut off for expression indicated as vertical line. 

 

6.3.4.2 Human membrane proteins 

A list of predicted human membrane proteins was obtained by Leila Gul (EI). Information from 

four databases was used to collate this list: 

• Locate v1 (Sprenger et al., 2008) 

• MatrixDB v1 (Launay et al., 2015) 

• ComPPI v2.1.1 (Veres et al., 2015) 

• Human Protein Atlas v19.1 (Thul et al., 2017) 

Any gene predicted to encode a membrane protein in any of these data resources was used for 

subsequent analyses. Python was used to obtain a list of proteins predicted to be membrane 

based and expressed in macrophages. The Uniprot ID Mapping Service was used to convert 

protein and gene IDs (UniProt Consortium, 2019). 
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6.3.4.3 Domain and motif predictions 

Pfam domains were predicted in all 25-95 kDa bifidobacterial proteins using InterPro scan (v5) 

(El-Gebali et al., 2019; Jones et al., 2014). It was not necessary to predict motifs for the human 

proteins as the information is present in the Eukaryotic Linear Motif (ELM) database (Dinkel et 

al., 2016). 

 

6.3.4.4 Domain – motif interaction prediction 

Human motifs and domain-motif interactions were downloaded from the ELM database (v32.0) 

(Dinkel et al., 2016). Python and R scripts written by myself and Leila Gul were used to filter ELM 

domain-motif interactions to contain only the predicted bacterial domains and macrophage 

membrane proteins. 

 

6.3.4.5 Membrane protein filtering 

Predicted human-bacterial interactions were further filtered to ensure that human domains 

were predicted to appear in the extracellular region of the membrane protein. FASTA sequences 

of all human proteins in the predicted interactions were passed into the Phobius tool to predict 

cytoplasmic, transmembrane and non-cytoplasmic regions (Käll et al., 2004, 2007). Python was 

used to filter the human-bacterial interactions based on the Phobius output, so that all human 

domains entirely span a non-cytoplasmic region of the protein (not-including signal peptides). 

 

6.3.4.6 Disordered region filtering 

Leila Gul applied IUPred2A and ANCHOR2 to identify disordered residues and disordered binding 

regions in the human proteins, respectively (Mészáros et al., 2018). Predicted domain-motif 

interactions were discarded where the human protein motif was not considered disordered – 

where more than one amino acid in the domain had an IUpred2A score < 0.5 and an ANCHOR2 

score < 0.4. 

 

6.3.5 Lipoprotein prediction 

To predict which proteins are lipoprotein precursors, I used hidden Markov model and neural 

network tools PRED_LIPO (v1) and SignalP (v5) (Bagos et al., 2008; Nielsen, 2017). PRED_LIPO 

predicts secretory signal peptides in gram positive bacteria while SignalP can identify signal 

peptides in any archaea, bacteria or eukaryote. The results from the two tools were in 

agreement. Input protein sequences were obtained from UniProt (UniProt Consortium, 2019).   
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6.4 Results 
 

6.4.1 B. breve UCC2003 activates NF-κB in THP-1 cells 

Using an NF-κB reporter macrophage cell line (THP-1 cells), Ian O’Neill found that WT B. breve 

UCC2003 has an activatory effect on NF-κB. Additionally, he identified 20 Tn5 insertion mutants 

with a significantly increased or decreased effect compared to the WT. Three top mutants were 

selected for further investigation which display the most increased NF-κB activation (mutants 

20 and 24) and the most decreased NF-κB activation (mutant 48) compared to the WT. 

 

Subsequently, the total proteome was extracted from the WT and top mutant strains by Sree 

Gowrinadh Javvadi. Testing different molecular weight fractions of the proteomes on THP-1 cells 

confirmed that the immunogenic molecule was likely a protein with molecular weight between 

50 and 70 kDa which has an activatory effect on NF-κB. 

 

6.4.2 Bifidobacterial protein domains can interact with macrophage 

protein motifs 

Knowing that the activation of NF-κB in macrophages is likely driven by a secreted protein of 

bifidobacteria, I aimed to identify which bifidobacterial proteins can theoretically interact with 

macrophage surface proteins to induce downstream effects in the macrophage. Here I adapted 

a previously applied workflow to predict domain-motif interactions between secreted bacterial 

proteins and macrophage surface proteins (Sudhakar et al., 2019). As protein domains and 

motifs are cross-species and typified by their sequences, I could identify known domains and 

motifs in the bacterial and macrophage proteins (respectively) and use a database of previous 

predicted and/or identified eukaryotic domain-motif interactions (the ELM database) to predict 

interactions between them (Akiva et al., 2012; Dinkel et al., 2016; Puntervoll et al., 2003). 

 

In total, I identified 23,218 possible interactions between 24 bifidobacterial proteins and 1,302 

macrophage surface proteins. Specifically, these proteins contained 29 different motifs (human 

proteins) and 6 different domains (bacterial proteins). Upon further investigation of the 

bifidobacterial proteins I found that four of them had active domains which were predicted to 

be cytoplasmic in location based on InterPro annotations (Hunter et al., 2009). These were 

subsequently disregarded. The final list of bifidobacterial proteins potentially interacting with 
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human macrophage proteins via domain-motif interactions is given in Table 6.1. The most 

common type of proteins were glycosyltransferases, of which there were nine, and 

serine/threonine protein kinases, of which there were three. In addition, there were three 

dehydrogenases, two different transferases, two FHA domain-containing proteins and a 

phosphoesterase. 

 

UniProt 
protein ID 

Gene 
name 

Protein name (symbol where 
known) 

Mass (Da) Pfam 
Domain/s 

F9XYD8 Bbr_1653 D-3-phosphoglycerate 
dehydrogenase (SerA2) 

35,261 PF00389 

F9XYF7 Bbr_1674 FHA domain-containing protein 48,802 PF00498 

F9XZ54 Bbr_1769 Phosphoesterase 48,563 PF00149 

F9XZ72 Bbr_1788 Glycosyltransferase involved in cell 
wall biogenesis 

39,283 PF00535 

F9XZ80 Bbr_1796 Glycosyltransferase 49,959 PF00535 

F9XZI1 Bbr_0068 Serine/threonine protein kinase 
(PknA1) 

34,650 PF00069 

F9XZI6 Bbr_0073 FHA domain-containing protein 25,371 PF00498 

F9XZX6 Bbr_1895 Glycosyltransferase 43,621 PF00535 

F9XZY9 Bbr_1908 Serine/threonine protein kinase 76,574 PF00069 

F9Y002 Bbr_0084 Glycosyltransferase 36,887 PF00535 

F9Y0N5 Bbr_0238 Glycosyltransferase 39,152 PF00535 

F9Y1Q6 Bbr_1268 D-3-phosphoglycerate 
dehydrogenase (SerA1) 

43,229 PF00389 

F9Y1V9 Bbr_0435 Beta-1,6-N-
acetylglucosaminyltransferase 

34,174 PF02485 

F9Y1W2 Bbr_0438 Glycosyltransferase 37,920 PF00535 

F9Y1W9 Bbr_0445 Glycosyltransferase 39,673 PF00535 

F9Y1X2 Bbr_0448 Glycosyltransferase 36,641 PF00535 

F9Y240 Bbr_1327 dTDP-rhamnosyl transferase (RfbF) 38,142 PF00535 

F9Y246 Bbr_1333 Conserved protein with hydroxyacid 
dehydrogenase catalytic domain 

35,848 PF00389 

F9Y2A1 Bbr_0504 Serine/threonine protein kinase 41,889 PF00069 

F9Y2U2 Bbr_1504 Glycosyltransferase 35,135 PF00535 

Table 6.1. Proteins of B. breve UCC2003 predicted to interact with macrophage surface 
proteins vis domain-motif interactions. 

 

Because the database used to predict interactions covers only eukaryotic interactions, the six 

bacterial Pfam domains are all known in eukaryotic species (Pfam domain IDs): 

- D-isomer specific 2-hydroxyacid dehydrogenase catalytic domain is involved in 

oxidation-reduction interactions (PF00389) 
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- Forkhead-associated domain is a phosphopeptide recognition domain (PF00498) 

- Calcineurin-like phosphoesterase domain (PF00149) 

- Glycosyl transferase family 2 domain which is known to transfer sugars to a range of 

substrates including cellulose, dolichol phosphate and teichoic acids (PF00535) 

- Protein kinase domain which phosphorylates proteins (PF00069) 

- Core-2/I-Branching enzyme domain which has glucuronosyltransferase activity 

(PF02485) 

 

6.4.3 Predicted bifidobacterial proteins are not present in mass 

spectrometry results 

For experimental identification of the immunogenic protein/s secreted by B. breve UCC2003, 

Sree Gowrinadh Javvad carried out LC-MS on total proteomes of the WT and top mutant strains. 

He aimed to identify differences between NF-κB activating and non-NF-κB activating strains, and 

thus predict which proteins could be responsible for the observed effects. Comparing the results 

from the NF-κB activating strains (WT, 20 and 24) to the non-NF-κB activating strain (48), we 

identified 11 bifidobacterial proteins present in the activating strains but not the inactivating 

strains (Table 6.2). 

 

UniProt 
protein ID 

Gene name Protein name (symbol where known) Mass (Da) 

F9XZH3 Bbr_0060 Alpha-1,4 glucan phosphorylase (GlgP1) 91,088 

F9XY36 Bbr_0670 Glutamine synthetase (GlnA) 53,254 

F9XZF9* Bbr_0046 Conserved hypothetical secreted protein 68,877 

F9Y1U3* Bbr_0417 Solute-binding protein of ABC transporter system for 
sugars (GalC) 

48,864 

F9XZ02* Bbr_0843 Conserved hypothetical secreted protein with 
excalibur domain 

25,334 

F9Y2P4 Bbr_1454 Conserved hypothetical membrane spanning protein 
with Endonuclease/Exonuclease/phosphatase family 

domain 

41,467 

F9XYM5 Bbr_0791 Trigger factor (Tig) 49,413 

F9XZB8* Bbr_1836 Sugar-binding protein of ABC transporter system 41,473 

F9XZ70* Bbr_1785 Hypothetical secreted protein 33,891 

F9XYI8 Bbr_0753 SSU ribosomal protein S1P (RspA) 54,615 

F9Y109 Bbr_0288 Conserved hypothetical secreted protein 67,705 

Table 6.2. Potential NF-κB activating proteins based on LC-MS. B. breve UCC2003 proteins 
identified by LC-MS in the wild-type strain and two NF-κB activating mutants 20 and 24, but not 
in the non-NF-κB activating mutant 48. * Predicted preprolipoproteins. 
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Unfortunately, there were no proteins present in the LC-MS results (Table 6.2) which were also 

predicted to take part in domain-motif interactions with macrophages (Table 6.1, Figure 6.5). 

For a better understanding of the reason behind this disparity, I investigated the reasons why 

the proteins predicted by LC-MS were not predicted by the computational predictions. I found 

that two of the proteins (hypothetical secreted proteins, F9XZ70 and F9Y109) do not contain 

any known eukaryotic domains based on PFAM (Table S6.1) (El-Gebali et al., 2019). Relating to 

the remaining nine proteins, none of their PFAM annotated domains were involved in domain-

motif interactions in the a priori collection which I used (from the ELM database) (Puntervoll et 

al., 2003). Therefore, I assume that the LC-MS predicted proteins might contain prokaryotic-

specific domains of which we do not have high quality a priori interaction information or 

alternatively these proteins don’t interact with macrophages through domain-motif interactions 

between proteins. Examples of both are present. For example, the protein GalC (F9Y1U3) 

contains the domain ‘Bacterial extracellular solute-binding protein’, which is a prokaryotic-

specific domain and protein RspA (F9XYI8) has the domain ‘S1 RNA binding domain’, which 

interacts with RNAs and not proteins (Table S6.1). In conclusion, the immunogenic protein of 

interest most likely does not interact with macrophages via eukaryotic domain-motif 

interactions and therefore cannot be identified using the bioinformatic pipeline applied. 
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Figure 6.5. Summary of results from computational and experimental approaches. Using the 
domain-motif prediction pipeline I predicted 20 B. breve UCC2003 proteins (with mass 25-95 
kDa) which could potentially interact with macrophage surface proteins. Liquid chromatography 
mass spectrometry (LC-MS) of secreted proteome of wild-type and mutant strains identified 11 
B. breve UCC2003 proteins which would potentially interact with macrophages to activate NF-
κB. None of the LC-MS predicted proteins overlapped with the 20 computationally predicted 
proteins. Preprolipoprotein prediction tools PRED_LIPO (v1) and SignalP (v5) were applied to the 
11 LC-MS proteins, identifying five preprolipoproteins (Bagos et al., 2008; Nielsen, 2017). * None 
of these 11 proteins contained eukaryotic domains which were involved in domain-domain 
interactions in the DOMINE database (Raghavachari et al. 2008). 

 

6.4.4 NF-κB activating molecule likely to be a lipoprotein 

Whole genome sequencing results revealed that the non-NF-κB activating mutant (48) contains 

its Tn5 insertion site within the lipoprotein signal peptidase gene Bbr_1299 (contains signal 

peptidase II domain, Pfam PF01252). This gene is also known as ispA (F9Y212) and is part of a 

multistep pathway to process lipoproteins. First preprolipoproteins are secreted through the 

bacterial membrane, usually via the general secretion (Sec) pathway (Zückert, 2014). Next 

preprolipoproteins are acylated by a lipoprotein diacylglyceryl transferase protein (Igt), 

anchoring the protein to the lipid membrane. In Gram-positive bacteria such as bifidobacteria, 

the final step in the process involves a lipoprotein signal peptidase protein (IspA) which catalyses 
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the removal of signal peptides from prolipoproteins creating mature lipoproteins. In Gram-

negative bacteria a further stage occurs in which a third acyl chain is attached by a lipoprotein 

N-acyl transferase (Zückert, 2014). Given the role of lipoprotein signal peptidases in lipoprotein 

processing, combined with the knowledge that lipoproteins are well recognised pathogen-

associated molecular patterns, it follows that inactivation of ispA likely prevents maturation of 

lipoproteins which in turn could prevent recognition of B. breve by macrophages – perhaps 

through a structure change of the lipoprotein or through alterations in lipoprotein release from 

the membrane.  

 

To further investigate this finding, I used the tools SignalP and PRED-LIPO to predict which of the 

11 LC-MS identified proteins, could be secreted preprolipoproteins (the protein precursors to 

lipoproteins) (Bagos et al., 2008; Nielsen, 2017). Here I identified five proteins which are 

predicted preprolipoproteins containing lipoprotein signal peptides, as shown in Figure 6.5: 

Conserved hypothetical secreted protein (F9XZF9), GalC (F9Y1U3), Conserved hypothetical 

secreted protein with excalibur domain (F9XZ02), Sugar-binding protein of ABC transporter 

system (F9XZB8), Hypothetical secreted protein (F9XZ70). I conclude that one or multiple of 

these five proteins is likely the cause of NF-κB activation in macrophages. However, it remains 

unknown whether the protein or the lipid part of the lipoprotein is responsible for interacting 

with the macrophages.  

 

As a final check of possible protein-protein interactions, I looked at whether domain-domain 

computational predictions would yield possible interactions between the five LC-MS predicted 

preprolipoproteins and the macrophage surface proteins. To do this I searched for the domains 

of these proteins (annotated in Table S6.1) within the domain-domain interaction database 

DOMINE (Raghavachari et al., 2008). None of the domains were involved in any known 

interactions within DOMINE. Therefore, through computational prediction tools available, I was 

unable to identify possible mechanisms of protein-protein interactions which any of these 

proteins and macrophage surface proteins. Nevertheless, it remains possible that these 

preprolipoproteins can directly bind to macrophage proteins through bacterial-specific 

domains. On the other hand, based on the function of the mutated gene IspA, it is perhaps more 

likely that the lipid which is attached to the preprolipoproteins is responsible for binding with 

macrophage proteins.  
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6.5 Discussion 
 

As macrophages are the most abundant white blood cell in the healthy gut, they provide a key 

interface between gut microbes and the host immune system (Mowat and Agace 2014. 

Bifidobacteria are a major constituent of the juvenile intestinal microbiota playing a key role in 

development of the intestinal epithelium and the immune system. Furthermore, bifidobacteria 

have been shown to protect the host from gut pathogens and are often used as probiotics to 

improve and maintain general gut health (O’Neill et al., 2017). As such, a thorough 

understanding of the interactions between bifidobacteria and gut macrophages, and the 

effector molecules associated, is required for a better understanding of gut health in children 

and adults. 

 

By combining a mutant library of B. breve UCC2003 with a reporter cell line, Ian O’Neill 

demonstrated the applicability and practicality of such a high throughput approach. In addition 

to providing real-time readouts of NF-κB activation, this approach offers great potential for the 

identification of bacterial effector molecules. One limitation of the presented approach is the 

questionable applicability of THP-1 cell lines to the intestinal situation. As described in the 

background (section 1.3.2), intestinal macrophages have different phenotypes to standard 

macrophages, exhibiting hyporesponsiveness to TLR activation. THP-1 cells are only able to 

mimic some of the characteristics of intestinal macrophages, and are tested in isolation, 

preventing any possible phenotype modifications due to neighbouring cell secretions, such as 

TGF- β (which can block NF-κB activation) (Naiki et al., 2005; Smith et al., 2011; Smythies et al., 

2010). However, due to ease of use application of this cell line is beneficial when used as an 

initial screen prior to further investigatory and validatory experiments in more relevant models. 

Such experiments are also required to confirm the effect of bifidobacterial-initiated NF-κB 

activation in THP-1 cells on other phenotypes such as cytokine release and nitric oxide 

production. 

 

Using a bioinformatic approach I combined a priori knowledge on gene expression, protein 

sequence, protein subcellular location, domain and motif annotations and domain-motif 

interactions to predict 20 bifidobacterial secreted proteins which could theoretically bind to 

macrophage surface proteins. Such an approach can be very powerful when combined with 

experimental validations, but is heavily limited by the a priori knowledge available. For example, 
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here the predicted domain-motif interactions were based on the ELM database of eukaryotic 

interactions (Dinkel et al., 2016; Puntervoll et al., 2003). Therefore, any protein-protein 

interactions involving bacterial domains would not be included – which is highly restrictive when 

researching prokaryotic-based interactions. As far as I am aware, no resource yet exists for 

bacterial domain-eukaryotic motif interactions, likely due to vast numbers of bacterial domains 

which have not been fully characterised or studied. On the other hand, computational tools exist 

which can predict interactions based on protein sequence. 

 

Here I predicted domain-motif interactions due to the identified importance of these kinds of 

interactions in signalling cascades combined with the directionality of the signal (Akiva et al., 

2012; Diella et al., 2008). However, extensions to this approach could also predict domain-

domain interactions using databases such as DOMINE (Raghavachari et al., 2008). 

 

Based on mass spectrometry results, we identified 11 possible proteins of interest. However, 

unfortunately none of these 11 were present among the 20 computationally predicted proteins.  

This result could be due on limitations of the computational method. Specifically, the interaction 

may occur via prokaryotic domains for which we do not have prior information, or through 

eukaryotic domains where the interaction of interest is missing from the database due to not 

yet having been identified. In fact, none of the 11 LC-MS predicted proteins contained eukaryotic 

domains which had predicted domain-motif interactions in the ELM database. Additionally, the 

interaction may occur through bacterial proteins binding to a non-protein molecule of the 

macrophage. For example, one of the LC-MS predicted bacterial proteins contained an RNA 

binding domain. Such interactions are out of scope for this computational method. More likely, 

the interaction may not occur via bacterial protein domains. For example, the whole genome 

sequencing of mutants indicated a role for the lipoprotein processing gene ispA, implicating 

lipoproteins in the interaction between bifidobacteria and macrophages. Such an interaction 

could occur via the lipid moieties of the lipoprotein and is therefore also out of the scope of the 

computational method applied. Nevertheless, it must also be considered that the result is due 

to an error in the mass spectrometry or the computational predictions, although less likely. 

Additional experiments are required to identify and confirm the bacterial molecules responsible 

for macrophage activation, after which the interaction type can be more easily identified.  
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Whole genome sequencing of the non-NF-κB activating mutant identified a mutation in a 

lipoprotein signal peptidase gene, ispA. In prokaryotic organisms, this transmembrane enzyme 

is responsible for cleaving the signal sequence of the prolipoproteins following transport across 

the cytoplasmic membrane and addition of diacylglyceryl moieties by the preprolipoprotein 

diacylglyceryl transferase (Lgt) protein (Zückert, 2014). This protein itself is not likely to be the 

secreted effector molecule influencing NF-κB activation in macrophages, but it probably causes 

downstream changes in lipoprotein processing which affect NF-κB activation: highlighting the 

complexities of using mutant strains to identify causative molecules. Possibility, the absence of 

correct lipoprotein processing in the non-NF-κB mutant resulted in semi-processed lipoproteins 

which could not activate macrophages. Indeed, a previous experiment has shown that the ispA 

gene is required in Mycobacterium tuberculosis for stimulation of TLR2 reporter cells by 

lipoproteins (Banaiee et al., 2006). It is well known that TLR2 on the surface of macrophages 

(and other cells) recognises bacterial lipoproteins resulting in initiation of NF-κB signalling 

(Aliprantis et al., 1999). Furthermore, previous experiments have found that B. breve UCC2003 

can activate intestinal epithelial cell TLR2, albeit through their EPS (Hughes et al., 2017). Whilst 

it is well accepted that NF-κB activation in macrophages leads to pro-inflammatory responses, 

research has shown that other gut commensals exploit TLR2 activation of T-cells to supress 

immunity through increased IL-10 production (Round et al., 2011). It has also been found that 

an aggregated lipoprotein from another strain of B. breve can interact with dendritic cell TLR2 

to increase IL-10 and prolong survival of the dendritic cells (Scuotto et al., 2014). Macrophages 

also secrete IL-10, suggesting that bifidobacterial activation of macrophages may have anti-

inflammatory and/or pro-inflammatory effects. Further experimentation is required to evaluate 

this. 

 

To further investigate the possibility that bifidobacterial lipoproteins activate macrophage NF-

κB, I used computational tools to identify lipoproteins among the 11 LC-MS predicted proteins. 

I found that a large proportion of the predicted proteins were lipoproteins (5/11), providing 

further evidence of their importance. Further investigation is required to determine whether 

any of these lipoproteins are the effector molecule influencing NF-κB activation, via their lipid 

or protein parts, and whether they act via TLR or through another mechanism. Additionally, due 

to the complexity of microbial-host interactions, we must consider that multiple 

proteins/lipoproteins are acting in cohort. It is possible that the aberrant processing of all 

bifidobacterial secreted lipoproteins is required for significant reductions in NF-κB activation.  
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6.6 Future research directions 
 

Following the presented work, many questions remain regarding the interaction of B. breve 

UCC2003 and macrophages. First, it is necessary to confirm the relevance of lipoproteins by 

isolating the LC-MS predicted lipoproteins and testing them on THP-1 cells and/or a more 

relevant macrophage population. In addition, further investigation should test the involvement 

of TLR2 using knockout macrophages or by blocking the receptors (Flores, 2018). Examining pro- 

and anti-inflammatory cytokine release as a result of bifidobacterial activation will add context 

to the findings, highlighting the relevance of this interaction to gut health. Furthermore, it would 

be useful to determine whether the lipid or protein parts of the lipoprotein are interacting with 

the macrophages. Unfortunately, lipid-protein interactions are inherently difficult to predict 

computationally, especially without prior knowledge of the exact lipid structure of these 

lipoproteins (Corradi et al., 2019). 

 
In this study we predicted the effector molecules in WT B. breve UCC2003 missing from the non-

NF-κB activating strain. However, we did not identify possible reasons why the strains 20 and 24 

increased NF-κB activation compared to the WT strain. Such investigation will uncover more 

details on how bifidobacteria interact with the host immune system. On the other hand, the 

predicted domain-motif interactions between B. breve and macrophages provide further 

avenues of research. 

 

Together our experiments have evidenced the value of high throughput screens and highlighted 

the potential benefits and drawbacks of a combined experimental and computational approach 

to research. Following subsequent validation of the effect of bifidobacterial lipoproteins on 

macrophages, this work will contribute to a greater understanding of the role of bifidobacteria 

in immune cross talks with their host. 
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 Chapter 7: Integrated discussion 
 

The intestinal epithelial cell (IEC) barrier represents a key interface between host immune cells 

and commensal microbes. Understanding communication between these compartments and its 

role in gut homeostasis will aid the study of intestinal diseases and the development of methods 

to prevent and treat them. In this thesis I aimed to develop workflows to study intra- and inter- 

cellular regulation in a cell type-specific manner, and to apply these to investigate interplay 

between commensal bacteria Bifidobacterium, immune cells and the intestinal epithelium. 

 

Inflammatory bowel disease (IBD) is one particular context in which this interplay is 

fundamental. While the exact causes of IBD have not been identified, it is understood that IBD 

occurs in genetically susceptible individuals where an environmental trigger results in a 

defective mucosal immune response to the gut microbiota (Yue et al., 2019). Dysregulation of 

the immune response results in epithelial damage, infiltration of commensal flora into the 

lamina propria and a generalised inflammatory response resulting in high levels of pro-

inflammatory cytokines (Guan, 2019). In Chapter 3, I showed that colonic IECs recognise and 

respond to these cytokines by activating inflammatory responses via signalling pathways with 

no apparent negative feedback loop. Anti-cytokine therapies represent one of the primary 

treatment options for IBD patients, however response rates are poor (Roda et al., 2016). By 

combining in vivo organoid models and network analysis approaches I identified similarities in 

the IEC response to different cytokines, whereby intracellular signals converge on a few key 

transcription factors (TFs). Notably, the colonic expression levels in IBD patients of one 

transcription factor, Protein C-ets-1 (ETS1), was significantly associated with subsequent non-

response to anti-TNFα drug infliximab. These findings shed light on the causes of non-response 

to anti-cytokine treatments, present a novel classification system to predict patient response to 

therapy and offer a potential new candidate for therapeutic targeting. Furthermore, through 

this work I have highlighted the benefits of studying the detailed molecular response of cells to 

separate components within a complex system. 

 

Development and maintenance of gut homeostasis relies on a complex interplay between the 

gut microbiota, the gut lining and the immune system. Therefore, in addition to studying the 

communication between host cellular compartments, one must also consider the impact of 

commensal bacteria on host cells. Bifidobacteria are health-promoting bacterial genus which 
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are widely used as probiotic supplements - despite many unanswered questions relating to their 

mechanisms of action (Sarkar and Mandal, 2016). In Chapter 4, I showed that gut commensal 

Bifidobacterium breve UCC2003 has a significant effect on the transcriptional program of IECs of 

two-week-old mice but not adult mice. Specifically, transcriptional changes related to cell 

differentiation, cell proliferation and epithelial barrier function, particularly within the stem cell 

compartment, thus providing evidence that bifidobacteria plays a role in development of the 

gut lining in early life. Whilst the benefits of administration of probiotic supplements to healthy 

infants is contentious, perhaps due to natural levels of bifidobacteria colonisation, these findings 

uncover greater mechanistic explanations for the beneficial effects of supplementation in 

preterm infants (Braga et al., 2011; Quin et al., 2018; Stratiki et al., 2007; Szajewska et al., 2010). 

Furthermore, these results indicated a change in epigenetic modification due to bifidobacteria, 

which provides an interesting avenue for further research. Although methylation of enterocyte 

cell lines by Bifidobacterium-containing probiotics has previously been noted (Cortese et al., 

2016), little research has followed up this finding, particularly in relation to the stem cell 

compartment in which epigenetic changes could affect the whole epithelial layer. Defining 

epigenetic changes may shed light on the long-term effects of Bifidobacterium exposure in early 

life. The experimental methods we established to isolate stem cells from bifidobacteria-treated 

mice in Chapter 5 would be well suited to studying epigenetic changes at a cell type-specific 

level. Application of cell-type proportion inference algorithms such as PLIER, may contribute to 

the analysis of affected cell types in this dataset (Mao et al., 2019).  Unfortunately, in Chapter 5 

we did not observe any significant effect of bifidobacteria on sorted IECs. Improvements to this 

experiment would have seen more similarities between the experimental set up of Chapter 4 

and Chapter 5, especially relating to the age of the mice, as well as more thorough evaluation of 

fluorescence activation cell sorting protocols prior to carrying out the primary experiment. 

 

Unexpectedly, in Chapter 4 we observed very little change in the innate immune functions of 

two-week-old mouse IECs due to bifidobacteria exposure, indicating a lack of generalised 

immune response to bifidobacteria in the gut lumen. On the other hand, in Chapter 6 we showed 

that B. breve UCC2003, likely via secreted lipoproteins, activates nuclear factor (NF)-κB in 

macrophage-like cells. While the downstream effects of NF-κB activation have not yet been 

confirmed in this setting, this finding is likely to be a pro-inflammatory response to aberrant 

bifidobacteria identified in the blood or gut lamina propria, indicating a context-specific host 

response. However, it is also possible that activation of macrophages by B. breve results in an 
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concurrent anti-inflammatory response, as has been shown by Scuotto et al. (2014) to occur in 

dendritic cells upon exposure to a B. breve C50 secreted lipoprotein. Further experimental work 

will be necessary to shed light on the downstream effects of NF-κB activation and determine the 

relevance of this model to the gut compartment. However, through this experiment we 

evidenced the value of high throughput screens to aid identification of the effector molecules 

responsible for the effect of bifidobacteria. Such detailed mechanistic studies are required to 

develop a holistic understanding of how bifidobacteria affects its hosts cells, which will lead to 

development of safer and more effective next-stage targeted microbiota therapies for humans. 

Nevertheless, dedicated clinical studies would be required to determine if our findings relating 

to the impact of bifidobacteria on IECs and macrophages extrapolate to the human setting. 

 

Moreover, the work carried out in Chapter 4 evidences the cell type-specificity of IEC response 

to stimulus, by predicting that bifidobacteria particularly affects stem cells in the neonatal mice 

epithelium. Whilst further investigation is required to validate this finding, this study and others 

presented in this thesis, strongly indicate that mechanistic research should focus on specific cell 

types rather than treating the epithelium as a single homogenous unit. Indeed, there is ample 

evidence that dysregulation of specific IEC types, such as Paneth cells and goblet cells, has a key 

role in the pathogenesis of IBD (Liu et al., 2016; Okamoto and Watanabe, 2016; Zheng et al., 

2011). Therefore, additional future work investigating the differences between cytokine-driven 

responses between types of IECs, could uncover further details about epithelial function in IBD.  

Interestingly, I predicted in Chapter 2 that ETS1 is a key regulator of Paneth cells and goblet cells, 

targeting a large proportion of the known cell type markers. A possible connection between 

these findings can be explored in future studies, with the potential to lead to more targeted 

therapeutic approaches. Of note, the work presented in the 2nd chapter and the 5th chapter 

highlight the continuous nature of cellular differentiation in the epithelium and the inherent 

challenges assigning a singular identify to a cell. This should be considered when discussing and 

studying IEC cell types. Throughout the thesis I have evidenced different ways in which specific 

cell types can be studied (cell type enriched organoids, in vivo cell lines, fluorescence activated 

cell sorting), while rapid developments in single cell technologies also make these approaches 

increasingly applicable and affordable (Tang et al., 2019). 

 

In addition to the biological findings of this thesis outlined above, through these projects I have 

demonstrated many different ways in which networks can be used to extract biological insights 
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from transcriptomics datasets. In Chapter 2, I reconstructed regulatory networks combining a 

variety of different regulatory interaction types, for the purpose of predicting and comparing 

key molecular regulators of Paneth cells and goblet cells. Possible improvements to this 

approach would include computational prediction of lncRNA and miRNA interactions, 

preventing loss of data during the network reconstruction stage, and improved scoring of TF 

activity. In Chapter 3, I extended regulatory interactions to reconstruct causal networks linking 

the recognition of a cytokine by cellular receptors to a transcriptional change in the cell. Here, I 

used the predicted upstream signalling pathways to contextualise the predicted regulatory 

interactions, maintaining the primary focus on the TFs. Possible improvements to this approach 

would be to employ a heat diffusion method to connect cytokine receptors to TFs, lessening 

biases due to hub nodes and avoiding the assumption of short, linear signalling pathways (Paull 

et al., 2013). Moreover, the use of a TF activation prediction tool such as VIPER would improve 

TF predictions, avoiding the need to filter based on transcription level changes of the TF (Alvarez 

et al., 2016). Further additions could include the use of the PROGENy tool to predict signalling 

pathway activations based on transcriptional footprints, and the incorporation of proteomics 

data to improve signalling pathway reconstruction (Schubert et al., 2018). In Chapter 4 and 5, 

two further kinds of networks were employed: a protein-protein interaction network was used 

to add first neighbours to a list of proteins and weighted gene co-expression networks (WGCNA) 

were used to link genes together which have correlated expression values (Langfelder and 

Horvath, 2008; Módos et al., 2017). Finally, in Chapter 6, I used inter-cellular protein-protein 

interaction networks to study possible communication between bifidobacteria and 

macrophages. While this analysis did not successfully identify the effector molecule of interest, 

it demonstrated an additional network method which can be employed to study cellular 

regulation. Unfortunately, no methods exist to reliably predict molecular interactions with 

lipids, which was ultimately a shortcoming of this approach when applied to bifidobacteria-

macrophage interactions. On the other hand, when considering communication between two 

eukaryotic cells this method can be extended to map ligand-receptor interactions between cells 

using a priori knowledge contained in databases such as OmniPath2 (Türei et al., 2016; Turei et 

al., 2020). Such a method could be used to study other inter-cellular communications between 

macrophages and IECs, in addition to those through secreted cytokines. Ultimately a number of 

different network reconstruction and analysis methods can be used to aid biological 

interpretation of ‘omics data. The ideal methods to use depend not only on the biological 

question but also the dataset/s available and the accessible experimental validation options. 



Chapter 7: Integrated discussion 

 

 

 

201 

 

Apart from WGCNA, all network approaches used in this thesis are based on contextualisation 

of a priori knowledge. Network inference approaches form a large collection of additional 

methods in which biological networks can be reconstructed and analysed, without reliance on a 

priori interactions. These methods use mathematical models and algorithms, such as Bayesian 

network and ordinary differential equations, to reconstruct networks from high-throughput 

data (Chai et al., 2014; De Smet and Marchal, 2010). Application of these methods can be 

favourable where a priori knowledge is lacking but high-quality experimental data is plentiful. 

 

Finally, through work covered in this thesis I have developed workflows and pipelines for 

contextualisation and analysis of transcriptomics data which have and will continue to be used 

within my research group for future projects. Moreover, following the publication of the 

research contained in Chapters 2, 3 and 4, I hope that other research groups will recognise the 

value of integrating experimental approaches with network analysis and proceed to employ 

such approaches in their own work. Specifically, the research presented here highlights the 

benefits of mechanistic studies of cellular regulation while presenting accessible methods, which 

can be applied to many different contexts in many different fields of research. 

 

In conclusion, this PhD research has contributed to the mechanistic understanding of interplay 

between the gut commensal bifidobacteria, the intestinal epithelium and the immune system, 

including in the context of IBD. Meanwhile, the presented projects have promoted and aided 

the use of networks for interpreting transcriptomics data and studying cellular regulation. The 

findings outlined in this thesis will pave the way for future in-depth and validatory research. This 

should ultimately lead to a better understanding of gut homeostasis and drive development of 

targeted approaches for prevention and treatment of gut dysbiosis related disorders such as 

IBD. 
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Appendix 1: Supplementary data for Chapter 2 

This appendix contains all the supplementary materials for Chapter 2. 

 

• File S2.1 - Differentially expressed genes from cell type enriched enteroids vs 

conventionally differentiated enteroids (electronic supplementary materials). 

• File S2.2 - Functional enrichment analysis of the top five most rewired (shared) marker 

regulators (electronic supplementary materials). 

• Table S2.1- Differentially expressed antimicrobial peptide (AMP) and mucin related 

genes in Paneth cell enriched enteroids and goblet cell enriched enteroids (compared 

to conventionally/normally differentiated enteroids). 

• Table S2.2- Hypergeometric significance testing of cell type-specific marker enrichment 

in upregulated differentially expressed gene lists. 

• Table S2.3 - Rewiring analysis results for the marker regulators present in the Paneth 

and the goblet subnetworks. 

• Table S2.4 - Crohn’s disease SNP associated genes in the enriched enteroid regulatory 

networks. 

• Table S2.5 - Ulcerative colitis disease SNP associated genes in the enriched enteroid 

regulatory networks. 

 

Gene 
Type 

Gene 
Name 

Ensembl ID 
Paneth 
DEG LFC 

Paneth 
DEG q val 

Goblet 
DEG LFC 

Goblet 
DEG q val 

AMP Ang4 ENSMUSG00000060615 4.64 8.61E-36 2.45 8.75E-13 

AMP Defa17 ENSMUSG00000060208 4.02 6.40E-46 2.95 5.56E-31 

AMP Defa2 ENSMUSG00000096295 4.58 1.70E-18 NA NA 

AMP Defa20 ENSMUSG00000095066 4.40 1.19E-17 NA NA 

AMP Defa21 ENSMUSG00000074447 5.18 2.22E-22 NA NA 

AMP Defa22 ENSMUSG00000074443  5.40 3.09E-20 NA NA 

AMP Defa23 ENSMUSG00000074446 3.69 1.94E-12 NA NA 

Table S2.1. Part 1/2. Differentially expressed antimicrobial peptide (AMP) and mucin related 
genes in Paneth cell enriched enteroids and goblet cell enriched enteroids (compared to 
conventionally/normally differentiated enteroids). Only genes which are differentially 
expressed (log2fc ≥ 1 and q value ≤ 0.05) in at least one of the datasets was included. LFC - log2 
fold change; q val - q value; DEG - differentially expressed gene; Paneth - Paneth enriched 
enteroid; goblet - goblet enriched enteroid. Table reproduced from Treveil et al. (2020) under 
the Creative Commons BY licence. 



Appendix 1: Supplementary data for Chapter 2 

 

 

 

240 

 

Gene 
Type 

Gene 
Name 

Ensembl ID 
Paneth 
DEG LFC 

Paneth 
DEG q val 

Goblet 
DEG LFC 

Goblet 
DEG q val 

AMP Defa24 ENSMUSG00000064213 3.91 8.51E-38 3.24 1.92E-32 

AMP Defa26 ENSMUSG00000060070 3.02 1.86E-39 2.22 8.61E-27 

AMP Defa28 ENSMUSG00000074434 2.84 3.21E-17 1.66 1.20E-07 

AMP Defa29 ENSMUSG00000074437 1.89 3.20E-06 NA NA 

AMP Defa3 ENSMUSG00000074440  4.01 6.69E-26 2.90 4.28E-17 

AMP Defa30 ENSMUSG00000074444 3.89 1.94E-21 1.44 3.15E-4 

AMP Defa32 ENSMUSG00000094818 5.54 1.06E-13 NA NA 

AMP Defa33 ENSMUSG00000094362 5.35 9.86E-13 NA NA 

AMP Defa34 ENSMUSG00000063206 5.34 5.97E-57 2.32 1.00E-13 

AMP Defa35 ENSMUSG00000061845 5.85 3.04E-20 1.43 0.03 

AMP Defa36 ENSMUSG00000094662  4.52 7.61E-37 2.16 7.04E-11 

AMP Defa5 ENSMUSG00000074439 4.97 7.91E-33 NA NA 

AMP Lyz1 ENSMUSG00000069515 3.86 6.73E-27 2.49 3.67E-14 

AMP Pla2g2a ENSMUSG00000058908 3.23 6.78E-45 NA NA 

AMP Reg3g ENSMUSG00000074447 5.18 2.22E-22 NA NA 

Mucin 
related 

Fcgbp ENSMUSG00000047730 2.02 5.22E-08 4.40 8.45E-44 

Mucin 
related 

Muc1 ENSMUSG00000042784 NA NA NA NA 

Mucin 
related 

Muc13 ENSMUSG00000022824 NA NA 1.03 2.48E-4 

Mucin 
related 

Muc2 ENSMUSG00000025515 2.64 8.57E-10 4.06 2.24E-27 

Mucin 
related 

Muc3 ENSMUSG00000037390 -2.35 0.02 NA NA 

Mucin 
related 

Muc3a ENSMUSG00000094840 1.59 3.46E-06 2.46 1.09E-16 

Mucin 
related 

Retnlb ENSMUSG00000022650 NA NA NA NA 

Mucin 
related 

Tff3 ENSMUSG00000024029 3.27 1.89E-26 3.69 6.74E-42 

Table S2.1. Part 2/2. Differentially expressed antimicrobial peptide (AMP) and mucin related 
genes in Paneth cell enriched enteroids and goblet cell enriched enteroids (compared to 
conventionally/normally differentiated enteroids). Only genes which are differentially 
expressed (log2fc ≥ 1 and q value ≤ 0.05) in at least one of the datasets was included. LFC - log2 
fold change; q val - q value; DEG - differentially expressed gene; Paneth - Paneth enriched 
enteroid; goblet - goblet enriched enteroid. Table reproduced from Treveil et al. (2020) under 
the Creative Commons BY licence. 

 

 



Appendix 1: Supplementary data for Chapter 2 

 

 

 

241 

 

Marker 
list cell 

type 
DEG list 

# 
Markers 

# DEGs 
(lncRNAs 
& protein 

coding) 

# DEG 
Markers 

Hyper-
geometric 

significance 
test p value 

Multiple 
testing 

adjusted p 
value (1) 

-Log10 
(qval) 

(1) 

Multiple 
testing 

adjusted p 
value (2) 

Paneth Paneth 71 2077 56 6.07E-36 3.64E-35 34.44 6.07E-35 

goblet Paneth 422 2077 102 7.69E-10 4.61E-09 8.34 7.69E-09 

enteroen -

docrine 
Paneth 204 2077 140 7.32E-75 4.39E-74 73.36 

7.32E-74 

tuft Paneth 490 2077 100 6.54E-06 NA NA 6.54E-05 

enterocyte Paneth 518 2077 8 1 NA NA 10 

Paneth Goblet 71 1797 40 6.97E-20 4.18E-19 18.38 6.97E-19 

goblet Goblet 422 1797 173 1.01E-55 6.08E-55 54.21 1.01E-54 

enteroen - 

docrine 
Goblet 204 1797 148 8.14E-94 4.89E-93 92.31 

8.14E-93 

tuft Goblet 490 1797 116 1.29E-14 NA NA 1.29E-13 

enterocyte Goblet 518 1797 45 0.98 NA NA 9.86 

Table S2.2. Hypergeometric significance testing of cell type-specific marker enrichment in 
upregulated differentially expressed gene lists. Marker lists obtained from (Haber et al., 2017). 
DEG - differentially expressed gene. (1) = statistical test across only the Paneth, goblet and 
enteroendocrine cell type markers. (2) = statistical test across all 5 cell type markers. Figure 
reproduced from Treveil et al. (2020) under the Creative Commons BY licence. 
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Shared regulator Shared regulator id Dn-Score 
(corrected) 

# Shared 
targets 

# Pan only 
targets 

# Gob only 
targets 

Etv4 ENSMUSG00000017724 0.4 1 3 1 

mmu-let-7e-5p mmu-let-7e-5p 0.370370 49 102 38 

mmu-miR-152-3p mmu-miR-152-3p 0.3521127 63 104 46 

Myb ENSMUSG00000019982 0.3391473 83 108 67 

Rora ENSMUSG00000032238 0.3309266 281 386 164 

Mitf ENSMUSG00000035158 0.3302469 not calc not calc not calc 

Hoxb4 ENSMUSG00000038692 0.3144654 not calc not calc not calc 

Nr5a2 ENSMUSG00000026398 0.3176230 not calc not calc not calc 

Irf1 ENSMUSG00000018899 0.3170732 not calc not calc not calc 

mmu-miR-7a-5p mmu-miR-7a-5p 0.3125 not calc not calc not calc 

Foxa1 ENSMUSG00000035451 0.3114144 not calc not calc not calc 

Tead4 ENSMUSG00000030353 0.3097313 not calc not calc not calc 

Nkx2-2 ENSMUSG00000027434 0.3069544 not calc not calc not calc 

Vdr ENSMUSG00000022479 0.3029627 not calc not calc not calc 

Ets1 ENSMUSG00000032035 0.3025706 not calc not calc not calc 

Nr3c1 ENSMUSG00000024431 0.3022903 not calc not calc not calc 

Foxa3 ENSMUSG00000040891 0.3010753 not calc not calc not calc 

Bhlha15 ENSMUSG00000052271 0.2970660 not calc not calc not calc 

mmu-miR-101a-3p mmu-miR-101a-3p 0.2907895 not calc not calc not calc 

Zfp57 ENSMUSG00000036036 0.287578 not calc not calc not calc 

Fosl1 ENSMUSG00000024912 0.2925170 not calc not calc not calc 

Pax6 ENSMUSG00000027168 0.2880184 not calc not calc not calc 

Nfatc2 ENSMUSG00000027544 0.2954545 not calc not calc not calc 

Neurod1 ENSMUSG00000034701 0.2808552 not calc not calc not calc 

Insm1 ENSMUSG00000068154 0.2811218 not calc not calc not calc 

mmu-miR-153-3p mmu-miR-153-3p 0.2727273 not calc not calc not calc 

Neurod2 ENSMUSG00000038255 0.2696850 not calc not calc not calc 

Fosb ENSMUSG00000003545 0.2652174 not calc not calc not calc 

Klf15 ENSMUSG00000030087 0.2857143 not calc not calc not calc 

Atoh1 ENSMUSG00000073043 0.2449495 not calc not calc not calc 

Table S2.3. Rewiring analysis results for the marker regulators present in the Paneth and the 
goblet subnetworks. Dn score generated using Cytoscape app DyNet (Goenawan et al., 2016). 
Not calc - not calculated. Figure reproduced from Treveil et al. (2020) under the Creative 
Commons BY licence. 
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Cell type-specific 
regulatory network 

Crohn's susceptibility 
gene 

Direction of differential 
expression 

Paneth 9430076C15Rik Upregulated 

Paneth Atg16l2 Upregulated 

Paneth Fut2 Upregulated 

Paneth Hmha1 Upregulated 

Paneth Itln1 Upregulated 

Paneth Izumo1 Upregulated 

Paneth Jazf1 Upregulated 

Paneth Plcl1 Upregulated 

Paneth Tnfsf15 Upregulated 

Paneth Ccdc88b Downregulated 

Paneth Dbp Downregulated 

Paneth Fads1 Downregulated 

Paneth Fads2 Downregulated 

Paneth H2-Q1 Downregulated 

Paneth H2-Q10 Downregulated 

Paneth H2-Q2 Downregulated 

Paneth H2-Q6 Downregulated 

Paneth H2-Q7 Downregulated 

Paneth Kif21b Downregulated 

Paneth Ksr1 Downregulated 

Paneth Ptpn22 Downregulated 

Paneth Zpbp2 Downregulated 

Goblet Fut2 Upregulated 

Goblet Hmha1 Upregulated 

Goblet Inpp5d Upregulated 

Goblet Itln1 Upregulated 

Goblet Izumo1 Upregulated 

Goblet Jazf1 Upregulated 

Goblet Plcl1 Upregulated 

Goblet Tnfsf15 Upregulated 

Goblet Gart Downregulated 

Goblet H2-Q7 Downregulated 

Goblet H2-Q6 Downregulated 

Goblet Notch2 Downregulated 

Table S2.4. Crohn’s disease SNP associated genes in the enriched enteroid regulatory 
networks. Figure reproduced from Treveil et al. (2020) under the Creative Commons BY licence. 
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Cell type-specific 
regulatory network 

Ulcerative Colitis 
susceptibility gene 

Direction of 
differential expression 

Paneth Dap Upregulated 

Paneth Edem2 Upregulated 

Paneth Itgal Upregulated 

Paneth Maml2 Upregulated 

Paneth Mmp24 Upregulated 

Paneth Nr5a2 Downregulated 

Paneth Plcl1 Upregulated 

Paneth Tnfsf15 Upregulated 

Paneth Zpbp2 Downregulated 

Paneth Card11 Downregulated 

Paneth Hnf4A Downregulated 

Paneth Nusap1 Downregulated 

Paneth Procr Upregulated 

Goblet Dap Upregulated 

Goblet Edem2 Upregulated 

Goblet Itgal Upregulated 

Goblet Mmp24 Upregulated 

Goblet Nr5a2 Downregulated 

Goblet Plcl1 Upregulated 

Goblet Tnfsf15 Upregulated 

Goblet Card11 Downregulated 

Goblet Cep250 Downregulated 

Goblet Procr Upregulated 

Table S2.5. Ulcerative colitis disease SNP associated genes in the enriched enteroid regulatory 
networks. Figure reproduced from Treveil et al. (2020) under the Creative Commons BY licence. 
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UC SNP associated 
genes 

CD SNP associated 
genes 

Goblet differentially 
expressed genes 

ENSMUSG00000026398 ENSMUSG00000053007 ENSMUSG00000013523 

ENSMUSG00000027611 ENSMUSG00000010663 ENSMUSG00000017057 

ENSMUSG00000027612 ENSMUSG00000017195 ENSMUSG00000024597 

ENSMUSG00000030830 ENSMUSG00000018334 ENSMUSG00000027006 

ENSMUSG00000036526 ENSMUSG00000024665 ENSMUSG00000027346 

ENSMUSG00000038241 ENSMUSG00000027843 ENSMUSG00000027513 

ENSMUSG00000038349 ENSMUSG00000038349 ENSMUSG00000027876 

ENSMUSG00000039168 ENSMUSG00000047767 ENSMUSG00000028236 

ENSMUSG00000050395 ENSMUSG00000047810 ENSMUSG00000031844 

ENSMUSG00000038312 ENSMUSG00000050395 ENSMUSG00000032322 

 ENSMUSG00000055978 ENSMUSG00000032978 

 ENSMUSG00000059824 ENSMUSG00000034472 

 ENSMUSG00000060550 ENSMUSG00000038039 

 ENSMUSG00000063568 ENSMUSG00000039234 

 ENSMUSG00000067235 ENSMUSG00000046841 

 ENSMUSG00000073409 ENSMUSG00000055976 

 ENSMUSG00000079507 ENSMUSG00000074004 

 ENSMUSG00000038209 ENSMUSG00000075610 

 ENSMUSG00000091705 ENSMUSG00000055963 

 ENSMUSG00000035697 ENSMUSG00000036764 

 ENSMUSG00000064158  

Table S2.6. IBD associated genes targeted by predicted master regulators in the enriched 
enteroid regulatory networks. Ulcerative colitis (UC) and Crohn’s disease (CD) associated genes 
(from SNP data) targeted by at least one of the master regulators in the relevant networks; list 
of top 100 CD differentially expressed genes in human colonic biopsies (CD inflamed vs healthy) 
which are targeted by at least one of the predicted goblet cell master regulators in the GCeE 
network. Figure reproduced from Treveil et al. (2020) under the Creative Commons BY licence. 
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Appendix 2: Supplementary data for Chapter 3 

This appendix contains all the supplementary materials for Chapter 3. 

• Table S3.1 – Number of differentially expressed genes from the cytokine-treated 
colonoids also differentially expressed in UC and cCD biopsy data (GSE16879) (Arijs et 
al., 2009). 

Cytokine 
programme 

category 

# 
colonoid 

DEGs 

# colonoid 
DEGs in 
biopsies 

% colonoid 
DEGs in 
biopsies 

# colonoid 
DEGs in UC 

+ cCD 

# colonoid 
DEGs in UC 

not cCD 

# colonoid 
DEGs in 
cCD not 

UC 

IFN 871 305 35.02% 191 102 12 

IFN; IL-13 252 97 38.49% 63 31 3 

IFN; IL-13; IL-17a 16 4 25.00% 3 1 0 

IFN; IL-13; IL-17a; 

TNF 

29 10 34.48% 7 3 0 

IFN; IL-13; TNF 65 31 47.69% 20 8 3 

IFN; IL-17a 40 15 37.50% 9 6 0 

IFN; IL-17a; TNF 54 13 24.07% 11 2 0 

IFN; TNF 114 58 50.88% 43 15 0 

IL-13 1408 482 34.23% 262 208 12 

IL-13; IL-17a 23 6 26.09% 3 3 0 

IL-13; IL-17a; TNF 16 8 50.00% 8 0 0 

IL-13; TNF 143 61 42.66% 34 25 2 

IL-17a 66 18 27.27% 12 6 0 

IL-17a; TNF 35 14 40.00% 10 4 0 

TNF 310 104 33.55% 50 52 2 

Table S3.1. Number of differentially expressed genes from the cytokine-treated colonoids also 
differentially expressed in UC and cCD biopsy data (GSE16879) (Arijs et al., 2009). Differential 
expression when adjusted p value ≤ 0.01. 
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Appendix 3: Supplementary data for Chapter 4 

This appendix contains all the supplementary materials for Chapter 4. 

• Figure S4.1 - Neonatal differentially expressed genes. 

• Table S4.1 - Reactome pathway enrichment analysis for neonatal upregulated 

differentially expressed genes. 

• Table S4.2 - Cluster analysis on neonatal protein-protein interaction network. 

• Table S4.3 - Overlap between cell type marker genes and differentially expressed genes. 

• Table S4.4 - Reactome pathway enrichment analysis of differentially expressed stem cell 

signature genes and their expressed regulators. 
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Figure S4.1. Neonatal differentially expressed genes. A. Epithelial integrity-associated DEGs B. 
Integrin-associated DEGs. All DEGs have q value < 0.05. Dotted line indicates the threshold of 
significance (absolute Log2FC > 1.0). Data are represented as Mean ± SE. Figure created by 
Raymond Kiu (QIB). Figure reproduced from Kiu et al. (2020) under the Creative Commons BY 
licence. 
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Term Gene count Fold enrichment Q value 

Olfactory Signalling Pathway 108 1.88 3.20E-05 

Cell Cycle 154 1.63 1.13E-04 

Gene expression (Transcription) 238 1.45 1.18E-04 

Chromatin organization 67 2.08 2.54E-04 

Chromatin modifying enzymes 67 2.08 2.82E-04 

DNA Double-Strand Break Repair 51 2.3 4.19E-04 

G alpha (s) signalling events 122 1.62 6.50E-04 

RNA Polymerase II Transcription 202 1.39 3.06E-03 

Generic Transcription Pathway 173 1.39 8.50E-03 

Signal Transduction 461 1.21 8.98E-03 

G2/M DNA damage checkpoint 29 2.48 9.07E-03 

DNA Repair 77 1.66 1.06E-02 

Cell Cycle, Mitotic 122 1.48 1.06E-02 

HATs acetylate histones 23 2.64 1.85E-02 

Epigenetic regulation of gene expression 28 2.28 2.38E-02 

Homology Directed Repair 30 2.23 2.39E-02 

Nonhomologous End-Joining 19 2.82 2.46E-02 

Mitotic Prometaphase 58 1.73 2.48E-02 

HDR through Homologous Recombination 29 2.26 2.63E-02 

Recruitment and ATM-mediated 
phosphorylation of repair 

22 2.53 2.78E-02 

Table S4.1. Reactome pathway enrichment analysis for neonatal upregulated differentially 
expressed genes. q value ≤ 0.05. Table reproduced from Kiu et al. (2020) under the Creative 
Commons BY licence.  
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Cluster Score 
(Density*#

Nodes) 

Nodes Edges Gene UNIPROT IDs 

1 6.716 68 276 P70365, O89090, Q8BUR4, P25425, Q3TTA7, Q9JKF1, 
P13405, O35618, P20444, O70494, Q925J9, Q62190, 

P21803, P01132, Q80YR6, Q80UV9, Q9JHD1, 
Q61026, Q64143, Q9JL70, O35608, Q01279, 
Q8CBW3, P62806, Q00731, P34056, Q8K4J0, 
Q923E4, P97929, Q4U2R1, Q9QZR5, Q60760, 
Q62077, P50652, P16092, Q08297, P97313, 

Q6PDQ2, P84228, Q5PSV9, B2RWS6, Q6VNS1, 
Q61521, Q60751, Q03145, Q3TYD6, Q6NZM9, 
B2RQC6, Q6ZQF0, P15208, O08852, O70445, 
Q64455, Q01705, Q9Z265, Q9Z0Z3, Q8BGE5, 

P22682, O09053, P07901, Q6QI06, P34152, P26450, 
Q61084, P14234, P51943, Q62245, Q64701 

2 4.48 26 68 Q62108, Q7TS75, Q8BSK8, O08586, Q8CHE4, 
Q8CIS0, O88572, Q02111, P23242, P12813, Q9EQD0, 

Q9EQY0, Q01147, Q9WVG5, Q570Y9, P16054, 
P01101, Q91Y86, Q8BTH8, Q9Z2A0, P39447, 
Q80YE7, Q8C050, P10637, P18654, Q9WV60 

3 4.4 11 23 Q60952, A2AUM9, Q9D3R3, Q569L8, Q80Z25, 
Q64702, O35942, Q9R0L6, Q6P5D4, Q0VEJ0, 

Q6A078 

4 3.775 72 167 Q60665, P36895, Q05909, P27512, A2A5Z6, 
Q9WV30, Q8BWW9, P10417, P70347, Q8BFP9, 
Q7TSG3, O55033, Q61214, Q6PDM2, Q9CR14, 
P70191, Q6PEE3, Q9WUL6, Q62210, O08863, 
P68433, P26041, Q62469, Q9WUN2, P48754, 
Q04750, Q9WVF7, Q9CQ37, Q8K368, P26039, 
O08553, Q03173, O08901, P15379, Q8BPZ8, 
Q91YM2, Q64261, P33609, Q62417, Q62448, 
Q60803, Q9QUM0, Q91WJ8, P23804, P00520, 
P22518, Q62167, Q8C863, Q80TQ2, P62484, 
Q0VBD2, Q5I043, O35607, Q8VHL1, P70335, 
Q9Z1S0, O35732, P11276, Q04736, O54781, 

Q64727, P25322, Q64700, O35516, Q62388, P53995, 
P01108, O70551, Q6A4J8, P30280, Q8BUN5, P13864 

Table S4.2. Cluster analysis on neonatal protein-protein interaction network. Clusters 
identified using MCODE and must have ≥ 10 nodes (Bader and Hogue, 2003). Table reproduced 
from Kiu et al. (2020) under the Creative Commons BY licence. 
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Cell type # 
Marker 
genes 

# DEG 
marker 
genes 

Q 
value 

% Marker 
genes 

which are 
DEGs 

Genes (Symbol) 

Stem 122 37 0.026 30.33% H2-Eb1, Mfge8, Lgr5, Rgmb, Fstl1, 
Scn2b, Sorbs2, Slc14a1, Slc14a1, 

Slc12a2, Rassf5, Rnf43, Lamb3, Cd44, 
Axin2, Lrig1, Cdk6, Rnf32, Smoc2, Esrrg, 
Znrf3, Aqp4, BC064078, Zbtb38, Myo9a, 
Lrp4, Arhgef26, Cttnbp2, Htr4, Sipa1l1, 
Rin2, Sesn3, Phlpp1, Itga1, Pcdh8, Nfib, 

Nfia 

Tuft 494 107 1.669 21.66% Ackr4, Eppk1, Afdn, Jade1, Zfp512b, Klf6, 
Folr1, Nudt14, Ltc4s, Tmem9, Tmem141, 

S100a11, Espn, 1110008P14Rik, Gga2, 
Tmem51, Snrnp25, S100a1, Scand1, 

Ndufaf3, Rhog, Vamp8, Nradd, Pde6d, 
Galk1, Lect2, Bicd1, Prox1, Ehf, Wdfy2, 

Hivep2, Myo1b, Tmem160, Cpeb4, 
Fam49a, Klhl28, Aopep, Arhgef28, Jmy, 

Plk2, Slc4a7, Txndc16, Dpysl2, Cblb, 
Adcy5, Cpne5, Sik1, Pdpk1, Svil, Atat1, 
Ptprj, Avil, Hspa4l, Map4k4, Fn1, Pkp1, 

Rabgap1l, Gpcpd1, Pik3r3, Tas1r3, Ttll10, 
Klf3, Osbpl3, Nfe2l3, Atf7ip, Itpr2, Psd3, 
Pgm2l1, Trak1, Zbtb41, Slc26a2, Exph5, 

Tiparp, Ankrd12, Rabgap1, Zdhhc17, 
Gmip, Atp8a1, Wnk2, Arap2, Otud7b, 
Jarid2, Zfhx3, Slco4a1, Lmtk2, Suco, 

Adam22, Madd, Dmxl2, Rgl2, Myzap, 
Atxn1, Samd9l, Omd, Bnip5, Mical3, 
Nav2, Sirt5, Dsp, Tmem245, Tead1, 
Pla2g4a, Msi2, Fryl, Fnbp1, Usp49, 

Vmn2r26 

Entero-
endocrine 

202 36 4.942 17.82% Cdkn1c, Gpx3, Bex3, Pcsk1n, Resp18, 
Sct, Adora3, Cacna1a, Cbfa2t2, Chd7, 

Chst11, Cnot6l, Dock4, Fam135a, Gng4, 
Kcnh6, Klhl31, Maml3, Map1b, 

Map3k15, Mapkbp1, Ncald, Pcsk1, 
Pde11a, Peg3, Phldb2, Plxnb1, Prnp, 

Rapgef4, Rbfox2, Rimbp2, Rufy2, Syt13, 
Tox3, Trpm2, Unc13a 

Table S4.3. Part 1/2. Overlap between cell type marker genes and differentially expressed 
genes in neonatal mice. Q value calculated using hypergeometric significance test with 
Benjamini-Hochberg correction for multiple testing. Table reproduced from Kiu et al. (2020) 
under the Creative Commons BY licence. 

 



Appendix 3: Supplementary data for Chapter 4 

 

 

 

252 

 

Cell type # 
Marker 
genes 

# DEG 
marker 
genes 

Q 
value 

% Marker 
genes 

which are 
DEGs 

Genes (Symbol) 

Paneth 71 11 4.955 15.49% Defa42, Mptx1, Apoc2, Samd5, Thbs1, 
Angpt2, Acvr1c, C4bp, Slc16a7, Dll3, 

Lamb1 

Goblet 420 62 5.993 14.76% Naga, Guca2a, Lrrc26, S100a11, 
Sh3bgrl3, Scnn1a, Ccnd3, Cmtm8, 

Krtcap2, Selenom, Sec61g, Tmsb10, 
Ggcx, Rasa4, Eif2ak4, Igf2bp1, Itga2, 
Arfgef3, Appl2, Tc2n, Kif13a, Golm1, 
Sybu, Syt7, Muc2, Tfcp2l1, Galnt5, 

Ncoa3, Odf2l, Rfc1, Dipk1a, Aacs, Sytl2, 
Ern2, Sytl4, Mcf2l, Galnt7, Slc10a7, 

Myo5c, Golgb1, Tulp4, Cog3, Dcbld2, 
Uggt1, Zc3h7a, Gcc2, Capn8, Nipal2, 
Sgsm3, Rasef, Edem3, Smim5, Plcb1, 

Tbc1d30, Ggcx, Sh3pxd2a, Fgfr3, 
Clca3a1, Fry, Cracr2a, Ggcx, Gcc2 

Enterocyte 522 68 6.000 13.03% Spink1, Sult6b2, Smim24, Acp5, Apoc2, 
Fcgrt, Gstm3, Crip1, Tmem86a, Ndufa1, 
Fabp6, Amn, Cideb, Cst6, Prap1, Akr7a5, 

2200002D01Rik, Apoc3, Apoa1, Rbp2, 
Reep6, Tmem37, Gstm1, Tmem253, 
Sco2, Gstp2, Epb41l3, Btln5, Dgkq, 

D130043K22Rik, Mertk, Hnf4g, Cobl, 
Snx13, Ccdc88c, Cast, Plec, Mylk, Pcsk5, 
Abcc2, Cubn, Slc23a2, Edn3, Pld1, Mme, 
Plb1, Ppargc1a, Rufy3, Bmp3, Slc13a1, 

Slc25a36, Farp2, Slc25a37, 
C530008M17Rik, Arhgap26, Tbc1d24, 
Slc18b1, Mical2, Txlng, Ptk6, Apol10b, 

Gm11437, Ccdc134, Mgam, Ahnak, 
Acnat1, H2-Bl 

Table S4.3. Part 2/2. Overlap between cell type marker genes and differentially expressed 
genes in neonatal mice. Q value calculated using hypergeometric significance test with 
Benjamini-Hochberg correction for multiple testing. Table reproduced from Kiu et al. (2020) 
under the Creative Commons BY licence. 
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Term Gene count Fold 
enrichment 

Q value 

Regulation of FZD by ubiquitination (R-MMU-4641263) 3 35.6 2.39E-02 

Endogenous sterols (R-MMU-211976) 3 27.06 3.63E-02 

Estrogen-dependent gene expression (R-MMU-
9018519) 

6 19.61 4.95E-04 

ESR-mediated signalling (R-MMU-8939211) 6 18.04 4.69E-04 

RUNX1 regulates transcription of genes involved in 
differentiation of HSCs (R-MMU-8939236) 

4 14.78 3.41E-02 

Signalling by Nuclear Receptors (R-MMU-9006931) 6 11.66 4.23E-03 

Transcriptional regulation by RUNX1 (R-MMU-
8878171) 

6 9.73 9.64E-03 

Generic Transcription Pathway (R-MMU-212436) 15 5.88 4.71E-05 

RNA Polymerase II Transcription (R-MMU-73857) 15 5 1.89E-04 

Gene expression (Transcription) (R-MMU-74160) 15 4.38 4.93E-04 

Signal Transduction (R-MMU-162582) 19 2.37 3.65E-02 

Table S4.4. Reactome pathway enrichment analysis of differentially expressed stem cell 
signature genes and their expressed regulators in neonatal mice. q value ≤ 0.05. Table 
reproduced from Kiu et al. (2020) under the Creative Commons BY licence.  
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Appendix 4: Supplementary data for Chapter 5 

This appendix contains all the supplementary materials for Chapter 5. 

 

• File S5.1 - Results of gene set enrichment analysis comparing bifidobacteria-exposed to 

control mice in each mouse type and cell type using Reactome and Gene Ontology 

Biological Process annotations (electronic supplementary materials).  

• Figure S5.1 - Representative gating strategy to sort Paneth, stem and transit amplifying 

(TA) cells from single cell suspension of mouse crypt of Lieberkühn cells.  

• Figure S5.2 - Lactic acid bacterial concentration in faecal and caecal content from germ 

free (GF) and specific pathogen free (SPF) juvenile mice. 

• Figure S5.3 - Germ free vs specific pathogen free UMAP plot of normalised counts data. 

• Figure S5.4 - Principle component analysis (PC1 v PC2) of juvenile mice samples. 

• Figure S5.5 - Gene expression heatplot of top 50 variant genes among all germ 

free/monocolonised juvenile samples. 

• Figure S5.6 - Violin plot of all samples showing levels of gene expression of Lgr5, CD24a 

and Lyz1. 

• Figure S5.7 - Expression of key transcription factors in intestinal epithelial cell 

differentiation across germ free/monocolonised juvenile mice samples. 
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Figure S5.1. Representative gating strategy to sort Paneth, stem and transit amplifying 
(TA) cells from single cell suspension of mouse crypt of Lieberkühn cells. A. 7-
Aminoactinomycin D (7AAD) fluorescence against forward scatter (FSC) to gate live and dead 
cells. B. Cluster of differentiation (CD)31/CD45/Ter119 against side scatter to gate immune 
cells and non-immune cells. C. CD24 against side scatter to obtain CD24high and CD24low cells. 
D. Epithelial cell adhesion molecule (EpCAM) against LGR5 fluorescence for CD24high cells to 
sort Paneth cells and TAhigh cells. E. EpCAM against LGR5 fluorescence for CD24low cells to 
sort TAlow cells and stem cells. Data from specific pathogen free (SPF) mouse 1. Figures 
from the software BD FACSChorus of the FACSMelody sorting machine. 
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Figure S5.2. Lactic acid bacterial concentration in faecal and caecal content from germ free 
(GF) and specific pathogen free (SPF) juvenile mice. A. Bacterial concentration (CFU/mL/g) 
in SPF and GF caecal content 72h after gavage of B. breve UCC2003 * = p < 0.05 (paired t-
test). B. Bacterial concentration (CFU/mL/g) in SPF mouse faecal content before gavage and 
24h after gavage of B. breve UCC2003. Data not significant (paired t-test, p > 0.05). Bacteria 
grown anaerobically on De Man, Rogosa and Sharpe plates at 37° for 48h. Standard Error 
shown. 
 

 

Figure S5.3. Germ free vs specific pathogen free UMAP plot of normalised counts data. 
Data coloured by mouse type. SPF - specific pathogen free mice; GF - germ free mice. See 
Figure 5.5 for matching IDs. 
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Figure S5.4. Principle component analysis (PC1 v PC2) of juvenile mice samples. A. Samples 
identified by pre-labelled cell type. B. Samples labelled by bifidobacteria-treated or control 
condition. C. Samples labelled by cell type and bifidobacteria-treated or control condition. 
PC - Paneth cell; SC - stem cell, TAhigh - transit amplifying high cells; TAlow - transit 
amplifying low cells; 0 - control condition; 1 - bifidobacteria-treated. 
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Figure S5.5. Gene expression heatplot of top 50 variant genes among all germ 
free/monocolonised juvenile samples. Samples and genes are clustered. Bif - 
bifidobacteria-treated samples; Ctrl - control samples. 
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Figure S5.6. Violin plot of all samples showing levels of gene expression of Lgr5, CD24a 
and Lyz1. PC – Paneth cells; SC – stem cells; TAhigh – TAhigh cells; TAlow – TAlow cells. 

 

 

Figure S5.7. Expression of key transcription factors in intestinal epithelial cell 
differentiation across germ free/monocolonised juvenile mice samples. Mean scaled 
expression for each GF cell type. PC - Paneth cell; SC - stem cell, TAhigh - transit amplifying 
high cell.  
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Appendix 5: Supplementary data for Chapter 6 

This appendix contains all the supplementary materials for Chapter 6. 

 

• Table S6.1 - PFAM domain annotations for potential NF-κB activating proteins based 

on LC-MS. 

 

UniProt 
protein ID 

Protein name (and symbol 
where known) 

Domain/s Domain description 

F9XZH3 Alpha-1,4 glucan phosphorylase 
(GlgP1) 

PF00343 Carbohydrate phosphorylase 

F9XY36 Glutamine synthetase (glnA) PF00120; 
PF03951 

Glutamine synthetase, catalytic 
domain; Glutamine synthetase, beta-

Grasp domain 

F9XZF9 Conserved hypothetical 
secreted protein 

PF08757 CotH protein 

F9Y1U3 Solute-binding protein of ABC 
transporter system for sugars 

(GalC) 

PF01547 Bacterial extracellular solute-binding 
protein 

F9XZ02 Conserved hypothetical 
secreted protein with excalibur 

domain 

PF05901 Excalibur calcium-binding domain 

F9Y2P4 Conserved hypothetical 
membrane spanning protein 

with 
Endonuclease/Exonuclease/pho

sphatase family domain 

PF03372 Endonuclease/Exonuclease/phospha
tase family 

F9XYM5 Trigger factor (Tig) PF05698; 
PF05697; 
PF00254 

Bacterial trigger factor protein (TF) 
C-terminus; Bacterial trigger factor 
protein (TF); FKBP-type peptidyl-

prolyl cis-trans isomerase 

F9XZB8 Sugar-binding protein of ABC 
transporter system 

PF13407 Periplasmic binding protein domain 

F9XZ70 Hypothetical secreted protein (PS51257)
* 

(Prokaryotic membrane lipoprotein 
lipid attachment site profile)* 

F9XYI8 SSU ribosomal protein S1P 
(RspA) 

PF00575 S1 RNA binding domain 

F9Y109 Conserved hypothetical 
secreted protein 

- - 

Table S6.1. PFAM domain annotations for potential NF-κB activating proteins based on LC-MS. 
*Annotation obtained from PROSITE rather than PFAM (El-Gebali et al., 2019; Sigrist et al., 
2013). 
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