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Abstract

The intestinal epithelial cell (IEC) barrier represents a key interface between host immune cells
and commensal microbes. Communication between these compartments is crucial to
maintenance of gut homeostasis by protecting against pathogens, maintaining a balance of
commensal microbes and preventing overactivation of inflammation. A mechanistic
understanding of how these compartments communicate with and respond to each other is
crucial for developing preventative measures and treatments for complex gut dysbiosis, such as
observed in inflammatory bowel disease (IBD). In this thesis | sought to study interactions
between the health-promoting bacterial genus Bifidobacterium, the intestinal epithelium and
the immune system to gain understanding about this complex system. To do this, |
complemented experimental approaches with computational methods such as molecular
interaction networks, to investigate inter- and intra-cellular molecular regulation at a systems

level.

Using transcriptomics data from small intestinal organoid models enriched for specific epithelial
cell types, | showed that Paneth cells and goblet cells exhibit shared and unique transcriptional
and post-transcriptional regulation. Meanwhile, | highlighted a possible connection between IBD
and IECs at the regulatory level. Further extending the study of IBD, | investigated the effect of
IBD-relevant cytokines on IECs, shedding light on the causes of non-response to anti-cytokine
treatments and presenting a potential new candidate for therapeutic targeting. Additionally,
given the role of bifidobacteria in promoting gut health, myself and colleagues sought to define
the impact of bifidobacteria on IECs of different aged mice and to study their interaction with

macrophages at a molecular level.

Overall, this multidisciplinary work has increased mechanistic understanding of the interplay
between IECs, immune cells and commensal microbes, while demonstrating the use of networks
for such studies. This should ultimately lead to a better understanding of gut homeostasis and
drive development of targeted approaches for prevention and treatment of gut dysbiosis related

disorders.
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Chapter 1: General introduction

1.1 Introduction

Specialised epithelial cells lining the surface of the mammalian gastrointestinal tract form the
primary interface between the body’s internal tissues and the luminal content. Importantly,
these cells work in cohort with the local immune cells and the gut microbiome to maintain
homeostasis within the gut. Indeed, effective communication between these compartments is
critical to health. In this thesis | complimented experimental methods with network biology
methods to study the interactions between intestinal epithelial cells (IECs), commensal bacteria
Bifidobacterium and immune cells (macrophages) and mediators (cytokines), to gain

mechanistic understanding of interplay between them.

The intestinal epithelium is a single layer of epithelial cells consisting of multiple distinct cell
types. Balance within the gut is maintained, in part, by dynamic functioning of IECs in response
to diverse signals from the luminal content and the immune system. Disruption to this balance
can result in increased susceptibility to microbial infections and is implicated in a number of
autoimmune and inflammatory conditions, such as inflammatory bowel disease (IBD). IBD is
defined as chronic gut inflammation due to an inappropriate immune response to the gut

microbiome in genetically susceptible hosts (Fakhoury et al., 2014).

The gut microbiota is a complex composition of pathogenic and commensal bacteria, fungi and
viruses which have co-evolved with the innate and adaptive immune systems of their host.
Recognition of commensal gut microbes by IECs can play a role in balancing immune activation
against tolerance, by altering mucus and antimicrobial peptide production, stem cell
proliferation and increasing epithelial integrity (Kim et al., 2010). Meanwhile, immune cells such
as phagocytes can detect exogenous bacteria and signal their activity to other immune cells and
IECs, activating a response to defend against infection. Furthermore, commensal bacteria can
interact directly with immune cells to dampen pro-inflammatory immune responses - for
example the interaction between Bifidobacterium longum 35624 and dendritic cells results in
repression of local T helper cell (Th)17 responses (Schiavi et al., 2016). Such interactions can

occur in a healthy gut through recognition of luminal bacterial by intraepithelial lymphocytes,
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lumen-sampling dendritic cells or through Payer’s patches (see General Introduction section
1.3). Moreover, bacterial-immune cell interactions occur in large numbers when epithelial
barrier functions are disrupted, for example in IBD, whereby lumen content is able to cross the
epithelium into the lamina propria below. This creates a complex network of communication
between IECs, immune populations and the gut microbiome which serves to maintain gut

homeostasis and health (Figure 1.1).
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Figure 1.1. Project summary: crosstalk between the intestinal epithelium, immune cells and
bifidobacteria. Each arrow represents a results chapter in this thesis.

Lack of fundamental understanding of the interplay between IECs, the immune system and gut
microbes is a major barrier to progress in understanding and curing human diseases. To progress
towards this comprehension of complex gut dysbiosis, it is important to study these interactions.
Due to increasing appreciation of the role of beneficial commensal bacteria in immune system
and IEC cross-talks, | have focused on the health-promoting genus Bifidobacterium. Accordingly,
there are five overarching aims to this thesis:
1. Develop workflows and processes to analyse intracellular regulation in a cell type-
specific manner to gain biological insights.
2. Apply these workflows to increase our understanding of how cytokines alter the
regulation of epithelial cells.
3. Apply these workflows to increase our understanding of how Bifidobacterium alters the
regulation of epithelial cells using bulk transcriptomics data.
4. Apply these workflows to increase our understanding of how Bifidobacterium alters the
regulation of epithelial cells using cell type-specific transcriptomics data.

5. Study the interactions of Bifidobacterium with immune cell populations.
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In this introductory chapter | explore background theory and literature relating to the structure
and function of the epithelial lining and the impact of immune and microbiome signalling on
regulation of IECs. | will introduce IBD (a clinical implication of epithelial and immune disruption
in the gut) and discuss the gut commensal Bifidobacterium. Furthermore, | will cover ex vivo and

in silico methods to study cellular function and regulation which have been used in this thesis.

1.2 Intestinal epithelium

The intestinal wall consists of four primary layers: the mucosa which contains epithelial cells
(IECs), the lamina propria and smooth muscle (adjacent to the gut lumen), the submucosa which
contains loose connective tissue and blood vessels, the muscularis which contains smooth
muscle and neurons and the enveloping connective tissue of the serosa. As IECs form the
interface between host tissues and the luminal environment, they are essential for absorption
of water and nutrients and to provide a physical and biochemical barrier to protect the human
body from foreign particles and microbial infections (Okumura and Takeda, 2017; Peterson and
Artis, 2014). To increase the surface area for absorption, the intestinal epithelium is arranged in
fold-like invaginations (Figure 1.2). In the small intestine, finger-like protrusions termed villi are
surrounded by invaginations called the crypts of Lieberkiihn, which were discovered and
published by Jonathan Nathanael Lieberkihn in 1745 (Clevers, 2013; Lieberkiihn, 1744). The
colonic epithelium does not contain villous projections but has tubular pits termed crypts, which
increase in depth towards the rectum. To carry out their diverse functions, IECs recognise and

respond to a variety of signals, including those from immunological mediators and gut microbes.
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Figure 1.2. Cross section of the small intestinal and colonic epithelium (human and mouse).

Major epithelial cell types shown.
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Proliferative stem cells residing at the base of the intestinal crypts gradually differentiate as they
migrate upwards away from the crypts. During the transit amplifying stage, cells undergo 4-5
rapid divisions whilst differentiating into their final cell types (Marshman et al., 2002). At the
end of their life, mature differentiated IECs undergo apoptosis and are shed into the lumen.
Through this process the intestinal epithelium undergoes a constant cycle of regeneration, with
cell renewal on average every four to seven days (Clevers, 2013; van der Flier and Clevers, 2009;

Zachos et al., 2016).

1.2.1 Intestinal epithelial cells

In addition to stem cells, there are six major recognised differentiated cell types of the intestinal
epithelium;  enterocytes, goblet cells, enteroendocrine cells, Paneth cells,
microfold/membranous (M) cells and tuft cells (van der Flier and Clevers, 2009). All of the above
cell types can be found in the small intestines and the colon, apart from Paneth cells which are
typically only observed in the small intestine. Despite this similarity, functional and structural
differences are observed between cell populations from different segments of the intestinal

tract.

1.2.1.1 Stem cells

The primary role of stem cells in the gut is to facilitate the regeneration of the epithelial cells.
Two distinct models exist to describe multipotent stem cells in the intestinal epithelium. Whilst
there is consensus that the crypt contains four to six stem cells, the exact identity of the stem
cells has been debated (Barker et al., 2008). The “+4 position” model describes stem cells in the
+4 position of the crypt with Paneth cells occupying the first three positions at the base of the
crypt (Potten et al., 1974). The “stem cell zone” model describes small undifferentiated cycling
cells called crypt base columnar cells at the base of the crypts interspersed with Paneth cells
(Cheng and Leblond, 1974). These fast cycling cells are marked by their high expression of
Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), as also seen in stomach and
hair follicle stem cells (Barker et al., 2007, 2010; Jaks et al., 2008; Mufioz et al., 2012). Despite
reports of molecular markers for the quiescent +4 stem cell population (Montgomery et al.,
2011; Powell et al., 2012; Sangiorgi and Capecchi, 2008; Takeda et al., 2011), subsequent studies
have not observed cell type-specific expression of these markers (van der Flier et al., 2009; Wong
et al., 2012). However, evidence still exists for this population of cells, which have been shown

to be insensitive to injury and to increase their stem cell activity upon damage to potentially
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replenish LGR5+ cells (Montgomery et al., 2011; Tian et al., 2011). Clearly, further research is

required to reconcile these two postulated populations of stem cells.

Throughout this thesis, any unspecified reference to stem cells of the intestinal epithelium will
refer to the LGR5+ population. This population is currently deemed the primary population and

is key to the generation of small intestinal and colonic organoids.

1.2.1.2 Enterocytes and colonocytes

The most populous cells of the intestinal epithelium are enterocytes of the small intestine and
colonocytes of the colon (Ohno, 2016). With a lifespan of five to seven days (Zachos et al., 2016),
their primary roles are to apically absorb nutrients for basal export and to maintain
water/electrolyte homeostasis. These cells have a characteristic microvilli brush border to

increase their surface area.

1.2.1.3 Goblet cells

Belonging to the secretory lineage of IECs, goblet cells make up 5-15% of the small intestinal
epithelium and up to 50% of the colonic epithelium (Kim and Ho, 2010; Noah et al., 2011).
Intestinal goblet cells play a key role in barrier protection through the secretion of mucus, anti-
microbial proteins, chemokines and cytokines. However, mucin glycoprotein mucin (MUC) 2 is
their primary secretion (Knoop and Newberry, 2018). These proteins have heavily glycosylated
central tandem repeat domains flanked by the C-terminal cysteine knot domain and domains of
von Willebrand factor. MUC2 is termed a gel-forming mucin because dimerisation and
oligomerisation of these domains results in the viscoelastic properties of mucus (Godl et al.,

2002; Kim and Ho, 2010). The mucus layer is further described in section 1.2.3.2.

1.2.1.4 Paneth cells

First identified by Austrian physician Joseph Paneth in the 1880s (Paneth, 1887), Paneth cells
are secretory cells of the small intestine that reside amongst the stem cells at the base of crypts.
Unlike other cells of the gut epithelium, Paneth cells are very long lived (>30 days) and do not
migrate up the villi (Bjerknes and Cheng, 2006; Zachos et al., 2016). Paneth cells act as a major
effector of the mucosal immune system through the release of a diverse repertoire of products.
These products primarily consist of antimicrobial peptides such as defensins and lysozyme, but

also include pro-inflammatory mediators and signal transduction proteins. For more information
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about antimicrobial peptides see section 1.2.3.3. Furthermore they secrete factors required for
stem cell maintenance including Wnt family member 3 (Wnt3), the Notch delta-like ligand (Dl14),
and epidermal growth factor (EGF) (Wittkopf et al., 2014). Given the nature of these secreted
products, it follows that Paneth cells play a key role in host defence against pathogens,
modulating endogenous bacterial communities, immune regulation and intercellular
communication. In addition, other unique specialised features of Paneth cells, such as their

longevity, suggest further important functional roles are played by this population of cells.

1.2.1.5 Enteroendocrine cells

Making up 1% of the epithelium, enteroendocrine cells (EECs) are secretory cells which release
peptide hormones, such as secretin and gastrin, in response to luminal nutrients. In addition,
they are able to sense microbial metabolites and release cytokines in response (Worthington et
al., 2018). Multiple subsets of EECs exist, which release specific cohorts of hormones (Haber et
al., 2017). In addition, a recent study has identified diversity in function of EECs between villi
and crypt locations based on bone morphogenetic protein (BMP) signalling gradient (Beumer et

al., 2018).

1.2.1.6 Tuftcells

Despite occurring throughout the epithelium, tuft cells represent only 0.5% of the gut epithelial
cells, depending on location in the gut (Banerjee et al., 2018). Tuft cells, named after their apical
microvilli, are marked by doublecortin-like kinase 1 (DCLK1) (Gerbe et al., 2009). In the small
intestine, tuft cells are believed to play a role in type 2 immunity against eukaryotic infections
via chemosensory mechanisms. Colonic tuft cells have been poorly studied, but initial evidence

suggests they may have different specification and function (Banerjee et al., 2018).

1.2.1.7 Microfold cells

Unlike the other aforementioned cell types, these cell are present only in follicle associated
epithelium, where they make up 5-10% of cells (Nicoletti, 2000; Ohno, 2016). The primary role
of M cells is to deliver microbial antigens to gut associated lymphoid tissue for efficient mucosal

and systemic immune responses (Ohno, 2016).
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1.2.2 Differentiation of intestinal epithelial cells

Intestinal epithelial cells arise from the LGR5+ stem cells of their associated crypt through a
process of differentiation and migration. The favoured model of epithelial differentiation
describes neutral competition between dividing stem cells which results in epithelial crypts
drifting to clonality within a period of 1-6 months. Consequently, all cells of a crypt and its

associated villus flanks originate clonally from one stem cell (Snippert et al., 2010).

Differentiation of epithelial stem cells is driven primarily by Notch, Wnt and BMP signalling
pathways (Noah et al.,, 2011; Worthington et al., 2018). Primarily mediated by hairy and
enhancer of split-1 (Hes1), Notch signalling drives differentiation of absorptive lineages such as
enterocytes (Figure 1.3). Conversely, atonal homolog 1 (Atoh1/Math1) inhibits Notch signalling
through Hes1 to drive secretory lineage differentiation. The Wnt/B-catenin signalling pathway,
which plays a role in maintenance of stemness, has also been shown to interact with Notch
signalling and is therefore implicated in the secretory/absorptive lineage decision. BMP
signalling has been shown to limit epithelial expansion through inhibiting self-renewal of stem
cells (Qi et al., 2017). Following the secretory lineage decision, Growth factor independent 1
(Gfi1) is required for goblet cell and Paneth cell differentiation, while Neurog3 determines EEC
differentiation (Figure 1.3). In addition, further lineage specific factors have been described for

IECs, as shown in Figure 1.3.
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Figure 1.3. Intestinal epithelial cell differentiation. Image reproduced from Worthington et al.
(2018) with permission of the rights holder, Springer Nature.
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1.2.3 Epithelial barrier functions

The primary function of the epithelial layer is to provide a barrier between the gut lumen and
the lamina propria to protect the host against microbes, toxins and other immunogenic
molecules. This barrier consists of a number of components including the physical barrier of the
IECs, the mucus layer and antimicrobial peptides. M-cells and intraepithelial immune cells are

also implicated in barrier function, but are described in sections 1.2.1.7 and 1.3.

1.2.3.1 Physical barrier function

By forming a coherent monolayer of cells, connected by junctional complexes, IECs protect
against harmful bacteria, antigens and toxins while permitting passage of nutrients and immune
sensing functions (Vancamelbeke and Vermeire, 2017). Junctional complexes which join cells
together include (apical) tight junctions, (central) adherens junctions and (basal) desmosomes
(Groschwitz and Hogan, 2009; Williams et al., 2015). Disruption of the epithelial barrier can
occur via dysregulation of junctional complexes or through excessive or dysregulated cellular
shedding — a process of apoptotic extrusion of intestinal epithelial cells at the tip of the villi.
Altered IEC physical barrier function is associated with a number of intestinal and extra-
intestinal diseases such as IBD, coeliac disease and type | diabetes (Groschwitz and Hogan, 2009)

and can be regulated by gut bacteria (Yu et al., 2012b).

1.2.3.2 Mucus layer

A further layer of defence in the gut is the mucus layer lining the epithelial cells — thin and loose
in the small intestine while thick and dense in the colon. This layer consists of gel-forming
glycoproteins called mucins which are secreted by goblet cells (see section 1.2.1.3). In the small
and large intestines, MUC2 is the major constituent of mucus (Schroeder, 2019). The recognised
functions of the intestinal mucus layer include: facilitating uptake of dietary molecules, a
physical barrier for opportunistic pathogens in the outer layer of the colonic mucus, a site of
long-term bacterial colonisation and a carbon and energy source for intestinal microbiota (Sicard
et al., 2017; Vancamelbeke and Vermeire, 2017). Similarly to the cellular physical barrier, a
reduction in mucus thickness and function has been observed in a number of health conditions
including IBD (Johansson et al., 2014; Swidsinski et al., 2007) and is affected by gut microbes and
their metabolites, including pathogens and commensals (Caballero-Franco et al.,, 2007,

Sperandio et al., 2013; Wrzosek et al., 2013).
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1.2.3.3 Antimicrobial peptides

Antimicrobial peptides (AMPs) are host defence peptides that play a major role in the innate
immune protection of the intestines by protecting against pathogens and shaping the
composition of the microbiome (Muniz et al., 2012). AMPs act primarily through direct
antimicrobial activity, but are also capable of neutralising bacterial exotoxins, acting as
chemoattractants for immune cells and modulating differentiation and maturation of immune
cells (Grigat et al., 2007; Lehrer et al., 2009; Mahlapuu et al., 2016; Rodriguez-Garcia et al., 2009;
Yang et al., 1999). Within the gut, AMPs are primarily secreted by Paneth cells (see section
1.2.1.4) but are also secreted by other IECs such as enterocytes and by some immune cell
populations such as neutrophils (Bevins and Salzman, 2011; Muniz et al., 2012). Three primary
classes of AMP exist: defensins, cathelicidins and C-type lectins. Defensins are small cationic
peptides which act primarily through disrupting bacteria cell walls or membranes. In human
guts, there exists six a-defensins, expressed by neutrophils (human neutrophil peptides, HNPs
1-4) and Paneth cells (human a-defensins, HD-5 and HD-6). In mice a-defensins are known as
cryptdins, of which there are 19, expressed primarily by Paneth cells (Muniz et al., 2012).
Furthermore, there are numerous B-defensins expressed by different types of intestinal
epithelial cells in both humans and mice. Similarly to defensins, cathelicidins are small cationic
peptides with broad antibacterial activity. Only one cathelicidin has been identified in humans
and mice: LL-37 and CRAMP respectively. C-type lectins, which consist of a carbohydrate
recognition domain and an N-terminal signal peptide, exert antimicrobial activity against Gram-
positive bacterial through binding to peptidoglycan. In humans, regenerating islet-derived
protein 3 alpha (Regllla) is the primary C-type lectin. The mouse ortholog of this gene is
regenerating islet-derived protein 3 gamma (Regllly), and both are constituently expressed in
the intestinal epithelium but can be further induced by toll-like receptor (TLR) signalling (which
is further described in section 1.2.4.1) (Cash et al., 2006). In addition to these classes, additional
important AMPs are expressed in the intestine. For example, lysozyme C (lysozyme, LYZ1) is a
glycoside hydrolase which cleaves peptidoglycan in Gram-positive bacterial cell wall. It is
secreted by Paneth cells and in mice also by macrophages. Secretory phospholipase A2 (sPLA2)
is a further Paneth cell expressed AMP, which affects microbial cell integrity by degrading
bacterial phospholipids (Muniz et al., 2012).
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1.2.4 Regulation of the epithelium

To carry out their diverse functions, IECs work in cohort to recognise and respond to a variety of
signals, including those from immunological mediators, gut microbes and their metabolites. This
plasticity in structure and function of the intestinal epithelium can result in increased protection
against pathogens, tolerance of commensal bacteria and appropriate water and nutrient intake.
However, dysregulation of this system or subversion by pathogens, can also lead to chronic

inflammation, cancer and microbial invasion.

1.2.4.1 Microbiome

Pathogenic and commensal microbes play a role in the regulation of IECs through nucleic acids,
small molecules, metabolites and proteins (Guven-Maiorov et al., 2017). Pattern recognition
receptors (PRRs) on the surface and endosomal membranes of epithelial cells are the primary
mechanism through which microbes are detected. PRRs can recognise microbe-associated
molecular patterns (MAMPs), including lipopolysaccharides, DNA and flagellin, and
subsequently initiate protective inflammatory cascades (Coleman and Haller, 2017). As a result
of activation, PRRs induce a number of responses including phagocytosis, inflammation and

maturation of antigen-presenting cells (Hato and Dagher, 2015).

There are four main families of PRRs: toll-like receptors (TLRs), nucleotide oligomerization
domain-like receptors (NLRs), C-type lectin receptors (CLRs) and retinoic acid inducible gene |-
like receptors (RLR) (Gourbeyre et al., 2015). TLRs are a diverse class of membrane protein
receptors which can activate mitogen-activated protein kinase (MAPK) and canonical nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-kB) signalling cascades following
binding of ligands and recruitment of adaptor proteins (Wells et al., 2011). Expression of TLRs
increase under inflammatory conditions, indicating they play a key role in gut immune
responses. One study showed that activation of TLR4 in human IEC cell lines (HT-29 and T84)
enhanced production of pro-inflammatory cytokines by co-cultured peripheral blood
mononuclear cells (PBMCs). In the same study it was found that apical IEC TLR9 activation
resulted in a regulatory T helper cell 1 (Th1) effector immune response, indicating both pro- and
anti-inflammatory roles for TLR signalling (de Kivit et al., 2011). Another class of plasma
membrane receptors are CLRs which recognise carbohydrate structures in a calcium-dependent
manner, playing a role in innate and adaptive immunity (Chiffoleau, 2018). On the other hand,

NLRs are cytoplasmic receptors. The best studied NLRs are NOD1 and NOD2 which recognise a
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diverse range of MAMPs and host damage molecular patterns. One example of NLR signalling is
the activation of Paneth cell cytoplasmic NOD2 by bacterial muramyl dipeptide resulting in
defensin production through NF-kB signalling (Voss et al., 2006). RLRs are a family of cytoplasmic

RNA helicases that recognise double stranded viral RNAs (Wells et al., 2011).

In addition to PRRs, bacteria can interact with host IECs directly via protein-protein interactions
(PPIs) within or on the outside membrane of the host cells (Doxey and McConkey, 2013).
Pathogens have been shown to use eukaryotic-like domains to mimic host proteins to hijack
host processes for enhanced invasive abilities. One such example is the Salmonella protease,
YhjJ, which interacts with the human selective autophagy receptor Microtubule-associated
proteins 1A/1B light chain 3B (MAP1LC3B/LC3) resulting in cleavage of autophagy proteins and
reduced intracellular clearance (Sudhakar et al., 2019). Commensal bacteria are also likely to
exhibit molecular mimicry, but would be predominantly constrained to interact with the
external surfaces of host cells. Direct interactions between commensal bacteria (and their
metabolites) with IECs are less well studied, but could uncover mechanisms useful for
developing new strategies to prevent and treat diseases. One study found that host-microbe
interactions could be heavily driven by microbial metabolites (specifically N-acyl amides) which
bind to host G-protein-coupled receptors (GPCRs) (Cohen et al., 2017). In addition to being
common therapeutic targets for small-molecule treatments, GPCRs have been implicated in
various diseases which also exhibit gut microbial changes e.g. inflammatory bowel disease and

diabetes - highlighting the importance of studying these host-microbe interactions.

1.2.4.2 Immune system

As well as responding to microbial factors, IECs also respond to signals from adjacent immune
cells. Immune cells of the gut are covered in more detail in the following section (1.3). The
mediating factors are primarily cytokines: small secreted proteins which act in a paracrine
fashion to induce wide ranging effects on their targets, including IECs. During inflammation, IECs
are able to respond to secreted cytokines following binding to receptor proteins on their apical
or basal membranes. For example, interleukin (IL)-2 can promote proliferation or apoptosis of
IECs in a concentration dependent manner (Mishra et al., 2012) and IL-22 can induce expression
of Paneth cell antimicrobial peptide regenerating islet-derived protein 3 gamma (Regllly) and
initiate mucosal wound healing (Kinnebrew et al., 2012; Pickert et al., 2009). Further immune-

IEC interactions are outlined in Figure 1.4. For example, IL-22 produced by innate lymphoid cell
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(ILC) 2 is capable of inducing mucin production via STAT3 and increasing tight junction proteins,
while IL-10 secreted by macrophages can induce epithelial repair (Soderholm and Pedicord,
2019). Further experiments have shown that, in addition to paracrine signalling, hetero-cellular
communication exists between immune cells and IECs, for example, due to the formation of
adjoining gap-junction channels (Al-Ghadban et al., 2016). However, Al-Ghadban et al. (2016)
showed that gap-junction communication between macrophages and IECs results primarily in
activation of macrophages rather than affecting IECs. Macrophage activation in turn causes
release of inflammatory cytokines, which affect IECs through paracrine signalling. Together,
these evidences highlight the complex and varied communications which occur between IECs
and immune cells. Furthermore, these interactions are additionally influenced by signals such as
microbial recognition, adding a level of complexity to the system. The interaction between
immune cells and IECs is relevant to the pathogenesis of IBD - for more information about

cytokines in IBD see Section 1.4.2.
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Figure 1.4. Regulation of intestinal epithelial cells (IECs) by immune cells. Communication is
primarily driven by cytokines released by immune cells of the lamina propria. TJPs - tight junction
proteins; FGF2 - fibroblast growth factor 2; IL - interleukin; TSLP - thymic stromal lymphopoietin;
TGF-B — transforming growth factor beta; ILC - innate lymphoid cell; Th - T helper cell; DC -
dendritic cell; APC - antigen presenting cell. Image reproduced from Soderholm et al. (2019)
with permission of the rights holder, John Wiley and Sons.
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1.3 Immune cells of the gut

In addition to immune functions of the epithelial layer, the gut immune system consists of
phagocytes and lymphocytes. Phagocytes, including macrophages, neutrophils and dendritic
cells, are cells of the innate immune system which primarily act through phagocytosis to engulf
bacteria and other foreign particles, kill them and then present antigens to other immune cells.
On the other hand, lymphocytes, which include T cells, B cells and natural killer cells, function

primarily as part of an adaptive immune response following activation by foreign antigens.

The gut-associated lymphoid tissue contains approximately 70% of the body’s immune cells
(Heel et al., 1997). It has a complex organisation which can be divided into effector sites or

organised tissues (Heel et al., 1997). Effector sites include intraepithelial lymphocytes within the
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epithelium and immune cells within the lamina propria (Mowat, 2003). Organised tissues
include Peyer’s patches and mesenteric lymph nodes. Peyer’s patches, found only in the small
intestine, are lymphoid aggregates consisting of B cells and T cells separated from the lumen by
epithelial cells known as follicle-associated epithelium. Differing from the standard epithelium,
the follicle-associated epithelium also contains M cells (Section 1.2.1.7) and is infiltrated with B
cells, T cells, macrophages and dendritic cells. Smaller individual lymphoid follicles also line the
small intestine and colon (Brandtzaeg, 2017). In addition, other immune cells such as dendritic
cells, macrophages and T cells are present in the lamina propria (Macdonald and Monteleone,
2005). Here | focus specifically on T cells, whose secreted cytokines are studied in Chapter 3 in
the context of inflammatory bowel disease, and on macrophages, which are studied in Chapter
6 due to their key role in balancing immune activation and tolerance in response to gut

microbes.

1.3.1 Intestinal T cells

As discussed in Section 1.2.4.2, cytokines are the primary mediators of communication from
immune cells to IECs. Several different populations of immune cells secrete cytokines, including
macrophages, B cells and T cells (Xue and Falcon, 2019). In particular, cytokines secreted by T
helper (Th) cells have been implicated in the pathogenesis of chronic gut inflammatory diseases
such as IBD. The effect of T cell secreted cytokines on colonic IECs is studied in Chapter 3 in the

context of IBD.

T cells are lymphocyte cells which play a major role in controlling intestinal homeostasis through
sophisticated mechanisms balancing immune activation and tolerance. All T cells originate from
haemopoietic stem cells within the bone marrow which migrate to the thymus, differentiate
into specialised T cell types, undergo priming by antigens in peripheral lymphoid organs and
finally migrate to gut tissues. Two major subsets of T cells can be classified based on T cell
receptor (TCR) and coreceptor expression. ‘Type a’ conventional mucosal T cells express TCRa3
and TCR coreceptors CD4 or CD8af. ‘Type b’ non-conventional mucosal T cells express either
TCRaf or TCRy6 and usually coreceptor CD8aa. Non-conventional T cells are not primed within
peripheral lymphoid tissues but migrate to the gut directly from the thymus. Within the gut
conventional T cells reside primarily in the lamina propria whereas non-conventional T cells
reside primarily in the epithelium as intraepithelial lymphoid cells (Ma et al., 2019; van Wijk and

Cheroutre, 2010). Within the epithelium, non-conventional T cells are able to react to strong
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stimulation in a cytolytic manner, but have limited pathogen specificity and are finely tuned to
avoid uncontrolled immune reactions (van Wijk and Cheroutre, 2010). Further, evidence
suggests that non-conventional T cells play a role in regulating epithelial turnover and repair

(Komano et al., 1995)

Conventional T cells can be further classified based on expression of CD8 or CD4 on their surface.
CD8+ T cells, also known as cytotoxic T cells, primarily act to destroy infected cells and tumour
cells through cytotoxin secretions such as perforin. While also primed by antigen presenting
cells, CD4+ T cells, act primarily to organise the immune response through secreting cytokines.
CD4+ T cells include regulatory T cells and helper T cells (Th cells). Th cells secrete a variety of
pro- and anti-inflammatory cytokines which assist an immune response through influencing
maturation of B cells and activation of cytotoxic T cells and macrophages. For example, Th1 cells
secrete interferon-gamma (IFNy) which acts against intracellular bacteria, viruses and cancer.
On the other hand, Th9 cells secrete interleukin-9 (IL-9) which can defend against helminths. Th
cells and their secreted cytokines which are implicated in IBD are discussed in section 1.4.2. On
the other hand, regulatory T cells act to inhibit Th cells through direct contact or by releasing

anti-inflammatory cytokines such as IL-10 (Xue and Falcon, 2019).

1.3.2 Intestinal macrophages

In the lamina propria of a healthy gut, macrophages are the most abundant white blood cells
(Mowat and Agace, 2014). In addition to phagocytosis, macrophages can produce mediators
which drive epithelial cell regeneration and T cell differentiation as well as secreting anti-
inflammatory cytokines. Interestingly, it has been found that most intestinal macrophages do
not produce pro-inflammatory cytokines upon exposure to bacteria or their products, likely for
the purpose of preventing inflammation in the mucosa (Bain et al., 2013; Smythies et al., 2005).
It is currently believed that this is not driven by downregulation of bacterial recognition
receptors (such as TLRs), but rather by blocking the downstream signals from these receptors
within the macrophages. This blocking occurs by downregulation of signalling molecules such as
cluster of differentiation 14 (CD14) and Myeloid differentiation primary response 88 (MyD88)
(Bain and Mowat, 2014; Smith et al., 2011; Wang et al., 2019b). The underlying cause of this
downregulation is unconfirmed, but might be related to high anti-inflammatory interleukin (IL)-
10 production by macrophages themselves. Other potential mechanisms include the release of

transforming growth factor-B (TGF-B) by stromal cells, which has been shown to block NF-kB (a
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central mediator of inflammatory processes) in response to TLR2, 4 and 5 activation in

macrophages (Naiki et al., 2005; Smith et al., 2011; Smythies et al., 2010).

NF-kB is a small family of inducible nuclear transcription factors which play a key role in almost
all mammalian cells. In addition to inflammatory processes, NF-kB is a central mediator of stress
response and cell proliferation. In intestinal macrophages, NF-kB is important for regulation of
inflammatory response following activation of cell surface pattern recognition receptors and
cytokine receptors such TLRs (Dorrington and Fraser, 2019; Neurath et al., 1998). NF-kB is of
particularimportance as it overactivated in IBD patients resulting in increased pro-inflammatory

cytokine production (Atreya et al., 2008; Schreiber et al., 1998).

1.4 Inflammatory bowel disease

Dysfunction of gut epithelial cell and immune cell functions, for example disruption of epithelial
integrity, can predispose to microbial infections, food allergy and a number of gut diseases
including IBD (Konig et al., 2016). IBD is a multi-systemic inflammatory disorder primarily
characterised by chronic inflammation of the gastrointestinal tract, including dysfunction of the
epithelial and immune cells (Levine et al., 2018). Chronic intestinal inflammation causes
debilitating symptoms, such as abdominal pain and diarrhoea, and severe complications, such
as cancer and intestinal failure (Mozdiak et al., 2015; Seyedian et al., 2019). The two major forms
of IBD are Crohn’s disease (CD) and ulcerative colitis (UC). In CD, inflammation can affect the
entire bowel wall in any part of the small and/or large intestine. In UC, inflammation is contained
to the epithelial lining (mucosa) of the large intestine. While described as idiopathic, IBD is
believed to be caused by an inappropriate immune response to commensal bacteria in
genetically susceptible hosts (Fakhoury et al., 2014). For example, it has been shown that altered
mucus production and epithelial barrier dysfunction can result in increased translocation of
toxins and microbes, which in turn causes a pro-inflammatory immune response and increased
susceptibility to infection (Fakhoury et al., 2014). This disease has a global and accelerating
incidence, particularly in industrialised communities. In Europe alone, approximately 2.5-3

million people are affected (Burisch et al., 2013; Ng et al., 2018).
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1.4.1 The intestinal epithelium in IBD

Although the aetiology of IBD is incompletely understood, the intestinal epithelium is
increasingly regarded as a central player (Okamoto and Watanabe, 2016). In IBD, dysregulated
epithelial processes, including microbial sensing, autophagy, and the unfolded protein response
are mechanistically implicated in impaired barrier function and IBD aetiology (Kaser et al., 2008;
Wehkamp et al., 2005). In turn, chronic inflammation in the gut, as observed in IBD, can result
from an impaired barrier function which leads to greater translocation of luminal content

through the epithelial layer, resulting in an overactivation of lamina propria immune responses.

Current understanding implicates specific IEC types in the dysregulation of homeostasis in IBD
(Adolph et al., 2013). Whilst primary IECs all originate from Leucine-rich repeat-containing G-
protein coupled receptor 5 (Lgr5)+ stem cells, differentiation results in differences in gene
expression and signalling and regulatory wiring (Crosnier et al., 2006; Vanuytsel et al., 2013).
These differences can result in altered phenotypic functions, responses to stress and
susceptibilities to specific dysregulations. Specifically, dysfunctional Paneth cells with reduced
secretion of anti-microbial peptides have been shown to contribute to the pathogenesis of CD
(Liu et al., 2016). In contrast to CD, UC is not linked to reduced antimicrobial peptides (Fahlgren
et al., 2003; Nuding et al., 2007; Wehkamp et al., 2003). However, where the mucus layer is of
normal or thicker width in CD, it is thinner and more variable in UC (McCormick et al., 1990;
Pullan et al., 1994). Furthermore, a reduction in goblet cell numbers and defective goblet cell
function has been associated with UC (Gersemann et al., 2009; Kim and Ho, 2010). Moreover,
genome-wide association studies and mechanistic studies have identified genes closely related
to intestinal epithelial cell function which predispose patients to IBD (Franke et al., 2010; Rioux
et al., 2007). For example, Cadwell et al. found that one Crohn’s disease risk allele, autophagy
related protein 16-1 (ATG16L1), results in Paneth cell granule abnormalities and, in mice, results
in increased expression of lipid metabolism genes relating to intestinal injury response (Cadwell
et al., 2008). Thus, uncovering patterns and mechanisms at a cell type-specific level is crucial to

uncover the role of the intestinal epithelium in IBD.

1.4.2 Cytokinesin IBD

In addition to its aforementioned roles, the intestinal epithelium can secrete cytokines and
chemokines for recruitment and activation of immune cells (Allaire et al., 2018). Furthermore,

epithelial function can be directly regulated by mucosal immune activity, and cytokines
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produced by tissue resident lymphocytes, particularly T cells and innate lymphoid cells,
profoundly impact epithelial phenotype (Dahan et al., 2007). Studies have shown that mucosal
healing of the epithelium is dependent on cytokines produced by the intestinal epithelial cells
(IECs) and by local immune populations (Figure 1.5) (Neurath, 2014). Furthermore, cytokines
such as TNFaq, interleukin (IL)-22 and IL-9, which are excessively produced in IBD, have been
shown to drive epithelial-specific pathological processes, including endoplasmic reticulum (ER)
stress, apoptosis and impaired barrier function, triggering colitis in preclinical models (Garrett
et al., 2007; Gerlach et al., 2014).
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Figure 1.5. Pro- and anti-inflammatory cytokines are exposed to intestinal epithelial cells
during chronic intestinal inflammation in inflammatory bowel disease. Green boxes show
beneficial effects of cytokines, red boxes highlight pathogenic effects of cytokines and blue
boxes indicate pro-tumour effects of cytokines. DC - dendritic cell; IFN - interferon; IL -
interleukin; ILC - innate lymphoid cell; Th cell - T helper cell; TNF - tumour necrosis factor. Image
reproduced from Neurath (2014) with permission of the rights holder, Springer Nature.

It is believed that CD4+ T helper cells (Th cells) (introduced in Section 1.3.1) play a major role in
initiation of IBD (Imam et al., 2018). T helper cells are lymphoid cells of the adaptive immune
system which are able to activate B cells, cytotoxic T cells and macrophages via surface

molecules and release of cytokines. They are activated themselves by recognising an antigen
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and a co-stimulatory molecule on an antigen-presenting cell (Alberts et al., 2002). Not only are
these cells enriched in inflamed tissue from IBD patients, depleting and blocking actions of CD4+
Th cells has been effective in treating UC and CD (Emmrich et al., 1991; Stronkhorst et al., 1997;
Imam et al., 2018). Five major populations of Th cells have been described in the context of IBD
(Imam et al., 2018). A representative cytokine(s) from each category are described below:

- Thl cells which secrete interferon-gamma (IFNy) and tumour necrosis factor-alpha

(TNFo)

- Th2 cells which secrete IL-4, IL-5 and IL-13

- Th9 cells which secrete IL-9

- Th17 cells which secrete IL-17A and IL-23

- Th22 cells which secrete IL-22

TNFo. is one of the pro-inflammatory cytokines implicated in IBD. Secreted primarily by
macrophages in response to IL-1 and bacterial products, TNFa is involved in a number of
biological processes including lipid metabolism, cell proliferation and apoptosis (Adegbola et al.,
2018). IBD patients have been shown to secrete large amounts of TNFa. from adipocytes, CD14+
macrophages, T cells and fibroblasts (Atreya et al., 2011; Kamada et al., 2008). In IBD, high levels
of TNFa affect a number of different cells including IECs. For example, TNFa can induce IEC
damage via myosin light chain kinase (MLCK) and cause Paneth cell death by necrosis (Glinther

et al., 2011; Neurath, 2014; Su et al., 2013).

Similarly to TNFa, IFNy is an IBD-implicated, pro-inflammatory cytokine which affects barrier
properties and self-renewal of the intestinal epithelium (Nava et al., 2010). IFNy is secreted by
a number of cell types including T cells (most notably Th1 cells) and natural killer cells (NK cells)
(Imam et al., 2018; Tau and Rothman, 1999). A number of studies have demonstrated a role for
IFNy in IBD. For example, in CD it has been shown that Th1 cells, which primarily secrete IFNy,
accumulate in the intestinal tract. Ito et al. showed that IFNy deficient mice do not develop
dextran sulphate sodium induced (DSS-induced) colitis and a meta-analysis of CD and UC
genome-wide association scans by Jostins et al. identified IFNy receptor gene IFNGR2 within CD
risk loci (Ito et al., 2006; Jostins et al., 2012). However, the role of IFNy remains controversial
due to contrasting studies. For example, one study showed that IFNy deficient mice are more

susceptible to DSS-induced colitis and another described neither a protective or detrimental
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effect of IFNy in a 2,4,6-trinitrobenzene sulfonic acid induced (TNBS) model of colitis (Jin et al.,

2012; Muzaki et al., 2016).

IL-13 is classically described as Th2 cell cytokine which affects macrophages, epithelial cells,
smooth muscle cells and neurons (Biancheri et al., 2014). IL-13 has been implicated in UC, where
itis secreted by innate lymphoid cells and invariant natural killer T cells (Fuss and Strober, 2008).
However, while some studies have reported greater IL-13 in UC patients compared to CD
patients, others have reported the opposite or no difference at all (Biancheri et al., 2014; Fuss
et al., 2004; Vainer et al., 2000). Similarly, the pro-inflammatory role of IL-13 is controversial.
Heller et al. reported an increase in apoptosis and impaired tight junctions in IEC’s treated with
IL-13, whereas Wilson et al. report that in the absence of IL-13 decoy receptor, IL-13Ra2, IL-13

supresses pro-inflammatory Th1 and Th17 responses (Heller et al., 2005; Wilson et al., 2011).

Traditionally, IBD was described in the context of the Th1/Th2 paradigm. Here Th cells are
classified into two primary subsets based on their secreted cytokines: Thl which broadly
induced cell mediated immunity, or Th2 which broadly induces humeral immunity. Furthermore,
the paradigm was used to classify an inflammatory response as primarily Th1 or Th2 mediated
— given that the cell subpopulations reciprocally inhibit each other (Fuss, 2008; Kiely, 1998). In
IBD, this paradigm is used to describe mucosal inflammation of the gut in CD as an excessive Thl
response and in UC an excessive Th2 response (Fuss, 2008). However, more recently the
discovery of other IBD-relevant CD4+ Th cells such as Th17 cells has drawn focus away from this
polarising paradigm. Th17 cells secrete cytokines IL-17A (also known as IL-17) and/or IL-17F
which have been shown to alter the production of inflammatory chemokines and cytokines by
target cells and affect the epithelial cell barrier (Imam et al., 2018). Similarly to other pro-
inflammatory cytokines, IL-17A has been found to be increased in the mucosa and serum of IBD
patients (Fujino et al., 2003). However, there is also evidence that blocking IL-17A can result in
IBD deterioration (Smith et al., 2019) and that IL-17A can dampen the production of IFNy
(O’Connor et al., 2009).

In both CD and UD, endoscopic Mayo scores have been positively correlated with IL-9 production
(Gerlach et al., 2014) and higher levels of serum and systemic IL-9 have been associated with
worse symptoms and prognosis (Defendenti et al., 2015). However, IL-9 is secreted by different

immune populations including Th9, Th17 and Treg cells. Studies have found that IL-9 produced
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by Th17 s classically pro-inflammatory in a model of experimental autoimmune
encephalomyelitis, whereas IL-9 secreted from Treg cells can mediate graft tolerance (Lu et al.,
2006; Nowak et al., 2009). This suggests that context may play a role in the effect of IL-9.

Along with ILCs and neutrophils and dendritic cells, Th22 cells produce the IL-22 cytokine. While
primarily seen as an anti-inflammatory cytokine, IL-22 has been shown to have pro-
inflammatory roles in some contexts (Eken et al., 2014; Neurath, 2014). Anti-inflammatory roles
include protecting against DSS or TNBS-induced colitis, increasing epithelial cell proliferation,
wound healing and IEC production of antimicrobial peptides. A reduction in Th22 cells has been

recorded for UC but not CD (Neurath, 2014).

In conclusion, there are many diverse cytokines produced by different CD4+ Th cells and other
immune populations. The cellular targets of these cytokines are also varied, including other
immune populations, IECs and muscle cells. What is clear is that considerable interplay exists
between different cytokine-producing populations and that cytokine-mediated effects are
highly contextual. However, little is known about how qualitatively different arms of host
immunity differentially regulate epithelial function in IBD. Understanding these interactions has
been hindered by inaccessibility of the human gastrointestinal tract and limitations of available

experimental tools, including immortalised epithelial cell lines and primary cells.

1.4.3 IBD treatment strategy

Classification of IBD, as with other immune mediated inflammatory diseases, is typically based
on descriptive clinical parameters, which are poor predictors of patient trajectories and are
unhelpful as tools for treatment stratification. As such, most patients are treated with a step-up
therapy approach whereby frontline therapies are given in a stepwise manner until suitable
remission is achieved. Although the guidelines vary slightly between CD and UC, treatment often
begins with corticosteroids or aminosalicylate drugs followed by immunomodulators such as
thiopurines, then biologics including anti-cytokine and anti-integrin drugs. Finally for UC, a Janus
Kinase (JAK) inhibitor (tofacitinib) can be used to block cytokine signalling (Lamb et al., 2019;
Wang et al., 2019a). If all lifestyle changes and pharmacological treatments fail, patients may be
recommended surgery to remove affected intestinal tissue. Such a procedure can eliminate UC

but is usually only a temporary solution for CD as the disease often reoccurs in nearby tissue.
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However, due to the heterogeneity of IBD, no single approach works for all, and adaptation of
treatment approaches to each individual based on their disease will likely result in better clinical
outcomes, reduced side effects and reduced healthcare costs. A number of molecular
biomarkers exist currently to help diagnose and stratify patients. Examples of these include C-
reactive protein (CRP), erythrocyte sedimentation rate (ESR), albumin and platelet count; but
their use is limited by poor sensitivity and specificity. Additionally, faecal calprotectin, which
indicates the level of neutrophil-driven inflammation in the gut, is often used as a proxy for
intestinal inflammation and to help the clinician differentiate between irritable bowel syndrome
(IBS) and IBD (Wang et al., 2019a). However, raised calprotectin levels may also indicate
intestinal inflammation secondary to other causes. Therefore, better biomarkers to diagnose
and stratify patients based on disease severity, risk of relapse and treatment responses, are
required to achieve an individualised treatment approach. In the future, it is hoped that an
improved molecular understanding of inflammation biology will yield novel classification

systems underpinned by the underlying immunopathology of the different diseases.

1.4.4 IBD biologic treatments

Despite remaining questions regarding the actions of cytokines in IBD, a number of cytokine-
targeting biologic treatments have been developed to dampen the generalised inflammatory
response in UC and CD. As described above, these treatments are often employed only when

other treatment options have failed.

The most widely targeted cytokine is TNFoa, with four biologics (infliximab, adalimumab,
certolizumab and golimumab) and a number of biosimilars currently approved for use in CD and
UC (Rawla et al.,, 2018). Despite demonstrable improvements in patient quality of life and
disease burden, up to 30% of patients with IBD do not respond to this treatment, and up to 46%
lose response over time (Roda et al., 2016). Neither the mechanism of action of anti-TNF
treatments nor the reasons for non-response are fully understood. However, it is known that
the effects of these anti-TNF drugs cannot be attributed solely to neutralisation of TNFa, as
other anti-TNF drugs such as Etanercept, which is used primarily for rheumatoid arthritis, are
not effective in IBD, and can even worsen the disease (Koelink et al., 2019; Korzenik et al., 2019).
The only other approved biologic targeting interleukins is ustekinumab, an antagonist of IL-12
and IL-23 for the treatment of CD (Rawla et al., 2018). Clinical trials for IL-17A blockade

treatment (bimekizumab) were terminated early due to adverse side effects and no clear
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evidence of efficacy, despite success treating psoriasis (EU Clinical Trials Register, 2019).
Similarly, for UC, anti-IL-13 antibodies (anrukinzumab and tralokinumab) have been trialled with

little therapeutic benefit (Danese et al., 2015; Reinisch et al., 2015)
A greater understanding of cytokines in IBD, including the interplay between IECs, immune cells

and cytokines, is required for development of more effective treatment and preventative

strategies.

1.5 Bifidobacteria

In 1899 Henry Tissier was the first to describe the bacterial group Lactobacillus bifidus, which
was re-classified after the 1960’s as the genus Bifidobacterium (Tissier, 1899, 1900). Through
observation of their predominance within the gut of breast-fed infants he conceived their use
as probiotics, promoting oral administration as a therapeutic for infant diarrhoea. Since 1899
the genus has been well documented as a health-promoting commensal and is now one of the

most heavily used probiotic taxa, alongside Lactobacilli (O’Neill et al., 2017; O’Toole et al., 2017).

As a genus of the Actinobacteria phyla, Bifidobacterium are saccharolytic and anaerobic Gram
positive bacteria which are non-sporulating, non-gas producing and non-motile (Bottacini et al.,
2014). At present 80 (sub)species have been classified, together occupying a range of ecological
niches including sewage, water kefir, insect guts and the gastro-intestinal tracts and oral cavities
of various mammals (Turroni et al., 2011, 2019). Some of these bifidobacterial species are
considered pioneer species of the human gut acquired shortly after birth from ingestion of
breast milk (Lewis and Mills, 2017). In particular, Bifidobacterium infantis, Bifidobacterium
longum, Bifidobacterium breve and Bifidobacterium bifidum are the primary bifidobacterial
species present within infant gastro-intestinal tracts, with increasing diversification of the genus
seen with age (Di Gioia et al., 2014). Notably, the proportion of bifidobacteria observed within
the human gut also varies across the life course (Figure 1.6). It is widely accepted that newly
born infants host the highest proportions, with cited figures between 45 and 95% for breast fed
babies (Arboleya et al., 2016; Bezirtzoglou et al., 2011; Fallani et al., 2010). Whilst still an
important member of the microbiota, the proportion of bifidobacteria reduces gradually into
adulthood where they remain relatively stable at around 3 to 10% until old age when they

decrease further (Arboleya et al., 2016).
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Figure 1.6. Relative abundance of gut bifidobacteria during the human life cycle.
Environmental factors and conditions associated with low bifidobacterial counts are shown
below. Figure reproduced from Arboleya et al. (2016) under the Creative Commons BY licence.

1.5.1 Health benefits of bifidobacteria

Many studies have identified an association with decreased bifidobacterial levels and reduced
diversity of gut bifidobacterial species with increased disease symptoms (O’Callaghan and van
Sinderen, 2016; O’Neill et al., 2017; Tojo et al., 2014). For example, a higher proportion of gut
B. longum has been observed in healthy children compared to children with allergic disease
(Akay et al., 2014; Ouwehand et al., 2001) and larger populations of bifidobacterial species have
been observed in healthy children compared to those with active and non-active coeliac disease
(Collado et al., 2008). It has also been observed in adults, that lower levels of gut Bifidobacterium
and Lactobacillus are associated with diseases such as functional constipation and Irritable
Bowel Syndrome (IBS) and ulcerative colitis (Khalif et al., 2005; Kim et al., 2015b; Macfarlane et
al., 2004; Parkes et al., 2012). Additionally, the levels of mucosal Bifidobacterium have been
negatively associated with the number of days patients with IBS experienced pain or discomfort

(Parkes et al., 2012).
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Furthermore, supplementation of the resident microbiota with additional bifidobacteria
appears to have a variety of positive outcomes. This has been shown in healthy patients, for
example supplementation with Bifidobacterium animalis DN-173 010 decreased transmit time
in healthy women, suggesting an association between the bacteria and gut motility (Marteau et
al., 2002). Furthermore, there have been benefits of using bifidobacteria in intervention studies
for gastro-intestinal disorders such as IBS, ulcerative colitis and lactose intolerance; although
many of these studies are carried out using combinations of probiotics and a food starter, so it
is hard to definitively attribute the effects to increases in bifidobacteria (Furrie et al., 2005; He
et al., 2008; O’Mahony et al., 2005). More mechanistic studies have indicated that different
bifidobacterial species are capable of modulating immune function, thus contributing to
immune maturation, gut homeostasis, pathogen protection and anti-tumour immunity (Hart et

al., 2004; Silva et al., 2004; Sivan et al., 2015).

Despite this significant body of evidence, the exact factors which modulate these protective
effects are only beginning to be elucidated, with progress heavily hampered by the complexity
(microbe genomics, impact of diet, host responses etc.) and inaccessibility of the gastro-

intestinal ecosystem (O’Neill et al., 2017; Russell et al., 2011).

1.5.2 The effect of bifidobacteria on intestinal epithelial cells

IECs are a primary site of interaction between bifidobacteria and their host, thus, play a
significant role in mediating the host response and beneficial effects of bifidobacteria. A number
of in vivo and in vitro studies have evidenced the ability for bifidobacterial strains to module the
function of IECs through a variety of molecular mechanisms including metabolites,
proteinaceous pili and exopolysaccharides (EPS) (Castro-Bravo et al., 2019; Fanning et al., 2012a;
Lee et al., 2018; O’Connell Motherway et al., 2019). These findings are explored below and

summarised in Figure 1.7 - categorised based on the observed host functional changes.
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Figure 1.7. Summary of the different ways in which Bifidobacterial strains have been shown
to affect the intestinal epithelial layer. A. Increasing barrier function through junctional
complexes (Din et al., 2020; Hsieh et al., 2015; Srutkova et al., 2015; Yan et al., 2019; Yang et al.,
2017). B. Preventing epithelial cell shedding of enterocytes at the villus tips (Hughes et al., 2017)
C. Increasing numbers of goblet cells and production and expulsion of mucins (Becker et al.,
2013; Engevik et al., 2019; Mangin et al., 2018; Schroeder et al., 2018) D. Different experiments
have shown Increases and decreases in Paneth cell numbers and production of antimicrobial
peptides (Lee et al., 2018; Natividad et al., 2013; Pinto-Sanchez et al., 2017; Underwood et al.,
2012). E. Increasing numbers of stem cells and stem cell proliferation (Lee et al., 2018) F.
Reduced cell death through increasing autophagy and blocking proteasomes (Inaba et al., 2016;
Lin et al., 2014). Referenced evidences are from small intestinal cells, colonic cells and cell lines.
AMP — antimicrobial peptide.
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1.5.2.1 Epithelial physical barrier function

A primary function of IECs is the maintenance of an effective physical barrier between the gut
lumen and the lamina propria, as described in section 1.2.3.1. Decreased expression of
junctional complexes and a correlated increase in gut permeability is observed in mice treated
with dextran sulphate sodium (DSS) — a commonly studied mouse colitis model. Studies have
shown that specific strains of Bifidobacterium can protect against epithelial damage associated
with DSS treatment (Figure 1.7A). For example, Bifidobacterium longum CCM 7952 promoted
epithelial barrier function thorough preventing DSS-induced transcriptional decreases in tight
junction associated genes Occludin and Zonulin-1 (Srutkova et al., 2015). Similarly, in separate
experiments, B. longum subsp. longum YS108R and Bifidobacterium bifidum ATCC 29521 were
shown to maintain the expression of tight junction associated genes Claudin-1, Claudin-3 and
Zonula occludens-1 and mucin gene Muc2 following DSS-treatment (Din et al., 2020; Yan et al.,
2019). A study of transepithelial electrical resistance in IEC18 cells showed that Bifidobacterium
infantis, Bifidobacterium youth, B. longum and B. bifidum strains had only a modest effect on
cellular permeability, likely abated by decreased expression of innate immune receptors Toll-
like receptor (TLR) 2 and/or TLR4 (Yang et al., 2017). Further study of transepithelial electrical
resistance in Caco-2 cell lines showed that Bifidobacterium species prevent intestinal epithelial
barrier disruption induced by TNF-a, via metabolites such as acetate (Hsieh et al., 2015). Barrier
function has also been studied in the context of epithelial cell shedding, where it was found that
Bifidobacterium breve UCC2003 reduced small intestinal cell shedding in mice in an EPS-
dependent manner (Figure 1.7B) (Hughes et al.,, 2017). Here, they observed that MyD88, a

downstream effector molecule of TLR signalling, was required to modulate the protective effect.

1.5.2.2 Mucus layer

A further layer of defence in the gut is the mucus layer lining the epithelial cells, as described in
section 1.2.3.2. Several papers have evidenced a role for Bifidobacteria in fortifying and
protecting the intestinal mucus layer through alterations of goblet cell function (Figure 1.7C).
For example, Becker et al. found that heat inactivated B. breve could increase mucin Mucl
expression, but not Muc2 expression in cell line LS174T (Becker et al., 2013). Further,
Bifidobacterium dentium secreted acetate was able to increase MUC2 levels in T84 cells, while
secreted y-aminobutyric acid (GABA) stimulated mucin expulsion via an increase in autophagy
(Engevik et al., 2019). This work also investigated B. dentium monoassociated mice compared

to germ free mice, finding that live bifidobacteria, unlike heat-killed bifidobacteria, increase
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colonic expression of goblet cell markers Kriippel-like factor 4 (Kif4), Trefoil factor 3 (Tff3),
Resistin-like molecule B (ReIm-8), Mucin-2 (Muc2), and several glycosyltransferases (Engevik et
al., 2019). Similarly, in a rat model it was found that viable Bifidobacterium pseudolongum
patronus increased colonic mucus layer thickness (Mangin et al., 2018), and in a mouse model
B. longum NCC 2705 was able to ameliorate mucus growth defects but not repair penetrability,

following damage from a western style diet (Schroeder et al., 2018).

Together these experiments highlight the complexity of mucus homeostasis; being dependent
on constitution and thickness of mucus as well as goblet cell numbers, and goblet cell production
and expulsion of mucins. Further, Bifidobacteria has strain specific effects on mucus, mediated

by different factors associated with heat-killed and viable bacteria.

1.5.2.3 Antimicrobial peptides

As described in section 1.2.3.3, antimicrobial peptides (AMPs) are host defence peptides that
play a major role in the innate immune protection of the intestines. A link has been found
between bifidobacteria and the alteration of AMP production in the gut, however evidence is
inconsistent between different AMPs, different experimental models and different bacterial
strains (Figure 1.7D). Underwood et al. (2012) found that breast-fed premature rats and those
fed with formula supplemented with B. bifidum showed reduced expression of the Paneth cell
antimicrobials sPla2 and Lyz1 compared to those fed with milk formula only. Similarly, Pinto-
Sénchez et al. (2017) found that oral administration of B. infantis Natren Life Start super strain
(NLS-SS) resulted in reduced Paneth cell and macrophage counts as well as decreased HD-5 in
duodenal biopsies from celiac patients. On the other hand, Natividad et al. (2013) noted that
mono-colonisation with B. breve NCC2950, but not with E. coli, upregulated Regllly expression
compared to germ free mice (in a MyD88 and Ticam1 dependent manner). Further, Lee et al.
(2018) have shown that lactate derived from Bifidobacterium and Lactobacillus spp. increases
the expansion of stem cells, Paneth cells and goblet cells in the small intestines of mice (and in
organoids derived from mice), while increasing expression of Lyz1 and Regenerating islet-
derived protein 3 beta (ReglllB) and Regllly. Interestingly, it has been shown that human
residential Bifidobacteria are tolerant to lysozyme, suggesting that increased AMP production
by IECs is not likely an immune response specifically against bifidobacteria (Dan et al., 2018;

Sakurai et al., 2017).
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Despite conflicting evidence and a lack of identified mediating factors, previous findings support

further investigation of the impact of bifidobacteria on AMP production by IECs.

1.5.2.4 Stem cells and cell death

Finally, bifidobacteria has been shown to affect the intestinal epithelial layer through promoting
cell expansion and preventing cell death (Figure 1.7E). For example, pilin subunit TadE, of B.
breve UCC2003 was shown to increase colonic epithelial cell proliferation in monoassociated
mice compared to germ free mice (O’Connell Motherway et al., 2019). Further, lactate derived
from Bifidobacterium and Lactobacillus spp. was shown to signal through G-protein-coupled
receptor Gpr81 to elicit mouse intestinal stem cell proliferation, especially in new born mice
(Lee et al., 2018). This effect required Wnt/B-catenin signals of Paneth cells and intestinal
stromal cells and protected against gut injury from combined radiation and chemotherapy

treatment.

Additionally, it has been found that small organic molecules of B. breve prevent oxidant-induced
IEC death through autophagy related genes (Atg5 and 7) and blockade of proteasomes (Figure
1.7F) (Inaba et al., 2016). Lin et al. (2014) also showed that bifidobacteria could activate

autophagy in the IEC18 cell line.

1.5.3 The effect of bifidobacteria on gut immune cells

Clinical trials, in vivo experiments and in vitro experiments have indicated that bifidobacteria
have immunomodulatory effects on their host (Ruiz et al., 2017). In addition to impacting
intestinal epithelial cell functions, it has been shown that bifidobacteria can interact with
immune cells to alter innate and adaptive immune processes (O’Neill et al., 2017; Ruiz et al.,
2017). However, studies to date suggest that this interaction is complex and heavily context-
dependent, with bifidobacteria exerting both pro- and anti-inflammatory effects. These effects
have been studied in both phagocytes and lymphocytes, but here | focus only on macrophages

as they are studied in Chapter 6 (O’Neill et al., 2017).

1.5.3.1 The effect of bifidobacteria on macrophages
A number of previous experiments have shown that different Bifidobacterium strains can affect
macrophage function. He et al. (2002) showed that many strains of heat inactivated

bifidobacteria, but particularly those associated with adult colonisation, can induce IL-12 and
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Tumour necrosis factor o (TNFa) production from murine macrophage-like cell line, 1774.1. They
also demonstrated that most tested strains could induce anti-inflammatory cytokine IL-10
production. Using a different macrophage cell line, RAW 264.7, Lee et al. (2012) found that
sonicated Bifidobacterium adolescentis SPM0308 and Bifidobacterium longum SPM1207, as well
as their cell-free supernatant, activated production of TNFa and nitric oxide (required for
cytotoxic activity of macrophages). Interestingly, the observed effects were reduced compared
to stimulating the macrophage cell line with lipopolysaccharide (LPS) alone. A similar
observation was noted by Okada et al. (2009) who found that B. breve and B. longum and B.
adolescentis caused a reduced activation of IL-12p40, IL-13 and TNFa. expression levels (in a
strain specific manner) compared to LPS alone in RAW 264.7 cells. Further, they identified that
all three strains may act through reducing LPS-induced phosphorylation of NF-kB inhibitor IkB-
a, and increasing expression of NF-kB inhibitors, suppressor of cytokine signalling (SOCS) 1 and
3. Finally, to increase the relevance of the macrophages used, Mokrozub et al. (2015) cultivated
macrophages from the peritoneal cavity of mice. They found that two different B. adolescentis
strains could induce accumulation of reactive oxygen compounds and nitric oxide in

macrophages, but neither significantly influenced production of IL-12 or interferon-y (IFNy).

Taken together, these studies show that bifidobacteria (in a strain specific manner) are capable
of activating macrophages, albeit at a lesser magnitude than LPS. However, the molecular

mechanisms of this interaction remain unclear.

1.5.4 Bifidobacterium breve UCC2003

To date, many of the in vivo studies of the role of Bifidobacterium in modulating immune cell
and IEC function have focused on acute or chronic gut inflammation, often following pre-
colonisation of the gut with Bifidobacterium strains (Din et al., 2020; Hsieh et al., 2015; Pinto-
Sanchezetal., 2017; Schroeder et al., 2018; Srutkova et al., 2015; Yan et al., 2019). These studies
suggest that initial priming by bifidobacteria during normal ‘healthy’ conditions may modulate
subsequent protective responses. However, these studies were mostly performed in adult mice
rather than during early developmental stages, where Bifidobacterium effects are expected to
be most pronounced and long term. Indeed, where tested, the effect of bifidobacteria was more

marked in new born mice than in adult mice (Lee et al., 2018).
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Bifidobacterial species which are particularly abundant human infant intestines include B.
longum, B. breve, and B. bifidum (Arboleya et al., 2016; Makino, 2018). Moreover, these species
have the strongest evidence for IEC and gut barrier modulation. One such strain is B. breve
UCC2003 which was originally isolated from a nursling stool (O’Connell Motherway et al., 2011).
Various experiments have shown that B. breve UCC2003 plays an important role in host-
commensal interactions through immune cell and IEC modulation as well as defence against
pathogen infection. In addition to reducing epithelial cell shedding and increasing epithelial
proliferation (as discussed previously; (Hughes et al., 2017; O’Connell Motherway et al., 2019)),
B. breve UCC2003 has been shown to evade adaptive B cell host response, to protect mice
against colonisation by gut pathogen Citrobacter rodentium, to protect Caenorhabditis elegans
against Salmonella infection and to modulate gut microbiota through exopolysaccharide cross-

feeding (Christiaen et al., 2014; Fanning et al., 2012b, 2012a; Piingel et al., 2020).

Whilst B. breve UCC2003 is a relevant bifidobacterial strain to study due to its observed health-
benefits and presence in infant guts, it has further advantages which make it a practical model
for developing methods and/or studying the effect of bifidobacteria in specific conditions.
Specifically, B. breve UCC2003 has been shown to be highly efficient at colonising the murine
gastrointestinal tract (small intestine, caecum and colon), and to stably persist at high levels for
at least seven weeks (Cronin et al., 2008; O’Connell Motherway et al., 2011). Moreover, a Tn5
insertion library of nearly 20,000 transposon insertion mutants of B. breve UCC2003 has been
developed using a random mutagenesis system, representing the first genome-wide random
mutagenesis approach for bifidobacteria (Ruiz et al., 2013). Together with the fully sequenced
genome, these factors make B. breve UCC2003 a particularly useful strain with which to study

bifidobacterial-host interactions.

1.6 Organoids

In the past, a lack of in vitro systems to propagate cell lines of intestinal epithelium has hindered
the study of mechanistic details relating to IEC function in healthy and diseased states (Chopra
et al., 2010). However, advancements in understanding LGR5+ stem cells and their regulating
pathways has led to the development of an in vitro culture system to grow three-dimensional

(3D) intestinal epithelial organoids (Sato et al., 2009). Such systems have revolutionised the
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study of IECs in development and disease and their interactions with immune, microbial and

environmental signals (Fatehullah et al., 2016).

3D intestinal organoids, containing all the major cell types of the epithelium, are grown from
LGR5+ stem cells — in isolation or as part of intestinal crypts. The stem cells/crypts are seeded
onto a collagen- and laminin- rich matrix (Matrigel) and exposed to R-spondin, epidermal growth
factor (EGF), Noggin and in the case of colonic organoids, Wnt (Sato and Clevers, 2013). R-
spondin binds to LGR5 and acts as a Wnt signalling agonist to support crypt proliferation and
EGF is additionally required for intestinal epithelial stemness. Noggin increases the number of
crypts through blocking bone morphogenetic protein (BMP) signalling. In the presence of this
minimal, essential stem cell maintenance factor cocktail, stem cells proliferate into a single layer
of epithelial cells, forming a sealed round structure with crypt and villus architecture (Figure
1.8). The lumen of these 3D organoids represents the gut lumen, with basolateral cell surfaces
facing outwards (Sato and Clevers, 2013; Sato et al., 2009). When replated each week, organoid

cultures can be maintained for at least 1.5 years (Sato et al., 2009).
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Figure 1.8. Small intestinal organoids. A: Mouse small intestinal organoids at day five of growth.
Image generated by Isabelle Hautefort (Earlham Institute). B: Small intestinal organoid cross-
section.

These long-term organoid cultures closely mimic in vivo conditions, and remain genetically and
phenotypically stable over time, allowing great opportunity for experimental application (Bar-
Ephraim et al., 2019). For example, intestinal organoids have been used to study epithelial
receptors and cell function (Sodhi et al., 2012), to evaluate the effect of gene knock outs and
mutations (Jones et al., 2019) and to study the interaction of the intestinal epithelium with
bacteria and immune cells (Biton et al., 2018; Wilson et al., 2015; Zhang et al., 2014). In addition,

intestinal organoids have been generated using patient-derived biopsies for patient- and
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disease-specific models. One example is the use of primary intestinal organoids from cystic
fibrosis patients to measure function of the cystic fibrosis transmembrane conductance
regulator (CTFR) protein (Dekkers et al., 2013; de Poel et al., 2020). This model is currently used
to test the efficacy of different treatments on cystic fibrosis patients, allowing access to drugs

based on personalised medicine (Berkers et al., 2019).

Current limitations with the intestinal organoid model include cost, difficulties including non-
epithelial cells in the design and loss of inflammatory phenotype when generated from inflamed
tissue biopsies (Almeqdadi et al., 2019; Arnauts et al., 2019). In addition, exposing 3D organoids
to apical-only signals (such as bacteria) is challenging due to the closed and difficult-to-access
lumen environment. In response to these limitations, a number of organoid modifications and
adaptations have been developed. To improve access to the apical side of the epithelium and
decrease accumulation of dead cells, mucus and bacterial by-products, monolayer (2D)
organoids cultures have been generated (Kozuka et al., 2017; Liu and Chen, 2018; Moon et al.,
2014). These systems have been shown to form correctly polarised layers of epithelium with
effective barrier functions, but are technically more challenging (Altay et al., 2019). Combined
with micro-fluidics systems such as the HuMiX device, organoid monolayers can be co-cultured
with microbes and basal immune populations to generate representative in vitro systems (Shah
et al., 2016). More recently, a system has been developed to reverse the polarity of intestinal

organoids (Co et al., 2019).

Furthermore, methods have been identified to increase the proportion and fidelity of secretory
lineages in 3D organoids (Yin et al., 2014). Following an initial growth period using standard
growth factors, the addition of a Notch inhibiting y-secretase inhibitor, DAPT, and a Wnt
inducing small molecule CHIR99021 causes small intestinal organoids to develop with a greater
quantity of Paneth cells. Instead, by replacing CHIR99021 with Wnt inhibitor IWP-2,
differentiation is skewed towards goblet cells and, to a lesser extent, enteroendocrine cells.
Subsequent studies have shown that these drug treatments generate organoids which represent
the in vivo condition (Luu et al., 2018; Mead et al., 2018). In particular, Mead et al. used
transcriptomics, proteomics, cytometric and morphological characterisation to show that DAPT
and CHIR99021 enrichment generates Paneth cells with greater fidelity and functional similarity
to in vivo Paneth cells compared to conventional organoid Paneth cells (Mead et al., 2018).

Furthermore, work from my group has shown that enteroids enriched for Paneth cells and
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goblet cells recapitulate in vivo characteristics on the proteomics level (Jones et al., 2019; Luu
et al., 2018). Moreover, in Jones et al. (2019), myself and colleagues showed that Paneth cell
enriched enteroids contain greater Paneth cell marker gene expression than conventional
enteroids. Furthermore, we showed that cell type enriched organoids are a useful tool for the
investigation of health and disease related processes in specific intestinal cell types. Specifically,
we generated Paneth cell enriched enteroids with epithelial-specific autophagy impairment.
Using proteomics and transcriptomics data analysis, we identified several autophagy dependent
cellular processes while mechanistically linking autophagy impairment to Paneth cell
dysfunction, both of which are commonly observed in IBD (Jones et al., 2019). Therefore, whilst
organoid enrichment methods do not present single cell type resolution, they provide useful
tools to study Paneth cell and goblet cell populations in the context of the other major epithelial

cell types (Mead and Karp, 2019).
Colleagues and | have employed organoid systems in Chapters 2 and 3 of this thesis to provide

a controlled human IEC culture system and to enable detailed study of Paneth cell and goblet

cell regulation.

1.7 Networks

In biology, networks are used to describe complex relationships between molecules, organisms,
microorganisms, metabolic reactions, genetic interactions and many other entities. The study of
networks in biology can be used for many purposes including to visualise systems, to trace signal
flow, to understand functional relationships between entities and to study dynamics of systems

(Han, 2008).

Molecular networks are a type of network used to capture direct interactions and/or functional
associations between molecules (including genes, proteins and RNA) to better understand
cellular mechanisms. In the graph representations of these networks, the entities (nodes) of the
network represent the molecules and the connections between nodes (edges) represent a
physical or functional interaction. These networks are vital for many aspects of cellular function
including metabolism and transcriptional regulation. There are a number of features which
these networks can have, for example they can be directed or undirected; indicating whether

edges have a direction of interaction, and they can be signed, for example an inhibition or an
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activation (Figure 1.9). Furthermore, these networks can exist in layered structures where
different ‘versions’ of the networks represent different molecular levels e.g. RNA and protein,
or instead different nodes can represent different types of molecule just within one network.
The change in structure of networks over time and space is termed network dynamics (Han,

2008; Winterbach et al., 2013).
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Figure 1.9. Graph diagram of a directed network.
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Molecular interaction networks can be reconstructed using experimental or computational
methods (Papin et al., 2005; Siahpirani and Roy, 2017). Experimental techniques include
targeted and high-throughput methods to determine interacting molecules. Yeast-two-hybrid
methods and tandem affinity purification are the primary technologies used to measure protein-
protein interactions (PPIs) at scale (Briickner et al, 2009), whereas chromatin
immunoprecipitation methods, ChIP-chip and ChiIP-seq, are used to study interactions between
DNA and proteins (histone and transcription factors, TFs) (Furey, 2012). Furthermore,
interactions between microRNAs (miRNAs) and messenger RNAs (MRNA) and between long non
coding RNAs (IncRNA) and miRNAs have been identified using HITS-CLIP methods (Chi et al.,
2009). Experimentally determined molecular interactions are often stored in databases, which
may be focused on a particular interaction type (e.g. TF — target interactions stored in TRRUST
(Han et al., 2018)), a particular molecule, biological pathway or set of pathways (e.g. SignalLink2
(Fazekas et al., 2013)) or on a particular model organism (e.g. SignaFish (Csalyi et al., 2016)).
These databases are primarily second party, where multiple distinct experimental results are
collected together, or third party, where multiple second party databases are combined. An
example of a second party database is miRNA-IncRNA interaction collection LncBase

(Paraskevopoulou et al., 2016), while molecular prior knowledge collection OmniPath and
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transcription factor-target interaction collection DoRothEA are examples of third party

databases (Garcia-Alonso et al., 2019; Tirei et al., 2016).

The primary issue with all of these experimental data sources is that experimental methods and
studies can be biased and do not uncover every possible interaction, leading to incomplete
datasets (Kumar Bajpai et al., 2020). To avoid these issues, many different network inference
algorithms have been developed that predict molecular interactions based on diverse data such
as expression information, structural profiles and sequence homology (Chai et al., 2014; Chan
etal.,2017; Huang et al., 2016; Siahpirani and Roy, 2017). However, network inference methods
also have limitations due to under sampling and poor generalisation. They are often specific to
one state and vary greatly based on the inference method and input datasets used.
Furthermore, computationally predicted interactions often have little overlap with
experimentally derived networks, which has led to development of ensemble learning
approaches and the integration of computational and experimentally derived knowledge (Castro

et al., 2019).

For the work outlined in this thesis, | have focused primarily on the interpretation and analysis
of context-specific experimental data using experimentally determined molecular interactions.
Such an approach permits the contextualisation of known molecular interactions in which we
have greater confidence of existence, but | acknowledge probable incompleteness and a degree

of experimental bias.

1.7.1 Regulatory networks

Regulatory networks are molecular networks detailing regulatory interactions within a system.
Most frequently used are transcriptional regulatory networks which comprise interactions
between TFs and their target genes (TGs). These networks are often presented as gene
regulatory networks where both TFs and their target genes are represented as genes and the
connections between them describe an indirect regulatory interaction (Winterbach et al., 2013).
In addition to TF-TG interactions, regulatory networks may contain additional transcriptional
and post-transcriptional regulatory interactions including: TF-IncRNA, TF-miRNA, miRNA-mRNA
and IncRNA-miRNA interactions. MiRNAs and IncRNAs, together with TFs perform critical
regulatory functions in maintaining intestinal homeostasis. Dysregulation of these functions has
been associated with various gut pathologies (Chapman and Pekow, 2015; Mirza et al., 2015).

For example a miRNA upregulated in the colon mucosa of CD patients, miR-106b, was found to
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reduce expression of ATG16L1, causing a reduction in autophagy (Lu et al., 2014; Zhai et al.,
2013). This in turn leads can lead to increased epithelial penetrance of CD-associated bacteria,
indicating its role in CD pathogenesis. The study of regulatory interactions using networks can
help to unravel the mechanisms through which these molecules act, which can in turn aid the
study of disease and associated drug treatments. Regulatory actions of TFs and non-coding RNAs

are described in the following sections.

1.7.1.1 Transcription factors

The best-studied eukaryotic gene regulatory mechanism is the control of gene expression by
TFs. Here, TF proteins bind to cis-regulatory elements on the DNA via their DNA-binding region
to promote or block RNA polymerase recruitment; depending on whether the TFs are acting as
activators or repressors, respectively. Specifically, TFs can act to acetylate or deacetylate histone
proteins, or to block or scaffold the binding of RNA polymerase to the DNA. Often these actions
are carried out by TFs in cohort with coactivators and/or corepressors which are recruited to the
TF-DNA complex (Figure 1.10). Cis-regulatory elements, termed enhancers, promoters or
silencers, are usually present upstream of the regulated gene initiation site, but can also be
found downstream, within gene introns or at a distance to the gene itself. The combined actions
of multiple TFs, coactivators and corepressors at multiple cis-regulatory regions ultimately

defines the transcription level of the gene in question (Campbell and Reece, 2008).
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Figure 1.10. Transcriptional and post transcriptional regulation.



Chapter 1: General introduction 59

At any one time, only 10-50% of the genes of a typical human cell are expressed (Campbell and
Reece, 2008; Marinov et al., 2014). This variation in expression allows the cells to alter their
function in response to internal and external signals. TFs and histone modifying enzymes play
an indispensable role in this process. As such, it has been shown that mutations in TF binding
motifs of cis-regulatory elements are implicated in many diseases, including IBD (John et al.,

2011; Landa et al., 2013; Pals et al., 2004).

1.7.1.2 Non-coding RNAs

In addition to regulation of expression, a number of post-transcriptional mechanisms exist to
fine-tune levels of MRNAs. One example is miRNAs; ~22 nucleotide non-coding RNAs which post-
transcriptionally regulate mRNA targets (Bartel, 2018). To date there are over 2,600 mature
human miRNAs described in miRbase (version 22) — the primary archive of miRNA sequences
and annotations (Kozomara et al.,, 2019). Canonical miRNAs are processed from stem-loop
regions of longer RNAs called pri-miRNAs through the Drosha/Dicer pathway. Here, a
heterotrimeric complex called microprocessor, containing a Drosha endonuclease and DGCR8
proteins, cleaves the pri-miRNA into pre-miRNAs (Nguyen et al., 2015). Once exported from the
nucleus, pre-miRNAs are cleaved into 22 nucleotide duplexes by Dicer and then loaded (one or
both strands) into the RNA-induced silencing complex (Bartel, 2018). The miRNAs are then
guided to 3'UTRs (untranslated regions) of mRNAs where they bind to complementary (or
nearly complimentary) sequences. The mRNA is subsequently degraded or translationally
repressed (Chapman and Pekow, 2015). In the last decade many studies have shown that
miRNA-associated regulation is associated with cell function in healthy and disease conditions

(Ardekani and Naeini, 2010; Cao et al., 2017; Drury et al., 2017).

As well as miRNAs, the transcribed non-coding genome consists of thousands of other RNAs
defined purely by their length: >200 nucleotides. These RNAs, termed IncRNAs, are detected
across many cellular- and tissue-specific contexts, however their significance in cellular
regulation is contentious. Evidence exists for a functional role of some IncRNAs, while many
appear not to harbour any regulatory sequences or properties (Goff and Rinn, 2015; Long et al.,
2017). Among those with identified regulatory functions, there are diverse mechanisms through
which they can exert their effects. They can regulate gene expression through recruiting protein
complexes to DNA or through inhibiting the binding of TFs to DNA. They can act as miRNA

sponges, blocking the binding actions of miRNAs (Jalali et al., 2013; Paraskevopoulou and
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Hatzigeorgiou, 2016) and they can interfere with post-transcriptional processing of mRNA, for

example through binding to splicing factors and blocking alternative splicing (Bhat et al., 2016).

1.7.2 Signalling networks

Cells can receive and process signals from their environment, from surrounding cells and from
different regions within themselves. External signals are primarily received through interactions
with receptor proteins on the cell surface. In turn these receptors undergo a conformational
change, initiating signal transduction through a chain of cellular events leading to a molecular
response of the system to the initial trigger. Most often this signalling cascade involves the
changes in the activity of effector enzymes which in turn regulate the function of other proteins
through post-translational events. In the case of internal receptor binding, for example in steroid
hormone systems, the ligand-receptor complex often acts more directly on gene levels by acting
as a modulator of transcription (Buchanan et al., 2010). These signalling pathways are high
complex systems of interacting molecules which can also form larger networks of interacting
pathways. Therefore, signalling pathways are well represented through network approaches,
which provide a clear data storage, visualisation and analysis method. Given the nature of
signalling pathways, they are often represented by a type of protein-protein interaction
network, where links are directed according to the flow of molecular signals (Winterbach et al.,

2013).

1.7.3 Host-microbe protein-protein interactions

In addition to the aforementioned interaction types, networks can be used to study interactions
between a host cell and a microbe. Such interactions can occur via various molecules ranging
from proteins and metabolites to lipopolysaccharide (LPS). For example, for bifidobacteria,
identified molecular effectors include, but are not limited to:
- Type IVb tight adherence (Tad) pili, which has been shown to promote colonic epithelial
proliferation (O’Connell Motherway et al., 2011, 2019)
- The EPS capsule which can, for example, repress local Th17 responses and reduce pro-
inflammatory cytokine production (Fanning et al., 2012b)
- The serine protease inhibitor (serpin) protein which inhibits pancreatic elastase and
neutrophil elastase, potentially protecting the host against overactivation of

neutrophils, and in turn the bacteria against phagocytosis (Ilvanov et al., 2006)


https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/serine-protease-inhibitors
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Protein-protein interactions between host and microbe represent one of the major types of
communication. Here proteins physically interact, often resulting in activation or inhibition of
the host downstream signalling pathways. Such interactions are often divided into two major
types: domain-domain interactions and domain-motif interactions. Domains are independent
folding subunits of proteins with stable and distinct tertiary structures. Domains are not protein-
specific, often occurring in many proteins of many different species. Moreover, a single protein
can contain multiple different domains. Domains usually have specific functional roles, such as
calcium-binding, and can be readily identified from nucleotide or amino-acid sequences
(Bagowski et al., 2010). Domain-domain interactions occur when a domain of one protein
physically interacts with a domain of another protein, resulting in one protein exerting its effect
on the other. Experimentally, domain-domain interactions are primarily inferred using high-
resolution three-dimensional structures (Raghavachari et al., 2008). Moreover, many domain-
domain interactions have been predicted computationally using diverse feature sets and
methods — such as sequence co-evolution, phylogenetic profiling, probabilistic frameworks and
machine learning approaches (Yellaboina et al., 2011). Databases such as DOMINE exist to
collate known and predicted domain-domain interactions (Raghavachari et al., 2008; Yellaboina

et al., 2011).

Domain-motif interactions, on the other hand, involve the binding of protein domains to protein
motifs, resulting in the domain-containing protein exerting its effect on the motif-containing
protein. These interactions are mediated by 3-10 amino acid sequences called short linear motifs
(SLiMs) which play a major role in cellular processes, such as signal transduction, through
transient interactions with protein domains (Akiva et al., 2012; Brito and Pinney, 2017). These
motifs occur in intrinsically disordered regions of proteins or in exposed flexible loops within
folded domains making them accessible for binding to domains. Like domains, many protein
motifs and domain-motif interactions have been previously identified by diverse small-scale
experiments and by computational predictions (Gibson et al., 2015). Once identified, motifs can
be typified by their sequence making them identifiable within other genomes using
computational methods. Furthermore, databases of curated domain-motif interactions, such as
the Eukaryotic Linear Motif (ELM) database, enable prediction of interactions between proteins
of interest based on previously identified domain-motif interactions (Dinkel et al., 2016;

Korcsmaros et al., 2013; Puntervoll et al.,, 2003). In the Chapter 5, | have applied such an
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approach to build a bacterial-macrophage protein interaction network for prediction of possible

bifidobacterial effector proteins which can affect macrophage activation.

1.7.4 Network contextualisation using ‘omics data

As discussed above, network contextualisation is one method to reconstruct biological networks
based on the integration of context specific ‘omics data with experimentally determined
molecular interactions (often called a priori interactions or prior knowledge network) (Dugourd
and Saez-Rodriguez, 2019). The specific methods used in this approach vary depending on the
available data and the biological question of interest: ranging from simple data overlaps to
ensembles of mathematically complex models. Comprehensive networks of intra and inter-
cellular interactions can be reconstructed using multi-omics datasets consisting of
transcriptomic, phosphoproteomic and metabolomic information from the same biological
context (Dugourd et al., 2020). However, the availability of such datasets is usually limited; due
to cost and accessibility, transcriptomics is often the only obtainable ‘omics data. Therefore, the
following tools and methods (and the research of this thesis), will cover only transcriptomics

data approaches.

Given that the activities of signalling pathways only partially correlate with levels of gene
expression (Vogel and Marcotte, 2012), transcriptional level data is best used in studies of
transcriptional regulation. For example, superimposing a priori regulatory interactions with
differentially expressed genes of interest can identify possible regulators. Subsequently,
regulators can be filtered for relevance using different approaches, such as:

e Identification of master or hub regulators based on the number of target genes.

e Hypergeometric significance tests to identify regulators whose targeted genes exhibit
significantly large levels of differential expression, such as that implemented in the
Cytoscape CHAT tool (Muetze et al., 2016).

e The VIPER approach which uses analytic rank-based enrichment analysis to compute
changes in transcription of specific regulons (groups of similarly regulated genes) when
projected on a rank-sorted gene expression signature. In addition, this approach
integrates a metric based on the correlation of expression between a regulator and its

target gene and measures of pleiotropy (Alvarez et al., 2016).
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On the other hand, methods have been developed to predict activity of signalling pathways
based on gene expression data, without directly inferring protein activity from gene expression.
For example, PROGENYy, developed by Schubert et al. uses a footprint based approach to predict
pathway activity based on pathway responsive genes, which are obtained using a large
compendium of perturbation experiments (Schubert et al., 2018). However, this approach is
limited and biased by the perturbation datasets used, and may not accurately reflect specific

contexts such as poorly studied tissue types.

Finally, causal networks can be generated by combining signalling pathway and regulatory
interactions. Such networks can explain the flow of signal from a cellular perturbation, such as
the recognition of a signalling molecule at the cell surface, through signalling pathways to
transcription factors which regulate the expression of genes affected by the perturbation. Such
networks can be reconstructed by identifying possible PPl paths (using a prior knowledge
network) connecting an initial perturbation (e.g. a receptor) to transcription factors identified
using approaches such as those previously discussed. Advancements to this method can utilise
causal reasoning and/or diffusion algorithms to identify most likely signalling paths. For
example, a recently published workflow by Liu et al. (2019) called CARNIVAL, can reconstruct
causal networks with or without an upstream perturbation using VIPER and PROGENy combined
with an integer linear programming optimization problem. Here the most optimal PPI paths are
identified using interaction direction and sign alongside perturbation, pathway and TF

constraints.

1.7.5 Network applications

The ultimate aim of a systems biologist is to understand a whole system using a unified
framework — and networks are a key tool to achieve this. In addition to functioning as a data
storage and visualisation method, analysis of molecular interaction networks can aid the
understanding of cellular processes and functional organisation, can be used to predict key
regulators and novel drug targets and can aid in annotating molecular functions (Miryala et al.,
2018). Methods to analyse and interpret networks include topological approaches and
functional enrichment. Topological approaches, which study the arrangement and structure of
networks, can be used to both describe properties of a biological network and as a predictive
tool (Winterbach et al., 2013). For example, centrality is a group of graph metrics which score

nodes based on theirimportance in the network. The simplest is degree centrality, which states
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that nodes with high degree (many connecting edges) are more important than those with low
degree. Alternatively, betweenness centrality calculates the fraction of shortest paths passing
through a node when every pair of nodes is connected. A higher betweenness centrality metric
indicates that a node is more important for information flow in the network. Alternatively,
molecular networks can be studied in terms of their modularity. For example, clustering
approaches can be used to identify groups of nodes, termed modules or clusters, which are
more densely connected than the rest of the network. In molecular interaction networks,
identified modules often represent biological pathways or functions, aiding functional
interpretation and prediction of key molecules within the network. Unfortunately, module
detection is a complex problem. Whilst multiple different algorithms have been developed,
results between them are not always comparable and selecting the ideal algorithm for a
particular problem is especially challenging (Tripathi et al., 2016). Where module detection is
carried out in this thesis, | have used the seed-based clustering tool Molecular Complex
Detection (MCODE) which was designed specifically for protein interaction networks to detect
protein complexes and functional modules (Bader and Hogue, 2003; Kaalia and Rajapakse,

2019).

Overall, a number of different network approaches have been used throughout this thesis to
reconstruct, visualise, analyse and interpret biological data, each selected based on the data

type and research question.
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1.8 Primary research aims

The four primary research aims of this thesis are as follows:

1. Develop workflows and processes to analyse intracellular regulation in a cell type-
specific manner to gain biological insights.

2. Apply these workflows to increase our understanding of how cytokines alter the
regulation of epithelial cells.

3. Apply these workflows to increase our understanding of how Bifidobacterium alters the
regulation of epithelial cells using bulk transcriptomics data.

4. Apply these workflows to increase our understanding of how Bifidobacterium alters the
regulation of epithelial cells using cell type-specific transcriptomics data.

5. Study the interactions of Bifidobacterium with immune cell populations.

1.9 Structure of the thesis

This thesis is organised into 7 chapters:

Chapter 1 — An introductory chapter presenting the research background and summary of the

aims of the thesis.

Chapter 2 — Presents an interdisciplinary workflow developed by myself and colleagues to study
the regulatory landscape of small intestinal epithelial cells. The workflow is applied to
investigate the effect of small molecule treatments on skewing differentiation of small intestinal

organoids (enteroids) and to predict key regulators of Paneth cells and goblet cells.

Chapter 3 — Here, | study the effect of cytokines responsible for canonical mucosal immune
responses on colonic organoids using causal networks. Further, myself and collaborators

evaluated cytokine regulated transcription activity in biopsies from IBD patients.

Chapter 4 — Twinned with Chapter 5, this chapter contains the first of two distinct studies
focusing on the impact of bifidobacteria on small intestinal epithelial cells. This chapter
specifically focuses on the mouse neonatal epithelium and does not contain cell type-specific

data.
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Chapter 5 — Twinned with Chapter 4, this chapter contains the second of two distinct studies
focusing on the impact of bifidobacteria on small intestinal epithelial cells. This chapter extends
the previous work by focusing on stem cells and Paneth cells in SPF and GF mice who have

recently weaned from their mother’s breast milk.

Chapter 6 — This chapter describes a study of the impact of Bifidobacterium on macrophage
activation, focusing primarily on inter-cellular interactions with the aim to identify the effector

molecule/s of bifidobacteria.

Chapter 7 — This is the final chapter discussing future perspectives, impact and conclusions of

the thesis.
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Chapter 2: The regulatory landscape of small
intestinal epithelial cells

2.1 Introduction

Gut barrier integrity is critically important for intestinal homeostasis and efficient nutrient
absorption (Zhang et al., 2015). Disruption of the epithelial barrier along with dysregulated
immune responses are some of the underlying reasons behind the development of
inflammatory gut conditions such inflammatory bowel disease (IBD) (Mokry et al., 2014).
Therefore, a greater understanding of the functions of intestinal cells and their role in regulatory

signalling will further our understanding of gut dysbioses, including IBD aetiology.

Whilst primary IECs all originate from Leucine-rich repeat-containing G-protein coupled receptor
5 (Lgr5)+ stem cells, differentiation results in differences in gene expression, signalling and
regulatory wiring (Crosnier et al., 2006; Vanuytsel et al., 2013). These differences can result in
altered phenotypic functions, responses to stress and susceptibilities to specific dysregulations.
Thus, uncovering patterns and mechanisms at a cell type-specific level is crucial to uncover the
role of the intestinal epithelium in homeostasis and disease. However, previously, many disease-
focused studies have used biopsy samples to produce -omics read-outs from intestinal epithelial
cells (IECs) (Balfe et al., 2018; Mirza et al., 2015). Due to the cellular heterogeneity of the
biopsies, these readouts represent a combination of different cell types (including semi-
differentiated cells), which can result in obscuration of signals when cell types are not acing in

cohort.

On the other hand, recent studies have employed single cell transcriptomics sequencing of
tissue samples to characterise the proportion and signatures of different epithelial cell types in
the intestines of healthy and IBD patients (Haber et al., 2017; Parikh et al., 2019; Smillie et al.,
2019). However, to provide deeper insights into the role of specific cell populations (such as
Paneth cells and goblet cells) in IBD, in vitro models are required for in-depth testing and
manipulation. Such models can be used to study specific mechanisms of action, host-microbe
interactions, intercellular communication, patient specific therapeutic responses and to develop
new diagnostic approaches. Due to ease of manipulation, observation and analysis, organoid

models, including small intestinal models (enteroids), are increasingly used in the IBD field
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(Aberle et al., 2018; Lindeboom et al., 2018; Noben et al., 2017). Therefore, the development of
experimental and computational methods to improve the utility of organoids for detailed
scientific investigation are highly valued, despite the growth of single cell technologies. For
example, small molecule treatments have been developed that skew the differentiation of
enteroids towards Paneth cell or goblet cell lineages, improving representation of these cells
within the enteroid cell population (as described in the General Introduction section 1.6) (Farin

et al,, 2012; Yin et al., 2014).

Nevertheless, the effect of Paneth cell and goblet cell enrichment of enteroids on key regulatory
landscapes has not been extensively characterised and few computational methods have been
applied to study cell type-specific regulation in an organoid model (Mead et al., 2018; Qin et al.,
2020). In this chapter, | use transcriptomics data combined with network methods to
characterise the effect of small-molecule skewing on enteroids and to test the ability of this kind
of approach for studying cell type-specific regulatory landscapes using organoids. Moreover,
myself and colleagues developed an interdisciplinary workflow to investigate the regulatory
landscape of Paneth cells and goblet cells (including transcriptional and post-transcriptional
regulation) by comparing cell type enriched enteroids to control enteroids. The future utility of
this approach was evidenced by predicting key regulators of Paneth cells and goblet cells and by
exploring the relevance of the generated regulatory networks to the study of inflammatory

bowel disease (I1BD).

The study design and analysis workflow are described in Figure 2.1. Specifically, we used small
intestinal crypts from healthy adult mice to grow three different types of enteroid cultures:
conventionally differentiated, Paneth cell enriched and goblet cell enriched (based on the
protocols in Yin et al. (2014)). RNA sequencing was carried out on each type of enteroid to
quantify messenger RNA (mRNA), microRNA (miRNA) and long non-coding RNA (IncRNA)
signatures. Differentially expressed genes (DEGs) were determined by comparing the cell type
enriched enteroids to the conventionally differentiated organoids — generating a list of genes
significantly more or less expressed as a result of Paneth cell enrichment, and a similar list as a
result of goblet cell enrichment. | used published molecular interaction datasets to reconstruct
regulatory interaction networks (one for each cell type) which link these DEGs by possible
regulatory connections. Specifically, the nodes of the interaction networks represent the DEGs
and the edges represent regulatory connections (molecular interactions) between the nodes

inferred from databases of transcriptional and post-transcriptional interactions. Subsequently, |
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carried out a number of different analyses on the networks. | clustered the networks to identify
highly connected nodes which specific functions. | incorporated known Paneth cell and goblet
cell marker genes to predict master regulators of Paneth cell and goblet cell differentiation
and/or maintenance. Furthermore, | highlighted varying downstream actions of shared
regulators between the cell types. This phenomenon, called regulatory rewiring, highlights the
importance of changes in regulatory connections in the function and differentiation of specific
cell types. Finally, | identified and analysed Crohn’s disease (CD) and ulcerative colitis (UC)
associated genes within the networks. Taken together, we show that cell type enriched
enteroids combined with the presented network biology workflow have potential for application
to the study of epithelial dysfunction and mechanisms of action of multifactorial diseases such

as IBD in specific intestinal cell types.
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Figure 2.1. Schematic overview of study design and analysis workflow in Chapter 2. PCeE/GCeE
network - Paneth cell enriched enteroid / goblet cell enriched enteroid network; TF -
transcription factor; IncRNA - long non-coding RNA; miRNA - microRNA; mRNA - messenger RNA;
UC - ulcerative colitis; CD - Crohn’s disease. Figure reproduced from Treveil et al. (2020) under
the Creative Commons BY licence.

The contents of this chapter are primarily based on (verbatim) the peer-reviewed article
published in Molecular Omics that | am first author (Treveil et al., 2020). The published article is

reproduced in Appendix 6.
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2.2 Aims

The aims for this project were as follows:

Develop a multidisciplinary pipeline to study cell type-specific regulatory landscapes
using enteroids and RNA sequencing.

Assess the value of cell type enriched organoids for studying cell type-specific regulatory
landscapes.

Characterise the effect of Paneth cell and goblet cell enrichment of enteroids on key
regulatory landscapes.

Predict key regulators of Paneth cells and goblet cells.

Investigate relevance of generated networks to the study of inflammatory bowel

disease (IBD).
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2.3 Methods

All organoid work and RNA extraction was carried out by Zoe Matthews (UEA, Norwich Medical
School), Emily Jones and Isabelle Hautefort (from our group). Next-generation sequencing and
library construction was delivered via the BBSRC National Capability in Genomics and Single Cell
(BB/CCG1720/1) at the Earlham Institute by the Genomics Pipelines Group. Initial data
processing to obtain differentially expressed transcripts and collation of molecular interaction
resources was carried out by Tomasz Wrzesinski (Haerty group, Earlham Institute, El) and
Padhmanand Sudhakar from our group. All other computational analysis and interpretation was
carried out by myself, including network reconstruction, marker gene analysis and functional

enrichment.

2.3.1 Small intestinal organoid growth

C57BL/6J mice of both sexes were used for enteroid generation as described previously (Jones
et al., 2019; Sato and Clevers, 2013; Sato et al., 2009), from three separate animals for each
condition. Briefly, 5mm pieces of small intestine were washed in Ethylenediaminetetraacetic
acid (EDTA) and shaken in phosphate buffered saline (PBS) until five fractions had been
generated. Crypt suspensions from the fractions were passed through a 70um filter to remove
any villus fragments, centrifuged at 300 xg for 5 minutes before pellets were resuspended in
200ul phenol-red free Matrigel (Corning), seeded in 24-well plates and incubated at 37°C for 20
minutes to allow Matrigel to polymerise. Enteroid media containing Epidermal growth factor
(EGF), Noggin and R-spondin (ENR media) was then overlaid. On days two, five and seven post-
crypt isolation, additional factors were added to the ENR media to enrich specific cell types by
chemically inducing differentiation: 3uM glycogen synthase kinase 3B (GSK3B) inhibitor
CHIR99021 (Tocris) and 10uM Notch inhibitor DAPT (Tocris) [Paneth cells]; 2uM Wnt pathway
inhibitor IWP-2 (Tocris) and 10uM DAPT [goblet and enteroendocrine cells] (Yin et al., 2014). On
day eight post-crypt isolation, enteroids were fixed with 4% paraformaldehyde (PFA; Sigma-
Aldrich), permeabilized with 0.1% Triton X-100 (Sigma-Aldrich) and incubated in blocking buffer
containing 10% goat serum (Sigma-Aldrich). Immunostaining was performed overnight using
primary antibodies for E-cadherin (BD Transduction Laboratories), Mucin-2 (Muc2) (Santa Cruz)
and lysozyme (Lyzl) (Dako), followed by Alexa Fluor-488 and -594 conjugated secondary

antibodies (ThermoFisher Scientific). DNA was stained with 4’,6-diamidino-2-phenylindole
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(DAPI) (Molecular Probes). Images were acquired using a fluorescence microscope

(Axioimager.M2) and analysed using ImagelJ/FIJI V1.51.

2.3.2 RNA sequencing

RNA was extracted from enteroids on day eight post crypt-isolation using miRCURY RNA
Isolation Tissue Kit (Exigon, 300115). Stranded RNA Libraries were constructed using the
NEXTflex™ Rapid Directional RNA-Seq Kit (PerkinElmer, 5138-07) using the polyA pull down
beads from Illumina TruSeq RNA v2 library construction kit (lllumina, RS-122-2001). Small RNA
libraries were made using the TruSeq Small RNA Library Prep Kits (lllumina, 15004197). Stranded
RNA was sequenced on the Illumina HiSeq2000 instrument to obtain 100 base paired-end reads.
Small RNA was sequenced on the Illlumina HiSeq2500 instrument to obtain 50 base paired-end

reads.

2.3.3 Differentially expressed transcripts

The quality of stranded reads was assessed by FastQC software (v0.11.4) (Andrews, 2010). Reads
were aligned using HISAT (v2.0.5) (Kim et al., 2015a) and a reference-based de novo
transcriptome assembly was carried out for each biological repeat and merged together using
StringTie (v1.3.2). Coding potential of each novel transcript was determined with CPC (v0.9.2)
and CPAT (v1.2.2) (Kong et al., 2007; Wang et al., 2013b). From the novel transcripts, only non-
coding transcripts (as predicted by both tools) were included in final GTF file. Gene and
transcript abundances were estimated with Kallisto (v0.43.0) (Bray et al., 2016). Sleuth (v0.28.1)
R library was used to perform differential gene expression, comparing Paneth cell enriched
enteroids (PCeEs) to conventionally differentiated enteroids (CDEs), and goblet cell enriched

enteroids (GCeEs) to CDEs (Pimentel et al., 2017).

The small RNA reads were analysed using the sRNAbench tool within the sRNAtoolbox suite
(Rueda et al., 2015). Trimmed and length filtered reads were mapped to mature miRBase
miRNAs (v21) (Kozomara and Griffiths-Jones, 2014) in addition to the annotated version of the
mouse genome (mm10). Normalised read-counts from the corresponding cell type enriched
enteroids were compared against the CDEs to identify differentially expressed miRNAs in a pair-

wise manner using edgeR (Robinson et al., 2010).
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MRNAs, IncRNAs and miRNAs with an absolute log2 fold change >1 and q value <0.05 were
considered to be differentially expressed. Differentially expressed genes were grouped by their
presence in the PCeE dataset, the GCeE dataset or in both. Each group of differentially expressed
genes was tested for functional enrichment (hypergeometric model, g value <0.1) based on
Reactome and KEGG annotations using the ReactomePA R package (Fabregat et al., 2018a;
Kanehisa et al., 2017; Ogata et al., 1999; Yu and He, 2016) following conversion from mouse to

human identifiers using Inparanoid (v8) (O’Brien et al., 2005; Sonnhammer and Ostlund, 2015).

2.3.4 Enrichment of marker genes

Cell type-specific signature genes were obtained from the droplet-based and the plate-based
data of a mouse single cell sequencing survey (Haber et al., 2017). Gene symbols were converted

to Ensembl gene IDs using bioDBnet db2db (Mudunuri et al., 2009).

Hypergeometric distribution testing was carried out using a bespoke R script to measure
enrichment of cell type-specific marker genes in the differentially upregulated gene sets. To
standardise the universal dataset, only markers which are present in the output of the Wald test
(genes with variance greater than zero among samples) were used. All genes present in the
output of the Wald test were used as the background. Similarly, to enable fair comparisons, only
differentially expressed protein coding genes and documented IncRNAs were used from the DEG
lists, as was surveyed in the cell type-specific marker paper. Bonferroni correction was applied

and significance scores were calculated using -log10(adjusted p value) (Bland and Altman, 1995).

2.3.5 Reconstruction of regulatory networks

A priori mice regulatory networks containing directed regulatory layers were retrieved from
multiple databases as described in Table 2.1. Only miRNA-mRNA and IncRNA-miRNA interactions
determined using HITS-CLIP (Chi et al., 2009) experiments were considered. Bedtools (Quinlan
and Hall, 2010) was used for the custom analyses to look for overlaps between coordinates. All
the nodes in the collected interactions were represented by their Ensembl gene IDs for

standardization.

To generate PCeE and GCeE regulatory networks, interactions in this collated universal network
were filtered using the transcriptomics data (Figure 2.1). The assumption was made that if both

nodes of a particular interaction were expressed (transcripts per million > 0 in at least one
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replicate) in the RNAseq data, the interaction is possible. Furthermore, to filter for the

interactions of prime interest, only nodes which were differentially expressed (PCeE vs CDE,

GCeE vs CDE) and their associated interactors were included in the regulatory networks.

Interaction Source(s) # Unique Quality control criteria
type interactions
TF-TG (TFs TRRUST v2 (Han 1066383 e ChIP-Seq peaks should not overlap any gene
regulating etal., 2015, annotation; if peak on + strand, only the first
target genes) 2018) gene downstream to the gene or if peak on
GTRD (Yevshin - strand, only first gene upstream to the
etal., 2017) peak is considered.
ORegAnno v3.0 Genes attributed to the transcription factor
(Lesurf et al., which lie within a 10kb window on either
2016) side of the ChIP-seq peak (ORegAnno) or
meta-cluster (in the case of GTRD).
TF-IncRNA (TFs GTRD 159055 ChlP-Seq peaks should not overlap any gene
regulating annotation; if peak on + strand, only the first
IncRNAs) gene downstream to the gene or if peak on
- strand, only first gene upstream to the
peak is considered.
Genes attributed to the transcription factor
which lie within a 10kb window on either
side of the meta-cluster.
Only if the first annotation feature within a
10kb genomic window downstream to the
ChiP-seq peak / meta-cluster was
designated as an intergenic IncRNA, a
regulatory interaction between the TF and
the IncRNA was assigned - to avoid assigning
false regulatory interactions due to the high
number of instances where the IncRNAs
overlap with protein-coding genes.
miRNA-mRNA TarBase v7.0 141892 Only  HITS-CLIP  based experimental
(miRNAs (Vlachos et al., evidence considered.
regulating 2015) Co-expression  based inferences not
MRNAs) considered.
TF-miRNA (TFs TransmiR v1.2 9204 ChIP-Seq peaks should not overlap any gene
regulating (Wang et al., annotation; if peak on + strand, only the first
miRNAs) 2010) gene downstream to the gene or if peak on
TRRUST v2 - strand, only first gene upstream to the
GTRD peak is considered.
Co-expression based inferences not
considered
IncRNA — IncBase2 6637 Only  HITS-CLIP based experimental
miRNA (IncRNAs | (Paraskevopoul evidence considered.
regulating ouetal., 2016) Co-expression based inferences not
miRNAs) considered.

Table 2.1. A summary of the physical interactions compiled to generate the universal network.
Table reproduced from Treveil et al. (2020) under the Creative Commons BY licence. The 10kb
window was chosen based on (Maclsaac et al., 2010).
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Clusters of highly interconnected regions within the PCeE and GCeE regulatory networks were
identified using the MCODE plugin within Cytoscape with default parameters (Bader and Hogue,
2003; Shannon et al., 2003). The nodes of each cluster were tested for functional enrichment
(hypergeometric model, g value < 0.05) based on Reactome annotations using the ReactomePA
R package (Fabregat et al., 2018a; Kanehisa et al., 2017; Ogata et al., 1999; Yu and He, 2016)
following conversion from mouse to human identifiers using Inparanoid (v8) (O’Brien et al.,
2005; Sonnhammer and Ostlund, 2015). Cases where the number of nodes associated with a
pathway <5 were considered not significant regardless of the g value. The top 5 significant
Reactome pathways associated with each cluster were visualised using a heatplot generated in
R. More than 5 pathways were visualised where multiple Reactome pathways had equal q

values.

2.3.6 Paneth cell and goblet cell regulator prediction

To identify potential master regulators of the Paneth cell and the goblet cell types, the upstream
regulators of cell type-specific markers (from (Haber et al., 2017)) were investigated. To do this,
all markers were mapped to the relevant networks then subnetworks were extracted consisting

of markers and their regulators.

2.3.7 Regulatory rewiring analysis

To calculate rewiring scores for regulators, sub-networks were extracted (from the PCeE and
GCeE regulatory networks) containing just the regulator of interest and its downstream targets.
For each regulator of interest, the subnetworks from the PCeE and GCeE networks were
compared using the Cytoscape app DyNet (Goenawan et al., 2016; Shannon et al., 2003). The
degree corrected D, score was extracted for each regulator and used to quantify rewiring of the
regulator’s downstream targets between the PCeE and GCeE regulatory networks. Functional
analysis was carried out on the targets of the top five most rewired regulators. For each
regulator, the targets were classified based on whether they are present in only the PCeE
network, only the GCeE network or in both networks. Each group of targets was tested for
functional enrichment (hypergeometric model, q value < 0.1) based on Reactome and KEGG
annotations using the ReactomePA and ClusterProfiler R packages (Fabregat et al., 2018a;
Kanehisa et al., 2017; Ogata et al., 1999; Yu and He, 2016) following conversion from mouse to

human identifiers using Inparanoid (v8) (O’Brien et al., 2005; Sonnhammer and Ostlund, 2015).
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2.3.8 Evaluating disease relevance

Genes associated with UC and CD based on single nucleotide polymorphisms were obtained
from two studies (Farh et al., 2015; Jostins et al., 2012). Additionally, the top 100 differentially
expressed genes were obtained from goblet cell analysis of inflamed UC vs healthy human
colonic tissue from (Smillie et al., 2019). Genes were converted to Mouse Ensembl identifiers
using Inparanoid (v8) and bioDBnet db2db (Mudunuri et al., 2009; O’Brien et al., 2005;
Sonnhammer and Ostlund, 2015). Additionally, to enable hypergeometric significant testing
with the universal network as the background, only UC and CD genes present in the universal
network are included in the analyses. eQTL datasets for CD were retrieved from (Di Narzo et al.,
2016) while the list of targets related to drug-interactions was downloaded from (Cotto et al.,

2018).

2.3.9 Quantification and statistical analysis

Statistical parameters including the exact value of n and statistical significance are reported in
the Figures and Figure Legends. n represents the number of enteroid biological replicates
generated. Where relevant, data is judged to be statistically significant when Bonferroni
adjusted p value < 0.01. Genes with absolute log2 fold change of 2 1 and g value < 0.05 were
considered to be differentially expressed. Based on principal component analysis of transcript
expression, one biological replicate from the Paneth cell enriched enteroids was identified as an
outlier and removed (Figure 2.2). Where stated, the hypergeometric distribution model was

used to calculate significance using R.
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Figure 2.2. Principle component analysis of transcript expression of enteroids. Paneth cell
enriched enteroid outlier to the left side of PC1 was removed from downstream analysis. Plot
courtesy of Tomasz Wrzesinski (El). Figure reproduced from Treveil et al. (2020) under the
Creative Commons BY licence.

2.3.10 Data and software availability

Small and stranded RNA-seq data has been deposited in the European Nucleotide Archive (ENA)
with accession numbers PRJEB32354 and PRJEB32366 respectively. Scripts to analyse the
differentially expressed genes are available on GitHub:

https://github.com/korcsmarosgroup/organoid regulatory networks.



https://github.com/korcsmarosgroup/organoid_regulatory_networks

Chapter 2: The regulatory landscape of small intestinal epithelial cells 79

2.4 Results

2.4.1 Enteroids enriched for target cell type signatures

Zoe Matthews (UEA, Norwich Medical School) generated 3D self-organising enteroid cultures in
vitro from murine small intestinal crypts (Figure 2.3) (Sato and Clevers, 2013; Sato et al., 2009,
2011). In addition to conventionally differentiated enteroids (CDEs), she generated enteroids
enriched for Paneth cells and goblet cells using well-established and published protocols,

presented in detail in the Methods (Sato and Clevers, 2013; Yin et al., 2014).

A
1 day 2 days 7 days

m ' : : z
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°

Crypt-like
domain

B
Conventionally differentiated Cell-type enriched

Paneth cells goblet cells Paneth cells goblet cells

Figure 2.3. Small intestinal 3D organoid culture. A. Culture of isolated mouse small intestinal
epithelial crypts in Matrigel matrix and ENR media (conventionally differentiated) for 7 days.
Isolated crypts form 3D cysts which bud after 2 days of culture to form crypt- and villus-like
domains. Paneth cells are clearly visible by light microscopy (Black arrows). Mucus and shedding
cells accumulate in the central lumen of organoids (*). n = 3. B. cell type-specific enrichment
illustrated by immunofluorescence labelling of cultured mouse 3D enteroids, conventionally
differentiated (left) and enriched for either Paneth cells or goblet cells (right). Lysozyme granules
characteristic of Paneth cells are indicated with a green arrow. Goblet cells were identified using
a specific anti-Muc2 mucin antibody (pink). Images provided by Zoe Matthews, Emily Jones and
Isabelle Hautefort. Figure reproduced from Treveil et al. (2020) under the Creative Commons BY
licence.
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Bulk transcriptomics data was obtained from each set of enteroids to determine genes with
differential expression resulting from enteroid skewing protocols. Differentially expressed genes
were obtained by comparing the RNA expression levels (including protein coding genes, IncRNAs
and miRNAs) of enteroids enriched for Paneth cells or goblet cells to those of CDEs. 4,135 genes
were differentially expressed (absolute log2 fold change > 1 and g value < 0.05) in the PCeE
dataset, and 2,889 were differentially expressed in the GCeE dataset (Figure 2.4A-C, File S2.1).
The larger number of differentially expressed genes (DEGs) in the PCeE data could be attributed
to the highly specialised nature of Paneth cells (Clevers and Bevins, 2013; Stappenbeck and
McGovern, 2017). The majority of the DEGs were annotated as protein coding: 79% in the PCeE
dataset and 84% in the GCeE dataset. In addition, we identified IncRNAs (PCeE, 11%; GCeE, 9%)
and miRNAs (PCeE, 4%; GCeE, 2%) among the DEGs (Figure 2.4B). | identified some DEGs that
were in both the PCeE and the GCeE datasets, exhibiting the same direction of change compared
to the CDE data. In total, 1,363 genes were found upregulated in both the PCeE and the GCeE
data, while 442 genes were found downregulated in both datasets (Figure 2.4C). This result
highlights considerable overlap between the results of skewing enteroids towards Paneth cells
and goblet cells and can be explained by the shared differentiation history and secretory

function of both Paneth cells and goblet cells.

| employed pathway analysis to study functional associations of the DEGs (Figure 2.4D). The
PCeE-specific DEGs were associated with a number of metabolic pathways, including
Metabolism of vitamins and cofactors, Pyruvate metabolism and Citric Acid (TCA) cycle and
Cholesterol biosynthesis. On the other hand, GCeE-specific DEGs were associated with the cell
cycle through pathways such as Cell Cycle Checkpoints, DNA replication and G1/S transition.
Pathways associated with the shared DEGs included Transmission across Chemical Synapses,
Integration of energy metabolism and a number of pathways linked to hormones. As hormone
functions are characteristic of enteroendocrine cells, this analysis suggests that enteroendocrine

cells are enriched in both the PCeEs and the GCeEs.
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Figure 2.4. Differentially expressed genes in Paneth cell enriched enteroids (PCeEs) and goblet
cell enriched enteroids (GCeEs) (compared to conventionally differentiated enteroids). A:
Volcano plots showing log2 fold change and adjusted p value for each gene following differential
expression analysis of PCeEs (left) and GCeEs (right). Horizontal and vertical lines indicate the
differential expression criteria cut offs (q value < 0.05 and absolute log2 fold change > 1). B
Number of differentially expressed genes (DEGs). miRNA - microRNA; IncRNA - long non-coding
RNA; Genes annotated as ‘other’ include pseudogenes and antisense genes. C: Venn diagrams
indicating the number of DEGs (passing the cut off criteria). D: Top 10 Reactome pathways of
the 50 most significant DEGs (by q value). E: Enrichment of cell type-specific marker genes in the
DEG lists. Higher significance scores indicate greater enrichment. Number of markers in DEG list
out of the total number of markers shown below significance score. Figure reproduced from
Treveil et al. (2020) under the Creative Commons BY licence.
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To validate the cell types present in the enteroids, | investigated the expression of five previously
reported major cell type-specific markers across the enteroids using transcript abundances and
RNA differential expression results (Figure 2.5). The control enteroids and the cell type enriched
enteroids expressed all five investigated markers: Lgr5 (stem cells), Chromogranin A (ChgA)
(enteroendocrine cells), Muc2 (goblet cells), Lyz1 (Paneth cells) and Villin 1 (Vil1) (epithelial
cells). We observed an upregulation of Muc2, Lyz1 and ChgA and a downregulation of Lgr5 in
PCeEs and GCeEs compared to the control enteroids, confirming the more pronounced
differentiated status of the enteroids. In addition, a number of Paneth cell specific antimicrobial
peptide genes were differentially expressed in the PCeE dataset, including Angiogenin 4 (Ang4),
Regenerating islet-derived protein 3 gamma (Regllly), Phospholipase A2 group llA (Pla2g2a) and
Defensin alpha 2 (Defa2) (Table S2.1). Some of these genes were also differentially expressed in
the GCeE dataset but with smaller log fold change values, e.g. Lyz1 and Ang4. Conversely, a
number of goblet cell mucin related genes (including Muc2 and trefoil factor 3 (Tff3)) were
differentially expressed in both datasets although all genes exhibited a smaller increase in the
PCeEs (Table S2.1). Therefore, using primary cell type-specific markers, antimicrobial peptide
genes and mucin-related genes, | show that the enteroids contain all major cell types, and that
Paneth cell are most upregulated in the PCeEs, while goblet cells are most upregulated in the
GCeEs. We also note that both differentiation methods resulted in increases of other secretory

cell types as well.
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Figure 2.5. Transcript abundances and differential expression of five major cell type markers.
A: Mean transcript abundances in the conventionally/normally differentiated, goblet cell
enriched and Paneth cell enriched enteroids. TPM - transcripts per million. B: Log2 fold change
in the goblet cell enriched enteroid vs conventional enteroid analysis and the Paneth cell
enriched enteroid vs conventional enteroid analysis. Data only presented where the differential
expression criteria passed (q value £ 0.05 and absolute log2 fold change > 1). Figure reproduced
from Treveil et al. (2020) under the Creative Commons BY licence.
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To further investigate secretory cell type-specific signatures of the enteroids, | measured
enrichment of IEC lineages in the upregulated DEG lists using additional marker genes of Paneth
cells, goblet cells, enteroendocrine cells, tuft cells and enterocytes. These marker genes were
obtained from a single cell study of mouse small intestinal epithelium by (Haber et al., 2017). All
tests were significantly enriched for secretory cell types (hypergeometric model, q value < 0.05),
with greater enrichment of Paneth cell markers in the PCeE DEG list and goblet markers in the
GCeE DEG list (Figure 2.4E, Table S2.2). This confirms that both enteroid enrichment protocols
were successful in increasing the proportion of their target cell type, but also increased
proportions of other secretory lineages, albeit to a lesser extent. This observation confirms
previous studies that these enteroid differentiation protocols result in enteroendocrine
enrichment in addition to Paneth cell and goblet cell enrichment (Luu et al., 2018; Yin et al.,

2014).

In conclusion, we have used image-based validation, pathway analysis and marker gene
investigation to show successful enrichment of target cell types in the PCeE’s and GCeE’s. | also
highlighted an additional increase in other secretory lineages, particularly enteroendocrine cells,

as a result of both enrichment protocols.

2.4.2 Regulatory networks are altered by enteroid differentiation

skewing

To gain an understanding of the regulatory changes occurring when enteroid development is
skewed, we applied a network biology approach to identify regulator-target relationships within
the DEG lists. First, Tomasz Wrzesinski and Padhmanand Sudhakar generated a large network of
non-specific molecular interactions known to occur in mice, by collating lists of published data
(described in the methods Table 2.1). The resulting network (termed the universal network)
consisted of 1,383,897 unique regulatory interactions connecting 23,801 molecular entities. All
interactions within the network represent one of the following types of regulation, where every
node is a DEG: TF-TG, TF-IncRNA, TF-miRNA, miRNA-mRNA or IncRNA-miRNA. TF-TGs and TF-
IncRNAs make up the majority of the network at 77% and 11% of all interactions, respectively.
Due to its non-specific nature, this universal network contains many interactions not relevant
for the current biological context. In order to get a clearer and valid picture of regulatory
interactions occurring in our enteroids, | used the universal network to annotate the PCeE DEGs

and GCeE DEGs with regulatory connections. Combining these connections, | generated specific
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regulatory networks for PCeEs and GCeEs, where every node is a DEG and every interaction has

been observed in mice previously.

In total, the PCeE network, generated using differential expression data from the PCeEs
compared to the CDEs, contained 37,062 interactions connecting 208 unique regulators with
3,023 unique targets (Figure 2.6A). The GCeE network, generated using differential expression
data from the GCeEs compared to the CDEs, contained 19,171 interactions connecting 124
unique regulators with 2,095 unique targets (Figure 2.6A). 15.7% of all interactions (8,856 out
of 56,234) were shared between the PCeE and GCeE networks, however the interacting
molecular entities in these interactions (termed nodes) did not all exhibit the same direction of
differential expression between the networks (comparing PCeE or the GCeE data to the CDE
data). In each of the enriched enteroid regulatory networks, a particular gene was represented
(as a node in the network) only once, but may have been involved in multiple different
interactions. In different interactions, a single node could act either as a regulator or as a target
and in different molecular forms, for example, as a IncRNA in one interaction and as a target

gene in another.

To further investigate the makeup of these networks, | employed cluster analysis to identify
highly interconnected regions (possible regulatory modules) in the PCeE and GCeE regulatory
networks. Using the MCODE software (Bader and Hogue, 2003), | identified five distinct clusters
in the PCeE network and seven distinct clusters in the GCeE network. A total of 1314 nodes are
present in the PCeE network clusters and 698 in the GCeE network clusters. Functional analysis
identified Reactome pathways (Fabregat et al., 2018a) associated with each of the modules.
Significant pathways (g val < 0.05) were identified only for the highest ranked three modules
from each network, with a total of 12 pathways shared between the PCeE and GCeE associated
clusters (out of 32 associated with the PCeE clusters and 42 with the GCeE clusters) (Figure 2.6B-
D). Of particular note, the first cluster of the GCeE network has associations with the
endosomal/vacuolar pathway and antigen presentation, the second cluster is associated with
the cell cycle. Of the PCeE clusters, the first cluster is associated with a range of functions
including nuclear receptor transcription pathway, regulation of lipid metabolism and
senescence. The second is associated with response to metal ions and endosomal/vacuolar

pathway and the third with G alpha (i) signalling events.
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In conclusion, | have generated regulatory interaction networks, including transcriptional and

post-transcriptional interactions, which illustrate the effect of skewing enteroid differentiation

towards Paneth cell and goblet cell lineages.
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Figure 2.6. Summary and cluster analysis of regulatory network for Paneth cell enriched
enteroid (PCeE) and goblet cell enriched enteroid (GCeE) datasets. A: Summary of number of

nodes and interactions in the whole PCeE (left) and GCeE (right) networks. Total number of each

regulator type shown in red, number of each target type shown in blue. In the targets pie-chart,

MRNAs also represent protein coding genes and proteins, miRNAs also represent miRNAs genes

and IncRNAs also represent IncRNA genes. Size of circles represents logl0O(total unique

regulators/targets). Bar chart represents the distribution of interaction types in the networks

(log10 scale). B: Heatplot of Reactome pathways significantly associated (q val < 0.05) with each
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cluster of the PCeE (orange) and GCeE (purple) networks. Only the top 5 pathways shown for
each group (or more where equal g values). Only the top 3 clusters had significantly associated
pathways. Clusters labelled with rank and cell type and colours match the colour of the cluster
shown in C and D. C, D: Visualisation of the PCeE and GCeE regulatory networks with their
associated clusters. The cluster rank and score is given next to each cluster. Black nodes in the
whole networks represent nodes which were not found in any cluster, whereas coloured nodes
represent the cluster which they are part of. TF - transcription factor; miRNA - microRNA; IncRNA
- long non-coding RNA. Figure reproduced from Treveil et al. (2020) under the Creative
Commons BY licence.

2.4.3 Paneth cells and goblet cells have shared and unique regulators

Through pathway and marker analysis | predicted that our PCeE and GCeE datasets (i.e. DEG
lists), and consequently our regulatory networks, contain signatures from the cell type of
interest as well as additional noise from other secretory lineages. To focus specifically on the
cell type-specific elements of the networks, | used previously identified cell type-specific
markers to extract predicted Paneth cell and goblet cell regulators from our PCeE and GCeE
networks (Haber et al., 2017). As cell type-specific markers represent genes performing
functions specific to a particular cell type, | expect that the regulators of these marker genes will
have an important role in determining the function of said cell type. To identify these regulators,
| extracted from the PCeE and GCeE networks, all relevant cell type-specific markers and their
direct regulators. These new networks were termed the Paneth cell subnetwork and goblet cell
subnetwork respectively. The Paneth cell subnetwork contained 33 markers specific for Paneth
cells with 62 possible regulators. The goblet cell subnetwork contained 150 markers with 63
possible regulators (Figure 2.7). Observing the ratio of regulators and markers, the Paneth cell
subnetwork had, on average, 1.88 regulators for each marker. On the other hand, the goblet cell
subnetwork exhibited only 0.42 regulators for each marker. The quantity of markers identified
in each subnetwork (33 in the Paneth network and 150 in the goblet network) correlates with
the number of marker genes identified by Haber et al. (Haber et al., 2017). However, far fewer
regulators were identified in the goblet cell subnetwork per marker than for the Paneth cell
subnetwork. Whilst the underlying reason for this discrepancy is unknown, it could potentially
be evidence of the complex regulatory environment required to integrate and respond to the
arsenal of signals recognised by Paneth cells in comparison to goblet cells (Stappenbeck and

McGovern, 2017).
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Figure 2.7. Regulator-marker subnetworks for Paneth cell and goblet cell datasets. A, B: Paneth
cell (A) and goblet cell (B) subnetworks. Nodes represent genes, transcription factors or RNAs
and edges represent directed physical regulatory connections. Regulators are shown in red and
pink. Cell type-specific markers are shown in blue. C: Summary of the number of nodes present
in both the subnetworks. Paneth cell data above and goblet cell data below. Total number of
each regulator type shown in red, number of each target type shown in blue. Regulators have
been categorised based on their membership in the two subnetworks - shared regulators are
present in both networks. In the targets pie-chart, mRNAs also represent protein coding genes.
Size of circles represents log10 (total unique regulators/targets). TF - transcription factor; miRNA
- microRNA; IncRNA - long non-coding RNA. Figure reproduced from Treveil et al. (2020) under
the Creative Commons BY licence.

Of the 95 marker regulators, we identified approximately one-third (30/95) as present in both
subnetworks (Figure 2.7C). Given that the markers are different between the cell types, a
regulator shared between the Paneth cell and goblet cell subnetworks must show an altered
pattern of regulatory targeting in the two cell types. This phenomenon, referred to as regulatory
rewiring, often results in functional differences of shared regulators in different environments

(Han et al., 2017) - for example, in this case, between the Paneth cells and goblet cells.

Further investigation of the distinct regulator-marker interactions highlighted a gradient of
regulator specificity. We generated matrices to visualise the markers controlled by each

regulator in the goblet cell (Figure 5A) and the Paneth cell (Figure 5B,C) subnetworks. Each



Chapter 2: The regulatory landscape of small intestinal epithelial cells 88

coloured square indicates that a marker (shown on the y-axis) is regulated by the corresponding
regulator (shown on the x-axis). Squares are coloured blue if the associated regulator is shared
between the Paneth cell and goblet cell subnetworks and orange if they are specific to one
subnetwork. A collection of regulators (both subnetwork specific and shared) appear to regulate
large proportions of the markers. For example, Protein C-ets-1 (ETS1), Glucocorticoid receptor
(NR3C1) and Vitamin D receptor (VDR) regulate >50% of the markers in both the Paneth cell and
the goblet cell subnetworks. Specific to the Paneth cell subnetwork, CCAAT enhancer-binding
protein alpha (CEBPA), Jun proto-oncogene AP-1 transcription factor subunit (JUN), Nuclear
receptor subfamily 1 group D member 1 (NR1D1) and Retinoid X receptor alpha (RXRA) regulate
>50% of the markers. Specific to the goblet cell subnetwork, Growth factor independent 1B
transcriptional repressor (GFIB1) and MYC proto-oncogene (MYC) regulate >50% of the markers.
These regulators represent potential master regulators of differentiation or maintenance of the
given cell types in the enriched enteroids. Referring back to the highly-interconnected clusters
identified in the PCeE and GCeE networks (Figure 3C-D), we find these predicted master
regulators in different clusters. In the PCeE network, CEPBA, NR1D1, NR3C1 and RXRA are in
cluster 1, VDR is in cluster 2, JUN is in cluster 3 and ETS1 is unclustered. In the GCeE network,
ETS1 and MYC are in cluster 1, NR3C1 and VDR are in cluster 2 and GFI1B is in cluster 3. This
suggests a wide range of central functions are carried out by this group of regulators, with
possible divergence of roles between the Paneth cell and the goblet cell. In contrast to the
predicted master regulators, regulators such as MAF BZIP transcription factor K (MAFK) in the
Paneth cell subnetwork and SAM pointed domain containing ETS transcription factor (SPDEF) in
the goblet cell subnetwork regulate only one marker. These regulators likely have more

functionally specific roles.

Together, these results highlight potential regulators which likely play key roles in specification

and maintenance of Paneth and goblet cells and their functions in cell type enriched enteroids.
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Figure 2.8. Matrices of interactions between markers and their regulators in the Paneth cell
and goblet cell subnetworks. Regulators on y-axis, markers (regulator targets) on x-axis. Orange

boxes indicate the interaction of a regulator and a marker where the regulator is only found in
one of the two subnetworks. Blue boxes signify that the regulator is found in both the Paneth
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cell and the goblet cell subnetworks. A: All goblet cell markers (Haber et al., 2017) and their
regulators in the goblet cell subnetwork. B: All Paneth cell markers (Haber et al., 2017) and their
regulators in the Paneth cell subnetwork. C: Sub-section of A showing the markers (and their
regulators) which have the most regulatory connections. Figure reproduced from Treveil et al.
(2020) under the Creative Commons BY licence.

2.4.4 Regulators are rewired between Paneth cells and goblet cells

Cell type-specific markers, which carry out cell type-specific functions, are inherently different
between the Paneth cell and goblet cell subnetworks (mutually exclusive). Therefore, the
regulators observed in both Paneth cell and goblet cell subnetworks (shared regulators) are
expected to target different marker genes. To do this, the regulators must have different
regulatory connections in the different cell types, a phenomenon termed ‘rewiring’ (Park and
Wang, 2018). | extended the analysis to the original regulatory networks (PCeE and GCeE
networks) to investigate whether any of the 30 identified shared regulators are rewired between
the whole PCeE and the GCeE networks, and thus are highly likely to have different functions in
the two types of enriched enteroids as well as between Paneth and goblet cells. To quantify
rewiring of each of these regulators, | observed their targets in the PCeE and GCeE networks
using the Cytoscape application, DyNet (Goenawan et al., 2016). DyNet assigns each regulator a
rewiring score depending on how different their targets are between the two regulatory
networks (Table S2.3). Using these rewiring scores, | identified the five most rewired regulators
(of 30) as ETS variant transcription factor 4 (ETV4), let-7e-5p, miR-151-3p, MYB proto-oncogene
(MYB) and RAR related orphan receptor A (RORA). Functional enrichment analysis was carried
out on the targets of these regulators to test whether the targets specific to the PCeE and GCeE
networks have different functions (hypergeometric model, q value < 0.1) (File S2.2). Across all
five regulators the general trend indicated that targets specific to the PCeE network are
associated with metabolism; targets specific to the GCeE network are associated with cell cycle
and DNA repair. As pathway analysis carried out on the enteroid DEGs identified the same
phenomenon (Figure 2.4D), this suggests that the rewired regulators could be key drivers of
transcriptional changes during the skewing of enteroid differentiation towards Paneth cell or
goblet cell lineages. In addition, given that the strongest signal of enriched enteroids represents
their enriched cell type, | predict that these functions are key features of Paneth cells and goblet
cells in the enteroids, and that the rewired regulators are important drivers of cell type-specific

functions.
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Looking at the regulators in more detail, the GCeE specific targets of miR-151-3p, for example,
are significantly enriched in functions relating to antigen presentation, cell junction
organisation, Notch signalling and the calnexin/calreticulin cycle. None of these functions are
enriched in the shared or PCeE targets. Of particular interest is the calnexin/calreticulin cycle,
which is known to play an important role in ensuring proteins in the endoplasmic reticulum are
correctly folded and assembled (Leach and Williams, 2003). Dysfunction of protein folding and
the presence of endoplasmic reticulum stress are both associated with IBD (Kaser and Blumberg,
2009; Kaser et al.,, 2008, 2011). Therefore, we predict that miR-151-3p plays a role in the
secretory pathway of goblet cells and could be an interesting target for IBD research. In addition,
different functional profiles were also observed for the targets of RORA in the PCeE and GCeE
regulatory networks: targets present in both networks are significantly associated with mitosis,
whereas those specific to the PCeE network are associated with metabolism, protein
localisation, nuclear receptor transcription pathway, circadian clock and hypoxia induced
signalling. GCeE specific targets of RORA are connected to Notch signalling, cell cycle and
signalling by Rho GTPases (associated with cell migration, adhesion and membrane trafficking)

and interferon.

Altogether these observations show that some of the regulators of both Paneth cell and goblet
cell marker genes have different targets (with different associated functions) between the PCeE
and the GCeE networks. This suggests that regulatory rewiring occurs between Paneth cell and

goblet cell types.

2.4.5 Regulatory networks are relevant to study IBD

To investigate the function and relevance of the predicted master regulators in IBD, | carried out
three analyses:

1) aliterature search to check what is known about the identified master regulators.

2) an enrichment analysis to evaluate the disease relevant genes in the PCeE and GCeE
networks and among the targets of the predicted master regulators (with help from
Padhmanand Sudhakar)

3) a comparative analysis with human biopsy based single cell dataset to confirm the

relevance of the PCeE and GCeE networks.
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The literature search was carried out using the three groups of predicted master regulators:
those specific to the Paneth cell markers (CEBPA, JUN, NR1D1, RXRA), those specific to the goblet
cell markers (GFI1B, MYC) and those which appear to regulate many of the markers of both cell
types (ETS1, NR3C1, VDR). We identified five genes (ETS1, NR1D1, RXRA, NR3C1, VDR) with
associations to inflammation, autophagy and/or inflammatory bowel disease (IBD), as shown in
Table 2.2. These genes correspond to 71% (5/7) of the Paneth cell associated master regulators
and 60% (3/5) of the goblet cell associated master regulators. Interestingly, four of these genes

(all apart from ETS1), encode nuclear hormone receptors.
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Putative master
regulator

Autophagy / inflammation / IBD associations

References

NR1D1 (Nuclear Modulates autophagy and lysosome biogenesis

in macrophages leading to antimycobacterial

(Chandra et al., 2015)

(Glucocorticoid

receptor
subfamily 1 group effects
D member 1)
SNP rs12946510 which has associations to IBD, (Mirza et al., 2015)
acts as a cis-eQTL for NR1D1
NR3C1 Associations with cellular proliferation and anti- | (Oakley and Cidlowski, 2013)

inflammatory responses

receptor)

Exogenous glucocorticoids are heavily used as
anti-inflammatory therapy for IBD

(Prantera and Marconi,
2013; Rutgeerts, 1998)

ATG16L1, an autophagy related gene, was
downregulated in patients who do not respond
to glucocorticoid treatment

(De ludicibus et al., 2011;
Dubois-Camacho et al.,
2017)

Transcriptionally regulates NFKB1, a SNP
affected gene in ulcerative colitis

(Dinkel et al., 2016;
Yemelyanov et al., 2007)

VDR (Vitamin D
receptor)

Regulates autophagy in Paneth cells through
ATG16L1 — dysfunction of autophagy in Paneth
cells has been linked to Crohn’s disease

(Bakke et al., 2018; Wu et
al., 2015)

Induces antimicrobial gene expression in other
cell lines

(Gombart et al., 2005; Wang
et al., 2004)

Specific polymorphisms in the VDR genes have
been connected to increased susceptibility to
IBD

(Peietal., 2011)

A study looking at colonic biopsies of IBD
patients observed reduced VDR expression
compared to healthy biopsies

(Abreu et al., 2004)

Interacts with five SNP affected UC genes

(Bovolenta et al., 2012;
Lesurf et al., 2016)

RXRA (Retinoid X
receptor alpha)

Heterodimerizes with VDR (see above)

(Bettoun et al., 2003)

ETS1 (Protein C-
ets-1)

Important role in the development of
hematopoietic cells and Th1 inflammatory
responses

(Grenningloh et al., 2005;
Mouly et al., 2010)

Angiogenic factors in the VEGF-Ets-1 cascades
are upregulated in UC and downregulated in CD

(Konno et al., 2004)

IBD susceptibility gene

(Li et al., 2018)

Table 2.2. Literature associations relating to autophagy, inflammation and IBD for putative master
regulators. Table reproduced from Treveil et al. (2020) under the Creative Commons BY licence.
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Given the possible relationship between the identified master regulators and IBD, | tested the
potential of the PCeE and GCeE regulatory networks to study the pathomechanisms of CD or UC.
I checked for the presence of known CD or UC associated genes in the networks, using data from
two studies of single nucleotide polymorphisms (SNPs) (Farh et al., 2015; Jostins et al., 2012)
and one study of CD expression quantitative trait loci (eQTLs) (Di Narzo et al., 2016). Using
hypergeometric significance tests, | found that the PCeE network was significantly enriched in
all tested lists: genes with UC associated SNPs (13/47, p < 0.005), genes with CD associated SNPs
(22/97, p < 0.005) and genes with CD associated eQTLs (290/1607, p < 0.0001) (Table S2.4, Table
$2.5). On the other hand, we found that the GCeE network was significantly enriched in genes
with UC associated SNPs (10/47, p < 0.005) but regarding CD, the genes with SNP associations
were not significantly enriched (12/97, p = 0.11) and the genes with eQTL associations were

enriched with a larger p value (p < 0.05) (Table S2.4, Table S2.5).

Next, | investigated whether any of the genes with UC or CD associated SNPs act as regulators
in the PCeE and GCeE networks. Of the genes with CD associated SNPs, one acts as a regulator
in each network. Similarly, two different genes with UC associated SNPs act as regulators in the
networks. A summary of these genes and their regulated targets is given in Figure 2.9.
Specifically, regarding CD associated genes, in the PCeE network, the gene D-box binding PAR
BZIP transcription factor (Dbp) regulates BIK, which encodes the BCL2 interacting killer, a pro-
apoptotic, death promoting protein. In the GCeE network, Notch receptor 2 (NOTCH2) regulates
Notch receptor 3 (Notch3) and Hairy and enhancer of split-1 (Hes1). Specifically, regarding UC
associated genes, in the PCeE network, Hepatocyte Nuclear Factor 4 Alpha (HNF4A) regulates
994 genes/RNAs including nine Paneth cell markers and one other gene with UC associated SNPs
(TNF superfamily member 15, Tnfsf15).

e (CD244 molecule, Cd244a

e Fibroblast growth factor receptor like, Fgfrl1

e Colipase, Clps

e Hyaluronan binding protein 2, Habp2

e Heat shock protein family B member 8, Hspb8

e Pancreatic lipase related protein 1/2, Pnliprp1/2

e Defensin beta 1, Defb1

e Myomixer myoblast fusion factor, Mymx
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Additionally, a gene with UC associated SNPs, Nuclear receptor subfamily 5 group A member 2
(Nr5a2), was found in both the PCeE and GCeE networks regulating 389 and 276 genes/RNAs
respectively. In the PCeE network Nr5a2 targets include 6 Paneth cell markers (Cd244a, COPI
coat complex subunit zeta 2 (Copz2), Pnliprp1/2, Syntrophin beta 1 (Sntb1), Mymx). Ultimately,
the large number of targets of these regulatory UC associated genes suggests they have wide
ranging effects on the regulatory network of Paneth and goblet cells. To further establish the
relevance of the inferred PCeE and GCeE networks, Padhmanand Sudhakar also found an over-
representation of drug target associated genes in both the PCeE and GCeE networks
(2683/16223 and 1918/16223 respectively, p < 0.0001), highlighting their potential for the study
of therapeutic implications.

Within PCeE network

Within GCeE network

CD associated
SNP genes

UC associated

SNP genes
Paneth cell
marker genes

Figure 2.9. Crohn’s disease and ulcerative colitis associated SNP genes and their targets within
the PCeE and GCeE networks. CD - Crohn’s disease; UC - ulcerative colitis; PCeE - Paneth cell
enriched enteroid; GCeE - goblet cell enriched enteroid network; PC - Paneth cell.

To investigate the link between predicted master regulators and IBD, | observed whether the
genes with UC and CD associated SNPs are regulated by the predicted master regulators in the
PCeE and GCeE networks (Table S2.6). Given that Paneth cell dysregulation is classically
associated with CD and goblet cell dysregulation/depletion with UC (Cader and Kaser, 2013), |
focused this analysis only on these pairings, examining CD genes amongst targets of Paneth cell

predicted master regulators, and UC genes amongst targets of goblet cell predicted master
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regulators. In the PCeE network, | found 21 (of 22) of the CD genes were regulated by at least
one of the seven Paneth cell predicted master regulators, while the targets of these master
regulators were significantly enriched with CD genes in the PCeE network (p < 0.001). Similarly,
| observed that all 10 UC genes in the GCeE network were regulated by at least one of the five
goblet cell predicted master regulators, while the targets of these master regulators were

significantly enriched with UC genes (p < 0.005).

To confirm the relevance of these predicted master regulators in a human system, a similar
analysis was carried out using goblet cell differentially expressed genes from a recent single cell
study of human inflamed UC colon biopsies (Smillie et al., 2019). Using the top 100 differentially
expressed genes, following conversion to mouse Ensembl identifiers, 20 were found to be
targeted by the predicted goblet cell master regulators in the GCeE network. This represents a

significant enrichment amongst all master regulator targets (p < 0.005) (Table S2.6).

Ultimately, by integrating functional annotations obtained through literature searches, we show
that the Paneth cell and goblet cell regulatory networks contain genes with direct and indirect
associations with IBD. Furthermore, we find that the PCeE and GCeE networks and the targets
of predicted master regulators are enriched with IBD associated genes - this finding is
corroborated using human single cell data from UC colon biopsies. Consequently, these
networks and the workflow to reconstruct and analyse them have great potential for the study

of IBD pathomechanisms in specific intestinal cell types.
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2.5 Discussion

By comparing the transcriptional signature of small and stranded RNAs in the CDEs to the cell
type enriched enteroids, we identified genes with altered expression due to enteroid
enrichment. | hypothesise that the larger quantity of DEGs observed in the Paneth cell enriched
data represents the more diverse selection of environmental signals integrated by Paneth cells
and the lesser role of the goblet cell in the small intestine, given that they are primarily located
in the colon (Clevers and Bevins, 2013; Stappenbeck and McGovern, 2017). Functional
overrepresentation analysis on the top 50 DEGs identified metabolic pathways associated with
the PCeE-specific DEGs and cell cycle pathways associated with the GCeE-specific DEGs. The
addition of further functional analysis methods such as Gene Set Enrichment Analysis and
network-aware functional analysis, could enable the study of all identified DEGs and their
direction of change, contributing further biological insight (Castresana-Aguirre and

Sonnhammer, 2020; Subramanian et al., 2005).

Using cell type marker genes from a single cell sequencing paper (Haber et al., 2017), | showed
that enriching enteroids for Paneth cells and goblet cells results in an increase in transcriptomics
signatures from Paneth cells and goblet cells, respectively. The observation of additional
enrichment of other secretory cell types, particularly enteroendocrine cells, likely reflects the
shared differentiation pathways of these cells. In the future, the generation and application of
cell signature lists from multiple different studies could reduce bias associated with using only
one dataset (Haber et al., 2017). Such biases could have arisen, for example, from the age and
gut microbiome of the mice and from the experimental and computational methods. In future
analysis, evaluation of changes occurring in other cell types (e.g. enterocytes) as a result of
differentiation skewing could further evidence cell type specificity of the altered differentiation
protocols. Single cell sequencing of enteroids could be used for such an investigation, allowing
comparison of gene expression of enterocytes from Paneth cell or goblet cell enriched enteroids

to those from CDEs.

The enrichment of enteroendocrine cell signatures correlates with previous investigations of cell
type enriched enteroids at both the transcriptomic and proteomic levels (Jones et al., 2019; Luu
et al., 2018; Mead et al., 2018; Yin et al., 2014) and is important to consider when using these

organoid models. Regardless, as enteroids contain a mixed population of cell types by nature
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and because intercellular communication is key to a functioning epithelium (Sato et al., 2011;
Thorne et al., 2018), the increased proportion of non-targeted secretory lineages should not be
an issue for the application of these models to research. In fact, the enrichment of specific cell
types is beneficial for enteroid-based research to increase the signal originating from a specific
population of cells and to provide a larger population of cells of interest for downstream single
cell analysis of enteroids, which is particularly beneficial when studying rare populations such as
Paneth cells. The comparison of ‘omics data from a cell type enriched enteroid to a CDE enables
generation of cell type signatures with more specificity than can be obtained otherwise (e.g.
from whole tissue biopsy samples) - except through single cell sequencing. It is possible to carry
out single cell sequencing on enteroids, however this comes at a greater financial cost and
provides lower coverage which can be problematic for rare cell types and lowly expressed RNAs
(Brazovskaja et al., 2019; Jung and Jung, 2016). Organoid models are particularly valuable given
the lack of in vitro models for long-term culture of non-self-renewing small intestinal epithelial
cells (Chopra et al., 2010; Lukovac and Roeselers, 2015). A number of previous studies have
shown that these cell type enriched enteroid models, which offer a simplified and manipulatable
version of the intestinal environment, are useful for the investigation of health and disease
related processes (Jones et al., 2019; Luu et al., 2018; Mead and Karp, 2019). Furthermore, Mead
et al. recently showed that within cell type enriched enteroids, transcriptomic changes are well
correlated to in vivo gene expression (Mead et al., 2018), supporting their use for in vitro studies.
Through this presented work, | showed that cell type enriched organoids can be used to study
cell type-specific regulation by comparing enriched to control organoids — although the
specificity of the signature is not as great as would be achieved using a single cell sequencing

approach.

Using an a priori universal network of non-specific molecular interactions, | annotated the DEGs
with transcriptional and post-transcriptional regulatory connections. MiRNAs and IncRNAs were
included in these networks as they have been shown to perform critical regulatory and
mediatory functions in maintaining intestinal homeostasis (Chapman and Pekow, 2015; Farh et
al.,, 2015; Mirza et al., 2015). For example, IncRNAs have been found to be differentially
expressed in IBD and often co-localised with IBD-associated single nucleotide polymorphisms
(Mirza et al., 2015). At least three separate studies have previously captured RNA profiles of
healthy and/or diseased intestinal cell types; capturing mRNA, miRNA and IncRNA signatures
(Haber et al., 2017; Mirza et al., 2015; Peck et al., 2017). However, we believe this is the first
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comprehensive analysis of miRNAs, IncRNAs and TFs in conjunction with the genes and proteins
they regulate which has been performed on a systems-level in a standardized manner.
Unfortunately, only small proportions of the generated PCeE and the GCeE networks contained
miRNA and IncRNA interactions, due to lack of published interaction information, particularly
from murine studies. The addition of further ‘omics data-types to the described approach could
generate a more holistic view of cellular molecular mechanisms, including the ability to observe
post-translational regulation. These networks will not contain every possible regulatory
interaction within the cell type of interest but will contain interactions which are likely relevant
to cell type-specific functions. For example, whilst regulators do not necessarily show strong co-
expression with their targets, where co-expression exists, there is a greater chance that the
association is functionally interesting. Therefore, we can use these networks to represent and
analyse current biological knowledge as well as to generate hypotheses and guide further
research. The a priori universal network approach to collating networks (regulatory or
otherwise) has been used for a wide variety of research aims, such as the identification of genes
functioning in a variety of diseases (Huang et al., 2018; Novarino et al., 2014), the prioritisation
of therapeutic targets (Wachi et al., 2005) and for a more general understanding of gene
regulation in biological systems (Kubisch et al., 2013; Yu et al., 2003). The application of prior
knowledge avoids the need for reverse engineering / inference of regulatory network
connections, which is time consuming, computationally expensive and requires large quantities

of high quality data (Vijesh et al., 2013).

To investigate the substructure and functional associations of the generated PCeE and GCeE
regulatory networks | applied a clustering approach. The identified clusters represent collections
of highly interconnected nodes, which likely form regulatory modules. Functional analysis
confirmed distinct functional associations between the clusters as well as between the
networks. The observation that less than half of the network nodes exist in clusters is consistent
with the view that regulatory networks are hierarchical and scale free with most genes exhibiting

low pleiotropy (Barabasi and Oltvai, 2004; Wagner and Zhang, 2011).

Given the observed additional increase in secretory lineages based on the DEGs of the enriched
organoids, | chose to use cell type-specific markers to extract interactions specific to Paneth cells
and goblet cells from the generated regulatory networks. This enables further enrichment of
Paneth cell and goblet cell signatures and reduction in noise in the networks due to the presence

of other cell types in the enteroids. Using this approach, | identified possible regulators of cell
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type-specific functions in Paneth cells and goblet cells. Some of these regulators were predicted
to be important in both cell types but exhibited differential targeting patterns between the PCeE
and the GCeE networks, indicating rewiring of regulators between the cell types. Functional
analysis of the targets of the most rewired regulators (ETV4, let-7e-5p, miR-151-3p, MYB and
RORA) highlights an overrepresentation of metabolism associated targets in the PCeE network
and cell cycle associated targets in the GCeE network. A similar result was observed when
functional analysis was carried out on genes with significantly different expression levels
between the cell type enriched enteroids and the CDEs (Figure 2.4B). This suggests that
transcriptional changes during the skewing of enteroid differentiation could be driven by
rewired regulators and that these functions are key features of Paneth cells and goblet cells in
the enteroids. The latter is supported by current understanding that Paneth cells rely on high
levels of protein and lipid biosynthesis for secretory functions (Cadwell et al., 2008) and play an
important role in metabolically supporting stem cells (Rodriguez-Colman et al., 2017).
Additionally, as terminally-differentiated cells do not undergo cell division, this result suggests
that enteroid goblet cell signatures are derived from a large population of semi-differentiated
goblet-like cells, a phenomenon previously observed in tissue sample based studies (Paulus et
al., 1993; Smillie et al., 2019). This analysis highlights apparent redundancy and/or cooperation
of regulators which control similar cell type-specific functions and shows the potential
importance of regulatory rewiring in the evolution of cell type-specific pathways and functions,
something which has been shown previously to occur (Davis and Rebay, 2017; Mendoza-Parra

et al., 2016).

As an extension of the cell type-specific marker analysis, | identified putative cell type master
regulators which control at least 50% of the cell type-specific markers in the PCeE and GCeE
regulatory networks. Literature investigation highlighted that many of these regulators,
particularly those associated with Paneth cells, have connections to autophagy, inflammation
and IBD (Table 2.2). It is known that Paneth and goblet cell immune-associated secretory
functions, which play a major role in gut homeostasis, are highly dependent on the cellular
process autophagy (Cadwell et al., 2008; Jones et al., 2019; Patel et al., 2013; Stappenbeck,
2010). For example, it has recently been shown that the release of lysozyme from Paneth cells
requires a form of autophagy called secretory autophagy, in which LC3+ vesicles containing
lysozyme are routed to the apical surface of the cell for secretion (Bel et al., 2017). This secretory
autophagy was shown to be disrupted in mice harbouring a Crohn’s disease risk allele in the

ATG16L1 gene, thus providing a link between secretion, inflammation, autophagy and IBD. In
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addition, dysfunction of secretion and autophagy in Paneth cells and goblet cells has been
associated with IBD through mechanisms such as reduced intracellular bacterial killing,
increased endoplasmic reticulum stress and impaired secretion of mucus from goblet cells
(Cadwell et al., 2009; Gersemann et al., 2009; Kaser and Blumberg, 2009; Patel et al., 2013).
Furthermore, many IBD susceptibility genes are associated with autophagy function, further
highlighting the link between autophagy, secretion and IBD (Lassen and Xavier, 2017).
Ultimately, the literature associations with the predicted cell type-specific master regulators,
particularly those relating to the Paneth cell, highlight the importance of autophagy, secretion
and inflammation in Paneth cell and goblet cell function and suggest that dysregulation of key

cell master regulators could lead to IBD.

To further investigate the IBD link, | identified Crohn’s disease (CD) and ulcerative colitis (UC)
genes in the PCeE and GCeE networks. | found that CD associated genes are more strongly
associated with the PCeE network than the GCeE network. Given that Paneth cell dysfunction is
classically associated with CD, this finding highlights the relevance of the generated networks to
the in vivo situation. In the PCeE network one SNP associated CD gene, Dbp, acts as a regulator.
Dbp, encoding the D site binding protein, regulates Bik, which encodes the BCL2 interacting
killer, a pro-apoptotic, death promoting protein. Interestingly, rate of apoptosis has been
implicated in IBD disease mechanisms (Nunes et al., 2014) and has been associated with IBD
drug response (Aghdaei et al., 2018). Therefore, this finding highlights a possible regulatory
connection between CD susceptibility genes and IBD pathology on a Paneth cell specific level. In
the GCeE network, the SNP associated CD gene NOTCH2 acts as a regulator for Notch3 and Hes1.
It has been previously demonstrated that this pathway can block glucocorticoid resistance in T-
cell acute lymphoblastic leukaemia via NR3C1 (predicted master regulator) (Real et al., 2009).
This is relevant to IBD given that glucocorticoids are a common treatment for IBD patients
(Prantera and Marconi, 2013). Additionally, the repression of HATH1 by HES1 via Notch
signalling has been previously associated with goblet cell depletion in humans (Zheng et al.,

2011).

Furthermore, we identified a significant enrichment of UC associated genes in both the PCeE
and GCeE networks. The majority of UC associated genes identified in the networks (9/14) were
present in both, suggesting that genetic susceptibilities of UC do not have a Paneth cell or goblet
cell specific effect. Two of the identified UC associated genes act as regulators in the networks

(Nr5a2 and Hnf4a), targeting hundreds of genes and thus suggesting a broad ranging effect on
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the networks. Building on the identified literature associations of predicted master regulators,
we found that the targets of Paneth cell master regulators are enriched with CD associated
genes, and the targets of the goblet cell master regulators are enriched with UC associated
genes. This finding was further illustrated using UC associated goblet cell genes from a human
biopsy study (Smillie et al., 2019), highlighting the relevance of these findings in a human system.
Ultimately, the observation of IBD susceptibility genes in the regulatory networks of these
enteroids highlights possible application of this model system to the study disease regulation in
specific intestinal cell types, through understanding specific mechanistic pathways. In addition,
combined with patient genetic profiles, this approach could help to understand patient specific

drug responses and identify new targets for drug actions.

2.6 Future research directions

We have shown how network biology techniques can be successfully applied to generate
interaction networks representing the change in regulatory environments between two sets of
enteroids, evidencing the value of organoids for cell type-specific studies. The described
workflow could be applied to a variety of ‘omics datasets and enteroid conditions. For example,
to test the response of enteroids to external stimuli, such as bacteria, and on enteroids grown
from human-derived biopsies, enabling patient-specific experiments. The application of further
‘omics data-types to the described approach could generate a more holistic view of cellular
molecular mechanisms, including the ability to observe post-translational regulation. In this
study, we integrated miRNA and IncRNA expression datasets, in addition to mRNA data.
However, only small proportions of the generated PCeE and the GCeE networks contained
miRNA and IncRNA interactions, due to lack of published interaction information, particularly
from murine studies. Both the application of human enteroid data and the future publication of
high-throughput interaction studies involving miRNAs and IncRNAs will improve the ability to
study such interactions. Instead, regulatory connections could be predicted using computational
approaches, rather than relying on a priori resources. For example, one approach can draw
insight about IncRNA-protein interactions using IncRNA—-miRNA interactions and miRNA—protein
interactions (Zhou et al.,, 2019). Another approach uses multilayer convolutional neural
networks to predict miRNA interactions based on experimentally validated interactions (Zheng

et al., 2020).
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Extension of our workflow to single cell sequencing of cell type enriched enteroid cells would
provide increased cell type-specificity. This could enable generation of cell type-specific
regulatory networks (without noise from other secretory cell types) and, if applied without
gating (e.g. 10x Genomics droplet-based systems (Zheng et al., 2017)), could prove or disprove
that goblet cell signatures in enriched enteroids are derived from a large population of semi-
differentiated goblet-like cells. Gating-based single cell sequencing has already been carried out
by Mead et al. on Paneth cells from enriched enteroids, but network analysis was not applied to
contextualise this data (Mead et al., 2018). Droplet-based single cell sequencing could add
further understanding of the cell populations within enriched and conventional enteroids, but
would require a large number of organoids to mitigate cellular complexity and batch
heterogeneity and a powerful, reproducible and accurate computational pipeline to analyse the

data (Chen et al., 2019).

Further work using knock-out mice or organoids could attempt to validate the importance of
predicted master regulators in Paneth cells and goblet cells. However, this poses significant
challenges due to their wide expression and broad function range. If the master regulators are
controlling differentiation as opposed to cell function maintenance, evaluating lineage arrest or
delay could be carried out using a gene knockout or knock down. However, the effects of
pleiotropy will significantly hamper the results and such a study would require significant follow-
up studies. On the other hand, if key regulators were predicted by applying the presented
computational workflow to condition-specific organoids compared to control organoids (e.g.

drug treated organoids vs non-treated organoids), the validation would be much simpler.

Given the functional associations, | predict that one of the most rewired regulators identified in
this study, miR-151-3p, plays a role in the secretory pathway of goblet cells. This could be further
investigated using knockout or knock down studies in enteroids. It’s relevance in IBD could be
studied using enteroids generated from IBD patient biopsies. Furthermore, investigation of
other IBD-related predictions could be carried out using enteroids. For example, enteroids
containing a knockout or known down of one of the UC associated genes acting as regulators in
the networks (Nr5a2 and Hnf4a), could be used to evaluate the phenotypic effect on Paneth
cells and goblet cells — for example using ‘omics data and/or microscopy approaches.
Alternatively, mice containing an epithelial knockout of the investigated gene could be studied
for their susceptibility to intestinal colitis. Moreover, enteroids can be grown from IBD patient

biopsies of patients harbouring the UC associated gene variant and Paneth cell or goblet cell
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phenotypes could be observed compared to wildtype enteroids — alternatively biopsies
themselves could be investigated. Similar studies could be carried out using the predicted
Paneth cell and goblet master regulators. Such investigations would contribute mechanistic

understanding of connections between Paneth cell and goblet cell function and IBD phenotypes.

In conclusion, we developed an integrative systems biology workflow to compare regulatory
landscapes between enteroids from different conditions, incorporating information on
transcriptional and post-transcriptional regulation. We applied the workflow to compare Paneth
cell and goblet cell enriched enteroids to CDEs and predicted Paneth cell and goblet cell specific
regulators, which could provide potential targets for further study of IBD mechanisms.
Application of this workflow to patient derived organoids, genetic knockout and/or microbially
challenged enteroids, alongside appropriate validation and single cell sequencing if available,
will aid discovery of key regulators and signalling pathways of healthy and disease associated

intestinal cell types.
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Chapter 3: The effect of cytokines on the colonic

epithelium

3.1 Introduction

Interactions between the immune system and the intestinal epithelium play an important role
in the pathogenesis of chronic immune mediated inflammatory diseases, including
inflammatory bowel disease (IBD). In IBD, debilitating symptoms and complications including
abscesses and cancer, are associated with aberrant cytokine production and resulting intestinal
epithelial damage. Despite the advent of biological therapies targeting key pathogenic
cytokines, like tumour necrosis alpha (TNFa), fewer than 40% of IBD patients achieve complete
disease control and mucosal healing (Cholapranee et al., 2017). Furthermore, classification of
IBD and patient stratification is typically based on descriptive clinical parameters, which are poor
predictors of patient trajectories. Therefore, new molecular insights are needed to understand
the role of cytokines and intestinal epithelial cells (IECs) in IBD. In turn this knowledge should
inform new treatment strategies and may aid stratification of patients for best use of existing

treatment options.

This chapter describes an interdisciplinary and collaborative project which investigates the
impact of cytokines on IECs using transcriptomics data. Using this data, we studied the signalling
and regulatory responses of IECs to cytokines and compared cytokine-induced transcriptional
signatures to patient biopsy transcriptional signatures, identifying a novel molecular
classification of IBD. The data sources and analyses for this project are outlined in Figure 3.1.
Specifically, we generated transcriptomics data from healthy colonic organoids (colonoids)
which were treated which five IBD-relevant cytokines representing different T helper (Th) cell
responses: interferon-gamma (IFNy) and TNFa (Th1), interleukin (IL)-9 (Th9), IL-13 (Th2) and IL-
17A (Th17). Differentially expressed genes were obtained by comparing each cytokine-treated
colonoid to an untreated control colonoid dataset. This data was used in two main ways. First it
was compared to transcriptional signatures of IBD patient colon biopsies, finding that IBD
patient cohorts exhibit a gradient of cytokine-induced transcriptional changes which is
significantly correlated with subsequent patient response to anti-cytokine treatments —

providing a new method to stratify patients. Second, the colonoid data was used to generate
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causal networks (termed cytokine-responsive networks) modelling the signal flow from
recognition of a cytokine at the outer membrane of IECs through intracellular signalling
pathways to the resulting transcriptional changes observed in the colonoids. This analysis also
integrated molecular interactions from the databases OmniPath (protein-protein interactions,
PPIs) and DoRothEA (transcription factor — target gene interactions, TF-TGs) and colon
expression data from the Human Protein Atlas (Garcia-Alonso et al., 2019; Tirei et al., 2016;
Uhlén et al., 2015). Investigation and analysis of these networks revealed previously
unrecognised levels of shared and distinct regulation by different cytokines. Further, | identified
downstream regulatory bottlenecks, including Protein C-ets-1 (ETS1), in cytokine-responsive
networks. Using IBD-patient transcriptomics data we demonstrated that expression of ETS1 in
diseased colonic tissue is significantly associated with response to anti-cytokine treatments,

thus providing a novel molecular biomarker and a potential therapeutic target.
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Figure 3.1. Schematic overview of the primary data sources and analyses carried out in Chapter
3. Initial analysis of colonoid transcriptomics data is covered in Results section 3.4.1 (Cytokines
effect epithelial gene expression). Cytokine transcriptional signatures in IBD biopsies is covered
in Results section 3.4.2 (Cytokine transcriptional signatures are enriched in IBD patient biopsies).
Network reconstruction is in section 3.4.3 (Reconstructing cytokine causal networks in human
colonoids). Network regulators and signalling is in Results section 3.4.4 (Cytokine-responsive
signalling pathways converge at key transcription factors) and finally network regulators in IBD
isinsection 3.4.5 (ETS1 is a major regulator of the cytokine signalling in intestinal inflammation).

My role in this project was generation and analysis of cytokine-responsive networks, overlap of
IBD signatures with cytokine profiles and the generation of text and figures to accompany this
work. The following chapter has a greater focus on these aspects of the project. Organoid work,
RNA sequencing, initial transcriptomics data processing and all other bioinformatics work was
carried out by collaborators from Nick Powell’s research group in Kings College London. The
contents of this chapter are primarily based on an article which is currently (September 2020)

in review for publication (Pavlidis et al., 2020).



Chapter 3: The effect of cytokines on the colonic epithelium 108

3.2 Aims

The aims of this project were as follows:

Define the transcriptional effect of IBD-linked cytokines TNFa., IFNy, IL-9, IL-13 and IL-
17A on colonic organoids from healthy human donors.

Compare cytokine transcriptional signatures to transcriptional signatures from IBD
colonic biopsies.

Generate and investigate causal networks linking cytokines to their transcriptional
effect, to identify similarities and differences between epithelial responses to different

cytokines.
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3.3 Methods

The following work was carried out in collaboration with clinical researcher Polychronis Pavlidis
and other members of Nick Powell’s research group at Kings College London (KCL). Generation
and pre-processing of organoid data was carried out by them, as was the work comparing
cytokine transcriptional programmes to a large collection of IBD patient biopsy data. | carried
out the pilot analysis to identify cytokine transcriptional signatures in IBD patient biopsies using
a small microarray dataset. Furthermore, all other work to reconstruct and investigate the causal

networks was carried out by myself.

3.3.1 Transcriptomics data from cytokine-treated organoids

3.3.1.1 Colonoid culture

Isolation of human colonic crypts and subsequent establishment of human colonoids was
performed as previously described previously by Fujii et al. (Fujii et al., 2015). During the last
24h of differentiation, human colonoids were treated with human recombinant IL-17A

(50ng/mL), TNFa (10ng/mL), IFNy (20ng/mL), IL-13(10 ng/mL) or IL-9 (10ng/mL).

3.3.1.2 Next generation sequencing and analysis

Harvested colonoids were put in Qiazol and then RNA was extracted with the RNAeasy kit
(Qiagen) as per manufacturer’s guidelines. cDNA was created using the Revertaid cDNA
synthesis kit (ThermoFisher). Sequencing libraries were generated using NEBNext® UltraTM RNA
Library Prep Kit for Illumina® (NEB, USA) following manufacturer’s recommendations. The
clustering of the index-coded samples was performed on a cBot Cluster Generation System using
HiSeqg PE Cluster Kit cBot-HS (lllumina) according to the manufacturer’s instructions. After

cluster generation, the paired end libraries were sequenced on an lllumina HiSeq platform.

Fastq files were preprocessed with in-house Perl scripts to carry out adapter and quality
trimming. Read pairs were aligned to the human genome (GRCh37/hg19) using TopHat2
(v2.0.12) (Kim et al., 2013). HTSeq (v0.6.1) was used to count the read pairs mapped uniquely
and concordantly to each gene (Anders et al., 2015). The raw count matrix was screened for
genes with low expression levels across all samples (i.e. average count less than 3), and then
normalized (Anders et al., 2015). Differentially expressed genes (DEGs) were identified through

a varying intercepts hierarchical modelling approach (Gelman et al., 2014) implemented in R (R,
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2018) and Stan (Carpenter et al., 2017). Gene counts were modelled as a negative binomial
variable dependent on cytokine treatment as well as covariates accounting for repeated
measurements from the same donor and additional sample similarities detected by PCA and
hierarchical clustering. The quality of the estimated statistical model was assessed through
posterior predictive simulations that compare replicated datasets to the actual data. The output
p-values were corrected for multiple testing with the Benjamini-Hochberg method (Benjamini
et al., 2001). Any gene with adjusted p value < 0.1 was considered differentially expressed — no
log fold change cut off was applied. Initial pathway analysis of DEG lists was performed with

Ingenuity Pathway Analysis (IPA, Qiagen) (Kramer et al., 2014).

3.3.2 Cytokine transcriptional signatures in IBD patient biopsies

In the pilot work, | observed cytokine signatures in colonic CD (cCD, n=19) and UC (n=24) biopsies
using microarray mucosal expression profiles from IBD patients prior to infliximab treatment
from the Gene Expression Omnibus (accession GSE16879, n=6 controls) (Arijs et al., 2009). The
microarray expression data was processed to obtain differentially expressed genes in cCD or in
UC compared to healthy controls using GEO2R (Barrett et al., 2013). The differential expression
analysis was carried out using patients as replicates. All genes with adjusted p value £0.01 were
differentially expressed. The direction of fold change was not considered. Functional

overrepresentation analysis and visualisation was carried out as described in section 3.3.4.

For the primary analysis, transcriptomics data and accompanying metadata was obtained from
large clinical trials UNIFI, UNITI and PROgECT for active UC (n=702) and active cCD (n=126)
patients prior to biologic treatment (Feagan et al., 2016; Sands et al., 2019; Telesco et al., 2018).

Data was analysed per patient.

3.3.3 Reconstructing cytokine causal networks in human colonoids

The transcriptomics data from cytokine-exposed colonoids was used to generate cytokine causal
networks through bespoke Python scripts. The networks consist of five separate node types and

three separate interaction types, as shown in Figure 3.2.
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Figure 3.2. Schematic of node and interaction types included in the cytokine causal networks.

3.3.3.1 Cytokine-receptor interactions

Cytokine-receptor interactions were constructed using manually curated information on
published cytokine receptors, as given in Table 3.1. To better represent the known biology of IL-
13 signalling, connections between IL-13RA1 and IL-2RG or IL-4R were not included. Whilst these
proteins do form complexes together, the downstream signalling from IL-2RG and IL-4R is not

initiated by IL-13 binding (Hershey, 2003; Minton, 2008).

Receptor symbol

Receptor Uniprot ID

IFNGR1, IFNGR2

P15260, P38484

IL-22RA1, IL-22RA2,
IL-10RB

Q8N6P7, Q969)5,
Q08334

IL-17RA, IL-17RB, IL-17RC, IL-
17RD, IL-17RE

Q96F46, QONRM6, Q8NACS3,
Q8NFM7, Q8NFR9

TNFRSF1A, TNFRSF1B

P19438, P20333

Cytokine Cytokine
symbol Uniprot ID
IFNy P01579
IL-22 Q9GZX6
IL-17A Q16552
TNFa P01375
IL-13 P35225

IL-13RA1, IL-13RA2

P78552, Q14627

Table 3.1. All possible cytokine — receptor interactions for the causal networks, based on

literature curation.
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3.3.3.2 Protein—protein interactions

The signalling parts of the networks connect cytokine receptors to transcription factors through
the shortest possible paths of protein-protein interactions (PPls). Signalling connections
between the proteins were obtained from the OmniPath database (v0.7.111) (Turei et al., 2016).
OmniPath is a literature curated collection of human and rodent signalling pathways from a
number of different sources, such as Signalink, Signor and the Autophagy Regulatory Network
(Fazekas et al., 2013; Korcsmaros et al., 2010; Licata et al., 2020; Perfetto et al., 2016; Tirei et
al., 2015). All paths consist of three or less intermediary signalling mediators making a total of
six or less steps between the cytokine and the differentially expressed genes. All proteins of the
signalling level, including the cytokine receptors, are expressed in the transcriptomics data for
the relevant cytokine (FPKM > 0 in > 2 replicates) and in the colon dataset from the Human
Protein Atlas (v18.1) (Uhlén et al., 2015). The Human Protein Atlas contains a Tissue Atlas of
expression profiles of human genes based on deep sequencing of RNA and antibody-based

protein profiling using immunohistochemistry.

3.3.3.3 Transcription factor—target gene interactions

The transcriptional regulation level of the causal networks was generated by identifying and
filtering transcription factors known to regulate the genes which were differentially expressed
upon cytokine treatment of colonoids (adjusted p < 0.01). These transcription factor—target
gene interactions were obtained from the published database DoRothEA v2 (Garcia-Alonso,
2018). This is a collection of signed transcription factor (TF) - target gene (TF-TG) interactions
inferred from literature curated resources, ChiP-seq peaks, TF binding site motifs and from gene
expression data. Interactions of confidence level A-D were used, which includes interactions
from all sources except those derived only from computational predictions — as they have the

lowest confidence level.

Nodes of the TF-TG interactions (TFs and DEGs) were filtered to remove any not expressed in
the colon dataset from the Human Protein Atlas (Uhlén et al. 2015). In addition, to reduce the
size of the network and to focus on the most important regulatory interactions, transcription
factors were filtered using two further criteria. Firstly, only transcription factors exhibiting
differential expression were included. Secondly, we applied an internal tool written by Matthew
Madgwick (El, QIB, Korcsmaros group; unpublished data) based on the Cytoscape app CHAT

(Muetze et al., 2016). Here TFs were filtered for their influence in the network using the
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transcriptomics data adjusted p values and the degree of the nodes. Specifically, the tool
inputted the DoRothEA TF-TG network filtered for expressed nodes, alongside the list of all
DEGs. Then, a hypergeometric significance test was carried out on any node with degree > 5 to
determine if the proportion of connected nodes which are differentially expressed is higher than
in the whole network. Any differentially expressed TF with adjusted p value < 0.1 following
Benjamini-Hochberg correction were deemed significant and used to filter the causal networks
for the most influential TFs. ID conversion was carried out using Uniprot Swissprot to Ensembl

id (GRCh38.p12) conversion, downloaded from Biomart on 11/4/19 (Smedley et al., 2015).

3.3.4 Functional analysis and visualisation
Functional enrichment of gene lists was carried out against Reactome pathways using the R
package ReactomePA (Yu and He, 2016). Pathways reported when at least three genes of

interested were identified in the pathway and when g value < 0.1.

All networks were visualised using Cytoscape (v3.7.1) (Shannon et al., 2003). Chord diagrams
and circus plots were generated using custom Python and R scripts and the R library circlize

(v0.4.6) (Gu et al., 2014). Venn diagrams were generated using the python package venn (v0.1.3).
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3.4 Results

3.4.1 Cytokines effect epithelial gene expression

To measure the impact of cytokines on epithelial cells, human colonic organoids (colonoids)
were treated with IBD-linked cytokines IL-9, IL-13, IL-17A, IFNy and TNFa (as a pro-inflammatory
control). Transcriptomics data was generated from each colonoid set and compared to an
untreated control to obtain differentially expressed genes (DEGs) (determined by adjusted p
value < 0.1). In total 3,431 genes were differentially expressed upon treatment with the
cytokines, some distinct and some shared between the different cytokines (Figure 3.3A). IL-13
had the greatest and most distinct impact on colonoid expression with fewer than a third of IL-
13 induced DEGs shared with other cytokines. On the other hand, IL-9-treated colonoids were
excluded from the analysis due to having a negligible impact on the colonoids (only 8
differentially expressed genes). Relatively few genes were affected by IL-17A expression, with
>75% additionally targeted by other cytokines, suggesting redundancy in IL-17A control of

epithelial function.
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Figure 3.3. Differentially expressed genes upon cytokine treatment of colonoids. A. Overlap of
differentially expressed genes across canonical cytokine transcriptional programmes. B.
Regulation of key immunological and metabolic pathways by canonical cytokines in human
colonoids. All differentially expressed genes determined as adjusted p < 0.01. Part A generated
by myself. Part B generated by Polychronis Pavlidis (KCL) using Ingenuity Pathway Analysis
software (Kramer et al., 2014).
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Functional analysis of differentially expressed genes identified a number of cytokine-, immune-
and inflammation-associated pathways affected by cytokine treatment (Figure 3.3B).
Specifically, we found a similar pattern of pathway activation among IFNy and TNFa while IL-13

appears to regulate these pathways in the opposite direction.

3.4.2 Cytokine transcriptional signatures are enriched in IBD patient

biopsies

Having defined the transcriptional programmes of canonical cytokines in colonoids, we explored
whether these signatures were enriched in diseased tissue of patients with IBD. To address this,
we carried out two separate analyses. The pilot analysis, carried out by myself, compared
cytokine-induced DEGs (cytokine programmes) to DEGs from colonic CD (cCD, n=19) and UC
(n=24) biopsies using a publicly available microarray expression dataset (GSE16879, n=6 normal
controls) (Arijs et al., 2009). Following this analysis, a further analysis was carried out using a
much larger dataset with per-patient metadata available. This primary analysis, carried out by
members of Nick Powell’s research group (KCL), used transcriptomics data from colonic biopsies
of active cCD (n=126) and UC (n=702) patients prior to biologic treatment with anti-cytokine
drugs. This data was obtained from large clinical trials UNIFI, UNITI and PROgECT, and analysed
per-patient (Feagan et al., 2016; Sands et al., 2019; Telesco et al., 2018).

For the pilot analysis, all DEGs previously observed using cytokine-treated colonoids were
categorised based on the combination of cytokines which were shown to affect them. For
example, the IL-13,IL-17A programme category contained genes which were differentially
expressed upon colonoid treatment with IL-13 and IL-17A, but not IFNy or TNFa. Between 24%
and 50% of the genes in each cytokine programme category were also DEGs in the cCD and/or
the UC biopsies (compared to healthy control) from the publicly available microarray dataset
(Figure 3.4A, Table 3.1). In addition, | observed that all cytokine programme categories were
activated at a similar level in the cCD and UC biopsies, with a large proportion shared between
the two IBDs. For example, comparing the cytokine-specific programme categories (DEGs
affected by only one cytokine) in cCD to those in UC, | found that roughly half of the genes were
shared between cCD and UC (Figure 3.4). These results indicate a similar pattern of canonical

cytokine programme activation between the IBDs.
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Figure 3.4. Overlap between cytokine programme categories and ¢CD and UC biopsy DEGs
(from GSE16879). A. Cytokine programmes categories (e.g. IL-13, IL-17A) contain colonoid DEGs
categorised by the combination of cytokines which affect them (g value < 0.1). Width of bars on
the circos plots represent the quantity of DEGs in the programme category. Width of horizontal
lines joining the circus plots represent the proportion of the cytokine programme of cCD and UC
which is shared between the two IBDs — only shown for the cytokine-specific programme
categories. B. Cytokine-specific programme categories present in the cCD and UC biopsy data.
Numbers represent the total number of differentially expressed genes (DEGs), size of circles
proportional to log10(number of DEGs). Top three Reactome pathways shown where significant
(g value £0.1) and where at least three DEGs are in the pathway. Similar pathways merged.
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Next, | used pathway overrepresentation analysis to investigate the cytokine-specific
programmes which were distinct and shared between cCD and UC (Figure 3.4B). | found that
DEGs shared between colonoids, cCD biopsies and UC biopsies were associated with
glucuronidation and MAPK activation (for IL-13), PD-1 and interferon signalling (for IFNy) and
chemokine and G-protein coupled receptors (for IL-17A). DEGs shared between colonoids and
UC biopsies (but not cCD biopsies) were associated with fatty acid metabolism (for IL-13), RAS
GTPases (for IFNy) and extra-cellular matrix interactions (for TNFa). However, there were too

few cCD-specific DEGs to determine functional associations.

Following the interesting results of the pilot study, members of Nick Powell’s group (KCL),
carried out a different analysis of cytokine programmes to identify patient-specific patterns of
cytokine programmes, using a large (>1000) IBD patient dataset of diseased tissue expression
data (with associated clinical metadata). Here they employed gene set variation analysis to test
enrichment of the top 50 upregulated colonic organoid DEGs (top cytokine programmes for each
treated cytokine) in the tissue expression data. Note that the top cytokine programmes were
not categorised as in the pilot study. They identified significant enrichment of IFNy and IL-17A
top cytokine programmes in cCD patient biopsies compared with healthy control subjects. In
active UC, they saw significant enrichment of IFNy, IL-13, IL-17A and TNFao top cytokine
programmes. Furthermore, using unsupervised hierarchical clustering they demonstrated a
gradient of enrichment of top cytokine programmes, where some patients had simultaneous
activation of all programmes, whereas others had minimal enrichment across all of the datasets
investigated (Figure 3.5). This observation was consistent across multiple independent cohorts
of ¢cCD and UC patients. Interestingly, they observed weak correlations between the biopsy
cytokine enrichment score (sum of all top cytokine enrichment scores) and clinical features,

including total Mayo score, C-reactive protein, faecal calprotectin or disease duration.
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Figure 3.5. Gradient of top cytokine programme activation in IBD. Each column represents a
single patient. The sum of all four scores per subject is also depicted as the total enrichment
score (TES). Columns have been clustered by Euclidean distance (method: average, tree
ordering: original, figure generated with ClustVis). Data from cohorts: UNITI (n=126), UNIFI
(n=550), PROgECT (n=152). The top cytokine transcriptional programme is the top 50
upregulated colonic organoid DEGs for each cytokine-treated colonoid dataset. Figure
generated by Polychronis Pavlidis (KCL).

In addition, my collaborators used further biopsy transcriptomics data to investigate whether
simultaneous activation of multiple cytokine response pathways in individual cCD patients could
explain resistance to biological therapies, where individual cytokines are selectively targeted.
Here, they found that stratification of the cohorts according to cytokine enrichment score (in
biopsies sampled at baseline), predicted their subsequent response to either anti-TNFa
treatment, infliximab, or to anti-IL-12p40 treatment, ustekinumab. Patients with high total
enrichment scores were very unlikely to respond to treatment, whereas patients with low total
enrichment scores were highly unlikely to respond. A similar observation was found for active

UC patients, although the predictive power was less differentiating than in cCD.

Taken together, our analyses show that diseased colonic tissues of IBD patients are enriched
with cytokine transcriptional programmes - with some similarities and differences observed
between cCD and UC. Further, our data highlights that gradients of cytokine programmes in IBD
patients provides a previously unrecognised molecular classification of IBD, which can be

harnessed to predict response to anti-cytokine therapy.

3.4.3 Reconstructing cytokine causal networks in human colonoids

Next, | used network biology to further explore the impact of cytokine cues on colonic epithelial
cells using the colonoid transcriptomics data. Given that we found that non-response to anti-
cytokine treatments targeting a single cytokine is associated with the simultaneous activation
of multiple cytokine transcriptional programmes, we aimed to identify shared and distinct wiring

connections in epithelial cells as a result of cytokine cues. Here, | generated causal networks for
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each cytokine, predicting molecular signal flow from the recognition of a cytokine at the IEC
surface, through intra-cellular signalling pathways to the observed changes in DEGs (genes
differentially expressed in cytokine-treated colonoids compared to untreated colonoids) (Figure
3.6A). These networks integrated observed transcriptional changes in the cytokine-treated
organoids with using a priori knowledge of PPls and TF-TG interactions available in published
databases of experimentally-verified molecular interactions. These networks provide a systems-
level, mechanistic understanding of cytokine-mediated regulation of epithelial function (Figure

3.6B).
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Figure 3.6. Reconstructing causal networks of signalling and regulatory molecular interactions
connecting cytokines to observed differentially expressed genes within the colonic organoids.
A. Workflow of causal network reconstruction for each cytokine. See Methods section 3.3.3 for
more detail. B. Generated causal networks. One directed network for each cytokine tested.
Colours represent the levels/type of interactions of the networks. Arrows represent direction of
signal transduction. Although some nodes are present in multiple levels of the network, they are
only displayed once in first occurring level (nearest to the cytokine). All differentially expressed
genes determined as adjusted p value < 0.01. TF - transcription factor; DEG - differentially
expressed gene.
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A number of filtering criteria were applied to select only the most likely signalling or regulatory
paths (see Methods section 3.3.3). Due to these criteria and to reliance on published molecular
interactions, some DEGs had no identified upstream paths to their associated cytokine, and
were thus excluded (Table 3.2). Differences in network sizes represent variation in total number
of DEGs and the variation in number of direct pathways identified between the cytokine and the
DEGs (Figure 3.6B). For example, the IL-17A network is smaller, in part because fewer DEGs were
observed upon organoid treatment, but also because very few DEG targeting TFs were identified
which are also differentially expressed (one of the filtering criteria applied). This shows that IL-
17A has a lesser effect on the transcriptomic landscape of organoids than the other cytokines,
including at the TF level. On the other hand, IL-13 treatment of organoids resulted in the largest
observed number of DEGs, many of which are not targeted by any of the other cytokines (Figure
3.7). Correspondingly, the IL-13 network contains the largest number of nodes and edges with
1413 and 5344 respectively. Only 27.8% of these nodes are also present in one or more of the

other cytokine networks.

Cytokine # I?EGs (p # DEGs in % of all DEGs in
adj <0.01) network network
IL-13 1952 1371 70.24
IFNy 1441 1032 71.62
TNFa 766 452 59.01
IL-17A 279 17 6.09

Table 3.2. Number of differentially expressed genes upon cytokine treatment of colonoids and
in the resulting causal networks. DEG = differentially expressed gene.
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Figure 3.7. Chord diagram visualisation of differentially expressed genes (DEGs) targeted by
each cytokine in the causal networks, with functional associations. The cytokines are given in
the upper part of the figure. The targeted DEGs are given in the lower part of the figure. The
length of the lower bars and the width of the connecting lines represents the number of DEGs.
The colours represent which networks each DEG/cytokine is in. The boxes show the top three
enriched Reactome pathways associated with each group of DEGs. Reactome pathways only
shown if total DEG group size is 3 or more and where adjusted p value < 0.1 (Fabregat et al.,
2018a). Where pathways are very similar, they have been reported together.

Next, | carried out functional overrepresentation analysis on the DEGs targeted by each
collection of cytokines in the causal networks. Only five categories of DEGs were significantly
associated to any Reactome pathways, with results shown in Figure 3.7. The identified pathways
were mostly associated with cytokine signalling, for example DEGs targeted solely by IFNy and
those targeted by IFNy and IL-13 were associated most strongly with interferon signalling. DEGs
targeted by IFNy and TNFa were associated with interleukin signalling, indicating overlap
between effects of different types of cytokines. Additionally, TNFo-specific DEGs were
associated with extracellular matrix organisation and cell surface interactions. DEGs shared
between by IFNy, IL-13 and TNFo were also associated with cell surface interactions, suggesting

a role for the extracellular matrix in the response of epithelial cells to cytokines.



Chapter 3: The effect of cytokines on the colonic epithelium 122

3.4.4 Cytokine-responsive signalling pathways converge at key

transcription factors

Next, | sought to compare the nodes (proteins, TFs and DEGs) and interactions (node
interactions) of the causal networks to identify shared and unique features of IEC responses to
different cytokines. Comparing the nodes of each network, 20.4% of all network nodes (total
499) were shared between at least two of the cytokine causal networks (Figure 3.8A). This is
comparable to the proportion of DEGs shared by two or more cytokines (23.2%, Figure 3.3A).
Only five nodes (<0.3%) are present in all of the networks (Figure 3.8A). However, none of these
nodes have a strong link to IBD:
e Potassium voltage-gated channel subfamily H member 2 (KCNH2) - present as a DEG in
every network.
e Plasminogen activator urokinase (PLAU) - present as a DEG in every network.
e Plexin D1 (PLXND1) - present as a DEG in every network.
e E2F Transcription Factor 2 (E2F2) - present as a DEG in every network, except the IL-17A
network where E2F2 acts only as a TF.
e Mitogen-activated protein kinase 14 (MAPK14) - not differentially expressed in any

cytokine treatment but present as a signalling protein in every network.



Chapter 3: The effect of cytokines on the colonic epithelium 123

IL13
IFNy
TNFa

IL17A

IL13, IFNy

IL13, TNFa

IL13, IL17A

IFNy, TNFa

IFNy, IL17A
TNFa, IL17A
IL13, IFNy, TNFa
IL13, IFNy, IL17A
IL13, TNFa, IL17A
IFNy, TNFa, IL17A
B 1113, IFNy, TNFa, IL17A

A TNFa  IFNy B e=m e

219

//d;/:ﬁﬁj—lmzﬁ"}:m:\

Shared nodes

C IFNy, TNFa, IL13 TNFa, IL13 IFNy, TNFa
-

IFNy, IL17A
°°%
=]
e o °

! [ 2 o F ang
3 b X LN =

) .:’,’ 2 ’g.‘&féﬂ ’
ee’ G T g

IFNy, IL13 \ TNFa, IL17A
.

161
‘ﬁ “ M
iz y

1 tnfa >
= ifng ‘M___o___..--

S Shared edges

ETST1
FOS, ETS1
TS1, CEBPA, E2F1
MAZ, E2F2

ETS1, IRF1

Figure 3.8. Overlap of nodes and edges in the four cytokine causal networks. A: Venn diagram
showing overlap of nodes in the networks (not to scale). B: Circus plot of all network nodes,
where each ring represents one level of the causal networks, with cytokines in the middle and
the differentially expressed genes at the edge. The coloured bands represent the proportion of
all nodes in the level which belong to a specific category. The categories, identified by colour,
are defined by which causal networks the given node is present in. C. Venn diagram showing
overlap of edges (interactions) in the networks (not to scale) with network visualisations of all
edges shared between two or more of the networks. Where relevant, the transcription factor
responsible for the majority of the shared interactions is given at the right side of the network
images.

After categorising nodes by their network layer (signalling proteins, TFs and DEGs), the
proportion of nodes shared with more than one cytokine network is fairly consistent (Figure
3.8B). This is could be due to an overlap of epithelial signalling and regulatory pathways initiated

by different cytokines. Furthermore, | investigated the edges (interactions) shared between the
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cytokine causal networks (Figure 3.8C). | found that the majority of interactions shared between
networks are involving seven different transcription factors and their DEG targets:

e Protein C-ets-1 (ETS1)

e Interferon regulatory factor 1 (IRF1)

e CCAAT enhancer binding protein alpha (CEBPA)

e MYC associated zinc finger protein (MAZ)

e FOS proto-oncogene (FOS)

e E2F transcription factor 1 (E2F1)

e E2F transcription factor 2 (E2F2)

In particular, TF ETS1 plays the largest role, with interactions shared between the IL-13, TNFa
and IFNy causal networks. Most of these TFs (6/7) were found in the IFNy network, suggesting
that IFNy shares regulatory mechanisms with many other cytokines. Taken together these
networks highlight that the cytokines have shared and unique effects on signalling within the
colonic organoids and that TFs could play a key role in the intersection between different

cytokine-induced signal flows.

To further investigate the importance of TFs cytokine causal networks, | visualised the TFs
targeted by each cytokine (Figure 3.9A). | found that the majority of transcription factors are
specific to a cytokine, while 12 TFs are targeted by more than one cytokine (present as a TF in
more than one network). Specifically, these 12 shared TFs constitute 21%, 37.5%, and 42% of all
TFs affected by IL-13, IFNy, or TNFa, respectively, indicating a substantial overlap among the
downstream regulators of these cytokines. Meanwhile the IL-17A causal network only contains

2 TFs which are both also targeted by IFNy.
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Figure 3.9. Transcription factors (TFs) shared between multiple cytokine causal networks. A.
Network visualisation of TFs targeted by multiple cytokines (shared TFs). Cytokines are larger
square nodes, transcription factors are smaller circular nodes. B. ETS1, FOS and CEBPA TFs
regulate the majority of DEGs in the IL-13, IFNy and TNFa cytokine causal networks.

| investigated DEGs regulated by the shared TFs in each network to understand which TFs could
interfere with the transcriptional program of another cytokine. | found that the majority of DEGs
in each network were regulated by at least one shared TF (IL-13, 81.8%; IFNy, 93.8%; TNFa,
99.5%; IL-17A, 100%), indicating that signals from one cytokine could have a significant impact
on another cytokine’s transcriptional programme, through shared TFs. Moreover, | quantified
the network DEGs targeted by each of the shared TFs separately, and found that three of the 12
shared TFs (ETS1, CEBPA, FOS) regulated the majority of all the DEGs in colonoids (Figure 3.9B).
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This signifies a particularly important role for these three TFs in the regulation of multiple

concurrent cytokine responses in IECs.

Given the likely importance of shared TFs, | explored whether they are activated through the
same pathways in the different causal networks. | found that cytokine receptors do not act
through shared signalling pathways, but instead have (mostly) unique signal transduction paths
which converge on the key shared TFs. As an example, Figure 3.10 depicts the signalling
pathways which lead to ETS1, IRF8 and IRF1. Furthermore, many of the predicted signalling
proteins connecting cytokines to their targeted genes are not differentially expressed (Figure
3.6B). This suggests that signals are propagated through the networks by post-translational

modifications, such as phosphorylation of JAK/STAT proteins.
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Figure 3.10. Signalling pathways linking cytokines to shared transcription factors. From causal
networks. Node and edge colour indicate which cytokine causal networks the node/edge is
present in. A: IL-13, TNFa and IFNy signalling pathways to ETS1. B: IL-13 and IFNy signalling
pathways to IRF8 and IRF1.

Taken together, these findings show that cytokines have independent signalling mechanisms
which affect cytokine-specific TFs as well as converge on key shared TFs. The shared TFs,

particularly ETS1, FOS and CEBPA, affect large proportions of the cytokine transcriptional
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programmes, and could partly explain non-response to single cytokine-targeting therapies in

patients with high activation of multiple cytokine programmes.

3.4.5 ETS1 is a major regulator of the cytokine signalling in intestinal

inflammation

Finally, Polychronis Pavlidis (KCL) tested the functional relevance of the 12 shared TFs by
exploring their expression in the colon of patients with and without IBD. Using principal
component analysis, he showed that IBD patients with active colonic inflammation are
completely differentiated from control patients based on the expression of these shared TFs.
Unsupervised hierarchical clustering based on expression levels demonstrated that these TFs
tended to cluster with the cytokines TNFa, IFNy, IL-17A, and their receptors. Furthermore, using
expression of ETS1, FOS and CEBPA in a multivariate logistic regression model to predict
response to anti-TNF treatment (infliximab) in IBD, identified ETS1 as the single predictive TF.
Specifically, he found that non-responders had higher expression of ETS1 prior to
commencement of infliximab, with an area under the curve predicting response of 0.82, 95%ClI

(0.69, 0.96), p=0.0003.

These observations further evidence that activation of multiple concurrent cytokine
transcriptional programmes drives resistance to therapy, whilst further highlighting ETS1 as a
potential therapeutic target in IBD and as a biomarker the stratify patient response to

treatment.
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3.5 Discussion

To our knowledge this is the first study describing the transcriptomic landscape of the immune-
epithelial interactome in the gut. By treating healthy colonoids with canonical cytokines we
identified shared and distinct patterns of regulated gene expression in the epithelium.
Combining cytokine-mediated transcriptional data with network biology methods and diseased
tissue transcriptomics data, we identified a novel molecular classification of IBD based on
gradients of cytokine transcriptional programmes and predicted the TF ETS1 as a potential

biomarker and therapeutic target in intestinal inflammation.

The large epithelial response to IL-13 in comparison to other tested cytokines is unexplained but
indicates the importance of IL-13-epithelium interactions. Conversely, IL-9 showed almost no
impact on the colonoids, suggesting that IL-9 does not significantly affect epithelial cells at the
given concentration, or that it requires co-stimulatory molecules or alternatively, that it acts
only on specific cell types whose signature is masked by whole colonoid sequencing (Gerlach et

al., 2014).

Pathway analysis revealed many inflammatory pathways associated with the cytokine-induced
DEGs, which is expected as a cellular response to cytokines. IFNy and TNFa show similar patterns
of pathway activation/inactivation indicating significant overlap in colonic epithelial response to
these cytokines. Given only 12% of the DEGs upon IFNy or TNFa treatment are shared between
the two conditions, the observed pathway overlap suggests synergism between the cytokines.
This synergism has been previously described in the context of epithelial cell proliferation and
apoptosis (Nava et al., 2010). Many pathways affected by IL-13 are activated/inactivated in the
opposite direction to the other cytokines, suggesting an anti-inflammatory role of IL-13 on
epithelial cells. However, it has been shown previously that IL-13 exposure of HT-29/B6 colonic
epithelial cells results in increased apoptosis and reduced transepithelial resistance, suggesting

that IL-13 plays both pro- and anti-inflammatory roles (Heller et al., 2005).

When mapping cytokine transcriptional programmes identified in the colonoids to pilot colonic
biopsy transcriptomics data from a small number of IBD patients, | found a highly conserved
pattern of expression in patients with UC and cCD. This indicates that the immune landscape of

colonic inflammation of both these diseases, at least at a transcriptional level, is very similar. It
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also shows that no particular cytokine profile characterises UC or cCD, challenging the Th1/Th2
depiction of IBD (Fuss, 2008; Imam et al.,, 2018). However, thorough investigation of the
cytokine-specific programme categories identified in the biopsy datasets highlighted a
functional difference between UC and cCD. Specifically, | found that IL-13-responsive genes
associated with fatty acid metabolism were present in the UC dataset but not the cCD dataset,
suggesting a role of IL-13 in fatty acid metabolism in UC. Both UC and cCD have been previously
connected to fatty acids and levels of fatty acids have been shown to regulate cytokine levels
(Heimerl et al., 2006; Scoville et al., 2018), but as far as | am aware, no publication has yet linked
IL-13 signalling to downstream altered fatty acid metabolism in UC or cCD. On the other hand,
a direct link between TNFa and the extra-cellular matrix in UC has been previously published
(Wang, 2007). Further investigation into the other functional associations in connection with
their targeted cytokine could reveal mechanistic differences between UC and cCD. It should be
noted however, that in this small biopsy dataset most of the cCD-associated genes were also
present in the UC dataset, and very few were specific to cCD. Therefore, application of further

biopsy datasets would strengthen this functional analysis.

Additional investigation of cytokine transcriptional programmes was carried out using
independent cohorts making up the biggest dataset of IBD tissue ever analysed (>1000 samples).
This analysis further challenges the outdated T-cell lineage identity paradigms in IBD patient
classification, by demonstrating that IBD patients can be stratified based on combined
enrichment of cytokine-induced transcriptional programmes. This finding corroborates recent
understanding that IBD involves ‘polyfunctional’ T-cell responses, in which individual T-cells co-
produce different cytokines, such as TNFa and IL-17A (Langrish et al., 2005; Tang and lwakura,
2012). Importantly, this finding might explain the success or failure of some of commonly used
anti-cytokine therapies which blockade a single cytokine and thus would be unlikely to
antagonize multiple concurrent pathways. Moreover, this novel classification system using
cytokine transcriptional programmes could be harnessed as a precision medicine tool to stratify
patients according to their likelihood of responding to anti-cytokine therapies. Those patients
with high cytokine enrichment scores could be offered alternative therapies such as accelerated
surgery or dual administration of biologics targeting different cytokines. Indeed, clinical trials

evaluating blockade of TNFa and IL-23 simultaneously have already begun (NCT03662542).
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Causal networks were constructed to further explore the effect of cytokines on epithelial cells
at a systems-level. These networks represent the most likely pathways of action but will not
include every possible molecular link and may contain false positive interactions. Moreover, the
network reconstruction method employed here does not correct for bias due to common hubs
and assumes that pathways are linear and short, which is often not true. Hubs are present in a
priori protein-protein interaction resources due to study bias based on research interest and on
bias of experimental techniques (Schaefer et al., 2015). Correction of hub bias can occur during
network investigation, for example by using the Contextual Hub Analysis Tool (CHAT) tool to
identify important hubs using ‘omics data rather than only by degree (Muetze et al., 2016).
Alternatively, hub bias can be mitigated during network reconstruction through the use of heat
diffusion algorithms such as HotNet2 and TieDIE (Leiserson et al., 2015; Paull et al., 2013; Vandin
et al., 2012). A diffusion algorithm approach could also improve on the presented method by

avoiding the assumption that signalling pathways are short and linear.

In addition to possible missing interactions in the a priori interaction sources, network nodes,
particularly TFs, were heavily filtered to prioritise those of most importance. Such a filtering
method may bias the networks by including only TFs which are themselves transcriptionally
regulated while excluding those regulated by posttranslational modifications and protein—
protein interactions (Tootle and Rebay, 2005). Moreover, protein activation levels cannot be
directly inferred from expression levels. A number of tools have been developed which could
improve the presented method by applying a different TF filtering method. For example,
algorithms such as VIPER could be used to infer TF activity based on regulon expression and

pleiotropy (Alvarez et al., 2016).

We observed that most signalling proteins in the networks were not differentially expressed,
indicating that signal transduction occurs via post-translational modifications. This also implies
a possible lack of negative feedback loop in the system, resulting in cytokine pathways being
prone to overactivation. Such loops are often seen in stress response signalling, whereby
pathway protein members are downregulated as a result of the signalling flow (Hua et al., 2009).
As activation levels of proteins cannot be directly inferred from expression levels, the addition
of proteomics data to the study could uncover important post-translational regulation and
improve the prediction of signalling pathways. However, overall, the size and overlap of causal

networks is well correlated with the DEGs, indicating that biological signals have been retained.
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Comparison of the cytokine causal networks highlighted previously unrecognised levels of
shared and distinct characteristics, demonstrating redundancy and complementarity in
cytokine-epithelial interactions. Specifically, | identified a collection of seven TFs which drive the
majority of interactions shared between multiple networks, forming potential molecular
bottlenecks of cytokine signalling. Literature searches reveal that all of these TFs have
documented associations with immunomodulation, with many of them known to regulate
and/or be regulated by cytokines. For example, IRF1 has a documented role in response to
cytokine signalling, particularly IFN signalling, leading to immunomodulation (Honda and
Taniguchi, 2006; Kroger et al., 2002). A recent study found that IL-13 can act through IRF1 to
induce apoptosis of neonatal Th1 cells (Miller et al., 2019). E2F1 and E2F2 are regulators of cell
cycle and have been shown to act in feedback loops with cytokines and drive T cell proliferation
(DeRyckere and DeGregori, 2005; Ertosun et al., 2016; Zhang et al., 2018). MAZ, which is highly
expressed in UC and colon cancer, has been shown to be a critical driver of inflammation through

Signal transducer and activator of transcription 3 (STAT3) signalling (Triner et al., 2018).

Furthermore, three of these TFs were shown to regulate more than 50% of the cytokine-induced
programme for each affecting cytokine, indicating their centrality and importance in cytokine
responses. ETS1 (targeted by IL-13, TNFa and IFNy) has a known role in cytokine and chemokine
gene regulation in addition to other functions such as stem cell development and proliferation
of lymphoid cells (Dittmer, 2003; Russell and Garrett-Sinha, 2010). Studies have shown that ETS1
is linked to the regulation of Jak-Stat signalling, one of the foremost pathways downstream of
cytokine receptors (Murray, 2007). ETS1 has also been identified as a susceptibility gene for IBD
and is known to affect development of T-cells (Li et al., 2018). In addition, Ets1 knockout mice
show decreased expression of cytokines including IL-13, TNFa and IFNy in T cells, indicating a
role in positive feedback loops of cytokine expression (Grenningloh et al., 2005; Russell and
Garrett-Sinha, 2010). Interestingly, IL-17A showed increased expression in a similar experiment,
suggesting a different mechanism of signalling - possibly explaining the lack of ETS1in the IL-17A
causal network (Moisan et al., 2007). Furthermore, both CEBPA and FOS have documented links
to immunomodulation. For example, CEBPA is in involved with cellular differentiation and
response to inflammatory insult and a genetic region involving the Cebpa gene was identified as
susceptibility locus for early onset IBD (Imielinski et al.,, 2009; Lekstrom-Himes and
Xanthopoulos, 1998). FOS has been shown to regulate degranulation and cytokine production

in mast cells (Lee et al., 2004).
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Our novel analytical workflow allowed us to discover potential molecular bottlenecks
downstream of the canonical cytokines’ engagement with their relevant receptor. Ultimately,
the strong literature links between the identified TF bottlenecks and cytokines evidences the
biological relevance of the generated causal networks and highlights their potential for

identifying key drivers of cytokine mediated inflammation.

Finally, the importance of ETS1 in regulating immune-epithelial interactions was evidenced
through validation against whole tissue transcriptomics data from IBD patient colonic biopsies.
Specifically, Polychronis Pavlidis (KCL) found that a higher expression of ETS1 was significantly
associated with subsequent non-response to anti-TNFa drug infliximab. Additionally, he found
that those patients with high ETS1 expression also had high IFNy expression, which further
evidences why anti-cytokine treatments targeting single cytokines may not be effective in some
patients. Importantly, this finding offers a novel patient stratification method whereby ETS1
expression within whole biopsies samples could be used to predict patient response to
infliximab. In turn, this could allow clinicians to personalise treatment options, offering different
or more advanced treatments to those predicted not to respond. Further, these findings
propose that a novel therapeutic approach targeting ETS1 could potentially block downstream
effects of multiple cytokines concurrently, and thus be beneficial for patients with high
enrichment of multiple cytokine programmes. However, significant challenges and unknowns
would need to be addressed to use ETS1 as a therapeutic target, including possible off target

effects and subcellular location difficulties.

3.6 Future research directions

Through the generation of causal networks, | made a number of predictions regarding key TFs,
post-translational modifications and cytokine-specific functional associations to IBD. For
translation of these predictions to actionable results, further research and investigation is
required. For example, targeted knock out or inhibition studies could be used to validate the
importance of the key TFs in cytokine signalling. If found to result in few off-target effects, these
TFs, especially ETS1, could serve as therapeutic targets for inhibiting cytokine-driven immune
response in IBD — although this could be challenging due to its intracellular location.

Furthermore, validation of the specific cytokine-function associations predicted in UC and CD
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could enhance mechanistic understanding of these diseases, potentially leading to disease-

specific approaches to cytokine inhibiting treatments.

For future work, the causal network reconstruction methodology should be improved. The
addition of further molecular interaction resources and/or changes in DEG and interaction
filtering criteria would likely result in more realistic causal networks. For example, the
application of more advanced modelling tools to predict causal networks, such CARNIVAL, or
diffusion methods such as TieDIE, could provide more detailed networks with a reduced bias
towards hub proteins (Liu et al., 2019; Paull et al., 2013). Moreover, different approaches to TF
filtering, such as using the VIPER algorithm, would reduce the bias due to including only
differentially expressed TFs (Alvarez et al., 2016). However, one further challenge is to
determine which methods lead to the most realistic models, which would require significant
experimental validation. Nevertheless, one would expect major findings, such as the importance

of ETS1, to be replicated using similar approaches.

Finally, the work described could be extended to study cytokine effects in a cell type-specific
manner or in different tissue types. Such experiments could utilise different organoid models,
single cell sequencing and/or cell sorting technologies to obtain -omics data from different tissue
and cell types. Such an approach may link known alterations in Paneth cells and goblet cells in
IBD with cytokine aberrations, and lead to more targeted therapeutic approaches. For example,
in Chapter 2 | predicted that ETS1 is also an important TF in Paneth and goblet cell function. As
Paneth cells are known to be disrupted in CD, It would be interesting to investigate possible links
between ETS1, Paneth cells, cytokine responses and CD (Liu et al., 2016; Treveil et al., 2020).
However, phosphoproteomic studies should also be carried out to confirm activation levels of

ETS1.

In conclusion, we investigated the transcriptomic landscape of the immune-epithelial
interactome, finding previously unrecognised levels of shared and distinct transcriptional
regulation of epithelial function by different cytokines. The complex and multifaceted nature of
downstream signalling and regulation from cytokines ques illustrates why many questions
remain unanswered regarding the action of cytokines in IBD. Nevertheless, we feel that our
primary findings are of significant translational importance and pave the way for personalized

medicine approaches in IBD.



Chapter 4: The effect of bifidobacteria on the small intestinal epithelium 134

Chapter 4: The effect of bifidobacteria on the small
intestinal epithelium

4.1 Introduction

The Bifidobacterium genus are health-promoting commensal bacteria found in the human
gastrointestinal tract. As described in the General Introduction (section 1.5), bifidobacteria are
primary colonizers and dominant members of the early life gut microbiota, and consequently
play a critical role in immune maturation and programming (Figure 1.6) (Arboleya et al., 2016;
Ruiz et al., 2017; Stewart et al., 2018). IECs are a primary site of interaction between
bifidobacteria and their host, thus, play a significant role in mediating the host response and
beneficial effects of bifidobacteria. Therefore, a greater understanding of the effect of
bifidobacteria on IECs will build knowledge of the mechanisms through which bifidobacteria
exerts their beneficial effects. In turn, this knowledge can aid development of prevention and
treatment options for gut and systemic inflammatory diseases. To date, a number of studies
have investigated the effect of different bifidobacteria strains on IECs (see General Introduction
section 1.5.2), however these works were mostly performed on adult mice in the context of
acute or chronic gut inflammation and often focused on specific IEC functions such as mucus
production and barrier function (Hsieh et al. 2015; Srutkova et al. 2015; Pinto-Sanchez et al.
2017; Schroeder et al. 2018; Yan et al. 2019; Din et al. 2020). However, very little work has
focused on the role of Bifidobacterium on IECs in early life or in healthy conditions. Such studies
could uncover the importance of bifidobacteria in gut development within babies and for
maintenance of a healthy gut — in the absence of inflammation. Furthermore, most studies to
date have focused only on specific functions of the epithelium, potentially overlooking other

important effects of bifidobacteria.

Therefore, we aimed to explore how Bifidobacterium can modulate IEC homeostasis within the
early life developmental window using healthy specific pathogen free (SPF, conventionalised) 2-
week-old mice, as shown in in Figure 4.1. We compared this response to 10-12-week-old adult
mice to uncover the influence of age in bifidobacterial effects (data not shown). Specifically, we
investigated the effects of human infant associated strain Bifidobacterium breve UCC2003 which
has been shown previously to have health beneficial effects (as described in General

introduction section 1.5.4). Selective culturing and 16S rRNA microbiota profiling were used to
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confirm the presence of B. breve within the mice gastrointestinal tracts and to quantify other
microbiota alterations. Following isolation of IECs, we employed global transcriptomics analysis
to compare bifidobacteria-treated mice to control mice — without limiting scope to specific IEC
functions. We found that B. breve administration extensively alters the murine neonatal IEC
transcriptome (~4,000 significantly upregulated genes), but has no significant effect on the
transcriptomics of adult mice IECs (data not shown). Combining functional overrepresentation
analysis with protein-protein interaction network reconstruction and clustering approaches, we
identified a number of IEC functions affected in the neonatal mice, particularly epithelial barrier
function, cell differentiation and proliferation. Furthermore, using cell type marker genes we
identified an overrepresentation of stem cell marker genes among the differentially expressed
genes (DEGs), indicating that bifidobacteria can cause an increase in the regenerative potential
of the epithelial layer in neonatal mice. Regulatory network reconstruction was used to predict
key regulators of the differentially expressed stem cell marker genes through which B. breve
UCC2003 may be acting. Together these findings evidence the significant role of Bifidobacterium

in early life modulation and development of IEC function.
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Figure 4.1. Schematic overview of neonatal bulk epithelium study design and analysis
workflow. Figure adapted from Kiu et al. (2020) under the Creative Commons BY licence.
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Carried out in collaboration with Lindsay Hall’s research group (Quadram Institute Bioscience,
QIB), my primary role in this project was the reconstruction and analysis of networks and cell
type marker genes, while also supporting and training Raymond Kiu (QIB) in bioinformatics
techniques for data processing and differential expression analysis. This study is subsequently
termed the “neonatal bulk epithelium” study to differentiate it from the study described in
Chapter 5. This chapter is based on (verbatim) the peer-reviewed article published in iScience in

which | am second author (Kiu et al., 2020). The published article is reproduced in Appendix 6.

4.2 Aims

The aims for this project were as follows:
e Evaluate the global transcriptional response to B. breve UCC2003 in small intestinal IECs
from young mice

e Predict which IEC types, if any, are particularly affected by B. breve UCC2003
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4.3 Methods

All experimental work and the sequencing data analysis were carried out by Lukas Harnisch
during his PhD project and Raymond Kiu (QIB). | have advised Raymond Kiu in RNA sequencing
data processing and trained and supported him to carry out the signalling network analysis in
section 4.3.6. | performed all the analysis and interpretation described thereafter. Further

details of the experimental methods are described in Kiu et al. (2020).

4.3.1 Mouse work

All animal experiments and related protocols were performed in accordance with the Animals
(Scientific Procedures) Act 1986 (ASPA). C57BL6/] female mice were housed within UEA Disease
Modelling Unit. Two weeks old SPF mice (n=10) and 10-12 weeks old SPF mice (n=10) were fed

autoclaved chow diet ad libitum.

4.3.2 Bacterial culturing, inoculum preparation, mouse challenge with B.

breve UCC2003 and CFU enumeration

B. breve UCC2003 (also known as NCIMB 8807) was streaked from frozen glycerol stocks onto
autoclaved Reinforced Clostridial Agar (RCA) plates (Oxoid, UK) and incubated in an anaerobic
chamber (miniMACS, Don Whitley Scientific) at 37°C for 48 h prior to picking single colonies for
inoculation in prewarmed liquid sterilised Reinforced Clostridial Medium (RCM) (Oxoid, UK). For
preparation of mice gavage inocula, RCM strain pre-cultures were sub-cultured into De Man,
Rogosa and Sharpe (MRS) medium (Oxoid, UK), incubated, centrifuged, washed and diluted in
Phosphate Buffered Saline (PBS) (De Man et al., 1960). Bacterial concentration of inoculum was
enumerated by plating serial dilutions in sterile PBS on RCA plates and enumerating colonies
following two-day incubation to calculate CFU/ml. Mice received 50ul oral gavages with
bacterial inoculations of 108 CFU/ml or control samples of sterile PBS every 24 h for 3
consecutive days. Colonisation was confirmed by serial dilution and plating of fresh faeces on
RCA supplemented with 50 mg/L mupirocin, and counting of colonies following 2-day
incubation. Gut microbiota profiling was carried out by 16S rRNA amplicon sequencing of caecal
samples on day 4 using the FastDNA Spin Kit for Soil (MP Biomedicals) the lllumina MiSeq

platform and the QIIME analysis (Caporaso et al., 2010) software as described in Kiu et al. (2020).
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4.3.3 Tissue harvesting and processing

On day 4 post oral gavage, the mice were humanely culled and 10cm sections of small intestine
were immediately harvested and dissected into 0.5cm? pieces and IECs were isolated using

adapted Weisser method (Hughes et al., 2017) as described in Kiu et al. (2020).

4.3.4 RNA extraction, preparation and sequencing

RNA was extracted from IEC isolations using QlAshredder spin columns (QIAGEN) followed by
centrifugation. Follow-through was added to RLT lysis buffer and 70% ethanol and mixed by
pipetting. Samples were then loaded to a RNeasy spin column until all of sample had gone
through the filter. Buffer RW1 was added to column and centrifuged to remove carbohydrates,
proteins and fatty acids. Flow through was discarded and filter placed in a new collection tube
with wash buffer RPE and spun again, followed by discarding of flow through. Additional wash
buffer RPE was pipetted into column and centrifuged again. Columns were transferred to a RNA
low-bind Eppendorf tube with RNase free water and incubated for 1 min at room temperature.
Sample was centrifuged and flow through containing RNA stored at —80°C prior to processing.
Isolated RNA was processed by poly-A selection and/or Ribo-depletion. Purified RNA was
quantified, and quality controlled using RNA 6000 Nano kit on a 2100 Bioanalyser (Agilent). Only
samples with RNA Integrity Number (RIN) values above 8 were sequenced. RNA sequencing was
performed at the Wellcome Trust Sanger Institute (Hinxton, UK) on paired-end 75 bp inserts on
an Illumina HiSeq 2000 platform. All samples were sequenced using non-stranded, paired-end

protocol.

4.3.5 Sequence pre-processing and differential expression analysis

Quality of sequencing reads was assessed using FastQC (v0.11.8). and fastp (v0.20.0) with
options -q 10 (phred quality < 10 was discarded). rRNA sequences were removed using
SortMeRNA (v2.1) based on SILVA rRNA database (Chen et al., 2018; Kopylova et al., 2012; Quast
et al., 2013). Transcript mapping and quantification were performed using Kallisto (v0.44.0)
(Bray et al., 2016). Briefly, Mus musculus (C57BL/6 mouse) cDNA sequences (GRCm38.release-
98_k31) were retrieved from Ensembl database and built into an index database with Kallisto
utility index at default parameter that was used for following transcript mapping and abundance
quantification via Kallisto utility quant at 100 bootstrap replicates (Zerbino et al., 2018).
Differential gene expression analysis was performed using R library Sleuth (v0.30.0) (Pimentel

et al., 2017). Gene transcripts were mapped to individual genes using Ensembl BioMart database
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with Sleuth function sIeuth prep with option gene mode = TRUE (Kinsella et al., 2011).
Genes with an absolute log2(fold change) > 1 and q value < 0.05 were considered to be

differentially expressed (or, significantly regulated).

4.3.6 Signalling network reconstruction and analysis

A signalling network of all upregulated DEGs and their first neighbours was built using all
available biological signalling databases in the Cytoscape (v3.7.2) OmniPath app (vl, Mus
musculus) (Turei et al., 2016). Modules of highly connected genes within the signalling network
were identified using the MCODE plug-in within Cytoscape (Bader and Hogue, 2003). The nodes
of each individual module were tested for functional enrichment based on both Reactome and
PANTHER annotations using PANTHER Classification System as described in section 4.3.8 (Croft
et al., 2011; Mi et al., 2019; Thomas et al., 2003).

4.3.7 Cell type signature analysis

Cell type signature gene sets for murine intestinal epithelial cells were obtained from Haber et
al. (Haber et al., 2017). From this dataset, both droplet and plate-based results were used. Gene
symbols were converted to Ensembl IDs using db2db (Mudunuri et al., 2009). Hypergeometric
significance calculations were applied to test the presence of cell type-specific signatures in the
list of differentially expressed genes using all expressed genes as the statistical background
(normalised counts 2 1 in = 1 sample). Bonferroni multiple correction was applied and any
adjusted p < 0.05 was deemed significant. Genes with normalised counts 2 1 in 2 1 sample per
condition (B. breve UCC2003 treated or control) were used to identify cell type signature genes

expressed per condition. Where calculated, adjusted p values < 0.05 were considered significant.

Differentially expressed stem cell signature genes were contextualised using regulatory
networks. Mouse directed transcription factor - target gene (TF-TG) interactions were obtained
from DoRothEA (Garcia-Alonso et al., 2019) using confidence levels A-D (all except predicted
interactions) via the OmniPath Cytoscape app (Shannon et al., 2003; Tirei et al., 2016). After
filtering for nodes which are expressed in the dataset (normalised counts 2 1 in > 1 sample). TFs
were further filtered for relevance in the network using a Python script written by Matthew
Madgwick (El, QIB, Korcsmaros group; unpublished data) based on the Cytoscape app CHAT
(Muetze et al., 2016). This tool inputted the DoRothEA TF-TG network filtered for expressed

nodes, alongside the list of all DEGs. Then, a hypergeometric significance test was carried out
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on any node with degree > 5 to determine if the proportion of connected nodes which are
differentially expressed is higher than in the whole network. Any TF with adjusted p value < 0.05
following Benjamini-Hochberg correction were deemed significant and used to filter the stem
cell signature gene subnetwork. Network visualisation was carried out in Cytoscape (Shannon et

al., 2003; Su et al., 2014).

4.3.8 Functional analysis

Functional overrepresentation analysis was carried out using the Panther web tool (Thomas et
al., 2003, 2006). Gene lists were tested against Panther Gene Ontology-Slim Biological pathways
and against Reactome pathways (Fabregat et al., 2018a) with default settings. All pathways with
g value < 0.05 are considered significantly overrepresented. When testing the functional
associations of all stem cell DEGs and their regulators (total 64 genes), all nodes in the unfiltered

DoRothEA network are used as a background for the statistical test.
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4.4 Results

4.4.1 B. breve impacts the neonatal intestinal epithelial transcriptome

To examine the effects of bifidobacteria on host IECs, neonatal (two weeks old) and young adult
(10-12 weeks old) mice were gavaged with B. breve UCC2003 for three consecutive days (n=5
per group) prior to whole IEC RNA sequencing. Culture and 16S rRNA microbiota profiling
approaches were used to confirm colonisation and determine the impact of B. breve UCC2003
on the wider microbiota. Raymond Kiu and Shabhonam Caim demonstrated that while
increasing the proportion of B. breve UCC2003 itself, colonisation of neonatal mice with this
bacteria had minimal impact on overall microbiota profiles - although very low relative
abundance (<2%) microbiota members Streptococcus, Ruminococcus, Prevotella and

Coprococcus were significantly reduced in the B. breve UCC2003 group (Kiu et al., 2020).

Whole transcriptome analysis of small intestinal IECs identified a significant impact of B. breve
UCC2003 on neonatal intestinal epithelium, while no change was observed in young adult mice,
based on differentially expressed genes (DEGs). This suggests B. breve UCC2003 modulation of
IECs is strongest within the early life window under homeostatic conditions. In the neonatal
group, a total of 3,996 DEGs were significantly upregulated, while 465 genes were significantly
downregulated inB. breve UCC2003 supplemented animals when compared to

controls (absolute log2(fold change) > 1 and adjusted p < 0.05).

As B. breve strains have been previously shown to modulate tight junction and other barrier-
related proteins, Raymond Kiu investigated DEGs associated with intestinal epithelial barrier
development and intestinal structural organisation. He observed a number of upregulated genes
associated with tight junctions, adherens junctions and gap junctions (Figure S4.1).
Furthermore, a number of genes involved in mucus layer generation were also upregulated
(Figure S4.1). Surprisingly, anti-microbial peptide genes, including defensins were not
differentially expressed. Functional overrepresentation analysis identified a variety of enriched
functions including DNA repair, cell cycle, transcription and chromatin organisation (Table S4.1).
Together these results suggest B. breve UCC2003 induces extensive transcriptional changes in

neonatal IECs, including genes relating to enhanced epithelial barrier development.
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4.4.2 B. breve modulates neonatal cell maturation processes

To delve further into the data, Raymond Kiu and myself constructed a signalling network based
on upregulated DEGs (n=3,996) with the aim of identifying signalling pathways potentially
modulated by bifidobacteria in IECs (Figure 4.2A). To do this, we used a prior knowledge protein-
protein interaction (PPI) network to determine possible PPl connections between the
(translated) DEGs and their direct protein interactors (protein first-neighbours). Identifying
connections between (translated) genes permits grouping of genes into clusters which work
closely together and are therefore likely to have similar functions. Similarly, the first neighbour
approach can aid the annotation of functional associations through identifying additional

biologically relevant proteins (Mddos et al., 2017).
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Figure 4.2. Signalling network analysis, IEC subtyping and key regulator analysis. A. Cluster
analysis of signalling network for significantly upregulated genes (n=3,996). Representative
enriched pathways (Reactome) and GO terms (Biological Process) identified in each individual
cluster were listed alongside. B. Heat plot showing percentage of cell type signature genes in
DEG and expressed genes (both control and UCC2003 groups). All expressed genes are well
represented in IEC cell type signature genes. C. Cell type analysis on IEC DEGs using known cell-
specific signature genes. Stem cells were statistically overrepresented in DEGs. * p < 0.05. D. Key
regulators of stem cell DEGs. Figure reproduced from Kiu et al. (2020) under the Creative
Commons BY licence.
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Overall, 1,491 DEGs were successfully mapped (37.3%) to a signalling network that comprised
8,180 genes. Four individual clusters of highly connected genes were detected, with functional
assighment and pathway analysis implemented on these clusters (Figure 4.2A, Table $4.2). All
gene clusters were associated with cell differentiation and maturation, with cluster 1 (68 genes)
linked specifically with DNA replication and transcription, cluster 2 (26 genes) with cell growth
and immunity (including toll like receptor 2, TLR2 cascades), cluster 3 (11 genes) with cell
replication, and cluster 4 (72 genes) related to cell cycle and cell division. Whilst only
representing a third of the upregulated DEGs, this analysis highlights the importance of cell

maturation processes as a response to B. breve.

4.4.3 Neonatal affected genes are enriched with epithelial stem cell

markers

IECs include several absorptive and secretory cell types, namely enterocytes, Paneth cells, goblet
cells, enteroendocrine cells, tuft cells and stem cells. Each of these cells perform different
functions in the gut (as described in General Introduction section 1.2.1) and could be
differentially affected by bacterial signals. Therefore, | investigated whether B. breve UCC2003
had a cell type-specific effect on the intestinal epithelium, using known cell type-specific gene

markers (Haber et al., 2017).

First, | validated the presence of all IEC types in our study data by identifying cell type markers
within the genes expressed in the transcriptomics data of the control and UCC2003 groups
(Figure 4.2B, C). | found that all the cell type markers were well represented in both datasets
(between 84% and 99% markers) and that there was little difference between the control and
UCC2003 groups. Next, | investigated whether any genes differentially expressed after B.
breve UCC2003 supplementation were cell type markers. This analysis revealed that stem cell
marker genes were significantly enriched (30%; P < 0.05) among the six IEC types after B. breve
UCC2003 supplementation (Table S4.3). Signatures of other cell types were also present but not
significantly over-represented: Tuft cells (22%), enteroendocrine cells (18%), goblet cells (15%),
Paneth cells (15%) and enterocytes (13%). These data indicated that intestinal epithelial stem
cells, cells primarily involved in cell differentiation, were the primary cell type whose numbers

and transcriptomic programme were regulated by B. breve UCC2003.
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Further investigation of this stem cell signature revealed that of the 37 differentially expressed
marker genes, 35 are upregulated in the presence of B. breve UCC2003 (96%) — whereas only
54% of the enterocyte markers were upregulated (37/68). This indicates an increase in the
guantity of stem cells or semi-differentiated cells in the epithelium, consistent with the
overrepresentation of cell cycle and DNA replication associated genes observed in the whole
differential expression dataset. Functional analysis of the 37 stem cell signature genes revealed
only one overrepresented process - Regulation of Frizzled by ubiquitination (p val < 0.05), which
is a subprocess of WNT signalling. WNT signalling is important in maintaining the

undifferentiated state of stem cells (Nusse, 2008).

Moreover, | employed a network approach to predict key transcription factor (TF) regulators of
these 37 genes, through which B. breve UCC2003 could be acting. Using the TF-target gene
database, DoRothEA, we identified expressed TFs known to regulate the stem cell signature
genes (Garcia-Alonso et al., 2019). Five genes had no known and expressed regulator thus were
excluded. Hypergeometric significance testing was used to identify which of these TFs were
most influential based on out-degree (the number of genes regulated by the TF) and the
transcriptomics data (see Methods for detail, section 4.3.7). This analysis identified 32 TF
regulators, some which target up to 30 of the stem cell signature genes (Figure 4.2D). Of the
regulators, 12 are differentially expressed in the IEC dataset (all upregulated): Fos, Gabpa, Rcorl,
Arid2, Tead1, Mybl2, Mef2a, Ahr, Pgr, Kmt2a, Ncoa2 and Tcf12. Functional analysis of the 32
regulators and their 32 targeted stem cell signature genes together revealed overrepresented
pathways involved with WNT signalling, histone methylation for self-renewal and proliferation
of hematopoietic stem cells, nuclear receptor (incl. oestrogen) signalling, signal transduction
and gene expression (Table S4.4). These data provide evidence that B. breve UCC2003 directly
affects key transcriptomic programmes which regulate specific signalling processes, particularly

within stem cells.
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4.5 Discussion

Bifidobacteria are predominant in the guts of healthy human infants during a critical stage of
immune development and programming, where microbe-host interactions impact health in the
short and longer term (Arboleya et al., 2016; Isolauri, 2012). As such, studies have shown that
bifidobacteria play a key role in modulating and priming specific immune populations and
protecting against immune linked diseases (O’Neill et al., 2017). However as far as | am aware,
no study has yet investigated the age-specific effects of bifidobacteria. We showed that B. breve
had a large impact on the IEC transcriptome of neonatal mice, but no significant impact on the
transcriptome of young adult mice (data not shown). The striking differences in DEGs between
these two life points indicate that, in a healthy gut, B. breve modulation of IECs is limited to the

early life window.

Given the limited change in the gut microbiota of bifidobacteria-exposed mice compared to
control SPF mice, we assume that the observed IEC expression changes were driven by
bifidobacterial surface molecules, metabolites or secreted products. The interactions of these
molecules and IECs (directly or indirectly) resulted in a large-scale upregulation of IEC genes and
impacted many processes previously associated with bifidobacteria (Engevik et al., 2019;
Ewaschuk et al., 2008; Srutkova et al., 2015). For example, we revealed that expressions of key
genes associated with formation of epithelial barrier components were up-regulated, including
major cell junction protein-encoding genes (75%; 42/56 genes). One such group was integrins,
which facilitate cell-cell and cell-extracellular matrix adhesion that is pivotal for cell migration
and cell differentiation (Harburger and Calderwood, 2009). Integrins also play an important role
in downstream intracellular signalling that controls cell differentiation, proliferation, and cell
survival, including the Raf-MEK-ERK signalling pathway (we also observed enrichment of genes
involved in this pathway) (Chernyavsky et al., 2005; Li et al., 2016). Tight junction proteins were
also found to be upregulated, indicating that bifidobacteria is capable of increasing barrier
function in a healthy condition, in addition to previous evidence which showed that
bifidobacteria can prevent barrier function decline due to damaging agents or disease (Din et
al., 2020; Srutkova et al., 2015; Yan et al., 2019). Dysfunctional epithelial barrier function may
lead to a “leaky” gut, which is characteristic of numerous intestinal disorders including
inflammatory bowel diseases (Krug et al., 2014). Notably, previous work has suggested early life

microbiota disruptions (via antibiotic usage) and reductions in Bifidobacterium are correlated



Chapter 4: The effect of bifidobacteria on the small intestinal epithelium 147

with increased risk and/or symptoms of ulcerative colitis and Crohn’s disease (Duranti et al.,
2016; Favier et al., 1997; Giaffer et al., 1991; Kronman et al., 2012), although the opposite has
also been reported (Wang et al., 2014). Furthermore, several clinical studies have indicated that
supplementation with certain Bifidobacterium strains positively modulate gastrointestinal
symptoms of patients, which is corrected with reductions of inflammatory markers in colonic
IEC-containing biopsies; however, B. breve UCC2003 has not been used clinically in this patient
setting (Furrie et al., 2005; Steed et al., 2010). Further clinical studies would be required to probe

these findings in detail to determine their importance during healthy infant development.

Furthermore, in line with previous evidence, we found that B. breve UCC2003 upregulated
mucin producing genes, which play a crucial role in intestinal protection via formation of a
physical barrier between the gut lumen and IECs (Caballero-Franco et al., 2007; Engevik et al.,
2019; Mangin et al., 2018). Deficiencies in mucins have been linked with experimental colitis and
increased inflammation in patients with inflammatory bowel disease, further evidencing a link
between bifidobacteria and inflammatory diseases (Shirazi et al., 2000; Van der Sluis et al.,
2006). On the other hand, despite some literature evidence that bifidobacteria can impact the
expression or secretion of anti-microbial peptides, we did not observe any significant changes

in these genes (Lee et al., 2018; Natividad et al., 2013; Underwood et al., 2012).

Although we observed a substantial IEC transcriptional response induced by bifidobacteria, we
cannot rule out the possibility that these changes would occur upon introduction of any new
microbiota member. However, the similarity between observed transcriptional responses and
previous literature evidence, alongside the lack of a generalised immune response in our
bifidobacteria-exposed mice, indicates that our results represent bifidobacteria—specific effects
on IECs. Further work would be required to extrapolate the observed results to humans and to
test whether bifidobacteria-induced changes are transient or have long-term effects on IECs and

immune maturation.

Using a priori information on protein-protein interactions, we were able to identify proteins
which can theoretically interact with more than 1/3"of the (translated) upregulated genes. This
approach permitted generation of a PPl network, in which connections between DEGs and their
first neighbours indicate similarity and cooperation in biological functions. In turn, this
permitted clustering of genes/proteins into four distinct highly inter-connected groups.

Functional analysis revealed that all four clusters were associated with cell maturation and cell
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differentiation, suggesting that neonatal B. breve exposure positively modulates IEC cell
differentiation, growth, and maturation. Similar findings have been previously reported in
colonic epithelial cells of bifidobacteria-monoassociated mice (O’Connell Motherway et al.,
2019). Further, Lee et al. (2018) observed that Bifidobacterium-derived lactate supports IEC
differentiation through Paneth cell and stromal cell Wnt3 secretions — highlighting the possibility

of indirect effects of bifidobacteria based on communication between IECs.

Among the cluster associated functions, we also identified the TLR2 pathway. This may link to
previous work indicating that the B. breve UCC2003 EPS signals via TLR2 to induce MyD88
signalling cascades to protect IECs during intestinal inflammation (Hughes et al., 2017). B. breve
M-16V was also shown to interact with TLR2 to up-regulate ubiquitin-editing enzyme A20
expression that correlated with increased tolerance to a TLR4 cascade in porcine IECs, further
supporting the involvement of B. breve in programming key host immunoregulation receptors
(Tomosada et al., 2013). In the future, the use of additional a priori PPl resources could help to

annotate a larger proportion of the DEGs, for identification of further clusters.

Different cell types of the small intestinal epithelia have different functions, such as mucin
production by goblet cells and AMP production by Paneth cells. Our findings in this experiment,
as well as other published works, indicate that bifidobacteria can affect these cell type-specific
functions. While we did not obtain cell type-specific data from this experiment, | predicted which
cell types were most affected by B. breve UCC2003 in neonatal IECs by observing which DEGs
also occur in a published collection of IEC marker genes (Haber et al., 2017). This analysis
revealed stem cells as the IEC type most affected by B. breve, with absorptive enterocytes least
affected despite being most accessible to bacteria in the gut. It could be hypothesised that B.
breve or their secreted metabolites may reach the crypts of the small intestinal epithelium.
Previous evidence based on in situ hybridization histology in vivo suggests that B. breve can
reach small intestinal crypts, while it is also possible that inter-cellular communication can
transmit signals to the bottom of the intestinal crypts, such as the communication observed
between stromal cells, Paneth cells and stem cells following lactate administration (Hughes et
al., 2017; Lee et al., 2018). Specifically, | found that 37 (of 122) stem cell marker genes were
differentially expressed upon exposure to bifidobacteria. This represented a significant overlap
(adjusted p < 0.05, hypergeometric significance test). All but two of the 37 were upregulated in

the presence of B. breve UCC2003, indicating an activating effect resulting in increased
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pluripotency of stem cells, increased quantity of stem cells, and/or an increased quantity of
semi-differentiated cells. This finding also corroborates with the overrepresentation of cell cycle
associated genes amongst the DEGs. Further, using a priori regulatory interactions, | predicted
32 TFs associated with these differentially expressed stem cell marker genes - providing possible
targets for future investigation of the mechanisms underlying these responses. While they have
not been previously associated with bifidobacteria, many of the TFs are involved in cell
proliferation, differentiation, survival and cell cycle. For example, FOS Proto-Oncogene, AP-1
transcription factor subunit (FOS), MYB proto-oncogene like 2 (MYBL2) and Aryl hydrocarbon
receptor (AHR) (Barhoover et al., 2010; Brown et al., 1998; Musa et al., 2017). Further a number
of the TFs are associated with histone and chromatin remodelling, such as AT-rich interaction
domain 2 (ARID2) and Lysine methyltransferase 2A (KMT2A), indicating a role for B. breve in
epigenetic modification (Duan et al., 2016; Huang et al., 2017). Functional analysis of the
differentially expressed stem cell marker genes and their regulators suggests that B. breve
increases pluripotency of stem cells and/or semi-differentiated epithelial cells through WNT
signalling and nuclear hormone signalling (Jeong and Mangelsdorf, 2009). Substantiating this
finding, WNT signals of Paneth cells and stromal cells have been previously implicated in

mediating bifidobacteria effects on stem cell proliferation (Lee et al., 2018).

4.6 Future research directions

In conclusion, we have shown that B. breve UCC2003 plays a central role in orchestrating global
neonatal IEC gene responses in a distinct manner as shown in our murine model, modulating
genes involved in epithelial barrier development, and driving universal transcriptomic alteration
that facilitates cell replication, differentiation, and growth, particularly within the stem cell
compartment. Further work is required to investigate the cell type-specific effects of
bifidobacteria, in particular to validate their impact on stem cells. In Chapter 5, myself and
colleagues employ florescence activated cell sorting (FACS) to isolate stem cells and Paneth cells
from IECs. Moreover, single-cell sequencing of IECs could be used to further investigate cell type-
specific effects. Additionally, further work could investigate the impact of bifidobacteria on the
colonic epithelium, the age at which bifidobacteria ceases to significantly impact IECs, or
determine host and bacterial metabolome and proteome after B. breve exposure to investigate

specific underlying molecular mechanisms of interaction (Guo et al., 2015).



Chapter 5: The effect of Bifidobacteria on small intestinal stem cells and Paneth cells 150

Chapter 5: The effect of Bifidobacteria on small
intestinal stem cells and Paneth cells

5.1 Introduction

In Chapter 4, we found that B. breve UCC2003 extensively regulates the transcriptome of the
healthy neonatal small intestinal epithelium. Furthermore, our analysis indicated a larger effect
on stem cells than other IEC types, evidencing a cell type-specific action of B. breve. To further
investigate the effect of bifidobacteria at a cell type-specific level, we carried out a second study,
presented in Chapter 5 of this thesis, focusing specifically on stem cells and Paneth cells of the
small intestine. Here, stem cells were chosen due to the findings outlined within Chapter 4, while
Paneth cells were selected to confirm that B. breve UCC2003 does not affect antimicrobial
peptide (AMP) release as seen in Chapter 4, despite contention within the literature (see
General Introduction section 1.5.2.3). Furthermore, we extended this investigation to germ free
(GF) mice in addition to specific pathogen free (SPF) mice, to evaluate the effect of bifidobacteria
as the initial colonisers of the gut. The mice investigated were four weeks old (two weeks older
than in the neonatal bulk epithelium study), and thus will have recently weaned from their
mother’s breast milk. The reason for this was to enable the study of GF mice and to investigate
the effect of bifidobacteria on young yet mature epithelial cells. The study design and analysis

workflow for this study, termed the “juvenile cell type-specific” study, is outlined in Figure 5.1.

This study was carried out by myself and others members of Tamas Korcsmaros’s research group
(Earlham Institute, El, QIB), with support from the UEA Disease Modelling Unit, the QIB germfree
mice facility and the Genomics Pipelines Group at the EI. A single gavage of Bifidobacterium
breve UCC2003 was administered to juvenile GF and SPF mice (Figure 5.1). Subsequently, small
intestinal Paneth cells, stem cells and two intermediary cell populations were isolated by
Fluorescence-activated cell sorting (FACS) before low-input RNA sequencing. Contrasting the
first study, we observed only very modest changes in the transcriptional profile of the intestinal
epithelial cells upon exposure to bifidobacteria, despite evidence of successful colonisation of
GF mice based on selective culturing. However, correlation analyses, including co-expression
network analysis and gene set enrichment analysis, identified a number of cellular functions
marginally affected by bifidobacteria, including those identified in the previous study: cell cycle,

autophagy, apoptosis and cell-cell junctions. Further analysis was carried out to evaluate the
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FACS protocol used in this study. My roles were: experimental design and planning, bacterial

work and most of the data processing/analysis.
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Figure 5.1. Schematic overview of juvenile cell type-specific study design and analysis
workflow. GF - germ free; SPF - specific pathogen free/conventionalised; FACS - fluorescence-
activated cell sorting. Figure adapted from Kiu et al. (2020) under the Creative Commons BY
licence.

5.2 Aims

The aims for this project were as follows:
e Evaluate the global transcriptional response to B. breve UCC2003 in specific small
intestinal IEC types (using fluorescence-activated cell sorting (FACS) and low cell input
RNA sequencing)
e Investigate differences in the effect of B. breve UCC2003 between mono-associated and

conventionalised mice
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5.3 Methods

Due to the complexity of the methods and the number of people involved, the following
experimental work was managed by Isabelle Hautefort (from our group). Mouse work including
gavage was carried out by Arlaine Brion and Andrew Goldson (QIB). All bacterial work was
carried out by myself. Tissue harvesting and processing were carried out by Andrew Goldson as
well as Martina Poletti (from our group). FACS was carried out by Amanda Demeter and Elena
Rodriguez from our group with support from lain Macaulay (El). RNA extraction, preparation
and sequencing were carried out by Amanda Demeter, Ashleigh Lister (El), Elena Rodriguez and
Earlham Institute Genomic Pipelines. Processing of raw sequencing reads was carried out by
myself with help from Matthew Madgwick from our group. All other computational analysis and

interpretation was carried out by myself.

5.3.1 Mouse work

All animal experiments and related protocols were performed in accordance with the Animals
(Scientific Procedures) Act 1986 (ASPA). C57BL6/) female mice were housed within UEA Disease
Modelling Unit. 10 germ free (GF) and 10 conventionalised (SPF) mice of four weeks old (n=>5 for
each condition; GF+UCC2003, GF control, SPF+UCC2003, SPF control) were kept in sterile

individually ventilated cages receiving sterile food and sterile water ad libitum.

5.3.2 Bacterial culturing, inoculum preparation, mouse challenge with B.

breve UCC2003 and CFU enumeration

B. breve UCC2003 (also known as NCIMB 8807) was streaked from frozen glycerol stocks onto
autoclaved Reinforced Clostridial Agar (RCA) plates and incubated in an anaerobic chamber at
37°C for 48h prior to picking single colonies for inoculation in prewarmed sterilised MRS

medium. All media and agar were supplemented with 50mg/L cysteine.

Only two mice for each group were challenged with B. breve UCC2003 or phosphate buffered
saline (PBS) control at a time as tissue samples and cell isolation and sorting were greatly time-
consuming. The complete series of B. breve UCC2003/PBS challenge was therefore staggered
over a period of five weeks. To standardise gavage inoculums over that experiment period, B.

breve UCC2003 inoculum batch was freeze-dried in 500 pl aliquots with PBS + 10% skimmed milk
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(lyoprotectant) (MODULYO D freeze drier) and stored at -70°C. On day of gavage, cultures were
resuspended in sterile PBS at 10° CFU/ml. Mice received a single 100ul oral gavage of B.
breve UCC2003 in PBS + 10% milk (approximately 102 cells/mouse) or PBS+ 10% milk (control).
Inoculum viability/consistency was controlled by plating 10-fold serial dilutions made in sterile
PBS on RCA plates, incubation at 37°C in anaerobiosis for 48h, and colony counting to calculate
CFU/ml. Contamination of inoculum was checked by plating serial dilutions on Brain Heart
Infusion (BHI) agar plates in aerobic incubation for 24-48h. Pre-gavage and 24h post-gavage
colonisation levels of bifidobacteria were checked through serial dilutions and plating of fresh
faeces and caecal content on RCA and De Man Rogosa and Sharpe (MRS) agar (De Man et al.,
1960) supplemented with 50 mg/L cysteine, in addition to BHI plates for aerobic
microorganisms. Colonies were counted following 24-48h incubation. At the end of the
experiments, caecum content was collected for serial dilution plating on RCA and MRS agar
supplemented with 50 mg/L cysteine. The remaining content was immediately snap-frozen for

future metagenomics and 16S rRNA profiling.

5.3.3 Tissue harvesting and processing

Seventy-two hours post oral gavage, animals were humanely culled and 10cm-long segment of
flushed ileal tissues were harvested, longitudinally opened and cut into 5-8mm long pieces.
Following the removal of fat, mesenteric tissue, mucus and debris, fragments were washed up
to 6 times in Dulbecco's phosphate buffered saline (DPBS) without Mg?* and Ca?*. For isolation
of crypt epithelial cells, the fragments underwent incubation at room temperature in gentle
dissociation reagent (StemCell Technologies, 07174) to remove large villi debris. For single cell
isolation, the crypt fraction was spun down and the pellet was resuspended in a solution
containing 1ml TryPLE Express Enzyme (Fisher Scientific, 12605036) and 120uL DNAse | (Roche,
04536282001). The samples were placed in a water-bath at 37°C for 1-2 minutes. The pellet was
resuspended in cold Dulbecco's Modified Eagle Medium and run through a 40um cell strainer to
remove large cell clumps. The cells were then counted in a haemocytometer, to calculate the

appropriate number to be used for the antibody staining procedure.

5.3.4 Flow cytometry

The following protocol was optimised from Yilmaz et al. (Yilmaz et al., 2012). In that study, the
authors sorted stem cells from Lgr5-EGFP-IRES-creERT2 knock-in reporter mice, allowing

isolation by flow cytometry of Leucine-rich repeat-containing G-protein coupled receptor 5



Chapter 5: The effect of Bifidobacteria on small intestinal stem cells and Paneth cells 154

(Lgr5) — Enhanced green fluorescence protein (EGFP)"e" cells which also have low Cluster of
differentiation 24 (CD24 / CD24a) marker fluorescence. In our study we used a similar protocol
but employed wildtype mice and measured surface Lgr5 marker fluorescence, targeting the
presence of LGR5 protein instead of its gene expression. Furthermore, in addition to sorting
stem cells and Paneth cells based on the Yilmaz protocol, we sorted intermediate cells with high

fluorescence of both LGR5 and CD24a (TAhigh) or low fluorescence of both (TAlow).

lleal stem cells, Paneth cells and two populations of intermediate cells were labelled with a pre-
optimised antibody panel and sorted in batches of 50 cells (4 replicates for each cell population
and for each mouse) for RNA sequencing. For antibody labelling, samples were centrifuged and
resuspended in FACS Buffer with the antibody cocktails. Antibody panel given in Table 5.1.
Samples were incubated for 15 minutes, washed twice and resuspended in FACS Buffer with 7-

Aminoactinomycin D (7AAD) viability stain (Biolegend, 420403).

Antibodies Fluorescent colour Cell Manufacturer
population
aCDA45, aCD31, aTer-119 Phycoerythrin (PE) Immune Biolegend (103105,
cells 102507, 116207)
aCD326 (Epithelial cell adhesion VioBlue Epithelial Miltenyi (130-102-421)
molecule, EpCAM) cells
aCD24 Fluorescein Paneth cells Miltenyi (130-102-731)
isothiocyanate (FITC)
algr5 APC-Vio770 Stem cells Miltenyi (130-111-392)

Table 5.1. Antibody panel for sorting Paneth, stem and transit amplifying cells.Using FACS
Melody machine. Based on Yilmaz et al. (2012).

FACS was carried out on the BD Bioscience FACSMelodyTM Cell Sorter (Becton, Dickinson
Company) following optimisation of gating using fluorescence minus one control.
Representative gating strategy is shown in Figure S5.1. Live single cells with high granularity
were selected using forward scatter, side scatter and 7AAD signals. In addition to the cells sorted
based on the Yilmaz et al. panel, we also sorted intermediary populations with high LGR5 high
CD24 (termed transit amplifying high cells) and low LGR5 low CD24 (termed transit amplifying
low cells) (von Furstenberg et al., 2011; Gracz et al., 2010; King et al., 2012; Yilmaz et al., 2012).
Later | assessed cell identities using the transcriptomics data as described in section 5.3.7. To
conclude, four cell populations were sorted which were labelled as follows: Paneth cells (high
CD24, low LGR5), Stem cells (low CD24, high LGR5), transit amplifying (TA) high cells (high CD24,
high LGR5) and TA low cells (low CD24, low LGR5).
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5.3.5 RNA extraction, preparation and sequencing

The RNA from specific sorted cell types was extracted and amplified using a SMART-seq 2
method for low input samples, based on a protocol adapted from Picelli et al. (2013). Bead
cleaning was carried out using a Biomek NXP robot (Beckman Coulter) with Angecourt AMPure
Beads (Beckman Coulter). Samples were quality checked using an Aglient Bioanalyser 2100, a
LabChip GX Touch™ (PerkinElmer). Next, libraries were prepared using a NEXTERA XT Library
preparation protocol. All samples were pooled and quality checks were performed using the
Qubit and the Bioanalyzer following 0.8X Ampure bead clean-up. Illlumina Sequencing was
carried out by the Genomics Pipelines Group at the Earlham Institute on 1 lane of an Illumina

NovaSeq 6000 S2 flow cell with 100PE reads.

5.3.6 Transcriptomics data processing

Sequencing reads from the flow sorted cells were trimmed using Trimmomatic (v0.38) (Bolger
et al., 2014) using Standard NEXTERA adapters plus SmartSeq2 adapters on paired end mode

with all other settings as default.

Read and sequencing quality was checked using FastQC (v0.11.7), MultiQC (v1.5) and custom R
scripts (Andrews, 2010; Ewels et al., 2016). Trimmomatic (v0.38) was used to trim adapters
(Nextera and Smartseq2 adapters) and remove low-quality reads. Sequence length, sequence
quality and number of reads was used to check for outlier samples (Figure 5.2A). Following an
initial round of data analysis, two samples were removed due to aberrant normalised counts

distribution (Figure 5.3).
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Figure 5.2. Read and alignment quality control plots. A: Density plot of number of reads across
all samples after trimming step. B. Density plot of percentage of reads uniquely mapped to the

genome across all samples.
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Alignment and quantification was carried out using a traditional alignment approach instead of
using a pseudo-aligner, for increased accuracy and gene abundance in addition to gained
information regarding non-coding regions of the genome (Du et al., 2020). Specifically, reads
were aligned to the Ensembl Mus musculus primary assembly (GRCm38.98) using STAR (v2.6.0c)
(Dobin et al., 2013; Zerbino et al., 2018). The pipelining tool Snakemake (Késter and Rahmann,
2012) and the SLURM workflow manager (Yoo et al., 2003) were used to run these tools on the

Earlham Institute High Performance Cluster.

Processing of aligned reads was carried out using the R package Seurat (v3.0) (Butler et al., 2018;
Stuart et al., 2019). Normalisation of counts was performed using standard log-normalisation
and z-score transformation, followed by removal of any samples with >15% mitochondrial reads.
Cell cycle genes were not regressed out of the data due to well mixing of the S and G2M cell
cycle scores among the samples based on Uniform Manifold Approximation and Projection
(UMAP) visualisations. Each sequenced plate was treated as a separate dataset. A feature
selection stage was used on every plate dataset to find the top 2000 highly variable genes using
variance stabilising transformation. Then each plate dataset was integrated using Seurat's
standard integration method to remove batch effects associated with sequencing by finding
'anchors' between the plate datasets. This produced an integrated expression matrix for each
cell within dataset that enabled them to be analysed together. Visualisation of integrated
normalised data was carried out using dimensionality reduction methods principal component

analysis (PCA) and UMAP using R (Becht et al., 2018; Mclnnes et al., 2018).

Normalised counts data was plotted in R to determine the cut offs for expressed genes. The cut
off for a gene to be expressed in a sample was determined as mean scaled normalised counts >
0.02 (Figure 5.4A). The cut off for a gene to be expressed in a condition or cell type was
determined as scaled normalised counts > 0.02 in > 3 samples per condition (Figure 5.4B, C),
based on density plots. The 50 top variant genes across SPF and GF samples were identified and

visualised using R.



Chapter 5: The effect of Bifidobacteria on small intestinal stem cells and Paneth cells 159

condition B
| BaF PC
BGF_SC
|| BGF_TAhigh
BGF_TAlow
BSPF_PC
BSPF_SC
BSPF_TAhigh %‘
BSPF_TAlow s
| aFrc Q
GF_SC
GF_TAhigh
GF_TAlow
SPF_PC
SPF_SC
I} SPF_TAhigh
W] Iilq | mH | mH vl lllq | [ ] SPF_TAlow 0-...l o .|....| 0 .|....I o .|....l i .|....|
107 107 10° 10° 107" 10° 10! 10 10°
Gene abundance (scaled normalised counts) Number of samples with gene abundance
=0.02
C

1.5-

0.4~

0.0

celltype
1.0- [:] PC
| |sc
|:| TAhigh
054 [:‘ TAlow

Density

0.0

107 10° 10' 10° 10°
Number of samples with gene abundance
20.02

Figure 5.4. Gene abundance density plots for determining expression cut offs. A: Density of
mean gene abundance (scaled normalised counts) across each biological condition. B. Density
plot of number of samples of each biological condition where gene is expressed (scaled
normalised counts > 0.02). Legend as in A. C. Density plot of number of samples of each cell type
where gene is expressed (normalised count > 0.02). Vertical lines indicate expression cut offs.
GF - control germ free, SPF - control specific pathogen free, BGF - bifidobacteria treated germ
free; BSPF - bifidobacteria treated specific pathogen free; PC - Paneth cell; SC - stem cell; TAhigh
- transit amplifying high cell; TAlow - transit amplifying low cell.

5.3.7 Computationally assessing cell identities

MAST (v3.11) was used to identify differentially expressed genes (cluster biomarkers) relating
to each cell type based on a priorilabels (Finak et al., 2015). Here the gene expression of samples

of the tested cell type were compared with expression of all the other samples. All genes with
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adjusted p value £ 0.05 and average log2(fold change) > 0.25 were considered significant. These
markers were compared to marker gene sets for murine intestinal epithelial cells from Haber et
al. (Haber et al., 2017) using hypergeometric significance calculations with all genes expressed
in at least one sample (mean scaled normalised counts > 0.02) as the statistical background.
From Haber et al., both droplet and plate-based results were used and gene symbols were
converted to Ensembl IDs using db2db (Mudunuri et al., 2009). Further, the same analysis was
carried out using intestinal epithelial cell signature genes from Zhao et al. (Zhao et al., 2020).
Adjusted p values < 0.05 (Bonferroni multiple correction) were considered significant. Data was

plotted in R using gplots.

5.3.8 Differential expression analysis

Differential expression was carried out using MAST (v3.11) (Finak et al., 2015). Differentially
expressed genes were determined by comparing Bifidobacterium — exposed mice to control
mice in each condition (cell type + mouse type). Any genes with absolute log2(fold change) > 1

and adjusted p value < 0.05 were considered differentially expressed.

5.3.9 Weighted gene co-expression network analysis

Weighted-gene co-expression network analysis (WGCNA) was carried out using the automatic
one-step method of the WGCNA R package (Langfelder and Horvath, 2008). The top 25% genes
based on variance of normalised counts were pre-selected before being passed into the R
package ComBat to remove batch effects due to the sequencing plate. Network topology
analysis was carried out and scale-free fit and mean connectivity were plot against soft-
thresholding powers between 1 and 20. Subsequently, the soft threshold was selected as the
lowest power for which the scale-free topology fit index curve flattens out upon reaching a high
value. Hierarchical clustering was used to identify and remove outlier samples. Signed networks
were reconstructed in one block using default parameters. Module - trait associations, module
membership and gene significant analyses were carried out using default parameters. Modules
with p value < 0.05 with respect to trait associations were considered significant. Functional
analysis of modules was carried out against Gene Ontology Biological processes (GO:BP) and
Reactome Pathways as described in section 5.3.10 using all genes expressed in at least one

sample (mean scaled normalised counts > 0.02) as the statistical background.
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5.3.10 Functional analysis

Functional overrepresentation analysis and gene set enrichment analysis (GSEA) were carried
out against Reactome and GO:BPs using R packages ReactomePA and ClusterProfiler respectively
(Subramanian et al., 2005; Yu and He, 2016; Yu et al., 2012a). Where necessary, analysis was
carried out following conversion to ENTREZ IDs using the R package org.Mm.eg.db. All expressed
genes were used as the statistical background and redundant GO:BP pathways were removed
using the simplify command. Any functions/pathways with q value < 0.1 were deemed

significantly enriched.
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5.4 Results

5.4.1 B. breve has a modest impact on juvenile intestinal epithelial

transcriptome

To determine the impact of bifidobacteria on Paneth cells and stem cells of the small intestine,
we gavaged juvenile (4-week-old) SPF and GF mice with B. breve UCC2003. The correct
monocolonisation of GF mice by B. breve was shown by the plating of caecal content, which
showed high population levels across all repeated experiments (~5x10° CFU/mL/g) post-gavage
(Figure S5.2A). Conversely, B. breve UCC2003 numbers in SPF mice faecal samples pre- and post-
gavage (24h) were not significantly different, indicating that i) bifidobacteria were already
present in the complex SPF microbiota and that ii) B. breve either transits through the gut and
is rapidly undetectable, or has replaced (at least partially) the normal resident bifidobacteria
population (Figure 5.1B). Of note, B. breve UCC2003 could colonise the gastrointestinal tract of
GF mice at significantly higher levels than the levels at which resident bifidobacteria were in SPF
mice before/after gavage, illustrating the highly controlled balance of abundance and functions

between all components of a healthy gut complex microbiota.

Following FACS sorting and low input RNA sequencing of Paneth cells and stem cells, | carried
out visualisation of the transcriptomics data using a non-linear dimensionality reduction
approach called uniform manifold approximation and projection (UMAP) (Becht et al., 2018;
Mclnnes et al., 2018). The results demonstrated a difference in transcriptomic profiles based on
cell type: with a continuous pattern of variation across the cell types, in line with knowledge of
crypt differentiation (Figure 5.5A) (Lueschow and McElroy, 2020). However, no distinct
separation was observed between bifidobacteria-exposed and control samples or between GF
and SPF samples (Figure 5.5B, Figure S5.3). This indicated that, based on all genes in the genome,
there was no observable effect of B. breve UCC2003 on any of the four cell populations tested.
The same finding was replicated using other dimensionality-reduction visualisation methods

(Figure S5.4).
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Figure 5.5. UMAP plots of normalised counts data. A. Data coloured by cell type. PC - Paneth
cell; SC - stem cell; TAhigh - transit amplifying high; TAlow - transit amplifying low. B. Data
coloured by condition: bifidobacteria-treated of control.

Next, the top variant genes across SPF and GF samples were identified and visualised (Figure
5.6, Figure S5.5). Based on hierarchical clustering of the top 50 variant genes, | confirmed that
samples do not separate based on presence of bifidobacteria but instead based on cell type.
More than 1/3 of the variant genes among the SPF and GF samples were encoding
antimicrobial proteins, in particular Paneth cell-associated defensins. Other variant genes were
associated with epithelial cell types such as enterocytes (apolipoprotein A-l, Apoa-1 and
gastrotropin, Fabp6) and goblet cells (trefoil factor 3, Tff3 and zymogen granule protein 16,
Zg16) (Haber et al., 2017). Visual analysis indicated idiosyncrasies within the cell populations.
For example, a subpopulation of SPF TAhigh cells expressed higher levels of enterocyte-
associated genes and a subpopulation of SPF TAlow cells expressed higher levels of goblet-
associated genes. Furthermore, a few mitochondrial associated genes are among the top variant
genes (e.g. cytochrome b, Cytb and NADH dehydrogenase 1, Nd1). This could be evidence of
apoptotic or lysing cells caused by experimental procedures, or a genuine biological signal

relating to cell type-specific expression levels.
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Figure 5.6. Gene expression heatplot of top 50 variant genes among all specific pathogen free
samples. Samples and genes are clustered. Bif - bifidobacteria-treated samples; Ctrl - control
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5.4.2 Intestinal stem cells express cell surface protein CD24a

To further investigate and validate the identity of the flow-sorted cells, | determined
differentially expressed genes (also known as cluster biomarkers) for each cell population. |
compared these genes to two different published collections of IEC marker genes obtained
through extensive single cell sequencing of mouse small intestinal epithelia (Haber et al., 2017;
Zhao et al., 2020) using hypergeometric significance test (see Methods section 5.3.7). Using this
approach, | found that the Paneth cell samples, which were sorted based on of LGR5'9%CD24a"s"
marker fluorescence (see Methods section 5.3.4), were significantly similar to Paneth cells from
the two single cell studies. In addition, they were significantly similar to other closely related
secretory lineages and immature enterocytes (Figure 5.7). TAlow cells, which were sorted based
on having of LGR5°¥CD24a"°“ marker fluorescence, were most similar to enterocytes.

Unexpectedly, stem cells, sorted based on of LGR5"&"CD24a"" marker fluorescence, were also
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found to be significantly associated with enterocyte markers, but not with expected stem cell
markers. Conversely, the TAhigh cells, which had both of LGR5"&"CD24aMe" marker fluorescence,
were significantly overlapping with stem cell markers, in addition to transit amplifying cells, tuft
cells and enteroendocrine cells. Furthermore, the levels of Lgr5 expression across the different
samples does not match the expectation based on the markers used for the FACS. Where we
would expect to see high expression in the samples labelled stem and the samples labelled
TAhigh, instead it is the Paneth cell and TAhigh samples which have high Lgr5 expression (Figure
S5.6). For clarity, the remainder of this chapter continues to use the preassigned cell type labels,

despite this uncovered uncertainty regarding their identify.

A Color Key B

0 5 15
multiple testing corected padij

EMP_Zhao
Tuft_Haber EMD_Zhao
EPL_Zhao
Goblet_Haber EPE_zhao
— EP_Zhao
3 3
c goblet_Zhao c
) 5
Enterocyte_Haber 5 paneth_zhao 5
< =
< IS}
g EID_Zhao g
@ ®
Enteroendo_Haber g EIP_Zhao g‘.
3 TA_Zhao T
o o
enteroendo_Zhao
Paneth_Haber tuft_Zhao
TAG2_Zhao
_ Stem_Haber r TAG1_Zhao
L stem_Zhao
g & B 7 =7 &8 g
Cell type DEGs Cell type DEGs

Figure 5.7. Differentially expressed genes for each cell population compared to intestinal
epithelial cell marker gene sets. White asterisks indicate statistically significant overlaps
(adjusted p value < 0.05, hypergeometric significant test, Bonferroni multiple correction) A.
Marker gene set from Haber et al. (2017). B. Marker gene set from Zhao et al. (2020). DEGs -
differentially expressed genes; TAhigh - transit amplifying high; TAlow - transit amplifying low.
enteroendo - enteroendocrine; EMP - enterocyte mature proximal; EMD - enterocyte mature
distal; EPL - enterocyte progenitor late; EPE - enterocyte progenitor early; EP - enterocyte
progenitor; EID - enterocyte immature distal; EIP - enterocyte immature proximal; TA, TAGL,
TAG2 - transit-amplifying progenitors.
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5.4.3 Correlation analyses reveal multiple cellular functions marginally

affected by B. breve in juvenile intestinal epithelial cells

Next, | carried out differential expression analysis to specifically compare B. breve exposed mice
to control mice for each cell type/mouse type. Contrasting the neonatal bulk epithelium study,
no genes were identified as differentially expressed upon bifidobacteria exposure in any of the
conditions (absolute Log2FC > 1, adjusted p value < 0.05). Further, | employed a gene set
enrichment analysis (GSEA) to investigate functional associations relating to modest changes in
expression of genes based on Reactome and Gene Ontology Biological Process (GO:BP)
annotations (Ashburner et al.,, 2000; Fabregat et al., 2018b; Subramanian et al., 2005;
The Gene Ontology Consortium, 2017). This analysis employs a rank-based approach using the
log2 fold change of all tested genes (see Method section 5.3.10). A large number and range of
pathways and functions were found significantly enriched (q value < 0.1) (File S5.1). The
functional results were similar between the different mouse and cell types, indicating a common
response to the bifidobacteria. Based on GO:BP annotations, this response includes an innate
and humeral immune response, ribosome biogenesis and protein and lipid localisation
(summarised in Table 5.2). Interestingly, cell-cell adhesion was identified in the SPF stem cells,
reflecting previous evidence of bifidobacteria effect on epithelial barrier function. Furthermore,
Reactome results included the following pathways and functional groups (File S5.1):

- Cell cycle, translation and metabolism

- Immune functions such as defensins, cytokines and neutrophils

- Apoptosis and autophagy

- Cell-cell junctions and membrane trafficking
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Mouse type | Cell type Functions summary (GO:BP)
ribosome biogenesis; membrane disruption in other organism;
GF Paneth innate immune response
anion transport; humoral immune response; organic hydroxy
GF Stem compound metabolic process

ribosome biogenesis; membrane disruption in other organism;
GF TAhigh antibacterial humoral response; lipid localisation

mitochondrion organization; ATP metabolic process; membrane
disruption in other organism; protein localisation; humoral
GF TAlow immune response; mitotic nuclear division

ribosome biogenesis; innate immune response; membrane
SPF Paneth disruption in other organism; protein localisation

ribosome biogenesis; anion transport; cell-cell adhesion;

SPF Stem inflammatory response; protein localisation
monocarboxylic acid metabolic process; membrane disruption in

SPF TAhigh other organism; mucosal immune response

SPF TAlow ribosome biogenesis; inflammatory response

Table 5.2. Summary of overrepresented Gene Ontology biological processes. Data based on
gene set enrichment analysis comparing bifidobacteria-exposed to control mice in each mouse
type and cell type. q value £ 0.1. GO:BP - Gene Ontology biological process; GF - germ
free/monocolonised mouse; SPF - specific pathogen free/conventionalised mouse; TAhigh -
transit amplifying high cell; TAlow - transit amplifying low cell. For full dataset see File S5.1.

Weighted gene co-expression network analysis (WGCNA) is a systems biology method to identify
patterns of correlation within genes based on expression data (Zhang and Horvath, 2005;
Langfelder and Horvath, 2008). | applied WGCNA to predict clusters of significantly co-expressed
genes whose expression is correlated to the presence or absence of bifidobacteria (see Methods
section 5.3.9). This analysis was carried out on each condition (mouse type + cell type) separately
to permit identification of condition-specific features. However, only two conditions contained
gene clusters which were significantly associated with presence of bifidobacteria (adjusted p
value £ 0.05) — GF Paneth cells and SPF stem cells. The GF Paneth cell data contained 12 separate
modules which were significantly associated with presence of bifidobacteria, totalling 3891
genes (Figure 5.8A). A functional overrepresentation analysis (using GO:BP) was carried out on
all the module genes together as a separate analysis yet it did not provide significant results. A
number of enriched functions were identified including mitotic nuclear division, chromatin
organisation, autophagic mechanisms and membrane permeability (Figure 5.8B). On the other

hand, the SPF stem cell data contained only one significant module of 51 genes, which was
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functionally related to plasma membrane bounded cell projection assembly and ruffle

organisation.

GF Paneth: cluster dendrogram
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Cellular response to chemical [ )
stress

Positive regulation of | @
membrane permeability

Process utilizing autophagic
g P ,g . Count
mechanism
@ 5o
Microtubule organizing { @ @
center localization @
Cellular response to o @
environmental stimulus
. p.adjust
Regulation of response to )
endoplasmic reticulum stress 0.0005
-, . . 0.0010
Positive regulation of chromatin ()
. . 0.0015
organization
0.0020
Mitochondrial gene expression )
Mitotic nuclear division o
mRNA processing (]
0.02 0.04 0.06
GeneRatio

Figure 5.8. WGCNA results of germ free/monocolonised mice Paneth cell expression data (top
25% variant genes). A. WGCNA cluster dendrogram highlighting modules which are significantly
associated (adjusted p < 0.05) with the presence of bifidobacteria - making up a total of 3891
genes. B. Gene ontology biological processes overrepresented among the 3891 significant
module genes (q value <0.01).
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Finally, | investigated the possibility that bifidobacteria could be affecting the direction of stem
cell differentiation by observing expression levels of key differentiation-related transcription
factors (TFs) (as described in General Introduction section 1.2.2). For this analysis | focused on
stem cells and secretory lineages, thus excluding the TAlow cells. Based on the SPF samples, |
observed that Paneth cell and TAhigh cell samples expressed the highest stem cell-associated
TFs: Achaete-scute family BHLH transcription factor 2 (Asc/2), Transcription factor 4 (Tcf4), Jun
proto-oncogene AP-1 transcription factor subunit (Jun) (Figure 5.9A) (van der Flier et al., 2009;
Sancho et al., 2009; Schuijers et al., 2015). This finding concurs with previous finding that the
samples sorted as TAhigh cells are likely to be stem cells, whereas the cells sorted as stem cells
are not. Further, | observed that SRY-box transcription factor 9 (Sox9), a TF associated with
differentiation of Paneth cells (Bastide et al., 2007), was also highly expressed in the TAhigh cells
in addition to Paneth cells. However, literature suggests that Sox9 is also expressed in stem cells
(Bastide et al., 2007; Haber et al., 2017; Jo et al., 2014). Other genes investigated were:
e Enterocyte-associated TF gene, Hairy and enhancer of split-1 (Hes1) (Worthington et al.,
2018)
e Secretory lineage TF genes, Atonal homolog 1 (Atoh1) and CBFA2/RUNX1 partner
transcriptional co-repressor 2 (Cbfa2t2)
e Paneth and goblet TF gene, Growth factor independent 1 (Gfi1)
e Goblet cell TF gene, Kriippel-like factor 4 (Kif4)
e Tuft cell TF gene, POU class 2 homeobox 3 (Pou2f3)
e M cell TF gene, Spi-B transcription factor (Spib)
e Enteroendocrine TF gene, Neurogenin 3 (Neurog3) (Amann et al., 2005; Worthington et
al., 2018).
However, none of the observed TF genes were differentially expressed between the
bifidobacteria treated and control samples, in the SPF mice or GF mice, indicating that

bifidobacteria does not affect cellular differentiation in this context (Figure 5.9, Figure S5.7).

Taken together, these findings indicate a number of cellular functions which may be affected by
bifidobacteria in Paneth cells and stem cells. However, the lack of DEGs between bifidobacteria

treated and control samples indicates that any effect is very small.
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Figure 5.9. Expression of key transcription factors in intestinal epithelial cell differentiation
across specific pathogen free mice samples. Mean scaled expression for each SPF cell type. PC
- Paneth cell; SC - stem cell, TAhigh - transit amplifying high cells.
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5.5 Discussion

In 1900, Bifidobacterium was first identified as a health promoting bacterial genus (Tissier, 1899,
1900). However, despite plentiful research into bifidobacteria and their beneficial effects, much
remains unknown about their mechanisms of action. Furthermore, many studies have focused
on the interplay between bifidobacteria, the immune system and disease, while interactions
with IECs (the gut’s frontline physical barrier) have been largely understudied (O’Neill et al.,
2017). As previous studies have mostly targeted specific pathways and functions using in vitro
or diseased conditions, we aimed to investigate the global transcriptomics effect of B. breve
UCC2003 on healthy mouse small intestinal epithelial cells in vivo (Boesten et al., 2011; Hsieh et
al., 2015; Yang et al., 2017). In Chapter 4, myself and colleagues observed that B. breve had a
global impact on the IEC transcriptome. Based on these results and previous literature evidence,
we investigated the effect of B. breve UCC2003 on stem cells and Paneth cells of the murine
small intestine (Lee et al., 2018). Here, we studied both SPF and GF mice to determine if
bifidobacteria plays a different role - given that the microbiota is key to development and
priming the gut and its associated immune system (Jiao et al., 2020). Due to technical challenges
relating to GF mice, it was necessary to study four-week-old mice. While these mice are
considered juvenile, they were recently weaned onto solid food, whereas the two-week-old
mice from the neonatal study were still nursing. One possible explanation for the lack of
transcriptional differences in the juvenile mice exposed to bifidobacteria compared to the
neonatal mice, would be that B. breve is only modulatory during this very early life period.
Additionally, it is also possible that the reduced gavage protocol and increased time between
gavage and sample collection could have affected the observed impact of bifidobacteria.
However, through plating we confirmed that the GF mice were successfully colonised with
bifidobacteria on the day of sample collection, suggesting that the gavage protocol was
sufficient in these mice. Additional metagenomic or 16s RNA sequencing of the caecal or faecal
contents (samples collected but not analysed) would be required to confirm whether B. breve
successfully colonised the SPF mice at 72 hours, or whether their effect was transient. Two
further possible explanations for the lack of a strong response to bifidobacteria in the juvenile
mice is that the cell populations investigated are not the affected cells or that the cell isolation
and FACS protocol perturbed gene expression. However previous literature evidence suggests

that these scenarios are unlikely (Lee et al., 2018; Richardson et al., 2015).
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Data visualisation and analysis of top variant genes confirmed that, at the whole transcriptome
level, the samples separated primarily by cell population. This confirmed that the FACS protocol
successfully selected four different cell populations and highlighted the continuous nature of
cellular differentiation within the intestinal crypts. The top variant genes were primarily Paneth
cell associated genes, further supporting success of the FACS. However, a number of enterocyte
and goblet cell associated genes were among the top variant genes, indicating that the FACS
markers employed are not fully selective for the populations of interest and further highlighting
the continuous nature of differentiation in the epithelium, where many semi-differentiated cells
express multiple different cell type markers simultaneously. The addition of further marker
proteins to the FACS protocol could potentially exclude progenitor cells destined for other cell
populations. Although, adding FACS markers rapidly increases the complexity of the sort
protocol and requires extensive testing procedures. Alternatively, microfluidic or droplet based
single cell sequencing, such as Chromium from 10X Genomics, could be used to sequence all
cells of the intestinal crypts, avoiding issues with cell sorting. The disadvantages of this type of
approach include cost, sequencing depth and the large number of input cells required, which
can be particularly challenging when the primary research focus is on small cell populations such

as stem cells (See et al., 2018).

The FACS protocol employed in this study for sorting cells was optimised from Yilmaz et al.
(Yilmaz et al., 2012). Here the authors sorted stem cells from Lgr5-EGFP-IRES-creERT2 knock-in
reporter mice, allowing isolation by flow cytometry of Lgr5—EGFP"e" cells which also have low
CD24a marker fluorescence. In our study we used a similar protocol but employed wildtype mice
and measured surface LGR5 marker fluorescence, targeting the presence of LGR5 protein
instead of its gene expression. Furthermore, in addition to sorting stem cells and Paneth cells
based on the Yilmaz protocol, we sorted intermediate cells with high fluorescence of both LGR5

and CD24a (TAhigh) or low fluorescence of both (TAlow) (see Methods section 5.3.4, Table 5.1).

Using IEC marker genes obtained from two independent mouse single cell studies, | found that
all sorted cells were significantly similar to at least one IEC cell type based on global expression
levels. This confirmed success in sorting live IECs. However, the cells sorted using the Yilmaz
method of LGR5"&"CD24a'"" were most similar to enterocytes, rather than stem cells as expected
(Yilmaz et al., 2012). The reason for this discrepancy is currently unknown and thus requires

further investigation. It is possible that this result is in part due to differences between Lgr5-
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EGFP reporter expression which is used in the Yilmaz protocol, and LGR5 cell surface marker
fluorescence which was applied here - especially as these cells do not appear to be expressing
high levels of Lgr5 based on our transcriptomics results. Potentially we extracted cells which
retained LGR5 surface proteins after the cells had stopped expressing Lgr5. Given that all the
cells sorted were obtained from intestinal crypts, this cell population are likely to be semi-
differentiated/transit amplifying enterocytes. In fact, enterocyte precursors are among the most
abundant semi-differentiated cells within the crypt (Bankaitis et al., 2018), and it has been
shown that enterocyte precursors can dedifferentiate to regain stemness upon loss of LGR5*
stem cells (Jones and Dempsey, 2016; Tetteh et al., 2016). However, this justification does not
explain why we did not obtain cells with high LGR5 and low CD24a fluorescence which were also
expressing high Lgr5. Based on the FACS gating plots (Figure S5.1E), following extraction of cells
with low CD24a and high epithelial cell adhesion molecule (EpCAM), no population was excluded
which had higher LGR5 fluorescence, suggesting this population did not exist in our samples.

However, this could be due to the rarity of these cells within in crypt.

On the other hand, the TAhigh cells sorted based on LGR5"&"CD24a"e" were significantly similar
to stem cells, suggesting that intestinal stem cells express high Cd24a. CD24a, also known as
signal transducer 24, is a small glycosylated cell surface protein expressed in many different cell
types (Liu et al., 1992; Stutte et al., 2008). It has been shown to act as a costimulatory molecule
for T-cells and dendritic cells, but its function in the intestines is currently not known. Previous
work has shown that intestinal stem cells express Cd24a and can be sorted based on presence
of CD24a cell surface markers (King et al., 2012). However other experiments have shown that
LGR5+ stem cells have very low or no CD24 marker expression, whereas other ‘reserve’ stem
cell populations in the 4+ position of the crypts have more CD24a (Gracz et al., 2010, 2013).
Investigation of CD24a levels by von Furstenberg et al. (2011) found that the epithelial crypt
population with present but low CD24a contained the most actively cycling cells. Authors carried
out further investigation of the CD24a'% population confirming that the cells have an intestinal
stem cell or Paneth cell phenotype, however they did not carry out further characterisation of
the CD24a"e" population. Wang et al. (2013) used a larger panel of markers to find that
CD44*CD24"°%“CD166* cells express many stem cell associated genes, whereas
CD44*CD24Me"CD166* express secretory cell marker genes. Yilmaz et al. (2012) also used low
CD24a to sort stem cells from mouse small intestinal crypts, but extensive validation of stem cell

identity was not carried out in this experiment. Taken together, literature evidence suggests
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that low CD24a should identify intestinal stem cells, but questions remain regarding exactly
which populations are sorted by which marker quantities. As far as we are aware, no previous
work has described a cell population with high LGRS and high CD24a, as we identified here.
Therefore, more research is required to determine the cell identities sorted here and to evaluate
the marker panel more thoroughly. Potentially the expression of CD24a is dependent on outside
factors such as the age or strain of mouse or, given its role in immune activation, expression
could depend on the gut microbiota. Alternatively, different populations of stem cells may
express different levels of CD24a within one intestinal crypt, as suggested by Gracz et al. (2010,
2013). Based on this theory, the TAhigh cells we isolated in this experiment could be ‘reserve’
4+ stem cells, although we found they also expressed high levels of Lgr5. An alternative
explanation is that the TAhigh cells are not fully differentiated Paneth cells that can revert to a
stem cell phenotype, or early transit amplifying cells that have not completely reprogramed
their gene expression profile and retain markers of stem cells (Buczacki et al., 2013; Roth et al.,
2012). In comparison, the Paneth cells which we sorted based on the Yilmaz method of
LGR5"°*“CD24aMe" were found to be significantly similar to Paneth cells and the TAlow cells
(LGR5*CD24a'""") were similar to enterocytes, confirming the success sorting these populations.
In the future, in situ hybridisation and electron microscopy approaches should be used to
confirm the cell identities and their localisation within the crypt. Moreover, different cell marker

panels could be employed to isolate intestinal stem cells.

Whilst no genes were differentially expressed between the bifidobacteria treated mice and the
control mice, correlation-based analyses revealed some significant differences in functional
profiles. Many of the identified functions (such as cell-cell junctions and cell cycle) agree with
published research and/or the findings of our neonatal study (Din et al., 2020; Yan et al., 2019).
However, the lack of differentially expressed genes indicated that these findings are minor in

magnitude and further experiments would be required to confirm their validity.

WGCNA analysis identified a collection of 3891 genes whose expression was correlated with
presence of bifidobacteria in the GF Paneth cells, and whose associated functions closely
compared to the findings of the previous neonatal study (Chapter 4). However, removal of batch
effects for the WGCNA analysis was carried out following selection of features based on
variance. Given that batch normalisation alters variance of data and that low variance samples

can aid batch normalisation, this method may have slightly altered the results. In future, batch
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normalisation should be carried out before feature selection. Amongst the results, | discovered
cell projection assembly-associated genes correlating to bifidobacteria presence in the SPF stem
cell data. Whilst it has been reported that bifidobacteria can inhibit membrane ruffles in gliadin-
treated Caco-2 cells, further investigation revealed that the relevant genes were marginally
upregulated in the bifidobacteria-exposed mice of our experiment (Lindfors et al., 2008). It is
possible that another microbiota member is responsible for this signal, or it could be a false
positive result due to overinterpretation of minor variation in the data. Regardless, this
uncertainty combined with the lack of results in the other datasets suggests that any potential
transcriptional change of four-week-old IECs due to bifidobacteria exposure is minimal in
homeostatic conditions. However, it would be interesting to repeat such studies in disease
model mice where the effect of bifidobacteria might be greater, or instead with a longer

exposure to bifidobacteria.

5.6 Future research directions

In conclusion, we have shown that B. breve UCC2003 plays a central role in orchestrating global
neonatal IEC gene responses. However, our experiment in juvenile mice demonstrates how
much remains unknown about the effect of B. breve UCC2003 on IECs. Further study is required
to determine whether the contrasting results from this study were due to the age of the mice,
the reduced gavage schedule, the cell types investigated, or whether a real biological signal was

masked by expression changes induced by the cell isolation and sorting protocol.

Additionally, further work should investigate the age at which B. breve ceases to significantly
impact IECs in a healthy condition, as well as the length of time during which bifidobacteria can
exert its effects following gavage. However, such experiments are challenging as they require a
large quantity of mice with many distinct experimental conditions. In part, these challenges
could be avoided by employing alternative experimental models such as 3D organoids —
microinjected, grown with inverted polarity or cultured as 2D monolayers (Bartfeld, 2016; Co et
al.,, 2019; Sato and Clevers, 2013). While these models can provide a simpler and higher
throughput approach, they are further removed from physiological accuracy. For example, they
cannot fully account for the epithelial-immune system interactions or the impact of mouse age
or microbiota. Furthermore, strict anaerobiosis cannot be applied to the apical side of the
organoid IECs without requiring highly complex microfluidics systems, such as HuMiX, which

require extensive optimisation for this type of experiment (Shah et al., 2016). On the other hand,
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organoid models could be valuable for testing a basic response of IECs to bifidobacteria, to
identify affected cell types, to investigate strain specificity and to explore the mechanisms of
interaction. For example, the use of mutants and transcriptionally active strains as positive
controls, in tandem with metabolomic and proteomic approaches, is required to advance our
understanding on the key host pathways and bifidobacterial molecules governing development
and maturation of the intestinal barrier during the early life window. In the future, based on
results from organoid research, more targeted mouse experiments could be carried out,
followed by clinical studies to explore the application of findings to human health. Ultimately,
understanding how specific microbiota members modulate host responses in pre-clinical
models may help the design and development of next-stage targeted microbiota therapies in

humans.
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Chapter 6: Interactions between bifidobacteria and
macrophages

6.1 Introduction

Clinical trials, in vivo experiments and in vitro experiments have indicated that bifidobacteria
have immunomodulatory effects on their host (Ruiz et al. 2017). Indeed, a number of previous
experiments have shown that different Bifidobacterium strains can affect macrophage function
(He et al. 2002; Lee et al. 2012; Mokrozub et al. 2015). For example, Okada et al. (2009) showed
that exposure of RAW264.7 macrophage-like cells to Bifidobacterium and lipopolysaccharide
(LPS) significantly reduced proinflammatory cytokine production compared to with LPS alone.
Macrophages are the most abundant white blood cells in the lamina propria of a healthy gut,
playing a key role in bacterial recognition and phagocytosis as well as impacting epithelial cell
regeneration, T cell differentiation and secreting anti-inflammatory cytokines. Moreover,
macrophages are important for maintaining a balance between tolerance to commensal
bacteria and attack against foreign antigens (Wang et al., 2019b). Dysregulation of this balance
can contribute to gut pathologies such as inflammatory bowel disease, where the immune
system is known to be over-activated by commensal bacteria in the gut (Zhang et al., 2017).
Therefore, the effect of commensal bacteria on macrophages is important for elucidation of the
anti-inflammatory mechanisms of probiotics. Whilst the effect of bifidobacteria strains on
macrophages has been studied, many questions remain regarding the context-specific effect
and the precise molecular mechanisms of interaction between macrophages and bifidobacteria
(He et al., 2002; Lee et al., 2012; Mokrozub et al., 2015; Okada et al., 2009). Such information
will help to uncover how the host immune system interacts with bifidobacteria to support the
balance of inflammation in the gut, whilst also recognising aberrant bifidobacteria which have
breached the cell epithelium. This knowledge may also lead to novel treatment methods to

rebalance an aberrant intestinal immune response.

Bifidobacterium breve UCC2003 is a strain of bifidobacteria isolated from the stool of a breast
fed infant which has been shown to confer health benefits, including protecting the murine host
against bacterial infections and improving gut barrier function in neonatal mice (Fanning et al.,

2012b, 2012a; Kiu et al., 2020) (Chapter 4). Some of the mechanistic factors driving the impact
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of B. breve UCC2003 have been identified, including the type Vb tight adherence pili which can
promote colonic epithelial proliferation, and the exopolysaccharide (EPS) capsule which can
repress local T helper cell (Th)17 responses and reduce pro-inflammatory cytokine release
(Fanning et al., 2012a; Hughes et al., 2017; O’Connell Motherway et al., 2011; Piingel et al.,
2020). However, much remains unknown about the effect of B. breve on different cell types and

the specific B. breve genes and molecules required for crosstalk with the host.

This final results chapter presents a collaborative project, carried out with members of Lindsay
Hall’s research group (Quadram Institute Bioscience, QIB), studying the interaction of B. breve
UCC2003 and macrophages to gain a more thorough understanding of their role in human
health. Here we have used macrophage nuclear factor (NF)-kB activation as a proxy for
macrophage activation, as NF-kB is important for regulation of inflammatory response following
activation of cell surface pattern recognition receptors (as described in General Introduction
section 1.3.2). The experiments and data analyses covered in Chapter 6 are outlined in Figure
6.1. Specifically, using a mutant library of B. breve UCC2003 and a macrophage-like cell line (THP-
1 cell) containing a NF-kB reporter, lan O’Neill (QIB, APC microbiome Ireland, APC) identified
mutant strains with significantly greater or reduced NF-kB activating ability. Further
experimentation carried out by Sree Gowrinadh Javvadi (QIB) identified the effector molecule/s
as secreted proteins (or protein-containing), while mass spectrometry and whole genome
sequencing were employed to further characterise the molecule/s. Meanwhile, | applied a
computational pipeline to predict possible protein-protein interactions (PPIs) between secreted
bifidobacterial proteins and macrophage cell surface proteins based on domain-motif
interactions. Unfortunately, no computational PPl predictions were made which correlated with
experimental results. In fact, the experimental results, combined with further computational
analysis indicate that the molecular interaction likely occurs via bifidobacterial secreted

lipoproteins which often interact with host cells via their lipid moieties.
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Figure 6.1. Schematic overview of the experiments and analyses carried out in Chapter 6.

6.2 Aims

The aims of this project were as follows:
e Identify B. breve UCC2003 mutants which have a significantly greater or lesser effect on
macrophage NF-kB activation compared to the wild-type strain.
o Identify the effector molecules responsible using a combined experimental and

computational approach.
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6.3 Methods

All experimental work was carried out by lan O’Neill and Sree Gowrinadh Javvadi of Lindsay
Hall’s research group in QIB. Liquid chromatography-mass spectrometry (LC-MS) was processed
by the University of Bristol proteomics facility. Processing and analysis of whole genome
sequencing data was carried out by lan O’Neill (QIB, APC). All subsequent computational analysis

and interpretation was carried out by myself.

6.3.1 NF-kB activation screen

The effect of B. breve UCC2003 on NF-kB activation in macrophages was assessed using a THP-
1-blue NF-kB cell reporter line (Invivogen, UK) (Zuliani-Alvarez et al., 2017). Cell were revived in
growth medium RPMI 1640 with 2mM L-glutamine, 25mM HEPES (Merck), 10% heat-inactivated
foetal bovine serum (Gibco), 100ug/ml Normocin (Invivogen), and Pen-Strep (100U/ml-
100pg/ml) (Gibco). The Quanti-blue assay was conducted as per manufacturer instructions
(Invivogen). In brief, once 70% confluence was reached, Blasticidin (Invivogen) treated THP1-
Blue NF-kB cells were transferred from cell culture flasks and seeded at 1x10° per well in a 96-
well tissue culture plate. THP-1 cells were then treated with live bifidobacteria cells or with

secreted proteome samples, as described below.

Briefly, B. breve UCC2003 mutants (n=2592) from a Tn5 insertion library were grown overnight
in 96-well plates before 10ul of each bacterial culture was added to 96-well plates containing
THP-1 cells (Ruiz et al., 2013). 24-hour incubations were carried out before NF-«kB activity was
determined by colorimetric assay. Phosphate buffered saline was used as a negative control.
Mutants which induced or inhibited NF-kB levels more than twice the standard deviation away
from the plate average for the wild-type (WT) B. breve UCC2003 were selected for additional
incubation experiments in six-well plates to verify the phenotype. Subsequently, selected
mutants were subjected to inverse PCR analysis to identify the genomic location of the mini-Tn5
insertion site. Whole genome sequencing was used to confirm the mutation site in the top

selected B. breve UCC2003 mutants.

Following isolation of total proteome (Methods section 6.3.2) THP-1 cells were stimulated with
5ul (3.6mg/mL) total proteome of WT and mutants and incubated for 18 hours in a humidified

incubator at 37° C with 5% CO,. LPS provided by manufacturer was used as a positive control.
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NF-kB activity was determined by colorimetric assay as per manufacturer’s instructions.
Different molecular weight fragments of total proteome were subsequently tested for NF-kB

activation using the same protocol.

6.3.2 Isolation of total proteome

To test the effect of B. breve secreted proteins on NF-kB activation, THP-1 cells were incubated
with extracellular proteome extracted from the WT and top mutant B. breve strains. In brief, the
top selected mutants (20, 24 and 48) and WT B. breve UC20003 were cultured in De Man, Rogosa
and Sharpe (MRS) medium up to saturation (De Man et al., 1960). Cultures were centrifuged
and the supernatants were passed through a 0.22um pore filter (Millipore) before precipitation
with 10% v/v trichloroacetic acid (Sigma-Aldrich) at 4 °C for 3 h and harvesting by centrifugation.
The precipitate was washed twice with ice-cold acetone and dried in a centrifugal vacuum
concentrator (Vacufuge 5301, Eppendorf). Protein pellets were solubilized in ammonium
bicarbonate buffer pH 8.5 (AmBic) and protein concentrations were determined using Protein
assay kit (Invitrogen, UK) as per manufacturer instructions and stored for further purifications
and in-vitro assays at -20°C (Vazquez-Gutierrez et al., 2017). Different molecular weight fractions
of the proteome were obtained using cut off columns and preparative high-performance liquid

chromatography (HPLC) and tested for NF-kB activity on THP-1 cells as described previously.

6.3.3 Liquid chromatography—mass spectrometry

Each sample was separated by SDS-PAGE prior to in-gel tryptic digestion using a DigestPro
automated digestion unit (Intavis Ltd.). The resulting peptides were fractionated using an
Ultimate 3000 nano-LC system in line with an Orbitrap Fusion Tribrid mass spectrometer
(Thermo Scientific). All spectra were acquired from the mass spectrometer by Xcalibur 2.1
software (Thermo Scientific) operated in data-dependent acquisition mode. FTMS1 spectra
were collected at a resolution of 120 000 over a scan range (m/z) of 350-1550, with an automatic
gain control (AGC) target of 400 000 and a max injection time of 100ms. Precursors were filtered
according to charge state (to include charge states 2-7), with monoisotopic peak determination
set to peptide and using an intensity range from 5E3 to 1E20. Previously interrogated precursors
were excluded using a dynamic window (40s +/-10ppm). The MS2 precursors were isolated with
a quadrupole mass filter set to a width of 1.6m/z. ITMS2 spectra were collected with an AGC

target of 5000, max injection time of 50ms and HCD collision energy of 35%.
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The raw data files were processed and quantified using Proteome Discoverer software v2.1
(Thermo Scientific) and searched against the UniProt Bifidobacterium breve database
(downloaded March 2020; 1827 sequences), the Uniprot Bos taurus database (downloaded June
2019; 46309 sequences), the Uniprot Saccharomyces cerevisiae database (downloaded January
2019; 6645 sequences) and an in-house common contaminants database using the SEQUEST
algorithm. Peptide precursor mass tolerance was set at 10ppm, and MS/MS tolerance was set
at 0.6Da. Search criteria included ‘oxidation of methionine’ (+15.995Da), ‘acetylation of the
protein N-terminus’(+42.011Da) and ‘methionine loss plus acetylation of the protein N-
terminus’ (-89.03Da) as variable modifications and ‘carbamidomethylation of cysteine’
(+57.021Da) as a fixed modification. Searches were performed with full tryptic digestion and a
maximum of 2 missed cleavages were allowed. The reverse database search option was enabled

and all data was filtered to satisfy q value < 0.05.

6.3.4 Host — microbe interaction predictions

The following analysis workflow, as described in Figure 6.2, was based on pipelines initially
developed in our research group (Korcsmaros et al., 2013; Sudhakar et al., 2019) and recently

modified by Leila Gul.
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Figure 6.2. Summary of bifidobacteria-macrophage interaction prediction pipeline. Human
and bacterial proteome data, including protein size, was obtained from UniProt (UniProt
Consortium, 2019). Macrophage expressed proteins were determined using data from single cell
experiment (Smillie et al., 2019) and THP-1 cell line expression experiment (Mullokandov et al.,
2012) (ENA accession PRJNA163281). MatrixDB, ComPPI, Human protein atlas and Locate
databases used to identify macrophage membrane proteins (Launay et al., 2015; Sprenger et al.,
2008; Thul et al., 2017; Veres et al., 2015). InterProScan was used to identify bacterial protein
motifs and ELM for human protein motifs and domain-motif interactions (Jones et al., 2014).
Finally, [IUPred and Phobius were used to filter human motifs in external disordered regions (Kall
et al., 2007; Mészaros et al., 2018). PPIs - protein-protein interactions.

6.3.4.1 Filtering human and bacterial proteins

6.3.4.1.1 Bifidobacterial proteins

All B. breve UCC2003 protein sequences and their corresponding mass were downloaded from
UniProt accession UP000000297 (based on genome assembly ASM22013v1, November 2019,
1826 sequences) (UniProt Consortium, 2019). R scripting was used to filter the protein sequence
FASTA file for only proteins with mass 25-95 kDa — based on the results from testing different
molecular weight fractions of the proteome on THP-1 cells (Methods section 6.3.2). 1218

bifidobacterial proteins were taken forward for subsequent analysis.

6.3.4.1.2 Human macrophage proteins

All human protein sequences were downloaded from UniProt accession UP000005640
(November 2019, 75004 sequences) (UniProt Consortium, 2019). Human proteins were filtered
for those expressed in macrophages using two different datasets; a transcriptomics dataset from
a human THP-1 monocyte cell line (Mullokandov et al., 2012) and a single cell RNA-sequencing

(scRNA-seq) dataset from colon mucosal macrophages (Smillie et al., 2019). All proteins


https://www.uniprot.org/proteomes/UP000005640
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expressed in both datasets were used to filter predicted host-microbe interactions to obtain

only those involving a human protein expressed in macrophages.

THP-1 monocyte expression data was obtained from the European Nucleotide Archive project
named mRNA profiling of THP1 cell line, with accession PRINA163281, using REST URLs (Harrison
et al., 2019; Mullokandov et al., 2012). Single end FASTA files were downloaded in triplicate from
Illumina HiSeq 2000 sequencing. The data was processed to obtain gene counts data using the
Snakemake pipelining tool (Késter and Rahmann, 2012). This pipeline applied Trimgalore (v
0.5.0) to trim adapters from the sequences and Kallisto (v 0.44.0) to quantify gene abundance
based on protein coding sequences downloaded from Gencode (GRCh38.p13) (Bray et al., 2016;
Frankish et al., 2019; Krueger, 2019). Trimgalore parameters were: quality=20 and length=50.
Kallisto parameters were: bootstrap=100, mean fragment length=100 and standard
distribution=20. Custom R scripts employing the packages Tximport and ggplot2 were used to
process Kallisto output into counts tables and to plot the density (Soneson et al., 2015;
Wickham, 2016). Based on the gene abundance density plot, genes with expression > 2 in all

samples are considered expressed. In total 11,586 gene were expressed above this cut off.
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Figure 6.3. Density plot of gene abundance across samples in project PRINA163281. Cut off for
expression indicated as vertical line.
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Chromium 10X single cell expression data from colon mucosal macrophages (healthy
individuals) was obtained from Smillie et al. (2019) via the Broad Institute Single Cell Portal
(accession SCP259). Average expression across all identified macrophage cells was converted to
transcripts per million (TPM) from transcripts per 10,000. The data was processed and plotted
using custom R scripts. To determine a gene as expressed, the cut off of TPM > 2 was chosen
based on this density plot (Figure 6.4) and the THP-1 density plot (Figure 6.3). In total 10,681
genes were expressed above this cut off, of which 9,286 were also expressed in the THP-1 data

and thus taken forwards for the subsequent analysis.
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Figure 6.4. Density plot of average gene abundance across macrophage cells in Smillie et al.
(2019). Cut off for expression indicated as vertical line.

6.3.4.2 Human membrane proteins
A list of predicted human membrane proteins was obtained by Leila Gul (El). Information from
four databases was used to collate this list:

e Locate vl (Sprenger et al., 2008)

e  MatrixDB v1 (Launay et al., 2015)

e ComPPlv2.1.1 (Veres et al., 2015)

e Human Protein Atlas v19.1 (Thul et al., 2017)
Any gene predicted to encode a membrane protein in any of these data resources was used for
subsequent analyses. Python was used to obtain a list of proteins predicted to be membrane
based and expressed in macrophages. The Uniprot ID Mapping Service was used to convert

protein and gene IDs (UniProt Consortium, 2019).
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6.3.4.3 Domain and motif predictions

Pfam domains were predicted in all 25-95 kDa bifidobacterial proteins using InterPro scan (v5)
(El-Gebali et al., 2019; Jones et al., 2014). It was not necessary to predict motifs for the human
proteins as the information is present in the Eukaryotic Linear Motif (ELM) database (Dinkel et

al., 2016).

6.3.4.4 Domain — motif interaction prediction

Human motifs and domain-motif interactions were downloaded from the ELM database (v32.0)
(Dinkel et al., 2016). Python and R scripts written by myself and Leila Gul were used to filter ELM
domain-motif interactions to contain only the predicted bacterial domains and macrophage

membrane proteins.

6.3.4.5 Membrane protein filtering

Predicted human-bacterial interactions were further filtered to ensure that human domains
were predicted to appear in the extracellular region of the membrane protein. FASTA sequences
of all human proteins in the predicted interactions were passed into the Phobius tool to predict
cytoplasmic, transmembrane and non-cytoplasmic regions (Kall et al., 2004, 2007). Python was
used to filter the human-bacterial interactions based on the Phobius output, so that all human

domains entirely span a non-cytoplasmic region of the protein (not-including signal peptides).

6.3.4.6  Disordered region filtering

Leila Gul applied IUPred2A and ANCHOR?2 to identify disordered residues and disordered binding
regions in the human proteins, respectively (Mészaros et al., 2018). Predicted domain-motif
interactions were discarded where the human protein motif was not considered disordered —
where more than one amino acid in the domain had an IUpred2A score < 0.5 and an ANCHOR2

score < 0.4.

6.3.5 Lipoprotein prediction

To predict which proteins are lipoprotein precursors, | used hidden Markov model and neural
network tools PRED_LIPO (v1) and SignalP (v5) (Bagos et al., 2008; Nielsen, 2017). PRED_LIPO
predicts secretory signal peptides in gram positive bacteria while SignalP can identify signal
peptides in any archaea, bacteria or eukaryote. The results from the two tools were in

agreement. Input protein sequences were obtained from UniProt (UniProt Consortium, 2019).
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6.4 Results

6.4.1 B. breve UCC2003 activates NF-kB in THP-1 cells

Using an NF-kB reporter macrophage cell line (THP-1 cells), lan O’Neill found that WT B. breve
UCC2003 has an activatory effect on NF-kB. Additionally, he identified 20 Tn5 insertion mutants
with a significantly increased or decreased effect compared to the WT. Three top mutants were
selected for further investigation which display the most increased NF-kB activation (mutants

20 and 24) and the most decreased NF-kB activation (mutant 48) compared to the WT.

Subsequently, the total proteome was extracted from the WT and top mutant strains by Sree
Gowrinadh Javvadi. Testing different molecular weight fractions of the proteomes on THP-1 cells
confirmed that the immunogenic molecule was likely a protein with molecular weight between

50 and 70 kDa which has an activatory effect on NF-kB.

6.4.2 Bifidobacterial protein domains can interact with macrophage

protein motifs

Knowing that the activation of NF-kB in macrophages is likely driven by a secreted protein of
bifidobacteria, | aimed to identify which bifidobacterial proteins can theoretically interact with
macrophage surface proteins to induce downstream effects in the macrophage. Here | adapted
a previously applied workflow to predict domain-motif interactions between secreted bacterial
proteins and macrophage surface proteins (Sudhakar et al., 2019). As protein domains and
motifs are cross-species and typified by their sequences, | could identify known domains and
motifs in the bacterial and macrophage proteins (respectively) and use a database of previous
predicted and/or identified eukaryotic domain-motif interactions (the ELM database) to predict

interactions between them (Akiva et al., 2012; Dinkel et al., 2016; Puntervoll et al., 2003).

In total, | identified 23,218 possible interactions between 24 bifidobacterial proteins and 1,302
macrophage surface proteins. Specifically, these proteins contained 29 different motifs (human
proteins) and 6 different domains (bacterial proteins). Upon further investigation of the
bifidobacterial proteins | found that four of them had active domains which were predicted to
be cytoplasmic in location based on InterPro annotations (Hunter et al., 2009). These were

subsequently disregarded. The final list of bifidobacterial proteins potentially interacting with
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human macrophage proteins via domain-motif interactions is given in Table 6.1. The most
common type of proteins were glycosyltransferases, of which there were nine, and
serine/threonine protein kinases, of which there were three. In addition, there were three

dehydrogenases, two different transferases, two FHA domain-containing proteins and a

phosphoesterase.

UniProt Gene Protein name (symbol where Mass (Da) Pfam
protein ID name known) Domain/s
FOXYD8 Bbr_1653 D-3-phosphoglycerate 35,261 PF00389
dehydrogenase (SerA2)

FOXYF7 Bbr_1674 FHA domain-containing protein 48,802 PF00498
F9XZ54 Bbr_1769 Phosphoesterase 48,563 PF00149
FOXz72 Bbr_1788 Glycosyltransferase involved in cell 39,283 PFO0535
wall biogenesis
FOXZ80 Bbr_1796 Glycosyltransferase 49,959 PFO0535
FoxzI1 Bbr_0068 Serine/threonine protein kinase 34,650 PFO0069
(PknA1)
FOXZ16 Bbr_0073 FHA domain-containing protein 25,371 PF00498
FOXZX6 Bbr_1895 Glycosyltransferase 43,621 PFO0535
FOXZY9 Bbr_1908 Serine/threonine protein kinase 76,574 PFO0069
F9Y002 Bbr_0084 Glycosyltransferase 36,887 PF00535
FOYONS5 Bbr_0238 Glycosyltransferase 39,152 PF00535
FOY1Q6 Bbr_1268 D-3-phosphoglycerate 43,229 PFO0389
dehydrogenase (SerAl)
FOY1V9 Bbr_0435 Beta-1,6-N- 34,174 PF02485
acetylglucosaminyltransferase
FOY1W2 Bbr_0438 Glycosyltransferase 37,920 PF00535
FOY1W9 Bbr_0445 Glycosyltransferase 39,673 PFO0535
FOY1X2 Bbr_0448 Glycosyltransferase 36,641 PFO0535
F9Y240 Bbr_1327 dTDP-rhamnosyl transferase (RfbF) 38,142 PF00535
F9Y246 Bbr_1333 Conserved protein with hydroxyacid 35,848 PF00389
dehydrogenase catalytic domain
FI9Y2A1 Bbr_0504 Serine/threonine protein kinase 41,889 PFO0069
F9Y2U2 Bbr_1504 Glycosyltransferase 35,135 PF00535

Table 6.1. Proteins of B. breve UCC2003 predicted to interact with macrophage surface
proteins vis domain-motif interactions.

Because the database used to predict interactions covers only eukaryotic interactions, the six
bacterial Pfam domains are all known in eukaryotic species (Pfam domain IDs):
- D-isomer specific 2-hydroxyacid dehydrogenase catalytic domain is involved in

oxidation-reduction interactions (PFO0389)
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- Forkhead-associated domain is a phosphopeptide recognition domain (PF00498)

- Calcineurin-like phosphoesterase domain (PF00149)

- Glycosyl transferase family 2 domain which is known to transfer sugars to a range of

substrates including cellulose, dolichol phosphate and teichoic acids (PFO0535)

- Protein kinase domain which phosphorylates proteins (PFO0069)

- Core-2/I-Branching enzyme domain which has glucuronosyltransferase activity

(PF02485)

6.4.3 Predicted bifidobacterial proteins are not present in mass

spectrometry results

For experimental identification of the immunogenic protein/s secreted by B. breve UCC2003,

Sree Gowrinadh Javvad carried out LC-MS on total proteomes of the WT and top mutant strains.

He aimed to identify differences between NF-kB activating and non-NF-kB activating strains, and

thus predict which proteins could be responsible for the observed effects. Comparing the results

from the NF-kB activating strains (WT, 20 and 24) to the non-NF-kB activating strain (48), we

identified 11 bifidobacterial proteins present in the activating strains but not the inactivating

strains (Table 6.2).

UniProt Gene name Protein name (symbol where known) Mass (Da)
protein ID
FOXZH3 Bbr_0060 Alpha-1,4 glucan phosphorylase (GlgP1) 91,088
FOXY36 Bbr_0670 Glutamine synthetase (GInA) 53,254
FOXZF9* Bbr_0046 Conserved hypothetical secreted protein 68,877
FOY1U3* Bbr_0417 Solute-binding protein of ABC transporter system for 48,864
sugars (GalC)
F9XZ02* Bbr_0843 Conserved hypothetical secreted protein with 25,334
excalibur domain
FOY2P4 Bbr_1454 Conserved hypothetical membrane spanning protein 41,467
with Endonuclease/Exonuclease/phosphatase family
domain
FOXYM5 Bbr_0791 Trigger factor (Tig) 49,413
FOXZB8* Bbr_1836 Sugar-binding protein of ABC transporter system 41,473
F9XZ70* Bbr_1785 Hypothetical secreted protein 33,891
FOXYI8 Bbr_0753 SSU ribosomal protein S1P (RspA) 54,615
FIY109 Bbr_0288 Conserved hypothetical secreted protein 67,705

Table 6.2. Potential NF-kB activating proteins based on LC-MS. B. breve UCC2003 proteins
identified by LC-MS in the wild-type strain and two NF-kB activating mutants 20 and 24, but not
in the non-NF-kB activating mutant 48. * Predicted preprolipoproteins.
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Unfortunately, there were no proteins present in the LC-MS results (Table 6.2) which were also
predicted to take part in domain-motif interactions with macrophages (Table 6.1, Figure 6.5).
For a better understanding of the reason behind this disparity, | investigated the reasons why
the proteins predicted by LC-MS were not predicted by the computational predictions. | found
that two of the proteins (hypothetical secreted proteins, F9XZ70 and F9Y109) do not contain
any known eukaryotic domains based on PFAM (Table S6.1) (EI-Gebali et al., 2019). Relating to
the remaining nine proteins, none of their PFAM annotated domains were involved in domain-
motif interactions in the a priori collection which | used (from the ELM database) (Puntervoll et
al., 2003). Therefore, | assume that the LC-MS predicted proteins might contain prokaryotic-
specific domains of which we do not have high quality a priori interaction information or
alternatively these proteins don’t interact with macrophages through domain-motif interactions
between proteins. Examples of both are present. For example, the protein GalC (FOY1U3)
contains the domain ‘Bacterial extracellular solute-binding protein’, which is a prokaryotic-
specific domain and protein RspA (F9XYI8) has the domain ‘S1 RNA binding domain’, which
interacts with RNAs and not proteins (Table S6.1). In conclusion, the immunogenic protein of
interest most likely does not interact with macrophages via eukaryotic domain-motif

interactions and therefore cannot be identified using the bioinformatic pipeline applied.
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Figure 6.5. Summary of results from computational and experimental approaches. Using the
domain-motif prediction pipeline | predicted 20 B. breve UCC2003 proteins (with mass 25-95
kDa) which could potentially interact with macrophage surface proteins. Liquid chromatography
mass spectrometry (LC-MS) of secreted proteome of wild-type and mutant strains identified 11
B. breve UCC2003 proteins which would potentially interact with macrophages to activate NF-
kB. None of the LC-MS predicted proteins overlapped with the 20 computationally predicted
proteins. Preprolipoprotein prediction tools PRED_LIPO (v1) and SignalP (v5) were applied to the
11 LC-MS proteins, identifying five preprolipoproteins (Bagos et al., 2008; Nielsen, 2017). * None
of these 11 proteins contained eukaryotic domains which were involved in domain-domain
interactions in the DOMINE database (Raghavachari et al. 2008).

6.4.4 NF-kB activating molecule likely to be a lipoprotein

Whole genome sequencing results revealed that the non-NF-kB activating mutant (48) contains
its Tn5 insertion site within the lipoprotein signal peptidase gene Bbr_1299 (contains signal
peptidase Il domain, Pfam PF01252). This gene is also known as ispA (F9Y212) and is part of a
multistep pathway to process lipoproteins. First preprolipoproteins are secreted through the
bacterial membrane, usually via the general secretion (Sec) pathway (Ziickert, 2014). Next
preprolipoproteins are acylated by a lipoprotein diacylglyceryl transferase protein (Igt),
anchoring the protein to the lipid membrane. In Gram-positive bacteria such as bifidobacteria,

the final step in the process involves a lipoprotein signal peptidase protein (IspA) which catalyses
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the removal of signal peptides from prolipoproteins creating mature lipoproteins. In Gram-
negative bacteria a further stage occurs in which a third acyl chain is attached by a lipoprotein
N-acyl transferase (Zlickert, 2014). Given the role of lipoprotein signal peptidases in lipoprotein
processing, combined with the knowledge that lipoproteins are well recognised pathogen-
associated molecular patterns, it follows that inactivation of ispA likely prevents maturation of
lipoproteins which in turn could prevent recognition of B. breve by macrophages — perhaps
through a structure change of the lipoprotein or through alterations in lipoprotein release from

the membrane.

To further investigate this finding, | used the tools SignalP and PRED-LIPO to predict which of the
11 LC-MS identified proteins, could be secreted preprolipoproteins (the protein precursors to
lipoproteins) (Bagos et al., 2008; Nielsen, 2017). Here | identified five proteins which are
predicted preprolipoproteins containing lipoprotein signal peptides, as shown in Figure 6.5:
Conserved hypothetical secreted protein (F9XZF9), GalC (F9Y1U3), Conserved hypothetical
secreted protein with excalibur domain (F9XZ02), Sugar-binding protein of ABC transporter
system (F9XZB8), Hypothetical secreted protein (F9XZ70). | conclude that one or multiple of
these five proteins is likely the cause of NF-kB activation in macrophages. However, it remains
unknown whether the protein or the lipid part of the lipoprotein is responsible for interacting

with the macrophages.

As a final check of possible protein-protein interactions, | looked at whether domain-domain
computational predictions would yield possible interactions between the five LC-MS predicted
preprolipoproteins and the macrophage surface proteins. To do this | searched for the domains
of these proteins (annotated in Table $6.1) within the domain-domain interaction database
DOMINE (Raghavachari et al., 2008). None of the domains were involved in any known
interactions within DOMINE. Therefore, through computational prediction tools available, | was
unable to identify possible mechanisms of protein-protein interactions which any of these
proteins and macrophage surface proteins. Nevertheless, it remains possible that these
preprolipoproteins can directly bind to macrophage proteins through bacterial-specific
domains. On the other hand, based on the function of the mutated gene IspA, it is perhaps more
likely that the lipid which is attached to the preprolipoproteins is responsible for binding with

macrophage proteins.
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6.5 Discussion

As macrophages are the most abundant white blood cell in the healthy gut, they provide a key
interface between gut microbes and the host immune system (Mowat and Agace 2014.
Bifidobacteria are a major constituent of the juvenile intestinal microbiota playing a key role in
development of the intestinal epithelium and the immune system. Furthermore, bifidobacteria
have been shown to protect the host from gut pathogens and are often used as probiotics to
improve and maintain general gut health (O’Neill et al.,, 2017). As such, a thorough
understanding of the interactions between bifidobacteria and gut macrophages, and the
effector molecules associated, is required for a better understanding of gut health in children

and adults.

By combining a mutant library of B. breve UCC2003 with a reporter cell line, lan O’Neill
demonstrated the applicability and practicality of such a high throughput approach. In addition
to providing real-time readouts of NF-kB activation, this approach offers great potential for the
identification of bacterial effector molecules. One limitation of the presented approach is the
questionable applicability of THP-1 cell lines to the intestinal situation. As described in the
background (section 1.3.2), intestinal macrophages have different phenotypes to standard
macrophages, exhibiting hyporesponsiveness to TLR activation. THP-1 cells are only able to
mimic some of the characteristics of intestinal macrophages, and are tested in isolation,
preventing any possible phenotype modifications due to neighbouring cell secretions, such as
TGF- B (which can block NF-kB activation) (Naiki et al., 2005; Smith et al., 2011; Smythies et al.,
2010). However, due to ease of use application of this cell line is beneficial when used as an
initial screen prior to further investigatory and validatory experiments in more relevant models.
Such experiments are also required to confirm the effect of bifidobacterial-initiated NF-kB
activation in THP-1 cells on other phenotypes such as cytokine release and nitric oxide

production.

Using a bioinformatic approach | combined a priori knowledge on gene expression, protein
sequence, protein subcellular location, domain and motif annotations and domain-motif
interactions to predict 20 bifidobacterial secreted proteins which could theoretically bind to
macrophage surface proteins. Such an approach can be very powerful when combined with

experimental validations, but is heavily limited by the a priori knowledge available. For example,
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here the predicted domain-motif interactions were based on the ELM database of eukaryotic
interactions (Dinkel et al., 2016; Puntervoll et al., 2003). Therefore, any protein-protein
interactions involving bacterial domains would not be included — which is highly restrictive when
researching prokaryotic-based interactions. As far as | am aware, no resource yet exists for
bacterial domain-eukaryotic motif interactions, likely due to vast numbers of bacterial domains
which have not been fully characterised or studied. On the other hand, computational tools exist

which can predict interactions based on protein sequence.

Here | predicted domain-motif interactions due to the identified importance of these kinds of
interactions in signalling cascades combined with the directionality of the signal (Akiva et al.,
2012; Diella et al., 2008). However, extensions to this approach could also predict domain-

domain interactions using databases such as DOMINE (Raghavachari et al., 2008).

Based on mass spectrometry results, we identified 11 possible proteins of interest. However,
unfortunately none of these 11 were present among the 20 computationally predicted proteins.
This result could be due on limitations of the computational method. Specifically, the interaction
may occur via prokaryotic domains for which we do not have prior information, or through
eukaryotic domains where the interaction of interest is missing from the database due to not
yet having been identified. In fact, none of the 11 LC-MS predicted proteins contained eukaryotic
domains which had predicted domain-motif interactions in the ELM database. Additionally, the
interaction may occur through bacterial proteins binding to a non-protein molecule of the
macrophage. For example, one of the LC-MS predicted bacterial proteins contained an RNA
binding domain. Such interactions are out of scope for this computational method. More likely,
the interaction may not occur via bacterial protein domains. For example, the whole genome
sequencing of mutants indicated a role for the lipoprotein processing gene ispA, implicating
lipoproteins in the interaction between bifidobacteria and macrophages. Such an interaction
could occur via the lipid moieties of the lipoprotein and is therefore also out of the scope of the
computational method applied. Nevertheless, it must also be considered that the result is due
to an error in the mass spectrometry or the computational predictions, although less likely.
Additional experiments are required to identify and confirm the bacterial molecules responsible

for macrophage activation, after which the interaction type can be more easily identified.



Chapter 6: Interactions between bifidobacteria and macrophages 195

Whole genome sequencing of the non-NF-kB activating mutant identified a mutation in a
lipoprotein signal peptidase gene, ispA. In prokaryotic organisms, this transmembrane enzyme
is responsible for cleaving the signal sequence of the prolipoproteins following transport across
the cytoplasmic membrane and addition of diacylglyceryl moieties by the preprolipoprotein
diacylglyceryl transferase (Lgt) protein (Zlickert, 2014). This protein itself is not likely to be the
secreted effector molecule influencing NF-kB activation in macrophages, but it probably causes
downstream changes in lipoprotein processing which affect NF-kB activation: highlighting the
complexities of using mutant strains to identify causative molecules. Possibility, the absence of
correct lipoprotein processing in the non-NF-kB mutant resulted in semi-processed lipoproteins
which could not activate macrophages. Indeed, a previous experiment has shown that the ispA
gene is required in Mycobacterium tuberculosis for stimulation of TLR2 reporter cells by
lipoproteins (Banaiee et al., 2006). It is well known that TLR2 on the surface of macrophages
(and other cells) recognises bacterial lipoproteins resulting in initiation of NF-kB signalling
(Aliprantis et al., 1999). Furthermore, previous experiments have found that B. breve UCC2003
can activate intestinal epithelial cell TLR2, albeit through their EPS (Hughes et al., 2017). Whilst
it is well accepted that NF-kB activation in macrophages leads to pro-inflammatory responses,
research has shown that other gut commensals exploit TLR2 activation of T-cells to supress
immunity through increased IL-10 production (Round et al., 2011). It has also been found that
an aggregated lipoprotein from another strain of B. breve can interact with dendritic cell TLR2
to increase IL-10 and prolong survival of the dendritic cells (Scuotto et al., 2014). Macrophages
also secrete IL-10, suggesting that bifidobacterial activation of macrophages may have anti-
inflammatory and/or pro-inflammatory effects. Further experimentation is required to evaluate

this.

To further investigate the possibility that bifidobacterial lipoproteins activate macrophage NF-
kB, | used computational tools to identify lipoproteins among the 11 LC-MS predicted proteins.
| found that a large proportion of the predicted proteins were lipoproteins (5/11), providing
further evidence of their importance. Further investigation is required to determine whether
any of these lipoproteins are the effector molecule influencing NF-kB activation, via their lipid
or protein parts, and whether they act via TLR or through another mechanism. Additionally, due
to the complexity of microbial-host interactions, we must consider that multiple
proteins/lipoproteins are acting in cohort. It is possible that the aberrant processing of all

bifidobacterial secreted lipoproteins is required for significant reductions in NF-kB activation.
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6.6 Future research directions

Following the presented work, many questions remain regarding the interaction of B. breve
UCC2003 and macrophages. First, it is necessary to confirm the relevance of lipoproteins by
isolating the LC-MS predicted lipoproteins and testing them on THP-1 cells and/or a more
relevant macrophage population. In addition, further investigation should test the involvement
of TLR2 using knockout macrophages or by blocking the receptors (Flores, 2018). Examining pro-
and anti-inflammatory cytokine release as a result of bifidobacterial activation will add context
to the findings, highlighting the relevance of this interaction to gut health. Furthermore, it would
be useful to determine whether the lipid or protein parts of the lipoprotein are interacting with
the macrophages. Unfortunately, lipid-protein interactions are inherently difficult to predict
computationally, especially without prior knowledge of the exact lipid structure of these

lipoproteins (Corradi et al., 2019).

In this study we predicted the effector molecules in WT B. breve UCC2003 missing from the non-
NF-kB activating strain. However, we did not identify possible reasons why the strains 20 and 24
increased NF-kB activation compared to the WT strain. Such investigation will uncover more
details on how bifidobacteria interact with the host immune system. On the other hand, the
predicted domain-motif interactions between B. breve and macrophages provide further

avenues of research.

Together our experiments have evidenced the value of high throughput screens and highlighted
the potential benefits and drawbacks of a combined experimental and computational approach
to research. Following subsequent validation of the effect of bifidobacterial lipoproteins on
macrophages, this work will contribute to a greater understanding of the role of bifidobacteria

in immune cross talks with their host.
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Chapter 7: Integrated discussion

The intestinal epithelial cell (IEC) barrier represents a key interface between host immune cells
and commensal microbes. Understanding communication between these compartments and its
role in gut homeostasis will aid the study of intestinal diseases and the development of methods
to prevent and treat them. In this thesis | aimed to develop workflows to study intra- and inter-
cellular regulation in a cell type-specific manner, and to apply these to investigate interplay

between commensal bacteria Bifidobacterium, immune cells and the intestinal epithelium.

Inflammatory bowel disease (IBD) is one particular context in which this interplay is
fundamental. While the exact causes of IBD have not been identified, it is understood that IBD
occurs in genetically susceptible individuals where an environmental trigger results in a
defective mucosal immune response to the gut microbiota (Yue et al., 2019). Dysregulation of
the immune response results in epithelial damage, infiltration of commensal flora into the
lamina propria and a generalised inflammatory response resulting in high levels of pro-
inflammatory cytokines (Guan, 2019). In Chapter 3, | showed that colonic IECs recognise and
respond to these cytokines by activating inflammatory responses via signalling pathways with
no apparent negative feedback loop. Anti-cytokine therapies represent one of the primary
treatment options for IBD patients, however response rates are poor (Roda et al., 2016). By
combining in vivo organoid models and network analysis approaches | identified similarities in
the IEC response to different cytokines, whereby intracellular signals converge on a few key
transcription factors (TFs). Notably, the colonic expression levels in IBD patients of one
transcription factor, Protein C-ets-1 (ETS1), was significantly associated with subsequent non-
response to anti-TNFa drug infliximab. These findings shed light on the causes of non-response
to anti-cytokine treatments, present a novel classification system to predict patient response to
therapy and offer a potential new candidate for therapeutic targeting. Furthermore, through
this work | have highlighted the benefits of studying the detailed molecular response of cells to

separate components within a complex system.

Development and maintenance of gut homeostasis relies on a complex interplay between the
gut microbiota, the gut lining and the immune system. Therefore, in addition to studying the
communication between host cellular compartments, one must also consider the impact of

commensal bacteria on host cells. Bifidobacteria are health-promoting bacterial genus which
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are widely used as probiotic supplements - despite many unanswered questions relating to their
mechanisms of action (Sarkar and Mandal, 2016). In Chapter 4, | showed that gut commensal
Bifidobacterium breve UCC2003 has a significant effect on the transcriptional program of IECs of
two-week-old mice but not adult mice. Specifically, transcriptional changes related to cell
differentiation, cell proliferation and epithelial barrier function, particularly within the stem cell
compartment, thus providing evidence that bifidobacteria plays a role in development of the
gut lining in early life. Whilst the benefits of administration of probiotic supplements to healthy
infants is contentious, perhaps due to natural levels of bifidobacteria colonisation, these findings
uncover greater mechanistic explanations for the beneficial effects of supplementation in
preterm infants (Braga et al., 2011; Quin et al., 2018; Stratiki et al., 2007; Szajewska et al., 2010).
Furthermore, these results indicated a change in epigenetic modification due to bifidobacteria,
which provides an interesting avenue for further research. Although methylation of enterocyte
cell lines by Bifidobacterium-containing probiotics has previously been noted (Cortese et al.,
2016), little research has followed up this finding, particularly in relation to the stem cell
compartment in which epigenetic changes could affect the whole epithelial layer. Defining
epigenetic changes may shed light on the long-term effects of Bifidobacterium exposure in early
life. The experimental methods we established to isolate stem cells from bifidobacteria-treated
mice in Chapter 5 would be well suited to studying epigenetic changes at a cell type-specific
level. Application of cell-type proportion inference algorithms such as PLIER, may contribute to
the analysis of affected cell types in this dataset (Mao et al., 2019). Unfortunately, in Chapter 5
we did not observe any significant effect of bifidobacteria on sorted IECs. Improvements to this
experiment would have seen more similarities between the experimental set up of Chapter 4
and Chapter 5, especially relating to the age of the mice, as well as more thorough evaluation of

fluorescence activation cell sorting protocols prior to carrying out the primary experiment.

Unexpectedly, in Chapter 4 we observed very little change in the innate immune functions of
two-week-old mouse IECs due to bifidobacteria exposure, indicating a lack of generalised
immune response to bifidobacteria in the gut lumen. On the other hand, in Chapter 6 we showed
that B. breve UCC2003, likely via secreted lipoproteins, activates nuclear factor (NF)-kB in
macrophage-like cells. While the downstream effects of NF-kB activation have not yet been
confirmed in this setting, this finding is likely to be a pro-inflammatory response to aberrant
bifidobacteria identified in the blood or gut lamina propria, indicating a context-specific host

response. However, it is also possible that activation of macrophages by B. breve results in an
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concurrent anti-inflammatory response, as has been shown by Scuotto et al. (2014) to occur in
dendritic cells upon exposure to a B. breve C50 secreted lipoprotein. Further experimental work
will be necessary to shed light on the downstream effects of NF-kB activation and determine the
relevance of this model to the gut compartment. However, through this experiment we
evidenced the value of high throughput screens to aid identification of the effector molecules
responsible for the effect of bifidobacteria. Such detailed mechanistic studies are required to
develop a holistic understanding of how bifidobacteria affects its hosts cells, which will lead to
development of safer and more effective next-stage targeted microbiota therapies for humans.
Nevertheless, dedicated clinical studies would be required to determine if our findings relating

to the impact of bifidobacteria on IECs and macrophages extrapolate to the human setting.

Moreover, the work carried out in Chapter 4 evidences the cell type-specificity of IEC response
to stimulus, by predicting that bifidobacteria particularly affects stem cells in the neonatal mice
epithelium. Whilst further investigation is required to validate this finding, this study and others
presented in this thesis, strongly indicate that mechanistic research should focus on specific cell
types rather than treating the epithelium as a single homogenous unit. Indeed, there is ample
evidence that dysregulation of specific IEC types, such as Paneth cells and goblet cells, has a key
role in the pathogenesis of IBD (Liu et al., 2016; Okamoto and Watanabe, 2016; Zheng et al.,
2011). Therefore, additional future work investigating the differences between cytokine-driven
responses between types of IECs, could uncover further details about epithelial function in IBD.
Interestingly, | predicted in Chapter 2 that ETS1 is a key regulator of Paneth cells and goblet cells,
targeting a large proportion of the known cell type markers. A possible connection between
these findings can be explored in future studies, with the potential to lead to more targeted
therapeutic approaches. Of note, the work presented in the 2" chapter and the 5" chapter
highlight the continuous nature of cellular differentiation in the epithelium and the inherent
challenges assigning a singular identify to a cell. This should be considered when discussing and
studying IEC cell types. Throughout the thesis | have evidenced different ways in which specific
cell types can be studied (cell type enriched organoids, in vivo cell lines, fluorescence activated
cell sorting), while rapid developments in single cell technologies also make these approaches

increasingly applicable and affordable (Tang et al., 2019).

In addition to the biological findings of this thesis outlined above, through these projects | have

demonstrated many different ways in which networks can be used to extract biological insights
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from transcriptomics datasets. In Chapter 2, | reconstructed regulatory networks combining a
variety of different regulatory interaction types, for the purpose of predicting and comparing
key molecular regulators of Paneth cells and goblet cells. Possible improvements to this
approach would include computational prediction of IncRNA and miRNA interactions,
preventing loss of data during the network reconstruction stage, and improved scoring of TF
activity. In Chapter 3, | extended regulatory interactions to reconstruct causal networks linking
the recognition of a cytokine by cellular receptors to a transcriptional change in the cell. Here, |
used the predicted upstream signalling pathways to contextualise the predicted regulatory
interactions, maintaining the primary focus on the TFs. Possible improvements to this approach
would be to employ a heat diffusion method to connect cytokine receptors to TFs, lessening
biases due to hub nodes and avoiding the assumption of short, linear signalling pathways (Paull
et al., 2013). Moreover, the use of a TF activation prediction tool such as VIPER would improve
TF predictions, avoiding the need to filter based on transcription level changes of the TF (Alvarez
et al., 2016). Further additions could include the use of the PROGENYy tool to predict signalling
pathway activations based on transcriptional footprints, and the incorporation of proteomics
data to improve signalling pathway reconstruction (Schubert et al., 2018). In Chapter 4 and 5,
two further kinds of networks were employed: a protein-protein interaction network was used
to add first neighbours to a list of proteins and weighted gene co-expression networks (WGCNA)
were used to link genes together which have correlated expression values (Langfelder and
Horvath, 2008; Mddos et al., 2017). Finally, in Chapter 6, | used inter-cellular protein-protein
interaction networks to study possible communication between bifidobacteria and
macrophages. While this analysis did not successfully identify the effector molecule of interest,
it demonstrated an additional network method which can be employed to study cellular
regulation. Unfortunately, no methods exist to reliably predict molecular interactions with
lipids, which was ultimately a shortcoming of this approach when applied to bifidobacteria-
macrophage interactions. On the other hand, when considering communication between two
eukaryotic cells this method can be extended to map ligand-receptor interactions between cells
using a priori knowledge contained in databases such as OmniPath2 (Tirei et al., 2016; Turei et
al., 2020). Such a method could be used to study other inter-cellular communications between
macrophages and IECs, in addition to those through secreted cytokines. Ultimately a number of
different network reconstruction and analysis methods can be used to aid biological
interpretation of ‘omics data. The ideal methods to use depend not only on the biological

question but also the dataset/s available and the accessible experimental validation options.
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Apart from WGCNA, all network approaches used in this thesis are based on contextualisation
of a priori knowledge. Network inference approaches form a large collection of additional
methods in which biological networks can be reconstructed and analysed, without reliance on a
priori interactions. These methods use mathematical models and algorithms, such as Bayesian
network and ordinary differential equations, to reconstruct networks from high-throughput
data (Chai et al., 2014; De Smet and Marchal, 2010). Application of these methods can be

favourable where a priori knowledge is lacking but high-quality experimental data is plentiful.

Finally, through work covered in this thesis | have developed workflows and pipelines for
contextualisation and analysis of transcriptomics data which have and will continue to be used
within my research group for future projects. Moreover, following the publication of the
research contained in Chapters 2, 3 and 4, | hope that other research groups will recognise the
value of integrating experimental approaches with network analysis and proceed to employ
such approaches in their own work. Specifically, the research presented here highlights the
benefits of mechanistic studies of cellular regulation while presenting accessible methods, which

can be applied to many different contexts in many different fields of research.

In conclusion, this PhD research has contributed to the mechanistic understanding of interplay
between the gut commensal bifidobacteria, the intestinal epithelium and the immune system,
including in the context of IBD. Meanwhile, the presented projects have promoted and aided
the use of networks for interpreting transcriptomics data and studying cellular regulation. The
findings outlined in this thesis will pave the way for future in-depth and validatory research. This
should ultimately lead to a better understanding of gut homeostasis and drive development of
targeted approaches for prevention and treatment of gut dysbiosis related disorders such as

IBD.
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Appendix 1: Supplementary data for Chapter 2

This appendix contains all the supplementary materials for Chapter 2.

e File S2.1 - Differentially expressed genes from cell type enriched enteroids vs
conventionally differentiated enteroids (electronic supplementary materials).

e File S2.2 - Functional enrichment analysis of the top five most rewired (shared) marker
regulators (electronic supplementary materials).

e Table S2.1- Differentially expressed antimicrobial peptide (AMP) and mucin related
genes in Paneth cell enriched enteroids and goblet cell enriched enteroids (compared
to conventionally/normally differentiated enteroids).

e Table S2.2- Hypergeometric significance testing of cell type-specific marker enrichment
in upregulated differentially expressed gene lists.

e Table S2.3 - Rewiring analysis results for the marker regulators present in the Paneth
and the goblet subnetworks.

e Table S2.4 - Crohn’s disease SNP associated genes in the enriched enteroid regulatory
networks.

e Table S2.5 - Ulcerative colitis disease SNP associated genes in the enriched enteroid

regulatory networks.

Gene Gene Ensembl ID Paneth Paneth Goblet Goblet
Type Name DEGLFC | DEGqval | DEGLFC | DEG qval
AMP Ang4 ENSMUSG00000060615 4.64 8.61E-36 2.45 8.75E-13
AMP Defal7 ENSMUSG00000060208 4.02 6.40E-46 2.95 5.56E-31
AMP Defa2 ENSMUSG00000096295 4.58 1.70E-18 NA NA
AMP Defa20 ENSMUSG00000095066 4.40 1.19€-17 NA NA
AMP Defa21 ENSMUSG00000074447 5.18 2.22E-22 NA NA
AMP Defa22 | ENSMUSG00000074443 5.40 3.09E-20 NA NA
AMP Defa23 ENSMUSG00000074446 3.69 1.94E-12 NA NA

Table S2.1. Part 1/2. Differentially expressed antimicrobial peptide (AMP) and mucin related
genes in Paneth cell enriched enteroids and goblet cell enriched enteroids (compared to
conventionally/normally differentiated enteroids). Only genes which are differentially
expressed (log2fc > 1 and q value £ 0.05) in at least one of the datasets was included. LFC - log2
fold change; q val - g value; DEG - differentially expressed gene; Paneth - Paneth enriched
enteroid; goblet - goblet enriched enteroid. Table reproduced from Treveil et al. (2020) under
the Creative Commons BY licence.
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Gene Gene Ensembl ID Paneth Paneth Goblet Goblet
Type Name DEGLFC | DEGqval | DEG LFC DEG q val
AMP Defa24 ENSMUSG00000064213 3.91 8.51E-38 3.24 1.92E-32
AMP Defa26 ENSMUSG00000060070 3.02 1.86E-39 2.22 8.61E-27
AMP Defa28 ENSMUSG00000074434 2.84 3.21E-17 1.66 1.20E-07
AMP Defa29 ENSMUSG00000074437 1.89 3.20E-06 NA NA
AMP Defa3 ENSMUSG00000074440 4.01 6.69E-26 2.90 4.28E-17
AMP Defa30 ENSMUSG00000074444 3.89 1.94E-21 1.44 3.15E-4
AMP Defa32 ENSMUSG00000094818 5.54 1.06E-13 NA NA
AMP Defa33 ENSMUSG00000094362 5.35 9.86E-13 NA NA
AMP Defa34 ENSMUSG00000063206 5.34 5.97E-57 2.32 1.00E-13
AMP Defa35 ENSMUSG00000061845 5.85 3.04E-20 1.43 0.03
AMP Defa36 ENSMUSG00000094662 4.52 7.61E-37 2.16 7.04E-11
AMP Defa5 ENSMUSG00000074439 497 7.91E-33 NA NA
AMP Lyz1 ENSMUSG00000069515 3.86 6.73E-27 2.49 3.67E-14
AMP Pla2g2a ENSMUSG00000058908 3.23 6.78E-45 NA NA
AMP Reg3g ENSMUSG00000074447 5.18 2.22E-22 NA NA
Mucin Fcgbp ENSMUSG00000047730 2.02 5.22E-08 4.40 8.45E-44

related

Mucin Mucl ENSMUSG00000042784 NA NA NA NA

related

Mucin Mucl3 ENSMUSG00000022824 NA NA 1.03 2.48E-4

related

Mucin Muc2 ENSMUSG00000025515 2.64 8.57E-10 4.06 2.24E-27

related

Mucin Muc3 ENSMUSG00000037390 -2.35 0.02 NA NA

related

Mucin Muc3a ENSMUSG00000094840 1.59 3.46E-06 2.46 1.09E-16

related

Mucin Retnlb ENSMUSG00000022650 NA NA NA NA

related

Mucin Tff3 ENSMUSG00000024029 3.27 1.89E-26 3.69 6.74E-42

related

Table S2.1. Part 2/2. Differentially expressed antimicrobial peptide (AMP) and mucin related
genes in Paneth cell enriched enteroids and goblet cell enriched enteroids (compared to
conventionally/normally differentiated enteroids). Only genes which are differentially
expressed (log2fc > 1 and g value < 0.05) in at least one of the datasets was included. LFC - log2
fold change; g val - g value; DEG - differentially expressed gene; Paneth - Paneth enriched
enteroid; goblet - goblet enriched enteroid. Table reproduced from Treveil et al. (2020) under
the Creative Commons BY licence.
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. Multiple
Marker # DEGs Hyper-_ Mu".' ple -Logl10 testing
. . # (IncRNAs | # DEG geometric testing .
list cell |DEG list . s g . (qval) | adjusted p
S Markers | & protein | Markers | significance | adjusted p (1) value (2)
P coding) test p value | value (1)
Paneth | Paneth 71 2077 56 6.07E-36 3.64E-35 | 34.44 | 6.07E-35
goblet Paneth 422 2077 102 7.69E-10 4.61E-09 | 8.34 7.69E-09
enteroen - 7.32E-74
Paneth 204 2077 140 7.32E-75 4.39E-74 | 73.36
docrine
tuft Paneth 490 2077 100 6.54E-06 NA NA 6.54E-05
enterocyte | Paneth 518 2077 8 1 NA NA 10
Paneth | Goblet 71 1797 40 6.97E-20 4.18E-19 | 18.38 | 6.97E-19
goblet Goblet 422 1797 173 1.01E-55 6.08E-55 | 54.21 | 1.01E-54
enteroen - 8.14E-93
Goblet 204 1797 148 8.14E-94 4.89E-93 | 92.31
docrine
tuft Goblet 490 1797 116 1.29E-14 NA NA 1.29E-13
enterocyte | Goblet 518 1797 45 0.98 NA NA 9.86

Table S2.2. Hypergeometric significance testing of cell type-specific marker enrichment in
upregulated differentially expressed gene lists. Marker lists obtained from (Haber et al., 2017).
DEG - differentially expressed gene. (1) = statistical test across only the Paneth, goblet and
enteroendocrine cell type markers. (2) = statistical test across all 5 cell type markers. Figure
reproduced from Treveil et al. (2020) under the Creative Commons BY licence.
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Shared regulator Shared regulator id Dn-Score # Shared | # Panonly | # Gob only
(corrected) | targets targets targets
Etv4 ENSMUSG00000017724 0.4 1 3 1
mmu-let-7e-5p mmu-let-7e-5p 0.370370 49 102 38
mmu-miR-152-3p mmu-miR-152-3p 0.3521127 63 104 46
Myb ENSMUSG00000019982 | 0.3391473 83 108 67
Rora ENSMUSG00000032238 | 0.3309266 281 386 164
Mitf ENSMUSG00000035158 | 0.3302469 | not calc not calc not calc
Hoxb4 ENSMUSG00000038692 | 0.3144654 | not calc not calc not calc
Nr5a2 ENSMUSG00000026398 | 0.3176230 | not calc not calc not calc
Irfl ENSMUSG00000018899 | 0.3170732 | notcalc not calc not calc
mmu-miR-7a-5p mmu-miR-7a-5p 0.3125 not calc not calc not calc
Foxal ENSMUSG00000035451 | 0.3114144 | notcalc not calc not calc
Tead4 ENSMUSG00000030353 | 0.3097313 | notcalc not calc not calc
Nkx2-2 ENSMUSG00000027434 | 0.3069544 | not calc not calc not calc
Vdr ENSMUSG00000022479 | 0.3029627 | not calc not calc not calc
Etsl ENSMUSG00000032035 | 0.3025706 | not calc not calc not calc
Nr3cl ENSMUSG00000024431 | 0.3022903 not calc not calc not calc
Foxa3 ENSMUSG00000040891 | 0.3010753 | not calc not calc not calc
Bhlhal5 ENSMUSG00000052271 | 0.2970660 | not calc not calc not calc
mmu-miR-101a-3p mmu-miR-101a-3p 0.2907895 not calc not calc not calc
Zfp57 ENSMUSG00000036036 | 0.287578 not calc not calc not calc
Fosl1 ENSMUSG00000024912 | 0.2925170 | notcalc not calc not calc
Pax6 ENSMUSG00000027168 | 0.2880184 | not calc not calc not calc
Nfatc2 ENSMUSG00000027544 | 0.2954545 | not calc not calc not calc
Neurodl ENSMUSG00000034701 | 0.2808552 | not calc not calc not calc
Insm1 ENSMUSG00000068154 | 0.2811218 | not calc not calc not calc
mmu-miR-153-3p mmu-miR-153-3p 0.2727273 not calc not calc not calc
Neurod2 ENSMUSG00000038255 | 0.2696850 | not calc not calc not calc
Fosb ENSMUSG00000003545 | 0.2652174 | notcalc not calc not calc
KIf15 ENSMUSG00000030087 | 0.2857143 | not calc not calc not calc
Atohl ENSMUSG00000073043 | 0.2449495 | not calc not calc not calc

Table S2.3. Rewiring analysis results for the marker regulators present in the Paneth and the
goblet subnetworks. Dn score generated using Cytoscape app DyNet (Goenawan et al., 2016).
Not calc - not calculated. Figure reproduced from Treveil et al. (2020) under the Creative
Commons BY licence.



Appendix 1: Supplementary data for Chapter 2 243

Cell type-specific Crohn's susceptibility Direction of differential
regulatory network gene expression
Paneth 9430076C15Rik Upregulated
Paneth Atglel2 Upregulated
Paneth Fut2 Upregulated
Paneth Hmhal Upregulated
Paneth Itinl Upregulated
Paneth lzumol Upregulated
Paneth Jazfl Upregulated
Paneth Plcl1 Upregulated
Paneth Tnfsfl5 Upregulated
Paneth Ccdc88b Downregulated
Paneth Dbp Downregulated
Paneth Fads1 Downregulated
Paneth Fads2 Downregulated
Paneth H2-Q1 Downregulated
Paneth H2-Q10 Downregulated
Paneth H2-Q2 Downregulated
Paneth H2-Q6 Downregulated
Paneth H2-Q7 Downregulated
Paneth Kif21b Downregulated
Paneth Ksrl Downregulated
Paneth Ptpn22 Downregulated
Paneth Zpbp2 Downregulated
Goblet Fut2 Upregulated
Goblet Hmhal Upregulated
Goblet Inpp5d Upregulated
Goblet Itinl Upregulated
Goblet lzumol Upregulated
Goblet Jazfl Upregulated
Goblet Plcl1 Upregulated
Goblet Tnfsfl15 Upregulated
Goblet Gart Downregulated
Goblet H2-Q7 Downregulated
Goblet H2-Q6 Downregulated
Goblet Notch2 Downregulated

Table S2.4. Crohn’s disease SNP associated genes in the enriched enteroid regulatory
networks. Figure reproduced from Treveil et al. (2020) under the Creative Commons BY licence.
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Cell type-specific Ulcerative Colitis Direction of
regulatory network | susceptibility gene | differential expression

Paneth Dap Upregulated
Paneth Edem?2 Upregulated
Paneth Itgal Upregulated
Paneth Maml2 Upregulated
Paneth Mmp24 Upregulated
Paneth Nr5a2 Downregulated
Paneth Plcl1 Upregulated
Paneth Tnfsf15 Upregulated
Paneth Zpbp2 Downregulated
Paneth Card11 Downregulated
Paneth Hnf4A Downregulated
Paneth Nusapl Downregulated
Paneth Procr Upregulated
Goblet Dap Upregulated
Goblet Edem?2 Upregulated
Goblet Itgal Upregulated
Goblet Mmp24 Upregulated
Goblet Nr5a2 Downregulated
Goblet Plcl1 Upregulated
Goblet Tnfsf15 Upregulated
Goblet Card11 Downregulated
Goblet Cep250 Downregulated
Goblet Procr Upregulated

Table S2.5. Ulcerative colitis disease SNP associated genes in the enriched enteroid regulatory
networks. Figure reproduced from Treveil et al. (2020) under the Creative Commons BY licence.
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UC SNP associated CD SNP associated Goblet differentially
genes genes expressed genes
ENSMUSG00000026398 | ENSMUSG00000053007 | ENSMUSG00000013523
ENSMUSG00000027611 | ENSMUSG00000010663 | ENSMUSG00000017057
ENSMUSG00000027612 | ENSMUSG00000017195 | ENSMUSG00000024597
ENSMUSG00000030830 | ENSMUSG00000018334 | ENSMUSG00000027006
ENSMUSG00000036526 | ENSMUSG00000024665 | ENSMUSG00000027346
ENSMUSG00000038241 | ENSMUSG00000027843 | ENSMUSG00000027513
ENSMUSG00000038349 | ENSMUSG00000038349 | ENSMUSG00000027876
ENSMUSG00000039168 | ENSMUSG00000047767 | ENSMUSG00000028236
ENSMUSG00000050395 | ENSMUSG00000047810 | ENSMUSG00000031844
ENSMUSG00000038312 | ENSMUSG00000050395 | ENSMUSG00000032322
ENSMUSG00000055978 | ENSMUSG00000032978
ENSMUSG00000059824 | ENSMUSG00000034472
ENSMUSG00000060550 | ENSMUSG00000038039
ENSMUSG00000063568 | ENSMUSG00000039234
ENSMUSG00000067235 | ENSMUSG00000046841
ENSMUSG00000073409 | ENSMUSG00000055976
ENSMUSG00000079507 | ENSMUSG00000074004
ENSMUSG00000038209 | ENSMUSG00000075610
ENSMUSG00000091705 | ENSMUSG00000055963
ENSMUSG00000035697 | ENSMUSG00000036764
ENSMUSG00000064158

Table S2.6. IBD associated genes targeted by predicted master regulators in the enriched
enteroid regulatory networks. Ulcerative colitis (UC) and Crohn’s disease (CD) associated genes
(from SNP data) targeted by at least one of the master regulators in the relevant networks; list
of top 100 CD differentially expressed genes in human colonic biopsies (CD inflamed vs healthy)
which are targeted by at least one of the predicted goblet cell master regulators in the GCeE
network. Figure reproduced from Treveil et al. (2020) under the Creative Commons BY licence.
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Appendix 2: Supplementary data for Chapter 3

This appendix contains all the supplementary materials for Chapter 3.

e Table S3.1 — Number of differentially expressed genes from the cytokine-treated
colonoids also differentially expressed in UC and cCD biopsy data (GSE16879) (Arijs et

al., 2009).
Cytokine # # colonoid | % colonoid | # colonoid | # colonoid | # colonoid
programme colonoid DEGs in DEGs in DEGs in UC | DEGs in UC DEGs in
category DEGs biopsies biopsies +cCD not cCD cCD not
uc
IFNy 871 305 35.02% 191 102 12
IFNy; IL-13 252 97 38.49% 63 31
IFNy; IL-13; IL-17a 16 4 25.00% 3 1
IFNy; IL-13; IL-173; 29 10 34.48% 7 3
TNFa
IFNy; IL-13; TNFo 65 31 47.69% 20 8 3
IFNy; IL-17a 40 15 37.50% 9 6 0
IFNy; IL-17a; TNFa. 54 13 24.07% 11 2 0
IFNy; TNFo 114 58 50.88% 43 15 0
IL-13 1408 482 34.23% 262 208 12
IL-13; IL-17a 23 6 26.09% 3 3 0
IL-13; IL-17a; TNFou 16 8 50.00% 8 0 0
IL-13; TNFo 143 61 42.66% 34 25 2
IL-17a 66 18 27.27% 12 6 0
IL-17a; TNFo 35 14 40.00% 10 4 0
TNFa, 310 104 33.55% 50 52 2

Table S3.1. Number of differentially expressed genes from the cytokine-treated colonoids also
differentially expressed in UC and cCD biopsy data (GSE16879) (Arijs et al., 2009). Differential
expression when adjusted p value £ 0.01.
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Appendix 3: Supplementary data for Chapter 4

This appendix contains all the supplementary materials for Chapter 4.

Figure S4.1 - Neonatal differentially expressed genes.

Table S4.1 - Reactome pathway enrichment analysis for neonatal upregulated
differentially expressed genes.

Table S4.2 - Cluster analysis on neonatal protein-protein interaction network.

Table S4.3 - Overlap between cell type marker genes and differentially expressed genes.
Table S4.4 - Reactome pathway enrichment analysis of differentially expressed stem cell

signature genes and their expressed regulators.
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Figure S4.1. Neonatal differentially expressed genes. A. Epithelial integrity-associated DEGs B.
Integrin-associated DEGs. All DEGs have g value < 0.05. Dotted line indicates the threshold of
significance (absolute Log2FC > 1.0). Data are represented as Mean + SE. Figure created by
Raymond Kiu (QIB). Figure reproduced from Kiu et al. (2020) under the Creative Commons BY
licence.



Appendix 3: Supplementary data for Chapter 4 249

Term Gene count Fold enrichment Qvalue

Olfactory Signalling Pathway 108 1.88 3.20E-05

Cell Cycle 154 1.63 1.13E-04

Gene expression (Transcription) 238 1.45 1.18E-04

Chromatin organization 67 2.08 2.54E-04

Chromatin modifying enzymes 67 2.08 2.82E-04

DNA Double-Strand Break Repair 51 2.3 4.19E-04

G alpha (s) signalling events 122 1.62 6.50E-04

RNA Polymerase Il Transcription 202 1.39 3.06E-03

Generic Transcription Pathway 173 1.39 8.50E-03

Signal Transduction 461 1.21 8.98E-03

G2/M DNA damage checkpoint 29 2.48 9.07E-03

DNA Repair 77 1.66 1.06E-02

Cell Cycle, Mitotic 122 1.48 1.06E-02

HATSs acetylate histones 23 2.64 1.85E-02

Epigenetic regulation of gene expression 28 2.28 2.38E-02

Homology Directed Repair 30 2.23 2.39E-02

Nonhomologous End-Joining 19 2.82 2.46E-02

Mitotic Prometaphase 58 1.73 2.48E-02

HDR through Homologous Recombination 29 2.26 2.63E-02

Recruitment and ATM-mediated 22 2.53 2.78E-02
phosphorylation of repair

Table S4.1. Reactome pathway enrichment analysis for neonatal upregulated differentially
expressed genes. g value < 0.05. Table reproduced from Kiu et al. (2020) under the Creative
Commons BY licence.
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Cluster Score Nodes Edges Gene UNIPROT IDs
(Density*#
Nodes)
1 6.716 68 276 P70365, 089090, Q8BUR4, P25425, Q3TTA7, Q9JKF1,

P13405, 035618, P20444, 070494, Q925J9, 062190,
P21803, P01132, Q80YR6, Q80UV9, Q9JHD1,
Q61026, Q64143, Q9JL70, 035608, Q01279,
Q8CBWS3, P62806, Q00731, P34056, Q8K4JO,
Q923E4, P97929, Q4U2R1, Q9QZRS5, Q60760,
Q62077, P50652, P16092, Q08297, P97313,

Q6PDQ2, P84228, Q5PSV9, B2ZRWS6, Q6VNS1,
Q61521, Q60751, Q03145, Q3TYD6, Q6NZMS9,
B2RQC6, Q6ZQF0, P15208, 008852, 070445,
Q64455, Q01705, Q97265, Q97073, Q8BGES5,

P22682, 009053, P07901, Q6QI06, P34152, P26450,
Q61084, P14234, P51943, 062245, Q64701

2 4.48 26 68 Q62108, Q7TS75, Q8BSK8, 008586, Q8CHEA4,

Q8CISO, 088572, Q02111, P23242, P12813, Q9EQDO,
QSEQYO, Q01147, QSWVG5, Q570Y9, P16054,
P01101, Q91Y86, Q8BTHS8, Q972A0, P39447,
Q80YE7, Q8C050, P10637, P18654, Q9WV60

3 4.4 11 23 Q60952, A2AUMS, Q9D3R3, Q569L8, Q80725,
Q64702, 035942, Q9ROL6, Q6P5D4, QOVEJO,
Q6A078
4 3.775 72 167 Q60665, P36895, Q05909, P27512, A2A5Z6,

Q9WV30, Q8BWWS9, P10417, P70347, Q8BFP9,
Q7TSG3, 055033, 61214, Q6PDM2, QSCR14,
P70191, Q6PEE3, Q9WULS6, 062210, 008863,
P68433, P26041, 062469, Q9WUN?2, P48754,
Q04750, Q9WVF7, Q9CQ37, Q8K368, P26039,
008553, Q03173, 008901, P15379, Q8BPZS,
Q91YM2, Q64261, P33609, 062417, Q62448,
Q60803, Q9QUMO, Q91WI8, P23804, P00520,
P22518, Q62167, Q8C863, Q80TQ2, P62484,
QOVBD2, Q51043, 035607, Q8VHL1, P70335,
Q97150, 035732, P11276, Q04736, 054781,

Q64727, P25322, Q64700, 035516, Q62388, P53995,
P01108, 070551, Q6A4J8, P30280, Q8BUNS5, P13864

Table S4.2. Cluster analysis on neonatal protein-protein interaction network. Clusters
identified using MCODE and must have > 10 nodes (Bader and Hogue, 2003). Table reproduced
from Kiu et al. (2020) under the Creative Commons BY licence.
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Cell type # # DEG Q % Marker Genes (Symbol)
Marker | marker | value genes
genes genes which are
DEGs
Stem 122 37 0.026 30.33% H2-Eb1, Mfge8, Lgr5, Rgmb, Fstl1,

Scn2b, Sorbs2, Slc14al, Slcl4al,
Slc12a2, Rassf5, Rnf43, Lamb3, Cd44,
Axin2, Lrigl, Cdk6, Rnf32, Smoc2, Esrrg,
Znrf3, Aqp4, BC064078, Zbtb38, Myo9a,
Lrp4, Arhgef26, Cttnbp2, Htr4, Sipalll,
Rin2, Sesn3, Phlpp1, Itgal, Pcdh8, Nfib,
Nfia
Tuft 494 107 1.669 21.66% Ackr4, Eppk1, Afdn, Jadel, Zfp512b, KIf6,
Folrl, Nudt14, Ltc4s, Tmem9, Tmem141,
$100a11, Espn, 1110008P14Rik, Gga2,
Tmemb51, Snrnp25, S100al, Scand1,
Ndufaf3, Rhog, Vamp8, Nradd, Pde6d,
Galkl, Lect2, Bicd1, Prox1, Ehf, Wdfy2,
Hivep2, Myolb, Tmem160, Cpeb4,
Fam49a, KIh128, Aopep, Arhgef28, Jmy,
PIk2, Slc4a7, Txndc16, Dpysl2, Cblb,
Adcy5, Cpne5, Sik1, Pdpk1, Svil, Atatl,
Ptprj, Avil, Hspa4l, Map4k4, Fnl, Pkp1,
Rabgap1l, Gpcpd1l, Pik3r3, Tas1r3, Ttll10,
KIf3, Osbpl3, Nfe2l3, Atf7ip, Itpr2, Psd3,
Pgm2I1, Trakl, Zbtb41, Slc26a2, Exph5,
Tiparp, Ankrd12, Rabgap1, Zdhhc17,
Gmip, Atp8al, Wnk2, Arap2, Otud7b,
Jarid2, Zfhx3, Slco4al, Lmtk2, Suco,
Adam22, Madd, DmxI2, Rgl2, Myzap,
Atxnl, Samd9l, Omd, Bnip5, Mical3,
Nav2, Sirt5, Dsp, Tmem?245, Tead1,
Pla2g4a, Msi2, Fryl, Fnbpl, Usp49,
Vmn2r26
Entero- 202 36 4,942 17.82% Cdkn1lc, Gpx3, Bex3, Pcskln, Respl8,
endocrine Sct, Adora3, Cacnala, Cbfa2t2, Chd7,
Chst11, Cnot6l, Dock4, Fam135a, Gng4,
Kcnh6, KIhi31, Maml3, Map1lb,
Map3k15, Mapkbp1, Ncald, Pcsk1,
Pdella, Peg3, Phldb2, PIxnbl, Prnp,
Rapgef4, Rbfox2, Rimbp2, Rufy2, Syt13,
Tox3, Trpm2, Uncl3a

Table S4.3. Part 1/2. Overlap between cell type marker genes and differentially expressed
genes in neonatal mice. Q value calculated using hypergeometric significance test with

Benjamini-Hochberg correction for multiple testing. Table reproduced from Kiu et al. (2020)
under the Creative Commons BY licence.
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Cell type # # DEG Q % Marker Genes (Symbol)
Marker | marker | value genes
genes genes which are
DEGs
Paneth 71 11 4,955 15.49% Defad2, Mptx1, Apoc2, Samd5, Thbs1,
Angpt2, Acvrlc, C4bp, Slcl16a7, DII3,
Lamb1
Goblet 420 62 5.993 14.76% Naga, Guca2a, Lrrc26, S100a11,

Sh3bgrl3, Scnnla, Ccnd3, CmtmS§,
Krtcap2, Selenom, Sec61g, Tmsb10,
Ggcx, Rasad, Eif2ak4, 1gf2bpl, Itga2,
Arfgef3, Appl2, Tc2n, Kif13a, Golm1,

Sybu, Syt7, Muc2, Tfcp2l1, Galnt5,

Ncoa3, 0df2l, Rfcl, Dipkla, Aacs, Sytl2,

Ern2, Sytl4, Mcf2l, Galnt7, Slc10a7,
Myo5c, Golgbl, Tulp4, Cog3, Dcbld2,
Uggtl, Zc3h7a, Gee2, Capn8, Nipal2,
Sgsm3, Rasef, Edem3, Smim5, Plcb1,

Tbc1d30, Ggcx, Sh3pxd2a, Fgfr3,

Clca3al, Fry, Cracr2a, Ggcx, Gee2

Enterocyte 522 68 6.000 13.03% Spink1, Sultéb2, Smim24, Acp5, Apoc2,
Fcgrt, Gstm3, Cripl, Tmem86a, Ndufal,

Fabp6, Amn, Cideb, Cst6, Prap1, Akr7a5,
2200002D01Rik, Apoc3, Apoal, Rbp2,

Reep6, Tmem37, Gstml, Tmem?253,

Sco2, Gstp2, Epb4113, Btin5, Dgkq,
D130043K22Rik, Mertk, Hnf4g, Cobl,

Snx13, Ccdc88c, Cast, Plec, Mylk, Pcsk5,
Abcc2, Cubn, Slc23a2, Edn3, Pld1, Mme,
Plb1, Ppargcla, Rufy3, Bmp3, Slc13al,
Slc25a36, Farp2, Slc25a37,
C530008M17Rik, Arhgap26, Tbcld24,
Slc18b1, Mical2, TxIng, Ptk6, Apol10b,
Gm11437, Ccdc134, Mgam, Ahnak,
Acnatl, H2-BI

Table S4.3. Part 2/2. Overlap between cell type marker genes and differentially expressed
genes in neonatal mice. Q value calculated using hypergeometric significance test with
Benjamini-Hochberg correction for multiple testing. Table reproduced from Kiu et al. (2020)
under the Creative Commons BY licence.
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Term Gene count Fold Qvalue
enrichment

Regulation of FZD by ubiquitination (R-MMU-4641263) 3 35.6 2.39E-02

Endogenous sterols (R-MMU-211976) 3 27.06 3.63E-02

Estrogen-dependent gene expression (R-MMU- 6 19.61 4.95E-04
9018519)

ESR-mediated signalling (R-MMU-8939211) 6 18.04 4.69E-04

RUNX1 regulates transcription of genes involved in 4 14.78 3.41E-02

differentiation of HSCs (R-MMU-8939236)

Signalling by Nuclear Receptors (R-MMU-9006931) 6 11.66 4.23E-03

Transcriptional regulation by RUNX1 (R-MMU- 6 9.73 9.64E-03
8878171)

Generic Transcription Pathway (R-MMU-212436) 15 5.88 4.71E-05

RNA Polymerase Il Transcription (R-MMU-73857) 15 5 1.89E-04

Gene expression (Transcription) (R-MMU-74160) 15 4.38 4.93E-04

Signal Transduction (R-MMU-162582) 19 2.37 3.65E-02

Table S4.4. Reactome pathway enrichment analysis of differentially expressed stem cell
signature genes and their expressed regulators in neonatal mice. g value < 0.05. Table
reproduced from Kiu et al. (2020) under the Creative Commons BY licence.
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This appendix contains all the supplementary materials for Chapter 5.

e File S5.1 - Results of gene set enrichment analysis comparing bifidobacteria-exposed to
control mice in each mouse type and cell type using Reactome and Gene Ontology
Biological Process annotations (electronic supplementary materials).

e Figure S5.1 - Representative gating strategy to sort Paneth, stem and transit amplifying
(TA) cells from single cell suspension of mouse crypt of Lieberkiihn cells.

e Figure S5.2 - Lactic acid bacterial concentration in faecal and caecal content from germ
free (GF) and specific pathogen free (SPF) juvenile mice.

e Figure S5.3 - Germ free vs specific pathogen free UMAP plot of normalised counts data.

e Figure S5.4 - Principle component analysis (PC1 v PC2) of juvenile mice samples.

e Figure S5.5 - Gene expression heatplot of top 50 variant genes among all germ
free/monocolonised juvenile samples.

e Figure S5.6 - Violin plot of all samples showing levels of gene expression of Lgr5, CD24a
and Lyz1.

e Figure S5.7 - Expression of key transcription factors in intestinal epithelial cell

differentiation across germ free/monocolonised juvenile mice samples.
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Figure S5.1. Representative gating strategy to sort Paneth, stem and transit amplifying
(TA) cells from single cell suspension of mouse crypt of Lieberkiihn cells. A. 7-
Aminoactinomycin D (7AAD) fluorescence against forward scatter (FSC) to gate live and dead
cells. B. Cluster of differentiation (CD)31/CD45/Ter119 against side scatter to gate immune
cells and non-immune cells. C. CD24 against side scatter to obtain CD24"e"and CD24"% cells.
D. Epithelial cell adhesion molecule (EpCAM) against LGR5 fluorescence for CD24"e" cells to
sort Paneth cells and TAhigh cells. E. EpCAM against LGRS5 fluorescence for CD24"" cells to
sort TAlow cells and stem cells. Data from specific pathogen free (SPF) mouse 1. Figures
from the software BD FACSChorus of the FACSMelody sorting machine.
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Figure S5.2. Lactic acid bacterial concentration in faecal and caecal content from germ free
(GF) and specific pathogen free (SPF) juvenile mice. A. Bacterial concentration (CFU/mL/g)
in SPF and GF caecal content 72h after gavage of B. breve UCC2003 * = p < 0.05 (paired t-
test). B. Bacterial concentration (CFU/mL/g) in SPF mouse faecal content before gavage and
24h after gavage of B. breve UCC2003. Data not significant (paired t-test, p > 0.05). Bacteria
grown anaerobically on De Man, Rogosa and Sharpe plates at 37° for 48h. Standard Error

shown.
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Figure S5.4. Principle component analysis (PC1 v PC2) of juvenile mice samples. A. Samples
identified by pre-labelled cell type. B. Samples labelled by bifidobacteria-treated or control
condition. C. Samples labelled by cell type and bifidobacteria-treated or control condition.
PC - Paneth cell; SC - stem cell, TAhigh - transit amplifying high cells; TAlow - transit
amplifying low cells; O - control condition; 1 - bifidobacteria-treated.
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Figure S5.6. Violin plot of all samples showing levels of gene expression of Lgr5, CD24a
and Lyz1. PC — Paneth cells; SC — stem cells; TAhigh — TAhigh cells; TAlow — TAlow cells.
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expression for each GF cell type. PC - Paneth cell; SC - stem cell, TAhigh - transit amplifying
high cell.
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This appendix contains all the supplementary materials for Chapter 6.

e Table S6.1 - PFAM domain annotations for potential NF-kB activating proteins based

on LC-MS.
UniProt Protein name (and symbol Domain/s Domain description
protein ID where known)
FOXZH3 Alpha-1,4 glucan phosphorylase PF00343 Carbohydrate phosphorylase
(GlgP1)
FIXY36 Glutamine synthetase (gInA) PF00120; Glutamine synthetase, catalytic
PF03951 domain; Glutamine synthetase, beta-
Grasp domain
FOXZF9 Conserved hypothetical PFO8757 CotH protein
secreted protein
FOY1U3 Solute-binding protein of ABC PF01547 Bacterial extracellular solute-binding
transporter system for sugars protein
(GalC)
F9XZ02 Conserved hypothetical PF05901 Excalibur calcium-binding domain
secreted protein with excalibur
domain
FOY2P4 Conserved hypothetical PF03372 Endonuclease/Exonuclease/phospha
membrane spanning protein tase family
with

Endonuclease/Exonuclease/pho
sphatase family domain

FOXYM5 Trigger factor (Tig) PF05698; Bacterial trigger factor protein (TF)
PF05697; C-terminus; Bacterial trigger factor
PF00254 protein (TF); FKBP-type peptidyl-

prolyl cis-trans isomerase
FOXZB8 Sugar-binding protein of ABC PF13407 Periplasmic binding protein domain
transporter system
FOXZ70 Hypothetical secreted protein (PS51257) (Prokaryotic membrane lipoprotein
* lipid attachment site profile)*
FOXYI8 SSU ribosomal protein S1P PFO0575 S1 RNA binding domain
(RspA)
FOY109 Conserved hypothetical - -

secreted protein

Table S6.1. PFAM domain annotations for potential NF-kB activating proteins based on LC-MS.
*Annotation obtained from PROSITE rather than PFAM (El-Gebali et al., 2019; Sigrist et al.,
2013).
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The epithelial lining of the small intestine consists of multiple cell types, including Paneth cells and
goblet cells, that work in cohort to maintain gut health. 3D in vitro cultures of human primary epithelial
cells, called organoids, have become a key model to study the functions of Paneth cells and goblet cells
in normal and diseased conditions. Advances in these models include the ability to skew differentiation
to particular lineages, providing a useful tool to study cell type specific function/dysfunction in the
context of the epithelium. Here, we use comprehensive profiling of mRNA, microRNA and long non-
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coding RNA expression to confirm that Paneth cell and goblet cell enrichment of murine small intestinal
organoids (enteroids) establishes a physiologically accurate model. We employ network analysis to infer
the regulatory landscape altered by skewing differentiation, and using knowledge of cell type specific
markers, we predict key regulators of cell type specific functions: Cebpa, Jun, Nrldl and Rxra specific to
Paneth cells, Gfilb and Myc specific for goblet cells and Ets1, Nr3cl and Vdr shared between them. Links
identified between these regulators and cellular phenotypes of inflammatory bowel disease (IBD)
suggest that global regulatory rewiring during or after differentiation of Paneth cells and goblet cells
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Accepted 23rd October 2019 could contribute to IBD aetiology. Future application of cell type enriched enteroids combined with the
presented computational workflow can be used to disentangle multifactorial mechanisms of these cell
types and propose regulators whose pharmacological targeting could be advantageous in treating IBD

patients with Crohn's disease or ulcerative colitis.
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epithelial homeostasis along with dysregulated immune
responses are some of the underlying reasons behind the

= Introduction

Gut barrier integrity is critically important for efficient nutrient
absorption and maintenance of intestinal homeostasis' and is
maintained by the combined action of the various cell types
lining the intestinal epithelium.” These intestinal epithelial
cells serve to mediate signals between the gut microbiota and
the host innate/adaptive immune systems.™ Disruption of
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development of inflammatory bowel disease (IBD) such as
Crohn’s disease (CD) and ulcerative colitis (UC).” Therefore, a
greater insight into the functions of intestinal cells will further
our understanding of the aetiology of inflammatory gut
conditions.

To date, various cell types have been identified in the intestinal
epithelium based on specific functional and gene expression
signatures. Paneth cells residing in the small intestinal crypts
of Lieberkiihn help to maintain the balance of the gut micro-
biota by secreting anti-microbial peptides, cytokines and other
trophic factors.® Located further up the intestinal crypts, goblet
cells secrete mucin, which aggregates to form the mucus layer,
which acts as a chemical and physical barrier between the
intestinal lumen and the epithelial lining.” Both of these cell
populations have documented roles in gut-related diseases.®®
Dysfunctional Paneth cells with reduced secretion of anti-
microbial peptides have been shown to contribute to the
pathogenesis of CD,'® while reduction in goblet cell numbers

Mol. Omics, 2020, 16, 39-58 | 39
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and defective goblet cell function has been associated with UC
in humans."

Recent studies have employed single cell transcriptomics
sequencing of tissue samples to characterise the proportion
and signatures of different epithelial cell types in the intestines
of healthy and IBD patients.’>"* However, to provide deeper
insights into the role of specific cell populations (such as
Paneth cells and goblet cells) in IBD, in vitro models are
required for in depth testing and manipulation. Such models
can be used to study specific mechanisms of action, host-
microbe interactions, intercellular communication, patient
specific therapeutic responses and to develop new diagnostic
approaches. Due to ease of manipulation, observation and
analysis, organoid models, including small intestinal models
(enteroids), are increasingly used in the IBD field.'*"*” Enteroid
cell culture systems employ growth factors to expand and
differentiate Lgr5+ stem cells into spherical models of the
small intestinal epithelia which recapitulate features of the
in vivo intestinal tissue.'®?° It has been shown that these
enteroids contain all the major cell types of the intestinal
epithelium, and exhibit normal in vivo functions.”’ These
models, generated using intestinal tissue from mice, from
human patient biopsies or from induced pluripotent stem cells
(iPSCs), have proven particularly valuable for the study of
complex diseases which lack other realistic models and exhibit
large patient variability, such as IBD.**** Small molecule treatments
have been developed that skew the differentiation of enteroids
towards Paneth cell or goblet cell lineages, improving representation
of these cells within the enteroid cell population.** Specifically,
differentiation can be directed towards the Paneth cell lineage
through the addition of DAPT, which inhibits notch signaling,
and CHIR99021, which inhibits GSK3p-mediated p-catenin
degradation. Enteroid cultures enriched in goblet cells can be
generated through the addition of DAPT and IWP-2, an inhibitor
of Wnt signaling.”® Whilst these methods do not present single
cell type resolution, they provide useful tools to study Paneth cell
and goblet cell populations in the context of the other major
epithelial cell types.* A recent study by Mead et al. found that
Paneth cells from enriched enteroids more closely represent
their in vivo counterparts than those isolated from convention-
ally differentiated enteroids, based on transcriptomics, proteo-
mics and morphologic data.>” Furthermore, we have shown that
enteroids enriched for Paneth cells and goblet cells recapitulate
in vivo characteristics on the proteomics level*** and that they
are a useful tool for the investigation of health and disease
related processes in specific intestinal cell types.*®

Nevertheless, the effect of Paneth cell and goblet cell enrich-
ment of enteroids on key regulatory landscapes has not been
extensively characterised. In this study, we comprehensively
profiled mRNAs, miRNAs and IncRNAs from mouse derived,
3D conventionally differentiated enteroids (control), Paneth cell
enriched enteroids (PCeE) and goblet cell enriched enteroids
(GCeE) to determine the extent to which these enteroids display
increased Paneth cell and goblet cell signatures. We applied a
systems-level analysis of regulatory interactions within the
PCeEs and GCeEs to further characterise the effect of cell type

40 | Mol. Omics, 2020, 16, 39-58
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enrichment and to predict key molecular regulators involved
with Paneth cell and goblet cell specific functions. This analysis
was carried out using interactions networks, which are a
primary method to collate, visualise and analyse biological
systems. These networks are a type of systems biology data
representation, which aids the interpretation of -omics read-
outs by contextualising genes/molecules of interest and identi-
fying relevant signalling and regulatory pathways.***! In the
presented analysis, the nodes of the interaction networks
represent genes/molecules of interest from the transcriptomics
data and the edges represent regulatory connections (molecular
interactions) between the nodes inferred from databases.
Studying regulatory interactions using interaction networks
has proven useful to uncover how cells respond to changing
environments at a transcriptional level, to prioritise drug
targets and to investigate the downstream effects of gene
mutations and knockouts.***

We used network approaches to interpret the PCeE and GCeE
transcriptomic data by integrating directed regulatory connec-
tions from resources containing transcriptional and post-
transcriptional interactions. This integrative strategy led us to
define regulatory network landscapes altered by Paneth cell and
goblet cell enrichment of enteroids, termed the network and
GCeE network, respectively (Fig. 1). By incorporating known
Paneth cell and goblet cell markers, we used these networks
to predict master regulators of Paneth cell and goblet cell
differentiation and/or maintenance in the enriched enteroids.
Furthermore, we highlighted varying downstream actions of
shared regulators between the cell types. This phenomenon,
called regulatory rewiring, highlights the importance of changes
in regulatory connections in the function and differentiation
of specific cell types. Taken together, we show that cell type
enriched enteroids combined with the presented network biology
workflow have potential for application to the study of epithelial
dysfunction and mechanisms of action of multifactorial diseases
such as IBD.

Results
Secretory lineages are ov p d in cell type enriched
id. d to lly differentiated controls

We generated 3D self-organising enteroid cultures in vitro from
murine small intestinal crypts (Fig. S1, ESIF)."®° In addition to
conventionally differentiated enteroids, we generated enteroids
enriched for Paneth cells and goblet cells using well-established
and published protocols, presented in detail in the Methods.****
Bulk transcriptomics data was obtained from each set of
enteroids to determine genes with differential expression
resulting from enteroid skewing protocols. Differentially
expressed genes were calculated by comparing the RNA expres-
sion levels (including protein coding genes, IncRNAs and
miRNAs) of enteroids enriched for Paneth cells or goblet cells
to those of conventionally differentiated enteroids. 4135 genes
were differentially expressed (absolute log2 fold change >1 and
false discovery rate <0.05) in the PCeE dataset, and 2889 were

This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Schematic representation of the workflow used to infer and analyse regulatory network landscapes altered by Paneth cell and goblet cell
enrichment of enteroids. PCeE/GCeE network — Paneth cell enriched enteroid/goblet cell enriched enteroid network; TF — transcription factor; INcRNA
- long non-coding RNA; miRNA — microRNA; mRNA - messenger RNA; UC - ulcerative colitis; CD - Crohn’s disease.

differentially expressed in the GCeE dataset (Fig. 2A-C and
Table S1, ESIt). The larger number of differentially expressed
genes (DEGs) in the PCeE data could be attributed to the highly
specialised nature of Paneth cells.***® The majority of the DEGs
were annotated as protein coding: 79% in the PCeE dataset and
84% in the GCeE dataset. In addition, we identified IncRNAs
(PCeE, 11%; GCeE, 9%) and miRNAs (PCeE, 4%; GCeE, 2%)
among the DEGs (Fig. 2B). Some of these DEGs were identified
in both the PCeE and the GCeE datasets, exhibiting the same
direction of change compared to the conventionally differen-
tiated enteroid data. In total, 1363 genes were found upregu-
lated in both the PCeE and the GCeE data, while 442 genes were
found downregulated in both datasets (Fig. 2C). This result
highlights considerable overlap between the results of skewing
enteroids towards Paneth cells and goblet cells, and can be
explained by the shared differentiation history and secretory
function of both Paneth cells and goblet cells.

This journal is © The Royal Society of Chemistry 2020

Pathway analysis was employed to study functional associa-
tions of the DEGs (Fig. 2D). The PCeE-specific DEGs were
associated with a number of metabolic pathways, including
metabolism of vitamins and cofactors, pyruvate metabolism
and citric acid (TCA) cycle and cholesterol biosynthesis. On the
other hand, GCeE-specific DEGs were associated with the
cell cycle through pathways such as cell cycle checkpoints,
DNA replication and G1/S transition. Pathways associated with
the shared DEGs included transmission across chemical
synapses, integration of energy metabolism and a number
of pathways linked to hormones. As hormone functions are
characteristic of enteroendocrine cells, this analysis suggests
that enteroendocrine cells are enriched in both the PCeEs and
the GCeEs.

To validate the cell types present in the enteroids, the
expression of five previously reported major cell type specific
markers were investigated across the enteroids using transcript

Mol. Omics, 2020, 16, 39-58 | 41
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Fig. 2 Differentially expressed genes in Paneth cell enriched enteroids (PCeEs) and goblet cell enriched enteroids (GCeEs) (compared to conventionally
differentiated enteroids). (A) Volcano plots showing log2 fold change and adjusted p value for each gene following differential expression analysis of
PCets (left) and GCeEs (right). Horizontal and vertical lines indicate the differential expression criteria cut offs (g value < 0.05 and log2 fold change = [1]).
(B) Number of differentially expressed genes (DEGs). miRNA = microRNA; IncRNA = long non-coding RNA; genes annotated as ‘other’ include
pseudogenes and antisense genes. (C) Venn diagrams indicating the number of DEGs (passing the cut off criteria). (D) Top 10 Reactome pathways of the
50 most significant DEGs (by q value). (E) Enrichment of cell type specific marker genes in the DEG lists. Higher significance scores indicate greater
enrichment. Number of markers in DEG list out of the total number of markers shown below significance score. Also see Tables S1 and S4 (ESI%).

abundances and RNA differential expression results (Table S2
and Fig. S2, ESIf). The control enteroids and the cell type
enriched enteroids expressed all five investigated markers: Lgr5
(stem cells), ChgA (enteroendocrine cells), Muc2 (goblet cells),

42 | Mol. Omics, 2020, 16, 39-58

Lyzi (Paneth cells) and Vil1 (epithelial cells). We observed an
upregulation of Muc2, Lyz1 and ChgA and a downregulation of Lgr5
in PCeEs and GCeEs compared to the control enteroids, confirming
the more pronounced differentiated status of the enteroids.
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In addition, a number of Paneth cell specific antimicrobial
peptide genes were differentially expressed in the PCeE dataset,
including Ang4, Reg3y, Pla2g2a and Defa2 (Table S3, ESIT). Some
of these genes were also differentially expressed in the GCeE
dataset but with smaller log fold change values, e.g. Lyz1 and
Ang4. Conversely, a number of goblet cell mucin related genes
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(including Muc2 and Tff3) were differentially expressed in both
datasets although all genes exhibited a smaller increase in the
PCeEs (Table S2, ESIf). Therefore, using primary cell type
specific markers, antimicrobial peptide genes and mucin-
related genes, we show that the enteroids contain all major
cell types, and that Paneth cells are most upregulated in the
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Fig. 3 Summary and cluster analysis of regulatory network for Paneth cell enriched enteroid (PCeE) and goblet cell enriched enteroid (GCeE) datasets.
(A) Summary of number of nodes and interactions in the whole PCeE (left) and GCeE (right) networks. Total number of each regulator type shown in red,
number of each target type shown in blue. In the targets pie-chart, mRNAs represent protein coding genes and proteins, miRNAs represent miRNAs
genes and INcRNAs represent IncRNA genes. Size of circles represents logl0 (total unique regulators/targets). Bar chart represents the distribution of
interaction types in the networks (log10 scale). (B) Heatplot of Reactome pathways significantly associated (g value < 0.05) with each cluster of the PCeE
(orange) and GCeE (purple) networks. Only the top 5 pathways shown for each group (or more where equal g values). Only the top 3 clusters had
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TF — transcription factor; miRNA — microRNA; IncRNA - long non-coding RNA. See Items S1, S2 and Table S5 (ESI).
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PCeEs, while goblet cells are most upregulated in the GCeEs.
We also note that both differentiation methods resulted in
increases of other secretory cell types as well.

To further investigate secretory cell type specific signatures
of the enteroids, we measured enrichment of secretory lineages
in the upregulated DEG lists using additional marker genes of
Paneth cells, goblet cells and enteroendocrine cells. While all
tests were significant (hypergeometric model, ¢ value < 0.05),
we identified greater enrichment of Paneth cell markers in the
PCeE DEG list and goblet markers in the GCeE DEG list
(Fig. 2E). This confirms that both enteroid enrichment proto-
cols were successful in increasing the proportion of their target
cell type, but also increased proportions of other secretory
lineages, albeit to a lesser extent (Table S4, ESIT). This observa-
tion confirms previous studies that these enteroid differentia-
tion protocols result in enteroendocrine enrichment in
addition to Paneth cell and goblet cell enrichment.>***

In conclusion, we have used image-based validation, pathway
analysis and marker gene investigation to show successful
enrichment of target cell types in the PCeE’s and GCeE’s.
We also highlighted an additional increase in other secretory
lineages, particularly enteroendocrine cells, as a result of both
enrichment protocols.

ruction of reg;
differentiation skewing

ry networks altered by enteroid

To gain an understanding of the regulatory changes occurring
when enteroids development is skewed, we applied a network
biology approach, and identified regulator-target relationships
within the DEG lists. First, we generated a large network of non-
specific molecular interactions known to occurr in mice, by
collating lists of published data (Table S6, ESIt). The resulting
network (termed the universal network) consisted of 1383 897
unique regulatory interactions connecting 23801 molecular
entities. All interactions within the network represent one
of the following types of regulation: TF-TG, TF-IncRNA,
TF-miRNA, miRNA-mRNA or IncRNA-miRNA. TF-TGs and
TF-IncRNAs make up the majority of the network at 77% and
11% of all interactions, respectively. Due to its non-specific
nature, this universal network contains many interactions not
relevant for the current biological context. In order to get a
clearer and valid picture of regulatory interactions occurring in
our enteroids, we used the universal network to annotate the
PCeE DEGs and GCeE DEGs with regulatory connections.
Combining these connections, we generated specific regulatory
networks for PCeEs and GCeEs, where every node is a DEG and
every interaction has been observed in mice previously.

In total, the PCeE network, generated using differential
expression data from the PCeEs compared to the conventionally
differentiated enteroids, contained 37 062 interactions connect-
ing 208 unique regulators with 3023 unique targets (Fig. 3A and
Item S1, ESIt). The GCeE network, generated using differential
expression data from the GCeEs compared to the convention-
ally differentiated enteroids, contained 19 171 interactions con-
necting 124 unique regulators with 2095 unique targets (Fig. 3A
and Item S1, ESIt). 15.7% of all interactions (8856 out of 56 234)
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were shared between the PCeE and GCeE networks, however
the interacting molecular entities in these interactions (termed
nodes) did not all exhibit the same direction of differential
expression between the networks (comparing PCeE or the GCeE
data to the conventionally differentiated enteroid data). In each
of the enriched enteroid regulatory networks, a particular gene
was represented (as a node in the network) only once, but
may have been involved in multiple different interactions.
In different interactions, a single node could act either as a
regulator or as a target and in different molecular forms, for
example, as a IncRNA in one interaction and as a target gene in
another.

To further investigate the makeup of these networks, we
employed cluster analysis to identify highly interconnected
regions (possible regulatory modules) in the PCeE and GCeE
regulatory networks. Using the MCODE software,*” we identi-
fied five distinct clusters in the PCeE network and seven
distinct clusters in the GCeE networks. A total or 1314 nodes
are present in the PCeE network clusters and 698 in the GCeE
network clusters. Functional analysis identified Reactome
pathways®® associated with each of the modules. Significant
pathways (g value < 0.05) were identified only for the highest
ranked three modules from each network, with a total of
12 pathways shared between the PCeE and GCeE associated
clusters (out of 32 associated with the PCeE clusters and 42 with
the GCeE clusters) (Fig. 3B-D). Of particular note, the first
cluster of the GCeE network has associations with the endosomal/
vacuolar pathway and antigen presentation, the second cluster is
associated with the cell cycle. Of the PCeE clusters, the first cluster
is associated with a range of functions including nuclear receptor
transcription pathway, regulation of lipid metabolism and
senescence. The second is associated with response to metal ions
and endosomal/vacuolar pathway and the third with G alpha (i)
signalling events (Table S5, ESIt).

In conclusion, we have generated regulatory interaction
networks, including transcriptional and post-transcriptional
interactions, which illustrate the effect of skewing enteroid
differentiation towards Paneth cell and goblet cell lineages.

Identification of potential cell type specific master regulators

Through pathway and marker analysis we predicted that our
PCeE and GCeE datasets (i.e. DEG lists), and consequently our
regulatory networks, contain signatures from the cell type of
interest as well as additional noise from other secretory
lineages. To focus specifically on the cell type specific elements
of the networks, we used previously identified cell type specific
markers to extract predicted Paneth cell and goblet cell regu-
lators from our PCeE and GCeE networks. As cell type specific
markers represent genes performing functions specific to a
particular cell type, we expected that the regulators of these
marker genes will have an important role in determining the
function of said cell type. To identify these regulators, we
extracted from the PCeE and GCeE networks, all relevant cell
type specific markers and their direct regulators. These new
networks were termed the Paneth cell subnetwork and goblet
cell subnetwork respectively. The Paneth cell subnetwork

This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Regulator-marker subnetworks for Paneth cell and goblet cell
datasets. (A and B) Paneth cell (A) and goblet cell (B) subnetworks. Nodes
represent genes, transcription factors or RNAs and edges represent
directed physical regulatory connections. Regulators are shown in red
and pink. Cell type specific markers are shown in blue. (C) Summary of the
number of nodes present in both the subnetworks. Paneth cell data above
and goblet cell data below. Total number of each regulator type shown in
red, number of each target type shown in blue. Regulators have been
categorised based on their membership in the two subnetworks - shared
regulators are present in both networks. In the targets pie-chart, mRNAs
also represent protein coding genes. Size of circles represents log10 (total
unique regulators/targets). TF — transcription factor; miRNA - microRNA;
IncRNA - long non-coding RNA.

contained 33 markers specific for Paneth cells with 62 possible
regulators. The goblet cell subnework contained 150 markers
with 63 possible regulators (Fig. 4 and Table S7, ESIT). Obser-
ving the ratio of regulators and markers, the Paneth cell
subnetwork had, on average, 1.88 regulators for each marker.
On the other hand, the goblet cell subnetwork exhibited only
0.42 regulators for each marker. The quantity of markers
identified in each subnetwork (33 in the Paneth network and
150 in the goblet network) correlates with the number of
marker genes identified by Haber et al.'> However, far fewer
regulators were identified in the goblet cell subnetwork
per marker than for the Paneth cell subnetwork. Whilst the
underlying reason for this discrepancy is unknown, it could
potentially be evidence of the complex regulatory environment
required to integrate and respond to the arsenal of signals
recognised by Paneth cells in comparison to goblet cells.*

Of the 95 marker regulators, we identified approximately
one-third (30/95) as present in both subnetworks (Fig. 4C).
Given that the markers are different between the cell types,
a regulator shared between the Paneth cell and goblet
cell subnetworks must show an altered pattern of regulatory
targeting in the two cell types. This phenomenon, referred to as
regulatory rewiring, often results in functional differences of
shared regulators in different environments® - for example, in
this case, between the Paneth cells and goblet cells.

Further investigation of the distinct regulator-marker
interactions highlighted a gradient of regulator specificity.
We generated matrices to visualise the markers controlled by
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Appendix 6: Peer-reviewed publications 267

View Article Online

Research Article

each regulator in the goblet cell (Fig. 5A and C) and the Paneth
cell (Fig. 5B) subnetworks. Each coloured square indicates that
a marker (shown on the y-axis) is regulated by the corres-
ponding regulator (shown on the x-axis). Squares are coloured
blue if the associated regulator is shared between the Paneth
cell and goblet cell subnetworks and orange if they are specific
to one subnetwork. A collection of regulators (both subnetwork
specific and shared) appear to regulate large proportions of the
markers. For example, Ets1, Nr3c1l and Vdr regulate >50%
of the markers in both the Paneth cell and the goblet cell
subnetworks. Specific to the Paneth cell subnetwork, Cebpa,
Jun, Nr1d1 and Rxra regulate >50% of the markers. Specific to
the goblet cell subnetwork, Gfilb and Myc regulate >50%
of the markers. These regulators represent potential master
regulators of differentiation or maintenance of the given
cell types in the enriched enteroids. Referring back to the
highly-interconnected clusters identified in the PCeE and GCeE
networks (Fig. 3C and D), we find these predicted master
regulators in different clusters. In the PCeE network, Cebpa,
Nri1d1, Nr3c1 and Rxra are in cluster 1, Vdr is in cluster 2, Jun is
in cluster 3 and Ets1 is unclustered. In the GCeE network, Ets1
and Myc are in cluster 1, Nr3c1 and Vdr are in cluster 2 and
Gfi1b is in cluster 3. This suggests a wide range of central
functions are carried out by this group of regulators, with
possible divergence of roles between the Paneth cell and the
goblet cell. In contrast to the predicted master regulators,
regulators such as Mafk in the Paneth cell subnetwork and
Spdef in the goblet cell subnetwork regulate only one marker.
These regulators likely have more functionally specific roles.

Together, these results highlight potential regulators which
likely play key roles in specification and maintenance of Paneth
and goblet cells and their functions in cell type enriched
enteroids.

Regulators of cell type specific markers exhibit rewiring
between Paneth cells and goblet cells

Cell type specific markers, which carry out cell type specific
functions, are inherently different between the Paneth cell
and goblet cell subnetworks (mutually exclusive). Therefore,
the regulators observed in both Paneth cell and goblet cell
subnetworks (shared regulators) are expected to target different
marker genes. To do this, the regulators must have different
regulatory connections in the different cell types, a pheno-
menon termed ‘rewiring’.’” We extended the analysis to the
original regulatory networks (PCeE and GCeE networks) to
investigate whether any of the 30 identified shared regulators
are rewired between the whole PCeE and the GCeE networks,
and thus are highly likely to have different functions in the two
types of enriched enteroids as well as between Paneth and
goblet cells. To quantify rewiring of each of these regulators,
we observed their targets in the PCeE and GCeE networks using
the Cytoscape application, DyNet. DyNet assigns each regulator
a rewiring score depending on how different their targets are
between the two regulatory networks (Table S8, ESIt). Using
these rewiring scores, we identified the five most rewired
regulators (of 30) as Etv4, let-7e-5p, miR-151-3p, Myb and Rora.
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Fig. 5 Matrices of interactions between markers and their regulators in the Paneth cell and goblet cell subnetworks. Regulators on y-axis, markers
(regulator targets) on y-axis. Orange boxes indicate the interaction of a regulator and a marker where the regulator is only found in one of the two
subnetworks. Blue boxes signify that the regulator is found in both the Paneth cell and the goblet cell subnetworks. (A) All goblet cell markers'? and their
regulators in the goblet cell subnetwork. (B) All Paneth cell markers'? and their regulators in the Paneth cell subnetwork. (C) Sub-section of A showing the
markers (and their regulators) which have the most regulatory connections. Interactions in Table S7 (ESI¥).

Functional enrichment analysis was carried out on the targets
of these regulators to test whether the targets specific to the
PCeE and GCeE networks have different functions (hypergeo-
metric model, g value < 0.1) (Table S9, ESI{). Across all five

46 | Mol. Omics, 2020, 16, 39-58

regulators the general trend indicated that targets specific to
the PCeE network are associated with metabolism; targets
specific to the GCeE network are associated with cell cycle
and DNA repair. As pathway analysis carried out on the enteroid

This journal is © The Royal Society of Chemistry 2020
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DEGs (Fig. 2D) identified the same phenomenon, this suggests
that the rewired regulators could be key drivers of transcrip-
tional changes during the skewing of enteroid differentiation
towards Paneth cell or goblet cell lineages. In addition, given
that the strongest signal of enriched enteroids represents their
enriched cell type, we predict that these functions are key
features of Paneth cells and goblet cells in the enteroids, and
that the rewired regulators are important drivers of cell type
specific functions.

Looking at the regulators in more detail, the GCeE specific
targets of miR-151-3p, for example, are significantly enriched
in functions relating to antigen presentation, cell junction
organisation, Notch signalling and the calnexin/calreticulin
cycle. None of these functions are enriched in the shared or
PCeE targets. Of particular interest is the calnexin/calreticulin
cycle, which is known to play an important role in ensuring
proteins in the endoplasmic reticulum are correctly folded and
assembled.”* Dysfunction of protein folding and the presence
of endoplasmic reticulum stress are both associated with
IBD.**™** Therefore, we predict that miR-151-3p plays a role
in the secretory pathway of goblet cells and could be an
interesting target for IBD research. In addition, different
functional profiles were also observed for the targets of Rora
in the PCeE and GCeE regulatory networks: targets present in
both networks are significantly associated with mitosis,
whereas those specific to the PCeE network are associated
with metabolism, protein localisation, nuclear receptor
transcription pathway, circadian clock and hypoxia induced
signalling. GCeE specific targets of Rora are connected to
Notch signalling, cell cycle and signalling by Rho GTPases
(associated with cell migration, adhesion and membrane
trafficking) and interferon.

Altogether these observations show that some of the regu-
lators of both Paneth cell and goblet cell marker genes have
different targets (with different associated functions) between
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the PCeE and the GCeE networks. This suggests that regulatory
rewiring occurrs between Paneth cell and goblet cell types.

luating the di 1
master regulators

e of the subnetwork specific

To investigate the function and relevance of the predicted
master regulators in IBD, we carried out three analyses: (1) a
literature search to check what is known about the identified
master regulators; (2) an enrichment analysis to evaluate the
disease relevant genes in the PCeE and GCeE networks and
among the targets of the predicted master regulators; and
finally, (3) a comparative analysis with human biopsy based
single cell dataset to confirm the relevance of the data we
identified PCeE and GCeE networks.

The literature search was carried out using the three groups
of predicted master regulators: those specific to the Paneth cell
markers (Cebpa, Jun, Nrid1l and Rxra), those specific to the
goblet cell markers (Gfilb and Myc) and those which appear to
regulate many of the markers of both cell types (Ets1, Nr3c1
and Vdr). We identified five genes (Ets1, Nr1d1, Rxra, Nr3c1 and
Vdr) with associations to inflammation, autophagy and/or
inflammatory bowel disease (IBD), as shown in Table 1. These
genes correspond to 71% (5/7) of the Paneth cell associated
master regulators and 60% (3/5) of the goblet cell associated
master regulators. Interestingly, four of these genes (all apart
from Ets1), encode nuclear hormone receptors.

Given the possible relationship between the identified
master regulators and IBD, we tested the potential of the PCeE
and GCeE regulatory networks to study the pathomechanisms
of CD or UC. We checked for the presence of known CD or UC
associated genes in the networks, using data from two studies
of single nucleotide polymorphisms (SNPs)*”*® and one study
of CD expression quantitative trait loci (eQTLs).*® Using hyper-
geometric significance tests, we found that the PCeE network
was significantly enriched in all tested lists: genes with UC

Table 1 Literature associations relating to autophagy, inflammation and IBD for putative master regulators

Putative master regulator  Autophagy/inflammation/IBD associations Ref.
NR1D1 (REV-ERBa) Modulates autophagy and ly biog! is in macroph leading to antimycobacterial effects 45

SNP 1512946510 which has associations to IBD, acts as a cis-eQTL for NR1D1 46
NR3C1 (glucocorticoid Associations with cellular proliferation and anti-inflammatory responses 47
receptor) Exogenous glucocorticoids are heavily used as anti-inflammatory therapy for IBD 48 and 49

ATG16L1, an autophagy related gene, was down-regulated in patients who do not respond to 50 and 51

glucocorticoid treatment

Transcriptionally regulates NFKP1, a SNP affected gene in ulcerative colitis 52 and 53
VDR (vitamin D Regulates autophagy in Paneth cells through ATG16L1 - dysfunction of autophagy in Paneth 54 and 55
receptor) cells has been linked to Crohn’s disease

Induces antimicrobial gene expression in other cell lines 56 and 57

Specific polymorphisms in the VDR genes have been connected to increased susceptibility to IDB 58

A study looking at colonic biopsies of IBD patients observed reduced VDR expression compared 59

to healthy biopsies

Interacts with five SNP affected UC genes 60 and 61
RXRa (retinoid X Heterodimerizes with VDR (see above) 62
receptor alpha)
ETS1 (ETS Important role in the development of hematopoietic cells and Th1 inflammatory responses 63 and 64
proto-oncogene 1) Angiogenic factors in the VEGF-Ets-1 cascades are upregulated in UC and downregulated in CD 65

IBD susceptibility gene 66

This journal is © The Royal Society of Chemistry 2020
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associated SNPs (13/47, p < 0.005), genes with CD associated
SNPs (22/97, p < 0.005) and genes with CD associated eQTLs
(290/1607, p < 0.0001) (Tables S10-S12, ESIt). On the other
hand, we found that the GCeE network was significantly
enriched in genes with UC associated SNPs (10/47, p < 0.005)
but regarding CD, the genes with SNP associations were not
significantly enriched (12/97, p = 0.11) and the genes with qQTL
associations were enriched with a larger p value (p < 0.05)
(Tables $10-S12, ESI*).

Next we investigated whether any of the genes with UC or CD
associated SNPs acts as regulators in the PCeE and GCeE
networks. Of the genes with CD associated SNPs, one acts as
a regulator in each network. Similarly, two genes with UC
associated SNPs act as regulators in the networks. Specifically
regarding CD associated genes, in the PCeE network, the gene
Dbp regulates Bik, which encodes the BCL2 interacting killer, a
pro-apoptotic, death promoting protein. In the GCeE network,
Notch2 regulates Notch3 and Hes1. Specifically, regarding UC
associated genes, in the PCeE network, Hnf4a regulates 994
genes/RNAs including nine Paneth cell markers (Cd244a, Fgfrl1,
Clps, Habp2, Hspb8, Pnliprp1/2, Defb1, Mymx) and one other
gene with UC associated SNPs (Tnfsf15). Additionally, a gene
with UC associated SNPs, Nr5a2, was found in both the PCeE
and GCeE networks regulating 389 and 276 genes/RNAs respec-
tively. In the PCeE network Nr5a2 targets include 6 Paneth cell
markers (Cd244a, Copz2, Pnliprp1/2, Sntb1, Mymx). Ultimately,
the large number of targets of these regulatory UC associated
genes suggests they have wide ranging effects on the regulatory
network of Paneth and goblet cells. To further establish the
relevance of the inferred PCeE and GCeE networks, we also
found an over-representation of drug target associated genes in
both the PCeE and GCeE networks (2683/16223 and 1918/16223
respectively, p < 0.0001), highlighting their potential for the
study of therapeutic implications (Table S12, ESIT).

To investigate the link between predicted master regulators
and IBD, we observed whether the genes with UC and CD
associated SNPs are regulated by the predicted master regula-
tors in the PCeE and GCeE networks (Table S13, ESIt). Given
that Paneth cell dysregulation is classically associated with CD
and goblet cell dysregulation/depletion with UC,”® we focused
this analysis only on these pairings, examining CD genes
amongst targets of Paneth cell predicted master regulators,
and UC genes amongst targets of goblet cell predicted master
regulators. In the PCeE network, we found 21 (of 22) of the CD
genes were regulated by at least one of the seven Paneth cell
predicted master regulators, while the targets of these master
regulators were significantly enriched with CD genes in the
PCeE network (p < 0.001). Similarly, we observed that all 10 UC
genes in the GCeE network were regulated by at least one of the
five goblet cell predicted master regulators, while the targets of
these master regulators were significantly enriched with UC
genes (p < 0.005).

To confirm the relevance of these predicted master regula-
tors in a human system, a similar analysis was carried out using
goblet cell differentially expressed genes from a recent single
cell study of human inflamed UC colon biopsies."® Using the
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top 100 differentially expressed genes, following conversion to
mouse Ensembl identifiers, 20 were found to be targeted by the
predicted goblet cell master regulators in the GCeE network.
This represents a significant enrichment amongst all master
regulator targets (p < 0.005) (Table S13, ESIf).

Ultimately, by integrating functional annotations obtained
through literature searches, we show that the Paneth cell and
goblet cell regulatory networks contain genes with direct and
indirect associations with IBD. Furthermore, we find that the
PCEe and GCeE networks and the targets of predicted master
regulators are enriched with IBD associated genes - this finding
is corroborated using human single cell data from UC colon
biopsies. Consequently, these networks and the workflow to
reconstruct and analyse them have great potential for the study
of IBD pathomechanisms in specific intestinal cell types.

Discussion

By generating and integrating cell type enriched enteroid
RNAseq datasets with regulatory networks, we characterised
the regulatory environment altered by differentiation skewing.
Through focusing on cell type specific markers, we used the
regulatory networks to predict master regulators of Paneth cells
and goblet cells and to highlight the role of regulatory rewiring
in cell differentiation. Given the relevance of Paneth cell
and goblet cell dysfunction in IBD, future application of cell
type enriched enteroids combined with our network analysis
workflow can be used to disentangle multifactorial mechanisms
of IBD.

Analysis using known cell type specific markers confirmed
that skewing differentiation of enteroids towards Paneth cells
or goblet cells results in an increase in the target cell signatures
at the transcriptomics level. In addition, signatures of entero-
endocrine cells were increased in both differentiation proto-
cols, albeit at a lower amount than the target cell type. This
finding correlates with previous investigations at both the
transcriptomic and proteomic levels**” 2 and is likely due
to the shared differentiation pathways of these secretory cells.
Nevertheless, as enteroids contain a mixed population of cell
types by nature and because intercellular communication is key
to a functioning epithelium,'®”* the increased proportion of
non-targeted secretory lineages should not be an issue for the
application of these models to research. In fact, the enrichment
of specific cell types is beneficial for enteroid-based research to
increase the signal originating from a specific population of
cells and to provide a larger population of cells of interest for
downstream single cell analysis of enteroids, which is particu-
larly beneficial when studying rare populations such as Paneth
cells. This is valuable due to the lack of in vitro models for long-
term culture of non-self-renewing small intestinal epithelial
cells.”>”® Specifically, the comparison of ‘omics data from a
cell type enriched enteroid to a conventionally differentiated
enteroid enables generation of cell type signatures with more
specificity than can be obtained otherwise - except through
single cell sequencing. Single cell sequencing, however, comes
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at a greater financial cost and provides lower coverage which
can be problematic for rare cell types and lowly expressed
RNAs. Furthermore, a number of previous studies have shown
that these cell type enriched enteroid models, which offer a
simplified and manipulatable version of the intestinal environ-
ment, are useful for the investigation of health and disease
related processes.”****° It must be considered, however, that
through applying chemical inhibitors to enteroids to enrich
particular cell types, we may observe changes in gene expres-
sion which are related to the direct effects of the inhibitor but
not to differentiation. Due to the nature of the inhibitors, it
would be challenging to separate these effects. For example,
CHIR99021, which is used for enriching Paneth cells, is a direct
inhibitor of glycogen synthase kinase 3 (GSK-3). GSK-3 has a
role in many cellular pathways including cellular proliferation
and glucose regulation.”

Using a priori molecular interaction knowledge, we anno-
tated differentially expressed genes (cell type enriched enteroids
vs. conventionally differentiated enteroids) with regulatory
connections. Collecting all connections together generated
regulatory networks for the Paneth cell enriched enteroid
(PCeE) and goblet cell enriched enteroid (GCeE) datasets. This
approach to collating networks (regulatory or otherwise) has
been used for a wide variety of research aims, such as the
identification of genes functioning in a variety of diseases,””®
the prioritisation of therapeutic targets” and for a more general
understanding of gene regulation in biological systems.”®”® The
application of prior knowledge avoids the need for reverse engi-
neering/inference of regulatory network connections, which is
time consuming, computationally expensive and requires large
quantities of high quality data.® To investigate the substructure
and functional associations of the generated PCeE and GCeE
regulatory networks we applied a clustering approach. The identi-
fied clusters represent collections of highly interconnected nodes,
which likely form regulatory modules. Functional analysis con-
firmed distinet functional associations between the clusters as
well as between the networks. The observation that less than half
of the network nodes exist in clusters is consistent with the view
that regulatory networks are hierarchical and scale free with most
genes exhibiting low pleiotropy.*"**

Given the observed additional increase in secretory lineages
based on the DEGs of the enriched organoids, we chose to use
cell type specific markers to extract interactions specific to
Paneth cells and goblet cells from the generated regulatory
networks. This enables further enrichment of Paneth cell and
goblet cell signatures and reduction in noise in the networks
due to the presence of other cell types in the enteroids. Using
this approach, we identified possible regulators of cell type
specific functions in Paneth cells and goblet cells. Some of
these regulators were predicted to be important in both cell
types, but exhibited differential targeting patterns between the
PCeE and the GCeE networks, indicating rewiring of regulators
between the cell types. This highlights apparent redundancy
and/or cooperation of regulators which control similar cell type
specific functions and shows the potential importance
of regulatory rewiring in the evolution of cell type specific
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pathways and functions, something which has been shown
previously to occurr.**®" Functional analysis of the targets of
the most rewired regulators (Etv4, let-7e-5p, miR-151-3p, Myb
and Rora) highlights an overrepresentation of metabolism
associated targets in the PCeE network and cell cycle associated
targets in the GCeE network. A similar result was observed
when functional analysis was carried out on genes with signifi-
cantly different expression levels between the cell type enriched
enteroids and the conventionally differentiated enteroids
(Fig. 2B). This suggests that transcriptional changes during
the skewing of enteroid differentiation could be driven by
rewired regulators and that these functions are key features
of Paneth cells and goblet cells in the enteroids. The latter is
supported by current understanding that Paneth cells rely on
high levels of protein and lipid biosynthesis for secretory
functions,* and they play an important role in metabolically
supporting stem cells.*® Additionally, as terminally-differentiated
cells do not undergo cell division, this result suggests that
enteroid goblet cell signatures are derived from a large population
of semi-differentiated goblet-like cells, a phenomenon previously
observed in tissue sample based studies.'® Extension of our
workflow to single cell sequencing of enteroid cells could validate
these findings by providing greater cell type specificity. However,
these techniques pose further technical and economic
challenges.®®® Specifically, a large number of organoids must
be sequenced to mitigate cellular complexity and batch hetero-
geneity and powerful, reproducible and accurate computational
pipelines are required to analyse such data.”’

We predicted key regulators involved in differentiation or
maintenance of Paneth cells and goblet cells in the enteroids:
Cebpa, Jun, Nr1d1 and Rxra specific to Paneth cells, Gfilb and
Myc specific for goblet cells and Ets1, Nr3c1 and Vdr shared
between them. Validation of these regulators poses significant
challenges due to their wide expression and broad function
range. If the master regulators are controlling differentiation as
opposed to cell function maintenance, evaluating lineage arrest
or delay can be carried out using a gene knockout or knock
down. However the effects of pleiotropy will significantly
hamper the results and such a study would require significant
follow-up studies. On the other hand, if key regulators were
predicted by applying the presented computational workflow to
condition-specific organoids compared to control organoids
(e.g. drug treated organoids vs. non-treated organoids), the
validation would be much simpler. Literature investigation
highlighted that many of the predicted master regulators,
particularly those associated with Paneth cells, have connec-
tions to autophagy, inflammation and IBD (Table 1). While
some of these associations are related to different cell types, we
assume that if a gene can contribute to a specific function in
one cell type it may also contribute in another. This finding
suggests that dysregulation of key cell master regulators could
contribute to IBD.

To further investigate this finding, we identified Crohn’s
disease (CD) and ulcerative colitis (UC) genes in the PCeE and
GCeE networks. We found that CD associated genes are more
strongly associated with the PCeE network than the GCeE
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network. Given that Paneth cell dysfunction is classically asso-
ciated with CD, this finding highlights the relevance of the
generated networks to the in vivo situation. In the PCeE net-
work one SNP associated CD gene, Dbp, acts as a regulator. Dbp,
encoding the D site binding protein, regulates Bik, which
encodes the BCL2 interacting killer, a pro-apoptotic, death
promoting protein. Interestingly, rate of apoptosis has been
implicated in IBD disease mechanisms” and has been associated
with IBD drug response.”” Therefore, this finding highlights a
possible regulatory connection between CD susceptibility genes
and IBD pathology on a Paneth cell specific level. In the GCeE
network, the SNP associated CD gene Notch2 acts as a regulator
for Notch3 and Hes1. It has been previously demonstrated that this
pathway can block glucocorticoid resistance in T-cell acute lym-
phoblastic leukaemia via NR3C1 (predicted master regulator).”
This is relevant to IBD given that glucocorticoids are a common
treatment for IBD patients."® Furthermore, this pathway has been
previously associated with goblet cell depletion in humans®
commonly observed in IBD patients. Furthermore, we identified
a significant enrichment of UC associated genes in both the PCeE
and GCeE networks. The majority of UC associated genes identi-
fied in the networks (9/14) were present in both, suggesting that
genetic susceptibilities of UC do not have a Paneth cell or goblet
cell specific effect. Two of the identified UC associated genes
act as regulators in the networks (Nr5a2 and Hnf4a), targeting
hundreds of genes and thus suggesting a broad ranging effect on
the networks. Building on the identified literature associations of
predicted master regulators, we found that the targets of Paneth
cell master regulators are enriched with CD associated genes, and
the targets of the goblet cell master regulators are enriched with
UC associated genes. This finding was further illustrated using
UC associated goblet cell genes from a human biopsy study,™
highlighting the relevance of these findings in a human system.
Ultimately, the observation of IBD susceptibility genes in the
regulatory networks of these enteroids highlights possible appli-
cation of this model system to study disease regulation in specific
intestinal cell types, through understanding specific mechanistic
pathways.

We have shown how network biology techniques can be
applied to generate interaction networks representing the change
in regulatory environments between two sets of enteroids. Here
we presented this workflow, and by using transcriptomics data we
characterised the effect of Paneth cell and goblet cell differentia-
tion skewing protocols on enteroids. However. the described
workflow could be applied to a variety of ‘omics datasets and
enteroid conditions. For example, to test the response of enteroids
to external stimuli, such as bacteria, and on enteroids grown from
human-derived biopsies, enabling patient-specific experiments.
The application of further ‘omics data-types to the described
approach could generate a more holistic view of cellular molecular
mechanisms, including the ability to observe post-translational
regulation. In this study, we integrated miRNA and IncRNA
expression datasets, in addition to mRNA data, as these molecules
have been shown to perform critical regulatory and mediatory
functions in maintaining intestinal homeostasis.*®***> However,
only small proportions of the generated PCeE and the GCeE
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networks contained miRNA and IncRNA interactions (Fig. 2B),
due to lack of published interaction information, particularly
from murine studies. Both the application of human enteroid
data and the future publication of high-throughput interaction
studies involving miRNAs and IncRNAs will improve the ability to
study such interactions. Nevertheless, these network approaches
are beneficial for contextualising gene lists through annotating
relevant signalling and regulatory pathways®' and we can use
them to represent and analyse current biological knowledge, to
generate hypotheses and to guide further research.

In conclusion, we described an integrative systems biology
workflow to compare regulatory landscapes between enteroids
from different conditions, incorporating information on
transcriptional and post-transcriptional regulation. We applied
the workflow to compare Paneth cell and goblet cell enriched
enteroids to conventionally differentiated enteroids and pre-
dicted Paneth cell and goblet cell specific regulators, which
could provide potential targets for further study of IBD mechan-
isms. Application of this workflow to patient derived organoids,
genetic knockout and/or microbially challenged enteroids,
alongside appropriate validation and single cell sequencing if
available, will aid discovery of key regulators and signalling
pathways of healthy and disease associated intestinal cell types.

Methods
Animal handling

C57BL/6] mice of both sexes were used for enteroid generation.
All animals were maintained in accordance with the Animals
(Scientific Procedures) Act 1986 (ASPA).

Small intestinal organoid culture

Murine enteroids were generated as described previously.'®%*

Briefly, the entire small intestine was opened longitudinally,
washed in cold PBS then cut into ~5 mm pieces. The intestinal
fragments were incubated in 30 mM EDTA/PBS for 5 minutes,
transferred to PBS for shaking, then returned to EDTA for
5 minutes. This process was repeated until five fractions had
been generated. The PBS supernatant fractions were inspected for
released crypts. The crypt suspensions were passed through a
70 pm filter to remove any villus fragments, then centrifuged at
300 x g for 5 minutes. Pellets were resuspended in 200 pl phenol-
red free Matrigel (Corning), seeded in small domes in 24-well
plates and incubated at 37 “C for 20 minutes to allow Matrigel
to polymerise. Enteroid media containing EGF, Noggin and
R-spondin (ENR; (18)) was then overlaid. Enteroids were gener-
ated from three separate animals for each condition, generating
three biological replicates.

To chemically induce differentiation, on days two, five and
seven post-crypt isolation, ENR media was changed to include
additional factors for each cell type specific condition: 3 uM
CHIR99021 (Tocris) and 10 uM DAPT (Tocris) [Paneth cells];
2 puM IWP-2 (Tocris) and 10 uM DAPT [goblet and entero-
endocrine cells].>
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Small intestinal organoid i fl

On day eight post-crypt isolation, enteroids were fixed with 4%
paraformaldehyde (PFA; Sigma-Aldrich) for 1 hour at 4 °C prior
to permeabilization with 0.1% Triton X-100 (Sigma-Aldrich)
and incubated in blocking buffer containing 10% goat serum
(Sigma-Aldrich). Immunostaining was performed overnight at
4 °C using primary antibodies: mouse anti-E-cadherin (BD
Transduction Laboratories), rabbit anti-muc2 (Santa Cruz)
and rabbit anti-lysozyme (Dako), followed by Alexa Fluor-488
and -594 conjugated secondary antibodies (ThermoFisher
Scientific). DNA was stained with DAPI (Molecular Probes).
Images were acquired using a fluorescence microscope
(Axioimager.M2, equipped with a Plan-Apochromat 63x/1.4
oil immersion objective) and analysed using Image]J/FIJI V1.51.

RNA extraction

On day eight post-crypt isolation (allowing optimal cell type-
enrichment as previously shown),” enteroids were extracted
from Matrigel (Corning, 356237) using Cell Recovery Solution
(BD Bioscience, 354253), rinsed in PBS and RNA was extracted
using miRCURY RNA Isolation Tissue Kit (Exiqon, 300115)
according to the manufacturer’s protocol.

Stranded RNA library preparation

The enteroid transcriptomics libraries were constructed using
the NEXTflex™ Rapid Directional RNA-Seq Kit (PerkinElmer,
5138-07) using the polyA pull down beads from Illumina TruSeq
RNA v2 library construction kit (Illumina, RS-122-2001) with the
NEXTflex™ DNA Barcodes - 48 (PerkinElmer, 514104) diluted to
6 uM. The library preparation involved an initial QC of the RNA
using Qubit DNA (Life technologies, Q32854) and RNA (Life
technologies, Q32852) assays as well as a quality check using
the PerkinElmer GX with the RNA assay (CLS960010). Ligated
products were subjected to a bead-based size selection using
Beckman Coulter XP beads (A63880). As well as performing a
size selection this process removed the majority of unligated
adapters. Prior to hybridisation to the flow cell the samples
were amplified to enrich for DNA fragments with adapter
molecules on both ends and to amplify the amount of DNA
in the library. The strand that was sequenced is the cDNA
strand. The insert size of the libraries was verified by running
an aliquot of the DNA library on a PerkinElmer GX using the
High Sensitivity DNA chip (PerkinElmer, CLS760672) and the
concentration was determined by using a High Sensitivity Qubit
assay and g-PCR. Libraries were then equimolar pooled and
checked by qPCR to ensure the libraries had the necessary
sequencing adapters ligated.

Small RNA library preparation

The small RNA libraries were made using the TruSeq Small
RNA Library Prep Kits (Illumina, 15004197), six-base indexes
distinguish samples and allow multiplexed sequencing and
analysis using 48 unique indexes (Set A: indexes 1-12 (Illumina,
RS-200-0012)), Set B: indexes 13-24 (Illumina, RS-200-0024), Set
C: indexes 25-36 (Illumina, RS-200-0036), Set D: indices 37-48
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(Ilumina, RS-200-0048)) (TruSeq Small RNA Library Prep Kit
Reference Guide (Illumina, 15004197 Rev.G)). The TruSeq Small
RNA Library Prep Kit protocol is optimised for an input of
1 pg of total RNA in 5 pl nuclease-free water or previously
isolated microRNA may be used as starting material (minimum
of 10-50 ng of purified small RNA). Total RNA is quantified
using the Qubit RNA HS Assay kit (ThermoFisher, Q32852) and
quality of the RNA is established using the Bioanalyzer RNA
Nano kit (Agilent Technologies, 5067-1511), it is recommended
that RNA with an RNA Integrity Number (RIN) value > 8 is used
for these libraries as samples with degraded mRNA are also
likely to contain degraded small RNA.

Library purification combines using BluePippin cassettes
(Sage Science Pippin Prep 3% Cassettes Dye-Free (CDF3010),
set to collection mode range 125-160 bp) to extract the library
molecules followed by a concentration step (Qiagen MinElute
PCR Purification, 28004) to produce libraries ready for
sequencing. Library concentration and size are established
using HS DNA Qubit and HS DNA Bioanalyser. The resulting
libraries were then equimolar pooled and qPCR was performed
on the pool prior to clustering.

Stranded RNA sequencing on HiSeq 100PE

The final pool was quantified using a KAPA Library Quant Kit
(Roche, 07960140001), denatured in NaOH and combined with
HT1 plus a 1% PhiX spike at a final running concentration of
10 pM. The flow-cell was clustered using HiSeq PE Cluster Kit
v3 (Illumina, PE-401-3001) utilising the Illumina PE HiSeq
Cluster Kit V3 cBot recipe V8.0 method on the Illumina cBot.
Following the clustering procedure, the flow-cell was loaded
onto the Illumina HiSeq2000 instrument following the manu-
facturer’s instructions with a 101 cycle paired reads and a
7-cycle index read. The sequencing chemistry used was HiSeq
SBS Kit v3 (Illumina, FC-401-3001) with HiSeq Control Software
2.2.68 and RTA 1.18.66.3. Reads in bcl format were demulti-
plexed based on the 6 bp Illumina index by CASAVA 1.8,
allowing for a one base-pair mismatch per library, and converted
to FASTQ format by bel2fastq.

Small RNA sequencing on HiSeq rapid 50SE

The final pool was quantified using a KAPA Library Quant Kit
(Roche, 07960140001), denatured in NaOH and combined with
HT1 plus a PhiX spike at a final running concentration of
20 pM. The libraries were hybridized to the flow-cell using
TruSeq Rapid Duo cBot Sample Loading Kit (Illumina, CT-403-
2001), utilising the Illumina RR_TemplateHyb_FirstExt_VR
method on the Illumina cBot. The flow-cell was loaded onto
the Illumina HiSeq2500 instrument following the manu-
facturer’s instructions with a 51-cycle single read and a 7 cycle
index read. The sequencing chemistry used was HiSeq SBS
Rapid Kit v2 (Illumina, FC-402-4022) with a single read cluster
kit (Illumina, GD-402-4002), HiSeq Control Software 2.2.68 and
RTA 1.18.66.3. Reads in bel format were demultiplexed based
on the 6 bp Illumina index by CASAVA 1.8, allowing for a one
base-pair mismatch per library, and converted to FASTQ format
by bcl2fastq.
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Differentially expressed transcripts

The quality of stranded reads was assessed by FastQC software
(version 0.11.4).°° All reads coming from technical repeats were
concatenated together and aligned (in stranded mode, i.e. with
‘-rna-strandness RF’ flag) using HISAT aligner (version 2.0.5).””
Subsequently, a reference-based de novo transcriptome assem-
bly was carried out for each biological repeat and merged
together using StringTie (version 1.3.2) with following para-
meters: minimum transcript length of 200 nucleotides, mini-
mum FPKM of 0.1 and minimum TPM of 0.1.°*%° Coding
potential of each novel transcript was determined with CPC
(version 0.9.2) and CPAT (version 1.2.2).'°*'! From the novel
transcripts, only non-coding transcripts (as predicted by both
tools) were included in final GTF file. Gene and transcript
abundances were estimated with kallisto (version 0.43.0).'%
Sleuth (version 0.28.1) R library was used to perform differen-
tial gene expression.’® mRNAs and IncRNAs with an absolute
log2 fold change of 1 and g value <0.05 were considered to be
differentially expressed.

The small RNA reads were analysed using the sRNAbench
tool within the sRNAtoolbox suite of tools."” The barcodes
from the 5’ end and adapter sequences from the 3’ end were
removed respectively. Zero mismatches were allowed in detect-
ing the adapter sequences with a minimum adapter length set
at 10. Only reads with a minimum length of 16 and a read-count
of 2 were considered for further analysis. The mice miRNA
collection was downloaded from miRBase version 21.'* The
trimmed and length filtered reads were then mapped to
the mature version of the miRBase miRNAs in addition to the
annotated version of the mouse genome (version mm10).
No mismatches were allowed for the mapping. A seed length
of 20 was used for the alignment with a maximum number of
multiple mappings set at 10. Read-counts normalised after
multiple-mapping were calculated for all the libraries. The
multiple-mapping normalised read-counts from the corres-
ponding cell type enriched enteroids were compared against the
conventionally differentiated enteroids to identify differentially
expressed miRNAs in a pair-wise manner using edgeR.'°® miRNAs
with an absolute log2 fold change of 1 and false discovery rate
<0.05 were considered to be differentially expressed.

Differentially expressed genes were grouped by their presence
in the PCeE dataset, the GCeE dataset or in both. Each group of
differentially expressed genes was tested for functional enrich-
ment (hypergeometric model, ¢ value < 0.1) based on Reactome
and KEGG annotations using the ReactomePA R package®®'”"%%
following conversion from mouse to human identifiers using
Inparanoid (v8)."'****

Enrichment of marker genes

Cell type specific marker gene lists were obtained a mouse
single cell sequencing survey.'” The cell type specific signature
genes for Paneth, goblet and enteroendocrine cell types were
obtained from the droplet-based and the plate-based methods.
Gene symbols were converted to Ensembl gene IDs using
bioDBnet db2db.""*
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Hypergeometric distribution testing was carried out using a
custom R script to measure enrichment of cell type specific
marker genes in the differentially upregulated gene sets.
To standardise the universal dataset, only markers which are
present in the output of the Wald test (genes with variance
greater than zero among samples) were used. Similarly, to
enable fair comparisons, only differentially expressed protein
coding genes and documented IncRNAs were used from the
DEG lists, as was surveyed in the cell type specific marker
paper. Bonferroni correction was applied to the hypergeometric
distribution p values to account for multiple testing and
significance scores were calculated using —log10 (corrected
p value). For the mapping of marker genes to the interaction
networks, no filters were applied.

Reconstruction of molecular networks

Mice regulatory networks containing directed regulatory layers
were retrieved from multiple databases (Table S6, ESIf):
miRNA-mRNA (i.e., miRNAs regulating mRNAs) and IncRNA-
miRNA (ie., IncRNAs regulating miRNAs) interactions were
downloaded from TarBase v7.0'** and LncBase v2.0,"** respec-
tively. Only miRNA-mRNA and IncRNA-miRNA interactions
determined using HITS-CLIP''® experiments were considered.
Regulatory interactions between transcription factors (TFs)
and miRNAs (ie. TFs regulating miRNAs) were retrieved
from TransmiR v1.2,"®* GTRD'"” and TRRUST v2.''#!?
Co-expression based inferences were ignored from all the above
resources. Transcriptional regulatory interactions (i.e., TFs
regulating target genes) were inferred using data from
ORegAnno 3.0,°" GTRD and TRUSST. In cases where transcrip-
tional regulatory interactions are derived from high-throughput
datasets such as ChIP-seq, we attributed the regulatory inter-
action elicited by the bound transcription factor to genes which
lie within a 10 kb window on either side of the ChIP-seq peak
(ORegAnno) or meta-cluster (in the case of GTRD). TF-IncRNA
interactions (i.e., TFs regulating IncRNAs) were also inferred
based on the ChIP-seq binding profiles represented by meta-
clusters in GTRD. We used only TF-IncRNA interactions within
intergenic IncRNAs to avoid assigning false regulatory inter-
actions due to the high number of instances where the IncRNAs
overlap with protein-coding genes. In addition, no overlaps
were allowed between the coordinates of the ChIP-seq peaks/
meta-clusters and any gene annotation. Only if the first annota-
tion feature within a 10 kb genomic window downstream to the
ChIP-seq peak/meta-cluster was designated as an intergenic
IncRNA, a regulatory interaction between the TF and the
IncRNA was assigned. Bedtools'*® was used for the custom
analyses to look for overlaps between coordinates. All the nodes
in the collected interactions were represented by their Ensembl
gene IDs for standardization. A summary of the interactions
collected from each resource and the quality control criteria
applied is given in Table S6 (ESIf).

To generate PCeE and GCeE regulatory networks, inter-
actions in this collated universal network were filtered using
the differential expression data (Fig. 1). The assumption was
made that if both nodes of a particular interaction were
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expressed in the RNAseq data, the interaction is possible.
Furthermore, to filter for the interactions of prime interest,
only nodes which were differentially expressed and their asso-
ciated interactors were included in the regulatory networks.

Cluster analysis

Clusters of highly interconnected regions within the PCeE and
GCeE regulatory networks were identified using the MCODE
plugin within Cytoscape.’”'*' Default settings were applied:
degree cutoff = 2, haircut = true, node score cutoff = 0.2, k-core = 2
and max depth = 100. Clusters were visualised in Cytoscape.

The nodes of each cluster were tested for functional enrich-
ment (hypergeometric model, g value < 0.05) based on Reactome
annotations using the ReactomePA R package®®'”% following
conversion from mouse to human identifiers using Inparanoid
(v8).""*!"* Cases where the number of nodes associated with a
pathway <5 were considered not significant regardless of the
q value. The top 5 significant Reactome pathways associated with
each cluster were visualised using a heatplot generated in
R (Fig. 3B). More than 5 pathways were visualised, where multiple
Reactome pathways had equal g values.

Master regulator analysis

To identify potential master regulators of the Paneth cell and
the goblet cell types, the upstream regulators of cell type
specific markers (from ref. 12) were investigated. To do this,
all markers were mapped to the relevant networks then subnet-
works were extracted consisting of markers and their regulators
(Table S7, ESI¥).

Regulatory rewiring analysis

To calculate rewiring scores for regulators, sub-networks were
extracted (from the PCeE and GCeE regulatory networks)
containing just the regulator of interest and its downstream
targets. For each regulator of interest, the subnetworks
from the PCeE and GCeE networks were compared using the
Cytoscape app DyNet.'*"'?? The degree corrected D, score was
extracted for each regulator and used to quantify rewiring of the
regulator’s downstream targets between the PCeE and GCeE
regulatory networks. Functional analysis was carried out on the
targets of the top five most rewired regulators. For each
regulator, the targets were classified based on whether they
are present in only the PCeE network, only the GCeE network or
in both networks. Each group of targets was tested for func-
tional enrichment (hypergeometric model, g value < 0.1) based
on Reactome and KEGG annotations using the ReactomePA R
package®®'°7"'% following conversion from mouse to human
identifiers using Inparanoid (v8)."' '

IBD and drug target associated genes

Genes associated with UC and CD based on single nucleotide
polymorphisms were obtained from two studies.®”*® Additionally,
the top 100 differentially expressed genes were obtained from
goblet cell analysis of inflamed UC vs. healthy human colonic
tissue from ref. 13. Genes were converted to Mouse Ensembl
identifiers using Inparanoid (v8) and bioDBnet db2db.''****
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Additionally, to enable hypergeometric significant testing with
the universal network as the background, only UC and CD
genes present in the universal network are included in the
analyses. eQTL datasets for CD were retrieved from ref. 69 while
the list of targets related to drug-interactions was downloaded
from ref. 123.

Quantification and statistical analysis

Statistical parameters including the exact value of n and
statistical significance are reported in the figures and figure
legends. n represents the number of enteroid biological
replicates generated. Where relevant, data is judged to be
statistically significant when Bonferroni corrected p value
<0.01. Genes with absolute log2 fold change of > |1| and false
discovery rate <0.05 were considered to be differentially
expressed. Based on principal component analysis of transcript
expression, one biological replicate from the Paneth cell
enriched enteroids was identified as an outlier and removed
(Fig. S3, ESIT). Where stated, the hypergeometric distribution
model was used to calculate significance using R.

Data and software availability

Small and stranded RNA-seq data has been deposited in the
European Nucleotide Archive (ENA) with accession numbers
PRJEB32354 and PRJEB32366 respectively. Scripts to analyse the
differentially expressed genes are available on GitHub: https://
github.com/koresmarosgroup/organoid_regulatory_networks.
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SUMMARY

The underlying health-driving mechanisms of Bifidobacterium during early life are
not well understood, particularly how this microbiota member may modulate the
intestinal barrier via programming of intestinal epithelial cells (IECs). We investi-
gated the impact of Bifidobacterium breve UCC2003 on the transcriptome of
neonatal murine IECs. Small IECs from ty k-old r tal mice administered
B. breve UCC2003 or PBS (control) were subjected to global RNA sequencing,
and differentially expressed genes, pathways, and affected cell types were deter-
mined. We observed extensive regulation of the IEC transcriptome with ~4,000
genes significantly up-regulated, including key genes linked with epithelial bar-
rier function. Enrichment of cell differentiation pathways was observed, along
with an overrepresentation of stem cell marker genes, indicating an increase
in the regenerative potential of the epithelial layer. In conclusion, B. breve
UCC2003 plays a central role in driving intestinal epithelium homeostatic devel-
opment during early life and suggests future avenues for next-stage clinical
studies.

INTRODUCTION

Bifidobacterium represents a keystone member of the early life gut microbiota (Arrieta et al., 2014; O'Neill
etal, 2017; Derrien et al., 2019). Certain species and strains are found at high levels in vaginally delivered
breast-fed infants including Bifidobacterium longum subsp. infantis, B. longum subsp. longum, Bifidobac-
terium bifidum, Bifidobacterium pseudocatenulatum, and Bifidobacterium breve (Dominguez-Bello et al.,
2010; Mikami et al., 2012; Nagpal et al., 2017; Stewart et al., 2018). As a dominant member of the neonatal
gut microbiota, Bifidobacterium is associated with metabolism of breast milk, modulation of host immune
responses, and protection against infectious diseases (Fukuda et al., 2012; Ling et al., 2016; Robertson
et al., 2020; Lawson et al., 2020; Patole et al., 2016; Baucells et al., 2016; Jacobs et al., 2013; Plummer
et al,, 2018). However, the mechanisms driving improved health outcomes during early life are largely
underexplored and are likely strain dependent.

A key interface between Bifidobacterium and the host is the intestinal epithelial cell (IEC) barrier (Thoo
etal., 2019; Groschwitz and Hogan, 2009). Previous studies have indicated that certain strains of Bifidobac-
terium specifically modulate IEC responses during inflammatory insults, which may help protect from
certain gut disorders (Hsieh et al., 2015; Srutkova et al., 2015; Grimm et al., 2015). In murine experimental
models, previous work by our group has shown that infant-associated B. breve UCC2003 modulates cell
death-related signaling molecules, which in turn reduces the number of apoptotic IECs (Hughes et al.,
2017). This protection from pathological IEC shedding appeared to be via the B. breve exopolysaccharide
(EPS) capsule and the host-immune adaptor protein MyD88. Another strain of B. breve, NumRes 204 (com-
mercial strain) has also been shown to up-regulate the tight junction (TJ) proteins Claudin 4 and Occludin in
a mouse colitis model (Zheng et al., 2014; Plantinga et al., 2011).

Many of the studies to date have focused on the role of Bifidobacterium and modulation of IECs in the
context of acute or chronic gut inflammation, with expression profiling limited to specific immune or
apoptosis signaling targets (Plaza-Diaz et al., 2014, Riedel et al., 2006; Liu et al., 2010; Hsieh et al., 2015).
As many of these studies have involved pre-colonization of the gut with Bifidobacterium strains, followed
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Figure 1. Schematic Representation of the Study Design and In Silico Analysis Workflow

by inflammatory insult, this suggests that initial priming during normal “healthy” conditions may modulate
subsequent protective responses. Furthermore, these studies have often been performed in adult mice
rather than exploring effects during the early life developmental window, where Bifidobacterium effects
are expected to be most pronounced. Previous work has indicated that there is significant modulation
of the neonatal IEC transcriptome in response to gut microbiota colonization, but to date no studies
have probed how particular early life-associated microbiota members, like Bifidobacterium, may modulate
neonatal IEC responses (Pan et al., 2018). Thus, to understand if and how Bifidobacterium may modulate
IEC homeostasis during the early life developmental window, we administered B. breve UCC2003 to
neonatal mice and profiled transcriptional responses in isolated small intestine IECs using global RNA
sequencing (RNA-seq). Our analysis indicated whole-scale changes in the transcriptional program of
IECs (~4,000 significantly up-regulated genes) that appear to be linked to cell differentiation/proliferation
and immune development. Notably the stem cell compartment of IECs seemed to elicit the strongest gene
signature. These data highlight the role of B. breve UCC2003 in driving early life epithelial cell differenti-
ation and maturation, impacting intestinal integrity and immune functions, which provides a mechanistic
basis for understanding associated health-promoting effects.

RESULTS

To examine the effects of B. breve UCC2003 on the transcriptional profiles of host IECs under homeostatic
conditions, we extracted RNA from isolated IECs of healthy 2-week-old neonatal mice (control group) and
mice gavaged with B. breve UCC2003 for three consecutive days (n = 5 per group). Isolated RNAs from IECs
were subjected to RNA-seq to determine global mRNA expression (Figure 1). Subsequently, Differential
Gene Expression analysis was performed to understand B. breve-associated gene regulation.

Minimal Impact of B. breve UCC2003 on the Wider Neonatal Gut Microbiota

Initially, we examined for the presence of B. breve UCC2003 in the gut microbiome and impact on the wider
microbiota using culture and 16S rRNA microbiota profiling approaches (Figures 2A and 2B). We observed
high levels of B. breve UCC2003 across the 4 days in fecal samples, with higher levels of viable B. breve
UCC2003 within the colon (~10® CFU/g [colony-forming unit]), when compared with the small intestine
(~10° CFU/g; Figure 2B). Based on 165 rRNA analysis, relative abundance of Bifidobacterium increased
significantly in the UCC2003 group (p = 0.012) following bacterial administration, whereas the control
group displayed very low relative Bifidobacterium abundance (~0.01%; Figure 2C). Principal-component
analysis (PCA) on gut microbiota profiles (control versus UCC2003) showed a distinct change in microbial

2 iScience 23, 101336, July 24, 2020
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Figure 2. 165 rRNA Ampli S ing Analysis of Murine | | Microbiota

(A) Genus-level 165 rRNA gene profiling of mice gut microbiota on day 4 (control versus UCC2003).

(B) Dynamics of B. breve UCC2003 load (CFU/g) from day 1 (before B. breve administration) through day 4. B. breve was
present in intestines throughout (small intestines and colon; on day 4). ND, non-detectable. Data are represented as
mean + SD.

(C) Relative abundance of genus Bifidobacterium in UCC2003 group is significantly increased.

(D) Principal-component analysis on mice gut microbiota (control versus UCC2003 based on genus-level
metataxonomics).

(E) Shannon diversity index on mice gut microbiota (control versus UCC2003). Data are represented as mean + SD.
Significance test: t test (*p < 0.05; two-sided).

(F) Linear Discriminant Analysis (LDA) showing enriched taxa in each group (control versus UCC2003).

(G) Relative abundance comparison of all genera. *p < 0.05 (LDA).

community composition in the UCC2003 group primarily driven by increased relative abundance of Bifido-
bacterium, which may also correlate with increased overall microbial diversity in the UCC2003 group (Fig-
ures 2D and 2E). Linear Discriminant Analysis also indicated that Bifidobacterium was uniquely enriched in
UCC2003 group, and that microbiota members with low relative abundance (<2%) such as Streptococcus,
Ruminococcus, Prevotella, and Coprococcus were significantly lower (Figures 2F and 2G). Overall, admin-
istration of B. breve UCC2003 appeared to minimally impact the wider gut microbiota, without significantly

iScience 23, 101336, July 24, 2020
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Figure 3. RNA-Seq Analysis and Statistics

(A) Principal-component analysis showing distinct overall gene expression profiles across all individual samples based on
12,965 highly expressed genes. See also Table 51.

(B) Clustering of individual RNA-seq samples based on Jensen-Shannon distance. Distinct gene expression profiles were
demonstrated between these two groups of samples (control versus UCC2003).

(C) Total number of differentially expressed genes (DEGs) in UCC2003 group.

(D) Volcano plot of global gene expression. Up-regulated DEGs are labeled as red dots, whereas down-regulated DEGs
are labeled in blue.

(E) MA plot of global gene expression (plot of log-intensity ratios [M-values] versus log-intensity averages [A-values]).

altering relative abundance of other major resident taxa including Lactobacillus, Bacteroides, and Blautia
compared with the control group.

Impact of B. breve UCC2003 on the Neonatal Intestinal Epithelial Transcriptome

To understand the distribution of samples based on IEC gene expression profiles we performed PCA anal-
ysis (Figure 3A; Table S1). All samples clustered according to group (control versus UCC2003), suggesting a
significant impact of B. breve UCC2003 on gene expression profiles, with distance-wise clustering (Jensen-
Shannon) also supporting separation of experimental groups (Figure 3B). To define differentially expressed
genes (DEGs), we employed a filter of absolute log,fold change (LFC) > 1.0 (with adjusted p < 0.05), which
equates to a minimum 2-fold change in gene expression (Figures 3C-3E; Table S2). After analysis, a total
of 3,996 DEGs were significantly up-regulated, whereas 465 genes were significantly down-regulated in
B. breve UCC2003-supplemented animals when compared with controls (Figures 3C and 4A). Notably,

4 iScience 23, 101336, July 24, 2020
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Figure 4. Gene Expression Analysis

(A) Heatmap comparison of gene expression profiles of 4,461 DEGs (control versus UCC2003). See also Table 52.

(B) Top 20 DEGs ranked by false discovery rate -adjusted p values (q values).

(C) Top 20 up-regulated DEGs ranked by log,FC (fold change) values.

(D) Top 20 down-regulated DEGs ranked by log,FC values.

(E) Expression of epithelial integrity associated genes in UCC2003 group (q < 0.05).

(F) Expression of integrin-associated genes in UCC2003 group. Gray dotted lines in the bar charts indicate the threshold
of absolute log,FC > 1.0. Data are represented as mean + SE.

we also performed the same experimental protocol on healthy mice aged 10-12 weeks and did not observe
any significant DEGs, suggesting that B. breve UCC2003 modulation of IECs is strongest within the early life
window under homeostatic conditions.

iScience 23, 101336, July 24, 2020 5
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To determine the functional role of DEGs, we examined the most significantly regulated genes ranked by
false discovery rate-adjusted p values (or, g values). We first looked at the top 20 up-regulated DEGs in the
B. breve UCC2003 experimental group (Figure 4B). Most genes annotated with known biological processes
had cell differentiation and cell component organization functions including Cenb1ip1, Hist1hdb, Vps13b,
and Fgd4 (annotated in the PANTHER Gene Ontology [GO] Slim resource). Two genes were involved in cell
death and immune system processes, namely, Naipé and Gm205%94 (Table 53). When we ranked the top-
regulated genes using LFC, we observed increased expression of Creb5, which is involved in the regulation
of neuropeptide transcription (cAMP response element-binding protein; CREB) (Figure 4C). CREB is also
known to regulate circadian rhythm, and we also identified additional circadian-clock-related genes that
were significantly up-regulated including Per2 and Per3. We noted that several top down-regulated
DEGs were annotated as genes involved in metal binding, or metal-related genes including Mt1, Mt2,
Hba-al, Hbb-bt, and Ftl1-ps1 (Figure 4D; Table S4).

Regulation of | inal Epithelial Barrier-Associated Genes

g P

As B. breve strains have been previously shown to modulate certain TJ/barrier-related proteins, we next
investigated DEGs associated with intestinal epithelial barrier development/intestinal structural organiza-
tion (Figure 4E). Several TJ structural-associated DEGs were observed, including Claudin-encoding gene
Cldn34c1 (LFC 3.14), Junction Adhesion Molecules-encoding genes Jam2 (LFC 2.9), and TJ protein (also
called Zonula Occludens protein; ZO)-encoding gene Tjp1 (LFC 1.49). Genes that encode integrins
(involved in regulation of intracellular cytoskeleton) also exhibited a trend of increased expression
(13/14; 92.8%). Both Piezo genes, which assist in TJ organization, Piezo1 (LFC 1.25) and Piezo2 (LFC 1.9),
were significantly up-regulated in the B. breve UCC2003-treated group.

Over 90% cadherins, proteins associated with the assembly of adherens junctions (Figure 4E), were up-regu-
lated, including Pcdhb 14 (LFC 2.8), Pcdhgb4 (LFC 2.7), Pcdh8 (LFC 1.3), Fat1 (LFC 1.5), and Dsg2 (LFC 1.1).
Interestingly, several genes (4/7; 57.1%) involved in mucous layer generation were significantly up-regulated
in the UCC2003 experimental group, including Muc2 (LFC 2.2), Mucé (LFC 3.7), Muc5b (LFC 2.9), and Muc4
(LFC 1.24). Genes GjaT (LFC 3.59) and Gjb8 (LFC 2.63) that encode gap junction proteins were also up-regu-
lated. In addition, we also investigated the differential expression of genes associated with integrin assem-
bly and downstream integrin signaling pathways (Figure 4F). Over 70% (16/21) of these genes were up-regu-
lated, with 52.3% (11/21) significantly increased in gene expression in the UCC2003 group (LFC >1.0).

We observed increased expression of genes associated with IEC barrier development including cadherins,
gap junctions, integrins, mucous layer-associated genes, and several key TJ proteins. These strongly
induced gene expression profiles suggest that B. breve UCC2003 is involved in enhancing epithelial barrier
development in neonates.

Modulation of Cell Maturation Processes

We next sought to understand the biological functions of up-regulated DEGs by employing PANTHER
GO-Slim functional assignment and process/pathway enrichment analysis (see Figure S1; Tables S5 and
S6). DEGs were predominantly involved in general biological processes including cellular process
(901 genes) and metabolic process (597 genes; Table S7). At the molecular function level, DEGs were pri-
marily assigned to binding (868 genes) and catalytic activity (671 genes; Table 58), with Olfactory Signaling
Pathway and Cell Cycle (biological) pathways also found to be enriched (Table 59).

To delve further into the data, we constructed a signaling network based on up-regulated DEGs (n = 3,996) with
the aim of identifying specific gene networks involved in important signaling pathways (Figure 5A). Overall, 1,491
DEGs were successfully mapped (37.3%) to a signaling network that comprised 8,180 genes. Four individual clus-
ters of genes were detected, with functional assignment and pathway analysis implemented on these clusters
(Figure 5A). All gene clusters were associated with cell differentiation and maturation, with cluster 1 (68 genes)
linked specifically with DNA replication and transcription, cluster 2 (26 genes) with cell growth and immunity,
cluster 3 (11 genes) with cell replication, and cluster 4 (72 genes) related to cell cycle and cell division (Table S10).

Intestinal Cell Type Analysis on DEGs Identifies Significant Enrichment of Epithelial Stem
Cells

|IECs include several absorptive and secretory cell types, namely, enterocytes, Paneth cells, goblet cells, en-
teroendocrine cells, tuft cells, and stem cells. As these cells perform different functions in the gut, it was

6 iScience 23, 101336, July 24, 2020
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Figure 5. Signaling Network Analysis, IEC Subtyping, and Key Regul Analysi

(A) Cluster analysis of signaling network for significantly up-regulated genes (n=3, 996) Representative enriched
pathways (Reactome) and GO terms (Biological Process) identified in each individual cluster were listed alongside. See
also Table S10.

(B) Heat plot showing p ge of cell type sig genes in DEG and expressed genes (both control and UCC2003
groups). All expressed genes are well represented in IEC cell type signature genes.

(C) Cell type analysis on IEC DEGs using known cell-specific signature genes. Stem cells were statistically over-
represented in DEGs. *p < 0.05. See also Table S11.

(D) Key regulators of stem cell DEGs.

important to understand whether B. breve UCC2003 had a cell type-specific effect on the intestinal epithe-
lium. Using known cell type-specific gene markers (Haber et al., 2017), we identified cell type gene signa-
tures modulated within the UCC2003 group (Figures 5B and 5C). Importantly, all cell type markers were
well represented in the expressed genes of the whole IEC transcriptomics data from both groups (control +
UCC2003), thus validating the presence of all IEC types in our study data (Figure 5B). Cell type analysis of
genes differentially expressed after B. breve UCC2003 supplementation revealed that stem cell marker
genes were significantly enriched (30%; p < 0.05) among the six IEC types (Table S11). Signatures of other
cell types were also present (linking to marker genes in the DEG list) but not significantly overrepresented:
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tuft cells (22%), enteroendocrine cells (18%), goblet cells (15%), Paneth cells (15%), and enterocytes (13%;
Figure 5C). These data indicated that intestinal epithelial stem cells, cells primarily involved in cell differen-
tiation, were the primary cell type whose numbers and transcriptomic program were regulated by B. breve
UCC2003.

Further investigation of this stem cell signature revealed that of the 37 differentially expressed marker
genes, 35 are up-regulated in the presence of B. breve UCC2003. This indicates an increase in the quantity
of stem cells or semi-differentiated cells in the epithelium, consistent with the overrepresentation of cell
cycle- and DNA replication-associated genes observed in the whole differential expression dataset. Func-
tional analysis of the 37 stem cell signature genes revealed only one overrepresented process—Regulation
of Frizzled by ubiquitination (p < 0.05), which is a subprocess of WNT signaling. WNT signaling is important
in maintaining the undifferentiated state of stem cells (Nusse, 2008).

Finally, we employed a network approach to predict key transcription factor (TF) regulators of the differen-
tially expressed stem cell marker genes, through which B. breve UCC2003 may be acting (Figure 5D). Using
the TF-target gene database, DoRothEA, we identified expressed TFs known to regulate these genes (Gar-
cia-Alonso et al., 2019; Holland et al., 2019). Five genes had no known and expressed regulator, and thus
were excluded. Hypergeometric significance testing was used to identify which of these TFs are the most
influential (see Methods for details). This analysis identified 32 TF regulators (Figure 5D). Of these regula-
tors, 12 were differentially expressed in the IEC dataset (all up-regulated): Fos, Gabpa, Reor1, Arid2, Tead1,
Mybl2, Mef2a, Ahr, Pgr, Kmt2a, Ncoa2, and Tcf12. Functional analysis of all the TF regulators and their tar-
geted genes together, revealed overrepresented functions relating to WNT signaling, histone methylation
for self-renewal and proliferation of hematopoietic stem cells, and nuclear receptor (incl. estrogen)
signaling (Table 512). These data indicate that B. breve UCC2003 directly affects key transcriptomic pro-
grams that regulate specific signaling processes, particularly within stem cells.

DISCUSSION

The early life developmental window represents a crucial time for microbe-host interactions that impacts
health both in the short and longer term. Understanding how specific microbiota members modulate host
responses in pre-clinical models may help the design and development of next-stage targeted microbiota
therapies in humans. Here we investigated how B. breve UCC2003 induces genome-wide transcriptomic
changes in small intestine IECs of neonatal mice. We observed that B. breve had a global impact on the
IEC transcriptome, evidenced by the large number of significantly up-regulated genes and pathways
related to cell differentiation and cell proliferation, including genes associated with epithelial barrier func-
tion. We propose that B. breve may act as a key early life microbiota member driving fundamental cellular
responses in murine |ECs, particularly within the stem cell compartment, and thus drives epithelial barrier
development and maintenance during neonatal life stages. However, further clinical studies would be
required to determine if our findings extrapolate to the human setting.

B. breve is known to confer beneficial effect on gut health; however, our knowledge related to the mechanisms
underlying these responses is limited. Most studies have focused on targeted immune cells or pathways (during
disease and/or inflammation), and to our knowledge no studies have probed global transcriptomic changes
within |ECs, the frontline physical barrier between bacteria and host (Turroni et al., 2014; Gann, 2010). Our pre-
sented findings in a pre-clinical model, namely, ~4,000 up-regulated DEGs and ~450 down-regulated DEGs
within the B. breve group, indicate that this Bifidobacterium strain modulates whole-scale changes within this
critical single-cell layer. Notably, we also examined how B. breve modulates adult IEC responses; however,
we did not observe any significantly differentially regulated genes when compared with control animals. The
striking differences in DEGs between these two life points indicate that B. breve modulation of IECs is limited
to the neonatal window. Dominance of Bifidobacterium in early life (including strains of B. breve) overlaps
with the development and maturation of many host responses, including epithelial barrier integrity. Therefore,
presence of these strains would be expected to play an over-sized role in this initial homeostatic priming, which
may afford protection against inflammatory insults in later life, as has been shown previously in a mouse model of
pathological epithelial cell shedding (Hughes et al., 2017). Further clinical studies would be required to probe
these findings in detail to determine their importance during healthy infant development.

Exploring the murine transcriptional responses in more detail revealed that expressions of key genes asso-
ciated with formation of epithelial barrier components were up-regulated, including major cell junction
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protein-encoding genes (75%; 42/56 genes). More specifically, several integrin-associated genes were up-
regulated in the presence of UCC2003. Integrins facilitate cell-cell and cell-extracellular matrix adhesion
and binding and assembly of the fibronectin matrix that is pivotal for cell migration and cell differentiation
(Harburger and Calderwood, 2009; Qin et al., 2004; Mosher et al., 1991). Integrins also play an important
role in downstream intracellular signaling that controls cell differentiation, proliferation, and cell survival,
including the Raf-MEK-ERK signaling pathway (we also observed enrichment of genes involved in this
pathway) (Chernyavsky et al., 2005; Li et al., 2016). Another key intestinal barrier component is represented
by TJs, linking complexes between intercellular spaces, and comprise transmembrane proteins including
occludins, claudins, zona occludens, and junctional adhesion molecules (Edelblum and Turner, 2009;
Groschwitz and Hogan, 2009). Dysfunctional TJ may lead to a “leaky” gut, which is characteristic of
numerous intestinal disorders including inflammatory bowel diseases (Krug et al., 2014). Notably, previous
work has suggested early life microbiota disruptions (via antibiotic usage) and reductions in Bifidobacte-
rium are correlated with increased risk and/or symptoms of ulcerative colitis and Crohn’s disease (Kronman
et al., 2012; Hildebrand et al., 2008; Favier et al., 1997; Shaw et al., 2010; Ng et al., 2011). Several clinical
studies have indicated that supplementation with certain Bifidobacterium strains positively modulate
gastrointestinal symptoms of patients, which is corrected with reductions of inflammatory markers in
colonic IEC-containing biopsies; however, B. breve UCC2003 has not been used clinically in this patient
setting (Furrie et al., 2005; Steed et al., 2010). Similar findings have also been reported in different animal
models of intestinal inflammation (Philippe et al., 2011; Grimm et al., 2015; Zuo et al., 2014). Awide range of
TJ-related genes were up-regulated after UCC2003 supplementation, particularly Tjp1 (that encodes ZO-
1), Jam2, and Claudin34c1, with a previous study indicating that other Bifidobacterium species (i.e., B. bi-
fidum) also modulate TJ expression via ZO-1 (Din et al., 2020). These data indicated that specific strains of
Bifidobacterium may modulate key barrier integrity systems during the neonatal period, and therefore
absence of this key initial bacterial-host cross talk may correlate with increased risk of chronic intestinal dis-
orders in later life (Shaw et al., 2010). Intestinal mucus, encoded by Muc genes (up-regulated due to
B. breve UCC2003 in this study), plays a crucial role in colonic protection via formation of a physical barrier
between the gut lumen and IECs, and deficiencies in MUC-2 have been linked with experimental colitis and
increased inflammation in patients with inflammatory bowel disease (Shirazi et al., 2000, Van der Sluis et al.,
2006). We have also observed that B. breve UCC2003 significantly increases goblet cell numbers and mucus
production (in gnotobiotic and SPF mice; data not shown). Although the mucus layer may impact direct
Bifidobacterium-IEC interactions, previous studies have indicated that B. breve UCC2003 surface mole-
cules, such as EPS and the Tad pilus, may modulate IEC function via signaling through Toll-like receptors
(TLRs) (O'Connell Motherway et al., 2019; Hughes et al., 2017). Moreover, bifidobacterial metabolites, such
as short-chain fatty acids may also act to modulate the IEC transcriptome, with previous studies indicating
enhanced expression of TJs and cadherins via acetate (Hsieh et al., 2015; Ling et al., 2016; Ewaschuk et al.,
2008; Lewis et al., 2017).

Further network and functional analysis indicated that clusters of up-regulated DEGs were associated with
cell maturation and cell differentiation (as confirmed by cell type-specific analysis), suggesting that
neonatal B. breve exposure positively modulates IEC cell differentiation, growth, and maturation. Some-
what surprisingly, we did not observe the same type of striking responses in immune pathways, which
may be masked by the sheer number of DEGs involved in cellular differentiation and processes. However,
pathways such as TLR1 and TLR2 pathways do appear to be enriched (cluster 2 of signaling network anal-
ysis). This may link to previous work indicating that the UCC2003 EPS signals via TLR2 to induce MyD88
signaling cascades to protect IECs during intestinal inflammation (Hughes et al., 2017). B. breve M-16V
was also shown to interact with TLR2 to up-regulate ubiquitin-editing enzyme A20 expression that corre-
lated with increased tolerance to a TLR4 cascade in porcine IECs, further supporting the involvement of
B. breve in programming key host immunoregulation receptors (Tomosada et al., 2013).

Cell type-specific analysis of DEGs revealed stem cells as the IEC type most affected by B. breve, with absorp-
tive enterocytes least affected despite being most accessible to bacteria in the gut. It could be hypothesized
that B. breve or their secreted metabolites may reach the crypts of the small intestinal epithelium. This has been
previously suggested by in situ hybridization histology in vivo and by Bifidobacterium-conditioned media
altering the expression of hundreds of host epithelial genes linked to immune response, cell adhesion, cell
cycle, and development in IECs in vitro (Hughes et al., 2017; Guo et al., 2015). However, the direct impact of
bifidobacterial-associated metabolites on these responses would require further studies to confirm metabolic
activity of B. breve within the small intestine (via transcriptomics and metabolomics), although daily
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supplementation with live bacteria may also provide a source of these metabolites in our model. Interestingly,
certain Bifidobacterium and Lactobacillus strains that have been heat killed have also been shown to induce
host responses, indicating that surface structures alone may play a role in downstream effects (Pique et al,,
2019). All but two of the 37 differentially expressed stem cell marker genes were up-regulated in the presence
of B. breve UCC2003, indicating an activating effect resulting in increased pluripotency of stem cells, increased
quantity of stem cells, and/or an increased quantity of semi-differentiated cells. Single-cell sequencing of IECs
could be used to further investigate this finding. Thirty-two TFs were predicted to regulate these stem cell
signature genes, providing possible targets for future investigation of the mechanisms underlying these re-
sponses. Functional analysis of the stem cell signature genes and their regulators suggests that B. breve in-
creases pluripotency of stem cells and/or semi-differentiated epithelial cells through WNT signaling and nu-
clear hormone signaling (Jeong and Mangelsdorf, 2009). Furthermore, the overrepresentation of the process
“RUNX1 regulates transcription of genes involved in differentiation of HSCs" indicates a possible role for his-
tone methylation in response to B. breve UCC2003 (Imperato et al., 2015). Further determination of host and
bacterial metabolome and proteome after B. breve exposure may allow identification of the specific underlying
molecular mechanisms (Guo et al,, 2015).

In conclusion, B. breve UCC2003 plays a central role in orchestrating global neonatal IEC gene responses in
a distinct manner as shown in our murine model, modulating genes involved in epithelial barrier develop-
ment, and driving universal transcriptomic alteration that facilitates cell replication, differentiation, and
growth, particularly within the stem cell compartment. This study enhances our overall understanding of
the benefits of specific early life microbiota members in intestinal epithelium development, with prospec-
tive avenues to probe further health-promoting mechanisms of Bifidobacterium in humans. Further work
exploring time-dependent transcriptional responses and impact of other Bifidobacterium species and
strains (and use of mutants and transcriptionally active strains as positive controls), in tandem with metab-
olomic and proteomic approaches, is required to advance our understanding on the key host pathways and
bifidobacterial molecules governing development and maturation of the intestinal barrier during the early
life window. Nevertheless, further clinical studies would be essential to explore if these responses and find-
ings are similar to those observed in humans.

Limitations of the Study

As we only observed low relative abundance of Bifidobacterium in our control neonatal animals this may
suggest that induction of responses may be linked to the introduction of a new microbiota member (i.e.,
B. breve UCC2003), therefore results should be carefully interpreted. However, we did not observe associ-
ated global transcriptional inflammatory immune changes that would be expected if this was the case, but
rather global changes in barrier function transcripts and pathways. Furthermore, Bifidobacterium has pre-
viously been isolated from C57BL/6 mice (including from our mouse colony), and therefore appears to be a
resident rodent gut microbiota member, although it is found at varying abundances in different animal
units and suppliers (Grimm et al., 2015; Hughes et al., 2020). Indeed, one particular study has shown that
high levels of resident Bifidobacterium in mice directly correlated with improved immune responses to can-
cer immunotherapies (Sivan et al., 2015). In addition, we did not explore if B. breve UCC2003 is potentially
driving more nuanced microbe-microbe interactions, and that, indirectly, these may also be stimulating IEC
responses. Therefore, further studies probing these aspects in more detail, and comparing other Bifido-
bacterium strains, to compare and contrast responses, would be of interest.

B. breve UCC2003 is a model strain that was previously isolated from the stool of a breast-fed infant (Na-
tional Collection of Industrial Food and Marine Bacteria, 2020, Sheehan et al., 2007). Although a human-
associated strain, it has not been used in clinical studies, so directly extrapolating to human-specific set-
tings should be cautiously considered. Further large-scale clinical studies would be required to confirm
any positive strain-level impacts; however, in-depth analysis of, e.g., small IECs would be unethical in a
healthy infant cohort, which emphasizes the importance of preclinical models.

Previous studies have shown that this strain can efficiently colonize (long term) the mouse gastrointestinal
tract; however, we could not confirm this in our short-term, daily supplementation study (Cronin et al., 2008,
O’Connell Motherway et al., 2011). Therefore the IEC responses observed may occur as a result of transient
interactions with B. breve UCC2003 as it passes through the small intestine. Nevertheless, although at lower
levels (~10° CFU/g), we did observe viable B. breve UCC2003 in the small intestine, linking to our subse-
quent observations of significant impacts on the IEC transcriptome from this intestinal region.
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Very-low-abundance microbiota members (<2% relative abundance), including Streptococcus, Rumino-
coccus, Prevotella, and Coprococcus, were significantly reduced in relative abundance compared with con-
trols, raising the question whether supplementation of Bifidobacterium could have reduced these taxa.
Regrettably, we could not determine if this is a bifidobacterial effect due to the lack of longitudinal sam-
ples, and we did not quantify bacterial titers, which is an important consideration for future work. We
also did not profile microbial community composition within the small intestines, which is known to differ
from fecal samples.

Resource Availability
Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by
the Lead Contact, Lindsay J. Hall (Lindsay.Hall@guadram.ac.uk).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability

The code generated for RNA-seq analysis during this study is available at GitHub https://github.com/
raymondkiu/Bifidobacterium-IEC-transcriptomics. The accession number for the raw sequencing reads
(both RNA-seq and 16S rRNA amplicon sequencing) reported in this paper is European Nucleotide Archive
(ENA): PRIEB36661.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.is¢i.2020.101336.
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Figure S1. Functional analysis on differentially expressed genes. Related to Figure 4.

(A) Panther Slim GO-term major categories of significantly up-regulated genes (n=3,996). Related to Table
S7 and Table S8.

(B) Functional and pathway enrichment analysis on significantly up-regulated genes (Panther Slim GO-term).
Only top 20 FDR-ranked enriched pathways (Reactome pathways) are shown. Statistical significance cut-offs:
FDR<0.05. Statistical significance: Fisher's Exact Test. Fold Enrichment was calculated against all expressed
genes in |ECs as the background (n=21,537). Related to Table S5, Table S6 and Table S9.
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Gene Ensembl ID

Gm27149 ENSMUSG00000098426
Cenblip1 ENSMUSG0000007 1470
Gm10359 ENSMUSG00000094708
Gm12671 ENSMUSG00000095937
Gm48216 ENSMUSGO00000114367
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Tmem72 ENSMUSG00000048108
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D10Wsu102e  ENSMUSG00000020255
Gm20594 ENSMUSG00000096887
Vps13b ENSMUSG00000037646
Gm48366 ENSMUSG00000113523
Gm48054 ENSMUSG00000113921
Naipé ENSMUSG00000078942

Table S3. Annotation of top 20 significantly up-regulated genes. Related to Figure 4.
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Description/ Putative function
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State University 102,
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Biological process (GO)
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Cellular component
organisation, Protein
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organisation, Immune
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Response to stimulus,
Signaling
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to stimulus, Signaling
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Cell death, Immune
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Response to stimulus
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Description/ Putative function

Defensin

ribosomal protein 527,
retrogene

Unknown

mitochondrially encoded
cytochrome c oxidase ||

Unknown
Unknown

Unknown

polymerase (RNA) Il (DNA
directed) polypeptide H

Unknown

erritin light polypeptide 1

ribosomal protein S16

metallothionein 2

metallothionein 1

hemoglobin alpha

hemoglobin, beta adult t chain

ribosomal protein S2

glutathione peroxidase 3

sperm mitochondria-associated

cysteine-rich protei
Predicted gene

Predicted gene

Biological process (GO)
Immune system

process, response to
stimulus

Unknown

Unknown

Carbohydrate derivative
metabolism, cell death

Unknown
Unknown

Unknown

Immune system
process, response to
stimulus

Unknown

Unknown

Protein metabolic
process, response to
stimulus

Homeostatic process,
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signaling
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stimulus, signaling
Cell differentiation,
homeostatic process,
immune system
process, response to
stimulus, signaling,
system development

Unknown
Unknown
Response to stimulus
Unknown

Unknown

Unknown

Table S4. Annotation of top 20 significantly down-regulated genes. Related to Figure 4.
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GO Biological Process Gene Count Fold Enrichment FDR

Transcription, DNA-templated 252 1.41 1.15E-03
E:rt:ectpi::nof chemical stimulus involved in sensory 97 182 1.92E-03
Sensory perception of chemical stimulus 98 1.76 1.97E-03
Cellular response to DNA damage stimulus 66 1.84 1.54E-02
Sensory perception m 1.59 1.57E-02
Gene expression 350 1.25 2.66E-02
Chromosome organization 57 1.86 2.66E-02
Transcription by RNA polymerase Il 193 1:35 3.09E-02
Regulation of metabolic process 262 1.28 4.48E-02

Table S5. GO Biological Process enrichment analysis in up-regulated DEGs. Related to Figure 4 and Figure S1.

GO Molecular Functions Gene Count Fold Enrichment FDR

Transmembrane signaling receptor activity 279 1.56 5.07E-08
G-protein coupled receptor activity 224 1.63 8.61E-08
Molecular transducer activity 321 1.43 1.76E-06
Signaling receptor activity 302 1.43 4.06E-06
DNA binding 225 1.49 1.20E-05
Nucleic acid binding 344 1.33 1.14E-04
Heterocyclic compound binding 352 1.29 7.08E-04
Microtubule binding 43 2.2 3.01E-03
Protein kinase activity 133 1.46 7.97E-03
Tubulin binding 45 1.94 1.24E-02
Protein serine/threonine kinase activity 94 1.47 4.74E-02
Phosphotransferase activity, alcohol group as acceptor 144 1.36 5.04E-02

Table S6. GO Molecular Functions enrichment analysis in up-regulated DEGs. Related to Figure 4 and Figure
S1.
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Biological Process Genes Percentage
cellular process (GO:0009987) 901 31.70%
metabolic process (GO:0008152) 597 21.00%
biological regulation (GO:0065007) 492 17.30%
localization (GO:0051179) 239 8.40%
multicellular organismal process (GO:0032501) 233 8.20%
response to stimulus (GO:0050896) 117 4.10%
developmental process (GO:0032502) 55 1.90%
biological adhesion (GO:0022610) 55 1.90%
immune system process (GO:0002376) 52 1.80%
cellular component organization or biogenesis (GO:0071840) 37 1.30%
reproduction (GO:0000003) 37 1.30%
cell proliferation (GO:0008283) 15 0.50%
biological phase (GO:0044848) 10 0.40%
rhythmic process (GO:0048511) 4 0.10%
multi-organism process (GO:0051704) 2 0.10%

Table S7. GO Biological Process functional assignment to 3,996 upregulated genes. Related to Figure 4 and
Figure S1.

Molecular Function Genes Percentage
binding (GO:0005488) 868 37.60%
catalytic activity (GO:0003824) 671 29.00%
molecular transducer activity (GO:0060089) 321 13.90%
transcription regulator activity (GO:0140110) 156 6.80%
molecular function regulator (GO:0098772) 127 5.50%
transporter activity (GO:0005215) 108 4.70%
structural molecule activity (GO:0005198) 53 2.30%
translation regulator activity (GO:0045182) 4 0.20%
cargo receptor activity (GO:0038024) 2 0.10%

Table S8. GO Molecular Function functional assignment to 3,996 upregulated genes. Related to Figure 4 and
Figure S1.
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Reactome Pathway Gene Count Fold Enrichment FDR

Olfactory Signaling Pathway 108 1.88 3.20E-05
Cell Cycle 154 1.63 1.13E-04
Gene expression (Transcription) 238 1.45 1.18E-04
Chromatin organization 67 2.08 2.54E-04
Chromatin modifying enzymeS 67 2.08 2.82E-04
DNA Double-Strand Break Repair 51 2.3 4.19E-04
G alpha (s) signalling events 122 1.62 6.50E-04
RNA Polymerase Il Transcription 202 1.39 3.06E-03
Generic Transcription Pathway 173 1.39 8.50E-03
Signal Transduction 461 1.21 8.98E-03
G2/M DNA damage checkpoint 29 2.48 9.07E-03
DNA Repair 77 1.66 1.06E-02
Cell Cycle, Mitotic 122 1.48 1.06E-02
HATSs acetylate histones 23 2.64 1.85E-02
Epigenetic regulation of gene expression 28 2.28 2.38E-02
Homology Directed Repair 30 223 2.39E-02
Nonhomologous End-Joining 19 2.82 2.46E-02
Mitotic Prometaphase 58 173 2.48E-02
HDR through Homologous Recombination 29 2.26 2.63E-02
Recruitment and ATM-mediated phosphorylation of repair 22 2 2.78E-02

Table S9. Reactome pathway enrichment analysis in up-regulated DEGs. Related to Figure 4 and Figure S1.

Reactome Pathway Gene Count  Fold Enrichment FDR

Regulation of FZD by ubiquitination (R-MMU-4641263) 3 35.6 2.39E-02
Endogenous sterols (R-MMU-211976) 3 27.06 3.63E-02
Estrogen-dependent gene expression (R-MMU-9018519) 6 19.61 4.95E-04
ESR-mediated signaling (R-MMU-8939211) 6 18.04 4.69E-04
e o] [
Signaling by Nuclear Receptors (R-MMU-9006931) 6 11.66 4.23E-03
Transcriptional regulation by RUNX1 (R-MMU-8878171) 6 9.73 9.64E-03
Generic Transcription Pathway (R-MMU-212436) 15 5.88 4.71E-05
RNA Polymerase Il Transcription (R-MMU-73857) 15 5 1.89E-04
Gene expression (Transcription) (R-MMU-74160) 15 4.38 4.93E-04
Signal Transduction (R-MMU-162582) 19 237 3.65E-02

Table $12. Reactome pathway enrichment analysis of differentially expressed stem cell signature genes and
their expressed regulators. Related to Figure 5.
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TRANSPARENT METHODS

Animals

All animal experiments and related protocols were performed in accordance with the Animals (Scientific
Procedures) Act 1986 (ASPA) under project licence (PPL: 80/2545) and personal licence (PIL: 168D4DCCF),
approved by UK Home Office and University of East Anglia (UEA) FMH Research Ethics Committee. C57BL/6J
two-week-old neonatal female mice (n=10) were housed in two separate cages with their mothers within UEA
Disease Modelling Unit. Mice were euthanised via ASPA Schedule 1 protocol (CO; and cervical dislocation).

Bacterial culturing, inoculum preparation and CFU enumeration

B. breve UCC2003 (also known as NCIMB 8807) was streaked from frozen glycerol stocks onto autoclaved
Reinforced Clostridial Agar (RCA) plates (Oxoid, UK) and incubated in an anaerobic chamber (miniMACS, Don
Whitley Scientific) at 37°C for 48 h prior to picking single colonies for inoculation in prewarmed sterilised
Reinforced Clostridial Medium (Oxoid, UK).

For preparation of gavage inoculums, 5 ml of inoculated broth was incubated overnight followed by sub-
culturing into 5 ml De Man, Rogosa and Sharpe (MRS) medium (Oxoid). After an additional overnight
incubation, another sub-culturing into 40 ml RCM was performed. Inoculums were prepared from cultures by
3 rounds of centrifugation at 3220 g for 10 min followed by three PBS washes before dilution in 4 ml (adult
mice) or 2 ml (neonatal mice) sterile PBS. Bacterial concentration of inoculum was enumerated by plating serial
dilutions in sterile PBS on RCA plates and enumerating colonies following two-day incubation to calculate
CFU/ml.

Bacterial treatment and administration

Neonatal mice were orally gavaged with B. breve UCC2003 inoculations of 10 CFU/ml in 50 pl every 24 h for
3 consecutive days. Control mice received oral gavages of sterile PBS. B. breve UCC2003 viable
presence/transition through the gut was confirmed by collection of fresh faeces or intestinal content
homogenised with 1 ml sterile PBS followed by serial-dilution plating in sterile PBS on RCA supplemented with
50 mg/L mupirocin and counting of colonies following two-day incubation to calculate CFU/mg.

Gut microbiota profiling by 16S rRNA amplicon sequencing and analysis

Genomic DNA extraction of mouse faecal samples on day 4 was performed with FastDNA Spin Kit for Soil (MP
Biomedicals) following manufacturer’s instructions and extending the bead-beating step to 3 min as described
previously (Alcon-Giner et al., 2019). Extracted DNA was quantified, normalised and sequenced on Illumina
MiSeq platform using a read length of 2 x 300 bp. After quality pre-filtering and removals of chimeras,
sequencing reads were analysed using open-reference OTU clustering strategy (QIIME v1.9.1) to assign
bacterial taxonomy based on SILVA_132 database (Quast et al., 2013). OTU tables in BIOM format was
converted to genus counts in MEGANé and visualised using R library ggplot2 as described previously (Kiu et
al., 2019, Caporaso et al., 2010, Huson et al., 2016).

Tissue collection and isolation of small intestinal epithelial cells (IECs)

Upon tissue harvesting, 0.5 cm? sections of small intestines were collected in 200 ul RNAlater™ (Thermo Fisher
Scientific) at the animal unit prior to IECs isolation (from fresh samples) via an adapted Weisser method as
described below (Hughes et al., 2017). Sections of small intestines were placed in ice-cold PBS in 200 ml Duran
bottles. Faecal matter was washed off by inverting 10 times in 0.154M NaCl and 1mM DTT. Liquid was drained
and mucus layer removed through incubation of samples in 1.5mM KCI, 96mM NaCl, 27 mM Tri-sodium citrate,
8mM NaH;PO4 and 5.6mM Na2HPO4 for 15 min at 220 rpm and 37°C. IECs were separated from basal
membrane by incubation in 1.5 mM EDTA and 0.5 mM DTT for 15 min at 200 rpm and 37 °C followed by
shaking vigorously 20 times. |[ECs were collected from solution by centrifugation at 500 g for 10 min at 4 “C.
Supernatant was then discarded and cell pellet resuspended in 3 ml of ice-cold PBS. Cell concentrations of
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isolated IEC samples calculated by labelling dead cell with trypan blue at a 1:1 v/v ratio and enumeration of
viable cells using a Neubauer haemocytometer on an inverted microscope (ID03, Zeiss).

RNA extraction and sequencing

RNA was extracted from IECs by adding a volume containing 2 x 10° cells in PBS to QlAshredder spin columns
(QIAGEN) followed by centrifugation at 9,300 g for 1 min. Follow-through was mixed with 600 pl RLT lysis
buffer and used for subsequent RNA isolation. Homogenised samples in RLT buffer from IECs were processed
by adding 700 pl of 70% ethanol and mixing by pipetting. Samples were then added into RNeasy spin column
and spun at 8,000 g for 15 s. Flow-through was discarded and process repeated until all of sample was filtered
through column. Then 700 pl of buffer RW1 was added to column and centrifuge at 8,000 g for 30 s. Again,
flow through was discarded and filter placed in a new collection tube. To the filter, 500 pl RPE was added and
spun at 8,000 g for 30 s followed by discarding of flow through. An additional 500 pl RPE was pipetted into
column and centrifuged at 8,000 g for 2 min. Spin column was then placed in a new collection tube and
centrifuged at 8,000 g for 2 min. Columns were transferred to a RNA low-bind Eppendorf tube and 30 pl of
RNase free water added to directly to the filter. After an incubation of 1 min at RT, sample was centrifuged at
8,000 g for 1 min and flow through containing RNA stored at -80°C.

Purified RNA was quantified, and quality controlled using RNA 6000 Nano kit on a 2100 Bioanalyser (Agilent).
Only samples with RIN values above 8 were sequenced. RNA sequencing was performed at the Wellcome
Trust Sanger Institute (Hinxton, UK) on paired-end 75 bp inserts on an lllumina HiSeq 2000 platform. Isolated
RNA was processed by poly-A selection and/or Ribo-depletion.

Sequence pre-processing and Differential Gene Expression (DGE) analysis

Sequencing quality of raw FASTQ reads were assessed by FastQC software (v0.11.8). FASTQ reads were
subsequently quality-filtered using fastp v0.20.0 with options -q 10 (phred quality <10 was discarded) followed
by merging reads into single read file for each sample (merge-paired-reads.sh) and rRNA sequence filtering
via SortMeRNA v2.1 based on SILVA rRNA database optimised for SortMeRNA software (Chen et al., 2018,
Kopylova et al., 2012). Filtered reads were then unmerged (unmerge-paired-reads.sh) and ready for transcript
quantification.

Transcript mapping and quantification were performed using Kallisto v0.44.0 (Bray et al., 2016). Briefly, Mus
musculus (C57BL/6 mouse) cDNA sequences (GRCm38.release-98_k31) were retrieved from Ensembl database
and built into an index database with Kallisto utility index at default parameter that was used for following
transcript mapping and abundance quantification via Kallisto utility quant at 100 bootstrap replicates (-b 100)
(Zerbino et al., 2018).

DGE analysis was performed using R library Sleuth (v0.30.0) (Pimentel et al., 2017). Gene transcripts were
mapped to individual genes using Ensembl BioMart database with Sleuth function sleuth_prep with option
gene_mode = TRUE. Genes with an absolute loga(fold change) >1.0 (based on Wald test statistics) and q value
<0.05 (or, FDR-adjusted p value; based on likelihood ratio test) were considered to be significantly regulated
(Kinsella et al., 2011).

Functional annotation and enrichment analysis

Functional assignment and enrichment analysis was performed using PANTHER Classification System (Mi et al.,
2019a). Briefly, for functional assignment analysis, a list of genes of interest in Ensembl IDs were supplied to
the webserver to be mapped to the Mouse Genome Database (MGD) to generate functional classification on
those genes of interest (Bult et al., 2019). For functional enrichment analysis, a gene list was supplied together
with a background gene list in Ensembl IDs to Panther web server, then selected ‘functional overrepresentation
test’ and chose a particular function class in the drop-down menu. Recommended by the database developers,
Fisher’s exact test and False Discovery Rate (FDR) correction were used to perform enrichment analysis (Mi et
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al., 2019b). FDR <0.05 was used as the default cut-off for significant enrichment. Functional annotation of top
20 up/down-regulated genes was assigned manually via Ensembl and/or MGl (Mouse Genome Informatics)
databases (Bult et al., 2019, Cunningham et al., 2019).

Network, cluster and signalling pathway analysis

A signalling network of all up-regulated DEGs and their first neighbours was built using all available biological
signalling databases in the Cytoscape (v3.7.2) OmniPath app (v1, Mus musculus) (Turei et al., 2016, Shannon
et al., 2003). Modules of highly connected genes within the signalling network were identified using the
MCODE plug-in within Cytoscape (Bader and Hogue, 2003). Settings below were applied to obtain clusters in
the network: degree cutoff = 3, haircut = true, fluff = false, node score cutoff = 0.5, k-core = 3 and max depth
=100.

The nodes of each individual module were tested for functional enrichment based on both Reactome and
PANTHER annotations using PANTHER Classification System as described in previous sub-section ‘Functional
annotation and enrichment analysis’ (Mi and Thomas, 2009, Croft et al., 2011, Mi et al., 2019a).

Enrichment of cell type specific marker genes

Cell type signature gene sets for murine intestinal epithelial cells were obtained from Haber et al. (Haber et
al., 2017). Both droplet and plate-based results were used. Gene symbols were converted to Ensembl IDs
using db2db (Mudunuri et al., 2009). Hypergeometric significance calculations were applied to test the
presence of cell type specific signatures in the list of differentially expressed genes using all expressed genes
as the statistical background (normalised counts > 1 in = 1 sample). Bonferroni multiple correction was applied
and any corrected p < 0.05 was deemed significant. Genes with normalised counts > 1 in = 1 sample per
condition (B. breve UCC2003 treated or control) were used to identify cell type signature genes expressed per
condition.

Key regulator analysis

All mouse transcription factor - target gene interactions with quality scores A-D were obtained from DoRothEA
v2 via the OmniPath Cytoscape app (Garcia-Alonso et al., 2019, Shannon et al., 2003, Turei et al., 2016). A
subnetwork was generated consisting of differentially expressed stem cell signature genes and all their
upstream TFs which were expressed in the transcriptomics dataset (normalised counts > 1 in = 1 sample).
These TFs were further filtered for their relevance in the network. Here all expressed genes and their upstream
expressed TFs were extracted from the DoRothEA network. A hypergeometric significance test was carried out
on any node with degree = 5 to determine if the proportion of connected nodes which are differentially
expressed is higher than in the whole network. Any TF with p < 0.05 following Benjamini-Hochberg correction
were deemed significant and used to filter the stem cell signature gene subnetwork. Network visualisation was
carried out in Cytoscape (Shannon et al., 2003). Functional enrichment carried out against Reactome pathways
as described in previous sub-sections.

Statistical analyses and graphing

Student t-tests were performed using Rv.3.6.0, details of which were provided in the results and figure legends
(R Development Core Team, 2010). LDA statistical tests for microbiome analysis was performed via LEfSe on
Galaxy platform using default parameters (Segata et al., 2011, Jalili et al., 2020). PCA was performed via R
library ggfortify function autoplot and prcomp, while Shannon diversity index was computed via R library vegan
(Dixon, 2003, Tang et al., 2016, R Development Core Team, 2010). All other relevant statistical analyses
(including enrichment analysis) were performed within specific software and details were provided in figure
legends or as described in the previous sections.

All statistical graphs were either plotted using R library ggplot2 or Sleuth (Wickham, 2016, Pimentel et al.,
2017). Heatmaps were graphed using R library gplots function heatmap.2 (Warnes et al., 2016).
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Ethics approval

Animal experiments were performed under the UK Regulation of Animals (Scientific Procedures) Act of 1986.
The project licence (PPL 80/2545) under which these studies were carried out was approved by the UK Home
Office and the UEA Ethical Review Committee. Mice were sacrificed by CO; and cervical dislocation.
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