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We propose a mathematical model which describes the time-dependent response to of a floating 
ice sheet to a load moving at an arbitrary, possibly time-dependent velocity. The model is 
validated using a number of test cases from existing field studies, such as the field campaign 
of Takizawa at Lake Saroma and the campaign of Wilson at Mille Lacs. Good agreement 
between the deflectometer records from the field studies and the numerical simulations is 
observed in most cases.  
 
The model allows for an accurate description of waves across the whole spectrum of 
wavelengths and also incorporates nonlinearity, forcing and damping. The load can be a point 
load or have a described weight distribution, moving at a time-dependent velocity. In this 
respect, the present model is more versatile than existing models for steady waves excited by 
moving loads. 
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1. Introduction 
Hydro-elastic waves can be found in ice sheets in the arctic regions and on frozen lakes and 
sounds in the winter season. The study of such waves has a long history going back to the 
1950's and was prompted by attempts to use solid ice covers as a means of supporting 
mechanized transportation (Squire et al., 1988). For example, in cold regions, some winter 
truck routes are partially on ice-covered lakes, and in some cases air strips have been built on 
thick ice covers. Indeed as mentioned in (Squire et al., 1988), in some cases, train tracks have 
been laid on ice. 
 
As many of these enterprises experienced problems resulting in loss equipment, and sometimes 
even endangering the life of the crews, it became clear that there was a need to improve our 
understanding of the properties of ice covers such as bearing capacity, resonant behavior, and 
the susceptibility to crack formation. A number of experimental campaigns were mounted with 
the goal of understanding the wave response to moving loads on ice covers (Takizawa, 1987), 
(Takizawa, 1988), (Wilson, 1955). In addition, mathematical models were developed in order 
to predict the wave response to a moving load (Davys, Hosking and Sneyd, 1985). This purely 
linear conservative model was later improved by including nonlinearity (Parau and Dias, 2002), 
(Guyenne and Parau, 2014a, 2014b) and various forms of damping or visco-elasticity (Hosking, 
Sneyd and Waugh, 1988), (Wang, Hosking and Milinazzo, 2004). 
 
In the current contribution, we use a fully dispersive model equation developed in (Dinvay, 
Kalisch and Parau, 2019a, 2019b) which is able to give more detailed information on the waves 
excited by a moving load than many previous works. The derivation is based on an idea due to 
G.B. Whitham (Whitham, 1967) to couple fully dispersive models with weakly linear terms, 
which has recently been extended to systems of equations (Aceves-Sanchez, Minzoni, and 
Panayotaros, 2013), (Carter, 2018), (Dinvay, Dutykh and Kalisch, 2019), (Moldabayev, 
Kalisch, Dutykh, 2015). Using this new model in connection with a split-step method for 
numerical discretization, we are able to study the time-dependent development of flexural-
gravity waves. The versatility of the model system allows the study of a wide range of situations 
including the motion of a combination of point loads, or indeed loads of arbitrary shape and 
time-dependent velocity. 
 
A point of departure for the linear study of flexural-gravity waves is the dispersion relation 
for small-amplitude waves. This relation is given by 
 

 
𝑐ଶ(ξ) =

𝑔/ ξ +  Dξଷ/ρ
coth ξH + hξρ୍/ρ

 (1.1) 
 

 
where H is the depth of the undisturbed fluid, h is the thickness of the elastic cover, ρ is the 
fluid density, ρI is the density of the elastic cover, and D is the flexural rigidity of the elastic 
material. In stating the relation (2.1), the assumption is made that the wavelength is greater 
than the thickness of the ice sheet. This assumption is generally reasonable. On the other hand, 
for very long waves the above relation may be approximated by 
 

 𝑐ଶ =
𝑔
ξ

[1 + ξସD/𝑔ρ ] tanh ξH (1.2) 
 

which is used in Takizawa (1987) and many other works. Figure 1 shows the two 



dispersion relations (1.1) and (1.2) for the parameter sets corresponding to the field experiments 
reported in (Takizawa, 1987,1988) and (Wilson, 1955). In the following we shall look at the 
derivation of the hydro-elastic equations, then state the weakly nonlinear approximation, and 
finally present numerical simulations of the field experiments of Takizawa and Wilson. 
 

 
 
Figure 1. Dispersion of flexural gravity waves on Lake Saroma (Takizawa, 1987) and on 
Mille Lacs (Wilson, 1955). 
 
 
2. The hydro-elastic system 
 
We consider irrotational motion of an inviscid and incompressible fluid of undisturbed mean 
depth H, and with gravity g acting in the negative z-direction. The fluid is covered by an elastic 
solid described by the Kirchhoff–Love plate theory (cf. Squire, Hosking, Kerr & Langhorne 
(1988)). The flow of the underlying liquid is described by the velocity potential 𝛷(x, z, t) and 
by the fluid surface elevation η(x,t) that coincides with the vertical deformation of the underside 
of the elastic cover. The surface z = 0 corresponds to the fluid-solid interface at rest. The fluid 
flow is describe by the Euler equations, i.e. the Laplace equation 
 

 𝛷௫௫ + 𝛷௭௭ = 0        for 𝑥 ∈ 𝑹,       −𝐻 < 𝑧 < η(x, t)   (2.1) 
 

the Neumann boundary condition at the bottom 
 

 𝛷௭ = 0        at 𝑧 =  −𝐻,        (2.2) 
 

 
the kinematic condition at the interface between the cover and the liquid 
 

 η௧ + 𝛷௫η௫ − 𝛷௭ = 0        for 𝑥 ∈ 𝑹,       𝑧 = η(x, t)   (2.3) 
 

 
and the dynamic boundary condition 
 

 𝛷௧ + ଵ
ଶ

|∇𝛷|ଶ + 𝑔η + ௣
஡

= 𝐶஻        for 𝑥 ∈ 𝑹,       𝑧 = η(x, t).   (2.4) 
 

 
Here 𝐶஻ is the Bernoulli constant which will be specified later. The presence of the elastic solid 
is described via the pressure at the boundary. To model the elastic medium we regard a new 



coordinate system shifted up along the z-axis, so that the line z = 0 coincides with z = h/2, 
where h is the ice thickness. Thus at rest, the line z = 0 coincides with the the center line of the 
elastic plate. For ease of reading, the developments in this section are only given for the two-
dimensional case. The three dimensional case can be treated analogously. Assuming small 
deformations in the horizontal and vertical directions respectively, one may consider the 
following material motion equations 
 

 𝜕௫𝜎ଵଵ + 𝜕௭𝜎ଵଶ = ρூ𝜕௧
ଶ𝑢ଵ  (2.5) 

 
 𝜕௫𝜎ଶଵ + 𝜕௭𝜎ଶଶ − ρூ𝑔 = ρூ𝜕௧

ଶ𝑢ଶ (2.6) 
 

This system represents Newton’s second law connecting the divergence of the stress tensor on 
the left hand side and the acceleration of particles on the right simplified due to smallness of 
the deformation. The plate density is constant. The stress tensor is symmetric, which means 
there are no volume or surface moments. As is common in hydro-elastic problems, we combine 
nonlinear equations for the fluid motion with linear elastic equations for the solid. This choice 
can be justified by noticing that liquid motions are of a different order of magnitude than 
deformations of the elastic solid cover. The equations are completed by adding the relation 
 

 𝑢ଵ = −𝑧𝜕௫𝑢ଶ (2.7) 
 

 
with u2 not depending on z and 
 

 𝜎ଵଵ =
𝐸

1 − 𝜈ଶ 𝜕௫𝑢ଵ (2.8) 
 

 
Here E is Young’s modulus and ν is Poisson’s ratio of the solid. Equation (2.7) is a consequence 
of the first Kirchhoff hypothesis stating that straight lines normal to the mid-surface remain 
normal and straight after deformation. It also assumes that the thickness does not change during 
deformation. Equation (2.8) is a Hooke relation modified by the second Kirchhoff hypothesis 
stating that normal stresses to surfaces parallel to the center surface are smaller than other 
stresses. The validity of the last assumptions (2.7)-(2.8) are well justified provided the plate 
thickness h is small with respect to horizontal scales. That is true since we consider a domain 
of infinite extent in the horizontal directions. Note that we do not assume anything concerning 
the relation between the thickness h and the depth H. 
 
With regards to boundary conditions imposed on the elastic plate, we have an inviscid fluid 
below the plate, which means that the shear stress at the lower boundary is zero and the normal 
stress is due to the fluid pressure p. The top of the elastic plate is free, except for an imposed 
pressure P which can be used to model a moving load. Summing up, we have 
 

 𝜎ଶଶ = −𝑃(𝑥, 𝑡) on 𝑧 = ℎ/2,   
𝜎ଶଶ = −𝑝(𝑥, 𝑡) on 𝑧 = −ℎ/2,   

𝜎ଵଶ = 𝜎ଶଵ = 0 on 𝑧 = ℎ/2 and 𝑧 = −ℎ/2.  
       

 

 
An agreement is made here that the liquid pushes the plate up and the load pushes it down. In 
a real situation this will mean that the pressure P is positive, in case of a heavy truck for 
example. However, mathematically, negative values of the imposed load P are also allowed. 



Following Squire, Hosking, Kerr & Langhorne (1988), a standard procedure of averaging the 
expressions (2.5)-(2.6) is now applied. Introduce a transverse force 
 

 𝑄ଵ = ∫ 𝜎ଵଶ
௛/ଶ

ି௛/ଶ 𝑑𝑧.  
 
Integrating both parts of (2.6) over z one obtains 
 

 𝜕௫𝑄ଵ + 𝜎ଶଶ|௭ୀି௛/ଶ
௭ୀ௛/ଶ − ρூ𝑔ℎ = ρூℎ𝜕௧

ଶ𝑢ଶ.  
 
Substituting (2.7)-(2.8) in the first equation (2.5), then multiplying by −z and integrating over 
z one arrives at 
 

 𝐸ℎଷ

12(1 − 𝜈ଶ) 𝜕௫
ଷ𝑢ଶ + 𝑄ଵ − 𝑧𝜎ଵଶ|

௭ୀି௛
ଶ

௭ୀ௛
ଶ =

ρூℎଷ

12
𝜕௧

ଶ𝜕௫𝑢ଶ.  

 
These two equations together with the boundary conditions yield the relation 
 

 
𝐷𝜕௫

ସ𝑢ଶ −
ρூℎଷ

12
𝜕௧

ଶ𝜕௫
ଶ𝑢ଶ + ρூℎ𝜕௧

ଶ𝑢ଶ + ρூ𝑔ℎ + 𝑃 − 𝑝 = 0  

 
where D = 𝐸ℎଷ/12(1−ν2) is the flexural rigidity. This is a well known equation describing the 
deflection u2(x,t) of a beam. The second term in the equation which is due to horizontal 
acceleration of media particles is usually neglected, but in the present analysis, this term will 
actually be important. 
 
The last step in the modelling of the elastic cover is to take into account energy dissipation. We 
assume a damping force proportional to the vertical velocity, which results in the addition of a 
damping term to the left part of equation (2.6). Repeating the above averaging procedure in the 
presence of damping leads to 
 

 
𝐷𝜕௫

ସ𝑢ଶ −
ρூℎଷ

12
𝜕௧

ଶ𝜕௫
ଶ𝑢ଶ + ρூℎ𝜕௧

ଶ𝑢ଶ + 𝑏𝜕௧𝑢ଶ + ρூ𝑔ℎ + 𝑃 − 𝑝 = 0 (2.9) 

 
which is our main ice deflection model that we need to combine with Equations (2.1)-(2.4). As 
stated above, the vertical deformation does not depend on variable z. Moreover, we do not 
allow for cavitation, so that the underlying fluid is always in contact with the elastic plate. 
Therefore the curves z = u2(x, t) − h/2 and z = η(x, t) coincide. If we now choose the Bernoulli 
constant 𝐶஻ = g ρூℎ/ρ, then the last equation (2.9) together with (2.4) can be written in terms 
of the hydro-elastic parameter κ = D/(ρg) as 
 

 
κ𝑔𝜕௫

ସη −
ρூℎଷ

12ρ
𝜕௧

ଶ𝜕௫
ଶη +

ρூℎ
ρ

𝜕௧
ଶη +

𝑏
ρ

𝜕௧η + 𝑔η + 𝛷௧ +
1
2

|∇𝛷|ଶ +
𝑃
ρ

= 0. (2.10) 
 

 
This equation holds on the interface z = η(x, t). Note that both the horizontal acceleration of 
the solid media particles and the nonlinear hydrodynamical effects are taken into account here. 
The load P is taken as a distributed pressure 
 

 𝑃(𝑥, 𝑡) = ρf(𝑥 − 𝑥଴ − 𝑋(𝑡)) (2.11) 



 
 
propagating down the x-axis. The hydro-elastic system is given thus by the Laplace equation 
(2.1), with the boundary conditions (2.2), (2.3) and (2.10). 
 
3. Weakly nonlinear models and simulations 
 
Using an analysis such as presented in (Dinvay, Kalisch and Parau, 2019a, 2019b), a fully 
dispersive weakly nonlinear system can be found. The system has the form 
 

 
𝜂௧ = −

tanh 𝐻𝐷
𝐷

𝑢௫ − 𝜕௫(𝜂𝑢) 
(3.1) 

 
 

 
𝑢௧ = −𝑔

1 + 𝜅𝜕௫
ସ

𝐾
𝜂௫ −

𝑏
ρ

𝐺଴

𝐾
𝑢 −

ρூ𝑔ℎ
2ρ

𝜕௫
ଷ𝜂ଶ +

𝑏
ρ

𝜕௫
ଶ(𝜂𝑢) − 𝑢𝑢௫ − 𝛤௫, (3.2) 

 
 

   
where 𝐷 = −𝑖𝜕௫, 𝐺଴ = 𝐷 tanh(𝐻𝐷) and K = 1+ ρூℎ/ρ D tanh(HD) are Fourier multiplier 
operators and 𝛤௫ represents the forcing by the moving load. In the following, we present results 
of simulations of this system. In order to approximate solutions, a spectral method coupled 
with a second-order split-step scheme is utilized. Details of this process can be found in 
(Dinvay, Kalisch and Parau, 2019a). 
 
First, we consider the field experiments of Takizawa. In this case, the ice thickness was 0.16m, 
the depth was 6.8m, and the load was a skidoo weighing 235kg. The skidoo was driven on a 
test track at various sub and supercritical speeds. Figure 2 shows the results of measurements 
taken at a fixed measurement point along the test track. The time series obtained by Takizawa 
are digitized and compared with numerical simulations of the model (3.1), (3.2). The 
comparison is favorable except for the near-critical speed 5.5 m/s. 
 
In Figure 3, similar comparisons are made with the data obtained during the field campaign of 
Wilson on Mille Lacs (Wilson, 1955). In this case, the ice layer was 61cm thick, and the water 
depth was 3.26m. Two trucks were driven over the lake simultaneously. Several runs with 
varying separation are shown in Figure 3, and the agreement between the measurements and 
the simulations is very good.  
 

 
Figure 2. Single point load used by Takizawa during experiments on Lake Saroma. The right 
panel shows comparison between time series measured at a fixed measurement location, and 



a time series taken from a simulation of the experiment using the parameters documented in 
(Takizawa, 1987). 
 

 
Figure 3. Double load used by Wilson during experiments on Mille Lacs. The right panel 
shows comparison between time series measured at a fixed measurement location, and a time 
series taken from a simulation of the experiment using the parameters documented in 
(Wilson, 1955). 
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