1	Covariation in population trends and demography reveals targets for conservation action.			
2				
3	Catriona A. Morrison ^{1.} , Simon J. Butler ¹ , Robert A. Robinson ² , Jacquie A. Clark ² , Juan Arizaga ³ , Ainars			
4	Aunins ^{4.,5} , Oriol Baltà ⁶ , Jaroslav Cepák ⁷ , Tomasz Chodkiewicz ^{8,9} , Virginia Escandell ¹⁰ , Rudd P.B.			
5	Foppen ^{11,12} , Richard D. Gregory ¹³ , Magne Husby ^{14,15} , Frédéric Jiguet ¹⁶ , John Atle Kålås ¹⁷ , Aleksi			
6	Lehikoinen ¹⁸ , Åke Lindström ¹⁹ , Charlotte M. Moshøj ²⁰ , Károly Nagy ²¹ , Arantza Leal Nebot ²² , Markus			
7	Piha ²³ , Jiří Reif ^{24,25,26} , Thomas Sattler ²⁷ , Jana Škorpilová ²⁸ , Tibor Szép ²⁹ , Norbert Teufelbauer ³⁰ , Kasper			
8	Thorup ³¹ , Chris van Turnhout ^{32,33} , Thomas Wenninger ³⁴ and Jennifer A. Gill ¹			
9				
10	¹ School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR47TJ,			
11	UK.			
12	² British Trust for Ornithology, The Nunnery, Thetford IP24 2PU, UK.			
13	³ Department of Ornithology, Aranzadi Sciences Society, Zorroagagaina 11. E20014 Donostia, Spain.			
14	⁴ Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Jelgavas iela 1,			
15	Riga, LV-1004, Latvia.			
16	⁵ Latvian Ornithological society, Skolas iela 3, Riga, LV-1010, Latvia.			
17	⁶ Catalan Ornithological Institute, Nat-Museu de Ciències Naturals de Barcelona, Pl. Leonardo da			
18	Vinci, 4-5 08019 Barcelona, Spain.			
19	⁷ Bird Ringing Centre, National Museum, Hornoměcholupská 34, CZ-10200 Praha 10, Czech Republic.			
20	⁸ Museum & Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland.			
21	⁹ Polish Society for the Protection of Birds (OTOP), ul. Odrowaza 24, 05-270 Marki, Poland.			
22	¹⁰ Estudio y Seguimiento de Aves SEO/BirdLife, Melquíades Biencinto, Madrid, Spain.			
23	¹¹ Sovon Dutch Centre for Field Ornithology, PO Box 6521, 6503 GA Nijmegen, The Netherlands.			
24	¹² Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud			
25	University, PO Box 9010, 6500 GL Nijmegen, The Netherlands.			
26	¹³ RSPB Centre for Conservation Science, The Lodge, Sandy SG19 2DL, UK.			
27	¹⁴ Nord University, Røstad, 7600 Levanger, Norway.			
28	¹⁵ BirdLife Norway, Sandgata 30B, 7012 Trondheim, Norway.			
29	¹⁶ Centre d'Ecologie et des Sciences de la COnservation (CESCO) UMR 7204, Museum National			
30	d'Histoire Naturelle, Paris, France.			
31	¹⁷ Norwegian Institute for Nature Research, P.O. Box 5685 Torgarden, NO-7485 Trondheim, Norway.			
32	¹⁸ Finnish Museum of Natural History, PO Box 17, FI-00014 University of Helsinki, Finland.			
33	¹⁹ Department of Biology, Lund University, Lund, Sweden.			

- ²⁰Dansk Ornitologisk Forening, BirdLife Denmark, Vesterbrogade 138-140, DK-1620 København V,
- 35 Denmark.
- ²¹MME BirdLife Hungary, Monitoring Centre, H-4401 Nyiregyháza 1. PO.Box 286, Hungary.
- 37 ²²SEO/BirdLife, Ciencia Ciudadana, C/Melquiades Biencinto, 34 28053 Madrid, Spain.
- ²³Finnish Museum of Natural History LUOMUS, P. O. Box 17, FI-00014 University of Helsinki,
- 39 Finland.
- 40 ²⁴Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Benatska 2, 128
- 41 01 Praha 2, Czech Republic.
- 42 ²⁵Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacky University, 771
- 43 46 Olomouc, Czech Republic.
- ²⁶Czech Society for Ornithology, Na Belidle 34, 150 00 Praha 5, Czech Republic.
- 45 ²⁷Swiss Ornithological Institute, Seerose 1, CH-6204 Sempach, Switzerland.
- 46 ²⁸Pan-European Common Bird Monitoring Scheme, Czech Society for Ornithology, Na Bělidle, CZ-150
- 47 00 Prague 5, Czech Republic.
- 48 ²⁹University of Nyíregyháza & MME/BirdLife Hungary, Nyíregyháza, Hungary.
- 49 ³⁰BirdLife Österreich, Museumsplatz 1/10/7-8, A-1070 Wien, Austria.
- ³¹Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University
- of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
- ³²Sovon Dutch Centre for Field Ornithology, PO Box 6521, 6503 GA Nijmegen, The Netherlands.
- ³³Department of Animal Ecology, Institute for Water and Wetland Research, Radboud University, PO
- 54 Box 9010, 6500 GL Nijmegen, The Netherlands.
- ³⁴Swedish Museum of Natural History, Bird Ringing Centre, Box 50007, S-104 05 Stockholm, Sweden.

58 Abstract

59 Wildlife conservation policies directed at common and widespread, but declining, species are difficult 60 to design and implement effectively, as multiple environmental changes are likely to contribute to 61 population declines. Conservation actions ultimately aim to influence demographic rates, but 62 targeting actions towards feasible improvements in these is challenging in widespread species with 63 ranges that encompass a wide range of environmental conditions. Across Europe, sharp declines in 64 the abundance of migratory landbirds have driven international calls for action, but actions that could feasibly contribute to population recovery have yet to be identified. Targeted actions to improve 65 66 conditions on poor-quality sites could be an effective approach, but only if local conditions 67 consistently influence local demography and hence population trends. Using long-term measures of 68 abundance and demography of breeding birds at survey sites across Europe, we show that co-69 occurring species with differing migration behaviours have similar directions of local population trends 70 and magnitudes of productivity, but not survival rates. Targeted actions to boost local productivity 71 within Europe, alongside large-scale (non-targeted) environmental protection across non-breeding 72 ranges, could therefore help address the urgent need to halt migrant landbird declines. Such 73 demographic routes to recovery are likely to be increasingly needed to address global wildlife declines. 74 75 Keywords: demography, population trends, migration, conservation, productivity. 76

Page 4 of 21

78 Background

79 Across the world, changing climatic conditions and patterns of land use are increasingly driving 80 population declines in species that were previously common and widespread¹. Efforts to recover 81 widespread but declining populations have typically focussed on identifying and reversing the 82 environmental changes likely to have caused the declines, for example through the design of agri-83 environment initiatives that aim to provide key resources in agricultural landscapes². These large-84 scale, resource-focussed approaches have typically failed to reverse population declines³, and 85 alternative approaches are urgently needed. Importantly, the actions needed to deliver recovery of a 86 population from a period of decline may not need to address the cause(s) of the decline directly. For 87 example, population declines in several species have been initiated by periods of low survival rates, 88 but recovery has been either facilitated or constrained by subsequent levels of productivity^{4,5}. Cases 89 such as these highlight the importance of identifying specific actions capable of influencing 90 demographic rates, and locations in which gains in demographic rate are achievable, rather than 91 relying on generic environmental management approaches in the expectation that this will lead to 92 recovery. Targeting achievable increases in demographic rates could offer new and exciting 93 opportunities to deliver population growth in widespread species of conservation concern, and thus 94 to address the challenges highlighted in the recent IPBES report⁶.

95

96 In recent decades, severe population declines in many African-Eurasian migrant landbird 97 species have been reported at both national and international scales across Europe^{7,8,9}. In 2014, 98 parties to the Convention on the Conservation of Migratory Species of Wild Animals (CMS) adopted 99 the African-Eurasian Migratory Landbirds Action Plan (AEMLAP), which is intended to improve the 100 conservation status of migratory landbirds in the region. Recent population declines have been 101 greater in species travelling to the humid tropics of west Africa than those wintering in the arid zone 102 of sub-Saharan Africa or staying in Europe^{7,9,10,11} (Supplementary Figure 1), but environmental changes 103 anywhere across migratory ranges could be contributing to the declines. While addressing ongoing 104 environmental degradation across Europe and Africa is clearly vital for long-term population

persistence, there is an urgent need to implement conservation actions now to slow or halt current migrant declines. Targeting actions to boost specific demographic rates in migratory species could be a fruitful approach to improving the conservation status of these species. For example, efforts to boost productivity might involve creation of nesting habitat or management of egg or chick predators in locations where productivity is currently low, while efforts to boost survival rates (and perhaps subsequent productivity) might involve provision of additional food resources in locations and/or time periods when they are scarce. However, such approaches will only be effective if local conditions 112 consistently influence local population trends and in demography and if sites with consistently low 113 demographic rates (survival and/or productivity) can be identified. Regional-scale analyses within the 114 UK have revealed that populations of residents, humid- and arid-zone migrants are all generally faring 115 better in northern than southern regions^{12,13}, suggesting that opportunities to target actions may exist, 116 but the locations and demographic rate(s) that would need to be targeted have yet to be identified.

117

Long-term, large-scale surveys of breeding locations across Europe provide data on the extent of spatial variation in abundance and demography, and thus the potential for targeted management of breeding season conditions to influence migrant population declines. As demographic rates can be influenced by the conditions experienced throughout the annual cycle¹⁴, consistent spatial variation in demographic rates of migratory species could reflect effects of local conditions on breeding grounds or effects of conditions experienced elsewhere¹⁵. However, strong site-level covariation in co-

occurring resident and migrant population trends at breeding sites would imply that local breeding 124 125 season conditions contribute strongly to local population dynamics in both resident and migratory 126 species. In such a case, targeted actions to improve conditions in sites with declining populations could 127 potentially deliver community-wide benefits. By contrast, a lack of site-level covariation in population 128 trends would imply that breeding season conditions alone are not the major driver of local population 129 dynamics in migrants and/or residents or that the effects of breeding season conditions on migrants 130 and residents differ. In that case, spatial targeting of actions within Europe to improve breeding conditions would be both less achievable (as inconsistent trends would limit identification of suitable 131 132 sites) and less likely to deliver growth (as local conditions may or may not contribute to local 133 population growth). If site-level covariation in population trends is apparent, strong site-level 134 covariation in levels of either productivity or survival of migrants and residents would identify the rate for which local targeting of conservation actions would be most effective in delivering local population 135 136 growth. Consequently, we use citizen-science survey data capturing local abundance and demography

137 of bird species across Europe to quantify the extent and structure of spatial variation and covariation

in population trends and demographic rates of co-occurring species with different migratory

139 behaviours.

140140

141 Methods

142 142

143 Abundance metrics from Pan-European Common Bird Monitoring Scheme (PECBMS)

145 We used species monitoring data collated under the Pan-European Common Bird Monitoring Scheme 146 (PECBMS:https://pecbms.info/), led by the European Bird Census Council (EBCC), BirdLife 147 International and Royal Society for the Protection of Birds¹⁶. In each national scheme, volunteers 148 collect annual count data on the abundance of birds (referred to throughout as abundance) during the breeding season by carrying out either line transects, point counts or territory mapping on survey 149 150 sites (Supplementary Table 1). We used data from 19 schemes in 17 countries (Supplementary Table 151 1), covering 13,859 sites and 80 species. We used data collected between 1994 and 2013, with the 152 exact length of time series varying between schemes (Supplementary Table 1). Sites were only 153 included in the analysis if they had been active for three or more years. Species were only included in 154 the analysis if they were present at 15 sites or more.

155

156 Classifying migratory status

157

Each of the 80 species was classified as either 'resident' (those that stay within Europe during the nonbreeding season), 'arid migrant' (species in which the majority of the European population covered by PECBMS winters south of the Sahara, mostly in the arid savannah of the Sahel region) or 'humid migrant' (species in which the majority of the European population covered by the PECBMS winters in the Guinean savannah, humid tropical and other forests south of the Sahel (typified by savannah and forest of West, Central, East and Southern Africa) (Supplementary Table 2, see⁷ for further details of classification).

165

166 Statistical analyses

167 Quantifying continent-level population change

In order to confirm previous studies indicating Europe-wide declines in humid-zone migrants and slight 168 169 increases in the abundance of resident and arid-zone migrant populations⁷, we fitted a Gaussian 170 General Linear Model (GLM) to estimate the average rate of species population change across Europe 171 for each migratory status. In order to account for observer effects, differing sampling protocols and 172 differences in abundance between species (and therefore differences in our capacity to detect 173 changes in abundance), we standardised counts (by subtracting the mean site-level count from the 174 annual count and dividing by the site-level standard deviation) prior to analysis. Annual standardised 175 counts were then modelled as a function of migratory status, year (continuous) and their interaction. See Supplementary Information for the results of this analysis (Supplementary Information, 176 177 Supplementary Fig. 1 and Supplementary Table 3). All statistical analyses were carried out in in R v. 178 3.1.0¹⁷.

179 180 Quantifying site-level population change 181 For each species at each site we fitted a GLM to estimate site-level population change. Annual 182 standardised counts were modelled as a function of year (continuous); this year term then describes 183 the relative rate of population change at that site for that species (Supplementary Table 7). This model 184 resulted in estimates of trends in standardised population abundance (Â) for each species at each site. 185 For simplicity, we use the term 'population trend' hereafter to describe these trends in standardised 186 abundance. 187 188 *Estimating site-level demographic metrics* 189 Data were collated from 10 Constant Effort Site (CES) schemes, spanning eight countries across 190 Europe, all of which use standardised mist-netting during the breeding season to measure the relative 191 productivity and survival of passerine birds¹⁸ (Supplementary Table 4). At each CE site, licensed ringers 192 deploy a series of mist-nets in the same positions, for the same length of time, during morning and/or 193 evening visits, typically between April-May and July-August (the season starts and ends later at higher 194 latitudes). We only included years in which sites were (a) visited eight or more times in the season 195 (including at least three visits in each of the first and second halves of the season), (b) had been 196 running for five or more years and, for each species, (c) on which 25 or more adults and 25 or more 197 juveniles had been captured in total, between 2004 and 2014. 198 199 For each species, we estimated site-level mean adult apparent survival rates using the Cormack-Jolly-200 Seber (CJS) formulation of mark-recapture models while accounting for transient individuals 201 (Supplementary Information), and site-level mean productivity as the ratio of the total number of 202 juvenile to adult birds caught at a site during each season, with individuals aged using plumage 203 characteristics (Supplementary Information). In order to account for differences in species 204 composition between sites, estimates of demographic rates for each species were standardised by 205 subtracting the overall species mean of the site-level estimates and dividing by the site-level standard 206 deviation. This resulted in standardised estimates of survival (\hat{S}) and productivity (\hat{P}) for each species 207 at each site.

208208

209 Quantifying site-level mean population trends and demographic rates for resident, arid- and humid-210 zone migrants

In order to calculate the mean population trend and demographic rate for each migratory status
(resident, arid- and humid-zone migrant) at each site, we used a bootstrapping procedure which

213 allowed us to incorporate the error associated with site-level species estimates into the estimates of 214 site-level means for each migratory status category (Supplementrary Table 7). For each species at each 215 PECBMS site, we generated 1000 new estimates of population trend (Aboot) by randomly sampling from 216 a normal distribution with a mean \hat{A} and standard deviation $\sigma(\hat{A})$. From these bootstraps we then 217 calculated 1000 estimates of mean population trend for each migratory status present at each site, taking the mean as the overall site-level estimate and the 97.5th and 2.5th quartiles as the upper and 218 219 lower confidence limits. This process was repeated for each each species at each Euro-CES site, using 220 1000 new estimates of standardised demographic rate (productivity and survival) generated by 221 randomly sampling from the posterior distribution of \$ and P to first generate 1000 estimates of each 222 rate for each species and from these mean site-level estimates of productivity (P_{boot}) and survival (S_{boot}) 223 for species of each migratory status present at each EuroCES site.

224

225 Exploring spatial variation in site-level population trends and demographic rates

226 To explore the variation in mean site-level population trends (Aboot) and demographic rates (Sboot, Pboot) 227 within and between the migratory status categories, we fitted separate Gaussian General Linear 228 Mixed Models (GLMMs) via the R package Ime4¹⁹. Mean site-level population trends or demographic 229 rates for each migratory status were fitted as the response variable in turn, with migratory status 230 (resident, arid- or humid-zone migrant), latitude and longitude, and the interactions between latitude 231 x longitude, migratory status x latitude, and migratory status x longitude as fixed effects. Site was 232 included as a random effect to account for the non-independence of trends from the same sites. To 233 assess the importance of specific effects, we performed a likelihood ratio test by comparing models 234 with and without a particular term, reporting the χ^2 value and associated significance. When

interaction terms were found to be significant, the associated main effects were retained in models
but we present only the significance of the interaction term and associated parameter estimates. Nonsignificant interaction terms were removed from the models. We present the results of a final model
carried out on the mean site-level estimates as well as the proportion of times each explanatory
variable included in the final model was significant across the 1000 bootstrapped estimates.

240

241 Quantifying site-level covariation in population trends and demographic rates

Pearson's correlation coefficients were used to estimate the strength of the covariation in mean
 population trends (A_{boot}) and in demographic rates (S_{boot}, P_{boot}) between residents and each of the two

- 244 migratory groups (arid-zone and humid-zone). Following ³, for each of our 1000 bootstrapped
- 245 datasets, we correlated mean site-level population trend or demographic rate of each migrant group
- with those of residents and calculated the overall mean correlation coefficient and the 97.5th and 2.5th

248

249 zero. 250250 251 To estimate the mean difference in site-level population trends or demographic rates of residents and 252 each of the two migratory groups (arid-zone and humid-zone), we calculated the mean difference 253 (migrant – resident at each site) for each of our 1000 bootstrapped datasets. Significant differences were identified as those in which the 97.5th and 2.5th quantiles did not overlap zero. 254 255 256 To explore the effects of spatial autocorrelation on these patterns this process was repeated within 257 each scheme and the results presented in the Supplementary online material (Supplementary Tables 258 7-9, Supplementary Figures 3-8). 259 260 Results 261 262 *European population trends and migratory strategy* 263 Across the 13,859 European survey sites, overall mean population trends between 1994 and 2013 264 were similar and slightly positive for residents and arid-zone migratory species, but humid-zone 265 species declined significantly (Supplementary Fig. 1, Supplementary Table 3). 266266 267 Site-level variation in population trends and demography 268 Across 13,859 PECBMS sites, mean population trends of resident (46 species), arid-zone migrant (15 269 species) and humid-zone migrant (19 species) species varied greatly between sites, with local declines 270 and increases occurring in all three groups across all 17 countries (Fig. 1a-c). No strong geographical 271 structure in mean site-level population trends was apparent in any group (Fig. 1a-c), although 272 populations in the east and north of Europe tended to be faring slightly less well on average (Table 1). 273 Across 336 Euro-CES sites at which demography was monitored, mean standardised productivity and 274 survival of resident (18 species), arid-zone migrants (3 species) and humid-zone migrants (5 species) also varied greatly (Fig. 1d-f). Again, no strong geographical structuring of demography was evident, 275 276 although productivity tended to be slightly lower in the east and south, while survival rates were 277 slightly lower in the east (Fig. 1, Table 1). Thus, high levels of local variation are apparent in population 278 trends and demography of these species, and there is little evidence of large-scale clustering of sites 279 with similar trends in abundance or mean levels of demography.

quantile of the distribution of the correlation coefficients as the upper and lower confidence intervals.

Significant associations were identified as those in which the 97.5th and 2.5th quantiles did not overlap

281 Site-level covariation in population trends

Mean site-level population trends of both arid- and humid-zone migrant species co-varied positively and significantly with population trends of co-occurring resident species, with the strongest association between resident and humid-zone species (Fig. 2a,b; Table 2). The slope of the covariation differs significantly from unity (Table 2) and migrants tend to be faring less well than residents at sites with increasing population trends (Fig. 2a,b, upper right quadrant) while, at sites with population declines, migrants tend to be faring slightly better than residents (Fig. 2a, b, lower left quadrant).

288

289 Humid-zone migrants are the only group of species declining overall⁷ (Supplementary Figure 1) and 290 site-level trends of humid-zone migrants were significantly lower than those of co-occurring resident 291 species (Table 2). Interestingly, while there is no overall significant difference between the population 292 trends of arid-zone migrants and residents (Supplementary Figure 1), site-level population trends of 293 arid-zone migrants were significantly higher than those of co-occurring resident species (Table 2). This 294 disparity suggests possible differences in distribution, with arid-zone species disproportionately 295 occurring in sites with either no residents and/or not occurring in sites where residents are doing well. 296 These patterns were apparent even when models were restricted to sites that had been surveyed for 297 seven or more years (Supplementary Table 6). These patterns were also apparent within survey 298 schemes, suggesting that they are consistent across Europe (Supplementary Table 7, Supplementary 299 Figure 3&4).

300

301 Site-level covariation in demography

Covariation in the demographic rates of resident and migrant species was also apparent, with mean site-level productivity of resident species showing much stronger covariation with that of both aridand humid-zone migrants (Fig. 2c,d; Table 2) than in equivalent mean site-level survival rates (Fig. 2e,f; Table 2). The marginally significant covariation in survival rates of residents and humid-zone migrants was not present when models were restricted to sites that had been surveyed for seven or more years (Supplementary Table 6). As with covariation in population trends, these patterns were also apparent within survey schemes (Supplementary Tables 8&9, Supplementary Figures 5-8).

309

310 Discussion

312 Our site-level trend analyses reveal covariation in local population trends of migrants and residents, 313 such that co-occurring species tend to have similar directions and magnitudes of change.

Consequently, sites that are good for resident species tend to be good for migrants, and *vice versa*. This suggests that local breeding season conditions are a realistic target for conservation actions which should be effective across the avian community. Similarly positive, migrant-resident covariation in productivity, but not survival, suggests that actions targeted at boosting local productivity within Europe have the potential to benefit local populations of both migrant and resident species.

319 Concerns over the potential contribution of environmental changes within African humid-320 zone wintering grounds to migrant population trends (through impacts on annual survival 321 probabilities) have arisen because of the concentration of declines among species travelling to these 322 areas^{7,9}. However, while greater overall population declines in humid-zone migrants could be viewed 323 as evidence for current 'costs of being migratory', the demographic rates that underpin these declines 324 can be influenced by processes operating anywhere within their geographic ranges and across the 325 annual cycle. For example, humid-zone migrants could be experiencing greater risks of harsh environmental conditions on their migratory journeys²⁰, while their later arrival on breeding grounds 326 327 could mean that they are less able to cope with changing breeding conditions²¹ or, should nest loss rates be high, they may lack the time to lay replacement clutches²². Furthermore, weak migratory 328 329 connectivity is typical of many species^{23,24}, with individuals from the same breeding population often

330 separated by hundreds or thousands of kilometres on their wintering grounds. Consequently,

although efforts to maintain important habitats across Africa will clearly be crucial to the long-term
 conservation of both African-Eurasian migrants and African resident species, delivering population
 recovery for species in particular parts of their breeding range by targeting actions at locations within
 Africa is unlikely to be achievable. In contrast, the strong natal and breeding site fidelity that is typical
 of migratory bird species²⁵ suggests that delivering population recovery through actions targeted on
 breeding grounds will be more feasible.

337

338 Importantly, the demographic factors that lead to population decline are not necessarily the factors that can be most easily influenced to reverse those declines^{4,26}. The weak covariation in site-339 340 level adult annual survival rates of migrant and resident species suggests they are influenced by 341 conditions experienced throughout the annual cycle with survival rates measured on breeding grounds integrating the effects of conditions experienced by individuals across their migratory range, 342 (e.g. droughts in the arid zone²⁷, storms during the migratory journey²⁹). Designing specific 343 conservation actions to boost annual survival rates would therefore be highly challenging. By contrast, 344 345 the strong co-variation in productivity of migrants and residents demonstrated by Euro-CES data

Page 12 of 21

346 provides a route for identifying the conditions associated with high and low levels of productivity, and 347 manipulating local environments to increase the frequency of sites achieving high productivity. For 348 example, low productivity can be particularly prevalent in fragmented landscapes, when small, 349 isolated populations fail to attract sufficient females^{30,31}, or areas that are intensively managed³⁰ 350 Consequently, targeting resources to increase the size and quality of breeding habitats in fragmented 351 landscapes could be an effective tool for increasing the frequency of high productivity sites, 352 particularly as relevant resources and infrastructure exist through European agri-environment schemes² and protected area networks³² in contrast to much of sub-Saharan Africa. The actions 353 354 needed to deliver on international agreements to improve the conservation status of migratory 355 landbirds are therefore likely to comprise targeted local improvements of breeding conditions across 356 Europe, alongside large-scale (non-targeted) environmental protection of key habitats across non-

357 breeding ranges.

358 Conclusion

359 Rapid declines in widespread species are occurring throughout the world, and there is an 360 urgent need to identify actions capable of addressing these declines. Citizen-science data hold unique 361 information that can be used to connect large-scale patterns with local-scale processes to target and 362 design conservation actions on the ground. Exploiting these data to identify consistent spatial 363 variation in population trends and, especially, demography can be an extremely useful tool in 364 diagnosing the most fruitful targets for interventions. These findings suggest an approach of targeted 365 actions to boost local productivity within Europe, alongside large-scale (non-targeted) environmental protection across non-breeding ranges, may provide the best hope for halting, and perhaps even 366 367 reversing, the rapid population declines in humid-zone migrants and potentially other species as well.

368

369 References

1. Johnson, C. N. *et al.* Biodiversity losses and conservation responses in the Anthropocene.

371 Science **356**, 270-275 (2017).

Batáry, P., Dicks, L. V, Kleijn, D. & Sutherland, W. J. The role of agri-environment schemes in
 conservation and environmental management. *Conserv. Biol.* 29, 1006–1016 (2015).

3. Butler, S. J., Boccaccio, L., Gregory, R. D., Vorisek, P. & Norris, K. Quantifying the impact of 375 land-use change to European farmland bird populations. *Agric. Ecosyst. Environ.* **137**, 348–357 (2010).

3764.Robinson, R. A., Morrison, C. A. & Baillie, S. R. Integrating demographic data: towards a377framework for monitoring wildlife populations at large spatial scales. *Methods Ecol. Evol.* 5, 1361–

378 1372 (2014).

379 5. Morrison, C. A., Robinson, R. A., Butler, S. J., Clark, J. A. & Gill, J. A. Demographic drivers of 380 decline and recovery in an Afro-Palaearctic migratory bird population. Proceedings. Biol. Sci. 283, 381 20161387 (2016). 382 6. Díaz S. et.al. IPBES. Summary for policymakers of the global assessment report on 383 biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity 384 and Ecosystem Services. IPBES secretariat, Bonn, Germany (2019). 385 7. Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential 386 causes. Ibis 156, 1–22 (2014). 387 8. Burfield, I. J. & van Bommel, F. P. J. Birds in Europe: population estimates, trends and conservation status. Bird Life International, Cambridge (2004). 388 389 9. Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & van Bommel, F. P. J. Long-term 390 population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006). 391 10. Hewson, C. M. & Noble, D. G. Population trends of breeding birds in British woodlands over a 392 32-year period: relationships with food, habitat use and migratory behaviour. Ibis 151, 464–486 (2009). 393 394 11. Thaxter, C. B., Joys, A. C., Gregory, R. D., Baillie, S. R. & Noble, D. G. Hypotheses to explain 395 patterns of population change among breeding bird species in England. Biol. Conserv. 143, 2006–2019 396 (2010). 397 12. Ockendon, N., Hewson, C. M., Johnston, A. & Atkinson, P. W. Declines in British-breeding populations of Afro-Palaearctic migrant birds are linked to bioclimatic wintering zone in Africa, 398 399 possibly via constraints on arrival time advancement. Bird Study 59, 111–125 (2012). 400 13. Morrison, C. A., Robinson, R. A., Clark, J. A., Risely, K. & Gill, J. A. Recent population declines 401 in Afro-Palaearctic migratory birds: The influence of breeding and non-breeding seasons. Divers. 402 Distrib. 19, 1051–1058 (2013). 403 14. Robinson R.A., Meier C.M., Witvliet W., Kéry M., Schaub M. Survival varies seasonally in a 404 migratory bird: linkages between breeding and non-breeding periods. J. Anim. Ecol (2020). 405 15. Wilson S, Saracco J.F., Krikun R, Flockhart D.T.T., Godwin C.M., Foster K.R..Drivers of 406 demographic decline across the annual cycle of a threatened migratory bird. Sci. Rep. 8, 1–11(2018). 407 16. Gregory, R. D. et al. Developing indicators for European birds. Philos. Trans. R. Soc. London B 408 Biol. Sci. 360, 269–288 (2005). 409 R Core Development Team. R: A language and environment for statistical computing. R 17. 410 Foundation for Statistical Computing, Vienna, Austria. (2014).

18. Robinson, R. A., Julliard, R. & Saracco, J. F. Constant effort: studying avian population
processes using standardised ringing. *Ringing Migr.* 24, 199–204 (2009).

413 19. Bates, D. et al. Package 'Ime4'. R Foundation for Statistical Computing, Vienna (2014).

- 414 20. Hewson, C. M., Thorup, K., Pearce-Higgins, J. W. & Atkinson, P. W. Population decline is linked
 415 to migration route in the Common Cuckoo. *Nat. Commun.* 7, 12296 (2016).
- A16 21. Norris, D. R., Marra, P. P., Kyser, T. K., Sherry, T. W. & Ratcliffe, L. M. Tropical winter habitat *A17* limits reproductive success on the temperate breeding grounds in a migratory bird. *Proc. R. Soc. B Biol. A18 Sci.* **271**, 59–64 (2004).
- 419 22. Hoffmann, J., Postma, E. & Schaub, M. Factors influencing double brooding in Eurasian
 420 Hoopoes *Upupa epops. Ibis* 157, 17–30 (2015).
- 421 23. Finch, T., Butler, S. J., Franco, A. M. A. & Cresswell, W. Low migratory connectivity is common
 422 in long-distance migrant birds. *J. Anim. Ecol.* 86, 662–673 (2017).
- 423 24. Lerche-Jørgensen, M., Willemoes, M., Tøttrup, A. P., Snell, K. R. S. & Thorup, K. No apparent
- 424 gain from continuing migration for more than 3000 kilometres: willow warblers breeding in Denmark
- 425 winter across the entire northern Savannah as revealed by geolocators. *Mov. Ecol.* **5**, 17 (2017).
- 426 25. Newton, I. *The migration ecology of birds*. (Academic Press, 2010).54 (2000).
- 427 26. Taylor C.M., Stutchbury B.J.M. Effects of breeding versus winter habitat loss and
- fragmentation on the population dynamics of a migratory songbird. *Ecol. Appl.* **26**, 424–437 (2016).
- 429 27. Mihoub J-B, Gimenez O, Pilard P, Sarrazin F. Challenging conservation of migratory species:
- 430 Sahelian rainfalls drive first-year survival of the vulnerable Lesser Kestrel Falco naumanni. *Biol.*
- 431 *Conserv.* **143**, 839–847 (2010).
- 432 28. Newton I. Weather-related mass-mortality events in migrants. *Ibis* **149**, 453–467 (2007).
- 433 29. Morrison, C. A., Robinson, R. A., Clark, J. A. & Gill, J. A. Causes and consequences of spatial
 434 variation in sex ratios in a declining bird species. *J. Anim. Ecol.* 85, 1298-1306 (2016).
- Winiarski, J. M., Moorman, C. E., Carpenter, J. P. & Hess, G. R. Reproductive consequences of
 habitat fragmentation for a declining resident bird of the longleaf pine ecosystem. *Ecosphere* 8,
 e01898 (2017).
- Brickle NW, Harper DGC, Aebischer NJ, Cockayne SH. Effects of agricultural intensification on
 the breeding success of corn buntings Miliaria calandra. *J. Appl. Ecol.* **37**, 742–755 (2001).
- Pellissier V, Touroult J, Julliard R, Siblet JP, Jiguet F. Assessing the Natura 2000 network with a
 common breeding birds survey. *Anim. Conserv.* 16, 566–574 (2013).
- 442
- 443 **Acknowledgments:** This study was made possible by strong pan-European collaborations and
- 444 friendships, and is the result of thousands of hours of fieldwork by dedicated volunteers. We thank all
- the volunteers of the national monitoring and ringing schemes; the Latvian Nature Conservation
- 446 Agency, Spanish Ornithological Society (SEO/BirdLife), Norwegian Climate and Environment Ministry,

447 Norwegian Environment Agency, Swedish Environmental Protection Agency, Centre for Animal 448 Movement Research (CAnMove) and Biodiversity and Ecosystem Services in a Changing Climate 449 (BECC), Austrian Ministry for Sustainability and Tourism, the RSPB and JNCC (on behalf of the UK 450 Statutory Nature Conservation Bodies) for support of national schemes; Zdeněk Vermouzek and Petr 451 Voříšek for scheme co-ordination, Juliet Vickery for contributions to study development, and three 452 anonymous reviewers for helpful comments on the manuscript. 453 454 Funding: This study was funded by NERC (project NE/L007665/1 & NE/T007/354/1). Aleksi Lehikoinen 455 was funded by the Academy of Finland (grant no. 275606), Jiří Reif by project PRIMUS/17/SCI/16 and 456 Jaroslav Cepák by the Ministry of Culture of the Czech Republic (DKRVO 2018/15, National Museum, 00023272). 457 458 459 Author contributions: CAM, SJB, RAR, JAC and JAG conceived and wrote the study, CAM performed the analysis and all other authors provided the data and commented on the manuscript. 460 461 Data availability: The data that support the findings of this study are available from PECBMS 462 463 (abundance: https://pecbms.info/) and Euring (demography: https://euring.org/research/ces-464 europe/) and cannot be further distributed by the authors, but these data can be provided by these

465 organisations upon request.

467 **Tables and figures**

468

Table 1. Results of GLMMs of the variation in bootstrapped mean site-level a) population trends of resident, arid- and humid-zone migrant bird species breeding at 13,859 PECBMS sites across Europe between 1994 and 2013, b) standardised productivity and c) standardised adult survival of resident and arid- and humid-zone migrant bird species on 336 Euro-CES sites across Europe between 2004 and 2014, and the proportion of 1000 bootstrapped models reporting significant (p<0.05) effects. The variance explained by the random effect of site for a) population trends = 0.006 (sd = 0.07), b) productivity = 0.26 (sd = 0.51) and c) adult survival = 0.04 (0.19). Main effects are included in all models but only presented in the table when interaction terms are not significant (see methods for details).</p>

Demographic rate	Fixed effects	Estimate (SE)	χ²	DF	p-value	Proportion
						significant (p<0.05)
a) Population trend	Longitude	-0.0007 (0.0001)	0.26	1	0.609	0.003
	Latitude*Migratory status:		21.65	2	<0.001	1.00
	Resident	0.0003 (0.0003)				
	Arid	-0.0012 (0.0003)				
	Humid	-0.0015 (0.0003)				
b) Productivity	Longitude	-0.011 (0.004)	7.08	1	<0.001	0.99
	Latitude	0.041 (0.006)	39.07	1	<0.001	1.00
	Migratory status:		6.89	2	0.032	0.444
	Resident	-2.02 (0.31)				

	Arid	-2.17 (0.33)				
	Humid	-2.07 (0.32)	22.46	4	.0.001	1.00
- c) Adult survival	Longitude	-0.014 (0.002)	33.16	-1-	<0.001	1.00
	Latitude		0.24	1	0.628	0.006
	Migratory status		4.16	2	0.125	0.016

477 **Table 2.** Results of bootstrapped Pearson correlations of associations, differences and regression coefficients between mean site-level population trends and

478 demographic rates of resident bird species and co-occurring migratory bird species of differing status (arid-zone and humid-zone) on 13,859 PECBMS survey

479 sites and 336 Euro-CE sites across Europe. * indicate significant differences from zero (or from unity, in the case of regression coefficients).

Demographic rate	Migratory status	Mean correlation	Mean difference	Mean regression	
		coefficient (95% Cls)	Migrant – Resident (95% Cls)	coefficient (95% CIs)	
Population change	Arid	0.12 (0.10 - 0.15)*	0.010 (0.005 - 0.013)*	0.26 (0.21 – 0.32)*	
	Humid	0.18 (0.15 – 0.20)*	-0.007 (-0.0100.004)*	0.30 (0.25 – 0.34)*	
Productivity	Arid	0.44 (0.35 – 0.52)*	-0.17 (-0.20 – -0.15)*	0.60 (0.46 - 0.71)*	
	Humid	0.48 (0.42 – 0.53)*	-0.06 (-0.080.04)*	0.60 (0.51 – 0.69)*	
Adult survival	Arid	0.06 (-0.08 – 0.21) ^{ns}	0.14 (0.08 – 0.20)*	0.09 (-0.12 – 0.35)*	
	Humid	0.14 (0.03 – 0.26)*	0.12 (0.07 – 0.16)*	0.19 (0.03 – 0.35)*	

482 Figure legends:

483

484 Fig. 1: Mean site-level trends in abundance between 1994 and 2013 (a-c), mean standardised site-

level productivity between 2004 and 2014 (d-f) and mean standardised site-level annual survival rates

486 between 2004 and 2014 (g-i) of resident (a,d,g), arid-zone migrant (b,e,h) and humid-zone migrant

487 (c,f,i) bird species breeding on 13,859 PECBMS sites (a-c) and 336 Euro-CES sites (d-i) across Europe.

488

- Fig. 2: Covariation between resident bird species and their co-occurring arid-zone (top row) and
 humid-zone (bottom row) migrant species in mean site-level (a,b) population trends (a: 12,103 sites;
 b: 13,267 sites), (c,d) standardised mean site-level productivity (c: 156 sites; d: 247 sites) and (e,f)
 standardised mean site-level annual survival rates (e: 156 sites; f: 247 sites). Lines of best fit are shown
 for significant associations and numbers indicate the number of sites. Horizontal bars indicate
- 494 medians, boxes indicate interquartile range, whiskers indicate minimum and maximum values and
- 495 circles indicate values 1.5 times higher or lower than 1st and 3rd interquartile, respectively.

496

http://mc.manuscriptcentral.com/prsb

Fig. 1: Mean site-level trends in abundance between 1994 and 2013 (a-c), mean standardised site-level productivity between 2004 and 2014 (d-f) and mean standardised site-level annual survival rates between 2004 and 2014 (g-i) of resident (a,d,g), arid-zone migrant (b,e,h) and humid-zone migrant (c,f,i) bird species breeding on 13,859 PECBMS sites (a-c) and 336 Euro-CES sites (d-i) across Europe.

368x435mm (300 x 300 DPI)

Fig. 2: Covariation between resident bird species and their co-occurring arid-zone (top row) and humid-zone (bottom row) migrant species in mean site-level (a,b) population trends (a: 12,103 sites; b: 13,267 sites), (c,d) standardised mean site-level productivity (c: 156 sites; d: 247 sites) and (e,f) standardised mean site-level annual survival rates (e: 156 sites; f: 247 sites). Lines of best fit are shown for significant associations and numbers indicate the number of sites. Horizontal bars indicate medians, boxes indicate interquartile range, whiskers indicate minimum and maximum values and circles indicate values 1.5 times higher or lower than 1st and 3rd interquartile, respectively.

299x209mm (300 x 300 DPI)