1	Mobilization of Tn1721-like transposons harboring <i>bla</i> CTX-M-27 between P1-like
2	bacteriophage in Salmonella and plasmids in Escherichia coli
3	Qiu-Yun Zhao ^{1†} , Wan Li ^{1†} , Run-Mao Cai ¹ , Yue-Wei Lu ¹ , Yan Zhang ¹ , Ping Cai ¹ , Mark A.
4	Webber ^{3,4} , Hong-Xia Jiang ^{1,2*}
5	¹ Guangdong Key Laboratory for Veterinary Drug Development and Safety evaluation,
6	College of Veterinary Medicine, South China Agricultural University, Guangzhou,
7	510642, China;
8	² Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China;
9	³ Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UA,
10	UK;
11	⁴ Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich,
12	Norfolk, NR4 7TJ, UK
13	
14	[†] These authors contributed equally to this work.
15	For correspondence: Hong-Xia Jiang, Ph.D.
16	National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original
17	Bacteria, College of Veterinary Medicine, South China Agricultural University (SCAU),
18	483 Wushan Road, Guangzhou, 510642, China
19	Tel.: +86-020-85284896; Email address: <u>hxjiang@scau.edu.cn</u>

Sir, 20

21	ESBL CTX-M-27, differing by only one amino acid residue from the globally
22	disseminated CTX-M-14, has recently been detected at increasing prevalence in E. coli
23	human isolates from France, Japan and Korea. ¹⁻³ The prevalence of CTX-M-27 in E. coli
24	and Salmonella strains has also recently been described in food-producing animals in
25	China. ^{4,5} IncF plasmids and ISEcp1-associated transposons are frequently associated with
26	CTX-M-27 transfer in <i>E. coli</i> . ^{1,6} However, the transmission mechanisms of CTX-M-27
27	amongst Salmonella from food animals remains to be explored. Our recent work revealed
28	that the presence of CTX-M-27 among Salmonella isolated from pork was primarily
29	mediated by a P1-like bacteriophage that integrated an 8.6-kb Tn1721-like structure
30	harboring $bla_{\text{CTX-M-27}}$ ($\Delta \text{ISEcp1B-bla}_{\text{CTX-M-27}}$ -IS903D- $\Delta \text{Tn}1721$). ⁷ This evidence for
31	distinct transmission mechanisms of <i>bla</i> _{CTX-M-27} in two common foodborne pathogens
32	within the Enterobacteriaceae prompted us to determine whether the transmission
33	pathways between E. coli and Salmonella were linked. In the present study, a total of
34	2509 isolates (2280 E. coli and 229 Salmonella) collected in our laboratory over the past
35	decade were screened for the presence of <i>bla</i> _{CTX-M-27} to explore the characteristics and
36	genetic context of <i>bla</i> _{CTX-M-27} -bearing vectors within these bacteria.
37	The presence of <i>bla</i> _{CTX-M-27} gene was confirmed in 18 (0.79%, 18/2280) E. coli
38	isolates, of which 12 (66.7%, 12/18) were from ducks, 4 (22.2%, 4/18) from chickens and

2 (11.1%, 2/18) from pigs. The *bla*_{CTX-M-27} gene was also detected in 34 (15.72%, 34/229) 39

Salmonella isolates that were predominantly recovered from chickens (55.88%, 19/34), 40

followed by pigs (35.29%, 12/34) and ducks (8.82%, 3/34) (Table 1). The recovery rate
of CTX-M-27-producing *E. coli* from food animals was generally low and remained
constant (0.57-0.83%) during the past decade. In contrast, the prevalence of
CTX-M-27-containing *Salmonella* was much higher and rose from 5.88% in 2009 to
19.25% in 2014.

Pulse field gel electrophoresis (PFGE) was used to compare relationships between all 46 CTX-M-27 positive E. coli and Salmonella. In addition, blacTX-M-27-positive Salmonella 47 were also serotyped using slide agglutination with hyperimmune sera (S and A Reagents, 48 Bangkok, Thailand). The 18 *bla*_{CTX-M-27}-positive *E. coli* isolates were grouped into seven 49 XbaI-PFGE clusters designated A-G and were 85% similar (Figure. S1). The clusters C 50 and F contained isolates from different cities which suggested that both horizontal 51 52 transmission and clonal dissemination contribute to the *bla*_{CTX-M-27} distribution in *E. coli*. Clonal spread of ST131 E. coli harboring bla_{CTX-M-27} is prevalent in humans in South 53 Korea, Japan, China and Europe,^{1-3,8} but sequence type ST131 was not detected in the 54 55 *bla*_{CTX-M-27}-positive *E. coli* in the current study. The 34 *bla*_{CTX-M-27}-positive *Salmonella* isolates presented distinct PFGE profiles, suggesting that most of the strains were 56 epidemiologically unrelated (data not shown). S. Indiana predominated (27/34), followed 57 58 by S. Typhimurium (6/34) and S. Enteritidis (1/34). All the 52 isolates of both species were multi-drug resistant to various antimicrobials from a panel of 17 tested as previously 59 described,⁹ and the most frequent pattern of MDR observed was resistance to ampicillin, 60 61 cefotaxime, ceftiofur, tetracycline, ciprofloxacin, and enrofloxacin (Table S1).

62	Plasmids harboring <i>bla</i> _{CTX-M-27} were successfully transferred into
63	streptomycin-resistant E. coli strain C600 by conjugation from each all the 18 E. coli
64	isolates. ¹⁰ PCR-based Inc/rep typing (PBRT), S1-PFGE and Southern hybridization with
65	specific probes confirmed that $bla_{CTX-M-27}$ gene was located on IncFII (12/18), IncN (4/18)
66	and non-typeable plasmids (2/18) (Table 1). In 21 of the 34 Salmonella isolates (61.76%),
67	bla _{CTX-M-27} was detected on approximately 103 kb P1-like bacteriophages, which were
68	identical to previously reported P1-like bacteriophage SJ46 (KU760857), ⁷ indicating that
69	P1-like bacteriophage plays an essential role in the dissemination of $bla_{\text{CTX-M-27}}$ gene
70	among Salmonella of food animal original. For the remaining 13 isolates of Salmonella,
71	bla _{CTX-M-27} could not be transferred into E. coli C600 by conjugation, but the gene was
72	successfully transferred into E. coli DH5a by transformation. PBRT, S1-PFGE and
73	Southern hybridization with specific probes confirmed that <i>bla</i> _{CTX-M-27} gene was located
74	on IncP (4/34), IncFIB (4/34), IncN (2/34), IncHI2 (2/34), and IncA/C (1/34) plasmids.

The $bla_{CTX-M-27}$ -positive plasmids from the 18 *E. coli* isolates were typed into five patterns by *EcoR*I digestion. The most predominant plasmid pattern, pZ22 (derived from isolate Z22), was completely sequenced by Illumina HiSeq. pZ22 was an 80, 946 bp IncFII plasmid and contained two resistance genes $bla_{CTX-M-27}$ and bla_{TEM-1} . BLAST homology analysis demonstrated that the sequence of pZ22 showed high similarity to the *bla*_{CTX-M-27}-harbouring IncHI2 plasmid pA74 (MG014720) with 99% coverage and 99.95% identity. pA74 was found from an *E. coli* recovered from a duck in China. pZ22

highly homologous (74% coverage and 95.7% identity) to a 82 was also blacTX-M-27-harbouring IncFII plasmid pGDD25-3 (MH316133) from a Salmonella 83 Indiana isolate, again isolated from a duck in China (Figure S2).¹¹ The ~8.6 kb 84 $\Delta ISEcp1B$ -bla_{CTX-M-27}-IS903D- $\Delta Tn1721$ -like structure was identified in pZ22, and this 85 structure was bounded by IRR, with 5 bp DRs at both ends of the structure. The presence 86 87 of DRs strongly indicated an insertion of the Tn1721-like structure. This Tn1721-like structure was also identified in an IncFIB plasmid, p11219-CTXM (MF133442) from 88 Klebsiella pneumoniae in China (Figure S3), suggesting that the mobilization of 89 $bla_{CTX-M-27}$ containing Tn1721-like structure amongst different plasmids from plasmid to 90 P1 bacteriophage or vice versa. 91

The 8.6 kb Tn1721-like structure, found in each of the CTX-M-27-harboured 92 plasmids in the remaining 15 E. coli strains, was located on IncFII (n=11) and IncN (n=4) 93 plasmids determined by PCR mapping and sequencing (Table S2). In the E. coli strains 94 carrying IncN plasmids, the Tn1721-like structure was inserted into a putative sodium: 95 proton antiporter gene (Figure S4). NCBI BLASTn analysis revealed that a similar 96 Tn1721-like structure has been found in the corresponding region containing a 97 beta-lactamase gene bla_{Toho-1} (MH430881) and bla_{CTX-M-24} in Salmonella and Klebsiella 98 pneumoniae, respectively.¹² Therefore, we speculate that Tn1721 transposition serves as a 99 100 common vehicle carrying *bla*_{CTX-M} genes, representing an alternative mechanism 101 mediating the mobilization of these genes in addition to the action of ISEcp1.

102	In conclusion, we identified a high degree of genetic similarity of the Tn1721-like
103	structure between P1-like bacteriophage from Salmonella and different E. coli plasmid
104	replicon types from food-producing animals. These results suggested that $bla_{\text{CTX-M-27}}$ was
105	able to transfer through mobilization of a Tn1721-like structure between plasmids of
106	Salmonella and E. coli, using bacteriophages as vehicles. Therefore, more attention
107	should be paid to the transmission mechanisms of <i>bla</i> _{CTX-M-27} and drivers for selection of
108	mobilization in the food chain.

109 Nucleotide sequence accession numbers

The complete nucleotide sequence of plasmids pZ22 and partial nucleotide sequence
of plasmids pA61 have been deposited to the GenBank database and assigned accession
numbers MT587865 and MN877942, respectively.

113 Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 31972734) and the Special Project for the Cultivation of Major Projects in International Science and Technology Cooperation (Grant No. 2019SCAUGH02).

117 Transparency declarations

118 None to declare.

119 Supplementary data

- 120 Table S1 to S2 and Figure S1 to S4 is available as Supplementary data at JAC
- 121 Online..
- 122

123	References
124	1 Matsumura Y, Pitout JDD, Gomi R, et al. Global Escherichia coli sequence type 131 clade with
125	bla _{CTX-M-27} gene. Emerg Infect Dis. 2016; 22:1900-7.
126	2 Birgy A, Bidet P, Levy C, et al. CTX-M-27-producing Escherichia coli of sequence type 131 and
127	clade C1–M27, France. Emerg Infect Dis 2017; 23:885.
128	3 Kim YA, Lee KC, hung JE. Risk factors and molecular features of sequence type (ST) 131
129	extended-Spectrum-beta-lactamase-producing Escherichia coli in community-onset female
130	genital tract infections. BMC Infect Dis 2018; 18:250.
131	4 Bai L, Zhao J, Gan X, et al. Emergence and diversity of Salmonella enterica serovar Indiana isolates
132	with concurrent resistance to ciprofloxacin and cefotaxime from patients and food-producing
133	animals in China. Antimicrob Agents Chemother 2016; 60:3365-71.
134	5. Liu H, Zhou H, Li Q, et al. Molecular characteristics of extended-spectrum β -lactamase-producing
135	Escherichia coli isolated from the rivers and lakes in Northwest China. BMC Microbiol 2018;
136	18 :125
137	6 Daniel A. Tadesse, Cong Li. Whole-genome sequence analysis of CTX-M containing Escherichia
138	coli isolates from retail meats and cattle in the United States. Microb Drug Resist 2018;
139	24 :939-48.
140	7 Yang L, Li W, Jiang GZ, et al. Characterization of a P1-like bacteriophage carrying CTX-M-27 in
141	Salmonella spp. resistant to third generation cephalosporins isolated from pork in China. Sci Rep
142	2017; 7.
143	8 Zhong YM, Liu WE, Liang XH et al. Emergence and spread of O16-ST131 and O25b-ST131 clones

- 144 among faecal CTX-M-producing *Escherichia coli* in healthy individuals in Hunan Province,
- 145 China. J Antimicrob Chemother 2015; **70**: 2223-7.
- 146 9 Jiang HX, Tang D, Liu YH, et al. Prevalence and characteristics of beta-lactamase and plasmid
- 147 mediated quinolone resistance genes in *Escherichia coli* isolated from farmed fish in China. J
- 148
 Antimicrob Chemother 2012; 67:2350-3.
- 149 10 Jiang HX, Song L, Liu J, et al. Multiple transmissible genes encoding fluoroquinolone and
- third-generation cephalosporin resistance co-located in non-typhoidal *Salmonella* isolated from
- 151 food-producing animals in China. *Int J Antimicrob Agents* 2014; **43**:242-7.
- 152 11 Fang LX, Deng GH, Jiang Q, et al. Clonal expansion and horizontal transmission of epidemic
- 153 F2:A1:B1 plasmids involved in co-spread of rmtB with qepA and $bla_{CTX-M-27}$ in extensively
- drug-resistant Salmonella enterica serovar Indiana isolates. J Antimicrob Chemother. 2019;
- **155 7**:334-41.
- 156 12 Shen P, Jiang Y, Zhou ZH, et al. Complete nucleotide sequence of pKP96, a 67 850 bp
- 157 multi-resistance plasmid encoding *qnrA1*, *aac*(6 ')-*Ib-cr* and *bla*_{CTX-M-24} from *Klebsiella*
- 158 pneumoniae. J Antimicrob Chemother 2008; **62**:1252-6.
- 159

162	animals in China						
Isolate	Species	Serotype	Source	Date	Plasmid	Plasmid	RFLP-
					(kb)	replicon	EcoRI
Z22, Z39, Z40	Escherichia	N/D	Chicken	2003	80kb	IncFII	A1
A64,A87	coli		Duck	2007			
Z5			Chicken	2003	78kb		A2
A72			Duck	2007			
20,22			Duck	2009			
28,157,199			Duck	2009	90kb		A3
A97			Duck	2005	55kb	IncN	В
A61, A67, A66			Duck	2007			
229,230			Pig	2009	50kb	Non-typed	С
MM62	Salmonella	Enteritidis	Chicken	2014	80kb	IncP	D1
SP129		Typhimurium	Pig				
K46		Indiana	Chicken		100kb		D2
SP96		Indiana	Pig		150kb		D3
CL129, K21, SP123, SP125		Indiana	Chicken		150kb	IncFIB	Е
XC48		Typhimurium	Chicken		150kb	IncN	F
SP132		Indiana	Pig				
SP108		Indiana	Pig		150kb	IncA/C	G
CL189, XC164		Typhimurium	Chicken		200kb	IncHI2	Н
\$31, \$47, \$56		Indiana	Duck	2009	100kb	P1-like	Ι
SP85,SP91,SP95,SP103,SP115,SP118,SP132			Pig	2014		bacteriophage	
CL108,CL135,CL140,CL146,HB137,SG119,K13,K14,K47			Chicken				
SP99		Typhimurium	Pig				
K17			Chicken				

161 Table 1 Characteristics of CTX-M-27-carrying *Escherichia coli* and *Salmonella* isolates from food-producing

167 Supplementary data

 Table S1 Antimicrobial resistance of CTX-M-27-carrying Escherichia coli and Salmonella enterica

 isolates from food-producing animals in China.

Antimicrobial agents	Number (%) of resistant isolates $(n = 52)$
β-Lactams	
Ampicillin	51 (98.1)
Cefotaxime	52 (100)
Cefoxitin	45 (86.5)
Ceftiofur	47 (90.4)
Ceftazidime	20 (38.5)
Meropenem	0 (0)
Quinolones	
Ciprofloxacin	40 (76.9)
Enrofloxacin	39 (75)
Aminoglycosides	
Kanamycin	27 (51.9)
Gentamicin	27 (51.9)
Amikacin	10 (19.2)
Other Antibiotics	
Tetracycline	49 (94.2)
Tigecycline	0 (0)
Chloramphenicol	21 (40.4)
Florfenicol	23 (44.2)
Colistin	1 (1.9)
170	

Table S2 Selected primers used in this study.						
Primer	Nucleotide sequence $(5' \rightarrow 3')$	Target DNA sequence	Reference/Source			
U-IncN-F	GAGCGGGTCACCTTGGTC	Up of <i>bla</i> _{CTX-M-27}	This study			
U-IncN-R	CTCTGCGTTCTGTTGCGG					
D-IncN-F	ACGCAGGTGCTTTATC	Down of <i>bla</i> _{CTX-M-27}	This study			
D-IncN-R	CGCAAGTATGGTTTCC					
IS-fw	AGAATCATCGCCGAAGGGCTGT	Insertion sequence on the				
	AACTGGTTTT	P1-like bacteriophage	(1)			
IS-rev	GCGAACATCATCCGTTGCACTC					
	TCTTTGT					

174

175 References

176 1 Yang L, Li W, Jiang GZ, et al. Characterization of a P1-like bacteriophage carrying CTX-M-27 in
177 Salmonella spp. resistant to third generation cephalosporins isolated from pork in China. Sci Rep 2017;
178 7.
179
180

Table S2 Selected primers used in this study.

183 Figure S1 Pulsed-field gel electrophoresis fingerprinting patterns of Xba I-digested total DNA

184 preparations from *Escherichia coli* isolates harboring CTX-M-27-encoding genes

185 YF: Yunfu in Guangdong province; SS: Sanshui in Guangdong province; FS: Foshan in Guangdong

- 186 province.
- 187
- 188

200 201

Figure S3. Genomic environment of the *bla*_{CTX:M-27} gene in *Escherichia coli* isolates and *Salmonella* isolates.

(A) Genetic environment of *bla*_{CTX-M-27} gene of plasmid IncFII in *Escherichia coli* Z22. (B) Genetic environment of *bla*_{CTX-M-27} gene of
P1-like bacteriophage in *Salmonella* J46 (KU760857). (C) Genetic environment of *bla*_{CTX-M-27} gene of IncN plasmid in *Escherichia coli* A61. (D) Genetic environment of *bla*_{CTX-M-27} gene in the IncFIB plasmid of *Klebsiella pneumoniae* (MF133442). (E) Genetic
environment of *bla*_{CTX-M-27} gene in the IncHI2 plasmid of *Escherichia coli* (MG012720). (F) Genetic environment of *bla*_{Toho-1} gene in *Salmonella* (MH430881). (G) Genetic environment of *bla*_{CTX-M-27} gene in the IncN plasmid of *Klebsiella pneumoniae* (EU195449).

- Figure S4. Schematic representation of insertion of transposition units harboring *bla*_{CTX-M-27} in the Sodium proton
 antiporter gene from *Escherichia coli* A61.
- 212 The 8633-bp Tn1721-like structure sequence is indicated in color arrows, and the duplicated sequences generated during
- the transposition events are highlighted with lollipop shape (AAATCT).
- 214
- 215
- 216