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Abstract
In recent years, UK summer heatwaves have resulted in thousands of excess deaths, with both
extreme temperatures and high humidity increasing health risks. Here, the UK Climate Projections
2018 (UKCP18) are compared to observational (HadUK-Grid) and reanalysis data (ERA5) to
quantify model performance at capturing mean, extremes (95th to 99.5th percentiles) and
variability in the climate state and heat stress metrics (simplified wet bulb global temperature,
sWBGT; Humidex; apparent temperature). Simulations carried out for UKCP18 generally perform
as well as or better than CMIP5 models in reproducing observed spatial patterns of UK climate
relating to extreme heat, with RMSE values on average∼30% less than for the CMIP5 models.
Increasing spatial resolution in UKCP18 simulations is shown to yield a minor improvement in
model performance (RMSE values on average∼5% less) compared to observations, however there
is considerable variability between ensemble members within resolution classes. For both UKCP18
and CMIP5 models, model error in capturing characteristics of extreme heat generally reduces
when using heat stress metrics with a larger vapour pressure component, such as sWBGT. Finally,
the 95th percentile of observed UK summer temperature is shown to have∼60% greater
interannual variability than the summer mean over the recent past (1981–2000). This effect is
underestimated in UKCP18 models (∼33%) compared to HadUK-grid and ERA5. Compared to
projected future changes in the global mean temperature, UK summer mean and 95th percentile
temperatures are shown in increase at a faster rate than the global mean.

1. Introduction

Climate change is projected to increase extreme heat
exposure risk around the world e.g. (Zhao et al 2015,
Coffel et al 2017, Andrews et al 2018). UK heat-
waves in recent decades have resulted in thousands of
excess heat-related deaths (Johnson et al 2005, Green
et al 2016, Public Health England 2019b), morbid-
ity (Arbuthnott and Hajat 2017) and economic dis-
ruption across multiple sectors (Costa et al 2016).
These risks could all increase in the future with cli-
mate change (Mitchell et al 2016, Vicedo-Cabrera
et al 2018). As a result, since 2004, the UK has imple-
mented a Heatwave Plan at the national level in Eng-
land, with a warning system for at risk areas and
advice on how to stay safe in hot weather (Public
Health England 2019a).

Heat stress occurs under environmental condi-
tions where humans (or other organisms) are unable
tomaintain stable internal body temperatures.Where
capacity to regulate core body temperature is reduced,
symptoms such as heat exhaustion and heat stroke
can occur, along with other potential medical com-
plications (Kovats and Hajat 2008). For humans, the
principal physiological coping method for heat stress
is sweating to reduce body temperature by evaporat-
ive cooling, meaning heat stress metrics often include
both a temperature and humidity component, as, at
higher humidity, sweating becomes a less efficient
method of cooling the body (Kovats and Hajat 2008,
Sherwood and Huber 2010).

There is no universal definition for what con-
stitutes a heatwave that is appropriate for all situ-
ations and locations (Perkins and Alexander 2013),
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resulting in a variety of definitions used in scientific
literature, technical reports and policy plans. A gen-
eralised definition would be a ‘prolonged period of
n or more days with temperatures exceeding a given
threshold, x’. Temperatures could be defined in terms
of daily maximum, mean or minimum (Perkins and
Alexander 2013), or using a metric of heat stress
(Chen et al 2019). The temperature threshold could
be defined in absolute terms that are regionally spe-
cific (Mccarthy et al 2019a) or, more generally, the
threshold could be described in relative terms, such
as a percentile of the long-term climate of a region
(Russo et al 2017, Arnell et al 2019).

The latestUKClimate Projections (UKCP18) pro-
duced by the UK Meteorological Office (UKMO)
(Lowe et al 2018) are available at spatial resolu-
tions ranging from ∼60 km with global coverage
down to convective permitting 2.2 km for the Brit-
ish Isles region (Murphy et al 2019, Kendon et al
2019). UKCP18 simulations provide an opportun-
ity to understand climate risks associated with high-
impact heatwave events over the UK for the recent
past and future (Murphy et al 2019) and to explore the
interaction between high temperature, high humid-
ity and heat stress based on approaches developed in
global studies (Fischer and Knutti 2013, Russo et al
2017, Di Napoli et al 2020). To date, there are only
limited previous studies focussing on temperature
changes using this data besides the official UKMO
reports (Lowe et al 2018, Murphy et al 2019, Kendon
et al 2019). There are a number of reports focussed
on specific regions, for example for the Cairgorms
and Bristol, both using the probabilistic forecasts
(Rivington et al 2019, Arup 2020), and some impacts
studies focussed on urban heat islands (Lo et al 2020)
and heat extremes at selected coastal locations (Edey
et al 2020; in review).

Here, we evaluate the UKCP18 performance over
the period 1981–2018 against observational and
reanalysis datasets. Through the model evaluation,
this paper addresses the following questions:

• How well do UKCP18 simulations capture the
observed variability in heat stress related climate
variables?

• What are the past spatiotemporal characteristics of
heatwaves in the UK and does UKCP18 capture
this variability?

• How are heat extremes projected to change for the
UK relative to the global mean?

2. Methods

The UKCP18 model ensemble has four subsets which
are assessed throughout this study (Lowe et al 2018,
Murphy et al 2019, Centre for Environmental Data
Analysis 2018), summarised in table 1. These include
HadGEM3-GC3.05 simulations with global cover-
age (hereafter ‘GCM subset’), along with a nested

regional climate model HadREM3-GA705 (hereafter
‘RCM subset’) covering the European domain, and
within that a nested convective permitting model
HadREM3-RA11M (hereafter ‘CPM subset’) cover-
ing the British Isles (Kendon et al 2019). A per-
turbed physics ensemble (PPE) was performed for
the GCM and RCM subsets (Murphy et al 2019).
In these PPEs 47 parameters were modified that
relate to convection, boundary layer, gravity wave
drag, clouds (radiative and microphysical proper-
ties), aerosols and the land surface (a full descrip-
tion of this method is available inMurphy et al 2019).
All CPM simulations have consistent model phys-
ics (i.e. not a PPE), with the differences between
simulations driven purely from the input condi-
tions applied from the GCM and RCM simulation
that each CPM simulation is nested within (Kendon
et al 2019).

Although 15 simulations were available in the
GCM subset, only 12 RCM and CPM simula-
tions driven by these experiments were included
in UKCP18, selected based upon their performance
(Murphy et al 2019). Only these 12 subset mem-
bers were assessed in this paper. Although we have
shortened the ensemble subset names for brevity,
the 12 subset members are named consistently with
the convention of Murphy et al (2019). Additionally,
eight CMIP5 simulations were analysed. These were
included as part of the UKCP18 reports and were
regridded by the UKMO to the common global grid
of HadGEM3-GC3.05 (Lowe et al 2018, Murphy et al
2019).

The highest resolution CPM has the shortest data
window available (1981–2000), and so this is taken
as the common climatological baseline period. All
UKCP18 simulations follow the CMIP5 historical cli-
mate forcing (natural plus anthropogenic) up to 2005
before changing to the RCP8.5 forcing, resulting in
slightly greater warming than has been observed over
the period 2006–2019 (Murphy et al 2019). Here, UK
summer is taken as 1st June to 15th September as
this is when England’s Heatwave Plan is active (Public
Health England 2019a).

HadUK-Grid gridded observations (Hollis et al
2019) and ERA5 reanalysis data (Hersbach et al 2020)
were obtained for model validation. Where neces-
sary for comparisons, HadUK-Grid and ERA5 were
regridded to the three UKCP18 spatial grids using
nearest neighbour interpolation. There was no spe-
cial treatment for coastal points, which could intro-
duce some cool coastal biases particularly for ERA5,
however the impact on UK-wide averages is low. For
comparisons with HadUK-Grid, monthly means of
daily mean temperature (Tmean) and vapour pressure
were calculated for UKCP18 and ERA5 (to match
the temporal resolution of HadUK-Grid data for
these variables). Details on these datasets as well
as processing that was carried out for the compar-
ison are summarsied in table 1. Some additional
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Table 1. Overview of datasets used in this study.

Dataset No. of simulations Horizontal spatial
resolution

Temporal coverage Processing Reference

UKCP18
GCM subset

12 PPE variants
used

∼60 km (global) 1981–2080 (daily) Temporal averaging
of Tmean and vapour
pressure to monthly

Murphy et al
(2019)

UKCP18
RCM subset

12 PPE variants ∼12 km (Europe) 1981–2080 (daily) Temporal averaging
of Tmean and vapour
pressure to monthly

Murphy et al
(2019)

UKCP18
CPM subset

12 driven from
GCM and RCM
variants

∼2.2 km (British
Isles)

1981–2000, 2021–
2040, 2061–2080
(daily)

Temporal averaging
of Tmean and vapour
pressure to monthly

(Kendon et al
2019)

CMIP5 8 different models
used

∼60 km (global) 1981–2100 (daily) Temporal averaging
of Tmean and vapour
pressure to monthly

Murphy et al
(2019)

HadUK-
Grid gridded
observations

N/A ∼60, 12, 1 km (UK
land only)

1981–2018 (daily/-
monthly)

Regridding from
1 km to 2.2 km

Hollis et al
(2019)

ERA5 reana-
lysis

N/A 0.25◦ (global) 1981–2018
(hourly)

Regridding to 60, 12
and 2.2 km; temporal
averaging to daily
(Tmax) and monthly
(Tmean and vapour
pressure)

(Hersbach
et al 2020)

datasets were used for analysis and discussion; further
details on these and data processing are included in
the supplementary information (available online at
stacks.iop.org/ERL/16/014039/mmedia).

Three heat stress metrics are calculated here: sim-
plified wet bulb globe temperature (sWBGT) (Aus-
tralian Bureau of Meteorology 2010, Buzan et al
2015), apparent temperature (AT) (Steadman 1979,
Zhao et al 2015) and Humidex (Masterton and
Richardson 1979, Buzan et al 2015). sWBGT is an
empirical algorithm for estimating the wet bulb globe
temperature: a physically based heat stress metric
derived for setting occupational safety thresholds
(NIOSH 1986, ISO 2017). AT and Humidex were
developed by meteorological agencies as more gen-
eric algorithms for thermal comfort (Buzan et al 2015,
Sherwood 2018). It is acknowledged that these met-
rics will have limitations, not least their actual relev-
ance for defining physiologically based levels of heat
stress risk (Sherwood 2018). However, they broadly
capture the range of variability from more compic-
ated metrics (Sherwood 2018) and offer comparable
results to many other heat stress studies (Zhao et al
2015, Buzan et al 2015, Mitchell et al 2016, Matthews
et al 2017, Kjellstrom et al 2018). Heat stress is estim-
ated for the warmest part of the day using vapour
pressure and daily maximum temperature (Tmax; see
supplementary information).

As discussed in section 1, heatwaves can be gener-
alised asnormore days exceeding a given temperature
threshold, x. For each dataset, heatwave events were
assessed in terms of their frequency and spatial extent.
Four intensity thresholds (x) were used: 95th, 98th,
99th and 99.5th, along with four duration thresholds
(n): 2, 4, 6 and 8 or more consecutive days, for Tmax

and each of the three heat stress metrics. Percentiles
are calculated for each grid cell over the reference
period 1981–2018. Heatwave Exposure, HE(x,n), is
defined for each metric as the average fractional
area of the UK that experiences a heatwave exceed-
ing x intensity and n duration threshold per sum-
mer. This metric allows the modelled heatwave vari-
ability to be compared to the observed. For refer-
ence, the observed frequencies of events of different
exampleHEmagnitudes and intensities are shown in
supplementary figure 1.

3. Analysis

3.1. Dataset overview
The frequency distribution of average Tmax over
the Greater London region for 1981–2000 sum-
mers is shown for all datasets and UKCP18 subsets
in figure 1(a). Other UK administrative regions are
shown in supplementary figure 2. There is a not-
able offset of 1 ◦C–2 ◦C between ERA5 and HadUK-
Grid data due to ERA5 having more muted diurnal
variability, and hence lower Tmax values compared to
HadUK-Grid. HadUK-Grid also records lower daily
minimum temperatures than ERA5 (shown in sup-
plementary figure 3). This muted variability in ERA5
is likely due to the dailymaximum andminimum val-
ues being calculated here from hourly data. For the
period 1981–2000, the overall distribution of Tmax

values from GCM and RCM subsets fall between
HadUK-Grid and ERA5. CPM simulations generally
fall closer to the HadUK-Grid observations with a
slight warm bias at the highest temperatures, while
CMIP5 models are more similar to ERA5 values but
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Figure 1. (a) Frequency distribution of Tmax (◦C) for all summer days 1981–2000 in the Greater London region. UKCP18 GCM,
RCM and CPM subsets are shown by the coloured bars, the CMIP5 subset by the dashed lines and HadUK-Grid and ERA5 data
by the solid lines; (b) P-P plot showing HadUK-Grid observations, ERA5 and UKCP18 subsets Tmax (◦C) for all summer days
1981–2000 in the Greater London region. Percentiles shown are the 1st, 2nd, 3rd, …, 9th, 10th, 20th, 30th,…, 80th, 90th, 91st,
92nd, …, 98th and 99th.

Figure 2. RMSE relative to the median performing simulation over UK land areas for UKCP18 model simulations compared to
and normalised relative to ERA5 reanalysis data (upper left triangles) and HadUK-Grid observational data (lower right triangles)
for summers during the period 1981–2000. RMSE for climate variables and derived heat stress metrics are shown in terms of the
(a) mean, (b) 95th percentile and (c) temporal standard deviation. The multi-model means (MMM) for each subset of the
UKCP18 ensemble are shown. Ensemble members are named consistently with Murphy et al (2019) with members 02, 03 and 14
not included in the analysis here as they were not available for the RCM and CPM.

with a greater spread and a notable overestimation of
the fraction of days at low temperatures.

Resolution dependent differences in HadUK-grid
Tmax distributions are most notable between the
60 km (blue line) and 12 km (grey line) datasets. This
is related to errors introduced during aggregation of
the data (Hollis et al 2019). Supplementary figure 2
shows that in Wales, colder temperatures are cap-
tured in the CPM subset compared to the GCM and
RCM subsets, likely due to the finer representation of
upland areas. Overestimation at the higher end of the
Tmax range shown for Greater London by the CPM
subset (figure 1(a)) is also most pronounced across
southern and eastern regions of England compared
to GCM and RCM subsets (supplementary figure 2).

This regional warm bias is possibly due to reduced
cloud cover and soil moisture in the CPM (Kendon
et al 2019).

Figure 1(b) shows a percentile-percentile (P-P)
plot for each of the UKCP18 subsets and ERA5
in comparison to HadUK-Grid observations for the
Greater London region. ERA5 does not capture as
much variability in daily summer Tmax compared
to HadUK-Grid observations, particularly at higher
percentiles. The CPM subset generally shows good
agreement with HadUK-Grid, with only a slight cold
bias at low temperatures and slight warm bias at
high temperatures. The GCM and RCM subsets show
a reasonably uniform cold bias across all percent-
iles. CMIP5 models show greater variability than
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HadUK-Grid, with a significant cold bias at low tem-
peratures, but only a minor cold bias at high temper-
atures. Although figure 1(b) shows there are general
biases in the model and reanalysis data compared to
the observations, there are no major inflections at the
upper percentiles.

3.2. Evaluation of model performance
The relative root mean square error (RMSE) for
selected UKCP18 climate variables and derived heat
stress metrics compared to HadUK-Grid and ERA5
is shown in figure 2. RMSE is shown for the mean
(RMSEmean), 95th percentile (RMSE95) and stand-
ard deviation (RMSESD) of all summer days for each
variable or metric. The multi-model mean (MMM)
is also shown for each UKCP18 subset. Summary
statistics derived from this evaluation are presented
in supplementary tables 1–4.

Averaged across all members for each resolu-
tion, RMSE scores are reasonably consistent between
the GCM, RCM and CPM subsets (e.g. absolute
Tmax RMSEmean range 1.03 ◦C–1.35 ◦C; supplement-
ary tables 1 and 2). Taken together across all cli-
mate variables and RMSE metrics model perform-
ance improves slightly with increasing resolution
compared to HadUK-Grid and ERA5, with the CPM
having absolute RMSE values ∼2%–5% less on aver-
age than the GCM and RCM subsets. The subset
with the lowest RMSEmean and RMSE95 depends on
whether ERA5 or HadUK-Grid is used as a bench-
mark. For example, the absolute Tmax RMSEmean

compared to ERA5 is least for the RCM (1.031 ◦C);
whereas compared to HadUK-Grid it is least for the
CPM (1.089 ◦C). RMSESD shows the most consistent
improvements with increasing resolution compared
to both reference datasets.

The range in relative and absolute RMSE val-
ues is generally much greater between individual
ensemble members averaged across resolution classes
(e.g. Tmax RMSEmean ranges 0.68 ◦C–2.36 ◦C for dif-
ferent ensemble members; supplementary tables 3
and 4). Again, which members perform well depends
to some extent on which dataset is used as a bench-
mark. Certain members perform relatively poorly at
all resolutions (e.g. member 12 at all resolutions is
poor for most variables in terms of the RMSEmean

compared to both ERA5 and HadUK-Grid), while
others perform well compared to only one dataset
(e.g. member 15 performs well for all RMSE metrics
and variables compared to HadUK-Grid, but poorly
compared to ERA5). It is likely that the variabil-
ity between subset members is due to errors intro-
duced in the GCM carrying through into the higher
resolution RCM and CPM that it forces (Kendon et al
2019). The similarity in errors between CPM simu-
lations and the equivalent GCM and RCM simula-
tions suggest this is the case. As noted in Kendon et al
(2019), the CPM simulations do not have perturbed

physics, meaning the major differences between these
simulations come from the driving model.

There is more variability between CMIP5 model
simulations, with this subset typically having abso-
lute RMSE values ∼50% larger than the other sub-
sets (see supplementary table 1). However, there are
exceptions; for example CNRM-CM5 performs com-
parably to many of the GCM simulations.

Zonal mean Tmax biases in the 95th percentile for
GCM, RCM and CPM simulations generally show
an exaggerated latitudinal temperature gradient with
northern regions too cold and southern regions too
hot compared to ERA5 and HadUK-Grid (supple-
mentary figures 4(a)–(c)). HadUK-Grid zonal mean
Tmax is∼2 ◦Cwarmer in general than ERA5, so simu-
lations aremore consistent withHadUK-Grid further
south, but produce a greater cold bias in the north
of the UK. At all resolutions there are some simu-
lations which are anomalously warm or cold across
all latitudes. Spatial distributions of summer Tmax

biases highlight the same meridional structure but
also reveal larger differences relative to the observa-
tions in coastal and upland areas (supplementary fig-
ures 4(d)–(f)).

3.3. Heatwave variability
In addition to capturing general climatic characterist-
ics of the UK over the recent past, it is desirable that
the UKCP18 simulations also capture realistic mag-
nitude and frequency of heatwave events. The mean
summer UK Heatwave Exposure, HE, was calculated
for the period 1981–2018 for HadUK-Grid, ERA5,
GCM, RCM and CMIP5 simulations in terms of Tmax

and sWBGT. As shown in figures 3(a) and (b) for
HadUK-Grid, shorter, less intense UK heatwaves are
more common than longer, more intense heatwaves
(e.g. in terms of Tmax,HE(95,2) is 0.40, whileHE(98,4) is
0.05).

The error in HE between the GCM, RCM
and CMIP5 simulations relative to HadUK-Grid is
shown in figures 3(c)–(h). Model subsets, particu-
larly CMIP5, generally overestimate heatwave events
of all durations and intensities compared to HadUK-
Grid (and ERA5; not shown) when heatwaves are
defined in terms of Tmax. Given the infrequent nature
of longer, more intense events, in relative terms the
modelHE error is generally greater for more extreme
events, as shown in supplementary figure 5. Short
lived events (2–3 d up to 99th percentile) and less
intense events (95th percentile up to 6–7 d) are best
simulated by UKCP18.

When heatwaves are defined in terms of sWBGT
(or other heat stress metrics; not shown), the gen-
eral observed characteristics of HE remain the same
(figure 3(b)), however, the errors between the model
subsets relative to the observations change (figures
3(d), (f), (h)).Using sWBGTgenerally reduces theHE
overestimation seen for Tmax, particularly in CMIP5
simulations. For the GCM and RCM subsets, there

5



Environ. Res. Lett. 16 (2021) 014039 A T Kennedy-Asser et al

Figure 3. HE for HadUK-Grid Tmax (a) and sWBGT (b) over the period 1981–2018; and the error in Tmax and sWBGT HE for the
GCM (c, d), RCM (e, f) and CMIP5 (g, h) subsets compared to HadUK-Grid. HE, the average fraction of the UK area per
summer experiencing a heatwave of a given magnitude, is shown for percentiles ranging 95th to 99.5th and durations ranging 2 or
more to 8 or more consecutive days.

Figure 4. Annual UK summer mean vs. 95th percentile (a) Tmax and (b) sWBGT for the period 1981–2000. The grey dashed line
indicates the 1:1 line for reference.

is a small improvement particularly for more intense
events, however longer, less intense events (95th per-
centile for 2–7 d) tend to be underestimated. In gen-
eral for both Tmax and sWBGT, the RCM subset has
fractionally the lowest error in HE and the CMIP5
models have the highest.

3.4. Annual variability and long-term trends
Figure 4 shows the relationship between annual mean
and 95th percentile of UK summer Tmax and sWBGT
for each dataset for the period 1981–2000. Details
on the linear best fit for each of the datasets shown
in figure 4 are listed in supplementary table 5. In
terms of Tmax, shown in figure 4(a), all datasets
show a qualitatively similar positive relationship, with
the 95th percentile showing amplified interannual

variability compared to the summer mean. Both
HadUK-Grid and ERA5 show amplification >60%
(e.g. the gradient of the linear fit between the Tmax

mean and 95th percentile is 1.61 for HadUK-Grid).
For the GCM, RCM and CPM subsets, the amplifica-
tion is∼33% and for the CMIP5 subset the amplific-
ation is∼25%.

In terms of sWBGT, shown in figure 4(b), a sim-
ilar positive relationship is shown. The amplification
of summer 95th percentile sWBGT compared to sum-
mer mean sWBGT is again greatest for HadUK-Grid
and ERA5 (57%–66%), and again the model subsets
substantially underestimate the amplification in sum-
mer 95th percentile as a function of summer mean
values (ranging from 14%–18%).
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Figure 5. Projected changes in UK summer mean Tmax (a) and 95th percentile (b) relative to the annual GMST. The GMST for
the RCM and CPM simulations are taken from the global GCM simulation in which they are nested. Ensemble mean linear trends
are shown for each of the GCM, RCM, CPM and CMIP5 along with a 1:1 line for reference. Trends are calculated using an
ordinary least squares fit from 20-year climatologies for the periods 1981–2000, 2021–2040 and 2061–2080 for all individual
models in the UKCP18 dataset. The rate of warming of each trendline in (a) and (b) above the annual GMST increase is shown in
(c), with uncertainty shown as±1 standard deviation in the gradients calculated by systematically removing ensemble subset
members. The observed rates of UK summer warming relative to annual GMST (from HadUK-Grid and Berkeley Earth data) for
the period 1960–2018 are shown by the black squares in (c).

Figure 6.Observed trends in UK summer (a) mean and (b) 95th percentile Tmax vs. annual GMST for the period 1960–2018, with
a 20-year moving average. The gradient of the ordinary least squared fitted trendline (red) is shown in each panel; (c) the
difference between the UK summer 95th percentile and mean Tmax overlaid with a 20-year moving average of the North Atlantic
Oscillation (NAO) index.

UKCP18 simulations also provide projections
under RCP8.5 up to 2080 for all models. The
relationship between the projected annual global
mean surface temperature (GMST) and both UK
summerTmax mean and 95th percentile using 20-year
climate averages are shown in figure 5. The differences
in the rate of UK warming from each subset relat-
ive to the GMST are shown in figure 5(c). The mag-
nitude of the long-term change in climate is much
smaller than the interannual variability shown in
figure 4.

The trendlines in figure 5(a) show that mod-
elled UK summer mean Tmax increases 13%–24%
quicker than the GMST, while modelled UK sum-
mer 95th percentile Tmax increases much quicker
than GMST, with model subsets ranging 54%–62%
quicker (trendlines in figure 5(b)).

To further assess the robustness of these modelled
changes, HadUK-Grid observations of UK summer
Tmax were compared with Berkeley Earth estimates
for annual GMST for the period 1960–2018 (Rohde
et al 2013), as shown in figure 6. Using a 20-yearmov-
ing climate window, the observations suggest a reas-
onably strong linear fit between UK summer mean
Tmax and annual GMST (R-squared of 0.94; figure
6(a)), with theUK summermeanwarming 57% faster
than GMST—considerably more than is found in the
model simulations (figure 5(c)).

Observed UK summer 95th percentile was found
to warm 43% faster than the GMST (i.e. less than the
UK summer mean; figure 6(b)). This is likely related
to the observed UK summer Tmax 95th percentile
having strong decadal variability associated with the
NAO (figure 6(c)) (Folland et al 2009, Sanderson et al
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2017, National Oceanic and Atmospheric Adminis-
tration 2020) overprinted on the long-term warming
trend. Linear trends presented for the observed rate
of UK summer 95th percentile warming in figure 5(c)
should therefore be treated as an approximation with
high uncertainty.

4. Discussion and conclusions

This study provides a detailed evaluation of heat-
waves and heat stress metrics in UKCP18 over the
recent past, showing the impact of horizontal res-
olution on model performance for a range of heat-
related variables. GCM (HadGEM3-GC3.05) simu-
lations are found to perform as well or better than
CMIP5 models for UK heat-related variables, gener-
ally lying within the range of offset between ERA5
andHadUK-Grid observation based estimates. Itmay
be preferable for model simulations to perform bet-
ter compared to HadUK-Grid or ERA5 depending on
what variable (including spatial and temporal extent)
is being assessed. For example, Tmax is derived from
hourly data for ERA5 and therefore could under-
estimate the variability observed in HadUK-Grid,
whereas vapour pressure is only available at monthly
temporal resolution for HadUK-Grid compared to
daily resolution in ERA5.

The increased spatial resolution of the RCM and
CPM offer significant potential for improvement of
climate projections over the UK for certain applica-
tions, for example in capturing variability in coastal
and upland regions, as has previously been shown
for other high resolutionmodelling experiments (Qiu
et al 2020). Additionally, although not assessed here,
urban heat island effects are clearly important for
UK summer heat extremes (Heaviside et al 2016) and
could be more appropriately represented at higher
resolution.

Generally on a national scale, increasing model
spatial resolution yields incremental improvements
in model performance. For example, our results
indicate that modelled variability improves with
increasing resolution, with both a decrease in
RMSESD for UK summer climate variables and a
fractional improvement inHE in the RCM compared
to the GCM. However, increased resolution does not
result in major systematic improvements across all
aspects of the simulations. There are likely a number
of reasons for this.

The majority of large scale variability in the RCM
andCPM simulations likely originates from the GCM
simulation which is used to drive them, therefore
resulting in a similar performance across resolutions
when evaluated on a large scale. Additionally, it is
important to note that the lower resolution simu-
lations (GCM and CMIP5) were evaluated against
HadUK-Grid and ERA5 data that had been reg-
ridded to the same lower spatial scale. Therefore,

models were not penalised for smoothing out loc-
alised variability that occurs when spatially aggreg-
ating data. Future evaluation work should focus on
whether higher resolution produces better reproduc-
tion of dynamical features that contribute to heat-
waves such as blocking events. Kendon et al (2019)
suggest the RCM and CPM are expected to behave
similarly in this regard, however a thorough eval-
uation of this is beyond the scope of the current
study. Soilmoisture availability is noted to behave dif-
ferently between the CPM and RCM (Kendon et al
2019) and this can have implications for the amp-
lification of heatwaves (Miralles et al 2012, Petch
et al 2020). Finally, as shown here, it is import-
ant to consider whether dominant modes of climate
variability such as the NAO are well captured by
models when considering UK summer temperature
extremes.

Focussing specifically on heatwave events, defined
in terms of their intensity and duration, the mod-
els show overestimations of past heatwave variabil-
ity when defined in terms of Tmax. However, this
overestimation is generally reduced when defined in
terms of heat stress metrics such as sWBGT, par-
ticularly in CMIP5 models. This is consistent with
other global studies which show that uncertainty in
high percentiles of heat stress is reduced by com-
pensation between the errors of extreme temperat-
ure and humidity (Fischer and Knutti 2013). Similar
uncertainties in temperature and Humidex extremes
over Europe have been previously reported between
RCMs and reanalysis (Scoccimarro et al 2017). In our
study, it is shown that the most extreme events (in
terms of intensity and duration) have relatively lar-
ger uncertainties, although this could be the result
of the relatively small sample size of such events in
the historical record. Given the large relative errors
for more extreme events, it may be inappropriate
to use UKCP18 subsets to analyse future extreme
events above a certain magnitude (found to be heat-
waves exceeding the 98th percentile for four or more
days using the HE method presented here). Large
ensembles and extreme value statistics could be better
suited for assessing more extreme events (Sippel et al
2015, Suarez-Gutierrez et al 2020).

Previous research using CMIP5 models has
shown that extremes in temperature are projected
to warm quicker than the annual mean temperat-
ure (Seneviratne et al 2016). Assessment of Tmax

in UKCP18 showed that for the recent past (1981–
2000), the UK summer 95th percentile has amplified
interannual variability compared to the UK summer
mean Tmax in good agreement with observational
and reanalysis data. The magnitude and impacts
of past UK heatwaves have already been shown to
have been influenced by greenhouse gas emissions
(Mitchell et al 2016, Mccarthy et al 2019b). When
assessing projected long-term UK summer Tmax in
relation to the GMST, in UKCP18 both the summer
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mean and 95th percentile temperatures are projec-
ted to warm faster than the GMST. This suggests
that UK heatwaves could be further amplified with
future warming. A process based understanding of
the differences between these models and observa-
tions should be a priority in future research, and sys-
tematic biases should be carefully considered when
using the UKCP18 simulations in impacts studies.
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