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Figure 9. Time mean (years 2001–2025) of SSH (m) for (a) FORTE 2.0 L35 and (b) OCCA (2004–2006) climatology. Differences in SSH
for (c) L20–L35 and (d) L35–OCCA.

Figure 10. AMOC (Sv) as a function of latitude and depth, averaged over the years 1900–2025 of (a) the L35 integration and (b) the L20
integration.
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Figure 11. Winter mixed layer depths (m) averaged over the
years 2000–2025 of (a) the L35 integration and (b) the L20 inte-
gration. The Northern (Southern) Hemisphere shows mixed layer
depths for the month of March (September). The mixed layer depth
is defined as the depth at which a density difference from the top
layer of 0.03 kg m−3 occurs.

ern Pacific during JJA (Fig. 5d). A major difference with the
observed distribution is the South Pacific ITCZ, which is nar-
row and predominantly zonal in the model solution, whereas
observations show a broader northwest- to southeast-oriented
region.

Contours of annual average mean sea level pressure, dis-
played in Fig. 6a, show the expected bands of high pressure
over the subtropical oceans (e.g. the Azores and North Pacific
highs) and over the polar regions and low pressure cells at
midlatitudes (e.g. Icelandic and Aleutian lows) and over the
equatorial regions. The seasonal range is largest over land
(Fig. 6b), particularly highlighting the seasonal variability
over Siberia. Differences in the annual mean sea level pres-
sure anomalies and seasonal range (L20–L35) are predomi-
nantly poleward of 60◦ N and S (Fig. 6c and d). The seasonal
range is smaller in L20 over the Labrador and GIN seas and
over the high-latitude Southern Ocean. Contours of sea level
pressure show the intensification of the surface winds over
the midlatitudes in both the Southern Hemisphere and North-
ern Hemisphere during the winter season (Fig. 6e and f). We
note that the Siberian High is not very intense for mean Jan-
uary conditions, and this appears to have the effect of allow-
ing the Icelandic Low to expand and displace eastwards over
Scandinavia, resulting in a displacement of the winter North
Atlantic Oscillation (NAO) pattern compared with observa-
tions (see Sect. 5).

Time mean zonal wind for both summer and winter is
shown in Fig. 7 as a function of latitude and pressure.
The model exhibits Northern and Southern Hemisphere jet
streams at around 40◦ S and 40◦ N at 200 hPa. The south-
ern jet stream exhibits a lower seasonal range (28–36 m s−1)
than the northern jet stream (12–36 m s−1). Surface wester-
lies and easterlies are of the order of ±0–4 m s−1 in the an-
nual mean. The most notable differences between the L20
and L35 configurations occur during JJA, with weaker winds
at 60◦ S. The midlatitude cores are also slightly stronger dur-
ing JJA in L20. At 80◦ S, the zero contour extends down to
the surface, indicating a change in the mean wind direction
from weak westerlies to weak easterlies.

4.2 The ocean

Annual mean SST (Fig. 8a) shows maximum temperatures
in the Indian and tropical Pacific and Atlantic oceans reach
26 ◦C. Compared with the EN3 climatology (Ingleby and
Huddleston, 2007, Fig. 8c), there is a cool anomaly of around
1 ◦C throughout the tropics (Fig. 8e). Regions immediately
west of the major land masses (coincident with regions of
coastal upwelling) show warm SST errors of 2–3 ◦C mag-
nitude, probably arising from a known issue in many cou-
pled climate models related to the poor representation of ma-
rine stratocumulus clouds (Gordon et al., 2000). There is a
substantial warm bias throughout the Southern Ocean and
extending into the southern parts of the Pacific and Indian
oceans, likely due to a combination of deficiencies in the
physical representations of the ocean dynamics and cloud
physics (Hyder et al., 2018). The Nordic Seas are several de-
grees cooler and up to 1.5 PSU fresher (Fig. 8f) than EN3,
possibly due in part to the crude representation of sea ice, and
in part due to the inadequate representation of ocean circu-
lation in the Arctic and Nordic seas in a 2◦ resolution ocean
model. There is a positive salinity bias of around 3 PSU fur-
ther east in the Arctic, north of Siberia. Although large, the
size of the salinity bias in the Arctic is not uncommon, even
for models that do not require a polar island to prevent is-
sues arising from the convergence of the grid at the North
Pole (Megann et al., 2010). Annual mean SSS is well rep-
resented throughout the Southern Hemisphere ocean, where
errors are mainly confined to within±0.5 PSU (Fig. 8f). Pos-
itive biases of the order of 1–1.5 PSU occur in the Bay of
Bengal and around the Maritime Continent and the northeast
Pacific. The Labrador Sea and the region extending along
the US coastline as far south as Cape Hatteras show posi-
tive salinity biases between 0.5 and 2 PSU, the latter coin-
cident with a positive temperature bias that exceeds 5 ◦C in
a small region that is indicative of the Gulf Stream separat-
ing too far north, bringing tropical waters too far north and
west. It is worth noting, though, that the L20 simulation ex-
hibits smaller biases in both SST and SSS in the Labrador
and Irminger seas (Fig. 8g and h). There is also a slight im-
provement in the Southern Ocean warm bias in L20 com-
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Figure 12. Meridional heat transport (PW) as a function of latitude for the global ocean, Atlantic and Indo-Pacific, averaged over the control
integration. A five-grid-point smoother has been applied. Solid (dashed) lines show the meridional heat transport for the L35 (L20) simulation.

pared with L35. Some of the model biases will arise from
the relatively coarse horizontal and vertical resolution and
missing physical processes. However, as indicated by the dif-
ferences between the L20 and L35 simulations, it is likely
that a substantial reduction of biases would be achieved with
the application of a rigorous calibration methodology such as
history matching (Williamson et al., 2015).

Sea surface height (SSH) provides insight into the wind-
driven ocean circulation. The SSH from L35 and the Ocean
Comprehensible Atlas (OCCA; Forget, 2010) climatology
are shown in Fig. 9a and b, respectively. Gyre circulation
in all the major ocean basins is highlighted by the con-
tours, along with regions of intensified flow, such as the Gulf
Stream, the Kuroshio, and along the northern boundary of
the ACC. However, the coarse resolution of the ocean model
results in flows that are too broad and diffuse, weakening the
SSH gradient across these intensified flows. The North At-
lantic subpolar gyre appears constrained to the west of the
basin. Slumping of the SSH gradient across the ACC is evi-
dent in the anomaly of L35 with respect to OCCA (Fig. 9d)
and corresponds to the weak ACC transport shown earlier
(Fig. 3). The slope in SSH is also weaker in the North At-
lantic and extending into the Nordic Seas. Comparison with
L20 (Fig. 9c) shows a slight steepening of the gradient across
the ACC in L20, a small reduction in the bias compared with
the OCCA climatology.

A latitude depth plot of the AMOC shows a maximum
around 50◦ N and at 1000 m depth (Fig. 10). Closely packed
streamlines at the high northern latitudes indicate that much
of the deep convection occurs abruptly in a narrow latitude
band and southward North Atlantic Deep Water transport
reaches around 2.5 km depth. The abrupt sinking at the high
northern latitudes is characteristic of coarse-resolution ocean
models where flow into the Nordic Seas is poorly repre-
sented. Winter mixed layer depths in the southern Labrador

Sea reach 2500 m in a few grid cells, whilst winter mixed
layer depths south of the Denmark Strait, Iceland and the
Faroe Bank Channel can reach 1000 m (Fig. 11). Wintertime
convection is too shallow in the Nordic Seas, with mixed
layer depths reaching 125–150 m in the central and eastern
Nordic Seas. The AMOC transport through 30◦ S is 10 Sv in
L35 and 6 Sv in L20, and is stronger (∼ 14 Sv (L35),∼ 10 Sv
(L20)) at 30◦ N. There is a strong AABW cell (∼ 6 Sv) cen-
tred at 3500 m depth, which weakens to about 2 Sv at 30◦ N.
As mentioned earlier, the AABW cell in L20 is slightly
stronger, and in Fig. 10 it is shown to extend further north.
There is evidence of two-grid-point noise at the Equator,
which has been identified previously in Bryan–Cox models
(Weaver and Sarachik, 1990). The structure of the AMOC is
similar in both the L35 and L20 simulations, with the L20
configuration consistently around 30 % weaker.

Ocean meridional heat transport (OHT) in FORTE 2.0 is
around 60 % of that expected based on observational esti-
mates but consistent with the weaker-than-observed volume
transport (Fig. 12). Atlantic OHT at 26◦ N is 0.74 PW in
L35 and 0.63 PW in L20, whilst observationally derived es-
timates suggest the current value is closer to 1.3 PW (Johns
et al., 2011). Globally, the OHT reaches 1.4 PW, instead of
the 2.1± 0.3 PW computed by Trenberth and Caron (2001).
Over the Southern Ocean (35–65◦ S), OHT is northward, a
characteristic seen previously in MOM-based ocean models
(de Freitas Assad et al., 2009). This may be related to the
strong warm SST bias present over the region at 40–60◦ S
(Fig. 8) and its consequent effect on surface heat fluxes.

5 Modes of variability

A primary aim for any climate model is to adequately repro-
duce observed modes of climate variability sufficiently well
that the model can be used to study the observed phenomena
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Figure 13. Composite anomaly of (a) El Niño events and (b) La Niña events from the L35 simulation. El Niño–Southern Oscillation
(ENSO) events are defined as those which exceed ±1 standard deviation anomaly within the Niño 3.4 region. (c) SST anomaly time series
and (d) histogram of SST anomaly distribution relative to the mean for the years 1601–1950 from the L35 simulation. The Gaussian curves
in panel (d) are fits to the distribution of Niño 3.4 SST anomalies for HadISST (black, Trenberth (2020)), L35 (blue) and L20 (red). The blue
and red lines are very close and the red line mostly overlies the blue line. Standard deviations are given in brackets.

in a variety of contexts. In this section, we present analysis
of some of the most important modes using monthly mean
ocean output for the years 1600–1950 of the control simula-
tion and daily surface pressure output during the years 1600–
1699 of the control integration.

Composites of the SST anomaly during El Niño and La
Niña years show the spatial pattern of the anomalies through-
out the tropics (Fig. 13a, b). Both phases of the El Niño–
Southern Oscillation (ENSO) are weaker than observed, in
particular near the eastern boundary. The composite temper-
ature anomaly reaches a maximum of 1 ◦C for the region of
5◦ S–5◦ N, 160–100◦W, whilst the characteristic region of
observed strong SST anomalies near to the coast of Central
and South America only reaches 0.7 ◦C and is not strongly
connected to the warm anomaly in the central Pacific. This

is probably related to the fact that the South Pacific Con-
vergence Zone is too zonal and extends all the way across
the Pacific, which is a common feature in coupled climate
models (Niznik et al., 2015). The time series of tempera-
ture anomalies in the Niño 3.4 region shows a number of
strong temperature anomaly events, although the magnitude
is in general too small (Fig. 13c, d). We plot the distribution
of SST anomalies for the Niño 3.4 region for both model
configurations and for HadISST data for the period 1870–
2019 (Rayner et al., 2003; Trenberth, 2020). The distribution
of the histogram is too narrow compared with observations
(Fig. 13d), and there is very little difference between the dis-
tributions for the L20 and L35 simulations. In both model
configurations, the extreme values extend to around ±2 ◦C
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Figure 14. The AO as represented by the first EOF and PC computed using deseasoned and latitude-weighted sea level pressure for
FORTE 2.0 (a, b) and 20CR (c, d).

Figure 15. The NAO as represented by the first EOF and PC computed using deseasoned and latitude-weighted sea level pressure for
FORTE 2.0 (a, b) and 20CR (c, d).

(Fig. 13d), whilst observations suggest the extremes should
be closer to ±2.5 ◦C.

We also examine the main extratropical modes of variabil-
ity predicted by FORTE 2.0 in the Northern Hemisphere. We
compare 20–90◦ N in an area-weighted empirical orthogo-
nal function (EOF) analysis of the deseasoned and latitude-
weighted sea level pressure fields from FORTE 2.0 and
20CR. FORTE 2.0 produces an annular mode structure as the
main mode of variability, corresponding to the Arctic Oscil-
lation (AO) in observed data. In agreement with observations
(e.g. Thompson and Wallace, 2000; Ambaum et al., 2001),
the model reproduces the two midlatitude centres of action

over the North Pacific and North Atlantic, with the Pacific
centre stronger and the Atlantic centre slightly weaker than
those seen in the 20CR and the locations of their maxima
displaced westward towards the western half of each ocean
basin (Fig. 14). The strength of the Arctic pole in FORTE 2.0
is also weaker than in observations. The NAO is closely re-
lated to the AO and is one of the principal modes of at-
mospheric variability in the North Atlantic sector (Hurrell,
1995). We compute area-weighted EOFs for the NAO over
the region of 20–80◦ N, 90◦W–40◦ E. The first EOF and its
accompanying principal component are presented in Fig. 15.
In the North Atlantic, there is a good approximation to the
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Figure 16. The SAM as represented by the first EOF and PC computed using deseasoned and latitude-weighted sea level pressure for
FORTE 2.0 (a, b) and 20CR (c, d).

NAO pattern, but in FORTE 2.0 the centre of the southern
lobe is displaced westward and the northern lobe extends fur-
ther south over mainland Europe compared with the observed
pattern. Again, the principal component suggests more high-
frequency variability in observations than in FORTE 2.0.

Similar to the Northern Hemisphere, the Southern Annular
Mode (SAM) or Antarctic Oscillation represents the princi-
pal mode of climate variability in the Southern Hemisphere.
Here, we compute area-weighted EOFs over the region of
20–90◦ S. FORTE 2.0 does not perform as well in the South-
ern Hemisphere (Fig. 16), with the annular structure signifi-
cantly weaker over the Pacific and Atlantic sectors. The vari-
ance explained by the first EOF is also greatly reduced in
FORTE 2.0, approximately half that seen in the 20CR, and
this is likely to be linked with the anomalously warm South-
ern Ocean SST.

6 Summary

We present an assessment of two 2000-year simulations of
the FORTE 2.0 coupled climate model: one using the 35σ
layer atmosphere including a stratosphere (L35) and one us-
ing the 20σ layer atmosphere without a stratosphere (L20).
The model integrates from rest and is sufficiently fast to
enable studies of multi-centennial climate variability. The
model is economic to run and can be adapted and configured
to study a wide range of climate questions.

The simulations presented here are not optimally tuned
for any specific purpose, but our assessment indicates that
FORTE 2.0 is able to simulate a satisfactory climate state

and climate variability. Biases that develop in the mean state
are comparable to those found in other coupled climate mod-
els (Flato et al., 2013) and particularly those of similar com-
plexity and resolution. A small imbalance in the freshwater
budget (see Fig. 2) would need to be addressed for studies ex-
tending over timescales much longer than several millennia.
Modes of climate variability in the Northern Hemisphere are
represented well, though there are shortcomings in the South-
ern Hemisphere variability that are likely related to a strong
SST bias over the Southern Ocean. Identifying the cause(s)
of such biases is often a complex process in itself (Hyder
et al., 2018) and beyond the scope of this current work. A
further step would be to rigorously calibrate the model to
improve the simulated climate and to better understand the
limitations and behaviour of the modelled climate system.

Code availability. The code, compilation instructions and exam-
ple run scripts, together with all necessary ancillary files, are
accessible at https://doi.org/10.5281/zenodo.4108373 (Blaker et
al., 2020). The configuration committed to the Zenodo archive
(v2.0.1) is the one used to produce both of the simulations pre-
sented in this paper. Readers are advised that there is an error
in the IGCM4 compile scripts archived as version 2.0 as linked
in the discussion version of this paper. New users are advised
to check the latest version of the code, which can be found at
https://doi.org/10.5281/zenodo.3632568 (Blaker et al., 2020). Pro-
cessing of the IGCM4 output requires the BGFLUX programme, a
copy of which is accessible from the FORTE 2.0 GitHub repository
linked to the Zenodo archive. A comprehensive user guide/manual
for FORTE 2.0 does not currently exist. A folder titled “Documen-
tation” has been added to the FORTE 2.0 GitHub repository, and
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this contains relevant references and copies of technical documents
from the original FORTE and component models.

Data availability. The code and data required to reproduce the fig-
ures presented in this paper are provided in the Supplement.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-275-2021-supplement.
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